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Abstract: This paper deals with a generic methodology to evaluate the magnetic parameters of
contactless power transfer systems. Neumann’s integral has been used to create a matrix method that
can model the magnetics of single coils (circle, square, rectangle). The principle of superposition has
been utilized to extend the theory to multi-coil geometries, such as double circular, double rectangle
and double rectangle quadrature. Numerical and experimental validation has been performed to
validate the analytical models developed. A rigorous application of the analysis has been carried
out to study misalignment and hence the efficacy of various geometries to misalignment tolerance.
The comparison of single-coil and multi-coil inductive power transfer systems (MCIPT) considering
coupling variation with misalignment, power transferred and maximum efficiency is carried out.

Keywords: air-cored; contactless; coupling; inductive power transfer; magnetics; matrix; modeling;
multi-coil

1. Introduction

Inductive power transfer (IPT) relies on electromagnetic fields to transfer energy between circuits
that are not physically connected. Loosely-coupled coils that are used in IPT systems suffer from
high leakage fields that demand reactive power, constricting large power transfer at high efficiency.
To nullify this effect, capacitive compensation is carried out such that reactive power exchange takes
places between the capacitors and inductors with the source directly connected to the load, improving
the power factor, power transfer and efficiency.

Inductive power transfer systems due to their non-contact nature allow efficient power flow to
happen with reduced maintenance, being safe, clean and reliable. Thus, applications spanning from low
power medical devices (mW) to mining (MW) have been found in the literature [1]. Other applications
include consumer electronics, EVs, underwater power delivery, etc. [2,3]. A number of resonant
topologies has been proposed, and several coil shapes and designs have been researched in this
field [1]. However, an analytical framework that studies the impact of coil shape and misalignment in
IPT systems in a rigorous manner is missing.
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The magnetic design and its optimization are important steps in the design of IPT systems.
Typically, coil optimization and magnetic parameter estimation (L1, L2, M, k) are performed relying
on electromagnetic (EM) field solvers and/or combing with evolutionary algorithms [4,5]. In other
work, numerical techniques (solving look-up tables (book of Grover [6]), solving Bessel functions [7],
solving elliptical integrals [8]) and partial element equivalent circuit (PEEC) solvers [9,10] are used to
achieve the same. In Grover’s book, there are available closed-form expressions for self-inductance of
a number of polygonal shapes. However, all of the equations are developed for single turns, ignoring
the effect of the air-gap between turns resulting in a reduction and in a reduced fill factor.

In this paper, we bridge this gap by taking into account the effect of turns (increase of the perimeter
for every new turn), as well as any incipient air-gap by using a matrix manipulation. This extends to
both single and multi-coil geometries, and their magnetic behavior is analyzed.

2. Neumann’s Integral

The mutual inductance between two current-carrying circuits assuming uniform cross-sectional
current density and neglecting radiation can be written in terms of the differential length vector of the
two circuits ~dl1, ~dl2 separated by a distance r12 in terms of vacuum permeability, µ0 = 4π× 10−7 H/m, as:

L12 =
λ2

i1
=

µ0

4π

∮
c1

∮
c2

~dl1. ~dl2
r12

(1)

In Equation (1), contours c1 and c2 are along the middle edge of the circuits 1 and 2
(primary and secondary), respectively. This equation is generic, order independent and can be
adapted to model self-inductance by considering the contours c1 and c2 as along the middle edge of
the conductor and the inner edge of the wire.

2.1. Circular Coils

In the case of a pair of circular coils, the application of Neumann’s integral as in (1), the two
contours c1 and c2 represent the contour of current filaments assumed to be in the middle of the
primary and secondary. Now, consider the case of a misaligned circular coil pair, composed of wires of
the circular cross-section of radius r and with an air-gap lg between turns. Such a coil pair is indicated
in Figure 1.

Rn

Rk

(0,0)

(x0,y0)

Rn

Rk

(0,0)

(x0,y0)

Figure 1. A coupled circular coil system with the primary having i = 1, 2..., n turns and the secondary
having j = 1, 2..., k turns; the radii of the mid-current contour of the n-th primary turn and k-th
secondary turn are Rn and Rk.
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Consider Rp and Rs as the radii of the middle contour of the first turn of the primary and
secondary. The inner radii of the i-th turn of the primary and the j-th turn of the secondary are related
as Ri = Rp + (i− 1)(2r + lg), Rj = Rs + (j− 1)(2r + lg), respectively. In such a case, the partial mutual
inductance is written in terms of azimuths, φi and φj, of the respective coils as:

Mij =
µ0

4π
×
[∫ 2π

φi=0

∫ 2π

φj=0
Idφidφj

]
(2)

where I, Ri, Rj are defined as:

I =
RiRj sin φi sin φj + RiRj cos φi cos φj√(

Ri cos φi − (x0 + Rj cos φj)
)2

+
(

Ri sin φi − (y0 + Rj sin φj)
)2

(3)

The final mutual inductance can be defined for the primary having “n” turns and the secondary
with “k” turns as:

M =
n

∑
i=1

k

∑
j=1

Mij (4)

The self-inductances can be extracted similarly from (4) by defining the radius of the middle edge
and the inner edge of each turn.

2.2. Rectangular Coils

A single turn rectangular coil is shown in Figure 2. A rectangular structure can be split into four
sections (l1′ , l2′ , ..l4′ ), each of which refers to conductors in the top, bottom, left and right, respectively.
In such a case, (1) can be written in terms of the various sections of the coil as:

L =
µ0

4π
×
[∮

l
1′

∮
l1

d
−→
l1′ ·d
−→
l1

r1′1
+
∮

l
2′

∮
l1

d
−→
l2′ ·d
−→
l1

r2′1
+
∮

l
3′

∮
l1

d
−→
l3′ ·d
−→
l1

r3′1
+
∮

l
4′

∮
l1

d
−→
l4′ ·d
−→
l1

r4′1

]
(5)

This can be written as a matrix in the form where the rows represent the section of the conductor
that carriers the current (section of the contour of the center), and columns represent the section on
which the inductance contribution is considered. Each element of the matrix is a partial inductance
(self-partial inductance (i = j) and mutual partial inductance (i 6= j)).

Lij =
µ0

4π
×



∮
l
1′

∮
l1

d
−→
l
1′
·d
−→
l1

r
1′ 1

∮
l
1′

∮
l2

d
−→
l
1′
·d
−→
l2

r
1′ 2

· · ·
∮

l
1′

∮
l4

d
−→
l
1′
·d
−→
l4

r
1′ 4

∮
l
2′

∮
l1

d
−→
l
2′
·d
−→
l1

r
2′ 1

∮
l
2′

∮
l2

d
−→
l
2′
·d
−→
l2

r
2′ 2

· · ·
∮

l
2′

∮
l4

d
−→
l
2′
·d
−→
l4

r
2′ 4∮

l
3′

∮
l1

d
−→
l
3′
·d
−→
l1

r
3′ 1

∮
l
3′

∮
l2

d
−→
l
3′
·d
−→
l2

r
3′ 2

· · ·
∮

l
3′

∮
l4

d
−→
l
3′
·d
−→
l4

r
3′ 4

∮
l
4′

∮
l1

d
−→
l
4′
·d
−→
l1

r
4′ 1

∮
l
4′

∮
l2

d
−→
l
4′
·d
−→
l2

r
4′ 2

· · ·
∮

l
4′

∮
l4

d
−→
l
4′
·d
−→
l4

r
4′ 4


(6)

Self-inductance of this rectangular coil can be written as:

L =
4

∑
i=1

4

∑
j=1

Lij (7)
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Since the orthogonal terms in the vector dot product reduce to a zero, for example: ( ~dl1′ · ~dl2 =

dx1 î·dyĵ = 0).

L =


L11 0 L13 0
0 L22 0 L24

L31 0 L33 0
0 L42 0 L44

 (8)

Thus, the total external self-inductance can be written in terms of La = L11 = L33, Lb = L22 = L44,
Ma = L13 = L31, Mb = L24 = L42 as:

L = 2(La + Lb −Ma −Mb) (9)

where the self-partial inductances (La, Lb = L(a↔b)) are given as an integration of the differential
lengths of the inner edge, dx1, and middle edge, dx2, of the top section as:

La =
µ0

4π
×
[∫ a

2−r

− a
2+r

dx1

∫ a
2

− a
2

dx2√
(x2 − x1)2 + r2

]

La = (a− r) ln

∣∣∣∣∣ a− r +
√

r2 + (a− r)2

−a + r +
√

r2 + (−a + r)2

∣∣∣∣∣+ r ln

∣∣∣∣∣−r +
√

2r
r +
√

2r

∣∣∣∣∣
+2
√

2r−
√
(r2 + (a− r)2)−

√
(r2 + (−a + r)2)

(10)

and the mutual partial inductances (Ma, Mb = M(a↔b)):

Ma =
µ0

4π
×
[∫ a

2−r

− a
2+r

dx3

∫ a
2

− a
2

dx2√
(x2 − x3)2 + (b− r)2

]
(11)

Pα P 

Pδ Pγ 

,
2 2

a b 
 

 

 0,0

a

b

,
2 2
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,

2 2
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,
2 2

a b
r r

 
   

 
,

2 2
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r r

 
  

 

,
2 2

a b
r r

 
   

 
,

2 2

a b
r r

 
    

 

Pα' P '

Pγ'Pδ' 

dl1' 

dl2' 

dl3' 

dl4' 

dl 

Figure 2. Definition of the contour of the elementary inner edge of a single turn rectangular coil dl and
the various sections of the contour of the elementary line along the center of the wire (dl1′ , dl2′ , ..dl4′ ).
For further evaluation, the contour of dl can be split at the top, right, bottom and left sections
as (dl1, dl2, ..dl4).
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3. Multi-Turn Charge Pads

A multi-turn coil is shown in Figure 3. Consider the per-turn inductance written as Lijlk, which
represents the partial inductance contribution due to current flowing through the i-th turn, j-th section
on the l-th turn, k-th section. In such a case, it is important to derive the expressions of the mutual
partial inductances considering that the dimensions of the coil change with corresponding change in
the number of turns. It is useful to list the vertices of the extremes of the contour along the center of
the wire, as well as along the inner edge of the wire for the N-th winding.

2r

lg

(0,0)
b

a

Pα P  

Pδ  Pγ 

2r

lg

(0,0)
b

a

Pα P  

Pδ  Pγ 

Top section (1)

Left section (4) Right section (2)

Bottom section (3)

1,2,3..Nturns

2r

lg

(0,0)
b

a

Pα P  

Pδ  Pγ 

Top section (1)

Left section (4) Right section (2)

Bottom section (3)

1,2,3..Nturns

     







 gg lrN

b
lrN

a
21

2
,21

2

     







 gg lrN

b
lrN

a
21

2
,21

2

     







 gg lrN

b
lrN

a
21

2
,21

2     







 gg lrN

b
lrN

a
21

2
,21

2

PNα 

PNγ  PNδ  

PNβ 

2r

lg

(0,0)
b

a

Pα P  

Pδ  Pγ 

Top section (1)

Left section (4) Right section (2)

Bottom section (3)

1,2,3..Nturns

     







 gg lrN

b
lrN

a
21

2
,21

2

     







 gg lrN

b
lrN

a
21

2
,21

2

     







 gg lrN

b
lrN

a
21

2
,21

2     







 gg lrN

b
lrN

a
21

2
,21

2

PNα 

PNγ  PNδ  

PNβ 

Figure 3. A multi-turn inductor with dimensions defined from the center of a wire of circular section
with radius r and wound in a manner such that the air gap is uniform (lg). The N-th turn “α” vertex

has its middle edge and inner edge with vertices PNα =
[
− a

2 − (N − 1)(2r + lg), b
2 + (N − 1)(2r + lg)

]
and PNαi =

[(
− a

2 + r
)
− (N − 1)(2r + lg),

(
b
2 − r

)
+ (N − 1)(2r + lg)

]
.

The partial self-inductance of the N-th turn (due to the first section) can be derived as:

LN1N1 =
µ0

4π
×
[∫ k2

k1

dx1

∫ β

α

dx2√
(x2 − x1)2 + r2

]
(12)

where,

k1 =
(
− a

2
+ r
)
− (N − 1)(2r + lg), k2 =

( a
2
− r
)
+ (N − 1)(2r + lg)

α = − a
2
− (N − 1)(2r + lg), β =

a
2
+ (N − 1)(2r + lg)

(13)

The result of such an integration is:

µ0

4π
× [I(C = β)− I(C = α)] (14)
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where,

I(C) =
√

r2 + (C− k2)
2 −

√
r2 + (C− k1)

2 + ln

∣∣∣∣∣∣∣∣∣
(√

r2 + (C− k1)
2 + (C− k1)

)(C−k1)

(√
r2 + (C− k2)

2 + (C− k2)

)(C−k2)

∣∣∣∣∣∣∣∣∣ (15)

The self-inductance matrix can be written as:

Lijlk =
µ0

4π
×



N

∑
i=1

N

∑
l=1

Li1l1 0 −
N

∑
i=1

N

∑
l=1

Li1l3 0

0
N

∑
i=1

N

∑
l=1

Li2l2 0 −
N

∑
i=1

N

∑
l=1

Li2l4

−
N

∑
i=1

N

∑
l=1

Li3l1 0
N

∑
i=1

N

∑
l=1

Li3l3 0

0 −
N

∑
i=1

N

∑
l=1

Li4l2 0
N

∑
i=1

N

∑
l=1

Li4l4


(16)

The diagonal terms in the above matrix are the sectional partial self-inductance, and the
off-diagonal terms are the sectional partial mutual inductance. Note that the signs of sectional
self-inductance are positive, and those of the sectional partial mutual inductance are negative for
rectangular structures. The summation terms can be evaluated by calculating some general matrices
like LN1k1, LN1k3. The inductance contributions of LN2k2, LN2k4 can be obtained by inverting a↔ b in
the previous set of general expressions. The net self-inductance can then be written as:

L =
N

∑
i=1

4

∑
j=1

N

∑
l=1

4

∑
k=1

Lijlk (17)

Sectional Partial Inductances

The sectional partial self-inductance is defined as the sum of the partial self- and partial mutual
inductance contributions of current in a particular section on the same section on all possible turns.
The sectional partial mutual self-inductance is defined as the sum of the partial mutual inductance
contributions of the current in a particular section on a different section for all combinations of
possible turns. Following the previous procedures, the partial self-inductance due to current in the
N-th turn first section on the k-th turn first section is given by:

LN1k1 =
µ0

4π
×

∫ k2

k1

dx1

∫ β

α

dx2√
(x2 − x1)2 +

(
r + (N − k)(2r + lg)

)2


Symbols: k1 =

(
− a

2
+ r
)
− (k− 1)(2r + lg), k2 =

( a
2
− r
)
+ (k− 1)(2r + lg)

α = − a
2
− (N − 1)(2r + lg), β =

a
2
+ (N − 1)(2r + lg)

(18)
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The result of this integration is the same as (14) with I(C) defined as:

I(C) =
√
(r + (N − k)(2r + lg))

2 + (C− k2)
2

−
√
(r + (N − k)(2r + lg))

2 + (C− k1)
2

+ ln

∣∣∣∣∣∣∣∣∣
(√

(r + (N − k)(2r + lg))
2 + (C− k1)

2 + (C− k1)

)(C−k1)

(√
(r + (N − k)(2r + lg))

2 + (C− k2)
2 + (C− k2)

)(C−k2)

∣∣∣∣∣∣∣∣∣
(19)

Similarly, the partial mutual self-inductance can be written as:

LN1k3 =
µ0

4π
×

∫ k2

k1

dx1

∫ β

α

dx2√
(x2 − x1)2 +

(
(b− r) + (2r + lg)(N + k− 2)

)2


Symbols:

k1 =
(
− a

2
+ r
)
− (k− 1)(2r + lg), k2 =

( a
2
− r
)
+ (k− 1)(2r + lg)

α = − a
2
− (N − 1)(2r + lg), β =

a
2
+ (N − 1)(2r + lg)

(20)

Again, the result of this integration is the same as (14) with I(C) defined as:

I(C) =
√
((N + k− 2)(2r + lg) + (b− r))2 + (C− k2)

2

−
√
((N + k− 2)(2r + lg) + (b− r))2 + (C− k1)

2

+ ln

∣∣∣∣∣∣∣∣∣
(√

((N + k− 2)(2r + lg) + (b− r))2 + (C− k1)
2 + (C− k1)

)(C−k1)

(√
((N + k− 2)(2r + lg) + (b− r))2 + (C− k2)

2 + (C− k2)

)(C−k2)

∣∣∣∣∣∣∣∣∣
(21)

4. Mutual Inductance between Rectangular Coils

A simple description of the mutual inductance scenario of a single turn primary and a single turn
secondary is depicted in Figure 4. As an extension of the theory previously developed, the mutual
inductance for a multi-turn rectangular coil can be written in terms of the contributions due to current
flowing through the i-th turn, j-th section of the primary on the l-th turn, k-th section on the secondary.
The sectional mutual inductance matrix can be written as:

Mijlk =
µ0

4π
×



N

∑
i=1

N

∑
l=1

Mi1l1 0 −
N

∑
i=1

N

∑
l=1

Mi1l3 0

0
N

∑
i=1

N

∑
l=1

Mi2l2 0 −
N

∑
i=1

N

∑
l=1

Mi2l4

−
N

∑
i=1

N

∑
l=1

Mi3l1 0
N

∑
i=1

N

∑
l=1

Mi3l3 0

0 −
N

∑
i=1

N

∑
l=1

Mi4l2 0
N

∑
i=1

N

∑
l=1

Mi4l4


(22)
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Figure 4. Mutual inductance between a general primary single turn and a secondary single turn.
The length and breadth of the primary are (a, b), while those of the secondary are (c, d). The vertical
displacement between the primary and secondary is h.

5. Extension to Multi-Coil Charge Pad (MCCP)

Consider a linear magnetic system excited by a pure sinusoidal (non-harmonic) voltage consisting
of a primary and a pickup composed of several segmented coils as shown in Figure 5. The coils can be
individually connected serially or in parallel to compose the multi-coil charge-pad. Let the primary
be composed of “n” coils, (1, 2, ..n) and the pickup with “m− n” coils, (n + 1, n + 2, ..m, (m > n)).
Consequently, the voltage matrix,

[
V
]

for all of the coils can be written in terms of currents,
[
i
]
,

and time-derivative of currents,
[

di
dt

]
:

[
V
]
=
[

L
]
×
[

di
dt

]
+
[

R
]
×
[
i
]

(23)

where the matrices are defined as:

[V] =



v1

v2
...

vn

vn+1

vn+2
...

vm



[
di
dt

]
=
[
i′
]
=



i′1
i′2
...

i′n
i′n+1
i′n+2

...
i′m


[i] =



i1
i2
...

in

in+1

in+2
...

im


[R] =


R1 0 0 0 0 0 0 0
0 R2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 R8

 (24)
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Finally, [L] is defined as:

[L] =



L11 L12 . . . L1n L1(n+1) L1(n+2) . . . L1(m)

L21 L22 . . . L2n L2(n+1) L2(n+2) . . . L2(m)
...

...
...

...
...

...
...

...
Ln1 Ln2 . . . Lnn Ln(n+1) Ln(n+2) . . . Ln(m)

L(n+1)1 L(n+1)2 . . . L(n+1)n 0 0 0 0
L(n+2)1 L(n+2)2 . . . L(n+2)n 0 0 0 0

...
...

...
... 0 0 0 0

Lm1 Lm2 . . . Lmn 0 0 0 0


(25)

v1v1 v2v2
vnvn

vn+2vn+2vn+1vn+1 vmvm

vsvs

vp

ipip

i2i2 inin

in+1in+1 in+2in+2 imim

isis

v1 v2
vn

vn+2vn+1 vm

vs

vp

ip

i2 in

in+1 in+2 im

is

v1 v2
vn

vn+2vn+1 vm

vs

vp

ip

i2 in

in+1 in+2 im

is

i1i1

L11 L22 LnnL11 L22 LnnL11 L22 LnnL11 L22 Lnn

RLRL

L11 L22 Lnn

RL

Zairgap
Series 

Parallel

Series 

Parallel

L11 L22 Lnn

RL

Zairgap
Series 

Parallel

v1 v2
vn

vn+2vn+1 vm

vs

vp

ip

i2 in

in+1 in+2 im
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L11 L22 Lnn

RL

Zairgap
Series 

Parallel

Series 

Pickup circuit

 

Primary circuit

 

Figure 5. Defining an inductive power transfer (IPT) system with the primary and secondary composed
of multiple coils with self-inductances as (Lij, i = j) and mutual inductances as (Lij, i 6= j).

The series and parallel combination can now be decomposed from this multi-coil combination.
In the case of a series connected set of coils, ip = i1 = i2 · · · = in and is = in+1 = in+2 · · · = im.
Furthermore, in the case of the parallel set of coils, ip = i1 + i2 · · ·+ in and is = in+1 + in+2 · · ·+ im.
After such a transformation, it becomes easy to reduce such a system of parallel or series coils into
a single coil-pair. In such a system, for both the series and parallel system of coils, it can be easy to
prove that:
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n

∑
i=1

vi

m

∑
j=n+1

vj

 =


n

∑
i=1

n

∑
j=1

Lij

n

∑
i=1

m

∑
j=n+1

Lij

m

∑
j=n+1

n

∑
i=1

Lij

m

∑
j=n+1

m

∑
i=n+1

Lij

×
[

ip
′

is ′

]
+


n

∑
i=1

Ri 0

0
m

∑
j=n+1

Rj

×
[

ip

is

]
(26)

Equation (26) indicates that it is possible to convert a linear magnetic system with multi-coils
into a system of a single coil pair by calculating the individual contributions. Such an equivalent coil
system is shown in Figure 6. Such a transposition makes it easy to analytically model multi-coil linear
magnetic systems by using the principles of single coils already developed previously.

L11 L22

R1 R2
L12

RL
vp

ip is

vs
1

m

j

j n

V
 


1

n

i

i

V




1

m

j

j n

R
 


1

n

i

i

R




1 1

n n

i ji j
L

  

1 1

n m

i ji j n
L

   

1 1

m m

ij

j n i n

L
   

 

Figure 6. Equivalent single coil pair for a system of coils with (1, 2, ..., n) coils in the primary and
(n + 1, n + 2, ..., m) coils in the pickup.

6. Validation of Analytical Model

To validate the analytical models that are developed in the previous sections, finite element
method (FEM) simulation and experimentation are carried out. Circular and rectangular shapes
are compared. The physical properties of the coils are tabulated in Table 1. To show the efficacy of
analytical expressions, a reduced fill factor was employed for rectangular coils by maintaining an
air-gap of 0.6 cm between the turns.

Table 1. Properties of the compared circular and rectangular coils.

Type of Coil a (cm) b (cm) lg (cm) N (turns)

Rectangular (R1) 4 2 0.6 9
Rectangular (R2) 6 4 0.6 15

Circular (C) inner diameter = 5.5 cm 14
Litz wire used 600× 0.071 mm, 2.1 mm dia overall

The constructed coils are shown in Figure 7. The measurements, analysis and simulations are
carried out at variable z-gaps between the coils and also at several misaligned positions. The z-gaps are
simulated at 3, 5, 7 and 9 cm of coil displacements in the z-direction, taking vertical misalignment into
consideration. In the case of lateral misalignment, perfect alignment, 75%, 50% and 25% alignments
are chosen along the x-axis. The results along the y-axis for symmetrical shapes follows the same trend
as the x-axis and, hence, not considered.

Measurements are made by using the Agilent 4294A impedance analyzer (Agilent Technologies,
Santa Clara, CA, USA) with the frequency set to 85 kHz. The mutual inductances are extracted from
self-inductances by carrying out a constructive and destructive flux measurement by connecting the
coils serially from one end to the other and then swapping one of the ends (Lconst, Ldes). The expressions
used for extracting the mutual inductance and coupling are:
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M =
Lconst − Ldes

4

k =
M√
L1L2

(27)

 

Figure 7. Experimental comparison of rectangular and circular coils with parameters as tabulated in
Table 1.

The analytical expressions for circular coils are calculated from Equations (1)–(4). Furthermore,
for rectangular coils, Equations (12)–(22) are computed. MATLAB scripts are written separately for
each of the computations, and a software tool for self-, mutual and coupling computations is developed
for air-cored coils. A comparison of coupling obtained analytically and by making measurements
for circular coils is presented in Figure 8. The results show a large degree of agreement between the
analytical expressions and the measured results. Mismatches in the results are due to the use of the litz
wire in the experiments (unlike a solid conductor used in the analysis) and eddy currents (proximity
effects) in the coils that are not considered in the analytical expressions. Some instrumental accuracy
limitations also add to this error. However, most observations are within 1% accuracy except for an
odd set in the neighborhood of 6%. These accuracy measures are acceptable for magnetic analysis.
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Figure 8. The analytical and experimental comparison of the coupling coefficient of circular coils with
z-gaps of 3, 5, 7 and 9 cm with coils of parameters as tabulated in Table 1.
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FEM models were created and simulated so as to perform the numerical evaluation of the
coils considered. The FEM models developed using COMSOL Multiphysics 5.1 are presented in
Figure 9.

 

 

Figure 9. FEM simulation models of the rectangular coil (top-left), circular coil (top-right) and the
rectangular coil (bottom) couple. The rectangular coils are modeled in the 3D domain, while the circular
coils due to their rotational symmetry are modeled in the 2D domain.

The coupling and self-inductances of circular and rectangular coils are compared analytically,
using FEM simulations and experimentation. The results are presented in Figure 10, the coupling
being recorded at perfect alignment and variable z-gaps, while self-inductances measured for all
variable shapes. All measurements show the same trend, and there is a close match between
analytical observations, FEM simulations and measurements.
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Figure 10. Coupling coefficient and self-inductances of air-cored charge pads of various shapes.
The coupling is measured at various z-gaps at the best aligned point. The parameters of the coils are as
presented in Table 1.
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7. Shape and Performance of Air Couplers

The effect of shapes in IPT systems can be analyzed for air-cored couplers based on the
mathematical analysis that has been derived previously. To make such a comparison, a few
performance parameters are considered. They are the open circuit voltage voc, short circuit current isc,
uncompensated power, suncomp, and maximum efficiency, ηmax. Open circuit voltage is the maximum
voltage that the IPT system can source, and short circuit current is the maximum current that the same
can deliver.

For a coupled charge-pad, if L1 and L2 are the self-inductances of the two couplers with “M” as
the mutual inductance and operated at angular frequency ω, creating current i1 through the primary,
the open-circuit voltage is defined as voc = jωMi1, and during the short-circuit, if isc is the current

flowing in the pickup, isc =
voc

jωL2
=

Mi1
L2

. Now, load independent uncompensated reactive power VA

is defined as:

suncomp = voc × isc =
(i21 M2ω)

L2
(28)

For the sake of completeness, the output real power for a primary and secondary compensated
system is defined in terms of loaded quality factor of the pickup, Q2L = (ω× L2)/(RL + R2), where
RL is the load resistance and R2 is the AC resistance of the pickup charge-pad as:

Pout = voc × isc ×Q(2,L) =
(i21 M2Q(2,L)ω)

L2
(29)

The load independent uncompensated VA of the pickup is used further in this paper (28).
Furthermore, the maximum efficiency of IPT systems has been derived independent of compensation
applied and load present in terms of native quality factors of the primary (Q1) and pickup (Q2) as [11]:

ηmax =
k
√

Q1Q2

2 + k
√

Q1Q2
(30)

These parameters have been used to compare a number of differently-shaped air-cored
charge-pads. All shapes considered have been analyzed keeping area conserved. This way,
generalizations of the behavior of fields and, hence, coupling, power transferred and other parameters
are possible. Several analyses were also carried out keeping the perimeter conserved and multi-turns
with similar results. In addition, these results also correspond and can be generalized to charge-pads
with flux-enhancing materials such as ferrite. This enhanced coupling is obtained by placing ferrites
along the natural direction of flux lines. Hence, the basic tendency of the shape in terms of coupling and
its gradient is similar in all IPT applications. The compared shapes are listed in Table 2. All considered
shapes have been simulated with a one turn coil and a z-gap of 1 cm. This so that the effects of shapes
are more enhanced.

Table 2. Physical parameters of various coil shapes used in the air-cored coupler.

Considered Shape Parameters Self-Inductances H

Rectangle dimension 650 & 400 mm 2.28× 10−6

Square dimension 509.9 & 509.9 mm 2.23× 10−6

Circle radius 287.6 mm 2.07× 10−6

Double circle (DC) dimension 203.4 mm 2.95× 10−6

Double rectangle (DR) symmetric dimension 459.6 & 282.8 mm 2.9× 10−6

Double rectangle + quadrature symmetric dimension (DR + Q) 375.3 & 230.9 mm 2.26× 10−6 (DR) & 1.18× 10−6 (Q)
Area 0.2600 (m2)
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The multi-coil shapes are composed of multiple symmetric coils that are placed close to each
other with the coils carrying currents in the opposite direction. The mutual inductance and coupling of
these charge-pads are obtained by analyzing (26) and using the mathematical analysis of single coils.
A study of coupling by misaligning the coils along x-direction (lateral displacement) is presented in
Figure 11.
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Figure 11. Coupling coefficients of single and multi-coil shapes with x-directional misalignment of
coils in Table 2.

It can be inferred that circle and four-sided shapes differ in the tolerance to coupling variations
when subjected to lateral misalignment. The coupling of rectangular and square coils tends to
decay gradually, while the circular shape sees a sharper drop with misalignment. The circular shape,
due to the fact that it has the highest area for a given perimeter among closed shapes, has the highest
coupling at the best aligned point. The double coils also share the same feature, but with a larger
extension of the power profile. It is important to note that in this analysis, since the area is kept
conserved, the perimeter varies between the shapes, and hence, it is important to keep trends in mind,
rather than absolute values. Null-coupling points in double rectangle (DR) and double circle (DC)
coils occur at positions where a pick-up coil is confronted with opposing flux of equal magnitude from
the primary charge-pad. Among the double coils, the DC geometry has greater best-aligned coupling
than that of DR geometry. However, the misalignment profile for DR coils is broader than that of DC
coils, and hence, it is well suited to applications where larger misalignment behavior is expected, for
example EVs. When such an analysis was broadened to include the behavior of a DR primary and
a DRQ (DR+Q) pick-up, the Q picking up flux emanating from a DR primary behaves best at the
misaligned points, while the worst at the best-aligned point. On the contrary, the DR pick-up behaves
complementary to the Q pick-up with a DR primary.

Power transferred to the pick-up is evaluated from Equation (28). The uncompensated power
calculated when subjected to lateral misalignment is shown in Figure 12. Among single coils,
the circular coil has a sharp misalignment band, while the four-sided shapes have greater tolerance.
The double shapes follow the features of their single equivalents, with the difference that there
is a misalignment point when a single coil among both the primary and pick-up receives power.
This creates two more zones of power transfer apart from the best aligned point. In these points,
the power is reduced to <25% as the pick-up voltage is reduced to half, which in turn halves the
pick-up current. However, these double shapes suffer from a no-power zone created at the null
coupling points. These null power points can be eliminated by using a quadrature coil, the coupling of
which is complementary to the main coils, and hence, an addition of power from the quadrature coils
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removes these null zones. It is important to note that in an actual implementation, the magnitudes
of these curves will depend on the number of turns of each coil, the materials present, the source
characteristic-voltage/current, resonant behavior, etc.

-150 -100 -50 0 50 100 150

% Misalignment along X-direction with edge of the rectangle a = 650mm

0

0.1

0.2

0.3

0.4

0.5

0.6

U
nc

om
pe

ns
at

ed
 p

ow
er

 s
m

ax
 in

 p
.u

.

Circular
Rectangular
Square
DC
DR
DR

p
-(DR+Q)

s

Figure 12. Uncompensated power analyzed on the basis of a unit current flowing through various
shapes of a single turn and equal area as indicated in Table 2. The misalignment is considered along
the x-direction.

The maximum efficiency as presented in Equation (30) has a dependence on the quality factor,
which in turn depends on the AC resistances of the coils. The AC resistances for the litz wire used
are extracted from a tabulation technique as presented in [12]. The calculated AC resistance factor

including both skin and proximity effects for the litz wire indicated in Table 1 is
Rac

Rdc
= 1.029. The result

of maximum efficiency computation when subjected to variable coupling during misalignment is
shown in Figure 13. This plot represents the theoretical maximum efficiency that can be expected at
various misaligned points for various shapes. The efficiency values floor at the power null points
as expected.
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Figure 13. Maximum efficiency profile tracking with x-directional misalignment of coils in Table 2.
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8. Discussion

In this paper, a generic analytical tool that is useful to model the magnetics of single and multi
coil geometries is developed. The analytical equations developed can be extended to polygonal shapes
and can be used to model n-multi-coil geometries, as well. The analytical expressions have the strength
that they are computationally efficient, e.g., the computation of inductances and coupling of a single
turn rectangular charge-pad take 0.653 s (2.2-GHz Intel i3-processor and 4 GB RAM). In the case of
FEM analysis, each individual calculation takes several seconds. This difference gets exaggerated for
multi-coil IPT systems, and the analytical formulation yields accurate and fast results.

Such an analytical approach can yield the variation in magnetic parameters due to
coupler geometry. Now, different applications of IPT systems can have different objectives:
minimization of gradient of coupling in highly misalignment-tolerant EV IPT systems min( ∂k

∂x , ∂k
∂y );

elimination of power null points in power-sensitive applications (Px,y 6= 0). Thus, different strategies
can be evolved based on the spatial variation of coupling, efficiency and/or power transfer. This paper
can empower this decision making before going in for a detailed multi-objective optimization after
fixing a geometry suited to the application.

However, a limitation that this approach has is that the principle of superposition holds for
linear magnetic systems. Thus, non-linearities in the system such as saturation are neglected in
the study. This is a valid assumption for air-cored geometries, and hence, the study yields good
results. However, interfaces of different materials in high power IPT systems, such as ferrites and
shielding materials (aluminum), need to respect boundary conditions to compute magnetic parameters.
Thus, the equations need to be adapted for boundaries, and this extension is beyond the scope of
this paper. In related work, an analytical LCL filter design where interfaces are modeled by using
the method of images is presented in [13]. The image method can be applied to the analysis in this
paper to model the parameters of couplers with several material interfaces. Additionally, the effect of
frequency on inductances (due to eddy currents) is not considered in this paper.

A detailed numerical optimization based on the inputs from this study so as to optimize ferrite,
aluminum and other materials that may be present in charge-pads is the next step. Such an FEM
optimization for a 1-kW DR system is presented in [14]. Some useful results obtained from the
analysis are:

1. The analysis, compared with FEM and experiments, has a good match. Almost all observations
have an error less than 10%. This is acceptable for magnetic analysis.

2. The coupling of single coils is such that circular coils have the best coupling at the
well-aligned point, and the four shapes of coils have a larger misalignment-tolerant band.
Thus, rectangular coils can be used for more misalignment-tolerant designs and circular for
well-aligned applications.

3. The coupling behavior of multi-coil geometries follows the trend of single-coil shapes, but
having null-coupling points. By designing a Q coil located between the mid-points of the single
coils, flux can be captured at the null-coupling points.

4. The Q and DR pickup have complementary coupling-misalignment behavior. At the best aligned
point, the Q picks up no flux, and at the misalignment point of null-coupling of the DR pickup,
the Q picks up the maximum flux.

5. The DR and DC shapes can effectively extend the range of power transfer to larger misaligned
positions. The addition of Q to the pickup can remove null-coupling points from the
power profile.

6. Rectangular coils also perform well with the same enclosed area as multi-coil geometries, with a
lesser zone of power transfer.

7. The total enclosed area of the shapes has been kept constant to make a fair comparison. However,
it is possible to influence the turns in the Q coils in DRQ , and this impacts the peaks obtained
in the misalignment points. For designing IPT systems that are adapted to misalignment as in
EVs during motion, dynamic power transfer, a DR charge pad on the roadway would be a good
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solution considering the excess material costs involved in building DRQ pads. In addition, EVs
traveling along the regions of power null for a long time is limited. However, for stationary
charging, misalignment tolerant DRQ charge pad for both the primary and secondary is a good
choice for good power transfer. Furthermore, interoperability is possible between these pads,
thus making it possible to have the same vehicle pads for both modes of operation.
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