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Abstract 

The sloshing waves in a three dimensional (3D) tanlc are analysed using a finite element method based on the fully non-linear wave 
potential theory. When the tank is undergoing two dimensional (2D) motion, the calculated results are found to be in very good agreement 
with other published data. Extensive calculation has been made for the tank in 3D motion. As in 2D motion, in addition to normal standing 
waves, travelling waves and bores are also observed. It is found that high pressures occur in various circumstances, which could have 
important implications for many engineering designs. © 1998 Elsevier Science Ltd. All rights reserved. 
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tion within the walls, so that structural failure may 
become more likely; and 

2. for a structure such as a ship, the high pressure may 
create an overturning moment in roll, which could be 
large enough to cause capsize. 

The publications mentioned above are either based on a 
two dimensional method or a shallow water formulation. 
The answers they offer to these concerns are applicable 
only when their adopted assumptions are valid. 

In this work, the analysis is based on the three dimen­
sional and fully non-linear potential theory in the time 
domain. The numerical method adopted is the finite element 
formulation described in detail in Wu et al. [9] and Ma et al. 
[10]. Although the method can be apphed to a tanlc of an 
arbitrary shape and undergoing both translational motion^ 
and rotational motion, the results presented in this paper 
are for a rectangular tank undergoing translational motion 
only. The purpose here is to show how the waves behave in 
a practical thi-ee dimensional tank. We have provided exten­
sive results for this reason. It has to be emphasised, 
however, that we do not pretend to offer a complete solution 
to the wave sloshing problem. In fact, the results obtained 
have presented us with more questions than answers, which 
clearly require further investigation. 

In the following sections, we first briefly outline the 
mathematical formulation and the numerical method. The 
computer code is then verified by comparing the calculated 
results with the published two dimensional data, and 
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ELSEVIER 

1. Introduction 

Sloshing waves are associated with various engineering 
problems, such as the liquid oscillations in large storage 
tanks caused by earthquakes, the motions of liquid fuel in 
aircraft and spacecraft, the liquid motions in containers and 
the water flow on the decks of ships. The loads produced by 
the wave motion can cause structural damage and the loss of 
the motion stabihty of objects such as ships. 

There has been a considerable amount of wórk on wave 
sloshing. For the case of small motions, Abramson [1] used 
a linear theory and Solaas and Faltinsen [2] adopted a 
perturbation theory. For large motions, Jones and Hulme 
[3], Faltinsen [4], Okamoto and Kawahara [5], Chen et al. 
[6] and Armenio and La Rocca [7] used various 
numerical methods for the two dimensional problem. 
For the three dimensional problem, Huang and Hsiung 
[8] used the shallow water equation for the flow on the 
ship deck. 

This body of work has significantly advanced our knowl­
edge about sloshing waves in a tank. It is now well under­
stood that apart from normal standing waves, other wave 
forms, such as travelling waves and bores, can occur. Under 
certain conditions, high pressure and impact forces will be 
created on the side walls of the tank. This can have several 
serious imphcations such as the following: 

1. high pressures may create excessive stress and deforma-
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Fig. 1. The co-ordinate system. 

excellent agreement is found. After that, an extensive set of 
calculations is made for a tank undergoing motions in more 
than one direction. It is particularly interesting to see that 
the combination of certain small excitations may create 
large waves in the tank. 

2. Mathematical formulation 

Two Cartesian co-ordinate systems are defined: one, 
ogXoyoZo is fixed in space and the other, oxyz, is fixed on 
the tank. When the tank is at rest, the two systems coincide 
with each other and the origins are at the centre of the 
undisturbed free surface. The directions of the axes are as 
shown in Fig. 1. 

The displacements of the tank in the directions of the 
Cartesian axes are defined as: 

Xh = [xM yhit), Zbit)] (1) 

Based on potendal flow theory, the velocity potendal (j) 

satisfies the Laplace equation: 

V^4, = 0 (2) 

On the side wafls of the tank, the potendal satisfies: 

~dn 
U-n (3) 

where U = — - is the velocity of the tank a n d i s outward 
dt 

vector normal to the tank walls. On the free surface, 
2Q = ^Q{xQ,yo,t), the dynamic and kinematic conditions in 
the space fixed system can be written as: 

dt dXQ dXQ 

d<t> 

dZo 
0 

(4) 

(5) 

The free surface elevation can be more easily described in 

Fig. 2. Initial mesh for sloshing wave. 

the moving system. Thus i f we use: 

\dtj,„y„,„ \dt dt J,, 

Eqs. (4) and (5) become: 

dt 
VcP-^ + \vcl>-Vcf> + g{^+Zb) = 0 

dt 2 

(6) 

(7) 

(8) 

dz dt ) + 
(d^ _ dyh\d^_ 

\ dy dt ) dy 
(9) 

on z = ^, where ^ = t,Q-Zb is the free surface elevation 
in the moving system oxyz For fixed x and y, the 
change of the potential with time on the free surface is 
governed by 

dcf>[x,y,ax,y,t),t] _ d4> 

dz dt 
(10) 

where 

5t dt 

is the same term as in Eq. (8). The dynamic 
dt condition on the free surface then becomes: 

d<j) d(j)_dl 

~di dz dt 
^ + l r < A - r ( / , + g ( ^ + z , ) = 0 

dt 2 

(11) 

The velocity potential, cf), can now be split as foflows:' 

(p = cp + xu + yv + ZW (12) 

where u, v and w are the components of U in the x, y and z 
directions, respectively. Substituting this equation into Eq. 



G.X. Wu et al./Applied Ocean Research 20 (1998) 337-355 339 

(a) CO/CO,, =1.100 (b) co/o),, = 0.999 

(c) Cü/(o„ =0.900 (d) co/co, = 0.583 

Fig. 3. Time history of free surface elevation at.t = —172 for different frequencies (solid line: analytical; dashed line: numerical), (a) ai/ci)o= 1.100; (b) wluia-

0.999; (c) (ü/ü)o = 0.900; (d) colcoo = 0.583. 

(2), Eq. (3), Eq. (9) and Eq. (11), we have: 

f-<p = Qm the fluid (13) 

tions, which are usually given as: 

0(A-o,yo,O,O) = O (17) 

dcp 
— = 0 on the side walls 
dn 

(14) 

d^ dcp dt, dcp dï, dcp 
— = — — + — on the free surface (15) 
dt dx dx dy dy dz 

^O(A-O,}'O,0) = 0 

This means that: 

cp{x,y, 0,0) = -xu{0) - yv(0) 

(18) 

(19) 

Sip 

'dt 

d<P dC 1 „ ^ du dv 

dw 

— t—— on the free surface 
dt 

(16) 

where the term c(t) = ^\U\^ - gZb has been deleted from 
Eq. (16) because it is independent of the spatial co­
ordinates. 

These equations need to be combined with initial condi-

ax,y,0) = 0 (20) 

Once the solution has been found at one time step, Eq. 
(15) and Eq. (16) can be used to obtain the new wave eleva­
tion and the new potential on the free surface, which wil l be 
used as the boundary conditions at the next time step. 

The pressure in the fluid can be obtained from: 
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t= 5.75B3 

Fig. 4. Free surface profiles for = 0.999 (solid line: analytical; dashed line: numerical). 

I f Eq. (7) and Eq. (12) are used this becomes: 

P 
(21, 

3. Finite element formulation and numerical 

procedure 

The above problem can be solved based on a finite 
element formulation [9]. In general, the velocity potential 
can be written as: 

(p=Y^cpjNjix,y,z) (22) 

where JN is the total number of nodes, Nj(x,y,z) are the shape 
functions and (pj are the values of the potential at the nodes. 
Using the Galerldn method and Green's second identity and 
taldng into account the body surface boundary condition in 

Eq. (14), we have 

r r rrr la, 
VN; cpj VNjdü = - VN; 2 ] <P,- dn i ^ S 

(23) 

where Sf indicates the free surface and f l is the fluid 
domain. The solution of this equation can then be obtained 
by an iterative procedure [10] and the following scheme is 
employed for the integration over the time: 

fit + At) = fit) + y [3/ '(0 - f i t - m (24) 

where f ( t ) represents the temporal derivative. 

4. Numerical results 

4.1. Two dimensional cases 

We consider a case in which the displacement of the tank 
is governed by x^it) = a sinfwf), ŷ , = 0 and = 0 when t > 



O, where a is the amphtude and cu is the frequency. The 
corresponding velocity is u = i3wcos(w;), and v = vc = 0. 
The initial condition of the problem is given in Eqs. (19) and 
(20). This two-dimensional case has been investigated by 

many people, e.g. Faltinsen [4], Okamoto and Kawahara [5] 
and Chen et al. [6]. Their results may be used here for 
comparison. The dimensions of the tank are chosen as 
Ud = 2.0 and B/d = 0.2 where L, B and d are the length. 

( a ) T - 13.0667 (b) T = 15.725 

Fig. 6. Comparison of free surface elevation with experimental data, (a) T = 13.0667; (b) T = 15.725. 
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X 

(a) Wave history (.ï = - L / 2 ) (b) Wave proHle, cy = 0.0186 

= 0.00186, 0.0093, 0.0186) 

Fig. 7. Wave history and profile for x = 0.5. 

the width and the water depth, respectively, (the same as 
those used in the experiment by Okamoto and Kawahara 
[ 5 ] ) . A linearised solution for (p can easily be found from 
the resuhs of Faldnsen [ 4 ] : 

<P = ^C„cosw? - {c,, + ^ j c o s w „ r ^ 

X 

«=0 

cosh/:„(z + d) 

coshfc.rf 
sin/cA' (25) 

where 

2 » + 1 2 , , , J k„ = — - — 77, (o„ = gk„tanhk„d. 

H„ = CO 

L 

3 4 4 ( - l ) " 

L kl 
and C„ 

The dynamic pressure and the wave elevation can then be 
obtained from: 

/ dcp du \ 

where 

/ °° \ 
^1 = - I xw^ + ^ C„ci)sinknX sinwf 

(26 ) 

(27 ) 

Y wJ C„ + —^ ) sinA:,,̂  smcv„t. 

In the numerical analysis, the fluid domain is first divided 
into hexahedra using N horizontal planes through the water 
depth, Ml vertical planes perpendicular to the x-axis and M2 

vertical planes perpendicular to the y-axis. Each of these 
hexahedra is then split into six tetrahedra. A typical initial 
mesh is illustrated in Fig. 2. 

In the analysis below, some parameters are nondimen­
sionalized as follows: 

{x, y, z,L,B,a)-^ (x, y, z, L, B, d)d, TA-, 

(28 ) 

To compai'e with the linear analytical results, the 
numerical simulation is carried out with a small amplitude 
a = 0 .00186. The excitation frequency is either higher 
or lower than the first natural frequency OJQ = VManh^c?. 
In the calculation, we have chosen M | = 40 , M2 = 6, = 1 6 
and A T = 0 . 0 1 1 1 , which has been found to give converged 
results (see the next section for details). The time history 
of the free surface at x = -L/2 is presented in Fig. 3. 
Comparison between the analytical solution and the 
numerical results shows that they are in an excellent 
agreement. 

It is interesting to see from Fig. 3(a) and Fig. 3(c) that the 
wave history is very similar to that due to two harmonic 
wave trams of slightly different frequencies. This amplitude 
modulated wave can be understood from Eq. (27) . The 
expression is composed of two parts: one coiTesponds to 
the excitation frequency ca and the other corresponds to 
the natural frequencies COQ, coi, coj, co^,.... Of the latter, 
the wave of the first frequency COQ is dominant and others 
have far less contribution. As a result, the entire wave is 
actually dominated by two waves of frequencies oj and WQ. 
As is well Icnown, the frequency of the envelope of the 
amphtude-modulated wave is Aw = \co - WQI and its time 
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(a) Wave history at x = -LI 2 

N 0 

x=32.n 

)(=L/2 

sialic pressure 

1.5 

0.5 1 1.5 

(b) Pressure p = p/ pgd 

T ^ l 44.26 

(c) Wave profile ( T = 20 ~ 80) (d) Wave profile ( t = 120 ~ 180) 

Fig. 8. Wave history, profile and pressure (co = 0.9998&)„, a = 0.0372). 

Table 1 

The cases for three-dimensional sloshing 

Case 

Dimension Frequency Amplitude 

Case L B t(), lOy ax 

A 4 4 .9999 a) Or .9999 woy 0.0 0.372 X 10"^ 0.372 X 10"' 0.0 
E 4 4 .9999 coa, .9999 ojoy 0.0 0.0372 0.0372 0.0 
C 4 4 .9995 .9995 0),,, 0.0 0.0186 0.0186 0.0 
D ' 4 4 2.04 0)0,- 0.2 
E 4 4 .9995 ft),., .9995 ö)iv 2.04 Cüttr 0.0186 0.0186 0.2 
F 8 8 .9999 War .9999 cooy 0.0 0.0372 0.0372 0.0 
G 8 4 .9999 COo, .9999 (Ü0.,. 0.0 0.0372 0.0186 0.0 
H 25 25 .998 (Oo, .998 0)0,. 0.0 1.2 1.2 0.0 

Horizontal velocity disturbance is applied only at T = 0 [see Eq. (25)]. 
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(a) wave profile T = 26 ~ 36 (b) Wave profiles T = 0 ~ 30 

Fig. 9. Wave profile for a = 2.5 and w = 0.99736)o. 

(a) (b) 

Fig. 10. Comparison of wave elevation history at {L/2, BII) for different 

meshes and time steps. 

period is 2TT/AW, which can clearly be seen in Fig. 3(a) and 
Fig. 3(c) (2IT/AW = 52.25 from the linear theory). 

One can see from Fig. 3(b) that the wave amplitude 
increases with time. Indeed, the magnitude of 1,1a has 
reached around 30 at T = 50. However, it does not of course 
suggest that the amplitude wil l tend to infinity with time, 
even based on the linear theory. The result is due to Aw 
being very small, which leads to a very long period (277/ 
Aw ~ 6283) and a very large amplitude of the wave 
envelope. 

Fig. 4 shows 'snapshots' of the free surface profiles 
between T = 5.3153 and T = 15.5031, at intervals equal 
to 0.443, for the case of W/WQ ~ 0.999. Fig. 5 gives COITO-
sponding comparisons of the numerical pressure with the 
analytical solution through the water depth. Again a good 

10 20 30 40 

10 20 30 40 

Fig. 11. Wave elevation history at four comers (Case A). 
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10 20 30 40 10 20 30 40 

10 20 30 40 

Fig. 12. Wave elevation history at four comers (Case B). 

Fig. 13. Snapshots of the free surface for Case B (height of the box = 2d). 

agreement between the analytical and numerical results is 
found. 

The present numerical method is now used to analyse 
cases with larger amphtude, stih with CO/COQ = 0.999. We 
consider the surging motion with a = 0.0186, which is ten 
times larger than that in the previous case. Fig. 6 plots the 
free surface elevation measured from the bottom of the tank 
at two time steps, as obtained from the experimental data 
[5], the linear analytical solution and the non-linear numer­
ical simulation. It can be seen that the numerical simulation 
gives better agreement with the experimental data, but the 
linear solution still gives good resuhs in this case. 

To further demonstrate the effects of non-linearity, the 
results for different excitation amphtudes are plotted in 
Fig. 7, where x = d/L and W/WQ ~ 0.999. It can be observed 

that with increase of amplitude, the crests become shaiper, 
the troughs become flatter and the period tends to be longer. 
A l l these effects have also been noted by Armenio and La 
Rocca [7] for the two-dimensional roll motion. The gradual 
increase of the period is also discussed by Greaves [11] and 
Tsai and Jeng [12] for the case of free oscillation in a tank. 

The motion near the first natural frequency WQ has some 

Table 2 

Parameters for convergence study 

Case M , A'/, N A T 

cl 40 40 12 0.0111 
c2 80 80 18 0.0111 
c3 40 40 12 0.0219 



346 G.X. Wu et al./Applied Ocean Research 20 (1998) 337-355 

P 

0.3 

0.2 

0.1 

0 

x=L/2 y=0 z=0 

A 

10 20 30 40 
X 

(a) (L/2,0 ,0) (b) 2,0,0) 

(c) (L/2 ,0 , -1) (d)(-L/2,0, -1) 

Fig. 14. Pressure history at four points on the tank wall (Case B). (a) (Z./2,0,0); (b) (-L/2,0,0); (c) (£72,0, - 1); (d) (-L/2,0, - 1). 

interesting features. Apart from the normal standing wave, a the first case, the tank length is taken as L = 8. Two different 
travelling wave and a bore may exist. Based on their inves- amplitudes of the motion are considered with the same 
ligation into the two dimensional roll motion, Armenio and frequency, co = 0.9998ctJo. The mesh is generated using 
La Rocca [7] have mentioned that these three waves may all Mi = 40, M2 = 6, N = 16 and the time step is chosen as 
appear, depending on x- Huang and Hsiung [8] have also A r = 0.0273. Fig. 8 present the wave profile, wave history 
noticed the bore, when using a shallow water formulation. and pressure on the side walls for the amplitude a = 0.0372. 

Our analysis shows the occurrence of a normal standing Fig. 8(d) clearly exhibits a wave with one peak travelling in 
wave in Fig. 7(b). We now consider two cases, with x = the tank. When the peak reaches the wall, the pressure is 
0.125, 0.04, to demonstrate a travelling wave and a bore. In apparently larger than the static pressure as shown in Fig. 

Fig. 15. Wave elevation history at four comers (Case C). 
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a 

Fig. 16. Snapshots of the free surface for Case C (height of the box = 2d). 



(a) Case D (b) Case E 

Fig. 21. Snapshots of wave profile for Case D and Case E (height of the box = 2d). 
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eye! 

x=U2 y=B/2 
2 

x=L/2 y=-B/2 

1 

0 -AAAAAAAA/l 
20 40 60 80 100 120 

x=-L/2 y=B/2 

-wvAAAAA/W 

20 40 60 80 100 120 

20 40 60 80 IOO 120 

Fig. 22. Wave elevation tiistory at four comers (Case F) 

20 40 60 80 100 120 
T 

8(b). The travehing wave does not appear immediately after 
the tank starts to move. Instead, there is a transient period 
during which the wave changes gradually from standing 
wave to travelling wave, as illustrated in Fig. 8(c). Fig. 8 
also shows that the wave history is very different from that 
in Fig. 7. The non-linear effects are even more significant 
and the peaks are even sharper here. The peaks are modu­
lated but the modulation frequency is no longer equal to the 
difference between the excitation frequency and the first 
natural frequency (2TT/AW ~ 8.2 X 10^ from the linear 
theory). 

In the second case, the length is talcen as L = 25, which 
corresponds to very shallow water. The excitation frequency 
is taken as w = 0.9973a)o and the amplitude a = 2.5. The 
wave profiles are shown in Fig. 9. It can be seen that a bore 
appears after about T = 26. To the left of the bore, the water 
surface is almost flat and the free surface elevation is small. 
To the right of the bore, the wave elevation is much higher. 
In addition, there is some higher frequency undulation 
superimposed on the right. This is different from the bore 
observed by Huang and Hsiung [8] using the shallow water 
approximation. Their equation is essentially based on the 
Airy theory, in which there are no dispersive terms to permit 
modelling of undulations, see Peregrine [13]. In the case 
here, i t is more appropriate to base the shallow water 
approximation on the Boussinesq equations, which allow 
waves of relatively short length. Further, in Fig. 9 there 
is also a period of transition before the bore is formed as 
in Fig. 8(c). It should be mentioned that the bore has 
never been observed in our calculation i f the motion is 
very small. 

Chester [14] and Chester and Bones [15] have also 
studied the behaviour of sloshing waves around resonance 
by an approximate method and by experiments. The results 
from the two methods were given in separate figures and the 

comparison seems to be favourable qualitatively. Their 
data have shown that the history of the wave elevation 
may have one, two or more peaks within each period, 
depending on the frequency and amplitude of the excita­
tion, and the depth. In particular, at w = WQ, one peak can 
be observed when x = 1 / 1 2 and two peaks wheij x ~ 
1/24. Fig. 8 and Fig. 9 seem to display some similarity 
to this kind of behaviour, but our results are not entirely 
identical to theirs. The difference seems to be mainly due 
to the fact that the profiles they gave are those in the 
steady periodic stage, but the modulation still exists in 
our calculation, even after a long simulation. Further 
longer simulation is not attempted in this paper, because 
to reduce the accumulated error, a very fine mesh and 
small time steps would have to be used, which requires 
prohibitive computer resources. 

4.2. Three dimensional cases 

The tank in these cases is subjected to motions defined by 
Xhit) = flj.sin(cOj.T), yh(t) = a^sin(WyT) and ZbO) = 
ajSin(ü)^T) where a.^. and (o.f.{x, = x,X2 = y,X2 = z) are the 
amplitudes and frequencies in surge, sway and heave 
modes, respectively. The corresponding velocities are 
then u{t) = cü .̂a^cos(w .̂T), v(t) = coya yCos(wyT) and 
w{t) = o)^a^cos((o^T). 

The wave motion in the three dimensional tank is much 
more complicated than that in the two dimensional case. 
Several cases with different parameters, as listed in Table 
1, are considered below to demonstrate how they influence 
the waves induced in the tank, u,!- and co,-̂  (;' = 0,1) in the 
table are the natural frequencies based onthe linear analysis 
corresponding to the x and y directions. It should be noted 
that the natural frequencies in the three dimensional cases 
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Fig. 23. Snapshots of traveUing waves for Case F (height of the box = 2d). 

are 

(m,?! = 0,1,2,...) 

Among them, the terms with m = 1,3,5..., n = 0 and 
n = 1,3,5,..., m = 0 coiTespond to the symmetric 
motions in the x and y directions, respectively. Thus 

the first and second natural frequencies in the x direc­
tion, and Wj,. in the table, are obtained by taking 
m = 1, n = 0 and m = 3, n = 0, respectively. 
Similarly ojQy and w,,, are obtained by taking in = 0, 
n = 1 and m = 0, « = 3, respectively. 

Case B is taken as an example for the convergence study. 
The mesh is generated in a similar way to that shown in Fig. 
2. Table 2 lists the parameters used for this examination of 
convergence, based on the definition of M i , M2 and given 
in Section 4.1. 
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Fig. 10 presents the time history of the free surface 
elevation for all cases in Table 2, taken at the corner 
(L/2, 5/2) where the wave is found to be veiy steep 
(see Fig. 12). Fig. 10(a) is for cases c l and c2 where 
the time steps are the same but the meshes are different; 
while Fig. 10b is for c2 and c3 where the meshes are the 
same but the time steps are different. Also plotted in these 
figures are the differences between c2 and c l , and 
between c3 and c l . The figures show that the results 

from these meshes and time steps are in good agreement. 
This suggests that between 40 to 80 divisions in each 
wave length and 400 time steps in each wave period are 
needed to obtain the converged results. But these para­
meters clearly very much depend on the time period oyer 
which the calculation is made and other factors such as 
the wave amplitude. In the following analysis, these para­
meters are chosen in such a way that the same degree of 
accuracy is maintained. 

20 40 60 80 100 120 

(a) (L/2,0,0) 

0.3 

0.2 

0.1 

0 

x=-L/2 y=0 z=0 

li l l 
20 40 60 80 100 120 

(b) (-L/2,0,0) 

x=Ly2 y=0 z=-l 

A A A f 
0.2 0.2 

x=Ly2 y=0 z=-l 

A A A f 
0.2 

0 \\r 0 

-0.2 W -0.2 

20 40 60 80 1 00 120 

(c) (L/2 ,0 , -1) 

20 40 60 80 100 120 

(d) ( -L/2,0,-1) 

Fig. 25. Pressure history at four points (Case F). 
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20 40 60 80 

Fig. 26. Elevation history at four comers (Case G). 

4.2.1. Sloshing waves in Cases A to E 
In all these cases the tank has the same length. The vary­

ing parameters are the width, the frequency and the excita­
tion amplitude. In Case A, the motion is very small. The 
fluid domain is discretised using M i = 40, M2 = 40 and Â^ = 
12, and the time step is taken as A T = 0.0146. The wave 
elevation histories at the four comers of the tank are given in 
Fig. I I . It can be seen that the wave amplitude at two 
comers (L/2, BIT) and ( -L/2 , -BII) increases with time 
while the wave elevations at the other two comers are 
almost zero. 

In Case B, the excitation amplitude is one hundred times 
bigger than that in Case A. Fig. 12 presents the wave eleva­
tion history at the four comers. Unlike in Case A, the free 
surface elevation at comers (L/2, -BI2) and ( -L /2 , B/2) is 
no longer invisible and, especially after T ~ 20, the increase 
of the amplitude with time becomes evident. The peak at the 
other two comers (L/2, 5/2) and ( -L /2 , -B/2) can become 
quite large, indeed it is about three times bigger than the 
initial water depth after T ~ 40. 

Two typical snapshots of the free surface are illustrated in 
Fig. 13, where the height of the plotted box is 2d. Fig. 14 
provides the pressure history (excluding the contribution 
from the static pressure) recorded at four points: two on 
the mean free surface and two on the bottom. It shows 
that as the time progresses, double peaks appear in the 
time-history of the pressure, which is particularly evident 
on the bottom. This is very similar to that observed by Nagai 
[16] in the pressure in steady-state standing waves, and that 
observed by Cooker et al. [17] in the force on a vertical wall 
subject to a sohtaiy wave. 

In the above two cases the excitation frequency is 
approximately equal to the first natural frequency of 
the tank. In Case C, this frequency is increased to near the 
second natural frequency of the tank. Fig. 15 shows the 

wave elevations at the four comers. It should be noticed 
that both the velocity amplitude ( w ^ ) and the accelera­
tion amplitude (wja.v) of the excitation in this case are larger 
than those in Case B, but the wave amplitude here is much 
smafler. The snapshots of the wave elevation are shown in 
Fig. 16, which shows that the wave is shorter than that in Fig. 
13, as expected. 

We now consider the cases including the vertical motion. 
In Case D, the tank oscillates only vertically but with a small 
initial perturbation of the horizontal velocities. The excita­
tion is defined by: 

f 0.0283 T = 0 
M(T) = V(T) = J 

I 0 ' T > 0 

W(T) = WjfljCOsCWjT) 

The frequency of the vertical motion is taken to be about 
twice the first natural frequency in the horizontal direction. 
The waves generated by the vertical osciflation are called 
Faraday waves. Benjamin and Ursell [18] explained the 
mechanism of such waves by analysing Mathieu's equations 
derived from the linear theory. Since then, a considerable 
number of papers have been published on this topic, which 
have been reviewed by Miles and Henderson [19] and Jiang 
et al. [20]. Here we try to demonstrate the transient beha­
viour of the Faraday waves. 

The mesh for this case is the same as that used in Case B 
and the time increment is taken as 0.0107. The wave eleva­
tions at the four corners are plotted in Fig. 17. The results 
without a horizontal perturbation (dashed Hne) are also 
included in this figure for comparison. It can be seen that 
the motion of the free surface is not at the excitation frequency 
but at the first natural frequency of the tank. A similar case 
was reported by Su and Wang [21], based on their solution 
of the Navier-Stokes equations. We have investigated 
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Fig. 27. View of travelling waves for Case G (height of the box = 2d). 

otlier cases with excitation frequencies = 0.5 WQ^, 
I.OWQJ., 1.5CIJO^-and 2.5C(;OJ. but a fixed acceleration amph­

tude (a^ft)^ = 0.428 as in Fig. 17) was considered. The 
results, indicated in Fig. 18, show that the history of the 
wave elevation in all the cases is almost the same. This 
suggests that the wave evolution durmg the transient period 
generated by the vertical excitation with a given horizontal 
perturbation may be determined only by the acceleration 
amphtude of the excitation. To further confirm this, Fig. 
19 presents the wave history generated by excitations with 
tiie same frequency = 0.5wo.v but different amplitudes, 
corresponding to a^cü^ = 0.428 and a^M^ = 0.129 respec­
tively. It shows that the results in these cases are very 
different. 

Case E is similar to case D, except that a horizontal 
excitation is applied throughout the time history. What is 
interesting here is that despite the horizontal excitation 
being applied over the entire period of the calculation, the 
wave amplitudes in this case (as shown in Fig. 20) are no 
larger than that in Case D (shown in Fig. 17). The compar­
ison of the free surfaces in these two cases is illustrated in 
Fig. 21. Compared to Case C, where the horizontal motion is 
the same as that in Case E but with no vertical motion, the 
amplitude in Case E is much larger. 

4.2.2. Sloshing waves in Cases F and G 

In these two cases, the water depth is effectively smaller. 
In Case F, the ratio of depth/length (=depth/width) is set as 
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12,5 - 1 2 5 

Fig. 28. Surface view of sloshing 

0.125, which is the same as in the 2D case of Fig. 8 where 
the travelling wave has been observed. The wave elevation 
histories at the four corners are shown in Fig. 22. Fig. 23 
shows a sequence of a wave crest moving from the corner 
{-L/2, -B /2 ) to the comer (172, B/2). Fig. 24 gives the 
profiles on two vertical planes, y=0 and x=0, at different 
time steps. 

These results clearly show that the travelling wave exists 
in this case. Fig. 25 illustrates the pressure history at four 
points: two on the mean free surface and two on the bottom. 
Compared with Fig. 14, the double peaks do not seem to 
exist in the pressure at the mean free surface, but there are 
small peaks around the big one. The pressure on the bottom, 
on the other hand, has similar behaviour to that in Fig. 14. 

In the cases considered above, both the tank and the 
external disturbance are symmetrical about the vertical 
plane joining the two corners (L/2, B/2) and ( -L/2 , -B/2). 
The wave motion is therefore also symmetrical. In Case G, 
the width is reduced by half, and so the property of symme­
try no longer exists. The wave elevation history is shown in 
Fig. 26. The travelling wave is also evident in this case, as 
shown in Fig. 27. However the water surface can become 
very high at all comers, instead of just at two comers as in 
the previous cases. 

4.2.3. Sloshing waves for Case H 
This is an extremely shallow water case. The tank is 

undergoing horizontal motion only, at a frequency near to 
the first natural frequency. As discussed in connection with 
Fig. 10 for the two dimensional case, a bore may be 

12,5 

12.6 

for Case H (height of the box = 2d) 

generated when the water depth is very small. Fig. 28 
gives snapshots of the wave profiles for this case. One can 
see from this figure that the three dimensional bore is travel­
ling from the comer ( -L /2 , -B/2) to the comer (L/2, B/2). 

5. Conclusion 

This paper has provided extensive results for sloshing 
waves in a 3D tank undergoing translational motions. The 
results obtained have confirmed various wave patterns 
observed in simplified methods. One particular feature 
noticed in this paper is that the transient waves caused by 
the vertical oscillation for a given horizontal perturbation 
depend only on the amphtude of the acceleration of the 
excitation. Many of results discussed here clearly require 
further investigation. More work is also needed so that the 
technique can deal with bottom emergence, impact forces 
on the top of the tank and wave overturning and breaking. A 
better understanding of sloshing waves under these condi­
tions wil l no doubt be invaluable to the many engineering 
applications discussed in the introduction 
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