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Abstract 
 

In this study the focus is on modelling turbulence anisotropy in open channel flows with 
the SWASH model. Turbulence anisotropy significantly influences the flow features of: 
channel flows with heterogeneous roughness conditions, curved open channel flows, 
compound channel flows with different floodplain depths, etc.  

The SWASH model is a non-hydrostatic wave-flow model, mainly used to predict the 
transformation of surface waves from offshore to the beach. For this study, adaptations 
were made to this SWASH model, in order to model turbulence anisotropy. Two 
different modelling approaches were used: RANS modelling and Large Eddy Simulation 
(LES). The SWASH model is extended with a non-linear k-ε closure to the RANS 
equations, since the standard linear closure does not take turbulence anisotropy into 
account. A 3D subgrid model is implemented to perform LES.   

The performance of the LES code and the RANS model with the non-linear k-ε closure is 
tested on two flow geometries: an open channel flow with homogeneous bottom 
roughness conditions and an open channel flow with parallel smooth to rough bed 
sections.  

Results of the RANS computations, for both horizontal homogeneous and non-
homogeneous open channel flow, show good agreement with laboratory measurements 
of Muller and Studerus [13], Nezu and Rodi [17] and Wang and Cheng [32]. Although 
there is a number of closure constants involved with the non-linear k-ε model, 
additional tuning of these coefficients was not necessary for this study: both the 
homogeneous and non-homogenous test case were simulated successfully using the 
standard values proposed by Speziale [25]. With its low computational costs and 
robustness, the non-linear k-ε model appears to be a useful extension to the SWASH 
wave-flow model. 

LES results for horizontal uniform flow are validated with DNS data of Moser, Kim and 
Mansour [12]. Especially near the bed the LES results deviate from the DNS data. The 
mean velocity, as well as the transverse and vertical turbulence intensities, is seriously 
underestimated. The deviation from the DNS data is related to the use of non- periodic 
boundary conditions, the coarse grid resolution, the size of the computational domain 
and the amount of numerical dissipation that is involved. 

Since it is the bottom region where secondary currents are generated, the use of the 
present LES code for problems involving heterogeneous roughness is not appropriate.  
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Introduction 
 

Features of open channel flows have been extensively studied by different authors in 
the previous decades. Physical scale models as well as in-situ measurements are 
moreover supplemented by numerical flow models since computational power 
increases rapidly. A channel geometry that is often studied is a straight horizontal 
uniform open channel with homogeneous bottom roughness conditions. However, in 
real rivers and waterways, the roughness conditions are often far from homogeneous. 
Flood plains for instance are in most cases characterized by relative high roughness 
conditions compared to the main channel. These heterogeneous roughness conditions 
lead to flow characteristics different from those for homogeneous channel flow. 

Flow characteristics of an open channel flow with heterogeneous roughness conditions 
are already studied a long time ago in laboratory experiments by Muller and Studerus 
[13]. More recently, Wang and Cheng [32] published about open channel flows with 
longitudinal bed forms. Both authors investigated the generation of secondary currents 
above smooth to rough bed transitions. These secondary currents are influencing the 
mean primary velocity. 

Prandtl distinguishes between two kinds of secondary currents. Secondary currents of 
Prantl’s first kind are associated with non-uniformity of the flow in streamwise direction 
and are generated by vortex stretching. Secondary currents of Prandtl’s second kind are 
driven by non-homogeneity and anisotropy of turbulence. The currents involved with 
heterogeneous bottom roughness are of Prandtl’s second kind.  

Since the secondary currents are induced by turbulence anisotropy and non-
homogeneity, modelling the currents is not straightforward. For most practical 
engineering purposes RANS (Reynolds Averaged Navier-Stokes) models are used. Those 
flow models solve for the RANS equations in conjunction with a turbulence closure. 
When the turbulence model does not account for anisotropy of the Reynolds stresses 
the secondary currents are not represented. Turbulence models that are often used 
(standard k-ε model, algebraic model, constant eddy viscosity) does not account for 
turbulence anisotropy. Speziale [25] introduced a non-linear variant of the standard k-ε 
model. This non-linear closure model can be solved in conjunction with the RANS 
equations and accounts for anisotropy of turbulence.  

Instead of solving the RANS equations, the spatially filtered Navier-Stokes equations can 
be solved by a 3D Large Eddy Simulation (LES). The aim of LES is to solve the large scale 
part of the energy spectrum on the numerical grid and model the small scale turbulence 
by a subgrid model. Consequently, anisotropy of the large scale motion is taken into 
account. 

This thesis is about modelling the anisotropy of turbulence in open channel flows 
involving heterogeneous roughness conditions. For the numerical simulations the 
SWASH model [28] is used. The original code, mainly employed for nearshore wave 
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application, has been adapted first, since the present SWASH model does not account 
for turbulence anisotropy.  
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Objective and outline 
 
Based on the introduction there are mainly two different topics that have to be 
addressed. The first research question arises from the adaption of the SWASH model: 
 

1. In which way does SWASH need to be changed or extended, in order to model 
the anisotropy of turbulence?  

 
Where the first question is related to the numerical issues involved with the adaptation 
of the SWASH model, the second question focuses on the physics of turbulence induced 
secondary currents: 
 

2. How does turbulence anisotropy relate to the secondary currents, generated in 
open channel flows involving heterogeneous roughness conditions?   

 
In the next sections the focus is on these two questions. In the first Chapter the relevant 
theoretical background of turbulent flow is addressed. The governing equations are 
treated as well as a well known solution for uniform homogeneous open channel flow. 
In Paragraph 1.4 the focus is on channel flow involving non-homogenous roughness 
conditions. 
The second Chapter is on modelling turbulence. In Paragraph 2.2 the standard linear k-ε 
closure for the RANS equations is considered. Since this standard model does not take 
the anisotropy into account, the model is extended by Speziale (1987). This non-linear 
variant is highlighted in Paragraph 2.3. Large Eddy Simulation is discussed in section 2.4. 
The original model is briefly discussed in Paragraph 3.1. The implementation of the non-
linear k-ε closure is subject of Paragraph 3.2. Implementation of the subgrid model used 
for LES in treated in section 3.4. The fortran coding of both models in provided in 
Appendix A and B. 
Results of the model computations are presented in the last Chapter. A distinction is 
made between a model geometry with homogenous roughness conditions (Paragraph 
4.1) and with non-homogeneous conditions (Paragraph 4.2). In each Paragraph results 
of the k-ε model are presented first, both with respect to the flow characteristics and 
the numerics. LES results are presented in 4.1.2 and 4.2.2. Special attention is paid to 
the discretization of the momentum equations, since LES results appear very sensitive to 
the numerical implementation. 
Conclusions and recommendations are given in Chapter 5. 
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1. Theory of turbulence 
 

In this first Chapter the governing equations for turbulent flow are presented in 
Paragraph 1.1. For stationary horizontal homogeneous open channel flow these 
equations can be simplified. Resulting relations are discussed in Paragraph 1.2. For more 
complex flow geometries turbulence anisotropy may influence the mean flow 
characteristics.  Turbulence anisotropy is addressed by expanding the turbulent kinetic 
energy balance in Paragraph 1.3. Paragraph 1.4 focusus on secondary currents driven by 
turbulence anisotropy. In the last Paragraph the effects of non-homogeneous roughness 
conditions are discussed. 

 

1.1 Governing equations 
 
The governing equations for an incompressible flow are the continuity and the 
momentum equations. The flow models discussed in this thesis are all based on these 
basic equations. The complete incompressible Navier-Stokes equations consist of the 
momentum equations in three directions and the continuity relation. Including non-
hydrostatic pressure they read (Pope [21]): 
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where    is the velocity in direction   ,   the pressure,   the density and   the kinematic 
viscosity.  
  
Note: Throughout this thesis the Einstein summation convention holds for repeated 
Roman symbols. Greek symbols are used for noncontracted subscripts.    
 
The gravity force can be eliminated by incorporating it into the pressure gradient: 
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where   is the non-hydrostatic pressure and   the gravitational acceleration.   
 
The resulting momentum equations read: 
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Expanded in three different directions,  (     )  (     )      (     ) respectively 
in streamwise, spanwise and vertical direction: 
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To obtain an equation describing the mean flow, the velocity is split up in two parts 
(Reynolds decomposition): 
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Where,  ̅  represents the time averaged mean velocity and   

  the instantaneous 
velocity fluctuation. Consequently   

 
̅̅ ̅̅  = 0.  

 
After substitution of     ̅    

  in equation (1.3) and averaging of the resulting 
equation, an equation for the mean flow is obtained. After some algebra (Pope [21]) the 
Reynolds Averaged Navier Stokes equation (RANS) reads: 
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The momentum transfer due to small scale motions (last term on the RHS of equation 
(1.9) ) is equivalent to a stress: the Reynolds stresses. Due to symmetry of the stress 
tensor there are three different shear stresses and three different normal stresses: 
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Substitution of the Reynolds stress expression in the momentum equations: 
 

   ̅

  
 

   ̅  ̅

   
  

 

  

  ̅

   
  

   ̅ 

    
 

 

  

 

   
(   ) 1.12.  

 
 

1.2 Horizontal homogeneous open channel flow 
 

The Navier-Stokes equations (1.1 and 1.2) introduced in Paragraph 1.1 can be simplified 
for stationary, homogeneous turbulent flow. The momentum equation (1.12) reduces to 
a balance between pressure and shear stress (Nieuwstadt [18]).  
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To be able to integrate over depth, the friction velocity is introduced:  
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The friction velocity and pressure gradient are coupled by the momentum equation in x-
direction. When integrated over depth we obtain: 
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Substitution of (1.18) in (1.13) shows that the shear stress vary linearly with depth: 
 

        ̅̅ ̅̅ ̅̅   
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) 1.19.  

 
In order to find an expression for the mean velocity a closure is needed. The Prandtl 
mixing length hypothesis (Nieuwstadt [18]) relates the velocity to the product of a 
mixing length and a velocity gradient (  and   are characteristic velocity and length 
scales): 
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  ̅

  
| 1.20.  

 
The eddy viscosity is estimated by the product of a characteristic velocity and length 
scale (Boussinesq hypothesis).   

      1.21.  
 
Substitution of 1.20 in 1.21: 
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The turbulent shear stress is expressed as: 
 

     |
  ̅

  
|
  ̅

  
 1.23.  

 
Close to the wall the eddies are bound by the presence of the wall. The mixing length in 
the wall region is approximated by (  represents the Von Karman constant): 
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By substitution of 1.22 in 1.19 and 1.24 in 1.23 and the assumption of a constant shear 
stress, we obtain: 
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After integration, equation (1.26) results in the well-known logarithmic profile: 
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The parameter    is a constant resulting from the integration process.    corresponds 

to:         
 

|  |
 for hydraulically smooth walls and to    

   

  
 for hydraulically rough 

conditions.    represents the Nikuradse roughness height.  
 
Although expression (1.20) is strictly speaking only valid in the wall region, it estimates 
the mean velocity relatively correct also in the core region. Therefore the logarithmic 
profile is widely used as an expression for the mean velocity in turbulent open channel 
flows outside the viscous sublayer.   
 

1.3 Turbulent Kinetic Energy budget 
 

To have a closer look at the characteristics of turbulence fluctuations the turbulent 
kinetic energy balance for turbulence fluctuations is introduced. The turbulent kinetic 

energy (TKE) is defined as:   
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equations (1.9) are subtracted from the original NS equations (1.2). Since     ̅    
  

the resulting equation is an expression for the fluctuating velocity: 
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Multiplication by   
 , time averaging and substitution of   
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  ̅̅ ̅̅ ̅) leads to the TKE 

balance for velocity fluctuations (Nieuwstadt [18]): 
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 1.29.  

    
To analyze the anisotropy of the TKE distribution, the turbulent kinetic energy balance 
can be split up in three directions (transport by the vicous term is neglected). We define 
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When stationary and horizontal homogenous turbulent flow is assumed the expression 
reduces to (the pressure term can be expanded using the Kronecker delta): 
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The separate equations for the three different directions are displayed below and sum 
up to the total kinetic energy balance (1.22), (Nieuwstadt [18]). 
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1.32.  

 

Production 
The production term contains only one component. This implies turbulence anisotropy. 
The anisotropy is like the production processes related to the macro scales. 
 
Dissipation 
Viscous dissipation is related to the small Kolmogorov scales and for high Reynolds 
numbers the micro scales will be isotropic. The dissipation is equal for all components.  
 
Pressure velocity correlation 
Since the production at the macro scales is anisotropic and the dissipation on the micro 
scales is isotropic, the energy have to be redistributed (during the cascade process) over 
the three directions. This pressure-velocity term causes this redistribution.   
 

The directional dependence of the production term is not the only source of turbulence 
anisotropy. Near closed walls and at the free surface anisotropy increases. Velocity 
components normal to these boundaries are limited since water particles are not able to 
penetrate the boundaries.  
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1.4 Turbulence driven secondary flow 
 
The turbulence anisotropy, introduced in the previous Paragraph, lead according to 
Prandtl to the generation of secondary currents. Prandtl distinguished between two 
kinds of secondary flow. Skewness induced secondary flow, which is also known as 
Prandtl’s first kind of secondary flow, is generally well understood. The generation is 
related to vortex stretching induced by non-uniformity of the flow in streamwise 
direction. The occurrence of secondary currents of Prandtl’s second kind is related to 
the anisotropy of turbulence. Although measurement data on these currents is available 
since the work of Nikuradse in 1930, the generation mechanism is still a topic to discuss.  
 
As mentioned in the previous Paragraph, the turbulent kinetic energy at the macro scale 
is in general not equally distributed over the horizontal and vertical components 
(turbulence anisotropy). This is partially related to the restriction of the production term 
of (1.25) to the streamwise direction. In addition the damping effect of the free surface 
and solid walls plays a role. Close to these boundaries the turbulent motion in the 
direction normal to the wall is restricted since the water particles can’t penetrate the 
boundary. Consequently the turbulent motion parallel to the wall will be large 
compared to the perpendicular motion.  
 

The non-homogeneity and anisotropy of turbulence is often linked to the generation of 
streamwise vorticity and implicitly to the generation of secondary currents. The 
streamwise vorticity balance is used to study the driving mechanism in detail. 
 
Vorticity is defined as the rotation (curl) of the velocity field. In this sense vorticity is 
directly related to the rotational and dissipative character of turbulence. 
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Note:      represents the permutation tensor. 

 
Expresion (1.26) shows the relation between vorticity and the deformation rate of the 
velocity field: 
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The vorticity vector is only related to the skew-symmetric tensor: 
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    1.36.  

 
Taking the curl of the RANS equations (1.9) leads to the vorticity equations. The 
pressure term drops out since the curl of a gradient equals zero. Considering the 

streamwise vorticity equation for fully developed flow (
 

  
   

 

  
   ), we obtain: 
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The Reynolds stresses can be re-arranged to distinguish between non homogeneous and 
anisotropic terms (Nezu and Nakagawa [15]): 
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1.38.  

 

Most authors use this streamwise vorticity equation (1.31) for interpretation of their 
results, when it comes to secondary currents driven by turbulence anisotropy. The 
reference to the third and fourth term of (1.31) by the labels “non-homogeneity” and 
“anisotropy” respectively is rather vague. The “non-homogeneous” term would be zero 
when the Reynolds normal stresses are homogeneous or isotropic. Although this naming 
is a little arbitrary, it’s often used in literature and will therefore be used throughout this 
thesis.  
 
Several measurements have been carried out on secondary currents of the second kind 
in straight open channel flows (i.e. Hinze [8], Gessner and Jones [7], Perkins [20]).  
Nezu and Nagakawa [15] showed that the non-homogenous term strengthen the 
secondary currents while the anisotropic term plays a suppressing role. The difference 
between the two terms should drive the turbulence induced secondary circulation. This 
statement is both experimentally and numerically verified by respectively Nezu and 
Nagakawa [16] and Naot and Rodi [14].  
 
Since the standard k-ε model is not capable of modelling secondary currents because its 
assumption of an isotropic eddy viscosity (Chapter 2.2), numerical studies investigating 
secondary currents are either based on the non-linear k-ε model (Choi et. al. [4], Kimura 
and Hosoda [10]) or LES (Falcomer and Armenio [6]).  
 
Very recently Sibel et. al (2011) carried out a LES of a compound channel flow with deep 
and shallow floodplain depth. They showed that the non-homogeneous term of the 
vorticity equation is an order of magnitude larger than the anisotropic term. They 
concluded that the anisotropy of the normal Reynolds stresses is dominant with respect 
to the origin of secondary currents.   
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The non-homogeneity of turbulence increases near solid walls and close to the free 
surface. Previous studies show in addition that there are other regions where 
streamwise vorticity is generated. Secondary currents are also generated when a 
transition between a smooth and rough bed is involved. The next Paragraph focusses on 
the features of secondary currents generated at smooth to rough bed transitions.     
 
 

1.5 Non-homogeneous roughness conditions 
 
In the previous section the streamwise vorticity balance is used to describe the 
generation of secondary currents. In particular the anisotropy of the Reynolds normal 
stresses seems to be responsible for their generation. Perkins [20] was the first who 
relates this non-homogeneous term to the friction velocity: 
 

  

    
(    ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅ ̅)  

  
 

 
(
 

  

   

  
 

 

 

  

  
* 1.39.  

 
Where   is a measure for the thickness of the local boundary layer. 
 
Since the work of Perkins H.J. [20] a number of researchers paid attention the non-
homogeneity of turbulence induces by lateral varying bed shear stress (Mclean, 
Townsend, Gerard). Ikeda [9] solved equation (1.32) analytically using the assumption 
that    varies sinusoidal in transverse direction and the shear stress shows a linear 
distribution in vertical direction. His solution, useful to predict the right sign of the 
secondary currents rather than generating real values is showed in figure 2.  
  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 2: Measurements of secondary currents 
in channel corner, v – w vector, Nezu and 
Rodi [17]. 

Fig. 1: Analytical solution to equation 1.39, v – w 
vector and spanwise distribution of bed shear 
stress, Ikeda [9].  
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The velocity field shows clearly idealized secondary currents, ignoring side wall and free 
surface effects. Despite the simplicity of Ikeda’s analytical model, its qualitative 
descriptions are in good agreement with physical experiments. Most interesting is the 
observed upward flow above the bottom part with relatively low bed shear stress and 
the downward flow at relatively rough sections.     
 

In real open channel flows this idealized flow pattern is disturbed by free surface effects, 
the presence of side walls and non-sinusoidal varying bed roughness. Figure 2. shows 
secondary currents near a side wall measured by Nezu and Rodi [16] in an subcritical 
open channel flow.  
 

 

 

 

 

 

 

 

 

 

 
 
Muller and Studerus [13] measured in 1979 secondary currents above parallel smooth 
to rough bed strips. The measurements show qualitatively the same results as the 
analytical model of Ikeda. Upward movement is measured above smooth strips and 
downward motion above rough bed strips. Furthermore, the measured flow velocities 
involved with the secondary motions are roughly 1% of the mean flow velocity. Where 
maxima of 2% are measured. The center of the secondary circulation is located just 
above the smooth bed strip.  
In 2005 Wang and Cheng [32] carried out experiments similar to those performed by 
Muller and Studerus [13] and their results where comparable.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Secondary currents on smooth to 
rough bed sections, v – w vector, Muller and 
Studerus [13]. 

Fig. 4: Secondary currents  on smooth to rough bed 
sections, v – w vector, Wang and Cheng [32]. 
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2. Turbulence modelling 
 

In this Chapter the modelling of turbulent flow is discussed. After a general introduction 
RANS modelling with the standard k-ε closure is addressed in Paragraph 2.2. Extension 
of the linear k-ε closure with non-linear terms is discussed in Paragraph 2.3. Instead of 
solving the RANS equations, the spatially filtered Navier-Stokes equations can be solved. 
This Large Eddy Simulation approach is subject of Paragraph 2.4. Boundary conditions 
for both RANS models and LES are presented in section 2.5. 

 
2.1 Introduction 
 
The Navier-Stokes equations (1.1 and 1.2) describe in principle the flow quantities. To 
obtain these quantities the system of equations needs to be integrated in combination 
with proper initial and boundary conditions. The solution of the system needs to be 
well-posed which implicitly means that little variations of the boundary conditions 
results in nearly identical solutions of the system. This is the case for laminar flow. For 
turbulent flow the problem is ill-posed. Nearly identical boundary conditions results in 
totally different solutions to the system. The latter implies that the Navier-Stokes 
equations cannot be integrated analytically for turbulent flow (Nieuwstadt [18]).  
 
Since the dynamic system is by definition deterministic, it must be possible to integrate 
numerically. Direct numerical integration of the Navier-Stokes equations, without 
making limiting assumptions, is called Direct Numerical Simulation (DNS). To solve the 
equations on a three dimensional numerical grid, the grid size must be small enough to 
cover the turbulent microstructure. The total number of grid points is therefore related 
to the ratio of the characteristic macro length scale and the length scale corresponding 
to turbulent energy dissipation: the Kolmogorov scale. 
 

    (
 

 
*
 

 

 
In which    is the number of grid points in the computational domain;   is the 
characteristic macro length scale and   is the Kolmogorov length scale. 
 
The Kolmogorov length scale is related to the dissipation of turbulent kinetic energy 
(TKE) (Nieuwstadt [18]):  
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The small dissipative Kolmogorov scales are related to the Reynolds number based on 
the mean flow velocity. 

    
  

 
 

 
Based on the relations above it turns out that the number of grid points is directly 
related to the Reynolds number: 

      
 
  

 
Even for relatively low Reynolds number flows DNS becomes too computational 
expensive.  
 
There are a few other options instead of DNS to solve the Navier-Stokes equations. In all 
cases limiting assumptions have to be made. In the following Paragraphs the linear k-ε 
model, the non-linear k-ε model and Large Eddy Simulation will be introduced. 
 

2.2 Linear k-ε model 
 

Instead of solving the Navier-Stokes equations, the Reynolds Averaged Navier Stokes 
(RANS) equations (1.9) as introduced in the first Chapter can be solved. The RANS 
equations are describing the mean flow properties and contain the Reynolds stresses 
(the averaging operator is dropped in the remaining equations).   
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2.1.  

 
By introducing the Reynolds stresses, extra unknown quantities have to be solved. This 
is done by the relating the Reynolds stresses to mean flow properties as follows 
(Launder and Spalding [11]): 
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The eddy viscosity term    is related to the TKE and its dissipation:  
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To close the set of equations, expressions for   and   are needed. Expressions are found 
by deriving transport equations for both quantities.  
 
The set of transport equations for production and dissipation of TKE reads (Pope [21]): 
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The transport equations require a number of closure constants. Common used values 
are:                                           . 

 

Since the constitutive relation (2.2) of the linear k-ε model does not take the anisotropy 
of the Reynolds stresses into account, the model is not capable of solving secondary 
currents of the second kind (Rodi [23]). By introducing non-linear terms in the 
constitutive relation the model will be applicable to flows induced by turbulence 
anisotropy. This nonlinear model will be explained in the next Paragraph.  
 

2.3 Non-linear k-ε model 
 
The well-known linear k-ε model consists of a linear constitutive relation (2.2). Since the 
relation is linear, anisotropy of the Reynolds stresses is not represented. In order to 
model flows induced by anisotropy, Speziale [25] added nonlinear terms to the 
constitutive relation.  
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and     ,    ,     are closure constants.  
This constitutive relation (2.7) is quadratic in the mean velocity gradients. This is the 
lowest order of the non-linear k-ε model. This quadratic relation covers the anisotropy 
of the Reynolds stresses. Relation (2.7) can also be extended with cubic terms in order 
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to be more sensitive to flows related to streamline curvature. For open channel flows 
involving secondary currents of Prandtl’s second kind the quadratic relation seems to be 
sufficient.     
 

Note: The Einstein summation convention holds for Greek symbols. The roman symbols 
are used for noncontracted subscripts.  
 
According to Nissizima [19] the Speziale formulation can be written as follows: 
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and    is a closure constant. 

 
For the coefficients    ,   ,    and     ,    ,     the following relation holds: 
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+ 2.9.  

 

The closure constants are tuned by different authors depending on their model 
application. Speziale introduced a set of constants based on model calibration with 
experimental data by Laufer (1951) on uniform homogeneous open channel flow. He 
suggested:                                   , corresponding to     
                              .     
 
The transport equations for   and   remains the same, as well as the expression for the 
eddy viscosity. In Paragraph 3.3 the implementation of the constitutive relation is 
discussed and in Chapter 4 model results will be presented.  
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2.4 Large Eddy Simulation 
 

Where the models discussed so far solves for the RANS equations, Large Eddy 
Simulation (LES) simulates the flow field by integrating the spatially filtered Navier-
Stokes equations. As discussed in the introduction of this Chapter DNS is in most cases 
too computational expensive since the grid spacing is related to the small Kolmogorov 
scales. Since the focus of most practical flow problems is not on the energy dissipating 
scales but on anisotropic length scales on the order of the water depth, the equations 
are spatially filtered. The filtered equations solve for length scales larger than the filter 
width, smaller scales will be modelled by a so called subgrid model.  
 
The filtering process is not discussed here (see Sagout [24]), but is usually done 
automatically by discretizing the equations on the computational grid. The filtered 
equations look nearly identical to the Navier-Stokes equations (1.1 and 1.2): 
 

  ̃ 

   
   2.10.  

 

  ̃ 

  
 

  ̃  ̃ 

   
  

  ̃  

   
 

 

   
 (

  ̃ 

   
 

  ̃ 

   
)  

  ̃  
   

   ⏟  
            

 2.11.  

 
Note: the tilde in 2.10 and 2.11 denotes that described quantities are spatially filtered. In 
the next Chapters this accent is not used anymore. 
 
Equations 2.10 and 2.11 can now be integrated using a closure model for the subgrid 
term. In this thesis the standard Smagorinsky model is used. The subgrid stress is 
defined as the rate of strain of the mean flow:  
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   is the Smagorinsky constant and   is representing the filter width. The Smagorinsky 
constant is has a theoretically based value of       . For open channel flows a lower 
value of          suggested by Moin and Kim is often used.  
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2.5 Boundary conditions 
 
The RANS equations as well as the filtered NS equations are numerically solved in 
conjunction with boundary conditions. In this section they are briefly discussed. 
 
Inflow and outflow conditions 
At the inflow boundary a velocity profile is imposed. For computation with the k-ε 
model a depth uniform velocity is used. During LES computations a logarithmic velocity 
profile in stream wise direction is imposed based on the logarithmic law. Random white 
noise fluctuations are added to the mean velocity to trigger the growth of large scale 
turbulent structures. The fluctuations are a certain percentage  ̂ of the ensemble 
averaged velocity     (     )  (    ̂    ̂    ̂  ),〈   〉  (〈 〉 〈 〉 〈 〉)  
(      ). The random fluctuations are updated every time step or optionally kept on 
the same value for a certain time interval.   
 
At the outflow boundary a weak reflective boundary is used as alternative for a fixed 
water level boundary. The latter gives rise to strong wave reflections and consequently 
long spin-up times. 
 
Free surface  
Since we consider a free surface flow an additional equation is needed to determine the 
water level. The free surface equation is obtained by integration of the continuity 
equation and substitution of the kinematic boundary conditions at the bottom and the 

free surface:  |    
  

  
  

  

  
  

  

  
  and  |       

  

  
  

  

  
 . The non-

hydrostatic pressure at the free surface is zero. For numerical implementation issues 
and excessive treatment of the free surface boundary conditions see Stelling and Zijlema 
[27].        
 
Wall conditions 
In order to solve the near wall dynamics directly the first grid point needs to be placed in 

the region       
   

 
  . When such a fine grid resolution is used the solid wall can 

be represented by a no-slip condition. Since a fine grid resolution is very computational 
expensive there are different wall models available to model near wall dynamics instead 
of solving them on the numerical grid. When a subgrid model for the wall shear stress is 
used, it is sufficient to place the first grid point within the logarithmic layer:        
   . This partial slip condition is a choise not to solve the near wall stress on the 
computational grid.  
 
In this thesis two different wall models are used. This depends on whether the bottom 
shear stress is known a priori or not. When the shear stress is known in advance 
(straight uniform open channel flow) the Schumann model [24] can be used. Schumann 
represents the wall shear stress as follows: 
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〈       
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〈 〉 2.14.  

 

    
 ̅      

〈       
〉
〈 〉 2.15.  

 
The 〈 〉 brackets denote ensemble averaging of the described quantity. The shear stress 
is related to the friction velocity (2.16): 
 

〈 〉   〈  
 〉 2.16.  

 
By means of the logarithmic velocity law (1.27) the friction velocity can be calculated. In 
case of hydraulic rough conditions the friction velocity is explicitly related to the 
equivalent roughness height. When conditions are hydraulically smooth the    has to be 
determined iteratively. When the bottom shear stress is known a priori this has to be 
done once where after the instantaneous bottom shear stress can be calculated by 
relations (2.14 and 2.15).  When the bottom shear stress is not known a priori ( for 
instance open channel flows with varying bottom roughness and side wall effects) an 
extension of the Schumann model has to be used which is known as the Grotzbach 
model. The ensemble averaging is now related to realized flow velocities from a number 
of previous time steps. The ensemble averaged friction velocity is calculated (iteratively 
in case of hydraulically smooth conditions) from: 
 

〈 ̅      
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 2.17.  

 
The instantaneous bottom shear stress is like the Schumann model calculated by 
equations 2.14 and 2.15. The Grotzbach model requires in contrast to the Schumann 
model repeated computation of the ensemble averaged friction velocity for every time 
step since its value can change over time.  
 
The wall shear stress terms are in the end added as a source term to the horizontal 

momentum equations for the bottom layers. The bottom friction terms read: 
   

   
 for the 

streamwise momentum equation and 
   

   
 for the momentum equation in transverse 

direction.  
 
When side walls are involved the wall shear stress and the bottom shear stress are 
calculated with the Grotzbach model. Except for the LES of homogeneous open channel 
flow where a free slip condition at the side walls is used.   
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3. The SWASH wave-flow model 
 

In this Chapter the SWASH wave-flow model is introduced. The original model accounts 
for vertical mixing by means of the standard (linear) k-ε closure. Horizontal mixing is 
modelled by a depth averaged Smagorinsky model. The governing equations of the 
original model are presented in Paragraph 3.1, where 3.2. focuses on the numerical 
discretization. 

Since the linear k-ε model does not account for turbulence anisotropy, secondary 
currents of the second kind cannot be solved. In order to model turbulence anisotropy 
adaptations were made to the original SWASH code: the non-linear k-ε closure of 
Speziale [25] is implemented. This extension of the linear k-ε model is described in 
Paragraph 3.3.  

Although the original SWASH model accounts for horizontal subgrid stresses by means 
of the Smagorinsky model (HLES), a three dimensional subgrid model is not 
implemented in the original code. To run a 3D LES with the SWASH model a standard 
Smagorinsky model is implemented. The modified code is presented in Paragraph 3.4. 

  

3.1 General model description  
 

SWASH is a general-purpose numerical tool for simulating non-hydrostatic, free-surface, 
rotational flows. The code is based on the work of Stelling and Zijlema [27], Stelling and 
Duinmeijer [26] and Zijlema and Stelling [33], [34]. The model accounts besides other 
processes for bottom friction, subgrid turbulence and vertical mixing. The governing 
equations are (Zijlema, Stelling and Smit [35]): 
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The equations are depth or layer averaged. Since the vertical grid spacing usually does 
not allow for solving the dynamics of the boundary layer, a bottom friction term (  ) is 
added to the near bottom layer. This friction term is added to the near bottom layer 
only. The horizontal turbulent stresses are neglected or optionally solved by a standard 
Smagorinsky model for horizontal mixing (HLES), whereas the vertical turbulent stresses 
are solved by the standard linear k-ε model.      
 

3.2 Numerical discretization 
 
Grid schematization 
To discretize the governing equations on the computational grid, flow quantities are 
arranged on a staggered grid (Stelling and Duinmeijer [26]). In figure and table 1 the 
arrangement of unknowns is shown.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 quantity Set of points on computational 
grid 

 U – velocity ( i + 1/2, j, k )   

 V – velocity ( i, j + 1/2, k )   

 W – velocity ( i , j, k + 1/2 )   

 P – non hydrostatic pressure ( i , j, k + 1/2 )   

 W – water level ( i , j, k )   

 V – horizontal subgrid viscosity ( i + 1/2 , j + 1/2, k )   
Table 1: Arrangement of unknowns on the computational grid 

x  

k – ½ 

k + ½, i + ½  

k  

i  

i – ½    

j – ½ j  j + ½ 

y  

z  

Fig. 5: Arrangement of unknowns on the computational grid. 
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The vertical layers are numbered positively from the free surface up to the bottom, 
while the vertical velocity    is positive when acting in upward direction. 
 

Numerical discretization 
For the space discretization and time integration of the governing equations SWASH has 
a number of methods available. The most important options are discussed in this 
section.  For a complete overview of all available methods, reference is made to the 
SWASH manual [28].  

The time integration with respect to the horizontal advection terms is based on the 
prediction – correction method of MacCormack. Illustrated by the simplified u-

momentum equation; 
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Predictor step (   ̃denotes predicted quantity) : 
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This prediction is made based on the first order forward differencing technique. The 
correction step makes use of the first order backward differencing technique:  
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The resulting estimation is second order accurate in time and the resulting backward 
difference (BDF) scheme for the advection terms is also second order accurate in space.  

The BDF scheme is the default scheme for the horizontal advection term in SWASH. 
There is a list of other schemes available which are numerically treated by the 
correction step of the MacCormack scheme. The space discretization of the vertical 
advection term is by default central differencing. Optionally there are different upwind 
methods available.  

The space discretization of the non-hydrostatic pressure gradient can be carried out in 
two ways. The keller-box scheme as well as the standard central differencing approach 
is available.  

The discretization of the vertical momentum equation is based upon the Keller-Box 
scheme (Zijlema and Stelling [34]). The horizontal advection terms are treated explicitly 
whereas the vertical terms are treated implicitly for stability reasons. There are a lot of 
options for their space discretization. The vertical gradient of the non-hydrostatic 
pressure is treated in the same way as in the horizontal momentum equations.   
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Introducing non–hydrostatic pressure to the momentum equations requires a solution 
of the global Poisson problem. The Poisson equation for pressure reads: 
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* 3.7.  

 

Solving this equation in conjunction with the momentum and continuity equation is not 
straightforward. There are mainly two ways to solve for the non-hydrostatic pressure. 
The first method is called the fractional step method. According to this method, the 
momentum equations are first solved without the pressure gradient, secondly the 
predicted velocities are substituted into the Poisson equation. After solving the Poisson 
equation, the predicted velocities are corrected with the pressure gradient. The second 
method is called the pressure correction technique. The momentum equations are 
solved with the non-hydrostatic term included based on the solution of Poisson 
equation from the previous time step. The predicted velocities of the current time step 
are substituted into the Poisson equation. The predicted velocities are corrected with 
the gradient of the difference between the non-hydrostatic pressure of the previous 
time step and the current time step. The pressure correction technique is second order 
accurate in time and this technique is used in the SWASH model.   

For time integration of the pressure gradient the theta-box scheme can be used with 
        for stability reasons.       corresponds with the second order Crank-
Nicholson scheme and      induces first order implicit Euler.   

The continuity equation and water level gradient are integrated with the leap frog 
scheme.   

 

3.3 Implementation of the non-linear k-ε model 
 

In Paragraph 2.3 the non-linear k-ε model by Speziale is introduced. The non-linear 
model is in fact an extension of the linear constitutive relation from the standard k-ε 
model. The linear model is already a part of the Swash model. The transport equations 
for   and   are the same for the linear model as well as for the non-linear model. Their 
space discretization is based upon first order upwind and the time integration is fully 
implicit (for details see the SWASH user manual). The implementation of the non-linear 
model is restricted to the implementation of the non-linear part of the constitutive 
relation.  
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Whereas the linear part is treated explicitly except for the second derivative in vertical 
direction, the whole non-linear part is treated explicitly and added as a source term to 
the momentum equations. The non-linear part consists of a list of cross products of 
modified stress and strain tensors. In Appendix A the Fortran code of the non-linear 
relation is attached. To avoid a number of pages with multiplied derivatives, relation 3.8  
is not expanded in the text. Both the linear and non-linear part are second order 
accurate in space (central differencing) and first order in time. The transport equations 
for   and   (2.5 and 2.6) are first order in time and space (first order upwind scheme for 
space discretization and first order time spitting). 
 
For the discretization and integration of the momentum equations reference is made to 
Chapter 3.2 and (Zijlema and Stelling [34]), since no changes have been made to the 
original SWASH code.  
 

3.4 Implementation of Large Eddy Simulation 
 

In Paragraph 3.4 the filtered Navier-Stokes equations are introduced. In order to 
perform a LES these equations need to be solved in conjunction with a subgrid model. 
To that end some adaptations have to be made to the governing equations of the 
SWASH model: 

 Extension to fully 3D system of equations 

The horizontal depth averaged subgrid stresses and the vertical subgrid stress needs to 
be replaced by a three dimensional subgrid model and subgrid stresses need to be 
added to each momentum equation. For this purpose the standard Smagorinsky model 
will be used. 

 Modelling the subgrid scales 

The Smagorinsky model requires for the calculation of a subgrid viscosity.  

 Wall model 

Bottom friction is taken into account by adding a shear stress to the horizontal 
momentum equations for the near bottom layer. In the SWASH code this shear stress is 
related to the depth averaged flow velocity by a user-defined friction coefficient. This 
wall model needs to be replaced by the Schumann or Grozbach model introduced in 
Section 2.5 

In the next section the numerical treatment of the implemented terms is discussed. In 
addition, the Fortran code of the implemented modules is supplemented in Appendix B.  

The subgrid stress terms are explicitly treated except for the terms where second order 
derivatives in vertical direction are involved. Space discretization is obviously based on 
central differencing since second order derivatives are involved. 
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The subgrid terms in the u-momentum equation reads: 
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3.10.  

 

The subgrid terms of the u-momentum equation are discretized around the u-point ( i + 
1/2, j, k )  and are added to the RHS of the momentum equation: 
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The subgrid terms in the v-momentum equation reads: 
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The terms of the v-momentum equation are discretized around the v-point ( i,  j + ½,  k )  
and are added to the RHS of the momentum equation: 
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The second derivatives in vertical direction 
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)}  in the u- 

and v- momentum equation respectively are implicitly treated to enhance the stability 
of the solution. 

The subgrid terms are discretized around the w-velocity point ( i, j, k + ½ ) and are 
treated explicitly. 
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The vertical second derivative of the subgrid term 
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implicitly. 
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Subgrid viscosity 

The subgrid viscosity is based on the standard Smagorinsky model, introduced in 
Chapter 3.4.  

     (   )
 √

 

 
  ̅   ̅  3.22.  

 

The subgrid viscosity is discretised around the point ( i + ½, j + ½, k ) with use of 

velocities from the previous time step. The filter width   is estimated as √        since 

the filtering operation is done directly by discretizing the equations on the numerical 
grid. The Smagorinsky constant    near the bottom is reduced by a van Driest damping 
function (Pope [21]) in order to make sure    reaches zero at the bottom. 

      (   
 
  
  * 3.23.  

 

      is the Van Driest parameter. When necessary velocities are interpolated first 
and the derivative is based upon the interpolated velocities.  This should be more 
accurate than the other way round. 

The subgrid viscosity, discretised around the point ( i + ½, j + ½, k ), reads: 

     (  √        )
 
√
 

 
  ̅   ̅  3.24.  

 

with: 
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Gradients close to boundaries 

When virtual points are needed to obtain derivatives close to boundaries, velocities are 
mirrored. At no slip boundaries this means zero velocities, at the bottom and the free 
surface this implies a von Neumann boundary condition.  

The Schumann wall model is implemented to account for side wall and bottom friction. 
See Appendix B for the Fortran code. 
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4. Results and discussions 
 

In this Chapter results of different model runs with respect to the flow characteristics 
will be presented, as well as the behavior of the implemented code with respect to the 
numerics. Since the original code is adapted and extended, a homogeneous open 
channel flow is investigated first (Paragraph 4.1). In addition calculations were made 
involving non homogeneous roughness conditions (Paragraph 4.2). 

 

4.1 Homogeneous open channel flow 
 

In Paragraph 4.1.1  an open channel flow with homogeneous bottom roughness is 
investigated with the linear and non-linear k-ε model. Numerical aspects of the k-ε 
model are treated in the same section. Paragraph 4.1.2 shows the results of a LES for 
homogeneous channel flow. Special attention is paid to the discretization of the 
momentum equations, since LES results appear very sensitive to the numerical 
implementation. 

 

4.1.1 linear and non-linear k-ε model 
 

Model set-up 
A comparison is made between the standard linear model and the non-linear variant 
with coefficients specified by Speziale [25]. The flow geometry consist of a standard 
open channel with hydraulic smooth bottom and side wall conditions (fig. 6). The length 
and width of the domain are 120 and 8 times the water depth, respectively.  
 
At the inflow boundary a uniform velocity profile is imposed:  ̅   ( ̅  ̅  ̅)  
(      ). At the outflow boundary a weak reflective boundary is used as alternative 
for a fixed water level boundary. The latter gives rise to strong wave reflections and 
consequently long spin-up times. Initially the flow velocities were set to zero. 
 
The Reynolds number based on the friction velocity is         and we consider 
subcritical flow. The results are obtained from the stationary situation, when the wall 
shear stress balances the mean pressure gradient. Since the geometry of the channel is 
symmetric at the channel center (    ) only the left half of the channel is plotted. 
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Fig. 6: Computational domain for RANS compuations with horizontal homogeneous roughness conditions. 

 
Primary velocity distribution and secondary currents 
The mean velocity profiles are plotted in figures 7 and 8. The black line shows in both 
figures the log law for hydraulically smooth conditions. The black dots represent the 
computational results in the channel center. The profiles are in good agreement with 
the experimental results of Nezu and Rodi [17] who states that, the mean velocity 
profile should not be influenced by the solid side walls after two times the water depth 
from the wall. Both the linear and non-linear model shows the same mean velocity 

profile at the channel center. Within in the core region (       
 

 
     ) the velocity 

deviates from the logarithmic law. This is expected since the law of the wake holds for 
the mean velocity in the core region.   
 
Within one water depth from the wall the linear results deviates significantly from the 

non-linear results. The velocity dip at 
 

 
 

 

 
 as described by Nezu and Nagakawa [15] is 

clearly visible in the model results from the non-linear model. The linear model, as 
expected, is not capable of reproducing the correct velocity profile near solid walls.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Results linear k-ε model. Mean 
primary velocity profiles at the channel 
center and at different transversal locations 
close to the solid wall at H = 0. 

Fig. 8: Results non-linear k-ε model. Mean 
primary velocity profiles at the channel center 
and at different transversal locations close to 
the solid wall at H = 0. 
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The mean streamwise velocity distributions, corresponding to the velocity profiles in 
figure 7 and 8, are showed below. The relatively strong velocity dip in the 
measurements of Nezu and Rodi [17] compared to the present model results is most like 
due to the use of a different model geometry. Nezu and Rodi [17] carried out their 
measurements in an open channel where the channel width is as large as twice the 
water depth. The width of the secondary currents is therefore limited to half the 
channel width since the flow pattern is symmetric round the channel center. 
Measurements of Wang and Cheng [32] in a much wider open channel show a less 
dominant velocity dip (fig. 12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vector plots of secondary currents are compared and presented in figure 2 and 3. The 
non-linear model does not show any secondary currents. This was expected since the 
non-linear does not solve for the turbulence anisotropy.  

Fig. 9: Mean primary velocity distribution, 
percentage of maximum velocity, linear k-ε 
model. 

Fig. 10: Mean primary velocity distribution, 
percentage of maximum velocity, non-linear 
k-ε model. 

Fig. 1: Mean primary velocity distribution, 
percentage of maximum velocity, Nezu and 
Rodi [17]. 

Fig. 12: Mean primary velocity distribution, 
percentage of maximum velocity, Wang and 
Cheng [32]. 
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The results of the non-linear model show good agreement with the measurements from 
Nezu and Rodi [17]. The bottom as well as the counter rotating cell at the free surface 
are somewhat extended in transverse direction compared to the measurements. This 
deviation between measurements and computational results is related to the difference 
in model geometry as described above.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The mean magnitude of the secondary currents is in order of 1% of the mean stream 
wise velocity. Maxima of 2% are found near the solid walls and at the free surface (fig. 
6).  

Fig. 2: Secondary currents, v-w vector, linear k-ε model. 

Fig. 3: Secondary currents, v-w vector, non-linear k-ε model. 

Fig. 4: Secondary currents in corner region, v-w 
vector,  non-linear k-ε model. 

Fig. 5: Secondary currents in corner region, v-w 
vector, Nezu and Rodi [17]. 
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Numerical discretization and computational costs 
The linear k-ε closure as well as the non-linear closure are not very sensitive to the 
numerical discretization. Using default schemes (SWASH manual [28]) for time 
integration and space discretization gives stable results for both models. Since the non-
linear terms of the Reynolds stresses are more dispersive than dissipative it enhances 
the numerical stability to choose an upwind scheme for the advection terms, when the 
non-linear closure is used. Using the first order upwind scheme instead of second order 
backward differencing shortens the spin-up time but does not influence the final 
stationary results. Time integration is of the second order using the default leap frog 
technique. 
 

The vertical and transversal resolution is set to    
 

  
 and    

 

  
. Which is sufficient 

to solve for the secondary currents with a length scale    . RANS computations allow 

for a large 
  

  
  ratio.  Stable results are obtained with values up 

  

  
   . In order to 

speed up the computations     was also set to 
 

 
, resulting in the same flow pattern. To 

have a look at the origin of secondary currents the spatial distribution of different terms 
of the streamwise vorticity balance is analyzed. For this purpose a high resolution 

computation is made with    
 

  
 and    

 

  
. 

 

For    
 

  
 and    

 

  
 , a stationary situation was reached after 200 seconds of 

computational time which takes about four hours on one processor. The linear model 
with the same grid resolution converges a little faster. However, the linear model does 
not solve for the secondary currents and the fine grid resolution in transverse direction 
is of no importance in that sense.   
 

Fig. 6: Magnitude secondary currents, percentage of mean primary velocity, non-linear k-ε 
model. 
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4.1.2 Large Eddy Simulation 
 
Since the original SWASH model has not been used before to perform a full 3D Large 
Eddy Simulation, the code has been adapted. This first test case with the adapted model 
consists of a standard open channel flow with homogeneous bed roughness. The aim of 
this test case is to predict the correct mean streamwise velocities and turbulence 
intensities. Model results are compared to the DNS results of Moser, Kim and Mansour 
[12]. Their model set-up consists of a closed channel with no slip conditions at both 
sides the domain. The LES results are compared with half their channel.  
 
Model set-up 
The flow geometry consists of a standard open channel with hydraulic smooth bottom 
conditions (fig. 18). The length and width of the domain are 120 and 8 times the water 
depth respectively. This geometry deviates from the geometry used for the RANS 
computations with the k-ε closure in the sense that no-slip conditions are used at both 
sides of the domain. The no-slip conditions are used to avoid the generation of 
secondary currents at the channel corners. At this stage these are not interesting since 
model results are compared to the DNS results of Moser, Kim and Mansour [12]. 
  
At the inflow boundary a logarithmic velocity profile is imposed. Random white noise 
fluctuations (see Paragraph 2.5) are added to trigger the growth of turbulence 
structures. The white noise fluctuations are 10% of the ensemble averaged velocity and 
are updated every 0.5 seconds. At the outflow boundary the water level is imposed by 
means of a weak reflective boundary. Initial flow velocities were set to zero. 
 
The Reynolds number based on the friction velocity is         and we consider 
subcritical flow. The results are obtained from the moment a turbulence situation has 
been established and are averaged over a period of 300 seconds. 
 
The water depth is divided into 20 layers and the horizontal grid resolution is: 
         . This results in a total number of grid points of                .  

 
The standard Smagoringsky subgrid model is used. The smagorsinky constant is set 
          as suggested by Moin and Kim for open channel flow. Near the bottom     
is corrected by the van Driest damping function.  
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Mean primary velocity and turbulence intensities 
The mean primary velocity shows good agreement with the DNS data except for the 
layers closest to the bottom. Although the used vertical resolution is rather coarse and 
some deviation is expected, results are not satisfactory. Despite the relatively coarse 
vertical grid  resolution used for LES by other authors (van Prooijen [22], van Balen [1]), 
their predictions of the mean velocity is rather good. There is a number of differences 
between the code used by van Prooijen en van Balen and the adapted SWASH model 
that can cause the different results. These numerical issues are discussed at the end of 
this Paragraph.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beside the different codes both computations make use of different boundary 
conditions. These boundary conditions seem to be of large influence on the mean 
velocity profile and the obtained turbulence statistics. Both the DNS  by Moser et. al. 
and the LES by van Prooijen uses periodic boundary conditions at the inflow, outflow 
and side walls. To start up the generation of turbulence structures their initial velocity 
field is disturbed by random white noise fluctuations. The use of periodic boundary 
conditions results after a certain spin-up time in a fully developed turbulence velocity 

Fig. 19: Mean primary velocity, solid line: DNS of 
Moser, Kim and Mansour [12], triangles: LES with 
SWASH. 

Fig. 20: Turbulence intensities, solid line: DNS of 
Moser, Kim and Mansour [12], triangles: LES 
with SWASH. 

Fig. 18: Computational domain for LES with horizontal homogeneous roughness conditions. 
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field at the inflow boundary. The velocity boundary used in the adapted SWASH model 
requires a certain part of the computational domain for turbulence structures to 
develop.  
 
Talstra [30] investigated a shallow mixing layer geometry with a 3D LES and uses a 
comparable grid resolution to the present LES study. He found a large influence on the 
mixing layer development by imposing different velocity boundaries. Correct results are 
obtained when a fully developed turbulence velocity field is imposed. Random white 
noise fluctuations results in an under prediction of the turbulence intensities and mixing 
layer width in the near field. When no fluctuations are added and a stationary velocity is 
used, the mixing layer is absent. It is expected that the influence of upstream 
perturbations is even more present at the uniform channel flow modelled in this thesis 
because of the absence of a mean transverse velocity gradient.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When an undisturbed velocity profile is used, there is no generation of turbulence 
structures and the velocity fluctuations are absent. With imposed fluctuations the 
generation of turbulence is triggered and the statistics of the turbulence intensities are 
presented in figure 20. Although there is some deviation from the DNS data the mean 
and transverse intensities are rather good. The vertical fluctuations however, are 
seriously underestimated. Besides the effects of the used inflow condition this seems to 
be related to some numerical dissipation, introduced by the use of upwind schemes (see 
next section). Near the free surface the vertical fluctuations are rapidly decreasing. This 
is expected since the model accounts for the free surface.  
  
In figure 21 and 22 the mean primary shear stress profile and the primary Reynolds 
shear stress are plotted. These quantities show also significant deviation from the DNS 
data near the bottom. The main reasons for this deviation are, besides the use of non-

Fig. 21: Shear stress profile,  𝑢 𝑤 ̅̅ ̅̅ ̅̅  𝜈
𝜕𝑢

𝜕𝑧
 ,  solid 

line: DNS of Moser, Kim and Mansour [12], 
triangles: LES with SWASH. 

Fig. 22: primary Reynolds shear stress,  𝑢 𝑤 ̅̅ ̅̅ ̅̅ , solid 
line: DNS of Moser, Kim and Mansour [12], 
triangles: LES with SWASH. 
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periodic boundary conditions, the coarse grid resolution and the amount of numerical 
dissipation. These topics are discussed below.   
 
Numerical implementation 
As described in Chapter 3 SWASH is a general purpose numerical tool. It can be used for 
problems where free-surface waves are involved as well as for open channel flows with 
hardly any free surface gradients. Different types of physical problems are dominated by 
different processes and corresponding terms in the governing equations. By 
discretization and integration of the equations there are a lot of options. Usually choices 
have to be made based on a balance between stability and accuracy. The numerical 
treatment of the governing equations is rather problem dependent. Consequently the 
wide range of physical problems SWASH can be used for asks for different discretization 
options.  

Especially for computations using LES, sharp gradients are important since turbulence 
velocity fluctuations are rapidly varying. An important aspect in order to maintain the 
fluctuations is the space discretization of the advection terms. To this extend central 
differencing is most favourable. This numerical scheme introduces no numerical 
dissipation and maintains the velocity gradients. On the other hand it possibly leads to 
spurious oscillations when not enough physical dissipation is involved (turbulence and 
bottom friction are the main sources of physical dissipation). These non-physical 
oscillations can give rise to numerical instability. 

In the table below the most favourable integration and discretization options are listed 
(provided that they are available in SWASH) for the use of LES.  

Space Discretization 

Horizontal Advection terms  Central differences (2nd order) 

Vertical Advection terms Central differences 

Vertical pressure gradient Central differences 

Water depth 2nd order flux-limiter 

Time integration 

Pressure gradient Crank-Nicholson (2nd order) 

Vertical advection terms Crank-Nicholson  
Table 1: preferable numerical discretization 

In this preferable situation all terms are second order accurate in time as well as in 
space except for the subgrid stresses which are second order accurate in space and first 
order accurate in time.  

Unfortunately, this discretization arrangement leads to unstable solutions for the 
homogeneous open channel flow geometry discussed above. The spurious oscillations 
introduced by central discretization of the advection terms are not sufficiently damped 
by bottom friction and subgrid turbulence. The Courant condition (4.1), restricting the 
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time step, was originally set at        but even for        the solution turns out to 
be unstable.   

     (√   √     )√
 

   
 

 

   
 4.1.  

An obvious choice to avoid the spurious oscillations involved with central differencing 
would be the use of upwind schemes for the discretization of the advection terms.  
Upwind schemes introduce numerical dissipation and do not produce spurious 
oscillations, which enhances the stability of the solution. Because the use of central 
differences is of great importance to maintain the turbulence velocity fluctuations, 
other options to add numerical diffusion will be discussed first.   

Numerical dissipation 

There are other options to introduce numerical dissipation, rather than the use of 
upwinding for the advection terms, in order to enhance the stability of the numerical 
solution. Numerical dissipation can be introduced by the: 

 Time integration with respect to the vertical non-hydrostatic pressure gradient; 

 Time integration of the vertical terms in the momentum equations and 

 Discretization of water depth in the velocity points. 

These options are favourable compared to the use of upwind schemes for the advection 
terms. The time integration with respect to the vertical non-hydrostatic pressure 
gradient seems to influence the stability most. Using a first order implicit Euler scheme 
instead of the second order accurate Crank-Nicholson scheme results in far more stable 
results, while turbulence fluctuations are unaffected.  

Time integration of the vertical terms in the momentum equations can be done by the 
implicit Euler or the Crank-Nicholson scheme. For the discretization of the water depth 
first and higher order upwind schemes are available as well as flux-limiter schemes. 
Both integration of the vertical terms and the discretization of the water depth do not 
influence the stability significantly.  

Although physical dissipation is present by means of bottom friction and the turbulence 
subgrid model and some numerical dissipation is added by using the implicit Euler 
scheme for the integration of the non-hydrostatic pressure gradient, the numerical 
solution is not stable. Therefore the use of upwind schemes is discussed next. 

Instead of central differences the advection terms can be discretised using an upwind 
scheme. In this way numerical dissipation is implicitly added. This way of adding 
numerical diffusion is controversial since the effective filter is then very similar to the 
filter imposed by the Smagorinsky subgrid model (Sagout [24]). Even for seventh-order 
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accurate upwind schemes the total numerical dissipation is larger than the dissipation 
imposed by the subgrid model. Increasing the order of the upwind scheme does not 
necessarily increase the accuracy of the solution. Tafti [29] shows that when LES 
computations are carried out on a relatively coarse grid, results becomes worse with 
increasing order of the upwind scheme that have been used. Breuer [3] concluded that 
centred schemes perform best in comparison with schemes with a preferably direction. 
In addition to that he concluded that low numerical dissipation is more important that 
the formal accuracy of a certain scheme.  

Despite the comments above, the effect of upwind schemes on the numerical solution is 
investigated. The first stable results were obtained with a horizontal grid spacing of 
              and use of the second order accurate QUICK scheme for the 
horizontal advection terms. Upwind schemes introduce more diffusion when the grid 
spacing increases. For larger horizontal grid spacing the upwind schemes become too 
dissipative and no turbulence stuctures will develop. No significant difference is found 
when a third order CUI scheme is used.  

For the simulation discussed in the first part of this Paragraph the discretization 
arrangement presented below is used. 

Space Discretization 

Horizontal Advection terms  QUICK upwind scheme (second order) 

Vertical Advection terms Central differences (second order) 

Vertical pressure gradient Central differences 

Water depth 2nd order flux-limiter 

Time integration 

Pressure gradient Implicit Euler (first order) 

Vertical advection terms Crank-Nicholson (second order) 
Table 2: numerical discretization used for LES computations. 

Another option to enhance the stability is to use the fraction step method instead of the 
pressure correction technique for the non-hydrostatic pressure term. Besides the 
additional adaptations that have to be made to the SWASH code the fraction step 
method requires use of the ILU preconditioner to be stable. The ILU preconditioner is 
computational very expensive for parallel computing and use of the much faster ILUD 
conditioner is preferred.  
 

Preconditioning 
Introducing non-hydrostatic pressure to the momentum equations requires a solution of 
the Poisson equation. The Poisson equation is iteratively solved with the linear 
BiCGSTAB solver in conjuction with a preconditioner. The RILU preconditioner is used 
which is a mixture of  ILU and MILU (SWASH user manual). The mix of ILU and MILU is 
controlled by a weighting parameter        (   )          ). It turns out that 
setting     to 1. ( = MILU) improves the rate of convergence the most. For parallel 
computing the RILUD instead of the RILU preconditioner can be used. The first is 
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restricted to the diagonal of the matrix. For parallel runs this restriction reduces the 
number of iterations needed.  

Solving the Poisson equation is an iterative process and a certain error needs to be 
accepted based upon efficiency and accuracy. The stopping criterion is based on the 
reduction of the residual (SWASH manual [28]). The iteration process is stopped when 
the ratio of the second norm of the residual (‖  ‖ ) and the RHS of the initial residual 

(‖ ‖ ) is less than a certain value: 
‖  ‖ 

‖ ‖ 
   . In general, if the accepted error decreases, 

the iteration process becomes more accurate. Unfortunately this requires more 
iteration steps and consequently more computational time. The accepted error is 
heavily problem dependent. For typical nearshore wave applications SWASH is used for 
the default value of        results in a good balance between efficiency and 
accuracy. It turns out that for modelling turbulence fluctuations a significantly smaller 
error is accepted    (    ). When   is set at      the small velocity fluctuations 
imposed at the inflow boundary will be damped. Consequently there will be no growth 
of turbulence structures.  

With respect to the turbulent kinetic energy balance (1.25) the underestimation of the 
wall normal fluctuations can be related to the lack of energy transfer from the axial 
fluctuations to the wall normal fluctuations. The energy transfer is essential for the 
correct prediction of the wall normal fluctuations since the production term of the TKE 
balance is limited to the axial direction. The transfer of energy is related to the pressure-

velocity correlation (
 

  
     

 ̅̅ ̅̅

   
). The incorrect prediction of the turbulence fluctuations 

illustrates the importance of accurately predicting the pressure field.   

 
Computational costs 
A large number of simulations has been carried out to test the implementation of the 
subgrid model, boundary conditions and the use of different numerical discretization 
methods. In addition the total amount of time is limited. For practical reasons it was 
therefore decided that a single simulation has to be completed within a few days. This 
practical restriction limits the maximum numerical resolution that can be accomplished.  

The computations run on a parallel computer cluster, using 24 processors for each 
simulation. Due to the restrictions above, the simulations used for the homogeneous 

channel flow are limited to a  grid resolution of       
 

 
       

 

  
 results in a 

total number of grid points of            . The Courant number was set at 
          .  

This resolution is relatively coarse and is expected to influence the vertical distribution 
of the mean flow properties and the turbulence intensities. Therefore a final run is 

carried out with a vertical resolution of    
 

  
. Unfortunately the solution appears to 

be unstable. The instability is caused by the use of the previously discussed ILUD 
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preconditioner. When the ratio of 
  

  
 increases the matrix becomes less diagonal 

dominant. Since the ILUD preconditioner is restricted to the diagonal of the matrix this 
dominancy is of great importance.  

Alternatively the ILU preconditioner can be used. Compared to ILUD this preconditioner 
needs more iteration steps to meet the same accuracy. Furthermore an iteration step 
with ILU is more computational expensive. Finally, the intended simulation becomes too 
computational expensive.   

As discussed in previous sections, most LES codes make use of periodic boundary 
conditions when simple geometries are modelled. There are a number of advantages 
involved with the use of periodic boundary conditions. From numerical point of view the 
most interesting one is that a Fourier solver can be used instead of the BiCGstab solver 
to solve the pressure Poisson equation. The BiCGstab solver is very time consuming 
compared to a Fourier solver. Since SWASH is a general purpose numerical model that is 
also used for complex geometries the more computational expensive BiCGstab solver is 
implemented. 
 

4.1.3 Comparsion k-ε model and Large Eddy Simulation 
 

In section 4.1.1 and 4.1.2 computational results are presented from the RANS model 
and LES, respectively. In this Section the behavior of both models is compared with 
respect to the flow features as well as the computational costs and robustness. 
 
Flow features 
In the region where solid side walls are of no importance, mean primary velocity profiles 
are represented very well by the RANS model, both with the linear and non-linear k-
epsilon closure. LES, on the other hand, underestimates the mean primary velocity as 
well as the turbulence intensities in the near bottom region.  
In the region close to solid side walls, two counter rotating secondary currents are 
expected. Secondary currents, represented by the non-linear k-ε model, are compared 
to measurements of Nezu and Rodi [17] and show good agreement. The disturbed 
primary velocity distribution as described by Nezu and Nagakawa [16] is also well 
represented. RANS computations with the linear k-ε closure neither show the secondary 
currents nor the disturbed velocity distribution.  
Since the model set-up, used for the LES, consists of no-slip boundary conditions at the 
side walls, no comparison between the LES and the RANS computations can be made in 
the region close to the wall.  
 

Computational costs and resolution  
An important difference between LES and RANS computations is the grid 

schematization. RANS computations allow for a much larger 
  

  
  ratio than LES. For the 

LES computations a maximum value of 
  

  
   is used, where RANS computations give 
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good results with values up to 50. Since the time step is related to the horizontal grid 
spacing by the Courant condition, the time step used for RANS computations can be 
much larger than the time step used for LES. Due to the coarse grid spacing in 
streamwise direction and the relatively large time step, the RANS computations are less 
computational expensive. Where LES runs for this study took at least two days on a 
parallel computer cluster with 20 active nodes, RANS computations were completed in 
four hours, using one single core with one active node. The linear k-ε closure converges 
somewhat faster than the non-linear closure.   
 
Robustness 
LES results are very sensitive to the discretization of the advection terms: central 
differencing give rise spurious oscillations, where upwinding introduces numerical 
dissipation. In contrast to LES (4.1.2), the RANS model is not very sensitive to the 
numerical discretization. Since the RANS equations reach for a stationary flow field, 
instead of the instantaneously changing flow regime of the filtered Navier-Stokes 
equations, this can be expected.  When the non-linear closure is used for the RANS 
computations, it enhances the numerical stability to choose a first order upwind scheme 
for the advection terms. Using the first order upwind scheme instead of second order 
backward differencing shortens the spin-up time but does not influence the final 
stationary results.  
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4.2 Open channel flow with non-homogeneous roughness conditions 
 
In Paragraph 4.1 an open channel flow was investigated with spatially uniform 
roughness conditions. In this section results are presented of an open channel with 
varying roughness conditions. Paragraph 4.2.1 and 4.2.2  show the results of the k-ε 
model and the LES respectively. In both Paragraphs the numerics are discussed as long 
as there are any differences between the non-homogeneous and the homogeneous 
situation.   

 
4.2.1 non-linear k-ε model 
 

In section 4.1.1 the linear and the non-linear k-ε model are used to simulate a 
homogenous open channel flow. Both models are capable of representing the correct 
mean velocity profile when the latter is not disturbed by the effects of turbulence 
anisotropy. When the presence of solid walls gives rise to turbulence anisotropy, the 
linear model fails and is not able to model the secondary currents induced by the 
anisotropy. Since the expected secondary currents involved with non-homogeneous 
roughness conditions are also induced by turbulence anisotropy, the computations were 
exclusively made with the non-linear model.  
 
The model geometry consist of an open channel with hydraulically rough side wall 
conditions. The bottom is in transversal direction divided into a number of smooth and 
rough sections (fig. 23). The smooth and rough bed strips are both of the same size and 
equal to the water depth. At the smooth sections hydraulically smooth conditions are 
imposed. At the rough sections the log law for hydraulically rough conditions is used, 
the Nikuradse roughness height was set to 0.019 m. The results are obtained from the 
stationary situation, when the wall shear stress balances the mean pressure gradient. 
The Reynolds number based on the friction velocity is         and we consider 
subcritical flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 23: Computational domain for RANS computations with non-homogeneous roughness 
conditions. 
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Figure 24 and 25 show the mean velocity distribution computed by the non-linear k-ε 
model as well as the measured distribution by Wang and Cheng [32]. Flow velocities 
near the bed are relatively low at rough sections and increases at the smooth sections 
due to the varying bed shear stress.   
 
 
 
 
 
 
 
 
 
 
 

Fig. 24: Primary velocity distribution, velocity divided by spatially averaged velocity, Muller and 
Studerus [13]. 

Fig. 25: Primary velocity distribution, velocity divided by spatially averaged velocity, non-linear k-ε 
model. 
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The secondary currents in the corner region are slightly stronger compared to the 
currents observed in homogeneous open channel flow. The use of different roughness 
conditions is expected to be responsible for the small difference. At the side wall and 
the bottom part most close to the wall hydraulically rough conditions imposed, whereas 
smooth conditions are imposed for the homogeneous channel computations. Naot and 
Rodi [14] investigated the effects of different roughness conditions on the magnitude of 
the secondary currents. The production of slightly stronger currents is found when 
hydraulically rough conditions are imposed but overall the effect on primary and 
secondary flow is very small.     
 
At a certain distance (    ) the presence of the side wall does not affect the primary 
and secondary flow anymore and the varying bed shear stress becomes important. In 
figure 30 the region in between      and the channel center in showed. The upward 
motion is concentrated at the smooth sections and downward motion is observed at the 
rough sections. This direction of the secondary currents was expected from previous 
measurements and qualitative analytical descriptions by different authors made in the 
past (see Chapter 1). The maximum magnitude of the currents is just above 2% of the 
mean velocity which is in good agreement with the measurements of Wang and Cheng 
[32] (fig. 27). Nezu and Nagakawa [16] measured a slightly higher value of 2.5%.  
 

Fig. 26: Secondary currents on smooth and rough sections, v-w vector, Wang and Cheng [32]. 

Fig. 27: Secondary currents on smooth and rough sections, v-w vector, non-linear k-ε model. 
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Reynolds normal stresses in streamwise (    ̅̅ ̅̅ ̅̅ ) and spanwise direction (    ̅̅ ̅̅ ̅̅ ) are 
compared with measurement results of Muller and Studerus [13]. The concentration of 
the normal stresses above the rough bed section is well represented. The primary shear 
stress shows negative and positive values at the left and right part of the rough bed 
section respectively. The values show good agreement with the measurements. The 
large primary shear stress concentration at the left interface between the rough and 
smooth section is also measured by Muller and Studerus [13]. The strong negative 
values at the right interface do not show up in the measurements. Model simulations by 
Choi et. al [4] with a non-linear k-ε model show a similar concentration of negative shear 
stress at this interface.    
 
 
 
 
 
 
 

Fig. 27: Secondary currents, v-w vector, Wang 
and Cheng [32] 

Fig. 28: Magnitude of secondary currents, 
percentage of mean primary velocity, non-
linear k-ε model 

Fig. 30: Secondary currents, v-w vector, non-
linear k-ε model. Fig. 31: Mean vertical velocity, percentage of 

mean primary velocity, non-linear k-ε model. 
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The heterogeneity of the bed roughness influences the distribution of the primary 
Reynolds shear stress (fig. 34) and the effective friction that is encountered by the flow. 
As expected the shear stress shows large values at the rough section and relative low 
values at the smooth sections. Jarquin (2007) showed that the effective friction due to 
roughness heterogeneity increases with 20% with respect to the averaged value. With 
the non-linear k-ε model an increase of 15% is found.   
 
 
 
 
 
 
 
 
 
 

a) a) 

b) b) 

Fig. 32: dimensionless Reynolds primary normal 

stresses 
𝑢 𝑢 

𝑢 
 , a) measurements by Muller and 

Studerus [13], b) model results by Choi et al. [4] 
and results non-linear k-ε model. 

Fig. 33: dimensionless Reynolds cross plane 

shear stresses 
𝑢 𝑣 

𝑢 
 , a) measurements by Muller 

and Studerus [13], b) model results by Choi et al. 
[4] and results non-linear k-ε model. 

Fig. 34: dimensionless primary Reynolds shear 

stress ( 
𝑢 𝑤 

𝑢 
 ) distribution, non-linear k-ε model. 
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As discussed in the first Chapter the observed secondary currents involved with 
spanwise varying bottom shear stress are secondary currents of Prandtl’s second kind. 
Secondary currents of Prandtl’s second kind are driven by the anisotropy of turbulence. 
The streamwise vorticity balance covers the non-homogeneity and anisotropy of the 
turbulent stresses and is often used to show the origin of these currents.    
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Term A is the secondary current generation term and is order of magnitude larger than 
term B. Figure 35 shows the strong positive and negative levels of this term at the 
interface between the smooth and rough sections. The large absolute values of this 
term at the interfaces suggest that the secondary currents originate at the interface 
between a smooth and rough section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Numerical discretization and computational costs 
As described in section 4.1.1 the solution of the non-linear k-ε model is not very 
sensitive to the numerical discretization. The same discretization and integration 
methods are used as in the homogeneous case. The Courant number was set at 
          . A stationary flow was reached after 200 seconds. The total 
computational time for one single simulation was four hours.   
 
 
 
 
 
 
 

Fig. 35: Distribution of generation term of streamwise vorticity 
𝜕 

𝜕𝑦𝜕𝑧
(𝑣 𝑣 ̅̅ ̅̅ ̅̅  𝑤 𝑤 ̅̅ ̅̅ ̅̅ ̅)

𝐻 

𝑢 
 , non-

linear k-ε model 
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4.2.2 Large Eddy Simulation 
 
In section 4.1.2 the LES results of a homogeneous channel are presented. Deviations 
from DNS data were found especially in the region close to the bottom. The mean 
primary velocity as well as the turbulence intensities is seriously enderestimated. 
Reasons for the underestimation are a combination of the boundary conditions that are 
used, the amount of numerical dissipation that is involved and the maximum grid 
resolution that can be used with respect to the available amount of time. These issues 
have been addressed in section 4.1.2.  
 
In this Paragraph the LES results are presented of an open channel flow with non-
homogeneous roughness conditions. Following to the results of the RANS computation 
presented in the previous section and measurements by other authors, turbulence 
driven secondary currents are expected. These secondary currents have to be generated 
by the turbulence anisotropy near the bottom. Since the model set-up that was used for 
the LES of homogeneous channel flow does not show satisfactory results near the 
bottom, the use of this set up for the non-homogenous channel flow is rather arbitrary. 
However, due to limited amount of time that was availiable, no further sourcecode 
modifications were made.  
 
Model set-up 
The channel geometry is comparable to the geometry used for the LES with 
homogenious roughness conditions. The length and width of the domain are 120 and 8 
times the water depth respectively. The bottom is in transversal direction divided into a 
number of smooth and rough sections (fig. 36). The smooth and rough bed strips are 
both of the same size and equal to the water depth. At rough sections, the Nikuradse 
roughness height was set to 0.019 m. Roughness conditions are imposed by the 
Schumann wall model (see Appendix B).   
 
At the inflow boundary a logarithmic velocity profile is used with superimposed random 
white noise fluctuations. At the outflow boundary the water level is prescribed by 
means of a weak reflective boundary. Initial flow velocities were set to zero. 
 
The water depth is divided into 16 layers and the horizontal grid resolution in 

streamwise and transverse direction is, respectively:    
 

 
        

 

  
 . This results 

in a total number of grid points of                .  
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Fig. 36: Computational domain for LES with horizontal non-homogeneous roughness conditions. 

The primary velocity distribution is showed in figure 37. Close to the bottom the 
velocities are relatively small at the rough sections compared to the smooth sections. 
This is expected since the bed shear stress acting on the near bottom layer is 
significantly higher at rough sections. However, due to the momentum exchange by the 
expected secondary currents the primary velocity near the free surface needs to be 
higher above the rough sections. The LES results do not represent this primary velocity 
distribution correctly. Some weak circulations are present but the expected currents 
related to roughness heterogeneity are absent (fig. 38).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 37: Primary velocity distribution, velocity divided by spatially averaged velocity, LES. 

Fig. 38: Secondary currents, v-w vector, LES. 
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As concluded from laboratory experiments by Vermaas [31], the development of 
secondary currents can be scaled to the water depth. Within 80 times the water depth, 
the secondary currents will develop to full strength. Although the length of the model 
domain is sufficient in that sense (120 times the water depth), secondary currents were 
not generated. Since the secondary currents are generated by the strong turbulence 
anisotropy near the bottom, turbulence intensities need to be very well represented in 
that region. The absence of the circulations is related to the weak performance of the 
LES code with respect to tubulence statistics near the bottom.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As discussed in previous sections secondary currents are generated in the near wall 
region. Since the used computational grid is rather coarse the near wall dynamics are 
not solved on the computational grid but modelled by a Schumann-Grötzbach wall 
model [24]. The wall model represents the instantaneous wall shear stress based on the 
logarithmic velocity law (Section 2.5). The use of the logarithmic wall stems from the 
assumption of a horizontal homogeneous flow (Section 1.2). Obviously, an error is 
introduced by applying the velocity law to geometries with horizontaly varying bed 
roughness. Although the logartitmic law is, strictly spoken, not valid for horizontal 
heterogeneous flow, it is not expected that the use of the Schumann-Grotzbach wall 
model is the main cause for the absence of secondary currents.  
 
The performance of the LES code (near the bottom) depends on to the of use of non- 
periodic boundary conditions, the coarse grid resolution, the size of the computational 
domain and the amount of numerical dissipation that is involved. These issues are 
comparable for homogeneous and non-homogeneous channel flow and were discussed 
in section 4.1.2.  
 
 

Fig. 39: Turbulence intensities at smooth 
section compared to DNS results of Moser, Kim 
and Mansour [12] of horizontal homogeneous 
channel flow. Solid line: DNS, triangles: LES 
results with SWASH. 

 

Fig. 40: Turbulence intensities at rough section 
compared to DNS results of Moser, Kim and 
Mansour [12] of horizontal homogeneous 
channel flow. Solid line: DNS, triangles: LES 
results with SWASH. 
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4.2.3 Comparison k-ε model and Large Eddy Simulation 
 

In section 4.2.1 and 4.2.2 results are presented from the RANS model and LES, 
respectively. In this Section the behavior of both models is compared with respect to the 
flow features as well as the computational costs and robustness. 
 
Flow features 
The model geometry of the non-homogeneous bed case consists of an open channel 
flow with a number of parallel smooth to rough bed strips and hydraulically rough side 
wall conditions. Since the linear k-ε closure does not solve for turbulence anisotropy, 
simulations were restricted to the RANS model with the non-linear closure and LES. A 
disturbed primary velocity field and secondary currents are expected above the smooth 
to rough bed sections. In the corner regions, the flow is expected to behave similar to 
the homogeneous flow case (Section 4.1). 
 
The RANS model with the non-linear k-ε closure represents the mean primary velocity 
distribution very well. Secondary currents show also good agreement with 
measurements by Wang and Cheng [32] and Muller and Studerus [13] and model 
simulations by Choi et al. [4]. Upward flow was concentrated at smooth section and 
downward flow at rough sections. The maximum magnitude of the currents is just above 
2% of the mean velocity. Reynolds normal stresses and cross plane shear stresses are 
compared to model simulations by Choi et al. [4] and are well represented. In contrast 
to the RANS model, LES do neither show the correct primary velocity distribution, nor 
the expected secondary currents. The weak performance of the LES code is related to 
the amount of numerical dissipation, the not fully developed velocity field imposed at 
inflow condition and the coarse grid resolution.          
 
Computational costs and Robustness 
LES is relatively computational expensive compared to the RANS model. LES results are 
also very sensitive to the numerical discretization of the momentum equations. 
However, there a no differences between the homogeneous case discussed in Chapter 
4.1 and the non-homogeneous case presented in this Chapter. For a comparison 
between the RANS model and LES with respect to the computational costs, grid 
resolution and robustness, see Section 4.1.3.    
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5. Conclusions and recommendations  
 

The objective of this study is to model open channel flow, involving non-homogeneous 
roughness conditions, with the SWASH wave-flow model for free surface flow. 
Turbulence anisotropy plays a major role in non-homogenous channel flow, where 
turbulence induced secondary currents influencing the primary velocity distribution. The 
SWASH wave-flow model, mainly used to predict the transformation of surface waves 
from offshore to the beach, has been successfully adapted in order to model turbulence 
anisotropy. Simulations of open channel flows have been made in which secondary 
circulations driven by turbulence anisotropy are very well represented. With the 
implementation of the non-linear k-ε turbulence closure the range of applications 
SWASH can be used for, is extended with flow geometries where turbulence anisotropy 
cannot be neglected.    

Before more detailed results on modeling turbulence anisotropy are presented, the two 
main research questions of this study are discussed. The first question relates to 
turbulence modelling: 
 

 In which way does SWASH need to be changed or extended, in order to model 
the anisotropy of turbulence?  

 
SWASH is a non-hydrostatic wave-flow model and open channel flows can be modelled 
with this code by solving the RANS equations in conjunction with a standard k-ε closure. 
However, the standard k-ε closure [11] does not take turbulence anisotropy into 
account. In the present study the SWASH model has been extended with the non-linear 
k-ε closure proposed by Speziale [25]. The non-linear closure is, applicable to flows 
where turbulence anisotropy influences the mean flow characteristics. In Section 5.1 
conclusions on RANS modelling are drawn. 
 
Since the anisotropic character of turbulence is related to the macro scales, LES can be 
used to model the turbulence driven secondary currents as well. In order to perform a 
LES with the SWASH model, a 3D subgrid model is implemented. Although the LES 
technique is in principle capable of solving turbulence induced secondary currents, no 
reliable results are obtained from the present LES study. In Section 5.2 conclusions on 
LES are presented. Section 5.3 consists of a comparison between RANS modelling and 
LES.    
 
The second main question relates to the generation mechanism of secondary currents:   

 How does turbulence anisotropy relate to the generation of secondary currents, 
in open channel flows involving heterogeneous roughness conditions?   

 
Both secondary currents occurring at channel corners and at smooth to rough bed 
transitions are induced by anisotropy and non-homogeneity of turbulence. It is from the 
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isotropic character of the linear k-ε closure that RANS simulations using this turbulence 
closure do not show any secondary currents. Results of computations with the non-
linear closure, on the other hand, show anisotropic and non-homogenous distributions 
of the Reynolds normal and shear stresses. Consequently, secondary currents are 
generated. To analyze the driving mechanism of the secondary currents at smooth to 
rough bed transitions, the streamwise vorticity balance is examined. Secondary currents 
seem to originate at the transition between smooth and rough bottom sections where 
the anisotropy of Reynolds normal stresses is dominant.  
 
5.1 Conclusions on RANS modelling 
 

RANS simulations are made with both the linear and the non-linear k-ε closure. The 
closure constants for the non-linear model were set to the suggested values by Speziale 
[25] for all model runs.  

Usually, turbulence anisotropy is concentrated at the channel corners. Turbulence 
driven secondary currents (Prandtl’s second kind) are generated and influence the mean 
primary velocity distribution in the corner region. The two counter rotating secondary 
currents in the corner region, as well as the primary velocity dip, described by Nezu and 
Nagakawa [15], are very well represented by the SWASH model with the non-linear k-ε 
closure. As expected, the standard linear closure represents neither the secondary 
currents, nor the correct primary velocity distribution. 

In addition to the horizontal homogenous flow, an open channel flow was calculated 
with parallel smooth to rough bed strips and hydraulically rough side walls. 
Computational results of the SWASH model with the non-linear closure show good 
agreement with measurement results of Muller and Studerus [13], Nezu and Rodi [17] 
and Wang and Cheng [32]. Secondary currents with a magnitude of 2% of the mean 
primary velocity are generated. Upward flow was concentrated at smooth sections and 
downward flow at rough sections. Also Reynolds primary normal stresses and spanwise 
shear stresses distributions show good agreement to measurement results. 

 
5.2 Conclusions on Large Eddy Simulation 
 

In order to perform a LES with the SWASH model, the standard Smagorinsky subgrid 
model, in full three dimensions, is implemented. Since the used computational grid is 
rather coarse, the Schumann-Grötzbach wall model is implemented to model the 
instantaneous bed shear stress.  

LES results for horizontal uniform flow are validated with DNS data of Moser, Kim and 
Mansour [12]. Especially near the bed, the LES results deviate from the DNS data. The 
mean velocity as well as the transverse and vertical turbulence intensities is seriously 
underestimated. The deviation from the DNS data appears to be related to the use of 
non-periodic boundary conditions, the coarse grid resolution, the size of the 
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computational domain and the amount of numerical dissipation. These issues are briefly 
discussed below. 

For the present LES, non-periodic boundary conditions are used since periodic 
boundaries are at the moment not implemented in SWASH. At the inflow boundary a 
logarithmic velocity profile is used with superimposed random white noise fluctuations. 
At the outflow boundary the water level is prescribed by means of a weak reflective 
boundary. Since the computational domain is limited due to the available amount of 
computational time, this set of boundary conditions limits the growth of a well-
developed turbulence velocity field.    

Numerical dissipation is implicitly added by the use of upwind schemes for the 
discretization of the advection terms. The relatively coarse resolution enhances this 
amount of numerical dissipation. Central discretization of the advection terms is 
preferable for LES and most often used in combination with the Adams-Bashfort 
multistep method for time integration. However, the leap frog scheme for time 
integration, which is used by SWASH, turns out to be unstable in combination with 
central space discretization of the advection terms. 

LES results deviate from DNS data for horizontal uniform open channel flow in the 
region close to the bottom. Since it is the bottom region where secondary currents are 
generated, the use of the present LES code for problems involving heterogeneous 
roughness is uncertain. In contrast to the RANS computations, no reliable results with 
respect to the generation of turbulence driven secondary currents are obtained from 
the present LES.   

 

5.3 Comparison between RANS modelling and Large Eddy Simulation 
 

For the horizontal homogeneous case, the mean primary velocity profiles are 
represented very well by the RANS model, both with the linear and non-linear k-ε 
closure. LES, on the other hand, underestimates the mean primary velocity as well as 
the turbulence intensities in the near bottom region.   
 
Simulations of the non-homogeneous test case were restricted to the RANS model with 
the non-linear closure and LES. The RANS model with the non-linear k-ε closure 
represents both the disturbed mean primary velocity distribution and the secondary 
currents very well. Reynolds normal stresses and cross plane shear stresses are 
compared to model simulations by Choi et al. [4] and show also good agreement. In 
contrast to the RANS model, LES do neither show the correct primary velocity 
distribution, nor the expected secondary currents. 
 
An important difference between LES and RANS computations is the grid 

schematization. RANS computations allow for a much larger 
  

  
  ratio than LES. For the 

LES computations a maximum value of 
  

  
   is used, where RANS computations give 
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good results with values up to 50. Consequently, RANS computations are less 
computational expensive.  
 
LES results are very sensitive to the discretization of the advection terms: central 
differencing give rise spurious oscillations, where upwinding introduces numerical 
dissipation. In contrast to LES, the RANS model is not very sensitive to the numerical 
discretization.  
 

The RANS model with the non-linear k-ε closure show good results with respect to the 
mean velocity as well as the Reynolds shear and normal stresses distribution. Although 
there are a number of closure constants involved, additional tuning of these coefficients 
was not necessary for this study: both the homogenous and non-homogenous test case 
were simulated successfully using the standard values proposed by Speziale [25]. With 
its low computational costs and robustness, the non-linear k-ε model appears to be a 
useful extension to the SWASH wave-flow model.  
 

5.4 Recommendations 
 

During this study a number of questions arise and some of them are left unanswered. In 
this Section further research requirements are listed. Open channel flows were 
successfully simulated with the non-linear k-ε model and the first recommendation is 
related to validation of this k-ε model with other test cases. The other 
recommendations are related to LES: before the SWASH wave-flow can be used to run a 
successful 3D LES, further investigation on the discretization methods is needed and 
additional adaptations to the code have to be made.  

 Validation of non-linear k-ε model with other test cases. 

The results of the non-linear k-ε model for open channel flow with heterogeneous 
roughness conditions show good agreement with data provided by several laboratory 
experiments. It would be interesting to show its behavior in other flow geometries. For 
instance, compound channel flows of different flood plain depth or flows over sand 
ridges.  

 Investigate the use of upwind schemes for LES. 

It was not expected that space discretization and time integration of the filtered 
momentum equations are of such a great importance with respect to LES. Where most 
LES codes use central space discretization for the advection terms, the adapted SWASH 
model uses 2nd order accurate upwind schemes for stability reasons. The use of upwind 
schemes is controversial since the effective filter is then very similar to the filter 
imposed by the Smagorinsky subgrid model (Sagout [24]). The numerical dissipation is 
expected to influence the turbulence intensities significantly.  
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 Implementation of periodic boundary conditions in the SWASH model 

The use of non-periodic boundary conditions requires prescription of a (disturbed) 
velocity profile at the inflow boundary. Since it takes some time for a turbulent flow 
field to develop, a relatively large computational domain is needed in this case. When 
periodic boundary conditions are used the inflow conditions are better and 
consequently, the computational domain can be significantly smaller. 

 Implementation of Fourier solver in the SWASH model. 

In addition to the previous recommendation, the use of a Fourier solver for the Poisson 
problem is recommended. A Fourier solver is relatively fast compared to the time 
consuming BiCGStab solver. Since a Fourier solver can be used in conjunction with 
periodic boundary conditions only, these conditions need to be implemented first. 

 Take non-equidistant grid spacing into account by discretization of the subgrid 
model.  

LES computations were carried out using an equidistant grid in all three directions. In 
vertical direction however, it is likely to have a more fine resolution in the region close 
to the bottom. The discretization of the subgrid model needs to take the non-
equidistance into account when velocity derivatives are computed.   
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Notation 
 

Greek symbols 
 
   Kronecker delta 
    time step 
    grid spacing in primary direction 
    grid spacing in transverse direction 
    grid spacing in vertical direction 
   dissipation of turbulent kinetic energy 
   permutation tensor 
   surface elevation 
   Kolmogorov length scale 
   von Karman constant 
   kinematic viscosity 
      subgrid viscosity 
    eddy viscosity 
   density 
    reference density 
    closure constant for standard k-ε model 
    wall shear stress 
    primary shear stress 
   vorticity 
     rotation rate tensor 

 
Roman symbols 
 
    closure constant for k-ε model (Nisizima) 
     closure constant for k-ε model (Speziale) 
    Smagorinsky constant 
   depth 
   Turbulent Kinetic Energy (TKE) 
   gravity 
   turbulent kinetic energy 
    Nikuradse roughness height 
   non-hydrostatic pressure 
   pressure 
    Reynolds number based on mean primary velocity and water depth. 
     Reynolds number based on friction velocity and water depth. 
     strain rate tensor 

   primary velocity 
    velocity in direction   . 
    friction velocity 
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   transverse velocity 
   vertical velocity 
   primary coordinate 
    coordinate in direction i. 
   transverse coordinate 
   vertical coordinate 
 
Operators 
 
〈 〉  ensemble averaging  
 ̅  reynolds averaging  
    fluctuation stemming from Reynolds or LES decomposition 
 
The Einstein summation convention holds for roman symbols. Greek symbols are used 
for noncontracted subscripts. 
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Appendices 
 

The original SWASH sourcecode is adapted and extended to perform RANS 
computations with the non-linear k-ε closure and to perform LES. The original code can 
be downloaded from http://swash.sourceforge.net/. 

Appendix A consists of the modules that are added for the RANS computations. 
Modules that are needed to run LES are supplemented in Appendix B.  
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A. SWASH subroutines for RANS computations with the non-linear k-ε closure  
 
In the new subroutine SwashKepsNonLin the Reynolds stress tensor is computed. The original module 
SwashKepsMod2DH is still needed to solve the transport equations for k and epsilon. 
 

 

subroutine SwashKepsNonLin 

! 

!   --|-----------------------------------------------------------|-- 

!     | Delft University of Technology                            | 

!     | Faculty of Civil Engineering                              | 

!     | Environmental Fluid Mechanics Section                     | 

!     | P.O. Box 5048, 2600 GA  Delft, The Netherlands            | 

!     |                                                           | 

!     | Programmers: The SWASH team                               | 

!   --|-----------------------------------------------------------|-- 

! 

! 

!     SWASH (Simulating WAves till SHore); a non-hydrostatic wave-flow model 

!     Copyright (C) 2010-2011  Delft University of Technology 

! 

!     This program is free software; you can redistribute it and/or 

!     modify it under the terms of the GNU General Public License as 

!     published by the Free Software Foundation; either version 2 of 

!     the License, or (at your option) any later version. 

! 

!     This program is distributed in the hope that it will be useful, 

!     but WITHOUT ANY WARRANTY; without even the implied warranty of 

!     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

!     GNU General Public License for more details. 

! 

!     A copy of the GNU General Public License is available at 

!     http://www.gnu.org/copyleft/gpl.html#SEC3 

!     or by writing to the Free Software Foundation, Inc., 

!     59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 

! 

! 

!   Authors 

! 

!    1.00: Tom Bogaard 

! 

!   Updates 

! 

!    1.00, January 2012: New subroutine 

! 

!   Purpose 

! 

!   Calculates reynolds stresses with non-linear k-epsilon model 

! 

!   Method 

! 

!   Modules used 

! 

    use ocpcomm4 

    use SwashCommdata3 

    use SwashFlowdata 

    use m_genarr 

    use m_parall 

! 

    implicit none 

! 

!   Parameter variables 

! 

    real, parameter :: c1  = 0.4536  ! closure constant for non-lin k-eps model 

    real, parameter :: c2  = 0.3024  ! other closure constant for non-lin k-eps model 

    real, parameter :: c3  = -0.1512 ! other closure constant for non-lin k-eps model 

    real, parameter :: cmu = 0.09    ! other closure constant for standard k-eps model 

! 

!   Local variables 
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! 

    integer, save                      :: ient = 0    ! number of entries in this subroutine 

    integer                            :: m           ! loop counter in x-direction 

    integer                            :: n           ! loop counter in y direction 

    integer                            :: k           ! loop counter over vertical layers 

    integer                            :: kk          ! loop counter over vertical layers (minimal value = 1) 

    integer                            :: mu          ! index of point m+1 

    integer                            :: md          ! index of point m-1 

    integer                            :: mdd         ! index of point m-2 

    integer                            :: muu         ! index of point m+2 

    integer                            :: ndd         ! index of point n-2 

    integer                            :: nu          ! index of point n+1 

    integer                            :: nuu         ! index of point n+2 

    integer                            :: nd          ! index of point n-1 

    integer                            :: kd          ! index of layer k-1 

    integer                            :: ku          ! index of layer k+1 

    integer                            :: kdd         ! index of layer k-2 

    integer                            :: kuu         ! index of layer k+2 

    integer                            :: kwd         ! index of layer k-1 for w-velocity 

    integer                            :: kwu         ! index of layer k+1 for w-velocity 

    integer                            :: kwdd        ! index of layer k-2 for w-velocity 

    integer                            :: kwuu        ! index of layer k+2 for w-velocity 

    ! 

    integer                            :: nm          ! pointer to m   ,n 

    integer                            :: num         ! pointer to m   ,n+1 

    integer                            :: ndm         ! pointer to m   ,n-1 

    integer                            :: nmu         ! pointer to m+1 ,n 

    integer                            :: nmd         ! pointer to m-1 ,n 

    integer                            :: numd        ! pointer to m-1 ,n+1 

    integer                            :: numu        ! pointer to m+1 ,n+1 

    integer                            :: ndmd        ! pointer to m+1 ,n-1 

    integer                            :: ndmu        ! pointer to m-1 ,n+1 

    integer                            :: nddm        ! pointer to m   ,n-2 

    integer                            :: nddmu       ! pointer to m+1 ,n-2 

    integer                            :: nmdd        ! pointer to m-2 ,n 

    integer                            :: numdd       ! pointer to m-2 ,n+1 

    integer                            :: nmuu        ! pointer to m+2 ,n 

    integer                            :: ndmuu       ! pointer to m+2 ,n-1 

    integer                            :: nuum        ! pointer to m   ,n+2 

    integer                            :: nuumd       ! pointer to m-1 ,n+2 

    ! 

    integer                            :: nlm         ! pointer to m+2 ,n 

    integer                            :: nlum        ! pointer to m+2 ,n-1 

    integer                            :: nfm         ! pointer to m   ,n+2 

    integer                            :: nfum        ! pointer to m-1 ,n+2 

    ! 

    real                               :: dudxu       ! velocity gradient in upward point 

    real                               :: dudyu       ! velocity gradient in upward point 

    real                               :: dudzu       ! velocity gradient in upward point 

    real                               :: dvdxu       ! velocity gradient in upward point 

    real                               :: dvdyu       ! velocity gradient in upward point 

    real                               :: dvdzu       ! velocity gradient in upward point 

    real                               :: dwdxu       ! velocity gradient in upward point 

    real                               :: dwdyu       ! velocity gradient in upward point 

    real                               :: dwdzu       ! velocity gradient in upward point 

    real                               :: dudxd       ! velocity gradient in downward point 

    real                               :: dudyd       ! velocity gradient in downward point 

    real                               :: dudzd       ! velocity gradient in downward point 

    real                               :: dvdxd       ! velocity gradient in downward point 

    real                               :: dvdyd       ! velocity gradient in downward point 

    real                               :: dvdzd       ! velocity gradient in downward point 

    real                               :: dwdxd       ! velocity gradient in downward point 

    real                               :: dwdyd       ! velocity gradient in downward point 

    real                               :: dwdzd       ! velocity gradient in downward point 

    ! 

    real                               :: sxxu        ! stress tensor in upward point 

    real                               :: sxyu        ! stress tensor in upward point 

    real                               :: sxzu        ! stress tensor in upward point 

    real                               :: sxxd        ! stress tensor in downward point 

    real                               :: sxyd        ! stress tensor in downward point 

    real                               :: sxzd        ! stress tensor in downward point 
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    real                               :: s1xxu       ! stress tensor in upward point 

    real                               :: s1xyu       ! stress tensor in upward point 

    real                               :: s1xzu       ! stress tensor in upward point 

    real                               :: s1xxd       ! stress tensor in downward point 

    real                               :: s1xyd       ! stress tensor in downward point 

    real                               :: s1xzd       ! stress tensor in downward point 

    real                               :: s2xxu       ! stress tensor in upward point 

    real                               :: s2xyu       ! stress tensor in upward point 

    real                               :: s2xzu       ! stress tensor in upward point 

    real                               :: s2xxd       ! stress tensor in downward point 

    real                               :: s2xyd       ! stress tensor in downward point 

    real                               :: s2xzd       ! stress tensor in downward point 

    real                               :: s3xxu       ! stress tensor in upward point 

    real                               :: s3xyu       ! stress tensor in upward point 

    real                               :: s3xzu       ! stress tensor in upward point 

    real                               :: s3xxd       ! stress tensor in downward point 

    real                               :: s3xyd       ! stress tensor in downward point 

    real                               :: s3xzd       ! stress tensor in downward point 

    ! 

    real                               :: syxu        ! stress tensor in upward point 

    real                               :: syyu        ! stress tensor in upward point 

    real                               :: syzu        ! stress tensor in upward point 

    real                               :: syxd        ! stress tensor in downward point 

    real                               :: syyd        ! stress tensor in downward point 

    real                               :: syzd        ! stress tensor in downward point 

    real                               :: s1yxu       ! stress tensor in upward point 

    real                               :: s1yyu       ! stress tensor in upward point 

    real                               :: s1yzu       ! stress tensor in upward point 

    real                               :: s1yxd       ! stress tensor in downward point 

    real                               :: s1yyd       ! stress tensor in downward point 

    real                               :: s1yzd       ! stress tensor in downward point 

    real                               :: s2yxu       ! stress tensor in upward point 

    real                               :: s2yyu       ! stress tensor in upward point 

    real                               :: s2yzu       ! stress tensor in upward point 

    real                               :: s2yxd       ! stress tensor in downward point 

    real                               :: s2yyd       ! stress tensor in downward point 

    real                               :: s2yzd       ! stress tensor in downward point 

    real                               :: s3yxu       ! stress tensor in upward point 

    real                               :: s3yyu       ! stress tensor in upward point 

    real                               :: s3yzu       ! stress tensor in upward point 

    real                               :: s3yxd       ! stress tensor in downward point 

    real                               :: s3yyd       ! stress tensor in downward point 

    real                               :: s3yzd       ! stress tensor in downward point 

    ! 

    real                               :: szxu        ! stress tensor in upward point 

    real                               :: szyu        ! stress tensor in upward point 

    real                               :: szzu        ! stress tensor in upward point 

    real                               :: szxd        ! stress tensor in downward point 

    real                               :: szyd        ! stress tensor in downward point 

    real                               :: szzd        ! stress tensor in downward point 

    real                               :: s1zxu       ! stress tensor in upward point 

    real                               :: s1zyu       ! stress tensor in upward point 

    real                               :: s1zzu       ! stress tensor in upward point 

    real                               :: s1zxd       ! stress tensor in downward point 

    real                               :: s1zyd       ! stress tensor in downward point 

    real                               :: s1zzd       ! stress tensor in downward point 

    real                               :: s2zxu       ! stress tensor in upward point 

    real                               :: s2zyu       ! stress tensor in upward point 

    real                               :: s2zzu       ! stress tensor in upward point 

    real                               :: s2zxd       ! stress tensor in downward point 

    real                               :: s2zyd       ! stress tensor in downward point 

    real                               :: s2zzd       ! stress tensor in downward point 

    real                               :: s3zxu       ! stress tensor in upward point 

    real                               :: s3zyu       ! stress tensor in upward point 

    real                               :: s3zzu       ! stress tensor in upward point 

    real                               :: s3zxd       ! stress tensor in downward point 

    real                               :: s3zyd       ! stress tensor in downward point 

    real                               :: s3zzd       ! stress tensor in downward point 

    ! 

    real                               :: kepsku      ! TKE in upward point 

    real                               :: kepskd      ! TKE in downward point 
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    real                               :: kepseu      ! Dissipation in upward point 

    real                               :: kepsed      ! Dissipation in downward point 

    real                               :: visceu      ! eddy viscosity in upward point 

    real                               :: visced      ! eddy viscosity in downward point 

!    

!   Structure 

! 

!   Description of the pseudo code 

! 

!   Source text 

! 

    if (ltrace) call strace (ient,'SwashKepsNonLin') 

! 

    do m = mf, ml 

       ! 

       nfm  = kgrpnt(m,nf ) 

       nfum = kgrpnt(m,nfu) 

       nlm  = kgrpnt(m,nl ) 

       nlum = kgrpnt(m,nlu) 

       ! 

    enddo 

! 

! u-momemtun equation 

! 

       do k = 1, kmax 

          ! 

          do n = nfu, nl  

             ! 

             do m = mf+1, ml-1 

                ! 

                md    = m - 1 

                mu    = m + 1 

                nd    = n - 1 

                nu    = n + 1 

                ndd   = n - 2 

                muu   = m + 2 

                ! 

                if ( n == nfu ) ndd = nd 

                ! 

                nm    = kgrpnt(m ,n ) 

                nmd   = kgrpnt(md,n ) 

                nmu   = kgrpnt(mu,n ) 

                ndm   = kgrpnt(m ,nd) 

                num   = kgrpnt(m ,nu) 

                ndmd  = kgrpnt(md,nd) 

                ndmu  = kgrpnt(mu,nd) 

                numd  = kgrpnt(md,nu) 

                numu  = kgrpnt(mu,nu) 

                nddm  = kgrpnt(m,ndd) 

                nddmu = kgrpnt(mu,ndd) 

                nmuu  = kgrpnt(muu,n) 

                ndmuu = kgrpnt(muu,nd) 

                ! 

                kd  = max(k-1,1   ) 

                kdd = max(k-2,1   ) 

                ku  = min(k+1,kmax) 

                kuu = min(k+2,kmax) 

                kwd  = max(k-1,0   ) 

                kwdd = max(k-2,0   ) 

                kwu  = min(k+1,kmax) 

                kwuu = min(k+2,kmax) 

                ! 

                ! -u'u' / dx 

                ! 

                ! compose parts of reysxxu 

                ! 

                if ( m == ml-1) nmuu  = nmu 

                if ( m == ml-1) ndmuu = ndmu 

                ! 

                dudxu = ( u0(nmu,k) - u0(nm,k) ) / ( 0.5 * ( gvv(ndmu) + gvv(nmu) ) ) 

                dudyu = ( 0.25 * ( u0(numu,k) + u0(num,k) + u0(nmu,k) + u0(nm,k) ) &  
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                          - 0.25 * ( u0(nmu,k) + u0(nm,k) + u0(ndmu,k) + u0(ndm,k) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(nmu) ) )   

                dudzu = ( 0.25 * ( u0(nm,k) + u0(nmu,k) + u0(nm,kd) + u0(nmu,kd) ) & 

                          - 0.25 * ( u0(nm,k) + u0(nmu,k) + u0(nm,ku) + u0(nmu,ku) ) ) / hks(nmu,k) 

                ! 

                dvdxu = ( 0.25 * ( v0(nmuu,k) + v0(nmu,k) + v0(ndmuu,k) + v0(ndmu,k) ) & 

                          - 0.25 * ( v0(nmu,k) + v0(ndmu,k) + v0(nm,k) + v0(ndm,k) ) ) & 

                          / ( 0.5 * ( gvv(ndmu) + gvv(nmu) ) )  

                dvdyu = ( v0(nmu,k) - v0(ndmu,k) ) / ( 0.5 * ( guu(nm) + guu(nmu) ) ) 

                dvdzu = ( 0.25 * ( v0(nmu,k) + v0(ndmu,k) + v0(nmu,kd) + v0(ndmu,kd) ) & 

                          - 0.25 * ( v0(nmu,k) + v0(ndmu,k) + v0(nmu,ku) + v0(ndmu,ku) ) ) / hks(nmu,k) 

                ! 

                dwdxu = ( 0.25 * ( w0(nmuu,k) + w0(nmu,k) + w0(nmuu,k-1) + w0(nmu,k-1) ) & 

                          - 0.25 * ( w0(nmu,k) + w0(nm,k) + w0(nmu,k-1) + w0(nm,k-1) ) ) & 

                          / ( 0.5 * ( gvv(ndmu) + gvv(nmu) ) )  

                dwdyu = ( 0.25 * ( w0(nmu,k) + w0(numu,k) + w0(nmu,k-1) + w0(numu,k-1) ) & 

                          - 0.25 * ( w0(ndmu,k) + w0(nmu,k) + w0(ndmu,k-1) + w0(nmu,k-1) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(nmu) ) )   

                dwdzu = ( w0(nmu,k-1) - w0(nmu,k) ) / hks(nmu,k) 

                ! 

                sxxu  = dudxu + dudxu 

                ! 

                s1xxu = ( dudxu * dudxu ) + ( dudyu * dudyu ) + ( dudzu * dudzu ) 

                s1yyu = ( dvdxu * dvdxu ) + ( dvdyu * dvdyu ) + ( dvdzu * dvdzu ) 

                s1zzu = ( dwdxu * dwdxu ) + ( dwdyu * dwdyu ) + ( dwdzu * dwdzu ) 

                ! 

                s2xxu = 0.5 * ( ( dudxu * dudxu + dudxu * dudxu ) + ( dudyu * dvdxu + dudyu * dvdxu ) & 

                            + ( dudzu * dwdxu + dudzu * dwdxu ) ) 

                s2yyu = 0.5 * ( ( dvdxu * dudyu + dvdxu * dudyu ) + ( dvdyu * dvdyu + dvdyu * dvdyu ) & 

                            + ( dvdzu * dwdyu + dvdzu * dwdyu ) ) 

                s2zzu = 0.5 * ( ( dwdxu * dudzu + dwdxu * dudzu ) + ( dwdyu * dvdzu + dwdyu * dvdzu ) & 

                            + ( dwdzu * dwdzu + dwdzu * dwdzu ) ) 

                ! 

                s3xxu = ( dudxu * dudxu ) + ( dvdxu * dvdxu ) + ( dwdxu * dwdxu ) 

                s3yyu = ( dudyu * dudyu ) + ( dvdyu * dvdyu ) + ( dwdyu * dwdyu ) 

                s3zzu = ( dudzu * dudzu ) + ( dvdzu * dvdzu ) + ( dwdzu * dwdzu ) 

                ! 

                kepsku = 0.5 * ( rtur(nmu,k-1,1) + rtur(nmu,k,1) ) 

                kepseu = 0.5 * ( rtur(nmu,k-1,2) + rtur(nmu,k,2) ) 

                ! 

                visceu = 0.5 * ( vnu3d(nmu,k-1) + vnu3d(nmu,k) ) 

                ! 

                ! compose reysxxu (linear and non-linear part) 

                ! 

                ! 

                reysxxu(nm,k) = visceu * sxxu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1xxu - ( 1. / 3. ) * ( s1xxu + s1yyu + s1zzu ) ) + & 

                                       c2 * ( s2xxu - ( 1. / 3. ) * ( s2xxu + s2yyu + s2zzu ) ) + & 

                                       c3 * ( s3xxu - ( 1. / 3. ) * ( s3xxu + s3yyu + s3zzu ) ) ) 

                ! 

                ! compose parts of reysxxd 

                ! 

                dudxd = ( u0(nm,k) - u0(nmd,k) ) / ( 0.5 * ( gvv(ndm) + gvv(nm) ) ) 

                dudyd = ( 0.25 * ( u0(num,k) + u0(numd,k) + u0(nm,k) + u0(nmd,k) ) & 

                          - 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(ndm,k) + u0(ndmd,k) ) ) & 

                          / ( 0.5 * ( guu(nmd) + guu(nm) ) )   

                dudzd = ( 0.25 * ( u0(nmd,k) + u0(nm,k) + u0(nmd,kd) + u0(nm,kd) ) & 

                          - 0.25 * ( u0(nmd,k) + u0(nm,k) + u0(nmd,ku) + u0(nm,ku) ) ) / hks(nm,k) 

                ! 

                dvdxd = ( 0.25 * ( v0(nmu,k) + v0(nm,k) + v0(ndmu,k) + v0(ndm,k) ) & 

                          - 0.25 * ( v0(nm,k) + v0(ndm,k) + v0(nmd,k) + v0(ndmd,k) ) ) & 

                          / ( 0.5 * ( gvv(ndm) + gvv(nm) ) )  

                dvdyd = ( v0(nm,k) - v0(ndm,k) ) / ( 0.5 * ( guu(nmd) + guu(nm) ) ) 

                dvdzd = ( 0.25 * ( v0(nm,k) + v0(ndm,k) + v0(nm,kd) + v0(ndm,kd) ) & 

                          - 0.25 * ( v0(nm,k) + v0(ndm,k) + v0(nm,ku) + v0(ndm,ku) ) ) / hks(nm,k) 

                ! 

                dwdxd = ( 0.25 * ( w0(nmu,k) + w0(nm,k) + w0(nmu,k-1) + w0(nm,k-1) ) & 

                          - 0.25 * ( w0(nm,k) + w0(nmd,k) + w0(nm,k-1) + w0(nmd,k-1) ) ) % 

                          / ( 0.5 * ( gvv(ndm) + gvv(nm) ) )  

                dwdyd = ( 0.25 * ( w0(nm,k) + w0(num,k) + w0(nm,k-1) + w0(num,k-1) ) & 
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                          - 0.25 * ( w0(ndm,k) + w0(nm,k) + w0(ndm,k-1) + w0(nm,k-1) ) ) & 

                          / ( 0.5 * ( guu(nmd) + guu(nm) ) )   

                dwdzd = ( w0(nm,k-1) - w0(nm,k) ) / hks(nm,k) 

                ! 

                sxxd  = dudxd + dudxd 

                ! 

                s1xxd = ( dudxd * dudxd ) + ( dudyd * dudyd ) + ( dudzd * dudzd ) 

                s1yyd = ( dvdxd * dvdxd ) + ( dvdyd * dvdyd ) + ( dvdzd * dvdzd ) 

                s1zzd = ( dwdxd * dwdxd ) + ( dwdyd * dwdyd ) + ( dwdzd * dwdzd ) 

                ! 

                s2xxd = 0.5 * ( ( dudxd * dudxd + dudxd * dudxd ) + ( dudyd * dvdxd + dudyd * dvdxd ) & 

                            + ( dudzd * dwdxd + dudzd * dwdxd ) ) 

                s2yyd = 0.5 * ( ( dvdxd * dudyd + dvdxd * dudyd ) + ( dvdyd * dvdyd + dvdyd * dvdyd ) & 

                            + ( dvdzd * dwdyd + dvdzd * dwdyd ) ) 

                s2zzd = 0.5 * ( ( dwdxd * dudzd + dwdxd * dudzd ) + ( dwdyd * dvdzd + dwdyd * dvdzd ) & 

                            + ( dwdzd * dwdzd + dwdzd * dwdzd ) ) 

                ! 

                s3xxd = ( dudxd * dudxd ) + ( dvdxd * dvdxd ) + ( dwdxd * dwdxd ) 

                s3yyd = ( dudyd * dudyd ) + ( dvdyd * dvdyd ) + ( dwdyd * dwdyd ) 

                s3zzd = ( dudzd * dudzd ) + ( dvdzd * dvdzd ) + ( dwdzd * dwdzd ) 

                ! 

                kepskd = 0.5 * ( rtur(nm,k-1,1) + rtur(nm,k,1) ) 

                kepsed = 0.5 * ( rtur(nm,k-1,2) + rtur(nm,k,2) ) 

                ! 

                visced = 0.5 * ( vnu3d(nm,k-1) + vnu3d(nm,k) ) 

                ! 

                ! compose reysxxd (linear and non-linear part) 

                ! 

                reysxxd(nm,k) = visced * sxxd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1xxd - ( 1. / 3. ) * ( s1xxd + s1yyd + s1zzd ) ) + & 

                                       c2 * ( s2xxd - ( 1. / 3. ) * ( s2xxd + s2yyd + s2zzd ) ) + & 

                                       c3 * ( s3xxd - ( 1. / 3. ) * ( s3xxd + s3yyd + s3zzd ) ) ) 

                ! 

                ! -u'v' / dy 

                ! 

                ! compose parts of reysxyu 

                ! 

                dudxu = ( 0.5 * ( u0(numu,k) + u0(nmu,k) ) - 0.5 * ( u0(numd,k) + u0(nmd,k) ) ) & 

                          / ( guu(nm) + guu(nmu) ) 

                dudyu = ( u0(num,k) - u0(nm,k) ) / ( 0.5 * ( guu(nm) + guu(num) ) ) 

                dudzu = ( 0.25 * ( u0(nm,k) + u0(num,k) + u0(nm,kd) + u0(num,kd) ) & 

                          - 0.25 * ( u0(nm,k) + u0(num,k) + u0(nm,ku) + u0(num,ku) ) ) & 

                          / ( 0.5 * ( hkum(nm,k) + hkum(num,k) ) ) 

                ! 

                dvdxu = ( v0(nmu,k) - v0(nm,k) ) / ( 0.5 * ( gvv(nm) + gvv(nmu) ) ) 

                dvdyu = ( 0.5 * ( v0(numu,k) + v0(num,k) ) - 0.5 * ( v0(ndmu,k) + v0(ndm,k) ) ) & 

                          / ( guu(num) + guu(nm) ) 

                dvdzu = ( 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(nm,kd) + v0(nmu,kd) ) & 

                          - 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(nm,ku) + v0(nmu,ku) ) ) & 

                          / ( 0.5 * ( hkum(nm,k) + hkum(num,k) ) ) 

                ! 

                dwdxu = ( 0.25 * ( w0(nmu,k) + w0(numu,k) + w0(nmu,k-1) + w0(numu,k-1) ) & 

                          - 0.25 * ( w0(nm,k) + w0(num,k) + w0(nm,k-1) + w0(num,k-1) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(nmu) ) ) 

                dwdyu = ( 0.25 * ( w0(num,k) + w0(numu,k) + w0(num,k-1) + w0(numu,k-1) ) & 

                          - 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(nm,k-1) + w0(nmu,k-1) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(num) ) ) 

                ! 

                sxyu  = dudyu + dvdxu 

                ! 

                s1xyu = ( dudxu * dvdxu ) + ( dudyu * dvdyu ) + ( dudzu * dvdzu ) 

                s2xyu = 0.5 * ( ( dudxu * dudyu + dvdxu * dudxu ) + ( dudyu * dvdyu + dvdyu * dvdxu ) & 

                            + ( dudzu * dwdyu + dvdzu * dwdxu ) ) 

                s3xyu = ( dudxu * dudyu ) + ( dvdxu * dvdyu ) + ( dwdxu * dwdyu )  

                ! 

                kepsku = 0.125 * ( rtur(nm,k,1) + rtur(nmu,k,1) + rtur(numu,k,1) + rtur(num,k,1) & 

                         + rtur(nm,k-1,1) + rtur(nmu,k-1,1) + rtur(numu,k-1,1) + rtur(num,k-1,1) ) 

                kepseu = 0.125 * ( rtur(nm,k,2) + rtur(nmu,k,2) + rtur(numu,k,2) + rtur(num,k,2) & 

                         + rtur(nm,k-1,2) + rtur(nmu,k-1,2) + rtur(numu,k-1,2) + rtur(num,k-1,2) ) 

                ! 
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                visceu = 0.125 * ( vnu3d(nm,k) + vnu3d(nmu,k) + vnu3d(numu,k) + vnu3d(num,k) & 

                         + vnu3d(nm,k-1) + vnu3d(nmu,k-1) + vnu3d(numu,k-1) + vnu3d(num,k-1) ) 

                ! 

                ! compose reysxyu (linear and non-linear part) 

                ! 

                reysxyu(nm,k) = visceu * sxyu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1xyu ) + & 

                                       c2 * ( s2xyu ) + & 

                                       c3 * ( s3xyu ) ) 

                ! 

                ! compose parts of reysxyd 

                ! 

                dudxd = ( 0.5 * ( u0(nmu,k) + u0(ndmu,k) ) - 0.5 * ( u0(nmd,k) + u0(ndmd,k) ) ) & 

                          / ( guu(ndm) + guu(ndmu) ) 

                dudyd = ( u0(nm,k) - u0(ndm,k) ) / ( 0.5 * ( guu(ndm) + guu(nm) ) ) 

                dudzd = ( 0.25 * ( u0(ndm,k) + u0(nm,k) + u0(ndm,kd) + u0(nm,kd) ) & 

                          - 0.25 * ( u0(ndm,k) + u0(nm,k) + u0(ndm,ku) + u0(nm,ku) ) ) & 

                          / ( 0.5 * ( hkum(ndm,k) + hkum(nm,k) ) ) 

                ! 

                dvdxd = ( v0(ndmu,k) - v0(ndm,k) ) / ( 0.5 * ( gvv(ndm) + gvv(ndmu) ) ) 

                dvdyd = ( 0.5 * ( v0(nmu,k) + v0(nm,k) ) - 0.5 * ( v0(nddmu,k) + v0(nddm,k) ) ) & 

                          / ( guu(nm) + guu(ndm) ) 

                dvdzd = ( 0.25 * ( v0(ndm,k) + v0(ndmu,k) + v0(ndm,kd) + v0(ndmu,kd) ) & 

                          - 0.25 * ( v0(ndm,k) + v0(ndmu,k) + v0(ndm,ku) + v0(ndmu,ku) ) ) & 

                          / ( 0.5 * ( hkum(ndm,k) + hkum(nm,k) ) ) 

                ! 

                dwdxd = ( 0.25 * ( w0(ndmu,k) + w0(nmu,k) + w0(ndmu,k-1) + w0(nmu,k-1) ) & 

                          - 0.25 * ( w0(ndm,k) + w0(nm,k) + w0(ndm,k-1) + w0(nm,k-1) ) ) & 

                          / ( 0.5 * ( gvv(ndm) + gvv(ndmu) ) ) 

                dwdyd = ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(nm,k-1) + w0(nmu,k-1) ) & 

                          - 0.25 * ( w0(ndm,k) + w0(ndmu,k) + w0(ndm,k-1) + w0(ndmu,k-1) ) ) & 

                          / ( 0.5 * ( guu(ndm) + guu(nm) ) ) 

                ! 

                sxyd  = dudyd + dvdxd 

                ! 

                s1xyd = ( dudxd * dvdxd ) + ( dudyd * dvdyd ) + ( dudzd * dvdzd ) 

                s2xyd = 0.5 * ( ( dudxd * dudyd + dvdxd * dudxd ) + ( dudyd * dvdyd + dvdyd * dvdxd ) & 

                        + ( dudzd * dwdyd + dvdzd * dwdxd ) ) 

                s3xyd = ( dudxd * dudyd ) + ( dvdxd * dvdyd ) + ( dwdxd * dwdyd )  

                ! 

                kepskd = 0.125 * ( rtur(nm,k,1) + rtur(nmu,k,1) + rtur(ndmu,k,1) + rtur(ndm,k,1) & 

                         + rtur(nm,k-1,1) + rtur(nmu,k-1,1) + rtur(ndmu,k-1,1) + rtur(ndm,k-1,1) ) 

                kepsed = 0.125 * ( rtur(nm,k,2) + rtur(nmu,k,2) + rtur(ndmu,k,2) + rtur(ndm,k,2) & 

                         + rtur(nm,k-1,2) + rtur(nmu,k-1,2) + rtur(ndmu,k-1,2) + rtur(ndm,k-1,2) )  

                ! 

                visced = 0.125 * ( vnu3d(nm,k) + vnu3d(nmu,k) + vnu3d(ndmu,k) + vnu3d(ndm,k) & 

                         + vnu3d(nm,k-1) + vnu3d(nmu,k-1) + vnu3d(ndmu,k-1) + vnu3d(ndm,k-1) ) 

                ! 

                ! compose reysxyd (linear and non-linear part) 

                ! 

                reysxyd(nm,k) = visced * sxyd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1xyd ) + & 

                                       c2 * ( s2xyd ) + & 

                                       c3 * ( s3xyd ) ) 

                ! 

                ! -u'w' / dz 

                ! 

                ! compose parts of reysxzu 

                !  

                dudxu = ( 0.5 * ( u0(nmu,kd) + u0(nmu,k) ) - 0.5 * ( u0(nmd,kd) + u0(nmd,k) ) ) & 

                        / ( 2. * gvu(nm) ) 

                dudyu = ( 0.25 * ( u0(nm,k) + u0(num,k) + u0(nm,kd) + u0(num,kd) ) & 

                          - 0.25 * ( u0(ndm,k) + u0(nm,k) + u0(ndm,kd) + u0(nm,kd) ) ) / gvv(nm) 

                dudzu = ( u0(nm,kd) - u0(nm,k) ) / ( 0.5 * ( hkum(nm,kd) + hkum(nm,k) ) ) 

                ! 

                dvdxu = ( 0.25 * ( v0(nmu,k) + v0(ndmu,k) + v0(nmu,kd) + v0(ndmu,kd) ) & 

                          - 0.25 * ( v0(nm,k) + v0(ndm,k) + v0(nm,kd) + v0(ndm,kd) ) ) / gvu(nm) 

                dvdzu = ( 0.25 * ( v0(nm,kd) + v0(nmu,kd) + v0(ndm,kd) + v0(ndmu,kd) ) & 

                          - 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(ndm,k) + v0(ndmu,k) ) ) & 
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                          / ( 0.5 * ( hkum(nm,kd) + hkum(nm,k) ) ) 

                ! 

                dwdxu = ( w0(nmu,kwd) - w0(nm,kwd) ) / gvu(nm) 

                dwdyu = ( 0.25 * ( w0(nm,k-1) + w0(nmu,k-1) + w0(num,k-1) + w0(numu,k-1) ) & 

                          - 0.25 * ( w0(ndm,k-1) + w0(ndmu,k-1) + w0(nm,k-1) + w0(nmu,k-1) ) ) / gvv(nm) 

                dwdzu = ( ( 0.5 * ( w0(nmu,kwdd) + w0(nm,kwdd) ) ) - ( 0.5 * ( w0(nmu,k) + w0(nm,k) ) ) ) & 

                          / ( hkum(nm,kd) + hkum(nm,k) ) 

                ! 

                sxzu  = dwdxu + dudzu 

                ! 

                s1xzu = ( dudxu * dwdxu ) + ( dudyu * dwdyu ) + ( dudzu * dwdzu ) 

                s2xzu = 0.5 * ( ( dudxu * dudzu + dwdxu * dudxu ) + ( dudyu * dvdzu + dwdyu * dvdxu ) & 

                        + ( dudzu * dwdzu + dwdzu * dwdxu ) ) 

                s3xzu = ( dudxu * dudzu ) + ( dvdxu * dvdzu ) + ( dwdxu * dwdzu )   

                ! 

                kepsku = 0.5 * ( rtur(nmu,k-1,1) + rtur(nm,k-1,1) ) 

                kepseu = 0.5 * ( rtur(nmu,k-1,2) + rtur(nm,k-1,2) ) 

                ! 

                visceu = 0.5 * ( vnu3d(nmu,k-1) + vnu3d(nm,k-1) ) 

                ! 

                ! compose reysxzu (linear and non-linear part) 

                ! 

                reysxzu(nm,k) = visceu * sxzu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1xzu ) + & 

                                       c2 * ( s2xzu ) + & 

                                       c3 * ( s3xzu ) ) 

                ! 

                ! compose parts of reysxzd 

                ! 

                dudxd = ( 0.5 * ( u0(nmu,k) + u0(nmu,ku) ) - 0.5 * ( u0(nmd,k) + u0(nmd,ku) ) ) & 

                          / ( 2. * gvu(nm) ) 

                dudyd = ( 0.25 * ( u0(nm,ku) + u0(num,ku) + u0(nm,k) + u0(num,k) ) & 

                          - 0.25 * ( u0(ndm,ku) + u0(nm,ku) + u0(ndm,k) + u0(nm,k) ) ) / gvv(nm) 

                dudzd = ( u0(nm,k) - u0(nm,ku) ) / ( 0.5 * ( hkum(nm,k) + hkum(nm,ku) ) ) 

                ! 

                dvdxd = ( 0.25 * ( v0(nmu,ku) + v0(ndmu,ku) + v0(nmu,k) + v0(ndmu,k) ) & 

                          - 0.25 * ( v0(nm,ku) + v0(ndm,ku) + v0(nm,k) + v0(ndm,k) ) ) / gvu(nm) 

                dvdzd = ( 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(ndm,k) + v0(ndmu,k) ) & 

                          - 0.25 * ( v0(nm,ku) + v0(nmu,ku) + v0(ndm,ku) + v0(ndmu,ku) ) ) & 

                          / ( 0.5 * ( hkum(nm,k) + hkum(nm,ku) ) ) 

                ! 

                dwdxd = ( w0(nmu,k) - w0(nm,k) ) / gvu(nm) 

                dwdyd = ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(num,k) + w0(numu,k) ) & 

                          - 0.25 * ( w0(ndm,k) + w0(ndmu,k) + w0(nm,k) + w0(nmu,k) ) ) / gvv(nm) 

                dwdzd = ( ( 0.5 * ( w0(nmu,kwd) + w0(nm,kwd) ) ) - ( 0.5 * ( w0(nmu,ku) + w0(nm,ku) ) ) ) & 

                          / ( hkum(nm,k) + hkum(nm,ku) ) 

                ! 

                sxzd  = dwdxd + dudzd 

                ! 

                s1xzd = ( dudxd * dwdxd ) + ( dudyd * dwdyd ) + ( dudzd * dwdzd ) 

                s2xzd = 0.5 * ( ( dudxd * dudzd + dwdxd * dudxd ) + ( dudyd * dvdzd + dwdyd * dvdxd ) & 

                        + ( dudzd * dwdzd + dwdzd * dwdxd ) ) 

                s3xzd = ( dudxd * dudzd ) + ( dvdxd * dvdzd ) + ( dwdxd * dwdzd )   

                ! 

                kepskd = 0.5 * ( rtur(nmu,k,1) + rtur(nm,k,1) ) 

                kepsed = 0.5 * ( rtur(nmu,k,2) + rtur(nm,k,2) ) 

                ! 

                visced = 0.5 * ( vnu3d(nmu,k) + vnu3d(nm,k) ) 

                ! 

                ! compose reysxzd (linear and non-linear part) 

                ! 

                reysxzd(nm,k) = visced * sxzd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1xzd ) + & 

                                       c2 * ( s2xzd ) + & 

                                       c3 * ( s3xzd ) ) 

                ! 

             enddo 

             ! 

          enddo 
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          ! 

       enddo 

       ! 

! 

! v-momemtun equation 

! 

       do k = 1, kmax 

          ! 

          do n = nfu, nl-1  

             ! 

             do m = mfu, ml 

                ! 

                md    = m - 1 

                mu    = m + 1 

                nd    = n - 1 

                nu    = n + 1 

                mdd   = m - 2 

                nuu   = n + 2 

                ! 

                nm    = kgrpnt(m ,n ) 

                nmd   = kgrpnt(md,n ) 

                nmu   = kgrpnt(mu,n ) 

                ndm   = kgrpnt(m ,nd) 

                num   = kgrpnt(m ,nu) 

                ndmd  = kgrpnt(md,nd) 

                ndmu  = kgrpnt(mu,nd) 

                numd  = kgrpnt(md,nu) 

                numu  = kgrpnt(mu,nu) 

                numdd = kgrpnt(mdd,nu) 

                nmdd  = kgrpnt(mdd,n) 

                nuum  = kgrpnt(m,nuu) 

                nuumd = kgrpnt(md,nuu) 

                ! 

                kd  = max(k-1,1   ) 

                kdd = max(k-2,1   ) 

                ku  = min(k+1,kmax) 

                kuu = min(k+2,kmax) 

                kwd  = max(k-1,0   ) 

                kwdd = max(k-2,0   ) 

                kwu  = min(k+1,kmax) 

                kwuu = min(k+2,kmax) 

                ! 

                ! -v'u' / dx 

                ! 

                ! compose parts of reysyxu 

                ! 

                dudxu = ( ( 0.5 * ( u0(numu,k) + u0(nmu,k) ) ) - ( 0.5 * ( u0(numd,k) + u0(nmd,k) ) ) ) & 

                          / ( gvv(nm) + gvv(nmu) ) 

                dudyu = ( u0(num,k) - u0(nm,k) ) / ( 0.5 * ( guu(num) + guu(nm) ) ) 

                dudzu = ( 0.25 * ( u0(nm,k) + u0(num,k) + u0(nm,kd) + u0(num,kd) ) & 

                          - 0.25 * ( u0(nm,k) + u0(num,k) + u0(nm,ku) + u0(num,ku) ) ) & 

                          / ( 0.5 * ( hkvm(nm,k) + hkvm(nmu,k) ) ) 

                ! 

                dvdxu = ( v0(nmu,k) - v0(nm,k) ) / ( 0.5 * ( gvv(nm) + gvv(nmu) ) ) 

                dvdyu = ( ( 0.5 * ( v0(numu,k) + v0(num,k) ) ) - ( 0.5 * ( v0(ndmu,k) + v0(ndm,k) ) ) ) & 

                          / ( guu(nm) + guu(num) ) 

                dvdzu = ( 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(nm,kd) + v0(nmu,kd) ) & 

                          - 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(nm,ku) + v0(nmu,ku) ) ) & 

                          / ( 0.5 * ( hkvm(nm,k) + hkvm(nmu,k) ) ) 

                ! 

                dwdxu = ( 0.25 * ( w0(nmu,k) + w0(numu,k) + w0(nmu,kd) + w0(numu,kd) ) & 

                          - 0.25 * ( w0(nm,k) + w0(num,k) + w0(nm,kd) + w0(num,kd) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(nmu) ) ) 

                dwdyu = ( 0.25 * ( w0(numu,k) + w0(num,k) + w0(numu,kd) + w0(num,kd) ) & 

                          - 0.25 * ( w0(nmu,k) + w0(nm,k) + w0(nmu,kd) + w0(nm,kd) ) ) & 

                          / ( 0.5 * ( guu(num) + guu(nm) ) ) 

                ! 

                syxu  = dudyu + dvdxu 

                ! 

                s1yxu = ( dvdxu * dudxu ) + ( dvdyu * dudyu ) + ( dvdzu * dudzu ) 

                s2yxu = 0.5 * ( ( dvdxu * dudxu + dudxu * dudyu ) + ( dvdyu * dvdxu + dudyu * dvdyu ) & 
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                        + ( dvdzu * dwdxu + dudzu * dwdyu ) ) 

                s3yxu = ( dudyu * dudxu ) + ( dvdyu * dvdxu ) + ( dwdyu * dwdxu ) 

                ! 

                kepsku = 0.125 * ( rtur(nm,k,1) + rtur(nmu,k,1) + rtur(numu,k,1) + rtur(num,k,1) & 

                         + rtur(nm,k-1,1) + rtur(nmu,k-1,1) + rtur(numu,k-1,1) + rtur(num,k-1,1) ) 

                kepseu = 0.125 * ( rtur(nm,k,2) + rtur(nmu,k,2) + rtur(numu,k,2) + rtur(num,k,2) & 

                         + rtur(nm,k-1,2) + rtur(nmu,k-1,2) + rtur(numu,k-1,2) + rtur(num,k-1,2) ) 

                ! 

                visceu = 0.125 * ( vnu3d(nm,k) + vnu3d(nmu,k) + vnu3d(numu,k) + vnu3d(num,k) & 

                         + vnu3d(nm,k-1) + vnu3d(nmu,k-1) + vnu3d(numu,k-1) + vnu3d(num,k-1) ) 

                ! 

                ! compose reysyxu (linear and non-linear part) 

                ! 

                reysyxu(nm,k) = visceu * syxu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1yxu ) + & 

                                       c2 * ( s2yxu ) + & 

                                       c3 * ( s3yxu ) ) 

                ! 

                ! compose parts of reysyxd 

                ! 

                dudxd = ( ( 0.5 * ( u0(num,k) + u0(nm,k) ) ) - ( 0.5 * ( u0(numdd,k) + u0(nmdd,k) ) ) ) & 

                          / ( gvv(nmd) + gvv(nm) ) 

                dudyd = ( u0(numd,k) - u0(nmd,k) ) / ( 0.5 * ( guu(numd) + guu(nmd) ) ) 

                dudzd = ( 0.25 * ( u0(nmd,k) + u0(numd,k) + u0(nmd,kd) + u0(numd,kd) ) & 

                          - 0.25 * ( u0(nmd,k) + u0(numd,k) + u0(nmd,ku) + u0(numd,ku) ) ) & 

                          / ( 0.5 * ( hkvm(nmd,k) + hkvm(nm,k) ) ) 

                ! 

                dvdxd = ( v0(nm,k) - v0(nmd,k) ) / ( 0.5 * ( gvv(nmd) + gvv(nm) ) ) 

                dvdyd = ( ( 0.5 * ( v0(num,k) + v0(numd,k) ) ) - ( 0.5 * ( v0(ndm,k) + v0(ndmd,k) ) ) ) & 

                          / ( guu(nmd) + guu(numd) ) 

                dvdzd = ( 0.25 * ( v0(nmd,k) + v0(nm,k) + v0(nmd,kd) + v0(nm,kd) ) & 

                          - 0.25 * ( v0(nmd,k) + v0(nm,k) + v0(nmd,ku) + v0(nm,ku) ) ) & 

                          / ( 0.5 * ( hkvm(nmd,k) + hkvm(nm,k) ) ) 

                ! 

                dwdxd = ( 0.25 * ( w0(nm,k) + w0(num,k) + w0(nm,kd) + w0(num,kd) ) & 

                          - 0.25 * ( w0(nmd,k) + w0(numd,k) + w0(nmd,kd) + w0(numd,kd) ) ) & 

                          / ( 0.5 * ( gvv(nmd) + gvv(nm) ) ) 

                dwdyd = ( 0.25 * ( w0(num,k) + w0(numd,k) + w0(num,kd) + w0(numd,kd) ) & 

                          - 0.25 * ( w0(nm,k) + w0(nmd,k) + w0(nm,kd) + w0(nmd,kd) ) ) & 

                          / ( 0.5 * ( guu(numd) + guu(nmd) ) ) 

                ! 

                syxd  = dudyd + dvdxd 

                ! 

                s1yxd = ( dvdxd * dudxd ) + ( dvdyd * dudyd ) + ( dvdzd * dudzd ) 

                s2yxd = 0.5 * ( ( dvdxd * dudxd + dudxd * dudyd ) + ( dvdyd * dvdxd + dudyd * dvdyd ) & 

                        + ( dvdzd * dwdxd + dudzd * dwdyd ) ) 

                s3yxd = ( dudyd * dudxd ) + ( dvdyd * dvdxd ) + ( dwdyd * dwdxd ) 

                ! 

                kepskd = 0.125 * ( rtur(nm,k,1) + rtur(nmd,k,1) + rtur(numd,k,1) + rtur(num,k,1) & 

                         + rtur(nm,k-1,1) + rtur(nmd,k-1,1) + rtur(numd,k-1,1) + rtur(num,k-1,1) ) 

                kepsed = 0.125 * ( rtur(nm,k,2) + rtur(nmd,k,2) + rtur(numd,k,2) + rtur(num,k,2) & 

                         + rtur(nm,k-1,2) + rtur(nmd,k-1,2) + rtur(numd,k-1,2) + rtur(num,k-1,2) ) 

                ! 

                visced = 0.125 * ( vnu3d(nm,k) + vnu3d(nmd,k) + vnu3d(numd,k) + vnu3d(num,k) & 

                         + vnu3d(nm,k-1) + vnu3d(nmd,k-1) + vnu3d(numd,k-1) + vnu3d(num,k-1) ) 

                ! 

                ! compose reysyxd (linear and non-linear part) 

                ! 

                reysyxd(nm,k) = visced * syxd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1yxd ) + & 

                                       c2 * ( s2yxd ) + & 

                                       c3 * ( s3yxd ) ) 

                ! 

                ! -v'v' / dy 

                ! 

                ! compose parts of reysyyu 

                ! 

                dudxu = ( u0(num,k) - u0(numd,k) ) / ( 0.5 * ( gvv(num) + gvv(nm) ) )  

                dudyu = ( 0.25 * ( u0(num,k) + u0(numd,k) + u0(nuum,k) + u0(nuumd,k) ) & 
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                          - 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(num,k) + u0(numd,k) ) ) & 

                          / ( 0.5 * ( guu(num) + guu(numd) ) ) 

                dudzu = ( 0.25 * ( u0(num,k) + u0(numd,k) + u0(num,kd) + u0(numd,kd) ) & 

                          - 0.25 * ( u0(num,k) + u0(numd,k) + u0(num,ku) + u0(numd,ku) ) ) / hks(num,k) 

                ! 

                dvdxu = ( 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(num,k) + v0(numu,k) ) & 

                          - 0.25 * ( v0(nmd,k) + v0(nm,k) + v0(numd,k) + v0(num,k) ) ) & 

                          / ( 0.5 * ( gvv(num) + gvv(nm) ) )  

                dvdyu = ( v0(num,k) - v0(nm,k) ) / ( 0.5 * ( guu(num) + guu(numd) ) ) 

                dvdzu = ( 0.25 * ( v0(nm,k) + v0(num,k) + v0(nm,kd) + v0(num,kd) ) & 

                          - 0.25 * ( v0(nm,k) + v0(num,k) + v0(nm,ku) + v0(num,ku) ) ) / hks(num,k) 

                ! 

                dwdxu = ( 0.25 * ( w0(num,k) + w0(numu,k) + w0(num,kwd) + w0(numu,kwd) ) & 

                          - 0.25 * ( w0(numd,k) + w0(num,k) + w0(numd,kwd) + w0(num,kwd) ) ) & 

                          / ( 0.5 * ( gvv(num) + gvv(nm) ) )  

                dwdyu = ( 0.25 * ( w0(num,k) + w0(nuum,k) + w0(num,kwd) + w0(nuum,kwd) ) & 

                          - 0.25 * ( w0(nm,k) + w0(num,k) + w0(nm,kwd) + w0(num,kwd) ) ) & 

                          / ( 0.5 * ( guu(num) + guu(numd) ) ) 

                dwdzu = ( w0(num,k-1) - w0(num,k) ) / hks(num,k) 

                ! 

                syyu  = dvdyu + dvdyu 

                ! 

                s1xxu = ( dudxu * dudxu ) + ( dudyu * dudyu ) + ( dudzu * dudzu ) 

                s1yyu = ( dvdxu * dvdxu ) + ( dvdyu * dvdyu ) + ( dvdzu * dvdzu ) 

                s1zzu = ( dwdxu * dwdxu ) + ( dwdyu * dwdyu ) + ( dwdzu * dwdzu ) 

                ! 

                s2xxu = 0.5 * ( ( dudxu * dudxu + dudxu * dudxu ) + ( dudyu * dvdxu + dudyu * dvdxu ) & 

                        + ( dudzu * dwdxu + dudzu * dwdxu ) ) 

                s2yyu = 0.5 * ( ( dvdxu * dudyu + dvdxu * dudyu ) + ( dvdyu * dvdyu + dvdyu * dvdyu ) & 

                        + ( dvdzu * dwdyu + dvdzu * dwdyu ) ) 

                s2zzu = 0.5 * ( ( dwdxu * dudzu + dwdxu * dudzu ) + ( dwdyu * dvdzu + dwdyu * dvdzu ) & 

                        + ( dwdzu * dwdzu + dwdzu * dwdzu ) ) 

                ! 

                s3xxu = ( dudxu * dudxu ) + ( dvdxu * dvdxu ) + ( dwdxu * dwdxu ) 

                s3yyu = ( dudyu * dudyu ) + ( dvdyu * dvdyu ) + ( dwdyu * dwdyu ) 

                s3zzu = ( dudzu * dudzu ) + ( dvdzu * dvdzu ) + ( dwdzu * dwdzu ) 

                ! 

                kepsku = 0.5 * ( rtur(num,k-1,1) + rtur(num,k,1) ) 

                kepseu = 0.5 * ( rtur(num,k-1,2) + rtur(num,k,2) ) 

                ! 

                visceu = 0.5 * ( vnu3d(num,k-1) + vnu3d(num,k) ) 

                ! 

                ! compose reysyyu (linear and non-linear part) 

                ! 

                reysyyu(nm,k) = visceu * syyu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1yyu - ( 1. / 3. ) * ( s1xxu + s1yyu + s1zzu ) ) + & 

                                       c2 * ( s2yyu - ( 1. / 3. ) * ( s2xxu + s2yyu + s2zzu ) ) + & 

                                       c3 * ( s3yyu - ( 1. / 3. ) * ( s3xxu + s3yyu + s3zzu ) ) ) 

                ! 

                ! compose parts of reysyyd 

                ! 

                dudxd = ( u0(nm,k) - u0(nmd,k) ) / ( 0.5 * ( gvv(nm) + gvv(ndm) ) )  

                dudyd = ( 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(num,k) + u0(numd,k) ) & 

                          - 0.25 * ( u0(ndm,k) + u0(ndmd,k) + u0(nm,k) + u0(nmd,k) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dudzd = ( 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(nm,kd) + u0(nmd,kd) ) & 

                          - 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(nm,ku) + u0(nmd,ku) ) ) / hks(nm,k) 

                ! 

                dvdxd = ( 0.25 * ( v0(ndm,k) + v0(ndmu,k) + v0(nm,k) + v0(nmu,k) ) & 

                          - 0.25 * ( v0(ndmd,k) + v0(ndm,k) + v0(nmd,k) + v0(nm,k) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(ndm) ) )  

                dvdyd = ( v0(nm,k) - v0(ndm,k) ) / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dvdzd = ( 0.25 * ( v0(ndm,k) + v0(nm,k) + v0(ndm,kd) + v0(nm,kd) ) & 

                          - 0.25 * ( v0(ndm,k) + v0(nm,k) + v0(ndm,ku) + v0(nm,ku) ) ) / hks(nm,k) 

                ! 

                dwdxd = ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(nm,kwd) + w0(nmu,kwd) ) & 

                          - 0.25 * ( w0(nmd,k) + w0(nm,k) + w0(nmd,kwd) + w0(nm,kwd) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(ndm) ) )  

                dwdyd = ( 0.25 * ( w0(nm,k) + w0(num,k) + w0(nm,kwd) + w0(num,kwd) ) & 

                          - 0.25 * ( w0(ndm,k) + w0(nm,k) + w0(ndm,kwd) + w0(nm,kwd) ) ) & 
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                          / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dwdzd = ( w0(nm,k-1) - w0(nm,k) ) / hks(nm,k) 

                ! 

                syyd  = dvdyd + dvdyd 

                ! 

                s1xxd = ( dudxd * dudxd ) + ( dudyd * dudyd ) + ( dudzd * dudzd ) 

                s1yyd = ( dvdxd * dvdxd ) + ( dvdyd * dvdyd ) + ( dvdzd * dvdzd ) 

                s1zzd = ( dwdxd * dwdxd ) + ( dwdyd * dwdyd ) + ( dwdzd * dwdzd ) 

                ! 

                s2xxd = 0.5 * ( ( dudxd * dudxd + dudxd * dudxd ) + ( dudyd * dvdxd + dudyd * dvdxd ) & 

                        + ( dudzd * dwdxd + dudzd * dwdxd ) ) 

                s2yyd = 0.5 * ( ( dvdxd * dudyd + dvdxd * dudyd ) + ( dvdyd * dvdyd + dvdyd * dvdyd ) & 

                        + ( dvdzd * dwdyd + dvdzd * dwdyd ) ) 

                s2zzd = 0.5 * ( ( dwdxd * dudzd + dwdxd * dudzd ) + ( dwdyd * dvdzd + dwdyd * dvdzd ) & 

                        + ( dwdzd * dwdzd + dwdzd * dwdzd ) ) 

                ! 

                s3xxd = ( dudxd * dudxd ) + ( dvdxd * dvdxd ) + ( dwdxd * dwdxd ) 

                s3yyd = ( dudyd * dudyd ) + ( dvdyd * dvdyd ) + ( dwdyd * dwdyd ) 

                s3zzd = ( dudzd * dudzd ) + ( dvdzd * dvdzd ) + ( dwdzd * dwdzd ) 

                ! 

                kepskd = 0.5 * ( rtur(nm,k-1,1) + rtur(nm,k,1) ) 

                kepsed = 0.5 * ( rtur(nm,k-1,2) + rtur(nm,k,2) ) 

                ! 

                visced = 0.5 * ( vnu3d(nm,k-1) + vnu3d(nm,k) ) 

                ! 

                ! compose reysyyd (linear and non-linear part) 

                ! 

                reysyyd(nm,k) = visced * syyd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1yyd - ( 1. / 3. ) * ( s1xxd + s1yyd + s1zzd ) ) + & 

                                       c2 * ( s2yyd - ( 1. / 3. ) * ( s2xxd + s2yyd + s2zzd ) ) + & 

                                       c3 * ( s3yyd - ( 1. / 3. ) * ( s3xxd + s3yyd + s3zzd ) ) ) 

                ! 

                ! -v'w' / dz 

                ! 

                ! compose parts of reysyzu 

                ! 

                ! 

                dudyu = ( 0.25 * ( u0(num,k) + u0(numd,k) + u0(num,kd) + u0(numd,kd) ) & 

                          - 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(nm,kd) + u0(nmd,kd) ) ) / guv(nm) 

                dudzu = ( 0.25 * ( u0(nm,kd) + u0(nmd,kd) + u0(num,kd) + u0(numd,kd) ) & 

                          - 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(num,k) + u0(numd,k) ) ) & 

                          / ( 0.5 * ( hkvm(nm,kd) + hkvm(nm,k) ) ) 

                ! 

                dvdxu = ( 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(nm,kd) + v0(nmu,kd) ) & 

                          - 0.25 * ( v0(nm,k) + v0(nmd,k) + v0(nm,kd) + v0(nmd,kd) ) ) / gvv(nm) 

                dvdyu = ( ( 0.5 * ( v0(num,kd) + v0(num,k) ) ) - ( 0.5 * ( v0(ndm,kd) + v0(ndm,k) ) ) ) & 

                          / ( 2. * guv(nm) )   

                dvdzu = ( v0(nm,kd) - v0(nm,k) ) / ( 0.5 * ( hkvm(nm,kd) + hkvm(nm,k) ) ) 

                ! 

                dwdxu = ( 0.25 * ( w0(nm,kwd) + w0(nmu,kwd) + w0(num,kwd) + w0(numu,kwd) ) & 

                          - 0.25 * ( w0(nmd,kwd) + w0(nm,kwd) + w0(numd,kwd) + w0(num,kwd) ) ) / gvv(nm) 

                dwdyu = ( w0(num,kwd) - w0(nm,kwd) ) / guv(nm) 

                dwdzu = ( ( 0.5 * ( w0(num,kwdd) + w0(nm,kwdd) ) ) - ( 0.5 * ( w0(num,k) + w0(nm,k) ) ) ) & 

                          / ( hkvm(nm,kd) + hkvm(nm,k) ) 

                ! 

                syzu  = dwdyu + dvdzu 

                ! 

                s1yzu = ( dvdxu * dwdxu ) + ( dvdyu * dwdyu ) + ( dvdzu * dwdzu ) 

                s2yzu = 0.5 * ( ( dvdxu * dudzu + dwdxu * dudyu ) + ( dvdyu * dvdzu + dwdyu * dvdyu ) & 

                        + ( dvdzu * dwdzu + dwdzu * dwdyu ) ) 

                s3yzu = ( dudyu * dudzu ) + ( dvdyu * dvdzu ) + ( dwdyu * dwdzu ) 

                ! 

                kepsku = 0.5 * ( rtur(nm,k-1,1) + rtur(num,k-1,1) ) 

                kepseu = 0.5 * ( rtur(nm,k-1,2) + rtur(num,k-1,2) ) 

                ! 

                visceu = 0.5 * ( vnu3d(nm,k-1) + vnu3d(num,k-1) ) 

                ! 

                ! compose reysyzu (linear and non-linear part) 

                ! 

                reysyzu(nm,k) = visceu * syzu & 
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                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1yzu ) + & 

                                       c2 * ( s2yzu ) + & 

                                       c3 * ( s3yzu ) ) 

                ! 

                ! compose parts of reysyzd 

                ! 

                dudyd = ( 0.25 * ( u0(num,ku) + u0(numd,ku) + u0(num,k) + u0(numd,k) ) & 

                          - 0.25 * ( u0(nm,ku) + u0(nmd,ku) + u0(nm,k) + u0(nmd,k) ) ) / guv(nm) 

                dudzd = ( 0.25 * ( u0(nm,k) + u0(nmd,k) + u0(num,k) + u0(numd,k) ) & 

                          - 0.25 * ( u0(nm,ku) + u0(nmd,ku) + u0(num,ku) + u0(numd,ku) ) ) & 

                          / ( 0.5 * ( hkvm(nm,k) + hkvm(nm,ku) ) ) 

                ! 

                dvdxd = ( 0.25 * ( v0(nm,ku) + v0(nmu,ku) + v0(nm,k) + v0(nmu,k) ) & 

                          - 0.25 * ( v0(nm,ku) + v0(nmd,ku) + v0(nm,k) + v0(nmd,k) ) ) / gvv(nm) 

                dvdyd = ( ( 0.5 * ( v0(num,k) + v0(num,ku) ) ) - ( 0.5 * ( v0(ndm,k) + v0(ndm,ku) ) ) ) & 

                          / ( 2. * guv(nm) )   

                dvdzd = ( v0(nm,k) - v0(nm,ku) ) / ( 0.5 * ( hkvm(nm,k) + hkvm(nm,ku) ) ) 

                ! 

                dwdxd = ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(num,k) + w0(numu,k) ) & 

                          - 0.25 * ( w0(nmd,k) + w0(nm,k) + w0(numd,k) + w0(num,k) ) ) / gvv(nm) 

                dwdyd = ( w0(num,k) - w0(nm,k) ) / guv(nm) 

                dwdzd = ( ( 0.5 * ( w0(num,kwd) + w0(nm,kwd) ) ) - ( 0.5 * ( w0(num,ku) + w0(nm,ku) ) ) ) & 

                          / ( hkvm(nm,k) + hkvm(nm,ku) ) 

                ! 

                syzd  = dwdyd + dvdzd 

                ! 

                s1yzd = ( dvdxd * dwdxd ) + ( dvdyd * dwdyd ) + ( dvdzd * dwdzd ) 

                s2yzd = 0.5 * ( ( dvdxd * dudzd + dwdxd * dudyd ) + ( dvdyd * dvdzd + dwdyd * dvdyd ) & 

                        + ( dvdzd * dwdzd + dwdzd * dwdyd ) ) 

                s3yzd = ( dudyd * dudzd ) + ( dvdyd * dvdzd ) + ( dwdyd * dwdzd ) 

                ! 

                kepskd = 0.5 * ( rtur(nm,k,1) + rtur(num,k,1) ) 

                kepsed = 0.5 * ( rtur(nm,k,2) + rtur(num,k,2) )  

                ! 

                visced = 0.5 * ( vnu3d(nm,k) + vnu3d(num,k) ) 

                ! 

                ! compose reysyzd (linear and non-linear part) 

                ! 

                reysyzd(nm,k) = visced * syzd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1yzd ) + & 

                                       c2 * ( s2yzd ) + & 

                                       c3 * ( s3yzd ) ) 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

! 

! w-momemtum equation 

! 

       do k = 0, kmax - 1 

          ! 

          do n = nfu, nl 

             ! 

             do m = mfu, ml 

                ! 

                md    = m - 1 

                mu    = m + 1 

                nd    = n - 1 

                nu    = n + 1 

                mdd   = m - 2 

                ndd   = n - 2 

                ! 

                if ( n == nfu ) ndd = nd 

                ! 

                nm    = kgrpnt(m ,n ) 

                nmd   = kgrpnt(md,n ) 

                nmu   = kgrpnt(mu,n ) 



 

14 

 

                ndm   = kgrpnt(m ,nd) 

                num   = kgrpnt(m ,nu) 

                ndmd  = kgrpnt(md,nd) 

                ndmu  = kgrpnt(mu,nd) 

                numd  = kgrpnt(md,nu) 

                numu  = kgrpnt(mu,nu) 

                nmdd  = kgrpnt(mdd,n) 

                nddm  = kgrpnt(m ,ndd) 

                ! 

                kd  = max(k-1,1   ) 

                kdd = max(k-2,1   ) 

                ku  = min(k+1,kmax) 

                kuu = min(k+2,kmax) 

                kk  = max(k  ,1   ) 

                kwd  = max(k-1,0   ) 

                kwdd = max(k-2,0   ) 

                kwu  = min(k+1,kmax) 

                kwuu = min(k+2,kmax) 

                ! 

                ! -w'u' / dx 

                ! 

                ! compose parts of reyszxu 

                ! 

                dudxu = ( 0.5 * ( u0(nmu,kk) + u0(nmu,k+1 ) ) - 0.5 * ( u0(nmd,kk) + u0(nmd,k+1 ) ) ) & 

                          / ( 2. * gvu(nm) ) 

                dudyu = ( 0.25 * ( u0(nm,kk) + u0(num,kk) + u0(nm,ku) + u0(num,ku) ) & 

                          - 0.25 * ( u0(ndm,kk) + u0(nm,kk) + u0(ndm,ku) + u0(nm,ku) ) ) / guu(nm) 

                dudzu = ( u0(nm,kk) - u0(nm,k+1) ) / ( 0.5 * ( hkum(nm,kk) + hkum(nm,k+1) ) ) 

                ! 

                dvdxu = ( 0.25 * ( v0(nmu,kk) + v0(ndmu,kk) + v0(nmu,ku) + v0(ndmu,ku) ) & 

                          - 0.25 * ( v0(nm,kk) + v0(ndm,kk) + v0(nm,ku) + v0(ndm,ku) ) ) / gvu(nm) 

                dvdzu = ( 0.25 * ( v0(ndm,kk) + v0(ndmu,kk) + v0(nm,kk) + v0(nmu,kk) ) & 

                          - 0.25 * ( v0(ndm,ku) + v0(ndmu,ku) + v0(nm,ku) + v0(nmu,ku) ) ) & 

                          / ( 0.5 * ( hkum(nm,kk) + hkum(nm,k+1) ) ) 

                ! 

                dwdxu = ( w0(nmu,k) - w0(nm,k) ) / gvu(nm) 

                dwdyu = ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(num,k) + w0(numu,k) ) & 

                          - 0.25 * ( w0(ndm,k) + w0(ndmu,k) + w0(nm,k) + w0(nmu,k) ) ) / guu(nm) 

                dwdzu = ( 0.5 * ( w0(nmu,kwd) + w0(nm,kwd ) ) - 0.5 * ( w0(nmu,k+1) + w0(nm,k+1 ) ) ) & 

                          / ( hkum(nm,kk) + hkum(nm,k+1) ) 

                ! 

                szxu  = dudzu + dwdxu 

                ! 

                s1zxu = ( dwdxu * dudxu ) + ( dwdyu * dudyu ) + ( dwdzu * dudzu ) 

                s2zxu = 0.5 * ( ( dudxu * dudzu + dwdxu * dudxu ) + ( dudyu * dvdzu + dwdyu * dvdxu ) & 

                        + ( dudzu * dwdzu + dwdzu * dwdxu ) ) 

                s3zxu = ( dudzu * dudxu ) + ( dvdzu * dvdxu ) + ( dwdzu * dwdxu ) 

                ! 

                kepsku = 0.5 * ( rtur(nmu,k,1) + rtur(nm,k,1) ) 

                kepseu = 0.5 * ( rtur(nmu,k,2) + rtur(nm,k,2) ) 

                ! 

                visceu = 0.5 * ( vnu3d(nmu,k) + vnu3d(nm,k) ) 

                ! 

                ! compose reyszxu (linear and non-linear part) 

                ! 

                reyszxu(nm,k) = visceu * szxu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1zxu ) + & 

                                       c2 * ( s2zxu ) + & 

                                       c3 * ( s3zxu ) ) 

                ! 

                ! compose parts of reyszxd 

                ! 

                if ( m == mfu ) nmdd = nmd 

                ! 

                dudxd = ( 0.5 * ( u0(nmu,kk) + u0(nmu,k+1 ) ) - 0.5 * ( u0(nmd,kk) + u0(nmd,k+1 ) ) ) & 

                          / ( 2. * gvu(nm) ) 

                dudyd = ( 0.25 * ( u0(nm,kk) + u0(num,kk) + u0(nm,ku) + u0(num,ku) ) & 

                          - 0.25 * ( u0(ndm,kk) + u0(nm,kk) + u0(ndm,ku) + u0(nm,ku) ) ) / guu(nm) 

                dudzd = ( u0(nm,kk) - u0(nm,k+1) ) / ( 0.5 * ( hkum(nm,kk) + hkum(nm,k+1) ) ) 

                ! 



 

15 

 

                dvdxd = ( 0.25 * ( v0(nmu,kk) + v0(ndmu,kk) + v0(nmu,ku) + v0(ndmu,ku) ) & 

                          - 0.25 * ( v0(nm,kk) + v0(ndm,kk) + v0(nm,ku) + v0(ndm,ku) ) ) / gvu(nm) 

                dvdzd = ( 0.25 * ( v0(ndm,kk) + v0(ndmu,kk) + v0(nm,kk) + v0(nmu,kk) ) & 

                          - 0.25 * ( v0(ndm,ku) + v0(ndmu,ku) + v0(nm,ku) + v0(nmu,ku) ) ) & 

                          / ( 0.5 * ( hkum(nm,kk) + hkum(nm,k+1) ) ) 

                ! 

                dwdxd = ( w0(nmu,k) - w0(nm,k) ) / gvu(nm) 

                dwdyd = ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(num,k) + w0(numu,k) ) & 

                          - 0.25 * ( w0(ndm,k) + w0(ndmu,k) + w0(nm,k) + w0(nmu,k) ) ) / guu(nm) 

                dwdzd = ( 0.5 * ( w0(nmu,kwd) + w0(nm,kwd ) ) - 0.5 * ( w0(nmu,k+1) + w0(nm,k+1 ) ) ) & 

                          / ( hkum(nm,kk) + hkum(nm,k+1) ) 

                ! 

                szxd  = dudzd + dwdxd 

                ! 

                s1zxd = ( dwdxd * dudxd ) + ( dwdyd * dudyd ) + ( dwdzd * dudzd ) 

                s2zxd = 0.5 * ( ( dudxd * dudzd + dwdxd * dudxd ) + ( dudyd * dvdzd + dwdyd * dvdxd ) & 

                        + ( dudzd * dwdzd + dwdzd * dwdxd ) ) 

                s3zxd = ( dudzd * dudxd ) + ( dvdzd * dvdxd ) + ( dwdzd * dwdxd ) 

                ! 

                kepskd = 0.5 * ( rtur(nmd,k,1) + rtur(nm,k,1) ) 

                kepsed = 0.5 * ( rtur(nmd,k,2) + rtur(nm,k,2) ) 

                ! 

                visced = 0.5 * ( vnu3d(nmd,k) + vnu3d(nm,k) ) 

                ! 

                ! compose reyszxd (linear and non-linear part) 

                ! 

                reyszxd(nm,k) = visced * szxd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1zxd ) + & 

                                       c2 * ( s2zxd ) + & 

                                       c3 * ( s3zxd ) ) 

                ! 

                ! -w'v' / dy 

                ! 

                ! compose parts of reyswyu 

                ! 

                dudyu = ( 0.25 * ( u0(num,kk) + u0(numd,kk) + u0(num,ku) + u0(numd,ku) ) & 

                          - 0.25 * ( u0(nm,kk) + u0(nmd,kk) + u0(nm,ku) + u0(nmd,ku) ) ) / guv(nm) 

                dudzu = ( 0.25 * ( u0(nm,kk) + u0(nmd,kk) + u0(num,kk) + u0(numd,kk) ) & 

                          - 0.25 * ( u0(nm,ku) + u0(nmd,ku) + u0(num,ku) + u0(numd,ku) ) ) & 

                          / ( 0.5 * ( hkvm(nm,kk) + hkvm(nm,k+1) ) ) 

                ! 

                dvdxu = ( 0.25 * ( v0(nm,kk) + v0(nmu,kk) + v0(nm,ku) + v0(nmu,ku) ) & 

                          - 0.25 * ( v0(nmd,kk) + v0(nm,kk) + v0(nmd,ku) + v0(nm,ku) ) ) / gvv(nm) 

                dvdyu = ( 0.5 * ( v0(num,kk) + v0(num,k+1) ) - 0.5 * ( v0(ndm,kk) + v0(ndm,k+1) ) ) & 

                          / ( 2. * guv(nm) ) 

                dvdzu = ( v0(nm,kk) - v0(nm,k+1) ) / ( 0.5 * ( hkvm(nm,kk) + hkvm(nm,k+1) ) ) 

                ! 

                dwdxu = ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(num,k) + w0(numu,k) ) & 

                          - 0.25 * ( w0(nmd,k) + w0(nm,k) + w0(numd,k) + w0(num,k) ) ) / gvv(nm) 

                dwdyu = ( w0(num,k) - w0(nm,k) ) / guv(nm) 

                dwdzu = ( 0.5 * ( w0(nm,kwd) + w0(num,kwd) ) - 0.5 * ( w0(nm,k+1) + w0(num,k+1) ) ) & 

                          / ( hkvm(nm,kk) + hkvm(nm,k+1) ) 

                ! 

                szyu  = dwdyu + dvdzu 

                ! 

                s1zyu = ( dwdxu * dvdxu ) + ( dwdyu * dvdyu ) + ( dwdzu * dvdzu ) 

                s2zyu = 0.5 * ( ( dwdxu * dudyu + dvdxu * dudzu ) + ( dwdyu * dvdyu + dvdyu * dvdzu ) & 

                        + ( dwdzu * dwdyu + dvdzu * dwdzu ) ) 

                s3zyu = ( dudyu * dudzu ) + ( dvdyu * dvdzu ) + ( dwdyu * dwdzu ) 

                ! 

                kepsku = 0.5 * ( rtur(nm,k,1) + rtur(num,k,1) ) 

                kepseu = 0.5 * ( rtur(nm,k,2) + rtur(num,k,2) ) 

                ! 

                visceu = 0.5 * ( vnu3d(nm,k) + vnu3d(num,k) ) 

                ! 

                ! compose reyswyu (linear and non-linear part) 

                ! 

                reyszyu(nm,k) = visceu * szyu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1zyu ) + & 
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                                       c2 * ( s2zyu ) + & 

                                       c3 * ( s3zyu ) ) 

                ! 

                ! compose parts of reyswyd 

                ! 

                dudyd = ( 0.25 * ( u0(nm,kk) + u0(nmd,kk) + u0(nm,ku) + u0(nmd,ku) ) & 

                          - 0.25 * ( u0(ndm,kk) + u0(ndmd,kk) + u0(ndm,ku) + u0(ndmd,ku) ) ) / guv(ndm) 

                dudzd = ( 0.25 * ( u0(ndm,kk) + u0(ndmd,kk) + u0(nm,kk) + u0(nmd,kk) ) & 

                          - 0.25 * ( u0(ndm,ku) + u0(ndmd,ku) + u0(nm,ku) + u0(nmd,ku) ) ) & 

                          / ( 0.5 * ( hkvm(ndm,kk) + hkvm(ndm,k+1) ) ) 

                ! 

                dvdxd = ( 0.25 * ( v0(ndm,kk) + v0(ndmu,kk) + v0(ndm,ku) + v0(ndmu,ku) ) & 

                          - 0.25 * ( v0(ndmd,kk) + v0(ndm,kk) + v0(ndmd,ku) + v0(ndm,ku) ) ) / gvv(ndm) 

                dvdyd = ( 0.5 * ( v0(nm,kk) + v0(nm,k+1) ) - 0.5 * ( v0(nddm,kk) + v0(nddm,k+1) ) ) & 

                          / ( 2. * guv(ndm) ) 

                dvdzd = ( v0(ndm,kk) - v0(ndm,k+1) ) / ( 0.5 * ( hkvm(ndm,kk) + hkvm(ndm,k+1) ) ) 

                ! 

                dwdxd = ( 0.25 * ( w0(ndm,k) + w0(ndmu,k) + w0(nm,k) + w0(nmu,k) ) & 

                          - 0.25 * ( w0(ndmd,k) + w0(ndm,k) + w0(nmd,k) + w0(nm,k) ) ) / gvv(ndm) 

                dwdyd = ( w0(nm,k) - w0(ndm,k) ) / guv(ndm) 

                dwdzd = ( 0.5 * ( w0(ndm,kwd) + w0(nm,kwd) ) - 0.5 * ( w0(ndm,k+1) + w0(nm,k+1) ) ) & 

                          / ( hkvm(ndm,kk) + hkvm(ndm,k+1) ) 

                ! 

                szyd  = dwdyd + dvdzd 

                ! 

                s1zyd = ( dwdxd * dvdxd ) + ( dwdyd * dvdyd ) + ( dwdzd * dvdzd ) 

                s2zyd = 0.5 * ( ( dwdxd * dudyd + dvdxd * dudzd ) + ( dwdyd * dvdyd + dvdyd * dvdzd ) & 

                        + ( dwdzd * dwdyd + dvdzd * dwdzd ) ) 

                s3zyd = ( dudyd * dudzd ) + ( dvdyd * dvdzd ) + ( dwdyd * dwdzd ) 

                ! 

                kepskd = 0.5 * ( rtur(nm,k,1) + rtur(ndm,k,1) ) 

                kepsed = 0.5 * ( rtur(nm,k,2) + rtur(ndm,k,2) ) 

                ! 

                visced = 0.5 * ( vnu3d(nm,k) + vnu3d(ndm,k) ) 

                ! 

                ! compose reyswyd (linear and non-linear part) 

                ! 

                reyszyd(nm,k) = visced * szyd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1zyd ) + & 

                                       c2 * ( s2zyd ) + & 

                                       c3 * ( s3zyd ) ) 

                ! 

                ! -w'w' / dz 

                ! 

                ! compose parts of reyszzu 

                ! 

                dudxu = ( u0(nm,kk) - u0(nmd,kk) ) / ( 0.5 * ( gvv(nm) + gvv(ndm) ) ) 

                dudyu = ( 0.25 * ( u0(nm,kk) + u0(nmd,kk) + u0(num,kk) + u0(numd,kk) ) & 

                          - 0.25 * ( u0(ndm,kk) + u0(ndmd,kk) + u0(nm,kk) + u0(nmd,kk) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dudzu = ( 0.25 * ( u0(nm,kk) + u0(nmd,kk) + u0(nm,kd) + u0(nmd,kd) ) & 

                          - 0.25 * ( u0(nm,kk) + u0(nmd,kk) + u0(nm,ku) + u0(nmd,ku) ) ) / hks(nm,kk) 

                ! 

                dvdxu = ( 0.25 * ( v0(nm,kk) + v0(nmu,kk) + v0(ndm,kk) + v0(ndmu,kk) ) & 

                          - 0.25 * ( v0(nmd,kk) + v0(nm,kk) + v0(ndmd,kk) + v0(ndm,kk) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(ndm) ) ) 

                dvdyu = ( v0(nm,kk) - v0(ndm,kk) ) / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dvdzu = ( 0.25 * ( v0(nm,kk) + v0(ndm,kk) + v0(nm,kd) + v0(ndm,kd) ) & 

                          - 0.25 * ( v0(nm,kk) + v0(ndm,kk) + v0(nm,ku) + v0(ndm,ku) ) ) / hks(nm,kk)  

                ! 

                dwdxu = ( 0.25 * ( w0(nm,kk) + w0(nmu,kk) + w0(nm,kd) + w0(nmu,kd) ) & 

                          - 0.25 * ( w0(nmd,kk) + w0(nm,kk) + w0(nmd,kd) + w0(nm,kd) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(ndm) ) ) 

                dwdyu = ( 0.25 * ( w0(nm,kk) + w0(num,kk) + w0(nm,kd) + w0(num,kd) ) & 

                          - 0.25 * ( w0(ndm,kk) + w0(nm,kk) + w0(ndm,kd) + w0(nm,kd) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dwdzu = ( w0(nm,kwd) - w0(nm,k) ) / hks(nm,kk) 

                ! 

                szzu  = dwdzu + dwdzu 

                ! 
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                s1xxu = ( dudxu * dudxu ) + ( dudyu * dudyu ) + ( dudzu * dudzu ) 

                s1yyu = ( dvdxu * dvdxu ) + ( dvdyu * dvdyu ) + ( dvdzu * dvdzu ) 

                s1zzu = ( dwdxu * dwdxu ) + ( dwdyu * dwdyu ) + ( dwdzu * dwdzu ) 

                ! 

                s2xxu = 0.5 * ( ( dudxu * dudxu + dudxu * dudxu ) + ( dudyu * dvdxu + dudyu * dvdxu ) & 

                        + ( dudzu * dwdxu + dudzu * dwdxu ) ) 

                s2yyu = 0.5 * ( ( dvdxu * dudyu + dvdxu * dudyu ) + ( dvdyu * dvdyu + dvdyu * dvdyu ) & 

                        + ( dvdzu * dwdyu + dvdzu * dwdyu ) ) 

                s2zzu = 0.5 * ( ( dwdxu * dudzu + dwdxu * dudzu ) + ( dwdyu * dvdzu + dwdyu * dvdzu ) & 

                        + ( dwdzu * dwdzu + dwdzu * dwdzu ) ) 

                ! 

                s3xxu = ( dudxu * dudxu ) + ( dvdxu * dvdxu ) + ( dwdxu * dwdxu ) 

                s3yyu = ( dudyu * dudyu ) + ( dvdyu * dvdyu ) + ( dwdyu * dwdyu ) 

                s3zzu = ( dudzu * dudzu ) + ( dvdzu * dvdzu ) + ( dwdzu * dwdzu ) 

                ! 

                kepsku = 0.5 * ( rtur(nm,k,1) + rtur(nm,kwd,1) ) 

                kepseu = 0.5 * ( rtur(nm,k,2) + rtur(nm,kwd,2) ) 

                ! 

                visceu = 0.5 * ( vnu3d(nm,k) + vnu3d(nm,kwd) ) 

                ! 

                ! compose reyszzu (linear and non-linear part) 

                ! 

                reyszzu(nm,k) = visceu * szzu & 

                                - 1. * cmu * ( ( kepsku ** 3. ) / ( kepseu ** 2. ) ) * ( &  

                                       c1 * ( s1zzu - ( 1. / 3. ) * ( s1xxu + s1yyu + s1zzu ) ) + & 

                                       c2 * ( s2zzu - ( 1. / 3. ) * ( s2xxu + s2yyu + s2zzu ) ) + & 

                                       c3 * ( s3zzu - ( 1. / 3. ) * ( s3xxu + s3yyu + s3zzu ) ) ) 

                ! 

                ! compose parts of reyszzd 

                ! 

                dudxd = ( u0(nm,ku) - u0(nmd,ku) ) / ( 0.5 * ( gvv(nm) + gvv(ndm) ) ) 

                dudyd = ( 0.25 * ( u0(nm,ku) + u0(nmd,ku) + u0(num,ku) + u0(numd,ku) ) & 

                          - 0.25 * ( u0(ndm,ku) + u0(ndmd,ku) + u0(nm,ku) + u0(nmd,ku) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dudzd = ( 0.25 * ( u0(nm,ku) + u0(nmd,ku) + u0(nm,kk) + u0(nmd,kk) ) & 

                          - 0.25 * ( u0(nm,ku) + u0(nmd,ku) + u0(nm,kuu) + u0(nmd,kuu) ) ) / hks(nm,ku) 

                ! 

                dvdxd = ( 0.25 * ( v0(nm,ku) + v0(nmu,ku) + v0(ndm,ku) + v0(ndmu,ku) ) & 

                          - 0.25 * ( v0(nmd,ku) + v0(nm,ku) + v0(ndmd,ku) + v0(ndm,ku) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(ndm) ) ) 

                dvdyd = ( v0(nm,ku) - v0(ndm,ku) ) / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dvdzd = ( 0.25 * ( v0(nm,ku) + v0(ndm,ku) + v0(nm,kk) + v0(ndm,kk) ) & 

                          - 0.25 * ( v0(nm,ku) + v0(ndm,ku) + v0(nm,kuu) + v0(ndm,kuu) ) ) / hks(nm,ku)  

                ! 

                dwdxd = ( 0.25 * ( w0(nm,ku) + w0(nmu,ku) + w0(nm,kk) + w0(nmu,kk) ) & 

                          - 0.25 * ( w0(nmd,ku) + w0(nm,ku) + w0(nmd,kk) + w0(nm,kk) ) ) & 

                          / ( 0.5 * ( gvv(nm) + gvv(ndm) ) ) 

                dwdyd = ( 0.25 * ( w0(nm,ku) + w0(num,ku) + w0(nm,kk) + w0(num,kk) ) & 

                          - 0.25 * ( w0(ndm,ku) + w0(nm,ku) + w0(ndm,kk) + w0(nm,kk) ) ) & 

                          / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                dwdzd = ( w0(nm,kk) - w0(nm,ku) ) / hks(nm,ku) 

                ! 

                szzd  = dwdzd + dwdzd 

                ! 

                s1xxd = ( dudxd * dudxd ) + ( dudyd * dudyd ) + ( dudzd * dudzd ) 

                s1yyd = ( dvdxd * dvdxd ) + ( dvdyd * dvdyd ) + ( dvdzd * dvdzd ) 

                s1zzd = ( dwdxd * dwdxd ) + ( dwdyd * dwdyd ) + ( dwdzd * dwdzd ) 

                ! 

                s2xxd = 0.5 * ( ( dudxd * dudxd + dudxd * dudxd ) + ( dudyd * dvdxd + dudyd * dvdxd ) & 

                        + ( dudzd * dwdxd + dudzd * dwdxd ) ) 

                s2yyd = 0.5 * ( ( dvdxd * dudyd + dvdxd * dudyd ) + ( dvdyd * dvdyd + dvdyd * dvdyd ) & 

                        + ( dvdzd * dwdyd + dvdzd * dwdyd ) ) 

                s2zzd = 0.5 * ( ( dwdxd * dudzd + dwdxd * dudzd ) + ( dwdyd * dvdzd + dwdyd * dvdzd ) & 

                        + ( dwdzd * dwdzd + dwdzd * dwdzd ) ) 

                ! 

                s3xxd = ( dudxd * dudxd ) + ( dvdxd * dvdxd ) + ( dwdxd * dwdxd ) 

                s3yyd = ( dudyd * dudyd ) + ( dvdyd * dvdyd ) + ( dwdyd * dwdyd ) 

                s3zzd = ( dudzd * dudzd ) + ( dvdzd * dvdzd ) + ( dwdzd * dwdzd ) 

                ! 

                kepskd = 0.5 * ( rtur(nm,k,1) + rtur(nm,k+1,1) ) 

                kepsed = 0.5 * ( rtur(nm,k,2) + rtur(nm,k+1,2) ) 
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                ! 

                visced = 0.5 * ( vnu3d(nm,k) + vnu3d(nm,k+1) ) 

                ! 

                ! compose reyszzd (linear and non-linear part) 

                ! 

                reyszzd(nm,k) = visced * szzd & 

                                - 1. * cmu * ( ( kepskd ** 3. ) / ( kepsed ** 2. ) ) * ( &  

                                       c1 * ( s1zzd - ( 1. / 3. ) * ( s1xxd + s1yyd + s1zzd ) ) + & 

                                       c2 * ( s2zzd - ( 1. / 3. ) * ( s2xxd + s2yyd + s2zzd ) ) + & 

                                       c3 * ( s3zzd - ( 1. / 3. ) * ( s3xxd + s3yyd + s3zzd ) ) ) 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

end subroutine SwashKepsNonLin 

 

The components of the Reynolds stress tensor are explicitly added to the momentum equations in the 
module: SwashExpLay2DHflow.ftn90. Only the changed part of the module is printed. 
 
 subroutine SwashExpLay2DHflow 

    ! 

    if ( iturb == 1 ) then 

       ! 

       do k = 1, kmax 

          ! 

          do n = nfu, nl  

             ! 

             do m = mf + 1, ml - 1 

                ! 

                nm   = kgrpnt(m ,n ) 

                ! 

                if ( uwetp(nm) ) then 

                   ! 

                   lmask = .true. 

                   ! 

                   ! next, compute the divergence of the Reynolds stresses 

                   !  

                   rhsu(nm,k) = rhsu(nm,k) + ( reysxxu(nm,k) - reysxxd(nm,k) ) / gvu(nm) + & 

                                             ( reysxyu(nm,k) - reysxyd(nm,k) ) / guu(nm) + & 

                                             ( reysxzu(nm,k) - reysxzd(nm,k) ) / hkum(nm,k)  

                   ! 

                endif 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

       ! 

    endif 

    ! 

    if ( iturb == 1 ) then 

       ! 

       do k = 1, kmax 

          ! 

          do m = mfu, ml 

             ! 

             do n = nfu, nl - 1  

                ! 

                nm   = kgrpnt(m ,n ) 

                ! 

                if ( vwetp(nm) ) then 

                   ! 

                   ! next, compute the divergence of the Reynolds stresses 

                   ! 

                   rhsu(nm,k) = rhsu(nm,k) + ( reysyxu(nm,k) - reysyxd(nm,k) ) / gvv(nm) + &  

                                             ( reysyyu(nm,k) - reysyyd(nm,k) ) / guv(nm) + &  
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                                             ( reysyzu(nm,k) - reysyzd(nm,k) ) / hkvm(nm,k) 

                   ! 

                endif 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

       ! 

    endif 

    ! 

    if ( iturb == 1 ) then 

       ! 

       do k = 0, kmax-1 

          ! 

          do m = mfu, ml 

             ! 

             do n = nfu, nl  

                ! 

                nd = n - 1 

                md = m - 1 

                ! 

                nm   = kgrpnt(m ,n ) 

                ndm  = kgrpnt(m ,nd) 

                nmd  = kgrpnt(md,n ) 

                ! 

                kk  = max(k  ,1   ) 

                ! 

                if ( vwetp(nm) ) then 

                   ! 

                   ! next, compute the divergence of the Reynolds stresses 

                   ! 

                   rhsw(nm,k) = rhsw(nm,k) + ( reyszxu(nm,k) - reyszxd(nm,k) ) / & 

                                             ( 0.5 * ( gvv(nm) + gvv(nmd) ) ) + & 

                                             ( reyszyu(nm,k) - reyszyd(nm,k) ) / & 

                                             ( 0.5 * ( guu(nm) + guu(ndm) ) ) + & 

                                             ( reyszzu(nm,k) - reyszzd(nm,k) ) / & 

                                             ( 0.5 * ( hks(nm,kk) + hks(nm,k+1) ) )  

                   !  

                endif 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

       ! 

    endif 

 

By default the side walls are treated with no slip boundary conditions. Since the grid spacing usually does not 
allow for the use of no slip conditions a partial slip conditions is implemented. The wall shear stress is 
implicitly treated and added to the matrix. The wall shear stress is either based on hydraulically smooth or 
rough conditions.   
 
       do m = mfu, ml 

          do k = 1, kmax 

             ! 

             nfum = kgrpnt(m,nfu) 

             nlm  = kgrpnt(m,nl) 

             ! 

             ! hydraulically rough or smooth conditions 

             ! 

             if ( fricf(nfum,2) > 0 ) then 

                ! 

                amatu(nfum,k,1) = amatu(nfum,k,1) + ( ( ( 0.09 ** 0.25 ) * sqrt( rtur(nfum,k,1) ) ) & 

                                  / ( log( 33.0 * 0.5 * guu(nfum) / fricf(nfum,2) ) / vonkar ) )  / guu(nfum) 

             else 
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                ! 

                amatu(nfum,k,1) = amatu(nfum,k,1) + ( ( ( 0.09 ** 0.25 ) * sqrt( rtur(nfum,k,1) ) ) & 

                                  / ( log( 9.0 * ( ( ( ( 0.09 ** 0.25 ) * sqrt( rtur(nfum,k,1) ) ) & 

                                  * .5 * guu(nfum) ) / kinvis ) ) / vonkar ) )  / guu(nfum) 

             endif 

             ! 

             if ( fricf(nlm,2) > 0 ) then 

                ! 

                amatu(nlm ,k,1) = amatu(nlm ,k,1) + ( ( ( 0.09 ** 0.25 ) * sqrt( rtur(nlm, k,1) ) ) & 

                                  / ( log( 33.0 * 0.5 * guu(nlm ) / fricf(nlm,2) ) / vonkar ) )  / guu(nlm) 

                ! 

             else 

                ! 

                amatu(nlm ,k,1) = amatu(nlm ,k,1) + ( ( ( 0.09 ** 0.25 ) * sqrt( rtur(nlm, k,1) ) ) & 

                                  / ( log( 9.0 * ( ( ( ( 0.09 ** 0.25 ) * sqrt( rtur(nlm, k,1) ) ) & 

                                  * .5 * guu(nlm)  ) / kinvis ) ) / vonkar ) )  / guu(nlm) 

                ! 

             endif 

             ! 

          enddo 

       enddo 

 

In addition the normal velocity gradients at the virtual cells are set to zero.  
 
    do m = mf, ml 

       ! 

       nfm  = kgrpnt(m,nf ) 

       nfum = kgrpnt(m,nfu) 

       nlm  = kgrpnt(m,nl ) 

       nlum = kgrpnt(m,nlu) 

       ! 

       if ( ibb(m) == 1 .and. LMYF ) then 

          ! 

          ! set to zero at closed boundary 

          ! 

          u1(nfm,:) = u1(nfum,:)!0. 

          ! 

       else if ( ibb(m) > 1 .and. LMYF ) then 

          ! 

          ! zero normal gradient condition at open boundaries 

          ! 

          u1(nfm,:) = u1(nfum,:) 

          ! 

       endif 

       ! 

       if ( ibt(m) == 1 .and. LMYL ) then 

          ! 

          ! set to zero at closed boundary 

          ! 

          u1(nlum,:) = u1(nlm,:) !0. 

          ! 

       else if ( ibt(m) > 1 .and. LMYL ) then 

          ! 

          ! zero normal gradient condition at open boundaries 

          ! 

          u1(nlum,:) = u1(nlm,:) 

          ! 

       endif 

       ! 

    enddo 
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B. SWASH subroutines for LES with a standard Smagorinsky closure  
 

The new subroutine SwashSubVisc is used to calculate the subgrid viscosity with the standard Smagorinsky 
model. The subgrid viscosity is saved in the vnu3d(:,:) matrix which is originally used for the vertical eddy 
viscosity of the standard k-ε model. 
 
subroutine SwashSubVisc 

! 

!   --|-----------------------------------------------------------|-- 

!     | Delft University of Technology                            | 

!     | Faculty of Civil Engineering                              | 

!     | Environmental Fluid Mechanics Section                     | 

!     | P.O. Box 5048, 2600 GA  Delft, The Netherlands            | 

!     |                                                           | 

!     | Programmers: The SWASH team                               | 

!   --|-----------------------------------------------------------|-- 

! 

! 

!     SWASH (Simulating WAves till SHore); a non-hydrostatic wave-flow model 

!     Copyright (C) 2010-2011  Delft University of Technology 

! 

!     This program is free software; you can redistribute it and/or 

!     modify it under the terms of the GNU General Public License as 

!     published by the Free Software Foundation; either version 2 of 

!     the License, or (at your option) any later version. 

! 

!     This program is distributed in the hope that it will be useful, 

!     but WITHOUT ANY WARRANTY; without even the implied warranty of 

!     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

!     GNU General Public License for more details. 

! 

!     A copy of the GNU General Public License is available at 

!     http://www.gnu.org/copyleft/gpl.html#SEC3 

!     or by writing to the Free Software Foundation, Inc., 

!     59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 

! 

! 

!   Authors 

! 

!    1.00: Tom Bogaard 

! 

!   Updates 

! 

!    1.00, January 2012: New subroutine 

! 

!   Purpose 

! 

!   Calculates subgrid viscosity coefficient 

! 

!   Method 

! 

!   The Smagorinsky model is utilized to account for subgrid turbulent mixing 

! 

!   Note: if subgrid viscosity is larger than maximum, which is based on stability criterion, apply clipping 

! 

!   Modules used 

! 

    use ocpcomm4 

    use SwashCommdata3 

    use m_genarr 

    use m_parall 

    use SwashFlowdata 

    use SwashTimeComm 

! 

    implicit none 

! 

!   Argument variables 
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! 

!   Local variables 

! 

    integer            :: icistb       ! counter for number of instable points 

    integer, save      :: ient = 0     ! number of entries in this subroutine 

    integer            :: k            ! loop counter 

    integer            :: kd           ! index of layer k-1 

    integer            :: ku           ! index of layer k+1 

    integer            :: kend         ! end index of loop over layers 

    integer            :: ksta         ! start index of loop over layers 

    integer            :: m            ! loop counter 

    integer            :: n            ! loop counter 

    integer            :: md           ! index of point m-1 

    integer            :: mend         ! end index of loop over u-points 

    integer            :: msta         ! start index of loop over u-points 

    integer            :: mu           ! index of point m+1 

    integer            :: nd           ! index of point n-1 

    integer            :: ndm          ! pointer to m,n-1 

    integer            :: ndmu         ! pointer to m+1,n-1 

    integer            :: nend         ! end index of loop over v-points 

    integer            :: nfm          ! pointer to m,nf 

    integer            :: nfum         ! pointer to m,nfu 

    integer            :: nldm         ! pointer to m,nl-1 

    integer            :: nlm          ! pointer to m,nl 

    integer            :: nm           ! pointer to m,n 

    integer            :: nmd          ! pointer to m-1,n 

    integer            :: nmf          ! pointer to mf,n 

    integer            :: nmfu         ! pointer to mfu,n 

    integer            :: nml          ! pointer to ml,n 

    integer            :: nmld         ! pointer to ml-1,n 

    integer            :: nmlu         ! pointer to mlu,n 

    integer            :: nmu          ! pointer to m+1,n 

    integer            :: nsta         ! start index of loop over v-points 

    integer            :: nu           ! index of point n+1 

    integer            :: num          ! pointer to m,n+1 

    integer            :: numd         ! pointer to m-1,n+1 

    integer            :: numu         ! pointer to m+1,n+1 

    ! 

    real               :: dxl          ! local mesh size in x-direction 

    real               :: dyl          ! local mesh size in y-direction 

    real               :: dzl          ! local mesh size in z-direction 

    ! 

    real               :: dudx         ! local velocity gradient dudx 

    real               :: dudy         ! local velocity gradient dudy 

    real               :: dudz         ! local velocity gradient dudz 

    real               :: dvdx         ! local velocity gradient dvdx 

    real               :: dvdy         ! local velocity gradient dvdy 

    real               :: dvdz         ! local velocity gradient dvdz 

    real               :: dwdx         ! local velocity gradient dwdx 

    real               :: dwdy         ! local velocity gradient dwdy 

    real               :: dwdz         ! local velocity gradient dwdz 

    ! 

    real               :: zs           ! distance from bottom 

    real               :: cs           ! Smagorinsky constant 

    ! 

    real               :: rproc        ! auxiliary variable with percentage of instable points 

    real               :: stabmx       ! auxiliary variable with maximum viscosity based stability criterion 

    ! 

    character(80)      :: msgstr       ! string to pass message 

! 

!   Structure 

! 

!   Description of the pseudo code 

! 

!   Source text 

! 

    if (ltrace) call strace (ient,'SwashSubVisc') 

    ! 

    icistb = 0 

    ! 

    ! Smagorinsky model or mixing length model 
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    ! 

    ! compute eddy viscosity coefficients at internal depth points only 

    ! 

    ! In case of a subdomain interface not coinciding with a real boundary, the begin point and/or 

    ! end point of the loop becomes mf and ml, respectively, in order to save on communication 

    ! (redundant calculation for vnu2d). The same for y-direction. 

    ! 

    msta = mf + 1                ! first internal depth point in x-direction 

    if ( .not.LMXF ) msta = mf 

    mend = ml - 1                ! last  internal depth point in x-direction 

    if ( .not.LMXL ) mend = ml 

    nsta = nf + 1                ! first internal depth point in y-direction 

    if ( .not.LMYF ) nsta = nf 

    nend = nl - 1                ! last  internal depth point in y-direction 

    if ( .not.LMYL ) nend = nl 

    ksta = 1. 

    kend = kmax 

    ! 

    do k = ksta, kend 

       ! 

       do n = nsta, nend 

          ! 

          do m = msta, mend 

             ! 

             md = m - 1 

             mu = m + 1 

             nd = n - 1 

             nu = n + 1 

             ! 

             nm   = kgrpnt(m ,n ) 

             nmd  = kgrpnt(md,n ) 

             nmu  = kgrpnt(mu,n ) 

             ndm  = kgrpnt(m ,nd) 

             num  = kgrpnt(m ,nu) 

             ndmu = kgrpnt(mu,nd) 

             numd = kgrpnt(md,nu) 

             numu = kgrpnt(mu,nu) 

             ! 

             ! for permanently dry neighbours, corresponding values will be mirrored 

             ! 

             if ( nmd  == 1 ) nmd  = nm 

             if ( nmu  == 1 ) nmu  = nm 

             if ( ndm  == 1 ) ndm  = nm 

             if ( num  == 1 ) num  = nm 

             if ( ndmu == 1 ) ndmu = ndm 

             if ( numd == 1 ) numd = nmd 

             if ( numu == 1 ) numu = nmu 

             ! 

             kd  = max(k-1,1   ) 

             ku  = min(k+1,kmax) 

             ! 

             ! local mesh sizes 

             ! 

             dxl = 0.5 * ( gvv(nm) + gvv(nmu) ) 

             dyl = 0.5 * ( guu(nm) + guu(num) ) 

             dzl = 0.25 * ( hks(nm,k) + hks(nmu,k) + hks(numu,k) + hks(num,k) ) 

             ! 

             ! local velocity gradients 

             ! 

             dudx = ( u0(nmu,k) + u0(numu,k) - u0(nmd,k) - u0(numd,k) ) / ( 4. * dxl ) 

             dudy = ( u0(num,k) - u0(nm,k) ) / dyl  

             dudz = ( ( 0.25 * ( u0(nm,kd) + u0(num,kd) + u0(nm,k) + u0(num,k) ) ) & 

                    - ( 0.25 * ( u0(nm,k) + u0(num,k) + u0(nm,ku) + u0(num,ku) ) ) ) / dzl 

             ! 

             dvdx = ( v0(nmu,k) - v0(nm,k) ) / dxl 

             dvdy = ( v0(num,k) + v0(numu,k) - v0(ndm,k) - v0(ndmu,k) ) / ( 4. * dyl ) 

             dvdz = ( ( 0.25 * ( v0(nm,k) + v0(nmu,k) + v0(nm,kd) + v0(nmu,kd) ) ) & 

                    - ( 0.25 * ( v0(nm,ku) + v0(nmu,ku) + v0(nm,k) + v0(nmu,k) ) ) ) / dzl 

             ! 

             dwdx = ( 0.25 * ( w0(nmu,k) + w0(numu,k) + w0(nmu,k-1) - w0(numu,k-1) ) & 

                    - 0.25 * ( w0(nm,k) + w0(num,k) + w0(nm,k-1) - w0(num,k-1) ) ) /  dxl  
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             dwdy = ( 0.25 * ( w0(num,k) + w0(numu,k) + w0(num,k-1) - w0(numu,k-1) ) & 

                    - 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(nm,k-1) - w0(nmu,k-1) ) ) /  dyl  

             dwdz = ( ( 0.25 * ( w0(nm,k-1) + w0(nmu,k-1) + w0(numu,k-1) + w0(num,k-1) ) ) & 

                    -  ( 0.25 * ( w0(nm,k) + w0(nmu,k) + w0(numu,k) + w0(num,k) ) ) ) / dzl 

             ! 

             ! van Driest damping function ( u* based on inflow boundary condition and smooth wall conditions )  

             ! 

             zs = 0.5 * ( zks(nm,kmax-1) - zks(nm,kmax) ) * ( kmax - k + 1 ) * 2 - 0.5 & 

                  * ( zks(nm,kmax-1) - zks(nm,kmax) ) 

             ! 

             cs = 0.065 * ( 1 - exp( - ( ( ( 0.00536 * zs ) / 1E-06 ) / 26. ) ) ) 

             ! 

             ! compute subgrid viscosity  

             ! 

             vnu3d(nm,k) = 1E-06 + cs * cs * ( dxl * dyl * dzl ) ** ( 2. / 3. ) & 

                           * sqrt( 0.5 * ( 4. * ( dudx ) ** 2. + 2. * ( dudy + dvdx ) ** 2. + 2. & 

                           * ( dudz + dwdx ) ** 2. + 4. * ( dvdy ) ** 2. + 2 * ( dvdz + dwdy ) ** 2. & 

                           + 4 * ( dwdz ) ** 2. ) )  

             ! 

             ! stability criterium based on horizontal mesh sizes   

             ! 

             stabmx = 1./(2.*dt*(1./(dxl*dxl) + 1./(dyl*dyl))) 

             ! 

             if ( .not. vnu3d(nm,k) < stabmx ) then 

                vnu3d(nm,k) = stabmx 

                icistb    = icistb + 1 

             endif 

             ! 

          enddo 

          ! 

       enddo 

       ! 

    enddo 

    ! 

    ! no slip condition for subgrid viscosity at k = 0 and k = kmax + 1 

    ! 

    do n = nsta, nend 

       ! 

       do m = msta, mend 

          ! 

          nm = kgrpnt(m ,n) 

          ! 

          vnu3d(nm,0) = vnu3d(nm,1) 

          ! 

          vnu3d(nm,kmax+1) = vnu3d(nm,kmax)  

          ! 

       enddo 

       ! 

    enddo 

    ! 

    ! set to zero for permanently dry points 

    ! 

    do k = 0, kmax + 1 

       ! 

       vnu3d(1,k) = 0. 

       ! 

    enddo 

    ! 

    ! at real boundaries, copy them from internal points 

    ! 

    do k = 0, kmax + 1 

       ! 

       do n = nsta, nend 

          ! 

          nmf  = kgrpnt(mf  ,n) 

          nmfu = kgrpnt(mfu ,n) 

          nmld = kgrpnt(ml-1,n) 

          nml  = kgrpnt(ml  ,n) 

          ! 

          if ( LMXF ) then 

             ! 
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             vnu3d(nmf,k) = vnu3d(nmfu,k) 

             ! 

          endif 

          ! 

          if ( LMXL ) then 

             ! 

             vnu3d(nml,k) = vnu3d(nmld,k) 

             ! 

          endif 

          ! 

       enddo 

       ! 

    enddo 

    ! 

    do k = 0, kmax + 1 

       ! 

       do m = mf, ml 

          ! 

          nfm   = kgrpnt(m,nf  ) 

          nfum  = kgrpnt(m,nfu ) 

          nldm  = kgrpnt(m,nl-1) 

          nlm   = kgrpnt(m,nl  ) 

          ! 

          if ( LMYF ) then 

             ! 

             vnu3d(nfm,k) = vnu3d(nfum,k) 

             ! 

          endif 

          ! 

          if ( LMYL ) then 

             ! 

             vnu3d(nlm,k)  = vnu3d(nldm,k) 

             ! 

          endif 

          ! 

       enddo 

       ! 

    enddo 

    ! 

    ! give warning for instable points 

    ! 

    if ( icistb > 0 ) then 

       ! 

       rproc = 100.*real(icistb)/ ( real(mcgrd) * kmax ) 

       ! 

       if ( .not. rproc < 1. ) then 

          write (msgstr,'(a,f5.1)') & 

          'percentage of instable points for computing horizontal eddy viscosity = ',rproc 

          call msgerr (1, trim(msgstr) ) 

       endif 

       ! 

    endif 

    ! 

end subroutine SwashSubVisc 

 

The new subroutine SwashLes computes the components subgrid stress tensor. The 2nd derivatives in vertical 
direction are implicitly treated and directly added to the matrix. They are computed in SwashExpLay2DHflow. 
All subgrid stresses are added to the momentum equations in the module SwashExpLay2DHflow.  
 
subroutine SwashLes 

! 

!   --|-----------------------------------------------------------|-- 

!     | Delft University of Technology                            | 

!     | Faculty of Civil Engineering                              | 

!     | Environmental Fluid Mechanics Section                     | 

!     | P.O. Box 5048, 2600 GA  Delft, The Netherlands            | 

!     |                                                           | 

!     | Programmers: The SWASH team                               | 
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!   --|-----------------------------------------------------------|-- 

! 

! 

!     SWASH (Simulating WAves till SHore); a non-hydrostatic wave-flow model 

!     Copyright (C) 2010-2011  Delft University of Technology 

! 

!     This program is free software; you can redistribute it and/or 

!     modify it under the terms of the GNU General Public License as 

!     published by the Free Software Foundation; either version 2 of 

!     the License, or (at your option) any later version. 

! 

!     This program is distributed in the hope that it will be useful, 

!     but WITHOUT ANY WARRANTY; without even the implied warranty of 

!     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

!     GNU General Public License for more details. 

! 

!     A copy of the GNU General Public License is available at 

!     http://www.gnu.org/copyleft/gpl.html#SEC3 

!     or by writing to the Free Software Foundation, Inc., 

!     59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 

! 

! 

!   Authors 

! 

!    1.00: Tom Bogaard 

! 

!   Updates 

! 

!    1.00, January 2012: New subroutine 

! 

!   Purpose 

! 

!   Calculates reynolds stresses with non-linear k-epsilon model 

! 

!   Method 

! 

!   Modules used 

! 

    use ocpcomm4 

    use SwashCommdata3 

    use SwashFlowdata 

    use m_genarr, only: kgrpnt, guu, guv, gvu, gvv, gsqs, gsqsu, gsqsv, work 

    use m_parall 

! 

    implicit none 

! 

!   Local variables 

! 

    integer, save                      :: ient = 0    ! number of entries in this subroutine 

    integer                            :: m           ! loop counter in x-direction 

    integer                            :: n           ! loop counter in y direction 

    integer                            :: k           ! loop counter over vertical layers 

    integer                            :: kk          ! loop counter over vertical layers (minimal value = 1) 

    integer                            :: mu          ! index of point m+1 

    integer                            :: md          ! index of point m-1 

    integer                            :: nu          ! index of point n+1 

    integer                            :: nd          ! index of point n-1 

    integer                            :: kd          ! index of layer k-1 

    integer                            :: ku          ! index of layer k+1 

    integer                            :: kwd         ! index of layer k-1 for w-velocity 

    integer                            :: kwu         ! index of layer k+1 for w-velocity 

    ! 

    integer                            :: nm          ! pointer to m   ,n 

    integer                            :: num         ! pointer to m   ,n+1 

    integer                            :: ndm         ! pointer to m   ,n-1 

    integer                            :: nmu         ! pointer to m+1 ,n 

    integer                            :: nmd         ! pointer to m-1 ,n 

    integer                            :: numd        ! pointer to m-1 ,n+1 

    integer                            :: numu        ! pointer to m+1 ,n+1 

    integer                            :: ndmd        ! pointer to m+1 ,n-1 

    integer                            :: ndmu        ! pointer to m-1 ,n+1 
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    ! 

    real                               :: dudxu       ! velocity gradient in upward point 

    real                               :: dudyu       ! velocity gradient in upward point 

    real                               :: dudzu       ! velocity gradient in upward point 

    real                               :: dvdxu       ! velocity gradient in upward point 

    real                               :: dvdyu       ! velocity gradient in upward point 

    real                               :: dvdzu       ! velocity gradient in upward point 

    real                               :: dwdxu       ! velocity gradient in upward point 

    real                               :: dwdyu       ! velocity gradient in upward point 

    real                               :: dwdzu       ! velocity gradient in upward point 

    real                               :: dudxd       ! velocity gradient in downward point 

    real                               :: dudyd       ! velocity gradient in downward point 

    real                               :: dudzd       ! velocity gradient in downward point 

    real                               :: dvdxd       ! velocity gradient in downward point 

    real                               :: dvdyd       ! velocity gradient in downward point 

    real                               :: dvdzd       ! velocity gradient in downward point 

    real                               :: dwdxd       ! velocity gradient in downward point 

    real                               :: dwdyd       ! velocity gradient in downward point 

    real                               :: dwdzd       ! velocity gradient in downward point 

    ! 

    real                               :: sxxu        ! stress tensor in upward point 

    real                               :: sxyu        ! stress tensor in upward point 

    real                               :: sxzu        ! stress tensor in upward point 

    real                               :: sxxd        ! stress tensor in downward point 

    real                               :: sxyd        ! stress tensor in downward point 

    real                               :: sxzd        ! stress tensor in downward point 

    ! 

    real                               :: syxu        ! stress tensor in upward point 

    real                               :: syyu        ! stress tensor in upward point 

    real                               :: syzu        ! stress tensor in upward point 

    real                               :: syxd        ! stress tensor in downward point 

    real                               :: syyd        ! stress tensor in downward point 

    real                               :: syzd        ! stress tensor in downward point 

    ! 

    real                               :: szxu        ! stress tensor in upward point 

    real                               :: szyu        ! stress tensor in upward point 

    real                               :: szzu        ! stress tensor in upward point 

    real                               :: szxd        ! stress tensor in downward point 

    real                               :: szyd        ! stress tensor in downward point 

    real                               :: szzd        ! stress tensor in downward point 

    ! 

    real                               :: visceu      ! eddy viscosity in upward point 

    real                               :: visced      ! eddy viscosity in downward point 

!    

!   Structure 

! 

!   Description of the pseudo code 

! 

!   Source text 

! 

    if (ltrace) call strace (ient,'SwashLes') 

! 

! u-momemtun equation 

! 

       do k = 1, kmax 

          ! 

          do n = nfu, nl 

             ! 

             do m = mf+1, ml-1 

                ! 

                md    = m - 1 

                mu    = m + 1 

                nd    = n - 1 

                nu    = n + 1 

                ! 

                nm    = kgrpnt(m ,n ) 

                nmd   = kgrpnt(md,n ) 

                nmu   = kgrpnt(mu,n ) 

                ndm   = kgrpnt(m ,nd) 

                num   = kgrpnt(m ,nu) 

                ndmd  = kgrpnt(md,nd) 
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                ndmu  = kgrpnt(mu,nd) 

                numd  = kgrpnt(md,nu) 

                numu  = kgrpnt(mu,nu) 

                ! 

                kd  = max(k-1,1   ) 

                ku  = min(k+1,kmax) 

                kwd  = max(k-1,0   ) 

                kwu  = min(k+1,kmax) 

                ! 

                ! -u'u' / dx 

                ! 

                ! compose parts of reysxxu 

                ! 

                dudxu = ( u0(nmu,k) - u0(nm,k) ) / ( 0.5 * ( gvv(ndmu) + gvv(nmu) ) ) 

                ! 

                sxxu  = dudxu + dudxu 

                ! 

                visceu = 0.25 * ( vnu3d(nm,k) + vnu3d(nmu,k) + vnu3d(ndmu,k) + vnu3d(ndm,k) ) 

                ! 

                ! compose reysxxu (linear and non-linear part) 

                ! 

                ! 

                reysxxu(nm,k) = visceu * sxxu  

                ! 

                ! compose parts of reysxxd 

                ! 

                dudxd = ( u0(nm,k) - u0(nmd,k) ) / ( 0.5 * ( gvv(ndm) + gvv(nm) ) ) 

                ! 

                sxxd  = dudxd + dudxd 

                ! 

                visced = 0.25 * ( vnu3d(nm,k) + vnu3d(nmd,k) + vnu3d(ndmd,k) + vnu3d(ndm,k) ) 

                ! 

                ! compose reysxxd (linear and non-linear part) 

                ! 

                reysxxd(nm,k) = visced * sxxd 

                ! 

                ! -u'v' / dy 

                ! 

                ! compose parts of reysxyu 

                ! 

                dudyu = ( u0(num,k) - u0(nm,k) ) / ( 0.5 * ( guu(nm) + guu(num) ) ) 

                dvdxu = ( v0(nmu,k) - v0(nm,k) ) / ( 0.5 * ( gvv(nm) + gvv(nmu) ) ) 

                ! 

                sxyu  = dudyu + dvdxu 

                ! 

                visceu = vnu3d(nm,k) 

                ! 

                ! compose reysxyu (linear and non-linear part) 

                ! 

                reysxyu(nm,k) = visceu * sxyu 

                ! 

                ! compose parts of reysxyd 

                ! 

                dudyd = ( u0(nm,k) - u0(ndm,k) ) / ( 0.5 * ( guu(ndm) + guu(nm) ) ) 

                dvdxd = ( v0(ndmu,k) - v0(ndm,k) ) / ( 0.5 * ( gvv(ndm) + gvv(ndmu) ) ) 

                ! 

                sxyd  = dudyd + dvdxd 

                ! 

                visced = vnu3d(ndm,k) 

                ! 

                ! compose reysxyd (linear and non-linear part) 

                ! 

                reysxyd(nm,k) = visced * sxyd  

                ! 

                ! -u'w' / dz 

                ! 

                ! compose parts of reysxzu 

                ! 

                dudzu = ( u0(nm,kd) - u0(nm,k) ) / ( 0.5 * ( hkum(nm,kd) + hkum(nm,k) ) ) 

                dwdxu = ( w0(nmu,k-1) - w0(nm,k-1) ) / gvu(nm) 

                ! 
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                sxzu  = dwdxu !+ dudzu 

                ! 

                visceu = 0.25 * ( vnu3d(nm,k) + vnu3d(ndm,k) + vnu3d(nm,k-1) + vnu3d(ndm,k-1) ) 

                ! 

                ! compose reysxzu (linear and non-linear part) 

                ! 

                reysxzu(nm,k) = visceu * sxzu  

                ! 

                ! compose parts of reysxzd 

                ! 

                dudzd = ( u0(nm,k) - u0(nm,ku) ) / ( 0.5 * ( hkum(nm,k) + hkum(nm,ku) ) ) 

                dwdxd = ( w0(nmu,k) - w0(nm,k) ) / gvu(nm) 

                ! 

                sxzd  = dwdxd !+ dudzd 

                ! 

                visced = 0.25 * ( vnu3d(nm,k+1) + vnu3d(ndm,k+1) + vnu3d(nm,k) + vnu3d(ndm,k) ) 

                ! 

                ! compose reysxzd (linear and non-linear part) 

                ! 

                reysxzd(nm,k) = visced * sxzd  

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

       ! 

! 

! v-momemtun equation 

! 

       do k = 1, kmax 

          ! 

          do n = nf+1, nl-1 

             ! 

             do m = mfu, ml 

                ! 

                md    = m - 1 

                mu    = m + 1 

                nd    = n - 1 

                nu    = n + 1 

                ! 

                nm    = kgrpnt(m ,n ) 

                nmd   = kgrpnt(md,n ) 

                nmu   = kgrpnt(mu,n ) 

                ndm   = kgrpnt(m ,nd) 

                num   = kgrpnt(m ,nu) 

                ndmd  = kgrpnt(md,nd) 

                ndmu  = kgrpnt(mu,nd) 

                numd  = kgrpnt(md,nu) 

                numu  = kgrpnt(mu,nu) 

                ! 

                kd  = max(k-1,1   ) 

                ku  = min(k+1,kmax) 

                kwd  = max(k-1,0   ) 

                kwu  = min(k+1,kmax) 

                ! 

                ! -v'u' / dx 

                ! 

                ! compose parts of reysyxu 

                ! 

                dvdxu = ( v0(nmu,k) - v0(nm,k) ) / ( 0.5 * ( gvv(nm) + gvv(nmu) ) ) 

                dudyu = ( u0(num,k) - u0(nm,k) ) / ( 0.5 * ( guu(num) + guu(nm) ) ) 

                ! 

                syxu  = dudyu + dvdxu 

                ! 

                visceu = vnu3d(nm,k) 

                ! 

                ! compose reysyxu (linear and non-linear part) 

                ! 

                reysyxu(nm,k) = visceu * syxu 

                ! 
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                ! compose parts of reysyxd 

                ! 

                dvdxd = ( v0(nm,k) - v0(nmd,k) ) / ( 0.5 * ( gvv(nmd) + gvv(nm) ) ) 

                dudyd = ( u0(num,k) - u0(nm,k) ) / ( 0.5 * ( guu(num) + guu(nm) ) ) 

                ! 

                syxd  = dudyd + dvdxd 

                ! 

                visced = vnu3d(nmd,k) 

                ! 

                ! compose reysyxd (linear and non-linear part) 

                ! 

                reysyxd(nm,k) = visced * syxd 

                ! 

                ! -v'v' / dy 

                ! 

                ! compose parts of reysyyu 

                ! 

                dvdyu = ( v0(num,k) - v0(nm,k) ) / ( 0.5 * ( guu(num) + guu(numd) ) ) 

                ! 

                syyu  = dvdyu + dvdyu 

                ! 

                visceu = 0.25 * ( vnu3d(nm,k) + vnu3d(num,k) + vnu3d(numd,k) + vnu3d(nmd,k) ) 

                ! 

                ! compose reysyyu (linear and non-linear part) 

                ! 

                reysyyu(nm,k) = visceu * syyu 

                ! 

                ! compose parts of reysyyd 

                ! 

                dvdyd = ( v0(nm,k) - v0(ndm,k) ) / ( 0.5 * ( guu(nm) + guu(nmd) ) ) 

                ! 

                syyd  = dvdyd + dvdyd 

                ! 

                visced = 0.25 * ( vnu3d(nm,k) + vnu3d(ndm,k) + vnu3d(ndmd,k) + vnu3d(nmd,k) ) 

                ! 

                ! compose reysyyd (linear and non-linear part) 

                ! 

                reysyyd(nm,k) = visced * syyd 

                ! 

                ! -v'w' / dz 

                ! 

                ! compose parts of reysyzu 

                ! 

                dvdzu = ( v0(nm,kd) - v0(nm,k) ) / ( 0.5 * ( hkvm(nm,kd) + hkvm(nm,k) ) ) 

                dwdyu = ( w0(num,k-1) - w0(nm,k-1) ) / guv(nm) 

                ! 

                syzu  = dwdyu !+ dvdzu 

                ! 

                visceu = 0.25 * ( vnu3d(nm,k) + vnu3d(nmd,k) + vnu3d(nm,k-1) + vnu3d(nmd,k-1) ) 

                ! 

                ! compose reysyzu (linear and non-linear part) 

                ! 

                reysyzu(nm,k) = visceu * syzu 

                ! 

                ! compose parts of reysyzd 

                ! 

                dvdzd = ( v0(nm,k) - v0(nm,ku) ) / ( 0.5 * ( hkvm(nm,k) + hkvm(nm,ku) ) ) 

                dwdyd = ( w0(num,k) - w0(nm,k) ) / guv(nm) 

                ! 

                syzd  = dwdyd !+ dvdzd 

                ! 

                visced = 0.25 * ( vnu3d(nm,k+1) + vnu3d(nmd,k+1) + vnu3d(nm,k) + vnu3d(nmd,k) ) 

                ! 

                ! compose reysyzd (linear and non-linear part) 

                ! 

                reysyzd(nm,k) = visced * syzd                 

                ! 

             enddo 

             ! 

          enddo 

          ! 
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       enddo 

! 

! w-momemtun equation 

! 

       do k = 0, kmax - 1 

          ! 

          do n = nfu, nl 

             ! 

             do m = mfu, ml 

                ! 

                md    = m - 1 

                mu    = m + 1 

                nd    = n - 1 

                nu    = n + 1 

                ! 

                nm    = kgrpnt(m ,n ) 

                nmd   = kgrpnt(md,n ) 

                nmu   = kgrpnt(mu,n ) 

                ndm   = kgrpnt(m ,nd) 

                num   = kgrpnt(m ,nu) 

                ndmd  = kgrpnt(md,nd) 

                ndmu  = kgrpnt(mu,nd) 

                numd  = kgrpnt(md,nu) 

                numu  = kgrpnt(mu,nu) 

                ! 

                kd  = max(k-1,1   ) 

                ku  = min(k+1,kmax) 

                kk  = max(k  ,1   ) 

                kwd  = max(k-1,0   ) 

                kwu  = min(k+1,kmax) 

                ! 

                ! -w'u' / dx 

                ! 

                ! compose parts of reyszxu 

                ! 

                dwdxu = ( w0(nmu,k) - w0(nm,k) ) / gvu(nm) 

                dudzu = ( u0(nm,kk) - u0(nm,ku) ) / ( 0.5 * ( hkum(nm,kk) + hkum(nm,k+1) ) ) 

                ! 

                szxu  = dudzu + dwdxu 

                ! 

                visceu = 0.25 * ( vnu3d(nm,k) + vnu3d(ndm,k) + vnu3d(nm,k+1) + vnu3d(ndm,k+1) ) 

                ! 

                ! compose reyswxu (linear and non-linear part) 

                ! 

                reyszxu(nm,k) = visceu * szxu 

                ! 

                ! compose parts of reyszxd 

                ! 

                dwdxd = ( w0(nm,k) - w0(nmd,k) ) / gvu(nmd) 

                dudzd = ( u0(nmd,kk) - u0(nmd,ku) ) / ( 0.5 * ( hkum(nmd,kk) + hkum(nmd,k+1) ) ) 

                ! 

                szxd  = dudzd + dwdxd 

                ! 

                visced = 0.25 * ( vnu3d(nmd,k) + vnu3d(ndmd,k) + vnu3d(nmd,k+1) + vnu3d(ndmd,k+1) ) 

                ! 

                ! compose reyszxd (linear and non-linear part) 

                ! 

                reyszxd(nm,k) = visced * szxd 

                ! 

                ! -w'v' / dy 

                ! 

                ! compose parts of reyswyu 

                ! 

                dwdyu = ( w0(num,k) - w0(nm,k) ) / guv(nm) 

                dvdzu = ( v0(nm,kk) - v0(nm,ku) ) / ( 0.5 * ( hkvm(nm,kk) + hkvm(nm,k+1) ) ) 

                ! 

                szyu  = dwdyu + dvdzu 

                ! 

                visceu = 0.25 * ( vnu3d(nm,k) + vnu3d(nmd,k) + vnu3d(nm,k+1) + vnu3d(nmd,k+1) ) 

                ! 

                ! compose reyswyu (linear and non-linear part) 
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                ! 

                reyszyu(nm,k) = visceu * szyu 

                ! 

                ! compose parts of reyswyd 

                ! 

                dwdyd = ( w0(nm,k) - w0(ndm,k) ) / guv(ndm) 

                dvdzd = ( v0(ndm,kk) - v0(ndm,ku) ) / ( 0.5 * ( hkvm(ndm,kk) + hkvm(ndm,k+1) ) ) 

                ! 

                szyd  = dwdyd + dvdzd 

                ! 

                visced = 0.25 * ( vnu3d(ndm,k) + vnu3d(ndmd,k) + vnu3d(ndm,k+1) + vnu3d(ndmd,k+1) ) 

                ! 

                ! compose reyswyd (linear and non-linear part) 

                ! 

                reyszyd(nm,k) = visced * szyd 

                ! 

                ! -w'w' / dz 

                ! 

                ! compose parts of reyszzu 

                ! 

                dwdzu = ( w0(nm,kwd) - w0(nm,k) ) / hks(nm,kk)  

                ! 

                szzu  = 0. !dwdzu + dwdzu 

                ! 

                visceu = 0.25 * ( vnu3d(nm,k) + vnu3d(nmd,k) + vnu3d(ndm,k) + vnu3d(ndmd,k) ) 

                ! 

                ! compose reyszzu (linear and non-linear part) 

                ! 

                reyszzu(nm,k) = visceu * szzu 

                ! 

                ! compose parts of reyszzd 

                ! 

                dwdzd = ( w0(nm,k) - w0(nm,ku) ) / hks(nm,k+1)  

                ! 

                szzd  = 0. !dwdzd + dwdzd 

                ! 

                visced = 0.25 * ( vnu3d(nm,k+1) + vnu3d(nmd,k+1) + vnu3d(ndm,k+1) + vnu3d(ndmd,k+1) ) 

                ! 

                ! compose reyszzd (linear and non-linear part) 

                ! 

                reyszzd(nm,k) = visced * szzd 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

end subroutine SwashLes 

 

The components of the subgrid stress tensor are explicitly added to the momentum equations in the module: 
SwashExpLay2DHflow.ftn90. Only the changed part of the module is printed. 
 
 subroutine SwashExpLay2DHflow 

    ! 

    if ( iturb == 1 ) then 

       ! 

       do k = 1, kmax 

          ! 

          do n = nfu, nl  

             ! 

             do m = mf + 1, ml - 1 

                ! 

                nm   = kgrpnt(m ,n ) 

                ! 

                if ( uwetp(nm) ) then 

                   ! 

                   lmask = .true. 

                   ! 

                   ! next, compute the divergence of the Subgrid stresses 
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                   !  

                   rhsu(nm,k) = rhsu(nm,k) + ( reysxxu(nm,k) - reysxxd(nm,k) ) / gvu(nm) + & 

                                             ( reysxyu(nm,k) - reysxyd(nm,k) ) / guu(nm) + & 

                                             ( reysxzu(nm,k) - reysxzd(nm,k) ) / hkum(nm,k)  

                   ! 

                endif 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

       ! 

    endif 

    ! 

    if ( iturb == 1 ) then 

       ! 

       do k = 1, kmax 

          ! 

          do m = mfu, ml 

             ! 

             do n = nfu, nl - 1  

                ! 

                nm   = kgrpnt(m ,n ) 

                ! 

                if ( vwetp(nm) ) then 

                   ! 

                   ! next, compute the divergence of the Subgrid stresses 

                   ! 

                   rhsu(nm,k) = rhsu(nm,k) + ( reysyxu(nm,k) - reysyxd(nm,k) ) / gvv(nm) + &  

                                             ( reysyyu(nm,k) - reysyyd(nm,k) ) / guv(nm) + &  

                                             ( reysyzu(nm,k) - reysyzd(nm,k) ) / hkvm(nm,k) 

                   ! 

                endif 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

       ! 

    endif 

    ! 

    if ( iturb == 1 ) then 

       ! 

       do k = 0, kmax-1 

          ! 

          do m = mfu, ml 

             ! 

             do n = nfu, nl  

                ! 

                nd = n - 1 

                md = m - 1 

                ! 

                nm   = kgrpnt(m ,n ) 

                ndm  = kgrpnt(m ,nd) 

                nmd  = kgrpnt(md,n ) 

                ! 

                kk  = max(k  ,1   ) 

                ! 

                if ( vwetp(nm) ) then 

                   ! 

                   ! next, compute the divergence of the Subgrid stresses 

                   ! 

                   rhsw(nm,k) = rhsw(nm,k) + ( reyszxu(nm,k) - reyszxd(nm,k) ) / & 

                                             ( 0.5 * ( gvv(nm) + gvv(nmd) ) ) + & 

                                             ( reyszyu(nm,k) - reyszyd(nm,k) ) / & 

                                             ( 0.5 * ( guu(nm) + guu(ndm) ) ) + & 

                                             ( reyszzu(nm,k) - reyszzd(nm,k) ) / & 

                                             ( 0.5 * ( hks(nm,kk) + hks(nm,k+1) ) )  

                   !  
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                endif 

                ! 

             enddo 

             ! 

          enddo 

          ! 

       enddo 

       ! 

    endif 

 

The Schumann wall model is used to account for bottom friction. SwashBotFrict is adapted to compute the 
instantaneous bottom shear stress. Only the adapted part of the module is printed. “irough ==  5” is a new 
value of this indicator, a value of 5 implies that the Schumann model is used. 
 
       else if ( irough == 5 ) then 

          ! 

          ! Nikuradse roughness height 

          ! 

          if ( varfr ) then 

             ! 

             do n = nfu, nl 

                do m = mf, ml 

                   ! 

                   nm = kgrpnt(m,n) 

                   ! 

                   zs = 0.5 * ( zks(nm,kmax-1) - zks(nm,kmax) ) 

                   ! 

                   if ( wetu(nm) == 1 .and. zs > 0. ) then 

                      ! 

                      if ( timco < 0.01 ) then 

                         ! 

                         facu(nm)  = u0(nm,kmax) 

                         if ( facu(nm) < 0.005 ) facu(nm) = 0.005 

                         ! 

                      else 

                         ! 

                         facu(nm)  = 0.999 * facu(nm) + 0.001 * u0(nm,kmax)                        

                         if ( facu(nm) < 0.005 ) facu(nm) = 0.005 

                         ! 

                      endif 

                      ! 

                      if ( fricf(nm,2) /= 0. ) then 

                         ! 

                         logfrc(nm,1) = facu(nm) * ( ( vonkar / log( ( 30. * zs ) / fricf(nm,2) ) ) **2. ) 

                         logfrc(nm,2) = ( 1./vonkar ) * log( ( 30. * zs ) / fricf(nm,2) ) 

                         ! 

                      else 

                         ! 

                         r = 0.1 * facu(nm) 

                         ! 

                         if ( r < 1. ) then 

                            ! 

                            nit = 0 

                            ! 

                            ! initial value for s 

                            ! 

                            s    = r 

                            sold = 0. 

                            ! 

                            ! Newton-Raphson iteration 

                            ! 

                            do 

                               if ( abs(sold-s) < (eps*s) ) exit 

                               ! 

                               nit           = nit + 1 

                               sold          = s 

                               s    = sold - ( ( facu(nm) / sold ) - 2.44 * log( ( sold * zs ) & 

                                      / kinvis ) - 5.29 ) / ( - facu(nm) * sold ** -2. - 2.44 / sold ) 
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                               ! 

                               if ( .not. nit < maxnit ) then 

                                  call msgerr (1, 'no convergence in bottom friction computation') 

                                  s = r 

                                  exit 

                               endif 

                               ! 

                            enddo 

                            ! 

                         else 

                            ! 

                            s = r 

                            ! 

                         endif 

                         ! 

                         logfrc(nm,1)  = ( s ** 2. ) / facu(nm) 

                         logfrc(nm,2)  = facu(nm) / s 

                         ! 

                      endif 

                      ! 

                   endif 

                   ! 

                enddo 

             enddo 

 

The Schumann wall model can also be used at side walls. The shear stresses is directly computed in 
SwashExpLay2DHflow. The adapted part of the subroutine is printed. 
 
       do k = 1, kmax 

         do m = mfu, ml 

             ! 

             nfum = kgrpnt(m,nfu) 

             nlm  = kgrpnt(m,nl) 

             ! 

             if ( timco < 0.01 ) then 

                ! 

                facuf(nfum,k)     = u0(nfum,k) 

                if ( facuf(nfum,k) < 0.005 ) facuf(nfum,k) = 0.005 

                ! 

                facul(nlm,k)      = u0(nlm,k ) 

                if ( facul(nlm,k ) < 0.005 ) facul(nlm ,k) = 0.005 

                ! 

             else 

                ! 

                facuf(nfum,k)     = 0.999 * facuf(nfum,k) + 0.001 * u0(nfum,k)                        

                if ( facuf(nfum,k) < 0.005 ) facuf(nfum,k) = 0.005 

                ! 

                facul(nlm,k)      = 0.999 * facul(nlm,k ) + 0.001 * u0(nlm,k)                        

                if ( facul(nlm,k ) < 0.005 ) facul(nlm,k ) = 0.005 

                ! 

             endif 

             !  

             if ( fricf(nfum, 2) > 0 ) then 

                ! 

                amatu(nfum,k,1) = amatu(nfum,k,1) + ( facuf(nfum,k) * ( ( vonkar / log( ( 30. * 0.5 & 

                                  * guu(nfum) ) / fricf(nfum,2) ) ) **2. ) ) / ( guu(nfum) ) 

             else 

                ! 

                rf = 0.1 * facuf(nfum) 

                ! 

                if ( rf < 1. ) then 

                   ! 

                   ! initial value for s 

                   ! 

                   sf    = rf 

                   soldf = 0. 

                   ! 

                   ! Newton-Raphson iteration 

                   ! 
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                   do 

                      if ( abs(soldf-sf) < (0.01*sf) ) exit 

                      ! 

                      soldf          = sf 

                      sf    = soldf - ( ( facuf(nfum) / soldf ) - 2.44 * log( ( soldf * guu(nfum) ) & 

                               / kinvis ) - 5.29 ) / ( - facuf(nfum) * soldf ** -2. - 2.44 / soldf ) 

                      ! 

                   enddo 

                   ! 

                else 

                   ! 

                   sf = rf 

                   ! 

                endif 

                ! 

                amatu(nfum,k,1) = amatu(nfum,k,1) + ( sf ** 2. / facuf(nfum) ) / ( guu(nfum) ) 

                ! 

             endif 

             ! 

             if ( fricf(nlm, 2) > 0 ) then 

                ! 

                amatu(nlm ,k,1) = amatu(nlm ,k,1) + ( facul(nlm,k ) * ( ( vonkar / log( ( 30. & 

                                  * 0.5 * guu(nlm ) ) / fricf(nlm,2) ) ) **2. ) ) / ( guu(nlm ) ) 

                ! 

             else 

                ! 

                rl = 0.1 * facul(nlm) 

                ! 

                if ( rl < 1. ) then 

                   ! 

                   ! initial value for s 

                   ! 

                   sl    = rl 

                   soldl = 0. 

                   ! 

                   ! Newton-Raphson iteration 

                   ! 

                   do 

                      if ( abs(soldl-sl) < (0.01*sl) ) exit 

                      ! 

                      soldl          = sl 

                      sl    = soldl - ( ( facul(nlm) / soldl ) - 2.44 * log( ( soldl * guu(nlm) ) & 

                              / kinvis ) - 5.29 ) / ( - facul(nlm) * soldl ** -2. - 2.44 / soldl ) 

                      ! 

                   enddo 

                   ! 

                else 

                   ! 

                   sl = rl 

                   ! 

                endif 

                ! 

                amatu(nlm ,k,1) = amatu(nlm ,k,1) + ( sl ** 2. / facul(nlm) ) / ( guu(nlm ) ) 

                ! 

             endif 

             ! 

          enddo 

       enddo 

 

In addition the normal velocity gradients at the virtual cells are set to zero.  
 
    do m = mf, ml 

       ! 

       nfm  = kgrpnt(m,nf ) 

       nfum = kgrpnt(m,nfu) 

       nlm  = kgrpnt(m,nl ) 

       nlum = kgrpnt(m,nlu) 

       ! 

       if ( ibb(m) == 1 .and. LMYF ) then 

          ! 
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          ! set to zero at closed boundary 

          ! 

          u1(nfm,:) = u1(nfum,:)!0. 

          ! 

       else if ( ibb(m) > 1 .and. LMYF ) then 

          ! 

          ! zero normal gradient condition at open boundaries 

          ! 

          u1(nfm,:) = u1(nfum,:) 

          ! 

       endif 

       ! 

       if ( ibt(m) == 1 .and. LMYL ) then 

          ! 

          ! set to zero at closed boundary 

          ! 

          u1(nlum,:) = u1(nlm,:) !0. 

          ! 

       else if ( ibt(m) > 1 .and. LMYL ) then 

          ! 

          ! zero normal gradient condition at open boundaries 

          ! 

          u1(nlum,:) = u1(nlm,:) 

          ! 

       endif 

       ! 

    enddo 

 

A logartimic velocity profile with superimposed random white noise fluctuations is imposed at the inflow 
boundary. The boundary conditions is implemented at the top of SwashExpLat2DHflow.  
 
    ! 

    ! fluctuating velocity boudary condition ( based on u* ) 

    ! 

    if ( LMXF ) then 

    ! 

    do k = 1, kmax 

       ! 

       do n = nfu, nl 

          ! 

          indx = kgrpnt(mf,n) 

          nfmf = kgrpnt(mf,nf) 

          nlmf = kgrpnt(mf,nl) 

          ! 

          v1(nfmf,:) = 0. 

          v1(nlmf,:) = 0. 

          ! 

          if ( timco < 0.01) then 

             ! 

             fac3 = 0 

             ! 

                             u1(indx,k)  = u0(indx,k) 

             if ( n < nl )   v1(indx,k)  = v0(indx,k) 

             if ( k < kmax ) w1(indx,k)  = w0(indx,k) 

             ! 

          endif 

          ! 

          if ( ( timco - fac3 ) > 0.5 ) then 

             ! 

             zs = 0.5 * ( zks(indx,kmax-1) - zks(indx,kmax) ) * ( kmax - k + 1 ) & 

                  * 2 - 0.5 * ( zks(indx,kmax-1) - zks(indx,kmax) ) 

             ! 

             u0(indx,k) = ( ( 2.44 * log( ( zs * 0.0055 ) / kinvis ) ) + 5.29 )  * 0.0055 

             ! 

             call RANDOM_NUMBER(fac) 

             call RANDOM_NUMBER(fac1) 

             call RANDOM_NUMBER(fac2) 

             ! 

             if ( fac < 0.5) then 
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                ! 

                u0(indx,k) = u0(indx,k) + ( 0.1 * fac ) * u0(indx,k) 

                ! 

             else 

                ! 

                u0(indx,k) = u0(indx,k)  - ( 0.1 * ( 1. - fac ) ) * u0(indx,k) 

                ! 

             endif 

             !  

             if ( fac1 < 0.5 .and. n < nl ) then 

                ! 

                v0(indx,k) =  0 + ( 0.1 * fac1 ) * u0(indx,k) 

                ! 

             elseif ( n < nl ) then  

                ! 

                v0(indx,k) =  0 - ( 0.1 * ( 1. - fac1 ) ) * u0(indx,k) 

                ! 

             endif 

             ! 

             if ( fac2 < 0.5 .and. k < kmax ) then 

                ! 

                w0(indx,k) = 0 + ( 0.1 * fac2 ) * u0(indx,k) 

                w0(indx,0) = 0 + ( 0.1 * fac2 ) * u0(indx,k) 

                ! 

             elseif ( k < kmax ) then 

                ! 

                w0(indx,k) = 0 - ( 0.1 * ( 1. - fac2 ) ) * u0(indx,k) 

                w0(indx,0) = 0 - ( 0.1 * ( 1. - fac2 ) ) * u0(indx,k) 

                ! 

             endif 

                ! 

             if ( k == kmax .and. indx == kgrpnt(mf,nl) ) fac3 = timco 

             ! 

          else 

             ! 

                             u0(indx,k) = u0(indx,k) 

             if ( n < nl )   v0(indx,k) = v0(indx,k) 

             if ( k < kmax ) w0(indx,k) = w0(indx,k) 

                             w0(indx,0) = w0(indx,0) 

             ! 

          endif 

          ! 

                          u1(indx,k) = u0(indx,k) 

          if ( n < nl )   v1(indx,k) = v0(indx,k) 

          if ( k < kmax ) w1(indx,k) = w0(indx,k) 

                          w1(indx,0) = w0(indx,0) 

          ! 

       enddo 

       ! 

    enddo 

    ! 

    endif 

 

 

 

 


