REFERENCES

CRADLE TO CHURCH
A SUSTAINABLE RESPONSE ON RELIGIOUS HERITAGE
REVITALIZING THE JACOBUSKERK

DINAND KRUIZE
REVITALISATION

<table>
<thead>
<tr>
<th>Project</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuyperskerk</td>
<td>Sas Van Gent, Netherlands</td>
<td>5</td>
</tr>
<tr>
<td>St. Annakerk</td>
<td>Breda, Netherlands</td>
<td>7</td>
</tr>
<tr>
<td>Renovation Minerva</td>
<td>Groningen, Netherlands</td>
<td>83</td>
</tr>
<tr>
<td>Castello Di Rivoli</td>
<td>Turin, Italy</td>
<td>99</td>
</tr>
<tr>
<td>Astley Castle</td>
<td>Nuneaton, United Kingdom</td>
<td>101</td>
</tr>
</tbody>
</table>

MATERIALS

<table>
<thead>
<tr>
<th>Material</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warenhuis Leidse Rijn</td>
<td>n.v.t.</td>
<td>11</td>
</tr>
<tr>
<td>Optical Glass House</td>
<td>Hiroshima, Japan</td>
<td>39</td>
</tr>
<tr>
<td>Courtyard Hybrid</td>
<td>Beijing, China</td>
<td>85</td>
</tr>
<tr>
<td>World Trade Organisation</td>
<td>Geneva, Switzerland</td>
<td>89</td>
</tr>
<tr>
<td>Cascina Di Tregarezzo</td>
<td>Segrate, Italy</td>
<td>93</td>
</tr>
</tbody>
</table>

ATMOSPHERE

<table>
<thead>
<tr>
<th>Atmosphere</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HofmanDujardin Office Villa</td>
<td>Amsterdam, Netherlands</td>
<td>9</td>
</tr>
<tr>
<td>House Before House</td>
<td>Utsunomiya, Japan</td>
<td>37</td>
</tr>
<tr>
<td>Le Maillon Theater</td>
<td>Strasbourg, France</td>
<td>95</td>
</tr>
</tbody>
</table>

FUNCTION

<table>
<thead>
<tr>
<th>Function</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaspora Garden</td>
<td>Berlin, Germany</td>
<td>33</td>
</tr>
<tr>
<td>The Foundry Garden</td>
<td>Nantes, France</td>
<td>35</td>
</tr>
<tr>
<td>Uppgrenna Nature House</td>
<td>Uppgränna, Sweden</td>
<td>75</td>
</tr>
<tr>
<td>The Green House</td>
<td>Utrecht, Netherlands</td>
<td>79</td>
</tr>
<tr>
<td>SP Penthouse</td>
<td>São Paulo, Brazil</td>
<td>103</td>
</tr>
</tbody>
</table>

CLIMATE

<table>
<thead>
<tr>
<th>Climate</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Academy Building</td>
<td>Groningen, Netherlands</td>
<td>13</td>
</tr>
<tr>
<td>The Edge</td>
<td>Amsterdam, Netherlands</td>
<td>17</td>
</tr>
<tr>
<td>House of Trees</td>
<td>Ho Chi Minh City, Vietnam</td>
<td>21</td>
</tr>
<tr>
<td>Stone House</td>
<td>Ho Chi Minh City, Vietnam</td>
<td>25</td>
</tr>
<tr>
<td>Stacking Green</td>
<td>Ho Chi Minh City, Vietnam</td>
<td>29</td>
</tr>
<tr>
<td>Shared Learning Centre</td>
<td>Paris-Saclay, France</td>
<td>43</td>
</tr>
<tr>
<td>Atelier Tenjinyama</td>
<td>Takasaki, Japan</td>
<td>47</td>
</tr>
<tr>
<td>Harmonia 57</td>
<td>São Paulo, Brazil</td>
<td>51</td>
</tr>
<tr>
<td>Drivhus</td>
<td>Stockholm, Sweden</td>
<td>55</td>
</tr>
<tr>
<td>Agricultural Urbanism Lab</td>
<td>Paris, France</td>
<td>59</td>
</tr>
<tr>
<td>In Vivo</td>
<td>Paris, France</td>
<td>61</td>
</tr>
<tr>
<td>Regional Chamber of Commerce and Industry</td>
<td>Amiens, France</td>
<td>63</td>
</tr>
<tr>
<td>Breathe.Austria</td>
<td>Milan, Italy</td>
<td>67</td>
</tr>
<tr>
<td>Paris Smart City 2050</td>
<td>Paris, France</td>
<td>71</td>
</tr>
</tbody>
</table>
CUYPERSKERK - SAS VAN GENT, NETHERLANDS
J. CUYPERS - 1892

LOCATION
Sas van Gent, Netherlands

YEAR OF CONSTRUCTION
1892

YEAR OF TRANSFORMATION
2018-2019

ORIGINAL ARCHITECT
Joseph Cuypers

TRANSFORMATION ARCHITECT
Guido Goethals – VG Architecten

CURRENT FUNCTION
Horeca, shopping, offices & events, 800 m² (Heritage)

PROJECT DESCRIPTION
This is neo-Gothical church is revitalised into a market square. The church houses a social function as place of gathering and gathering for people which I think is very close in line with the situation in Winterswijk. The church currently contains spaces of different scales which works very strongly and successfully in the transformation.

(Cuyperskerk, Sas van Gent. Retrieved on November 13th 2019, from https://cuyperskerkkoor-sasvangent.jouwweb.nl/)

ST. ANNAKERK - BREDA, NETHERLANDS
J. CUYPERS - 1905

LOCATION
Breda, Netherlands

YEAR OF CONSTRUCTION
1905

YEAR OF TRANSFORMATION
2002

ORIGINAL ARCHITECT
Joseph Cuypers

TRANSFORMATION ARCHITECT
Ernst Havermans – Oomen Architecten

CURRENT FUNCTION
Offices, 2,250 m² (Heritage)

PROJECT DESCRIPTION
This is neo-Gothical church is revitalized into an office building. The church is transformed into offices contemporary but in a way that the function can be removed and the original state of the original church can be recovered in the future. The way the transformation is done is very respectful and maybe therefore even a bit too literal, but the idea is inspiring.

PROJECT DESCRIPTION
The spaces are wide (horizontal) but have been balanced in human scale by the ceiling. This makes the spatiality of the interior of the building interesting. The amount of daylight is created by roof lights and can be a way of lighting bookshelves under a floor level. The white colors of the interior altogether are in unity with the bare wooden ceiling adding a clear and warm expression. The installations are visible on the ceiling but are integrated in the interior by the white colors.

PROJECT DESCRIPTION
In this project the facade is created by strings of bamboo curved into a typical ghotical pattern. This project therefore composes a facade that has a typical ghotical expression to the use of modern materials. This form language can be a very literal but suitable example in reaction to an existing building like a Neo-gothical church.

ENERGY ACADEMY BUILDING - GRONINGEN
BROEKBAKEMA & DE UNIE ARCHITECTEN - 2006

LOCATION
Groningen, Netherlands

PROJECT YEAR
2016

ARCHITECTS
Broekbakema, De Unie Architecten

FUNCTIONS
Offices and Education, 12,676 m²

PROJECT DESCRIPTION
The Energy Academy Building in Groningen is a new building. It has received a BREEAM score of ‘BREEAM -NL Outstanding’, which is the highest BREEAM score. This makes the Energy Academy Building the most sustainable education building when it was build in 2006. The building is specifically interesting for its climate concept, which is implemented in an aesthetically successful building.

ENERGY
Solar panels can rotate into a more efficient position, to gain maximal solar power. The building uses little energy (51 kWh/m²) because of the passive climate system and glass surface. The building generates more energy that it uses (EPC = 0).

WATER
Rainwater is captured on the roof, filtered and stored in a reservoir. This water is used to water the plants in the building and flush the toilets.

HEATING AND COOLING
Warming and Cooling is being done by a terrestrial system.

by the vegetation and flows into a 200 meter underground channel. Through this channel, the air moves slowly (less than a meter per second) allowing the air to adjust to the ground temperature. This results into pre cooled or heated (4 degrees) natural ventilation air and results into a low pressure entrance into the interior spaces. From here the used air is guided to the central atrium that is connected to a solar chimney from which the air leaves the building.

OTHER
The building has CO2 monitors that activates a mechanical ventilation system to allow more fresh air into the space. Temperature is manageable per space.

VENTILATION
Natural air comes in through openable windows in the Win-
THE EDGE - AMSTERDAM, NETHERLANDS
PLP ARCHITECTURE - 2015

LOCATION
Amsterdam, Netherlands

PROJECT YEAR
2015

ARCHITECT
PLP Architecture

FUNCTION
Offices, 40,000 m²

PROJECT DESCRIPTION
The Energy Academy Building in Groningen is a new building. It has received a BREEAM score of 'BREEAM -NL Outstanding', which is the highest BREEAM score. This makes the Energy Academy Building the most sustainable education building when it was built in 2006. The building is specifically interesting for its climate concept, which is implemented in an aesthetically successful building.

HOUSE OF TREES - HO CHI MINH CITY, VIETNAM
VO TRONG NGHIA ARCHITECTS - 2014

LOCATION
Tanbinh, Ho Chi Minh City, Vietnam

PROJECT YEAR
2014

ARCHITECT
Vo Trong Nghia (VTN) Architects

FUNCTION
Residential, 226 m²

PROJECT DESCRIPTION
Interesting: The thick layer of earth for the planting of the trees on the roof floor of the building blocks. However they seem to be unaccessible they give an particular atmosphere for the context surrounding the building blocks but also for the squares intbetween the building blocks.

STONE HOUSE - HO CHI MINH CITY, VIETNAM
VO TRONG NGHIA ARCHITECTS - 2012

LOCATION
Ho Chi Minh City, Vietnam

PROJECT YEAR
2012

ARCHITECT
Vo Trong Nghia (VTN) Architects

FUNCTION
Residential, 360 m²

PROJECT DESCRIPTION
Particularay interesting is the border made by the fence seperating the private garden and the street in respect to the street pattern but with the same materials of the building immediately visible of relationship. Green is everywhere and gives an amazing quality to the building and its context. The intensive green roof and the relation with the curve of the roof with the orientation of the building. The inner garden makes the relation with nature also strongly present inside the building and the instalation of the large wooden windowframes and the continuous material that goes from outside to inside (thermically speaking an issue but aesthetically impressive.

STACKING GREEN - HO CHI MINH CITY, VIETNAM
VO TRONG NGHIA ARCHITECTS - 2011

LOCATION
Quang Ninh province, Vietnam

PROJECT YEAR
2011

ARCHITECT
Vo Trong Nghia (VTN) Architects

FUNCTION
Residential, 215 m²

PROJECT DESCRIPTION

False Helther

350

300

250

200

150

wall granite stone h=2mm

green planter concrete + mortal

Green Empeross

600

300

250

Wrightia Antidysenteria

300

250

Dust Dracaena

300

250

Livistona Rotundifolia

860

300

50x50

steel grating

drainage pipe

water supply pipe
valve for water supply
DIASPORA GARDEN - BERLIN, GERMANY
ATELIER LE BALTO - 2013

LOCATION
Berlin, Germany

PROJECT YEAR
2013

ARCHITECT
Atelier Le Balto

FUNCTION
Atrium garden, 900 m²

PROJECT DESCRIPTION

THE FOUNDRY GARDEN - NANTES, FRANCE
DOAZAN + HIRSCHBERGER - 2009

PROJECT DESCRIPTION
This project is a roofed garden or square in the middle of the city of Nantes. Inspiring about this project is the continuity of the transition between the pavement of the street and the garden under the roof. There is no visible border as it blends in continuously, yet the columns that hold the roof make it clearly where the garden ‘begins’. The project is a restoration project functioning a park area that used to be an industrial warehouse for the boat industry. In the design of the garden, important existing elements of the previous industrial function, such as rail tracks and furnace pits, has been maintained in the new design, creating a new design with reference to the existing. The roofed square functions as square for public use as park but can also for public events and a place for people to meet.

HOUSE BEFORE HOUSE - UTSUNOMIYA, JAPAN
SOU FUJIMOTO - 2009

LOCATION
Utsunomiya, Japan

PROJECT YEAR
2009

ARCHITECT
Sou Fujimoto

FUNCTION
Residential

PROJECT DESCRIPTION
Interesting is the differences of atmospheres. The building exists of a composition of boxes with each box having their own residential function. The boxes have similar dimensions and are all relatively open by a large window frame resulting in openness of the spaces with different degrees of privacy depending on the function of the box.

LOCATION
Hiroshima, Japan

PROJECT YEAR
2012

ARCHITECT
Hiroshi Nakamura & NAP

FUNCTION
Residential, 385 m²

PROJECT DESCRIPTION

The glass facade weighs around 12 tons. The supporting beam, if constructed of concrete, would therefore be of massive proportions. To save weight, we decided to use a steel beam and gave it a tapered chamfer. Then, after pouring the bed of the facade, we cast concrete around the beam and, in this way, minimized its size.
SHARED LEARNING CENTRE - PARIS-SACLAY, FRANCE

S. FUJIMOTO, M. RACHI OXO ARCHITECTS, L. ROUSSEL - 2015

LOCATION
Paris-Saclay, France

PROJECT YEAR
2015

ARCHITECTS
Sou Fujimoto Architects, Manal Rachdi OXO architects, Nicolas Laisné Associés

FUNCTION
Education Center, 10,000 m²

PROJECT DESCRIPTION

ATELIER TENJINYAMA - TAKASAKI, JAPAN
TAKASHI FUJINO, IKIMONO ARCHITECTS - 2011

LOCATION
Takasaki, Gunma Prefecture, Japan

PROJECT YEAR
2011

ARCHITECTS
Takashi Fujino, Ikimono Architects

FUNCTIONS
Office & Residential, 91.93 m²

PROJECT DESCRIPTION

PROJECT DESCRIPTION

Interesting is that the system is kept visible, it makes the expression of the building in itself. This is in line with the raising of awareness referred by the Cradle to Cradle principle.

PROJECT DESCRIPTION
Interesting of this project is the ‘bioclimatic facade’ that is designed for this multi-storied greenhouse. The building is designed as reaction to nature being absent in the surrounding and the shifting and more intensifying climate. The facade is a double-skin facade of which the outer layer is made of ETFE. ETFE is able to absorb infrared light to reduce the buildings energy consumption, is acoustically insulating and easy to replace of its lifespan. Inside the cavity of the double skin facade a tempered micro-climate is created for plants to grow in. The air circulating in this cavity is used as plant filtered natural ventilation air. The vegetation as implemented in the cavity is visible and accessible from the working spaces forming a stimulating and healthy working environment.

AGRICULTURAL URBANISM LAB - PARIS, FRANCE
SOA ARCHITECTES - 2012

LOCATION
Paris, France

PROJECT YEAR
2012

ARCHITECT
SOA Architectes

FUNCTION
Laboratory

PROJECT DESCRIPTION
Climate concepts of vertical farms are overall interesting as their architecture relies also on natural energy sources and the efficiency of the building. It needs to contain heavy constructions to facilitate the types of natural habitats created on multiple stories inside the building such as thick layers of soil of farms and trees but also water for production of fish. The difficult challenges a well functioning vertical farm generally deals with is made increasingly difficult for the Vertical Farms of SOA Architectes as their context is the heart of the city of Paris. The city center of Paris has a highly monumental image resulting in SOA Architectes having to deal with strict heritage. Their number of design concepts approaches important questions such as ‘What kind of architecture would fit the purpose both functionally and aesthetically?’ and ‘How compatible are the technical requirements of intensive farming with the needs to protect a city’s cultural heritage?’

IN VIVO - PARIS, FRANCE
XTU ARCHITECTS - 2016

LOCATION
Paris, France

PROJECT YEAR
2016

ARCHITECT
XTU Architects

FUNCTION
Laboratory, 17,450 m²

PROJECT DESCRIPTION

XTU. BIO FAÇADES. Retrieved on February 16, 2019, from https://www.xtuarchitects.com/bio-facades/

XTU. ALGONOMAD. Retrieved on February 16, 2019, from https://www.xtuarchitects.com/lab/#/algonomad/

XTU. IN VIVO | PARIS. Retrieved on February 16, 2019, from https://www.xtuarchitects.com/invivo-xtu/
REGIONAL CHAMBER OF COMMERCE AND INDUSTRY
CHARTIER-CORBASSON ARCHITECTS - 2012

LOCATION Amiens, France
PROJECT YEAR 2012
ARCHITECT Chartier-Corbasson Architects
FUNCTION Offices, 1,800 m²

PROJECT DESCRIPTION

REVITALIZATION OF THE JACOBUSKERK, WINTERSWIJK
REFERENCES 63
REVITALIZATION OF THE JACOBUSKERK, WINTERSWIJK

REFERENCES

BREATHE.AUSTRIA - MILAN, ITALY

TEAM.BREATH.AUSTRIA - 2015

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Milan, Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT YEAR</td>
<td>2015</td>
</tr>
<tr>
<td>ARCHITECT</td>
<td>team.breathe.austria</td>
</tr>
<tr>
<td>FUNCTIONS</td>
<td>Pavilion & exhibition center</td>
</tr>
</tbody>
</table>

PROJECT DESCRIPTION

Although this is an open air climate

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>Paris, France</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT YEAR</td>
<td>2015</td>
</tr>
<tr>
<td>ARCHITECT</td>
<td>Vincent Callebaut Architectures</td>
</tr>
<tr>
<td>FUNCTIONS</td>
<td>Mixed functions, 8 highrise towers</td>
</tr>
</tbody>
</table>

PROJECT DESCRIPTION

UPPGRENNA NATURE HOUSE - UPPGRÄNNA, SWEDEN
TAILOR MADE ARKITEKTER - 2015

LOCATION
Uppgränna, Sweden

PROJECT YEAR
2015

ARCHITECT
Tailor Made Arkitekter

FUNCTIONS
Residential & Hospitality, 520 m²

PROJECT DESCRIPTION
This project is an adaptive reuse project made from an existing barn. It is inspired by traditional Swedish barn houses through its material expression, and based on The Nature House concept by Bengt Warne of the 1970's. This concept suggests the basics of a Greenhouse creating an insulated inner core with an glass outer layer thus creating a warmer climate zone. This opens the possibility for plants to grow and a stimulating and encouraging sustainable awareness for users. The house functions completely self sustaining through a closed loop of the climate.

HORISONTALSNIKT
FÖNSTER MED
FÖNSTERLUCKA

FÖNTERSMYGAR
TRA / PUTS

INVÄNDIG PUTS
LÄTTBETONG 365 / 500 MM
LÅKT 27 X 70 MM
SLAMMAS UTVÄNDIGT

SÅGAD PANEL, 5MM SPRINGOR
FALURÖD SLAMFÄRG
VARIERANDE BREDDER 70/95/145 MM
VARIERANDE DJUP 27/34 MM

FÖNSTERLUCKA
THE GREEN HOUSE - UTRECHT, NETHERLANDS
CEPEZED - 2018

LOCATION
Utrecht, The Netherlands

PROJECT YEAR
2018

ARCHITECT
Architectenbureau cepezed

FUNCTION
Restaurant, 680 m²

PROJECT DESCRIPTION
In this building the vegetation that is tilted for the restaurant is visible. In fact it is made the main expression of the building being emphasized by light on the front facade above the entrance. In their diagram they mention “urban farming as eye catcher”. From inside this relation with the vegetation is continued through the interior walls and the open kitchen. This building is reacting on adaptive reuse by leasing materials and furniture, vegetation integrated in the architecture, renewable energy (pay-for-use), dissemblance of building components, elements and connections, and reusing materials (windows from a former fire station, and floor tiles from an former square in Utrecht). This integration through its architecture is exactly what the project for the Jacobuskerk is aiming at too.

1. reused greenhouse roof with skylights, mounted on galvanized lattice girders
2. galvanized steel roofing sheets, perforated and filled with acoustic insulation
3. reused smoke glass panels from the former knooppazemre mounted on galvanized lattice girders
4. prefabricated wooden floor elements covered with reused sidewalk tiles against solid-borne noise and a dry floor heating system
5. reused sidewalk tiles in greenhouse
6. aluminium curtain wall facade, without PUR or sealant joints
7. reused paving bricks on sand with floor heating and cooling system, compression resistant insulation
8. foundation of stelcon slabs and prefabricated concrete logioblocks
PROJECT DESCRIPTION
This project involves a new extension to the monumental building of the former city museum of Groningen, which now contains an education function with offices. Interesting about this project is mainly the material connections and relations between the existing building and the new extension, in particular the openings and the stucco.

Furthermore the walls seems to be rotate-able in the strip in the ceiling (bottom left picture), interesting for the bookshelves?

COURTYARD HYBRID - BEIJING, CHINA
VECTOR ARCHITECTS - 2017

LOCATION
Beijing, China

PROJECT YEAR
2017

ARCHITECT
Vector Architects

FUNCTION
Courtyard

PROJECT DESCRIPTION
The combination of materials mainly being glass bricks, stone materials as flooring and laminated wood (bamboo) for the structure, ceiling, floors and window frames, create a balanced unity throughout the composition of spaces. In these spaces different atmospheres are created which is partially the result of the translucent glass bricks. A direct visual and physical relation is created with the inner courtyard through the sliding doors of the glass partition, enhancing the unity of the three volumes in relation to the courtyard through the use of bamboo in the window frames.

WORLD TRADE ORGANISATION - GENEVA, SWITZERLAND
WITTFOHT ARCHITEKTEN - 2013

LOCATION
Geneva, Switzerland

PROJECT YEAR
2013

ARCHITECT
Wittfoht Architekten

FUNCTION
Institution offices, 14,500 m²

PROJECT DESCRIPTION
This extension to the World Trade Organisation building is a thoroughly designed building in which many engineers have been involved. It has won a series of awards but more importantly has a Minergie-P energy standard, which is a sustainable energy certification in Switzerland. This is partially because of the mirrored glass curtain facade. The exterior creates a very delicate relation with its surrounding and from the inside appears very natural through the view made possible over the forest surrounding. Specifically important of this reference is the outer layer of the facade through the minimalistic silicone joint of the glass panels and the connection with the roof. The facade looks so delicate because of the silicone connection of the glass which becomes almost invisible standing under the building.

CASCINA DI TREGAREZZO - SEGRATE, ITALY
WERNER TSCHOLL - 2007

LOCATION
Segrate, Italy

PROJECT YEAR
2007

ARCHITECT
Werner Tscholl

FUNCTION
Offices

PROJECT DESCRIPTION
In the facade of this project I find it interesting how the pattern of the glasswork gives a strong expression to the facade. The frames of the curtain wall seem to be implemented as thin as possible using a silicone joint on the outside. However, by creating a large and very visible loadbearing structure behind the thin glass joint, the pattern that plays this role in the expression of the facade is enhanced. So an interesting relation is used between the outer and inner facade, with the outer side a smooth surface with an minimally interrupted reflection and a strongly present inner structure that enhances the expression of the glass pattern. The irregular pattern of the glass frames contributes to this effect.

LE MAILLON THEATER - STRASBOURG, FRANCE
LAN ARCHITECTURE - 2019

LOCATION
Strasbourg, France

PROJECT YEAR
2019

ARCHITECT
LAN Architecture

FUNCTION
Theater, 7,017 m²

PROJECT DESCRIPTION
As a reference for glass facades this project is specifically interesting for the proportions the glass facade in this project is based on. It seems to not only be based on human scale (users walk part and through it), but also on the proportions surrounding it. It shows to be relating to the dimensions of the outside courtyard and the opening towards the staircase in the inside structure. Relating an element to its context in a similar sense is a strong way of making it a collaborating unity.

DETAIL MURS MOBILES

1. Béton coulé en place
 Epaisseur 280 mm

2. Murs mobiles pivotants
 Face décorée et plancher recouvert de noir
 Habillés avec une dalle de pierre bleue
 Face intérieure, panneaux plein noir
 Habillés avec une dalle de pierre bleue

3. Rail de coulissement
 Profilé en aluminium anodisé naturel

4. Joint télescopique
 Pour mise en compression de la paroi

5. Résille de plafond scénique
CASTELLO DI RIVOLI - TURIN, ITALY
ANDREA BRUNO - 1986

LOCATION
Turin, Italy

YEAR OF CONSTRUCTION
1159
(first mention of the structure)

YEAR OF LAST TRANSFORMATION
1986
(many additions have been realised throughout its lifetime)

ORIGINAL ARCHITECT
Francesco Paciotto and Domenico Ponsello

TRANSFORMATION ARCHITECT
Andrea Bruno

CURRENT FUNCTION
Museum (Heritage)

PROJECT DESCRIPTION
This project shows a great variety of different heritage approaches by on the one side preserving many of the original features that express the original character (and represent strong historical values for the region) of the building but also adding multiple modern expressions by implementing for instance mirrored glass in thin frames placed in the original window openings, and glass stair towers on the outside of the building. The result is a highly respectable balance between the character of the heritage and the modern materials adding a new expression while improving the building function.

ASTLEY CASTLE - NUNEATON, UNITED KINGDOM
WITHERFORD WATSON MANN ARCHITECTS - 2012

LOCATION
Nuneaton, United Kingdom

YEAR OF CONSTRUCTION
12th century

YEAR OF LAST TRANSFORMATION
2012 (after having served as hotel in World War II)

ORIGINAL ARCHITECT
Unknown

TRANSFORMATION ARCHITECT
Witherford Watson Mann Architects

CURRENT FUNCTION
Residence (Heritage)

PROJECT DESCRIPTION
Although the timelayers through the brickwork in the Jacobuskerk are of less historic value than the brickwork is this project, this reference expresses how the historic character and spatial atmosphere of the building has been retained by very respectfully and carefully adding new brickwork ‘repairing’ the traces of the old structure and thereby creating new experiences in revitalized spaces.

SP PENTHOUSE - SÃO PAULO, BRAZIL
STUDIO MK27, MARCIO KOGAN - 2015

LOCATION
São Paulo, Brazil

PROJECT YEAR
2015

ARCHITECTS
Studio MK27, Marcio Kogan

FUNCTION
Residential

PROJECT DESCRIPTION
This project shows a bookcase becoming an architectural feature instead of simply an interior object in the space. This bookcase creates the identity of the space. As I am searching for an integrated function of a bookcase within as an architectural element to form a transition between spaces this forms an interesting reference.

