
Probabilistic Testing for Weak Memory
Concurrency

Version of October 6, 2022

Mingyu Gao

Probabilistic Testing for Weak Memory
Concurrency

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Mingyu Gao
born in Nanjing, Jiangsu Province, China

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2022 Mingyu Gao.

Probabilistic Testing for Weak Memory
Concurrency

Author: Mingyu Gao
Student id: 5216281
Email: m.gao-2@student.tudelft.nl

Abstract

The Probabilistic Concurrency Testing (PCT) algorithm provides theoretical guar-
antees for the probability of detecting concurrency bugs in a sequential consistency
memory model, but its theoretical guarantees do not apply to weak memory concur-
rency. The weak memory concurrency refers to the modern compiler’s optimization
that relaxes the sequential consistency requirements. The PCT approach is based on
the sequential consistency interleaving semantics, which does not hold for weak mem-
ory concurrency. It is because weak memory concurrency allows additional behaviors
that cannot be produced by any interleaving execution.

Based on the PCT algorithm transforming the concurrency bug to the ordering
constraints(bug depth), this thesis presents Probabilistic Concurrency Testing for Weak
Memory (PCTWM) to capture the concurrency behavior in weak memory programs,
further revising the notion of the bug depth to the constraints of communication rela-
tions between events.

We implement both the PCT and PCTWM algorithms on top of the state-of-the-art
weak memory testing tool - C11Tester. We empirically evaluate the bug detection abil-
ity of the PCTWM on a set of well-known weak memory program benchmarks. Our re-
sults show that PCTWM can detect concurrency bugs more frequently than C11Tester.

Key Words : concurrency bug, probabilistic testing, weak memory model

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. B. Kulahcioglu Ozkan, Dr. S. Chakraborty, Faculty EEMCS, TU Delft
Committee Member: Dr. A. van Genderen, Faculty EEMCS, TU Delft

m.gao-2@student.tudelft.nl

Preface

Without the assistance and support of the generous people in my life, it would not have been
feasible for me to complete this master’s thesis. I will only be able to identify a few of those
individuals in this article due to space limitations.

It would not have been possible to finish this master thesis without the help, support, and
patience of my principle supervisors - Dr. Burcu Ozkan and Dr. Soham Chakraborty. Not
to mention their guidance and outstanding understanding of weak memory and concurrency
testing. I am indebted to them in an extraordinary degree because they have provided me
with invaluable assistance in the form of sound advice, unwavering support, and enjoyable
company on both an academic and a personal level.

I would want to express my gratitude to my fiancée Yuheng for always providing me
with personal support as well as a high level of care. Even though he is currently in China
and the Covid-19 has kept us apart for the past two years, he never misses an opportunity
to get in touch with me and never fails to offer his support and encouragement. Because
my parents have consistently shown their unwavering support for me, a simple word of
gratitude on my part is not enough to adequately reflect my gratitude to them.

I would like to express my gratitude for the financial, academic, and technical support
that was provided by the faculty and employees of the Electrical Engineering, Mathemat-
ics, and Computer Science department at Delft University of Technology, particularly my
thesis advisor Prof. Arie van Deursen that provided the kind support for this research. The
resources provided by the university’s libraries have been of critical importance. I would
also like to express my gratitude to the Department of the thesis as well as the board of ex-
aminers for all of the help that they have provided since the beginning of my thesis project
in 2021.

Last but not the least, I would like to thank my friends in the Netherlands, for giving me
happiness and encouragement throughout the whole year.

Mingyu Gao
Delft, the Netherlands

October 6, 2022

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Background 3
2.1 Weak Memory Concurrency . 3
2.2 PCT v.s. Naive Random Testing . 6
2.3 C11Tester - Automatic Testing Tool . 6

3 Overview 7
3.1 C11Tester . 7
3.2 A Naive Application of PCT to Weak Memory 10
3.3 Revising Concurrency Bug Depth . 10
3.4 PCTWM: PCT for Weak Memory . 11

4 Weak Memory Concurrency Model 13
4.1 Event . 13
4.2 Relation . 13
4.3 Execution . 14
4.4 Example . 15

5 Algorithm and Examples 17
5.1 PCT Algorithm and Theoretical Guarantee 17
5.2 PCTWM Algorithm . 23

6 Implementation 35
6.1 C11Tester Implementation and Plugins for Algorithms 35

v

CONTENTS

6.2 PCT and PCTWM: Parameters . 37
6.3 PCT Implementation . 38
6.4 PCTWM Implementation . 40

7 Experiment and Evaluation 45
7.1 Benchmarks . 45
7.2 RQ1. Bug Detection Ability with Estimated Parameters 48
7.3 RQ2. Bug Detection Ability Varying Bug Depth and History 48
7.4 RQ3. Bug Detection Ability Comparison: C11Tester v.s. PCT v.s. PCTWM 50
7.5 RQ4: PCTWM vs PCT: Bug Detection Performance 53
7.6 RQ5: Does or why PCTWM cause the overhead in the C11Tester? 55
7.7 RQ 6. Parameter’s effect on PCTWM algorithm 56

8 Related Work 59
8.1 Concurrency and consistency . 59
8.2 Concurrency Bugs Types . 59
8.3 Concurrency testing . 60
8.4 Techniques for Detecting Concurrency Bugs in the Weak Memory Model . 60

9 Conclusions and Future Work 63
9.1 Summary . 63
9.2 Future work . 64
9.3 Self-Reflection . 64

Bibliography 65

A Glossary 75
A.1 Experiment Set Up . 75

B Requirements and Guidelines 77
B.1 Requirements . 77
B.2 Guidelines . 78

vi

List of Figures

2.1 Concurrent Program Examples . 4
2.2 Concurrent Program Example - SB in Weak Memory Model 4
2.3 Examples of memory order and synchronization in C/C++11 semantics. 5

3.1 The Mechanism of C11Tester. C11Tester replaces pthread library. 7
3.2 The workflow of C11Tester. Using random strategy to pick thread and read-

from event when exploring the execution. 8
3.3 The Step-by-step example of the randomized strategy in C11Tester. The dot-

line box is the available thread or action set offered by C11Tester each step. . . 9

4.1 Relations in Program SB 2.1a. 15
4.2 Concurrent Program Example - SB with different memory order types to il-

lustrate C/C++ Concurrency. mo is the abbreviation of the memory order of
actions. Arrow sb represents the ’sequence-before’ relation. Arrow r f repre-
sents the ’read-from’ relation. Arrow sw means the RELEASE and ACQUIRE
actions are synchronized. Arrow SC is the total order for SC actions. 16

5.1 Concurrent Program Examples . 18
5.2 A concurrent program example: P3. Bug depth d = 3. 19
5.3 MP1: execution a = 1, b = 1 with views and bags. 31
5.4 Three test executions for the Program MP2 32

6.1 PCT and PCTWM implementation on C11Tester. Above the dotted line is the
thread scheduling level. Below the dotted line is the communication relation(read-
from value selection) value. 37

7.1 Bug Hitting Rate - Varying h in PCTWM . 51
7.2 Bug Hitting Rate for All Nine Benchmarks 51
7.3 Benchmark:Dekkfer-fences . 52
7.4 Bug Hitting Rate - Inserting Relaxed Writes 54
7.5 Bug Hitting Rate - Varying d in PCTWM . 57

vii

Chapter 1

Introduction

In the multicore era, shared memory concurrency plays a key role in improving perfor-
mance in these architectures. To program these architectures efficiently, the programming
languages are introducing first-class concurrency primitives [36, 35, 52, 14, 28, 11] to pro-
vide platform-independent abstractions on the hardware and processors. These concurrency
primitives empower programmers to achieve greater performance from the architectures,
programming with these primitives is often error-prone due to their subtle semantics.

More specifically, these primitives as well as the architectures exhibit additional behav-
iors which cannot be explained by traditional thread interleaving semantics aka sequential
consistency (SC). These behaviors are known as weak memory behaviors and these con-
currency models are known as weak memory concurrency. Unexpected interleavings of
concurrent threads in crucial settings might lead to the system’s failure, entering undefined
states with catastrophic repercussions.

Concurrency poses a significant challenge to testing and verification approaches con-
sidering the number of possible executions even under interleaving semantics. Verification
techniques perform sound analyses but scale poorly. On the other hand, testing approaches
scale better but lacks soundness. Though concurrency testing lacks soundness in general, it
is always desirable to achieve some guarantees on the effectiveness of a testing approach.

The Probabilistic Concurrency Testing (PCT) algorithm [21] is a randomized testing
algorithm for SC programs that provides strong theoretical guarantees on the probability of
detecting bugs. The probabilistic guarantees of PCT rely on the notion of bug depth, i.e.,
the minimum number of ordering constraints between the concurrent events in a program.
Given bug depth d as a test parameter, PCT characterizes the set of executions with d or-
dering constraints and samples a test execution from that set. Focusing on the executions
with a certain bug depth significantly reduces the sample set. Hence, unlike naive random
testing algorithms that detect a concurrency bug with a probability that is exponentially low
in the number of program events n, PCT guarantees a probability that is exponentially low
only in d.

In this scenario, a natural question arises: can we apply PCT for testing weak memory
concurrency? We investigate this question in this thesis project and observe that the theo-
retical guarantee of the PCT algorithm does not apply to testing weak memory programs.
It is because weak memory concurrency relaxes the SC requirements and allows a more

1

1. INTRODUCTION

extensive set of program behaviors, many of which cannot be produced by any interleaving
executions in SC. More specifically, the PCT algorithm builds on the notion of bug depth
that is designed for the interleaving semantics of sequential consistency, which does not
capture weak memory concurrency.

In this paper, we generalize PCT to address weak memory concurrency and present
Probabilistic Concurrency Testing for Weak Memory (PCTWM). For this, we revise the
definition of concurrency bug depth and generalize it to capture weak memory concur-
rency. We define bug depth as the minimum number of communication relations between
the concurrent events in an execution regardless of their scheduling order. We show that the
traditional definition of bug depth under SC corresponds to a specific case of our definition,
in which the communication relations correspond to the thread interleavings.

Based on our bug depth definition, we devise the PCTWM algorithm that extends the
theoretical guarantees of PCT for weak memory concurrency. Similar to PCT, PCTWM
provides a theoretical lower bound on the probability of detecting concurrency bugs that is
exponential only in the depth bound d. Different from PCT, which samples a test execution
with d ordering requirements, PCTWM samples a test execution with d communication re-
lations between the concurrent program events. Roughly, the bug depth of a weak memory
program execution represents the number of execution points in which the variable val-
ues visible to a thread are communicated to another thread regardless of how the previous
operations in these threads are scheduled in the execution.

In this thesis project, we implemented both the PCT and the PCTWM algorithm on top
of C11tester [51], the state-of-the-art testing framework for weak memory programs. We
evaluated its performance in detecting weak memory concurrency bugs on a set of well-
known weak memory program benchmarks in comparison to the C11Tester concurrency
testing algorithm. Our results show that PCTWM can detect concurrency bugs more fre-
quently than C11Tester.

Outline and Contributions. Chapter 2 provides the required background on weak mem-
ory concurrency and PCT. Chapter 3 presents an overview of our approach. Chapter 4 dis-
cusses the axiomatic model of weak memory concurrency model which focus in this work.
Chapter 5 presents the PCT and PCTWM algorithm. Chapter 6 explains how we utilize the
interface in C11Tester and implement the PCT and PCTWM algorithm. Chapter 7 provides
the details of our experimental evaluation and results. Finally, the related workChapter 8
and conclusionChapter 9 are discussed.

2

Chapter 2

Background

In this chapter, we discuss the background knowledge for the thesis topic. We first illustrate
the origin of the weak memory model, especially the C/C++11 weak memory model. And
then we point out the concurrency problem brought on by this weak memory model. To
tackle this problem, we list the normal approaches from two angles - randomized testing
and concurrency testing, which serve as the foundation for our algorithm - PCTWM.

2.1 Weak Memory Concurrency

The memory consistency model formally specifies how the memory model will appear to the
programmer. Modern memory model mostly adopts the shared memory model, which can
be classified into two kinds - strong(SC) and weak(relaxed). Shared memory concurrency
is a dominant programming paradigm where threads communicate through shared memory
accesses.

Strong Memory Model The strong memory model, also called the sequential consis-
tency(SC) model, is proposed by Lamport[43]. Shared memory concurrent programs are
usually explained by sequential consistency (SC) [43] where shared memory accesses in
each thread execute in syntactic order, and threads interleave arbitrarily. In the strong mem-
ory(SC) model, a read operation should return the value of the ’last’ write operation to the
same memory location. The definition of ’last’ is the latest write action of the global pro-
gram order, even though each thread contains the respective ’last’ write on each location.

Weak Memory Model These year, modern processors tend to use the weak memory
model(i.e., relaxed memory model, shared memory model). Because weak memory model
can enhance the performance and the efficiency of computing.

However, concurrent systems usually exhibit additional program behaviors which can-
not be explained by interleaving execution or sequential consistency. For example, when
a concurrent program is running in a weak memory model, the write and read operations
are uncertain since the operations reside on different processors[3]. As there in no global
linear time in the weak memory model, the constraint on reads cannot be simply that they

3

2. BACKGROUND

(a) SB

(b) P1
(c) P2

Figure 2.1: Concurrent Program Examples

(a) SB (b) Reordering in Weak Mem-
ory Model

(c) After Reordering

Figure 2.2: Concurrent Program Example - SB in Weak Memory Model

read from the ‘most recent’ write.These additional non-SC executions are known as weak
memory behaviors, and these concurrency models are known as weak memory concurrency.

Take Program SB 2.2 as an example to show why the weak memory model is error-
prone. In the SC model, the assertion cannot be met. Because in the SC model, the action
writing 1 to X and Y happens before the read actions, and the read action reads from the
latest value of X and Y .

However, various concurrency models such as x86 [64], Arm [5] architectures allow the
non-SC outcome a = b = 0 that violates the assertion. The effect of these concurrency mod-
els can be simply understood as the reordering of instructions, as shown in the Figure 2.2b.
This reordering results in a reading from the event X = 0 and then hits the assertion.

2.1.1 C/C++11 Weak Memory Model

C/C++11 Memory Model To program these weak-memory architectures, programming
languages like C/C++ [36, 35] provides platform-independent abstractions which also allow
this outcome and various non-SC behavior in general. These subtle behaviors affect the
correctness of program behaviors and hence require careful analysis.

The C/C++11 weak memory model is specified in the chapter 1,29 and 30 in the C++
draft[13]. Betty et.al[9] define the C/C++11 memory model as the form of executable pro-
gram interleaving which is constrained by the mathematical semantics. To be specific, the
execution is evaluated based on a mathematical graph where nodes represent events and
edges are the relations between events(nodes) on the same thread. Batty et al[12] then fur-

4

2.1. Weak Memory Concurrency

(a) Case 1. (b) Case 2. (c) Case 3.

(d) Case 4. (e) Case 5. (f) Case 6.

Figure 2.3: Examples of memory order and synchronization in C/C++11 semantics.

ther simplify the sequential-consistency(SC) atomic semantics in C11 by relaxing the SC
operations in one execution from totally ordered to partially ordered.

C/C++ Concurrency[36, 35] C/C++ has various kinds of accesses that affect the behav-
ior of a shared memory concurrent program. To begin with, it provides a plain or non-
atomic (na) load and stores access. In addition, C11 also has atomic accesses of four kinds:
load, store, atomic updates (RMW) such as compare-and-swap and atomic increment, and
memory fence. Each atomic access is attached with a memory order from: relaxed (RLX),
acquire (ACQ), release (REL), acquire-release (ACQREL), and sequentially consistent (SC).
Based on the kind of operation and memory order we categorize the accesses as follows:

acc ::=reador | readow | RMWou | f enceo f where (2.1)

or ::=NA | RLX | ACQ | SC (2.2)

ow ::=NA | RLX | REL | SC (2.3)

ou ::=NA | ACQ | REL | ACQ REL | SC (2.4)

o f ::=ACQ | REL | ACQ REL | SC (2.5)

For instance, an access is acquire if its order is once of ACQ, REL, SC. Similarly an
access is release if its order is one of REL, ACQREL, or SC. The release and acquire
accesses establish synchronization, for instance, when an acquire read reads from a release
write.

For example, in Figure 2.3a, the memory order for all events are RELAXED, and there
is no synchronization. In Figure 2.3b, event d and b can synchronize as one is RELEASE
and another is ACQUIRE. In Figure 2.3e, event d and a can synchronize as they are all
SC. However, even if the memory order of event d is ACQUIRE in Figure 2.3d, it cannot
synchronize with any other event. Because there is no event with RELEASE memory order.
So does for Figure 2.3c and Figure 2.3f. In conclusion, if two events can synchronize with
each other, both of their memory orders have requirements.

Going forward, in later we discuss the formal model of C/C++ concurrency in detail.

5

2. BACKGROUND

2.2 PCT v.s. Naive Random Testing

PCT is a randomized concurrency testing algorithm that provides theoretical guarantees
on the probability of detecting concurrency bugs. The key to its probabilistic guarantee is
the notion of ”bug depth”, which is defined as the number of ordering constraints between
the concurrent events of a program. Given the concurrency bug depth d and the number
of instructions n in the program as inputs, PCT randomly generates a test execution that
encodes a particular ordering of events with d scheduling constraints. Instead of sampling
an execution from the set of all possible thread interleavings of size O(tn) for t threads,
it samples from the set of executions O(nd) with d thread interleavings. Consequently, it
guarantees a lower bound on the probability of detecting bugs that is exponentially low only
in the depth parameter d.

Example: Program P1 2.1b Consider Program P1 2.1b (all the memory accesses are of
SC memory order) which has a concurrency bug that occurs when the second thread reads
X = m. The manifestation of the bug requires a single scheduling constraint, i.e., it requires
the assertion statement in the second thread to be executed after the X = m statement in
the first thread. Given d = 1, PCT samples out of two d = 1 executions: It either chooses
a schedule that runs all instructions in the first thread before the second thread or runs the
second thread before the first thread. Therefore, it hits the bug with a probability of 1/2.

However, a naive randomized testing algorithm that chooses the next action to run from
the set of all enabled actions detects the bug only with the probability of 1/2m. To detect
the bug, it must choose the action in the first thread among the two enabled actions for the
first m actions of the execution. The mechanism and implementation of the PCT algorithm
will be further discussed in Chapter 5 and Chapter 6.

Based on PCT algorithm, we propose a PCTWM algorithm, which revises the definition
of bug depth in PCT algorithm and offers the theoretical guarantee for detecting concurrency
bug on the weak memory model. The PCTWM is given and demonstrated in Chapter 5 and
Chapter 6.

2.3 C11Tester - Automatic Testing Tool

C11Tester[51] is the state-of-art automatic testing tool for detecting concurrency bugs in
C/C++11[8]. We implement our advanced algorithms - PCT and PCTWM, on it. The
C/C++11 semantics is declarative(i.e. axiomatic), and program executions are not repre-
sented as traces of interleaved actions but rather as partially ordered graphs[8], which have
to satisfy several consistency constraints. C11Tester adopts the graph theory to record, ab-
stract, and check the program’s execution.

C11Tester bounds the exploration space of an execution in two steps. The C11Tester
first offers a set of available threads and actions whenever the execution needs. These
choices are filtered by C11Tester to make sure not violate the C/C++11 relaxed atomic
semantics[8].

The detailed introduction of C11Tester are in Chapter 3.

6

Chapter 3

Overview

In this chapter, we motivate the extension of PCT [21] for weak memory programs and
present an overview of our PCTWM algorithm. First, we briefly revise the PCT algorithm in
comparison to naive random testing. Then, we show that the theoretical guarantee provided
by PCT does not apply to weak memory programs. Finally, we provide the two key steps for
extending PCT to weak memory programs: (i) revising the notion of concurrency bug depth
and (ii) extending PCT to PCTWM to generate test executions from a set of executions
bounded by the revised notion of bug depth d and the history bound h.

3.1 C11Tester

C11Tester defines a new pthread library3.1, replacing the default library when compiling.

3.1.1 Mechanism of C11Tester

C11Tester focuses on two parts - atomic actions and thread scheduling. The PCT and
PCTWM algorithms replaces the random selection of threads and read-from events in C11Tester.

Workflow of C11Tester Figure 3.2 concludes how C11Tester finishes an execution ex-
ploration.

Figure 3.1: The Mechanism of C11Tester. C11Tester replaces pthread library.

7

3. OVERVIEW

Figure 3.2: The workflow of C11Tester. Using random strategy to pick thread and read-
from event when exploring the execution.

C11Tester first initialize each new thread and keeps recording their states(Step 0. in
Figure 3.2). Every time C11Tester needs to decide to execute which thread(Step 1. in
Figure 3.2) or read from which event(Step 2. in Figure 3.2), it first traverses each thread
and collects the set of available thread(Step 1.1. in Figure 3.2) or read-from event(Step
2.1. in Figure 3.2) based on the C/C++11 semantics. The C11Tester adopts naive random
strategy when it picks a thread(Step 1.2. in Figure 3.2) or a read-from event(Step 2.2. in
Figure 3.2). After executing an event(Step 3. in Figure 3.2), C11Tester checks whether
this event specifies the next event to executes(e.g., a RMW action is processed as a serial
of a read action and a write action). The C11Tester explores an execution until there is no
available thread(Step 4. in Figure 3.2).

3.1.2 Randomized Algorithm in C11Tester

C11Tester adopts the randomized strategy when it picks a thread to execute and selects a
read-from event for a read action. The main task of C11Tester to explore an execution con-
tains two steps: i) collects available choices(threads, events); ii) randomly select one from

8

3.1. C11Tester

(a) Step 1.: randomly picks thread 2 from the
available thread set

(b) Step 2.: randomly picks thread 1 from the
available thread set

(c) Step 3.: randomly picks thread 1 from the
available thread set

(d) Step 4.: only can pick thread 2 from the
available thread set; randomly picks read-from
value - X = 1

(e) Step 5.: only can pick main thread from the
available thread set; randomly picks read-from
value - Y = 0

(f) Step 6.: no available thread, end the execu-
tion

Figure 3.3: The Step-by-step example of the randomized strategy in C11Tester. The dot-
line box is the available thread or action set offered by C11Tester each step.

these available choices. When C11Tester collects the set of available threads, it checks the
state of each thread to make sure it is not in sleep or blocked. And when collecting available
read-from events, it checks whether executing it will violate the C/C++11 semantics.

Here we give an example(Program SB 2.1a) to see how C11Tester randomly sched-
ules. Step 1, only main thread is created and C11Tester executes the write action on
it(Figure 3.3a). Two child threads are created, C11Tester collects them. Step 2(Figure 3.3b),
C11Tester randomly picks thread 2 and executes the next event(Y = 1). C11Tester col-
lects available thread sets: (thread1, thread2). Step 4(Figure 3.3c), C11Tester chooses
thread 1 and executes next event on thread 1(X = 1). Still, thread 1 and 2 are avail-
able. It randomly picks thread 1 and goes to Step 4(Figure 3.3d). This time, the read
event(a = X) needs a read-from value. After traversing all threads, it offers an available
read-from set:(X = 0,X = 1). After randomly picking one write event, thread 1 is finished
and no longer available. C11Tester only finds one available thread:(thread2). In Step 5(Fig-
ure 3.3e), C11Tester offers available values on the location of variable Y and finishes thread

9

3. OVERVIEW

2. Now, only the main thread is available. In Step 6(Figure 3.3f), C11Tester executes the
last action and finishes the execution because of no more available thread.

This execution 3.3 is just one possible of execution when C11Tester explores the exe-
cution of Program SB 2.1a. As the C11Tester randomly picks the threads and read-from
events, its search space is a power of the number of threads. PCT and PCTWM algorithms
introduced in this thesis replace the randomized selection in C11Tester.

3.2 A Naive Application of PCT to Weak Memory

Though the PCT algorithm [21] is effective in SC model and guarantees the probability to
hit the bug. Its probabilistic guarantee for the lower bound on the probability of detecting
bugs does not apply to weak memory programs. Here we use some examples to prove why
the probabilistic guarantee does not work for the weak memory model.

Examples: Program 2.1b Paragraph 2.2 explains in Chapter 2 why the probability of
hitting the bug in Program 2.1b in SC model is 1/2.

But under weak memory concurrency, this execution does not necessarily hit the bug.
Because, a read event can read from from any write event in the first thread. To be specific,
if the memory order for all read and write events in Program 2.1b are RELAXED, then the
read action can read from any write value rather than it can only read from the latest write
event in the global program order. The violation occurs only if it reads the value of X from
the last write event. Then the lower bound for the probability of hitting the bug becomes

1
2m . This probability contains two parts. The first part is to schedule the write event ′X = m′

on thread 1 before read event ′readX ′ on thread 2, whose probability is 1
2 . The second part

is to pick the correct write event ′X = m′ from the m write events, whose probability is 1
m .

The Program 2.1b shows that the behavior of the weak memory programs does not
depend only on the thread interleavings, but also on the selection of the write events that the
read events get the values from. However, the theoretical guarantee of the PCT algorithm
relies on the interleaving semantics of sequential consistency. More specifically, it relies on
the notion of bug depth that is defined as the minimum number of scheduling constraints
that are sufficient to find the bug [21].

3.3 Revising Concurrency Bug Depth

The existing notion of bug depth does not capture weak memory concurrency bugs. Con-
sider Program 2.1a. The program exhibits a buggy behavior when both variables a and b
load the value 0. The bug does not depend on the scheduling order of the events and it does
not manifest under any SC executions of the program.

We revise the notion of concurrency bug depth to capture thread communication rather
than thread interleavings. We define the depth of a concurrency bug as the minimum num-
ber of communication relations between the concurrent events in an execution. A commu-
nication relation between two concurrent events communicate the effects of an event (e.g.,
writing a value) to another event (e.g., reading that value). For example, the depth of the

10

3.4. PCTWM: PCT for Weak Memory

concurrency bug in Program 2.1a is d = 0 since it does not require any communication be-
tween its thread events. The program events only access the values of the variables that are
available in their thread-local views.

Notice that the revised definition of the bug depth extends the existing notion which uses
thread interleavings. For the specific case of sequential consistency, a thread interleaving
induces a communication: the effects of all the write events in a thread are communicated
to the other threads at the thread interleavings. For example, the depth of the concurrency
bug in Program 2.1b is d = 1 under both notions. Under SC, the bug exposes in a single
thread ordering. Under weak memory concurrency, the bug exposes in the presence of a
single communication relation between its events, i.e., the communication of the effect of
the write X = m to the read event in the second thread.

3.4 PCTWM: PCT for Weak Memory

Here we informally introduce the key ideas in the PCTWM algorithm, which we will elab-
orate in Chapter 4 and Chapter 5.

PCTWM extends PCT to generate an execution with d communication relations instead
of d ordering constraints. Bounding the number of communication relations by d restricts
the amount of thread interaction in an execution. Without any restrictions, a read operation
in a thread can potentially read from a write event in any thread. However, bounding an
execution to have only d communication relations allows only d events to read from an
external value. The other program events read from their thread-local views, which only
keeps the updates made available to this thread.

For example, the d = 0 execution of Program 2.1a does not allow any load operations to
read an external value. Therefore, both load operations read the values available in the local
views of their respective threads. Similarly, the d = 0 execution of Program 2.1b restricts
the load operation to read the initial value of X . Alternatively, a d = 1 execution of the
program allows the load operation to read a value written by the first thread.

Besides the number of communication relations d, PCTWM further parametrizes the
execution space using a history bounding parameter h. This parameter considers the charac-
teristics of the weak memory model - concurrency bug being highly related to the mistaken
reading from some certain values. For this reason, PCTWM uses the history - h, to restrict
the set of store operations that a load operation can read from based on how old a value is. It
serves to prioritize the executions that load possibly stale values but not older than h number
of store operations. Hence, a load operation that is chosen as a communication destination
can read from only h possible values instead of all values collected by the C11Tester, further
reducing the sample set of executions.

We provide the formal definition of a communication relation, thread-local view, the
complete PCTWM algorithm, and its theoretical guarantees in Chapter 4. Same as the
PCT algorithm, the PCTWM algorithm also samples the program’s interleaving with a
bounded number of preemptions by changing thread priorities. The implementation on
C11Tester[51] is discussed in Chapter 6. The PCTWM recognizes the communication
events and uses a global counter to record these events by order. Through randomly pick-

11

3. OVERVIEW

ing d communication events as the communication relation’s destination, PCTWM controls
the interleaving with selecting communication relations’ source. The two types of views -
thread-local view and global view, separately represents the view for the variables on cur-
rent thread and the view for all the variables linked with the current thread, bounding the
number of preemptions by controlling reading from which view.

12

Chapter 4

Weak Memory Concurrency Model

In this chapter, we discuss the C11 axiomatic model that we will use to formally define the
communication relation which is a core concept of PCTWM.

In C11 axiomatic semantics, a program is represented by a set of executions. An ex-
ecution consists of a set of events resulting from shared memory accesses or fences and
relations between these events.

4.1 Event

An event is represented by ⟨id, tid, lab⟩ where id, tid, lab denote a unique identifier, thread
identifier, and label of the event respectively. A label lab = ⟨op, loc,Val⟩ is a tuple where
op denotes the corresponding memory access or fence operation.

For memory accesses, loc and Val denote the corresponding memory location and the
read or written value. In case of fences, loc = Val = ⊥. A successful RMW results in an
update event (U) and on failure generate a read event (R). The set of read, write, update,
and fence events are R, W , U , and F respectively. The memory locations are initialized at
the start of the execution, represented by a set of non-atomic write events.

4.2 Relation

Various binary relations connect the events in an execution. Hence before explaining the
relations we discuss the notations.
Notations. Given a binary relation B, we write B?, B+, B∗, B−1 to denote its reflexive,
transitive, reflexive-transitive closures, and inverse relations respectively. Relation imm(B)
denotes the immediate relation: imm(B)(x,y) ≜ B(x,y)∧ ∄zB(x,y)∧ B(y,z). Given two
relations B1 and B2, we denote their composition by B1;B2. [A] denotes the identity relation
on a set A, i.e. [A](x,y)≜ x = y∧ x ∈ A.

An execution has the following relations between events: Relation program-order (po)
is a strict partial order that captures the syntactic order between the events. It is a strict
total order on same-thread events. Relation reads-from (r f) relates a write event with the
same-location read events that read from it. A read event reads from exactly one write event.

13

4. WEAK MEMORY CONCURRENCY MODEL

Relation modification-order (mo) is a strict total order over same-location write events. Re-
lation SC is a total order on the SC accesses. From these relations, we derive the following
relations.

• Relation poloc relates same-location po-related events. i.e. poloc(a,b)≜ po(a,b)∧
a.loc = b.loc.

• From-read (f r) relates a same-location read and write events; if a read r reads-from a
write w and write w′ is mo-after w, then r and w′ are in f r relation.

• We adopt the synchronizes-with (sw) relation from RC20 [53]. Relation happens-
before (hb) is the transitive closure of po and sw relations.

poloc ≜{(a,b) | po(a,b)∧a.loc = b.loc} (4.1)

f r ≜r f−1;mo\[E] (4.2)

sw ≜ [E⊒REL] ;([F] ; po)? ;r f+;(po; [F])? ; [E⊒ACQ] (4.3)

hb ≜(po∪ sw)+ (4.4)

4.3 Execution

An execution X = ⟨E, po,r f ,mo,SC⟩ is a tuple where X .E is the set of events and X .po,
X .r f , X .mo, X .SC are set of po, r f , mo, SC relations between the events in X .E. We rep-
resent execution by an execution graph where events are represented by nodes are relations
are represented by corresponding edges.

Consistency Axioms C11 defines the following axioms to check if an execution is con-
sistent.

• (coherence) The events accessing the same memory location are totally ordered due
to the coherence property. Therefore (poloc∪ r f ∪ f r∪mo) is acyclic.

• (Atomicity) The RMW accesses execute atomically. Hence (f r;mo) = /0 holds.

• (irrMOSC) The mo and SC orders agree on same-location accesses, that is, (mo;SC)
is irreflexive.

• (SC) The SC accesses are globally ordered. There is a number of SC order definitions
[8, 81, 11, 42, 46, 51].

We follow the one from C11Tester [51], that is, (hb∪ r f ∪SC) is acyclic.

Note that the (SC) axiom enforces that hb is irreflexive (an action cannot happens-
before itself) [8, 81]. Moreover, as po ⊆ hb, the (SC) constraint also enforces that
(po∪ r f) is acyclic and in consequence forbids out-of-thin-air reads.

14

4.4. Example

(a) asw relations in Program SB 2.1a. (b) sb relations in Program SB 2.1a.

(c) r f relations in Program SB 2.1a.

Figure 4.1: Relations in Program SB 2.1a.

4.4 Example

Take Program SB 2.1a as an example to see the relations between different events in a
program. In the Figure 4.1a, there is a asw(additional-synchronizes-with) relation between
the main thread and two child threads - thread 1 and thread 2. The creation of a child thread
always generates the asw relation. In thread 1 and thread 2, the write event is respectively
sequenced-before(sb) the read event. But if all events are RELAXED−mo, the r f (read-
from) relations may link the read-from value 0 or 1 with the read action.

Besides the relations in Program SB 2.1a, the read-from(r f relations) may be differ-
ent in a weak memory model. In Figure 4.2, events in Program SB 2.1a have different
mo(memory order), which reflects that mo can affect the range of read-from events. From
Figure 4.2a to Figure 4.2d, events are all RELAXED, so the read action can read from both
value 0 and value 1. When we change the mo of write actions from RELAXED to SC or
RELEASE, the C/C++11 semantics bounds the range of read-from values. If the mo of
write events are updated to RELEASE and mo of read events are updated to ACQUIRE,
there is a sw relation between a RELEASE and a ACQUIRE event, which makes the read
action read from the most ’recent’ RELEASE write. That is to say, event d reads from event
c and event g reads from event f. If the mo of write and read actions become SC, there is
a SC relation between them. Also, the SC read action can only read from the most ’recent’
SC write event. Event d can only read from event c and event g read from event f.

15

4. WEAK MEMORY CONCURRENCY MODEL

(a) RELAXED−mo Case 1. (b) RELAXED−mo Case 2.

(c) RELAXED−mo Case 3. (d) RELAXED−mo Case 4.

(e) RELACQ−mo Case.
(f) SC−mo Case.

Figure 4.2: Concurrent Program Example - SB with different memory order types to illus-
trate C/C++ Concurrency. mo is the abbreviation of the memory order of actions. Arrow
sb represents the ’sequence-before’ relation. Arrow r f represents the ’read-from’ relation.
Arrow sw means the RELEASE and ACQUIRE actions are synchronized. Arrow SC is the
total order for SC actions.

16

Chapter 5

Algorithm and Examples

In this section, we first explain the randomized strategy C11Tester used when it explores
the execution. Then we formalize the description of the classical PCT scheduler. Then we
extend the application of the PCT algorithm to the weak memory model and propose the
new algorithm - PCTWM, i.e., PCT for weak memory.

5.1 PCT Algorithm and Theoretical Guarantee

5.1.1 PCT: Designed for Concurrent Programs on SC Model

The PCT(Probabilistic Concurrency Testing) algorithm is proposed by Burckhardt et al.[21]
to tackle the problem of the low efficiency in concurrency bug detection due to the time and
resources in stress testing. The PCT algorithm is based on the critical observation that con-
currency bugs can be viewed as unexpected interleaving over certain instructions [50][57].
This observation converts the bug detection to the proper scheduling of these relevant in-
structions no matter how many ways it can schedule instructions that are not relevant to the
problem. Burckhardt et al. illustrates PCT’s bug-finding capacity both theoretically and
empirically by applying it to production-scale concurrent applications.

PCT algorithm generates a test execution with d thread scheduling constraints. The
test execution for a concurrent program requires selecting the next event(thread) to execute.
PCT algorithm realizes this thread selection and restricts the execution to switch threads
only at d−1 thread priority change points.

5.1.2 Formal Definitions

Before explaining the PCT algorithm, we first give some formal definitions related to the
PCT algorithm.

Thread Interleaving A concurrent program is composed of several threads with different
events(i.e., actions) on each thread. The sequence of events on these threads is unique with
each execution but may vary across executions. The sequence of events in one execution is
the thread interleaving.

17

5. ALGORITHM AND EXAMPLES

(a) Program SB (b) Program P1 (c) Program P2

Figure 5.1: Concurrent Program Examples

Definition 1 (Thread Interleaving/Sequence). Define T to be a set of thread identifiers and
the T ∗ to be the set of finite sequences of elements from T . The sequence S is the element
in T ∗, i.e., S ∈ T ∗. The initial length of the sequence length(S) is zero and will increase in
later scheduling, which means length(S)≥ 0.

The element in a sequence S is the event t from threads, expressed as t ∈ T . So we can
mark the element in the sequence as S[n] = t,0≤ n≤ length(s). The sequences S1 ∈ T ∗ is
the prefix of the sequence S ∈ T ∗ if there is another sequences S2 and S = S1S2.

We use Program SB 5.1a as an example to introduce thread interleaving. In the be-
ginning, the sequence(i.e., scheduler) length is 0 and in Figure 4.1a, the main thread is
first scheduled, adding 1 to the scheduler length. To locate the write action on the main
thread, we can use S[1]. Then thread 2 is scheduled and the write event ’Y=1’ is executed,
also adding 1 to the scheduler length. When C11Tester switches between these threads
randomly, the scheduler length is increased.

Schedule The schedule of a program defines its thread interleaving. Burckhardt et al.[21]
can represent a program abstractly by its schedules and each schedule is simply a sequence
of events.

Definition 2 (Schedule). Define T =N to be the set of thread identifiers. Define Sched = T ∗

to be the set of all scheduling.

The schedule is written as a sequence of thread identifiers and an execution can be
abstractly expressed as its schedule. Still for the Program SB in Figure 4.2, the schedule
can be written as the sequence ’2112’, where thread 2 takes one step, followed by two steps
of thread 1, followed by another step of thread 1.

Though the schedule serves as an abstraction of the program state, it does mean that we
can schedule any thread at any state. Because a thread may be blocked or in sleep at some
states. A program can be scheduled only when it is enabled at that state.

Event Labeling The action a thread is going to execute is called an event and it is used
for defining the ordering constraints. The event labeling is to mark what event the thread(t)
is going to execute if scheduled next after scheduler S.

18

5.1. PCT Algorithm and Theoretical Guarantee

Figure 5.2: A concurrent program example: P3. Bug depth d = 3.

Definition 3 (Event Labeling). An event labeling E defines a set of event labels LE and
each label a ∈ LE belongs to a particular thread threadE(a). A function nextE(S, t) tells
what event label the thread t will execute if scheduled next after scheduler S.

Let P be a program. An event labeling E is a triple (LE , threadE ,nextE) where LE is
a set of event labels, threadE is a function LE → T . Function nextE | P×T → (LE ∪⊥),
which satisfies the following conditions:

• (Affinity) If nextE(S, t) = a for some a ∈ LE , then threadE(a) = t.

• (Stability) If nextE(S, t) = a for some a ∈ LE , and if t ̸= t ′, then nextE(St ′, t) = a.

• (Uniqueness) If nextE(S1, t) = nextE(S1S2, t) = a for some a ∈ LE , then t /∈ S2.

• (NotFirst) nextE(ε, t) =⊥,∀t ∈ T .

In the Figure 4.2, thread 1 and thread 2 in Program SB 5.1a emits different events at
different states. In Figure 4.1a, the next event on thread 1 is the write event ’X=1’ and the
next event on thread 2 is the write event ’Y=1’. And at the state in Figure 4.1b, the next
event on thread 1 is the read event ’a=X’ and the next event on thread 2 is the read event
’b=Y’.

Shared Access Event We define the shared access event to distinguish the events related
to concurrency bugs. Because some action types are irrelevant to a concurrency bug, e.g.,
thread create or thread join.

Definition 4 (Shared Access Event). The shared access event represents the events involved
in thread-interleaving, containing all write, read, and fence actions.

Bug Depth Burckhardt et al.[21] defines the bug depth as the minimum number of order-
ing constraints that are sufficient to guide the scheduler to hit the bug.

Definition 5 (Bug Depth). The formalization of bug depth - d, is the minimal size of schedul-
ing constraints between event labelings that can guarantee to trigger the bug.

19

5. ALGORITHM AND EXAMPLES

Taking Program P3 5.2 as an example. Its bug depth d is 3. To hit successfully hit
the assertion, scheduling generated by PCT should guarantee three ordering constraints: i)
executing the ’zero’ value check before writing zero to X; ii) switching to thread 1 after
the ’zero’ value check but before executing the branch; iii) inserting a priority change point
after writing ’0’ but before writing value ’1’ to X.

Event Tuple The event tuple is a tuple that represents the necessary ordering of the events
related to a certain bug. Once these events are scheduled as the order in this tuple, it can
successfully hit the bug.

Definition 6 (Event Tuple). A tuple including d events is expressed as < E1,E2, . . . ,Ed >.
Once a schedule can meet this order of E1,E2, . . . ,Ed , it can hit a bug with depth of d.

Here are event tuples for the former four concurrency program examples. The event
tuple of Program P1 5.1b to hit the assertion is { ① , ② }. For Program P2 5.1c, its event
tuple is { ① , ② } to hit the bug. And for Program P3 5.2, its bug depth is 3 and the related
event tuple is comparatively complex: { ③ , ① , ④ , ② }. If PCT scheduling satisfies the
events ordering in this tuple, it can hit the assertion bug in Program P3 5.2.

The event tuple, can be viewed as a transformation of the ordering constraints, is critical
to hit a bug. It is important to stress that the order of event in a tuple is strict. There should
be no other events between the elements in a tuple.

5.1.3 The PCT Algorithm

The PCT algorithm - PCT(d,k) in Algorithm 1, takes the bug depth d as the bug depth
and the instruction numberk as test parameters. The definition of the depth(d) of a con-
currency bug is the minimal number of scheduling constraints necessary to locate the bug.
Intuitively, bugs having a greater depth sample from an exponentially larger set of sched-
ules are therefore by nature more difficult to locate. If a program has n threads, the initial
priorities for each thread should vary from d to d + n. As for the total instruction(shared
access events) number - k, we will generate d− 1 priority changes in these k shared ac-
cess events(instructions). That is to say, priority change points can be viewed as randomly
picking d− 1 different locations from all k locations in the program. The change priority
points generated by parameters - d and k will decide whether we can meet certain ordering
constraints.

Priority of Thread PCT algorithm adds a new feature to threads - priority. The priority
is an integer larger than or equal to zero. The priority is given when a new thread is created
and recorded until the end of execution. PCT realizes the scheduling with by controlling
the thread’s priority.

Initial Priority When a thread is created, no matter main thread or child thread, PCT
gives it an initial priority. The range of initial priorities for a program with n threads and a
d-depth bug is [d,d +n−1].

20

5.1. PCT Algorithm and Theoretical Guarantee

Definition 7 (Thread Priority). For a program with n threads, PCT sets a n-size list to
record the priority for each thread. Each thread in the program is given an initial priority
when it is created. The range of initial priorities is from d to d +n−1.

For example, Program SB 5.1a has main thread and two child threads, with a 0-depth
bug. The range of initial priorities is [0,2]. Program P1 5.1b also has main thread and two
child threads, whose bug depth is 1, initial priorities varying from 1 to 3. And for Program
P2 5.1c, its bug depth is 0 and has four threads(main thread and three child threads). So
initial priorities will be 0,1,2, and 3.

Priority Change Points PCT always picks the highest-priority thread to execute. So PCT
can switch between different threads when it updates the priority of a thread. At a priority
change point, PCT lowers the priority of a thread.

As PCT gives each thread a different initial priority and it always executes the highest-
priority thread, there exists an initial order of each thread when the thread is created. For
example, in Program P1 5.1b, if we give thread 1 priority 2 and thread 2 priority 1, PCT
executes thread 1 first. With the initial priorities, PCT already meets the ordering constraint
in Program P2 5.1c, executing the write event ’X=m’ happen before the read event. This
means that initial priorities can guarantee one ordering constraint.

Therefore, PCT picks d−1 points rather than d points when detecting a bug with depth
of d.

Definition 8 (Priority Change Points). When PCT detects a d-depth bug, it randomly picks
d−1 integers from [1,k]. k is the number of all shared access events. The list that saves the
d−1 points is written as [d1, . . . ,dd−1].

For example, in Program P3 5.2, it has four events: ① ② ③ ④. This d = 3 execution
of Program P3 5.2 picks two locations in all instructions as priority change points. Again,
here PCT picks d−1(i.e.,two) switching points rather than d(i.e.,three) points because dif-
ferent initial priority assigned by PCT can guarantee one ordering constraint. The detailed
explanation of PCT scheduling Program P3 is discussed later in Chapter 5.1.4.

Procedure PCT In Algorithm 1, we present the PCT algorithm based on the procedure of
execution generation in C11Tester by sampling from the d−bounded test executions. PCT
takes bug depth d and instruction number k as input.

PCT maintains a list of threads that records the threads’ ids according to their priorities,
from high to low. PCT always chooses the next event on the current highest-priority thread.
It schedules threads in order(i.e., priorities from high to low) and switches between them at
randomly selected tuple of d−1 events, [d1, ..,dd−1], which are picked from the array [1,k].
The switching points(i.e., the priority change points) - [d1, . . . ,dd−1], are kept in a d−1-size
vector, whose elements are randomly picked from the range of [1,k].

Vector threads is used to keep all threads’ priorities and the function highestPrEnabled(threads)
will return the current highest-priority thread in it. We also adopt some parameters defined
in C11Tester. The set of all currently available threads - enabled(t) and the next enabled
event on thread t at state s - next(s, t). In each scheduling, PCT will check whether it

21

5. ALGORITHM AND EXAMPLES

meets a priority-change point with the help of the vector that saves change priority points -
[d1, . . . ,dd−1] and indexO f (i, list) to get the index of the element i in the list.

Algorithm 1 PCT
Data: schedulerLength // the count of scheduler length(number of calling the scheduler)
Data: [d1, . . . ,dd−1] // list of d−1 distinct integers, initialized randomly between [1,k]
Data: t,e,s // the current executed thread, event and current execution state

1: procedure PCT(d,k)
2: while enabled(s) ̸= /0 do
3: for t ∈ enabled(s) do
4: if t /∈ threads then
5: threads[randomIdx]← t ▷ give a new thread random priority
6: end if
7: end for
8: t← highestPrEnabled(threads) ▷ find the thread with highest priority
9: e← next(s, t) ▷ get next event on selected thread

10: schedulerLength← schedulerLength+1 ▷ increase scheduler length
11: if schedulerLength ∈ indexO f ([d1, . . . ,dd−1]) then
12: Index← indexO f (schedulerLength, [d1, . . . ,dd−1])
13: threads[Index]← t ▷ lower the thread’s priority
14: continue
15: end if
16: execute(e) ▷ execute next event on selected thread
17: end while
18: end procedure

When exploring the execution space, PCT always selects the thread t with the high-
est priority from the enabled set(line 8 in Algorithm 1) and the next enabled event on
thread t(line 9 in Algorithm 1). PCT counts the scheduler length and increases by one
every time(line 10 in Algorithm 1). On line 11 in Program 1, PCT checks if the current
scheduler length is among the selected d−1 locations. If this is the case, it means PCT now
meets a thread switching(priority change) point. PCT will first find out the related index of
this switching point(line 12 in Algorithm 1). Second, PCT puts the current highest-priority
thread - t to this related index among all threads(line 13 in Algorithm 1), which can be
viewed as lowering the priority of thread -t. Then, PCT executes the next event(line 16
in Algorithm 1). After the thread priority update(line 13), in the next loop(line 2 in Algo-
rithm 1), PCT will repeat this procedure.

5.1.4 Examples and Lower Bound on Probability to Hit the Bug

Example: d = 3 Consider the Program P3 in Figure 5.2. In this example, the bug depth
is 3. The three scheduling constraints are i) checking variable X not ’0’ before writing ’0’
to X; ii) switching to thread 2 before writing ’1’ to X but after writing ’0’ to X; iii) writing
’1’ to X after the assertion. PCT needs d−1(2) switching points to hit the assertion bug.

22

5.2. PCTWM Algorithm

In Figure 5.2, the event tuple to hit the bug in Program P3 is { ③ , ①, ④, ② }. The first
constraint { ③, ①} can be satisfied by the initial priorities - thread 2 being given higher ini-
tial priority than that of thread 1. The second constraint:{①,④}, is realized by PCT updating
the priority of thread 2 before executing ③ after executing ③. For the third constraint:{ ④,
①}, PCT updates the priority of thread 1 before executing ② after executing ①.

Example: d = 0 and d = 1 As mentioned above, for a bug with a depth of d, PCT picks
d− 1 switching points. But the number of switching points should larger than or equal to
zero. To avoid confusion, we gives the example of program with d = 0 and d = 1. For a bug
depth lower than 1, PCT does not pick any switching point but assigning initial priorities to
each thread and executes them one by one.

Program SB 5.1a includes an order violation, whose bug depth is 0. In the weak memory
model, the order violation appears when the mo of events are RELAXED. As shown in
Figure 4.2a4.2b4.2c4.2d, the order violation can be triggered. As its bug depth is 0, PCT
does not pick any switching point. PCT only assigns the initial priority to thread 1 and
thread 2. PCT either executes thread 1 first, followed by thread 2 or executes thread 2 first,
followed by thread 1. These two executions generated by PCT have no difference in the
probability of hitting the bug. As the bug lies in the selection of read-from values. This bug
can be triggered by at least one of the read events on thread 1 or thread 2 that read from the
write event on the main thread(X = Y = 0).

Program P1 5.1b includes an assertion violation, whose bug depth is 1. As its bug depth
is 1, PCT does not pick any switching point. If PCT gives thread 1 a higher initial priority, it
executes thread 1 first. After finishing thread 1, PCT switches to thread 2. If PCT can pick
the write event ’X=m’ for thread 2 to read from, it hits the bug. But if PCT gives thread 2
a higher initial priority, it executes thread 2 first and PCT cannot read from the write event
’X=m’, which makes it impossible to hit the bug. The probability to hit the assertion in
Program P2 5.1c is 1

2m .

5.1.5 Theoretical Guarantee(Lower Bound on Probability)

For a bug with the depth of d, PCT picks d−1 change points uniformly among all k shared
access events. Picking switching points is the first part of the lower bound on probability,
which is 1

kd−1 . The second point we need to consider is that one scheduling constraint is
guaranteed by the initial priority. For example, in Program P3 5.2, thread 2 should be given
a higher priority at first. The probability of giving a proper initial priority is 1

n . Combining
these two aspects, we give a lower bound on the theoretical probability of the PCT algorithm
to hit a ’d’-depth bug - 1

nkd−1 .

5.2 PCTWM Algorithm

5.2.1 Application of PCT to Weak Memory

While PCT guarantees a lower bound on the probability of detecting bugs, its theoretical
guarantees do not apply to weak memory programs. We demonstrate this on a variant of

23

5. ALGORITHM AND EXAMPLES

Program 5.1b where all the load and store accesses to the variable X are relaxed accesses.
In that case, an execution that schedules all operations of the first thread before the second
thread does not necessarily produce the bug. The load operation in the second thread can
get X’s value from any of the store operations in the first thread.

Different from SC programs, the behavior of the weak memory programs depends on
not only the thread interleavings but also on the selection of the store operations that the
load operations get the values from. Based on this observation, we revise the notion of
concurrency bug depth to capture the effect of the store operations on the load operations
on the same variables.

The traditional notion of concurrency bug depth based on the scheduling order of the
program actions does not apply to weak memory programs.

We demonstrate that the existing notion does not capture weak memory concurrency
bugs using Program 5.1a. The program exhibits a buggy behavior when both variables a
and b load the value 1. The traditional notion of bug depth is defined as the minimum number
of thread scheduling constraints that are sufficient to produce the bug [21]. However, the
bug in Program 5.1a does not depend on the scheduling order of the actions. Rather, the bug
exposes in the communication of the effect of a particular store operation in the first thread
to the load operation in the second thread.

5.2.2 Revising Concurrency Bug Depth

We revise the concurrency bug depth definition to capture thread communication. rather
than thread interleavings. More specifically, we define the depth of a concurrency bug as
the minimum number of communication relations between the concurrent events in the ex-
ecution. Roughly, a communication relation between two concurrent events communicates
the effects of some store operations to a load operation. For example, the depth of the con-
currency bug in Program 5.1a is d = 0 since it does not require any communication between
its threads. That is, the actions in each thread only access the values of the variables that are
available in their thread-local views.

Notice that the revised definition of the bug depth extends the existing notion that uses
thread interleavings. For the case of sequentially consistent programs, every thread in-
terleaving induces a communication relation: the effects of all the store operations in an
executing thread are communicated to the other threads at the thread interleavings. For ex-
ample, the depth of the concurrency bug in Program 5.1b is d = 1 using both notions. The
bug exposes in the presence of a single communication relation between its events, i.e., the
communication of the effect of the store X = m to the load operation in the second thread.
As another example, the assertion violation in Program 5.1c has bug depth of d = 2. It
requires the communication of (i) the store operation on X in the first thread to the read
operation on X in the second thread and (ii) the store operation to Y in the third thread to
the read operation Y in the second thread.

24

5.2. PCTWM Algorithm

5.2.3 PCTWM: PCT for Weak Memory

PCTWM extends PCT to generate an execution with d communication relations instead of
d ordering constraints. Similar to PCT, PCTWM takes the number of instructions kcom

1 in
a program and the concurrency bug depth d as input and samples an execution from the
d-bounded set of executions. However, different from PCT, PCTWM uses the revised def-
inition of bug depth; it does not sample from the executions with d thread scheduling con-
straints, but from the executions with d communication relations. Roughly, it (i) chooses
d operations as communication destinations among the set of communication events (e.g.,
load operations) and orders them to schedule in a particular order, (ii) chooses a source
operation (e.g., a store operation) for each communication event before scheduling them.
Bounding the number of communication relations by d restricts the amount of thread in-
teraction in an execution. Without any restrictions, a relaxed load operation can potentially
read from any store operation on the same variable. However, bounding an execution to
have only d communication relations allows only d operations to read from an external
value that is not yet communicated to the loading thread. It restricts the behavior of the rest
of the load operations to read the values available in their thread local views.

For example, the d = 0 execution of Program 5.1a does not allow any load operations
to read an external value. Therefore, both load operations read the values available in the
local views of their respective threads. Similarly, the d = 0 execution of Program 5.1b
restricts the load operation to read the initial value of X . Alternatively, a d = 1 execution of
the program allows the load operation to read a value written by the first thread. Consider
another program, give in the Figure 5.1c. A d = 1 execution of the program allows the
communication of either the value of X stored in the first thread or the value of Y stored in
the third thread to the load operations in the second thread. An execution that loads both
a= 1 and b= 1 is of concurrency depth d = 2 since it requires two communication relations.

Besides the number of communication relations d, PCTWM further parametrizes the
execution space using a history bounding parameter h. The history bound restricts the set of
store operations that a load operation can read from based on how old a value is. It serves
to prioritize the executions that load possibly stale values but not older than h number of
store operations. Hence, a load operation that is chosen as a communication destination
can read from only h possible values instead of m values, further reducing the sample set of
executions.

For example, an execution of Program 5.1b with d = 1 and h = 2 detects the concur-
rency bug with probability 1/2. First, it chooses d = 1 communication destinations. This
example has only one possible communication destination, i.e., load operation in the asser-
tion statement. Then, it chooses a source operation for the communication relation within a
history bound h = 2. In this example, it can select to read from either X = (m−1) or X = m
each with the probability of 1/2, the latter hitting the bug.

We provide the formal definition of a communication relation, the complete PCTWM
algorithm, and its theoretical guarantees in Section 5.2.7.

1Instead of the total number of instructions, PCTWM takes the number of communication events as we
describe in Chapter 5.

25

5. ALGORITHM AND EXAMPLES

The PCTWM algorithm extends PCT to weak memory programs in a memory model
agnostic way so that its guarantees apply to any memory model. The algorithm relies on
the two key concepts of (i) communication relation between concurrent program events and
(ii) local thread view that maintains the set of updates made available to a thread.

Based on the underlying memory model these concepts can be defined.
It extends PCT by checking (i) whether the event may communicate with an event of

another thread, i.e., it is a communication event and (ii) maintaining the local views of the
threads for each variable.

5.2.4 Formal Definitions

Definition 9 (Communication relation). Following the (SC) constraint in C11Tester model
(see Chapter 2), we consider inter-thread r f , hb, SC as com relations, that is, com ≜ (r f ∪
hb∪SC)\ po.

Definition 10 (Communication event). A communication relation is formed between two
events: a source event and a sink event of the communication relation. A source event
captures the effect which can potentially be communicated to other threads. So it is a SC,
or a write or a fence event. A sink event communicates the updates of other threads to its
local thread. We call the sink events as communication events. So it is a SC, or read, or
acquire event.

Intuitively, the effect of the events in dom(com) (e.g., writing a value to a variable,
releasing a fence) can potentially be communicated to an event in codom(com) (e.g., reading
the value of a variable, acquiring a fence) running on another thread. We call the events in
dom(com) as communication sources and the events in codom(com) as communication
sinks.

Definition 11 (Bug depth). The depth of a concurrency bug is the minimum number of
communication relations between the concurrent events in an execution that is sufficient to
produce the bug.

Definition 12 (View). A view is a map from locations to a set of maximal-mo events. Given
an execution ⟨E, po,r f ,mo,SC⟩, view(x) = maximalmo(Ex) holds where Ex are the set of
write or update events.

• Combine views on a location x. We write ⊔mo (view1(x),view2(x)) to compute the
maximal view from view1(x) and view2(x) for a given location x, i.e. maximal(view1(x)∪
view2(x),mo).

• Combine views on all memory locations. Similarly, we write ⊔mo (view1,view2) to
compute ⊔mo (view1(x),view2(x)) for all memory locations x.

In one execution, each thread may maintain its own view. We write t.view to denote the view
of thread t. Essentially, a thread view maintains the latest write or update events observed
by the thread for each memory location.

26

5.2. PCTWM Algorithm

Definition 13 (History depth). The history depth h bounds a read event in one execution to
read-from an event that does not have more than h imm(mo)-related successors.

5.2.5 The PCTWM Algorithm

The PCTWM algorithm randomly generates a test execution with d communication rela-
tions between the events. The generated test execution allows d selected events to observe
the updates of external threads and restricts the other events to access only their thread
views.

Generating a test execution for a weak memory program requires (i) selecting the next
event to execute and (ii) selecting the behavior of the event (e.g., selecting which event to
read from). The PCTWM algorithm binds these two choices and restricts the execution to
switch threads only at d points that correspond to the external reads or synchronization of
the inter-thread events. PCTWM sorts the threads in random order and switches between
them at d points that can observe the effects of the events from the other threads. It restricts
the weak memory behavior of the rest of the events to access their local thread views.

We present the PCTWM algorithm (see Algorithm 2) following the structure of the
C11Tester [51] by (i) incorporating d-bounded test generation in PCT [21], and (ii) main-
taining the thread-local views for computing the behavior of communication events.

The PCTWM algorithm takes the bug depth d, the history depth h, and the number of
communication events in the program kcom, as test parameters. Then, it samples h-bounded
d communication relations among the kcom events in the execution.

PCTWM maintains a list of threads that keeps the thread id’s in the order of their
priorities. It chooses the next event to be scheduled using the priority-based approach in
PCT. It runs threads in order w.r.t. their priorities and switches between them at randomly
selected d points in the execution. The switching points are specified by the randomly
selected tuple of d events, [d1, . . . ,dd], randomly initialized between [1,kcom]. We also keep
a set of events, reordered, at which the threads switch. These d events are singled out to
potentially read from externally written values of the accessed variables. The algorithm
variables i and s keep the current number of communication events and the execution state
respectively.

Similar to C11Tester, we use enabled(s) to denote the set of all threads that are enabled
in state s, and next(s, t) to refer to the next enabled event in thread t at state s. We also use
highestPrEnabled(threads) to get the thread id with the highest priority among threads,
and indexO f (i, list) to get the index of the element i in list.

Procedure PCTWM. The algorithm selects the enabled thread t with the highest thread
priority (line 5 in Algorithm 2) and the next enabled event e of t (line 6). If the event is
a communication event, it is potentially involved in one of the d communication relations.
In that case, we increment the number of the communication events encountered in the
execution (line 8 in Algorithm 2) and check if that event is among the randomly selected
d events (line 9 in Algorithm 2). If this is the case, we delay the execution of its thread
by reducing its priority (line 11) and adding the event to the set reordered (line 12). We
update the priority of the thread to the value, say de, corresponding to e’s index in the tuple

27

5. ALGORITHM AND EXAMPLES

Algorithm 2 PCTWM
Input: The bound on the number of comm. events kcom, bug depth d, history depth h
Data: threads // the list of threads in ascending order of priorities, the first d positions are
initially null
Data: [d1, . . . ,dd] // list of d distinct integers, initialized randomly between [1,kcom]
Data: reorderedEvents // the set of event ids reordered with a thread priority change, ini-
tially empty
Data: numEvents // the count of comm. events observed, initially 0

1: procedure PCTWM(kcom,d,h)
2: while enabled(s) ̸= /0 do
3: for th ∈ enabled(s) and th /∈ threads do
4: //insert th to a random index after d in threads
5: t← getHighestPrEnabled(threads)
6: e← next(s, t)
7: if isCommunicationEvent(e) then
8: i← i+1
9: if i ∈ {d1, . . . ,dd} then

10: Index← indexO f (i, [d1, ...,dd])
11: threads[Index]← t
12: reordered← reordered∪{e}
13: continue
14: end if
15: end if
16: executeAndUpdateView(s,e)
17: end for
18: end while
19: end procedure

1: procedure ISCOMMUNICATIONEVENT(t,e)
2: return e ∈ (SC∪R ∪F⊒ACQ)
3: end procedure

28

5.2. PCTWM Algorithm

Algorithm 3 executeAndUpdateView(s,e): Executes e and updates the thread view
1: procedure EXECUTEANDUPDATEVIEW(s,e)
2: b←⊥
3: x← e.loc
4: if e ∈ SC then
5: e′← getSC(t,e)
6: t.view←

⊔
(t.view,e′.bag)

7: end if
8: if e ∈W then
9: t.view(x)← e

10: end if
11: if e ∈R then
12: if e ∈ reordered then ▷ read from any of the store operations
13: b← readGlobal(t,h)
14: if isSync(e,b) then
15: t.view←

⊔
s.mo(t.view,b.bag)

16: else
17: t.view(x)←

⊔
s.mo(t.view(x),b.bag(x))

18: end if
19: else ▷ read from the local thread view
20: b← readLocal(t)
21: end if
22: end if
23: if e ∈ F⊒ACQ then
24: esw← getSWSet(t,e)
25: for e′ ∈ esw do
26: t.view←

⊔
s.mo(t.view,e′.bag)

27: end for
28: end if
29: if e ∈ FREL then ▷ no update to the current thread’s view
30: end if
31: e.bag← t.view
32: s← executes, t,b
33: end procedure

29

5. ALGORITHM AND EXAMPLES

[d1, . . . ,dd]. This delays the execution of e to execute after all program events except for
the events [de+1, . . . ,dd]. reordering its execution preserving the order of events identified
by d1, . . . ,dd . Enforcing a particular order between the communication events provides the
visibility of some dom(com) events to some codom(com) events. We provide an example
test execution in Section 5.2.6 that enforces a certain ordering and weak memory behavior
of the events forming communication relations.

The PCTWM algorithm extends PCT in a memory model agnostic by using the in a
memory model agnostic procedures: (i) isComEvent, which is used to check if an event is
communication events and potentially update the thread priorities only at such events (line
7) and (ii) executeAndU pdateView, which is used to update the local views of the threads
using (line 14).

Procedure isComEvent. Following the definition of communication events above, a com-
munication event is: (1) an SC event or (2) a read event which may read from other threads,
or (3) a synchronization event, that can be a source or sink of an inter-thread synchronization
(sw) relation.

Procedure executeAndU pdateView Given the scheduled event e and its thread t, this
procedure executes e and updates the thread local view of t accordingly. For every event we
maintain a bag that captures the thread-local view at the point of its execution. Whenever
an event forms a communication relation where its the source, we communicate its bag to
the sink event of the communication relation. The sink event uses the bag to update its own
thread-local view. The update depends on the type of the communication relation.

On line 1 in Algorithm 3 we keep a reference b for a read or RMW event e to store
the behavior of the write event e reads-from. Based on the type of e we update the view of
thread t and the bag of e. On lines 3-4, if e is a non-communication event (i.e. a relaxed
or non-atomic write) then it updates the view of t only at the location accessed by e. If e is
a read or RMW from the reordered set, that is, one of the communication sinks, then On
line 8 e reads from a visible write or RMW event w within history bound h, else on line
15 e reads-from local event to thread t by readLocal. If e reads-from a non-local event, it
updates the view of t. We store the thread view propagated from w to t at b. Next, on line
10, if e is the sink of an sw relation then we update the view of t with the bag in b with the
mo-maximal events per location. Otherwise, on line 12, we update the view of t only for
the memory location accessed by event e.

On lines 16-17, if e is a write or RMW then the view of thread t is updated with event
e at the location of e. On lines 18-19, if e is an acquire or stronger fence then it updates
the view of thread t with the views of all events with which it synchronizes (returned by
getSWset).

On line 4-7, if e is an SC event then it updates the view of thread t with the views of its
SC-predecessors (returned by getSC).

Finally, we store the view of t in the bag of e on line 30 and update the execution state
on line 32.

30

5.2. PCTWM Algorithm

Figure 5.3: MP1: execution a = 1, b = 1 with views and bags.

Example Consider the Program 5.3. In this program a = 1,b = 0 results in a bug.
The execution in the Program 5.3 shows that if a = 1 then also b = 1. In the beginning

of the execution, the initial views of the threads T1, T2 are {(X , ix),(Y, iy)} where ix and iy
are initialization writes of X and Y respectively. Execution of e1 updates the thread view
to {(X ,e1),(Y, iy)} which remains same after e2 following line 6 and 26 respectively in the
Algorithm 3. Execution of e3 updates the thread view on Y (line 6 in Algorithm 3). The read
event e4 reads-from e3 and obtains T1’s view in its bag (line 9 in Algorithm 3). It updates
only the view on X , and the updated view is (X ,e1,Y, iy) following line 16 in Algorithm 3.
Fence event e5 synchronizes with e2 and obtain (X ,e1),(Y, iy) in its bag to update T2’s
view to {(X ,e1),(Y,e3)} following 21-25 in Algorithm 3. Finally, while executing e6 the
only write available in the thread-local view is e1 which overwrites the initialization on X .
As a result, e6 must read value 1 following line 21 in Algorithm 3. In that case outcome
a = 1,b = 0 is a bug.

5.2.6 Example Test Executions Generated by PCTWM

We now discuss some example executions generated by PCTWM for testing Program 5.4,
which is a message passing program in which all the shared memory accesses are relaxed
accesses. The program consists of the parallel execution of three threads T1, T2, and T3.
The execution of a program that reads Y == 1 and X == 0 in T3 hits an assertion violation.
While the proper synchronization of the operations could prevent the assertion violation,
we consider this buggy version of the program with all relaxed accesses to illustrate the test
case generation of PCTWM and how it detects the bug.

Generating the execution with d = 0. The d = 0 execution of Program 5.4 (see Fig-
ure 5.4(a)) does not have any communication relations. Therefore, it does not allow any
external reads. Following Algorithm 2, PCTWM randomly assigns priorities to the threads

31

5. ALGORITHM AND EXAMPLES

Figure 5.4: Three test executions for the Program MP2

and runs them serially in the order of their priorities. Since d = 0, it forbids any thread
switches or communication relations.

Generating an execution with d = 1. PCTWM generates a d = 1 execution of the pro-
gram by randomly sampling a communication relation in the execution. The algorithm
randomly assigns priorities to the threads, (e.g., in the decreasing order to T1, T2, and T3,
respectively for the execution in Figure 5.4(b)). Then, switches the threads at a randomly
selected d = 1 event, allowing that event to read-from a value written in another thread (if
it is a read event) or synchronize with an external event (e.g., a read-acquire even can syn-
chronize with a write-release event). For this program, PCTWM selects the d = 1 event out
of kcom = {e2,e4,e5}. In the example execution in Figure 5.4(b), it selects [e2] as the sink of
the com relation.

The test execution starts running the threads in the order of their priorities, reordering
the execution of T2 at e2 by reducing the priority of its thread (line 11 in Algorithm 2).

32

5.2. PCTWM Algorithm

The test execution continues with T3, executing e4. Since these events are not involved in
a communication relation, they read from their thread local views, i.e., X = 0 and Y = 0
(corresponding to line 21 in Algorithm 3). After the completion of T3, PCTWM executes
e2. Since e2 is reordered to form a communication relation with an earlier event, i.e., e2 ∈
reordered, it can read globally from any value within a bound of h = 1 (line 23). In this
example, e2 reads from e1, forming the communication relation (e1,e2). Then, PCTWM
runs the next event e3 in T2 completing the test execution.

Generating an execution with d = 2. PCTWM generates a d = 2 execution of the pro-
gram by randomly sampling two communication relations in the execution. Similar to the
previous case, it randomly assigns priorities to the threads, (e.g., in the decreasing order to
T1, T2, and T3 respectively). It switches the threads at a randomly selected d = 2 events,
allowing only these events to read-from or synchronize with an externally written value. In
this example, PCTWM selects the tuple [e2,e4] of d = 2 events which can access thread
external writes. The algorithm runs T1 executing e1, delays the execution of e2 by reducing
the priority of T2. The execution continues with T3 but this time it also delays the exe-
cution of T3 at e4 as well. The updated priorities of T2 and T3 preserve the order of the
selected events [e2,e4]. Therefore, the execution moves to T2, executing e2 ∈ reordered by
allowing it to read from an external value and form a communication relation. In this execu-
tion, e2 reads from e1 which forms the communication relation (e1,e2). Then, the PCTWM
algorithm executes e3 and moves to T3. Since e4 ∈ reordered, it forms a communication re-
lation. In this execution, e4 reads from e3, which forms the communication relation (e3,e4).
This execution with two communication relations hits the assertion violation.

This example highlights several insights of the algorithm. First, more complex execu-
tions with deeper concurrency bugs manifest in the existence of a higher number of commu-
nication relations. Second, the order of the events identified by [d1, . . . ,dd] that are selected
to form communication relations affect the generated test execution. For example, if the
algorithm generates a test case by selecting [e4,e2] instead of [e2,e4], then e4 can only read
X = 0. The execution order of the selected d events affects the set of visible values to a read
event. Finally, a communication relation updates the thread local views based on the seman-
tics of the events in the formed communication relation. For example, the communication
relation (e3,e4) in Figure 5.4(c) updates only the variable Y in the thread local view of T3
(following line 18 in Algorithm 3). However, if the communication relation (e3,e4) formed
a synchronization (e.g., e3 was a release-write and e4 was an acquire-read), the updates on
both variables X and Y would be propagated to the thread local view of T3 (corresponding
to line 10 in Algorithm 3).

5.2.7 The Probability of Detecting Bugs using PCTWM

Given a program with kcom communication events, PCTWM samples an execution with d
communication relations and a history bound of h with the probability of at least 1

O((h.kcom)d)
.

It chooses d events out of kcom events as the sinks of d communication relations from
(kcom

d

)
possible ways. It sorts these d events in a particular order yielding

(kcom
d

)
.d! ≤ kcom

d many

33

5. ALGORITHM AND EXAMPLES

ways. For each of the d communication sinks, it selects a communication event as the source
out of h possible events, in O(hd) possible ways. Therefore, the size of the set of executions
sampled by the PCTWM algorithm is bounded by O((h.kcom)

d). Trivially, the probability
of choosing an execution out of this set is at least 1

O((h.kcom)d)
, which is exponentially low

only in the bug depth parameter d.

34

Chapter 6

Implementation

This chapter describes how the PCT and PCTWM algorithms are implemented in the C11Tester.
We illustrate the PCT and PCTWM implementation based on the algorithm’s procedure de-
scribed in Chapter 5.

6.1 C11Tester Implementation and Plugins for Algorithms

The C11Tester replaces the pthread library functions to control the thread scheduling. C11Tester
checks the consistency between its execution and the C/C++11 semantics when executing
each action. It adopts the graph theory to maintain the correctness of the execution. The
events and relations between events are separately abstracted as the nodes and edges in the
graph. The C/C++11 standard’s semantics are abstracted as the acyclic rule in the graph.

It also applies the full semantics in the C/C++ memory model to constrain the action
selection. In other words, the C11Tester can offer the available threads for each step and
randomly select the next executed thread and the next action on this thread. When the
program needs to choose an event, e.g., a read-from value, C11Tester randomly selects from
the available event set until the selected event does not violate the C/C++11 semantics.
C11Tester utilizes the naive randomized thread scheduling, randomly picking one thread
from current available(non-sleep and non-blocked) threads’ set - r f set. The implemented
detector can report any data race or assertion violations it meets.

The workflow of C11Tester is simply abstracted in Figure 3.2. We can view the execu-
tion in C11Tester as an action-selection loop until the execution meets an end - no available
thread or action to execute. First, by initializing each thread and recording their states,
C11Tester collects the available threads’ set every time it calls the thread scheduler. Sec-
ond, C11Tester randomly picks an enabled thread from the set of available threads. If there
exists at least one available thread, C11Tester processes the next event on this thread. Oth-
erwise, this execution is finished. When processing an event, C11Tester checks whether
it needs to read from other events and also collects available read-from events. Note that
the correctness of possible behavior for an event is checked by the acyclic of the graph.
Third, an event will be executed and added to the graph. Fourth, after executing this ac-
tion, C11Tester finds out whether this event specifies the next event(e.g., the RMW action

35

6. IMPLEMENTATION

is divided into serial actions - a read and a write action). If this is not the case, C11Tester
repeats the first step - collecting currently available threads.

Property Meaning

mo-graph The graph abstracted by C11Tester to check the consistency be-
tween execution and C/C++11 semantics.

action list AA list, which is derived from the mo-graph, records all activities
in one spot or on all threads. C11Tester backward traverses an
action list on one location to collect possible behaviors for some
events.

rf set The vector defined by C11Tester, which contains all available
read-from events in the current state. Collected once every state.

check current action The core function in interface execution. It checks and processes
the chosen event based on its type.

select next thread The core function in interface scheduler to realize the thread
scheduling. It traverses the threads and collects available ones.
In this function, we can implement different strategies to pick a
thread to execute among currently available threads.

take step The thread selection action in execution, returns the next sched-
uled thread based on the current executed event.

Table 6.1: Properties of C11Tester and related to PCTWM implementation.

As we discussed before, C11Tester adopts the graph theory to keep track of all events
and relations between them. The graph abstracted by C11Tester is called - mo-graph, i.e.,
modification order graph. Specifically speaking, it uses the delay decision in the action
selection. It first randomly selects the required action from the allowed action set and then
adds this action to the graph to check whether a cycle appears. If no cycle is created, the
action is assumed as executable and moves to the next step. Otherwise, the selected action
violates the C/C++ semantics and repeats the random selection until the appropriate action
is chosen.

Random Testing in C11tester[51] The C11Tester adopts graph theory and associates
every state transition taken by the thread with the dynamic operation that affected the tran-
sition. It uses a set to record the enabled sets and get the next transition on each thread.

As shown in figure6.1, C11Tester explores the execution space in two steps:(i) selecting
a thread and executing the next event on this thread; (ii) selecting the behavior of the selected
thread’s next operation. The C11Tester employs a random technique by default for the
thread and transition selection, which is the central component of the execution exploration.
The pluggable framework for testing algorithms to intelligently choose the next thread and
behavior is implemented by the C11Tester.

Collect Available Read From Events C11Tester collects a set of enabled read-from
events for a read event. When collecting the enabled events, C11Tester first locates the

36

6.2. PCT and PCTWM: Parameters

Figure 6.1: PCT and PCTWM implementation on C11Tester. Above the dotted line is the
thread scheduling level. Below the dotted line is the communication relation(read-from
value selection) value.

last action on each thread. And then it traverses back the action list until it meets a stop
condition defined by C/C++11 semantics.

Interfaces of C11Tester The following are the key components of the C11Tester: 1)
cyclegraph - to create and update the graph to model-check the correctness of the execution;
2) execution - to process the execution based on different actions and memory orders; 3)
scheduler - the randomized scheduler to filter enabled threads and randomly select one
thread to execute; 4) threads - to save the state of each thread including all parent and
child threads; 5) action - to initiate and process each action by its action type, also to pass
the information to the model checking for C/C++ semantics inside C11Tester; 6) model -
control the whole C11Tester running; 6) main: to accept and set default parameters.

6.2 PCT and PCTWM: Parameters

This section specifies the flags we set for the parameters in PCT and PCTWM, through
which we can pass the parameters to sample the scheduling. For example, in the command,
we can use ’-d2’ to set the bug depth as 2 for PCTWM. The implementation of the PCT and
PCTWM does not affect the old flags set by the C11Tester, e.g., controlling the execution
time with flag ’n’.

37

6. IMPLEMENTATION

Flag Parameter Range

d bug depth ≥ 1
l number of shared access events (i.e., instructions) ≥ 1
s seed ≥ 0

Table 6.2: Flags in PCT Implementation

Flag Parameter Range

d bug depth ≥ 1
k the estimated number of communication events ≥ 1
y the history bound in collecting communication events for the view ≥ 1
s seed ≥ 0

Table 6.3: Flags in PCTWM Implementation

6.3 PCT Implementation

PCT algorithm is implemented in the scheduler interface, replacing the naive random thread
scheduling with priority-based scheduling. Based on the PCT implementation in the sched-
uler, PCTWM has been further implemented in interface execution.

6.3.1 Parameters

Algorithm Parameters As we discuss before, PCT has two parameters to control the
scheduling - bug depth d and shared memory accesses events k. They are define in the
header file of params and implemented in the main file. After the parameters are passed
to PCT through the main function, the interface scheduler gets the parameters it needs.
Second, we set a flag - ’s’ to change the random seed. The default seed is already set but
this parameter can offer more options for sampling.

Additional Parameters These are some parameters used in implementation to sample the
scheduling.

scheduler length This parameter is used to count how many times PCT schedules the
threads, which relates to the priority change points and livelock number. The initial sched-
uler length is zero and it will increase by one every step.

livelock The model-checker approach has a common limitation - some scheduling sam-
ples may meet a ’livelock’ in the search space, whose processing will be discussed in Chap-
ter 6.3.3. It is more likely for PCT to create such schedules as it preempts threads only
for a limited number of times. For this reason, we add another parameter - livelock in the
C11Tester. It is automatically assigned a multiple of the number of shared memory ac-
cesses events k. Every time the scheduler length meets the times of livelock, it will adopt
the random selection to jump out of the livelock.

38

6.3. PCT Implementation

6.3.2 Implementation based on Algorithm 1

Assign Initial Priorities Every time a new thread is created, PCT will give it a random
initial priority(line 2 - 7 in Algorithm 1). If a program has n threads, then the initial priorities
for these n threads vary from d to d+n−1. The priorities 1 to d−1 are used for the priority
change points.

In the PCT implementation, an n-size vector is created to represent the initial priority for
each thread. By inserting the thread’ id to this vector randomly when C11Tester initializes
a new thread, each thread’s priority is given based on its index in this vector.

Pick the Highest-Priority Thread and Execute Next Event Different from randomly
picking one thread among the available threads, PCT always chooses the current highest
priority thread(line 8 in Algorithm 1). It executes the next event on this chosen thread(line
9 in Algorithm 1). C11Tester realizes the randomized thread scheduling in function se-
lect next thread(). PCT adds a function(getHighestPriorityT hread) to pick the highest pri-
ority thread. It takes the set of all current available threads’ ids as input and returns the id of
the highest priority thread among these available ones. As for executing the next event on a
chosen thread, it is the same as C11Tester.

Priority Change Points The list of priority change points, i.e., the thread switching
points, plays a critical role in PCT implementation. Because this list [d1, . . . ,dd−1] decides
how the PCT updates threads’ priorities and switches between them.

First, PCT picks d− 1 different integers from the range [1,k]. In order to produce and
preserve these numbers, we define a vector chg pts - [d1, . . . ,dd−1]. To verify that these
integers are distinct, PCT shall traverse the elements in this vector and keep generating new
ones until the newly created one is distinct.

Second, PCT counts the length of the scheduler(processed shared access events). Based
on lines 10 - 12 in Algorithm 1, the length of a scheduler is used to check whether it is
the priority change point. The schedulerlength is initialized as zero and PCT increments
the length of the scheduler in the function(select next thread()), which marks how many
times PCT calls the thread scheduler. Every time PCT calls select next thread to choose
one enabled thread, its length increments by one.

Third, to check whether meeting a thread switching point(priority change point), PCT
compares the current scheduler length with values in the list - [d1, . . . ,dd−1]. If the scheduler
length equals one integer in this list, it means that the scheduler meets a change priority
point.

Fourth, if it is a priority change point, PCT gets the index of this priority point in
[d1, . . . ,dd−1] (line 12 in Algorithm 1). The function find chgidx() takes the current sched-
uler length as input and return the index of this length in the list - [d1, . . . ,dd−1]. And PCT
updates the priority of the current chosen thread - t, also the highest priority thread. The
new priority assigned to this thread is the Index found by PCT. Function movethread(index,
threadid) is implemented to realize line 13 in Algorithm 1, whose inputs are the index of
change point and the id of current thread t.

39

6. IMPLEMENTATION

6.3.3 Optimization

Processing Livelock The livelock refers to the case that the program gets stuck in one
thread and cannot stop executing this thread or switch to another thread. This may result
from the current highest-priority thread needing to read from values on other lower-priority
threads. The livelock may happen in any model-checker that explores the executions’ search
space for a concurrent program on the weak memory model. For the naive randomized
testing, this kind of case may not happen too often as every time the scheduler will randomly
pick a thread to execute. However, in PCT, the scheduler will stay on one thread until it
meets a priority change point, which makes it more likely to meet the livelock.

To prevent the livelock, we also add another parameter - livelock when implementing
PCT. It is automatically assigned a value - a multiple of the number of the shared access
events k by passing the parameter. PCT algorithm counts how many shared access events
have been processed. And each time the number of processed shared access events is an
integer multiple of parameter livelock, PCT makes a random selection to replace the highest
priority selection so that PCT can jump out of the ’live lock’.

Input Protection Each parameter in PCT algorithm has a range. For example, the bug
depth d in PCT algorithm should larger than or equal to zero but PCT picks d− 1 priority
change points. In the implementation, when the input d is lower than zero, PCT does not
pick any priority change point.

The optimizations - processing livelock and input protection, in PCT implementation,
are also added to PCTWM implementation.

6.4 PCTWM Implementation

The implementation of the PCTWM mainly covers the execution, threads, action and sched-
uler. The core realization of the PCTWM algorithm is to check and process action based
on its type and memory order. How to process an event also decides how threads switch.
In the execution, this implementation mainly relies on the API check current action. In
the threads and actions, we add the feature of the visible synchronization vector to save
the visible newest value for each shared variable. The priority-based thread scheduling is
implemented in the scheduler.

6.4.1 Parameters

Algorithm Parameters Table 6.3 lists the parameters related to PCTWM implementa-
tion. First, the bug depth d in PCTWM represents the minimum communication relations it
needs to trigger the bug. Second, PCTWM uses flag k to pass the number of communication
events. Third, as we discuss in Chapter 5, PCTWM introduces a new parameter - history.
Fourth, PCTWM still uses the flag s to represent the random seed.

Additional Parameters priority change points In interface scheduler, the list(chg pts)
saves d distinct integers, representing the d switching points.

40

6.4. PCTWM Implementation

Number of Processed Communication Events This parameter counts how many times
PCTWM has met and processed a communication event, which relates to the priority change
points and livelock number.

Livelock Similar to PCT, PCTWM also adds the parameter - livelock. It is automatically
assigned a value - multiples of the communication events kcom by passing the parameter.
PCTWM counts how many communication events have been processed. And every time
the number of processed communication events is an integer multiple of parameter livelock,
PCTWM makes a random selection to replace the highest priority selection so that it can
jump out of the ’live lock’.

6.4.2 Features Added to Interface

Action According to the algorithm 2, an action may have one bag to save its view. So in
the implementation, each action has a new vector to save its view for each variable.

Thread Similar to the action, the thread also has a vector as its local view. First, every
time the C11Tester processes a write event on the thread, local view will be updated. Second,
when a communication relation is set up, a read action reading globally, the local view will
be updated as the values on other threads are ’visible’ to this thread now.

Scheduler Moreover, for the operation read, we have two types - global and local as we
discuss in the algorithm 5. So we set a bool-vector external read thread in the scheduler,
which records whether currently, the thread needs to read globally.

6.4.3 Implementation based on Algorithm 2 3

We illustrate the implementation of PCTWM based on the procedure in Algorithm 2 and
Algorithm 3.

Assign Initial Priorities On lines 2 - 4 in Algorithm 2, PCTWM assigns initial priority
to a thread when initializing a new thread in the same way as PCT does. The difference
between PCTWM is the range of initial priorities. When searching the bug with the depth
of d, PCT picks d−1 change points while PCTWM picks d communication events to read
globally. So the initial priorities assigned to n threads in PCTWM vary from d+1 to d+n.

Pick the Highest-Priority Thread and Execute Next Event Line 5 and 6 in Algorithm 2
is to pick the highest-priority thread and execute the next event on this thread. In interface
scheduler, function find highest returns current enabled thread with the highest priority by
inputting current enabled threads’ ids.

Generate Priority Change Points As we mentioned before, for a bug depth d, PCTWM
needs to randomly pick d integers between [1,k]. n interface scheduler, these distinct in-
tegers are saved in a list - chg pts. PCTWM also defines a function set chg pts byread to
generate priority change points, whose inputs are d, k and random seed - s.

41

6. IMPLEMENTATION

Count Processed Communication Events PCTWM counts how many communication
events it has processed. It first checks whether current event is a communication event(line
7 in Algorithm 2), which is implemented in interface execution. PCTWM processes an
event(check current action), it first checks whether it is a communication event. If this
is the case, PCTWM calls the function IncInstrNum to add one to the counter (line 8 in
Algorithm 2).

Update Priority at Priority Change Point By comparing current processed events’ num-
ber and integers in chg pts, PCTWM knows whether it is a switching point with the help of
function - reach chg idx. This function has two inputs - current processed events number
and priority change points - [d1, . . . ,dd]. If it is the priority change point, it returns the index
of this change point - an integer ≥ 0. If it is not, it returns −1. This implementation is
consistent with lines 9 - 10 in Algorithm 2.

PCTWM lowers the priority of the current executed thread t. Using the function movethread,
PCTWM updates the location of the current highest-priority thread to the related index of
priority change point. This means it may no longer be the highest priority thread. Besides,
if PCTWM updates the priority of the highest-priority thread when it processes a read ac-
tion, it sets a read global job for this thread. Because PCTWM will switch to the ’new’
highest-priority thread instead of processing the event on the ’old’ highest-priority thread.
But the reodered event needs to read globally when it is processed.

The difference in PCTWM is lying in the process that it delays the execution of its
thread by reducing its priority (line 11) and adding the event to the set reordered (line 12).
In the event processing function - check current action, it will mark the change f lag as
true to announce that PCTWM now meets a priority change point and does not process this
event.

After updating the thread’s priority and reordering the event, the last step of PCTWM
when meeting a priority change point is to re-select a new thread with the highest priority
in function - take step.

Process the Event based on its Type In Algorithm 3, we use multiple if-branches to
illustrate the different processing when PCTWM meets different types of events.

Line 3 - 5 in Algorithm 3 is implemented in function process write. Line 6 - 17 is
included in function process read. Line 21 - 28 is how PCTWM process fences, which are
realized in function process fence.

Update View for Thread and Event View12, is a map from locations to a set of maximal-
mo events. The implementation of view for threads and events is in the form of a list - saves
the latest visible event for each variable. Though the definition and implementation of view
for thread and event are similar, their roles are slightly different. When reading locally, the
read action can get the latest visible local read-from value directly from the current view on
the thread. The View on event is used for updating the view on a thread faster. Algorithm 3
uses different names to distinguish the view for events and threads. For the thread view,

42

6.4. PCTWM Implementation

Algorithm 3 uses view - t.view. And for events’ views, Algorithm 3 names it bag - e.bag, as
shown in line 10, 12, 24, and 31.

View Update for Event The bag(view) of an event represents the visible latest value for
each variable when the thread emits this event in the schedule. The bag(view) of an event
can help save time when we compute the view for a thread. Because the view for a thread
needs to be computed when an event on it communicates with a global event on another
thread.

PCTWM computes the bag(view) for all communication events - write RELEASE,
read, and f ence events.

So when PCTWM updates the view for an event, it adopts the backward traverse too,
which means it will stop searching values for its view when confronting an event with
view(named bag in implementation). Because the bag of an ’older’ event is out-of-date.

View Update for Thread The view for a thread - t.view, is a new feature for each thread.
In the Algorithm 3, line 4, 9 - 13, 19 , 24, and 31 are about updating the thread view. And
the implementation is mostly in the functions - computeUpdate and computeUpdate fence.

First, as the main thread is always first initialized, every new child thread is assigned
with the main thread’s view when a child thread is created. Second, every time PCTWM
meets a write action in one thread, we will update(process write) the view of it. Third,
when PCTWM meets a communication event, PCTWM also updates its thread’s local
view(updatelocvec).

43

Chapter 7

Experiment and Evaluation

In this chapter, we discuss our evaluation of PCTWM on several benchmarks and then
compare the results with the state-of-the-art weak memory testing tool C11Tester.

Evaluation Method We repeat the testing on one benchmark 1000 times and count how
many runs it detects the bug(assertion or data race). We compare the bug detection capabil-
ity of the algorithms by comparing their bug hitting rates.

7.1 Benchmarks

7.1.1 Benchmarks with Assertion Violation

These two benchmarks are injected with one assertion as a bug.
Seqlock This benchmark is taken from the seqlock implementation from Figure 5 of

Hans Boehm’s MSPC 12 paper[16], made the writer correctly use release atomics for
the data field stores, and injected a bug by weakening atomics that initially increment the
counter to relaxed memory ordering.

rwlock The author of the C11Tester also designs a flawed reader-writer lock in which the
write-lock procedure makes the mistake of wrongly using relaxed atomics. This benchmark
uses double protections - the read-lock to protect read actions from loading atomic variables
and the write-lock to protect write actions from storing to the atomic variables.

7.1.2 Benchmarks with Data Race

The data structure benchmarks to compare the ability of the C11Tester and the algorithms
to discover data races are gathered from https://github.com/mc-imperial/tsan11.

barrier: The spinning barrier has one writer and some readers in which the number of
the readers can be adjusted. The barrier has an initial value representing the number of
threads it needs to synchronize and a variable recording the number of synchronizations
completed so far. The barrier will stop spinning until the number of completed synchro-
nizations reach the set value. The injected bug is to use the wrong relaxed atomics for the
variable which stores the number of spinning threads.

45

7. EXPERIMENT AND EVALUATION

dekker: This benchmark uses two variables: flag0/1 and turn. A flag0 value of true
indicates that process 0 wants to enter the critical section. Entrance to the critical section
is granted for process P0 if P1 does not want to enter its critical section or if P1 has given
priority to P0 by setting turn to 0. The injected bug is to make the mistake of wrong relaxed
atomics to change the flag0/1 value.

cldeque: This benchmark is a realization of a double ended queue from the paper[44],
using relaxed operations (for efficiency) and fences and release/acquire synchronization to
establish order. While the study verifies the accuracy of an ARM implementation, its C11
implementation is not validated. The benchmark’s test driver employs two threads; the
thread that owns the deque pushes three work items and receives two work items, while
the other thread steals one work item. The previous model-checker identified a flaw in the
published implementation. When a steal and push action occur simultaneously and the push
operation resizes the deque, the issue arises. The bug manifests as a load from a possibly
uninitialized memory address.

mpmcqueue: This multiple-producer, multiple-consumer queue[24] allows many read-
ers and writers to access it simultaneously. The test driver will run two threads that are the
same. Each thread will enqueue an item before dequeuing an item later on in the process.

linuxrwlocks: This linux reader-writer lock[61] allows readers or writers to hold the
lock at once, but not both. The test driver uses two identical threads and a single rwlock t to
test the Linux reader-writer lock. Each thread reads under a reader lock and writes under a
writer lock.

mcslock: This benchmark is taken from the implementation of contention-free lock
from Mellor-Crummey and Scott[23][54]. The lock functions like a concurrent queue,
where threads are queued in a first-in, first-out fashion. Each thread alternates between
reading and writing the same shared variable, releasing the lock-in between operations. The
injected bug is to load the value of the variable - gate with relaxed atomics during locking.

msqueue: This benchmark is a C/C++ memory model adaptation of the Michael and
Scott[55] lock-free queue. The injected bug is to make as much use as possible of relaxed
atomics. The test driver operates two mirrored threads while each thread enqueues and then
dequeues a single item.

7.1.3 Real Application Benchmarks

The three real applications that used for the performance(execution time or throughput)
evaluation are Iris[90],a low-latency C++ logging library; Mabain[29], a key-value store
library; Silo[77][80], a multi-core in-memory storage engine.

Mabain Mabain is a lightweight key-value store library. Mabain contains a few test
drivers that insert key-value pairs concurrently into the Mabain system. Same as the previ-
ous work in the C11Tester, the assertions are turned off in the test driver for performance
measurement. The measurement metric is the execution time of inserting 100,000 key-value
pairs into the Mabain system.

According to the bug analysis in the C11Tester paper[51], the test driver has one asyn-
chronous writer and a few workers. Workers and writers share a locked queue. The writer
consumes jobs (database inserts) in the queue, while workers submit jobs. When all jobs

46

7.1. Benchmarks

are submitted, the writer stops. The bug lies in the lack of checking to make sure all jobs
are finished before stopping the writer. As a result, after the writer is stopped, some values
may not be inserted into Mabain, producing assertion failures.

Iris Iris is a low latency asynchronous C++ logging library that buffers data using lock-
free circular queues. The test usepackage lfringbuffer.cpp is selected as the test driver to
measure performance, including one producer and one consumer. For the evaluation of all
three tools, the number of iterations in the test driver was set to 1 million. All tools reported
data races in Iris.

Silo Silo is an in-memory database that is designed for performance and scalability
for modern multicore machines. For this application, dbtest.cc is chosen as the measure-
ment, the running time of this test driver is set to 30 seconds and each run has 5 threads in
parallel. Different from the other two applications, throughput is the metric of measuring
performance for Silo.

7.1.4 Test Parameter for each Benchmark

For PCT and PCTWM, they both have the bug depth - d. To repeat, the definition and
implementation of bug depth in PCT and PCTWM as we discussed in Chapter 5. In PCT,
the bug depth d represents the minimum number of ordering(scheduling) constraints that
are required to trigger the concurrency bug. And in the implementation, a bug with the
depth of d requires the PCT to pick d−1 priority change points. In PCTWM, the bug depth
d means that at least d communication relations are required to trigger the concurrency bug
and we need to pick d events as the destinations for d communication relations.

Shared access events, the total amount of which is k, are designed for PCT algorithm,
including all write, read, and fence actions. Communication events k contains all sequential
consistent(SC), read, fence, and write release operations. We estimate the events in the
while loop for once but multiple it with the for a loop. We also do not count the shared
variable initializations as these accesses never execute concurrently.

Benchmark d LOC
PCT PCTWM
k kcom

dekker 0 50 20 14
msqueue 0 232 49 31
barrier 1 38 15 10
cldeque 1 122 82 56
mcslock 2 75 21 14
mpmcqueue 2 108 22 17
linuxrwlocks 2 90 31 20
rwlock 2 98 79 74
seqlock 3 50 17 14

Table 7.1: Parameters and Estimated Values for Benchmarks.

47

7. EXPERIMENT AND EVALUATION

Research Questions To evaluate the effectiveness of PCTWM we address the following
research questions:

RQ1. With what frequency does PCTWM detect the bugs when we provide the theo-
retical bug depth for the parameterd?

RQ2. How does the bug detection ability of PCTWM change when varying parameters
- bug depth d or history h?

RQ3. Does PCTWM algorithm improve the bug hitting rate compared to C11Tester
random testing?

RQ4. Does the PCTWM improve for the programs with a higher amount of weak
memory accesses?

RQ5. Does PCTWM cause the overhead in C11Tester?
RQ6. How does the bug hitting rate change when changing the parameter(bug depth/instruction

number) in the PCT and PCTWM algorithms?

7.2 RQ1. Bug Detection Ability with Estimated Parameters

Our first research question is to test whether we can detect the bugs with the estimated
parameter values for each benchmark. Table 7.2 lists the bug hitting rate of the PCT and
PCTWM with predicted value in Table 7.1 for each parameter.

7.2.1 PCT

For all benchmarks, PCT with the estimated parameters in Table 7.1 finds the bug success-
fully. However, the bug hitting rates of benchmarks - dekker, cldeque, seqlock, and rwlock,
are lower than those of C11Tester. The results in Table 7.2 are obtained with the theoretical
bug depth d, whose bug hitting rates may be lower. Because switching the threads precisely
with theoretical bug depth has lower probability. We are going to further enhance the bug
hitting rate of PCT by increasing d in the following section.

7.2.2 PCTWM

PCTWM with the theoretical bug depth and estimated communication events successfully
trigger the bug in all nine benchmarks. And we can see in Table 7.2 that PCTWM with the
test parameters always has a higher bug hitting rate compared with PCT.

7.3 RQ2. Bug Detection Ability Varying Bug Depth and
History

In this question, we bound the number of shared access events k and communication events
kcom in these benchmarks and change the value of bug depth and history to see how the bug
hitting rate changes.

48

7.3. RQ2. Bug Detection Ability Varying Bug Depth and History

Benchmark d
PCT PCTWM

k rate(%) kcom rate(%) history

dekker 0 20 22.2 14 100 1
msqueue 0 49 100 31 100 1
barrier 1 15 73.9 10 77.8 2
cldeque 1 86 51.6 56 48.9 1
mcslock 2 21 100 14 100 1
mpmcqueue 2 22 99.8 17 100 1
linuxrwlocks 2 31 100 19 100 1
rwlock 2 79 19.7 74 76.9 4
seqlock 3 17 23.1 14 24.3 3

Table 7.2: Data Structure Benchmark Bug Hitting Rate with Estimated Parameters’ Values.

Varying Bug Depth In the former research question, we test the bug hitting rate of
PCTWM and PCT algorithm with the estimated bug depth, which is the minimum num-
ber of communication relations we need to trigger the bug. We bound the number of shared
access events, and then increase the bug depth d in PCT and see the changes in the bug
hitting rate for each benchmark.

Table 7.3 and Table 7.4 gives the bug hitting rate for each benchmark when the bug
depth is set as the theoretical depth d, d +1, d +2 and d +3.

We can see that when we increase the bug depth in PCT algorithm, the bug hitting rate of
benchmarks cldeque increase a lot. For benchmark rwlock, even there is an increment, the
bug hitting rate decreases when the bug depth is added to d+3. So does for the benchmarks
barrier and seqlock.

And for PCTWM algorithm, the bug hitting rate of benchmarks cldeque increases a
lot. The bug hitting rate of benchmark dekker even decreases. Because for the benchmark
dekker, the theoretical bug depth is 0 and it requires the read event to read locally. If
we increase the bug depth, it allows the read event to read globally, which decrease the
probability to hit the bug.

Table 7.3 and Table 7.4 show that, higher bug depth can increase the bug detection
ability of PCT and PCTWM algorithms, but it is not a given.

Varying History In this paragraph, we continue testing the PCTWM bug detection ability
by changing history - h. Table 7.5 gives the bug hitting rate over 1000 runs from history - h
- 1 to 4.

For benchmarks the hitting rate can reach 100 percent, changing history does not af-
fect the bug hitting rate. Our first analysis is for benchmark dekker and msqueue, their
bug depths are zero, representing that bug can be hit when no communication relation is
formed. In PCTWM algorithm, we can control events to read locally. Our second analysis
is for benchmarks with bug depth higher than zero - cldeque, mcslock, mpmcqueue, and
linuxrwlock. By analyzing their event trace, we can see that the selected communication
events are perfect in these benchmarks. And sometimes when a read action needs to read

49

7. EXPERIMENT AND EVALUATION

Benchmark d Rate(d) Rate(d+1) Rate(d+2) Rate(d+3)

dekker 0 22.2 21.7 22.7 23.3
msqueue 0 100 100 100 100
barrier 0 73.9 76.8 72.4 73.5
cldeque 1 51.6 100 100 100
mcslock 2 100 100 100 100
mpmcqueue 2 99.8 100 100 100
linuxrwlocks 2 100 0 100 100
rwlock 2 19.8 49.6 73.7 61.4
seqlock 3 23.1 26.2 28 24.5

Table 7.3: Data Structure Benchmark Bug Hitting Rate in 1000 rounds(%) - Varying Bug
Depth in PCT. k is the same as we list in Table 7.1

Benchmark d Rate(d) Rate(d+1) Rate(d+2)

dekker 0 100(h:1) 77.1(h:1) 75.7(h:1)
msqueue 0 100(h:1) 100(h:1) 100(h:1)
barrier 1 77.8(h:2) 78.7(h:3) 75.9(h:2)
cldeque 1 55.7(h:3) 100(h:1) 100(h:1)
mcslock 1 100(h:1) 100(h:1) 100(h:1)
mpmcqueue 2 100 100(h:1) 100(h:1)
linuxrwlocks 2 100(h:1) 100(h:1) 100(h:1)
rwlock 2 76.9(h:4) 78.8(h:3) 77(h:3)
seqlock 3 24.3(h:4) 24.7(h:3) 25.6(h:2)

Table 7.4: Data Structure Benchmark Bug Hitting Rate in 1000 rounds(%) - Varying Bug
Depth in PCTWM. kcom is the same as we list in Table 7.1

globally, it may only have one write value read from in this scheduling, which guarantees
the 100% hitting rate. In these two cases, changing history will not affect a lot, as the
scheduling decided by PCTWM is enough to hit the bug.

Also, we visualize how the bug hitting rate change for the same d and kcom in the Fig-
ure 7.5. We cannot say whether increasing or decreasing the value of history is good or not.
A high history value extends the search space, which can find more bugs with different bug
depths but also may let the PCTWM miss the critical behavior selection.

7.4 RQ3. Bug Detection Ability Comparison: C11Tester v.s.
PCT v.s. PCTWM

C11Tester uses the bug hitting rate [51] to compare its effectiveness with the old tools.
Similar to it, we demonstrate how PCTWM algorithms not only improve C11Tester’s ability
to discover bugs but also give the weak-memory guarantee. In Figure 7.2, we visualize their

50

7.4. RQ3. Bug Detection Ability Comparison: C11Tester v.s. PCT v.s. PCTWM

Benchmark kcom d
Bug Hitting Rate(%)
h:1 h:2 h:3 h:4

dekker 14 1 77.1 69.7 67.4 65.3
msqueue 31 0 100 100 100 100
barrier 10 2 74.8 75.1 76.7 78.7
cldeque 56 1 100 100 100 100
mcslock 16 1 100 100 100 100
mpmcqueue 17 2 100 100 100 100
linuxrwlocks 19 2 100 100 100 100
rwlock 74 3 74.2 76 78.8 73.5
seqlock 14 5 13.9 20 21.9 24.5

Table 7.5: Data Structure Benchmark Bug Hitting Rate in 1000 rounds(%) - Varying History

(a) dekker (b) ms queue

Figure 7.1: Bug Hitting Rate - Varying h in PCTWM

rate of hitting the same bug in one benchmark.

Figure 7.2: Bug Hitting Rate for All Nine Benchmarks

51

7. EXPERIMENT AND EVALUATION

Figure 7.3: Benchmark:Dekkfer-fences

7.4.1 PCT vs C11Tester: Bug Detection Performance

PCT vs C11Tester We first compare the bug detection ability of the C11Tester with PCT
scheduling with the default random scheduling. We can see that the PCT implementation
gets a higher bug hitting rate in seven benchmarks than the default, five of which achieve
obvious improvement. In this case, we define the ’obvious’ as a hitting rate of an improve-
ment of more than 35% or approaching 100%. For benchmark msqueue, C11Tester, PCT,
and PCTWM always perform 100% bug hitting because the injected bug is too easy to
trigger.

7.4.2 PCTWM vs PCT: Bug Detection Performance

PCTWM vs PCT When we use PCTWM, seven benchmarks present a higher bug hitting
rate while six of them are obvious. Moreover, a huge increment appears in the bug hitting
rate of benchmark dekker. PCTWM can always find the bug in dekker and here we use the
Figure 7.3 to show its logic and reason for this increase. Benchmark dekker is written based
on the classic concurrency example - ’Peterson’s Algorithm’[67]. It controls the execution
with two boolean flags(f lag1 and f lag2) and one integer variable(turn) to make sure that
only one thread can enter the critical section at one moment. The variables ’ f lag1 f lag2’
and ’turn’ can be viewed as the gate of critical section. They keep checking the condition in
a while loop. In a SC model, the concurrency bug - two threads entering the critical section
at the same time, will not happen as the variables ’ f lag1 f lag2’ and ’turn’ will only read
from the latest write action, which is the write actions - writing true to f lag1 f lag2 at the
beginning of thread 1 and 2. However, in the weak memory model, if the memory order
of read action is relaxed, the variable f lag1 f lag2 may read from the initial write value on
the main thread. To be more specific, the depth for this bug is zero, the possible read-from
value - f lag1 = f alse or f lag2 = f alse is written at the beginning of the main thread. For
PCT, as this algorithm does not control read-from value for read action, even we set the bug
depth as zero. But for PCTWM, by setting d as zero, we can control the read actions to read
locally. And the local-thread view for the flag on another thread(f lag2 for thread 1, f lag1
for thread 2) is the initial global write action(writing false to f lag1 f lag2). So, PCTWM
can always hit this bug in dekker.

52

7.5. RQ4: PCTWM vs PCT: Bug Detection Performance

Also, the average bug hitting rate of these nine benchmarks are 67.9%, 78.1%, and
87.5%. The PCT and PCTWM algorithms improve the average bug hitting rate of the nine
benchmarks by 16% and 29%, respectively.

In conclusion, both the PCT algorithm and the PCTWM algorithm improve the C11Tester’s
bug detection ability. The PCTWM algorithm provides a more significant improvement than
the PCT algorithm. Though PCT improves the bug hitting rate, i.e., the bug detection ability,
its theoretical guarantees do not apply to weak memory programs.

Benchmark
C11tester PCT PCTWM
rate(%) d k rate(%) d k h rate(%)

dekker 21.6% 3 20 22.7 0 14 1 100
msqueue 100 1 49 100 0 31 1 100
barrier 76.6 2 15 77.1 2 10 3 78.7
cldeque 94.6 2 86 100 2 56 1 100
mcslock 89.4 8 26 100 1 16 1 100
linuxrwlocks 86.2 8 20 100 1 19 1 100
mpmcqueue 59.4 4 19 100 2 17 1 100
rwlock 55.3 4 84 75.4 3 74 3 78.7
seqlock 28.8 5 17 28.0 5 14 2 25.6
Average 67.9% 78.2% 87%

Table 7.6: Hitting Rate of each benchmark(hitting data races in 1000 rounds). Higher data-
race hitting rate and lower execution time are better.

7.5 RQ4: PCTWM vs PCT: Bug Detection Performance

How does the amount of weak memory accesses affect the performance of PCTWM?
In RQ4, we aim to address how the performance of PCTWM improves over PCT for the
programs with a higher amount of weak memory behaviors.

To do so, we insert relaxed write accesses in the programs which does not affect the
program behavior. Essentially it increases the number of visible writes to read-from for the
read or RMW accesses.

In the Figure 7.4, we observe significant differences in the bug detection rate by PCT
and PCTWM.

The bug detection ability of the PCTWM stays stable while that of the PCT fluctuates.
This empirical observation aligns with the probabilistic guarantees of PCT and PCTWM.
While the increased number of program events in the modified benchmarks decreases the
probability of detecting bugs with PCT which selects d events to reorder out of all program
events. In contrast, the increased number of relaxed write operations in a program does not
affect the performance of PCTWM.

53

7. EXPERIMENT AND EVALUATION

(a) dekker (b) cldeque

(c) rwlock (d) mpmcqueue

(e) barrier (f) seqlock

(g) cldeque (h) mcslock

Figure 7.4: Bug Hitting Rate - Inserting Relaxed Writes

As the PCTWM algorithm also revises the definition of the shared access events to the
communication events, we design this experiment to show the resilience of PCTWM’s bug
detection ability. In the Figure 7.4 we drew the trend of bug detection rate after inserting

54

7.6. RQ5: Does or why PCTWM cause the overhead in the C11Tester?

more relaxed write actions to four benchmarks, which compared the robustness of the PCT
and PCTWM algorithms considering that the concept of communication events is the key
difference between the two. Here we only list inserting relaxed writes in four benchmarks
because the hitting rates of some benchmarks do not differ a lot.

The bug detection capability of the C11Tester does not decrease a lot lies in the fact that
the bug depth in all nine benchmarks is low, eight of them less than or equal to 2. In other
words, the interleavings we need to trigger the bug are not very complex and the randomized
testing can easily switch at these one or two critical points.

By incorporating the concept of communication events, we not only increase the worst-
case probability of triggering the bug, but we also improve the algorithm’s robustness. All
read, write, and fence operations are counted as shared access events by the PCT method.
The PCTWM also suggests defining communication events that can synchronize with other
threads by filtering on their memory order type.

7.6 RQ5: Does or why PCTWM cause the overhead in the
C11Tester?

7.6.1 Data Structure Benchmarks

To figure out the overhead introduced by the PCT and PCT algorithm, we record the aver-
age execution time of each run for the nine benchmarks over 1000 runs. The execution time
for all nine data structure benchmarks increases after the implementation of the PCT and
PCT algorithm. For the seven cds modified checker benchmarks, their average execution
time is separately 3ms, 5.7ms, and 6.1ms in C11Tester, PCT and PCTWM algorithm. For
the two benchmarks - seqlock and rwlock, after the PCT and PCTWM algorithm imple-
mentation, the execution time respectively increase about 19% and 29% compared to that
of the C11Tester. So we conclude that the PCT and PCTWM do introduce the overhead in
execution time when detecting the bug.

time/ms C11tester PCT PCTWM

dekker 2 5 6
msqueue 4 6 6
barrier 4 7 7
cldeque 2 4 5
mcslock 3 5 6
mpmcqueue 4 7 7
linuxrwlocks 2 6 6
rwlock 10310 12780 13300
seqlock 10230 12530 12570

Table 7.7: Execution time of each Benchmark(average over 1000 rounds). The average
execution time for running one benchmark over 1000 runs. Lower average execution time
is better.

55

7. EXPERIMENT AND EVALUATION

7.6.2 Real Applications Performance

Table 7.8 lists the performance assessment result for each application.
First, the C11Tester also implements the data race detection in these three applica-

tions and the PCTWM detected data race in all of them no matter single or multiple core-
configuration.

Second, there is no obvious difference in the throughput result in Silo. For the other two
using execution time as an assessment metric, the PCT and PCTWM algorithm costs more
time. For the Mabain, the PCTWM takes around 10% more time and the PCTWM gener-
ates about 15% overhead in the execution time compared to the C11Tester. The overhead
brought by PCTWM contains the following reasons: 1) PCTWM searching the highest-
priority thread while C11Tester randomly generates a number in the enabled vector size;
2) PCTWM traverses backward for external read action; 3) PCTWM updating the visible
vector for shared variables for each thread and communication events.

Furthermore, performance of three real applications does not vary between the single-
core and multiple-core configurations. This result is due to the fact that all three versions -
C11Tester, PCT, and PCTWM - can only run one thread at a time.

App core
C11tester PCT PCTWM
result d k result d kcom h result

Silo single 12428(0.58%)
40 200

12763(1.94%)
20 50 10

11039(7.38%)
(ops/sec) multiple 12760(0.61%) 12847(1.79%) 11387(6.92%)
Mabain single 7.73(1.56%)

30 300
8.92(2.51%)

2 50 2
8.43(4.11%)

(time/s) multiple 7.65(2.48%) 8.88(3.76%) 8.40(3.62%)
Iris single 10.98(2.02%)

30 100
12.86(3.65%)

25 60 15
12.79(4.78%)

(time/s) multiple 10.83(1.88%) 12.8938(4.57%) 12.43(6.59%)

Table 7.8: Real applications performance on single-core and multiple-core configuration. Performance
results for application benchmarks in the single-core and multiple-core configurations(averaged over 10
runs). Parentheses include the relative standard deviation. Larger throughout is better for throughput-
based measurements. Shorter execution time is better for time-based measurements.

7.7 RQ 6. Parameter’s effect on PCTWM algorithm

In the RQ2, the bug hitting rate of some benchmarks increase after enhancing the bug depth.
And in this section, we explores how the bug hitting rate changes if we further increase the
bug depth.

According to the empirical experimental results in the PCT paper[21], the bug detection
ability will first strengthen and then weaken when increasing the bug depth. This empirical
observation is consistent with the experimental results in Table 7.4 as the ’turning point of
bug depth’ in each benchmark is different.

56

7.7. RQ 6. Parameter’s effect on PCTWM algorithm

(a) dekker (b) msqueue (c) barrier

(d) cldeque (e) mcslock (f) mpmcqueue

(g) linuxrwlocks (h) rwlock (i) seqlock

(j) Average Bug Hitting Rate

Figure 7.5: Bug Hitting Rate - Varying d in PCTWM

57

Chapter 8

Related Work

In this chapter, we discuss the related technologies to our research project. The related work
is divided into concurrency and consistency, concurrency bug types, concurrency testing,
and techniques for detecting concurrency bugs in the weak memory model.

8.1 Concurrency and consistency

Memory consistency models play a crucial role in concurrent systems. Architectures [63,
4, 69, 5] exhibit weak memory concurrency behaviors due to various architectural features
such as memory hierarchy, interconnect, and so on for performance reasons. To gain per-
formance from these architectures, the high-level programming languages also introduce
primitives and a number of programming models for weak memory concurrency are de-
fined [52, 17, 8, 81, 68, 10, 11, 37, 42, 38, 25, 14, 28, 45, 53, 41]. In this paper we follow
the C/C++ concurrency semantics adopted by C11Tester [49]. However, due to the subtle
semantics of these primitives, writing weak memory concurrent programs are often diffi-
cult and error-prone. Therefore weak memory concurrency poses a significant challenge to
testing and verification.

8.2 Concurrency Bugs Types

The bugs in multi-thread programs may result from i) unexpected inputs to the program; ii)
the unexpected thread interleavings[85]. But only the latter type is called the concurrency
bugs. For these two causes, the researchers design different kinds of automated testing
tools, one for generating various random inputs[34, 74, 75, 22, 30] and the other for thread
scheduling[84, 83]. Some testing tools combine the inputs and thread interleaving coverage
together[87], and adopt effective methods to reduce the search space.

The concurrency bugs are hard to understand as they may result from complex and un-
expected interactions of different components in the program. Lu et.al[50] classify them
into deadlock and non-deadlock, deadlock bugs including atomicity violation, order vio-
lation, and the other bugs. Lu et. al[50] do not consider data races as data races might
be benign. However, many researchers tend to focus on detecting data races in concur-

59

8. RELATED WORK

rent programs[76, 60, 7, 59]. Considering the severeness of data races in some cases, Wu
et.al[85] proposes four types of concurrency bugs - data race, atomicity violation, order vio-
lation, and deadlock. The benchmarks in this project cover three types of concurrency bugs
- data race, atomicity violations, and order violation.

8.3 Concurrency testing

When testing concurrent programs, the primary challenge is proving the validity of the
realization as there are numerous cases, beyond the programmers’ expectations. Many al-
gorithms and tools have been proposed for testing the concurrency behavior of programs
running under SC.

Systematic testing relies on a controlled scheduler that can enforce a particular ordering
of thread events in execution and enumerates test executions for the scheduler. Due to the
explosion in the number of possible executions of a concurrent program, testing algorithms
focused on exercising a bounded set of program behaviors. These include generating test
executions with a bounded number of context switches [70], non-preemptive contexts [56],
scheduler delays [31], and phases [18].

Randomized testing aims at detecting bugs by randomly generated test executions,
and they are shown [79] to be effective in practice. The randomized partial order sampling
algorithm [73] is designed to cover execution traces more uniformly than a pure random
walk. The probabilistic concurrency testing (PCT) algorithm [21] improved the state of the
art by providing a theoretical guarantee on the randomized algorithm. The parallel version
of the PCT algorithm (PPCT) [58] allows the parallel execution of many threads instead
of serializing them. The PCT algorithm designed for multi-thread programs with a set of
totally ordered events is later extended to distributed systems [39, 65], to capture a more
general partially ordered set of events. The partial order sampling (POS) algorithm [88]
also provides theoretical probability bounds on the generated tests. PCT differs from the
other probabilistic approaches as it guarantees a probability is not exponentially low in the
number of program events, but only the bug depth, d. PCT achieves this by characterizing
the depth of concurrency bugs and by bounding the sample set of executions to the set of
executions with depth d.

8.4 Techniques for Detecting Concurrency Bugs in the Weak
Memory Model

This project is based on C11Tester[51], an automatic testing tool. Besides testing tools, this
thesis briefly introduces three techniques for guaranteeing the correctness of the program’s
execution in the weak memory model.

8.4.1 Model Checker

Model checker[26, 71], i.e., verification by state-space exploration[33], is the currently most
often used technique to check the correctness of weak memory applications. This method

60

8.4. Techniques for Detecting Concurrency Bugs in the Weak Memory Model

explores the set of possible executions that are reachable from the initial state and checks
whether it meets any ‘bad’ state (i.e., one violating the semantics or specifications). The
model-checking tools are typically expressed either in an axiomatic or an operational style.

The operational model-checker is an abstraction of actual machines, composed of ide-
alized hardware components such as buffers and queues[4]. Susmit Sarkar[72] points out
that the operational model is more intuitive than typical axiomatic models. Because the
operational model abstracts from the actual hardware more directly as they usually have the
notion of global time. Different from the operational model, the axiomatic model[62][19]
distinguishes permitted behaviors from prohibited behaviors, typically by confining various
memory access relations.

Most of the model-checkers are specific to finding the missed bugs in one weak memory
model[6, 62, 63]. And some verification tools offer a generalized method[3], simulating the
non-SC behaviors by transforming different inputs.

This method faces the difficulty of state-space explosion. That is to say, the concurrent
program’s numerous instructions and threads would generate massive executions, squan-
dering time and resources. To tackle this problem, some researchers adopt various ways to
reduce the search space[6, 1].

8.4.2 State Space Reduction

This technique can be viewed as an improvement for the model checker, aimed at addressing
its biggest obstacle - the state space explosion problem.

Some researchers utilize the relaxation analysis[6][20][89][15] to reduce the size of
state-space. Partial order reduction[66][32][27] is the most prominent. Some researchers
noticed that many state transition graph-based model checkers are built on interleaving se-
mantics, which can lead to rapid growth in the graph size. Researchers tried different ways
to control the graph size, among which the Petri Nets[86][78][82] is the most prevalent due
to its unfolding technique.

8.4.3 Fence-insertion Tool

Some researchers develop an automatic fence-insertion tool to ensure the correctness of
concurrent systems under a weak memory model, considering that fences can ensure the
correctness of many algorithms in the relaxed memory model, like non-blocking. However,
the cost of fences is the high performance brought by relaxed architecture. In other words,
programmers should use fences as few as possible. The double-edged sword characteristic
makes memory fence placement difficult and error-prone because it needs nuanced reason-
ing about the underlying memory model.

Some scalable tools[40][48] place the fences by taking the memory model description,
safety description, and a program as inputs, and then computing the constraints. Another
kind of fence-insertion[47][2] tool is designed for a certain relaxed memory model.

61

Chapter 9

Conclusions and Future Work

This chapter gives an overview of the project’s contributions. Then we draw some conclu-
sions from the results and discuss some ideas for future work. Finally, I reflect on myself
through this project.

9.1 Summary

In this thesis, we presented the Probabilistic Concurrency Testing for Weak Memory (PCTWM)
algorithm for testing weak memory concurrency programs and provide theoretical guaran-
tees on the probability of detecting bugs. PCTWM extends the Probabilistic Concurrency
Testing (PCT) algorithm that is designed for SC programs to capture weak memory concur-
rency. PCTWM achieves this by (i) revising the existing notion of concurrency bug depth
that is defined based on thread interleavings to capture thread communications, and (ii)
devising an algorithm to sample a test execution from the set of program behaviors with a
bounded number of thread communication relations. Similar to PCT, PCTWM achieves its
strong theoretical guarantees on the lower bound on the probability of detecting bugs based
on bounding the sample set of executions by the bug depth d.

We implemented PCTWM and evaluated its performance in comparison to the state-
of-the-art weak memory program testing tool C11Tester. Our evaluation demonstrates that
PCT and PCTWM improve the C11Tester’s bug detection ability as they enhance the hitting
rate in most of these benchmarks. Moreover, PCTWM outperforms PCT for testing weak
memory programs with more relaxed write operations. We also show that the implementa-
tion of PCTWM does not cause significant overhead.

This thesis project is completed by the following procedure. We begin by reading and
reviewing the literature on the C/C++11 weak memory model and the PCT algorithm. The
PCT is then implemented on the most recent C/C++11 weak memory concurrency testing
tool - C11Tester - and its effectiveness is compared to naive randomized testing. Based
on this, we consider the PCTWM algorithm to further broaden and improve the PCT al-
gorithm’s bug detection ability following the characteristics of the C/C++11 weak memory
model. Then, we put these two novel algorithms - PCT and PCTWM - to the test on data
structure benchmarks and real-world applications to demonstrate their efficiency. Finally,

63

9. CONCLUSIONS AND FUTURE WORK

in this thesis, we theoretically propose the notion of PCTWM and demonstrate the effec-
tiveness of this algorithm with experimental results.

9.2 Future work

Due to the limitation of time and resources, my thesis project still has some points that
can be further improved in the future. First, the PCT and PCTWM algorithm relies on the
parameters - k and kcom. However, manually estimating these events amount, no matter
shared memory access or communication events, is time-wasted, especially for the large
benchmarks. We will build an automatic tool to estimate the number of these events in each
program. Second, livelock, we now set a bound for the events (scheduling) that have been
processed and perform some naive randomized testing when the bound is met to leap out
of the livelock, which requires more creative development. Third, we may further refactor
the code and explore the cause of the overhead by perfecting the code as much as possible.
Third, as we discussed in Chapter 8, concurrency bugs have different types and researchers
are still exploring their causes. Our benchmarks cover three types of concurrency bugs in
this thesis - data race, order violations, and assertion violations. In the future, we may test
the effectiveness of PCTWM on more different types of concurrency bugs.

9.3 Self-Reflection

This 10-month project also taught me a lot on a personal level. First and foremost, this is the
first time I have used English to do such a project, which significantly improves my reading
and academic writing skills in English. Second, understanding open-source software and
applying new techniques to it can be difficult at first as an implementer. However, this
experience has greatly improved my coding skills. Third, this project provides a forum
for me to collaborate with others, thereby improving my critical thinking and academic
communication skills. To sum up, this project gives me great improvement in using English
for academic writing, contributing to an open source repo, and research skills.

The coding always needs improvement. So I will be maintaining this project on GitHub
on an ongoing basis. Considering my level of programming, I also think there are some
areas of my code that are worth refactoring.

Through this project, I also have some reflections on the academic project. In the be-
ginning, I was shy and could not well summarize my daily work in weekly meetings, which
decrease my efficiency. Then I gradually understand how to proceed with the project and
pick the key points to discuss in meetings with my supervisors. Academia is a path that
requires strong willpower and patience. There may be unexpected situations, such as ex-
periments that do not go as expected or problems that cannot be solved. But it is important
to have strong willpower and an uncompromising spirit to overcome these challenges. Last
but not the least, this thesis serves as an influential foundation for my future work.

64

Bibliography

[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal
dynamic partial order reduction. ACM SIGPLAN Notices, 49(1):373–384, 2014.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson,
and Ahmed Rezine. Memorax, a precise and sound tool for automatic fence in-
sertion under tso. In Proceedings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS’13, page
530–536, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 9783642367410. doi:
10.1007/978-3-642-36742-7 37. URL https://doi-org.tudelft.idm.oclc.or
g/10.1007/978-3-642-36742-7_37.

[3] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. Software
verification for weak memory via program transformation. In ESOP, pages 512–532,
2013.

[4] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: modelling, simu-
lation, testing, and data-mining for weak memory. ACM Trans. Program. Lang. Syst.,
36(2):7:1–7:74, 2014. doi: 10.1145/2627752.

[5] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc
Maranget. Armed cats: Formal concurrency modelling at arm. ACM Trans. Program.
Lang. Syst., 43(2), 2021. doi: 10.1145/3458926.

[6] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Getting rid of store-
buffers in tso analysis. In International Conference on Computer Aided Verification,
pages 99–115. Springer, 2011.

[7] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. A theory of data race
detection. In Proceedings of the 2006 workshop on Parallel and distributed systems:
testing and debugging, pages 69–78, 2006.

[8] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematiz-
ing C++ concurrency. In POPL’11, pages 55–66. ACM, 2011. doi: 10.1145/1926385.
1926394.

65

https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-642-36742-7_37
https://doi-org.tudelft.idm.oclc.org/10.1007/978-3-642-36742-7_37

BIBLIOGRAPHY

[9] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathema-
tizing c++ concurrency. ACM SIGPLAN Notices, 46(1):55–66, 2011.

[10] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter
Sewell. The problem of programming language concurrency semantics. In ESOP’15,
pages 283–307, 2015. doi: 10.1007/978-3-662-46669-8\ 12.

[11] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC atomics in
C11 and OpenCL. In POPL ’16, pages 634–648. ACM, 2016. doi: 10.1145/2837614.
2837637.

[12] Mark Batty, Alastair F Donaldson, and John Wickerson. Overhauling sc atomics in c11
and opencl. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 634–648, 2016.

[13] Pete Becker et al. Iso/iec 14882: 2011: Programming languages–c++(final draft inter-
national standard). Technical report, Technical Report, 2011.

[14] John Bender and Jens Palsberg. A formalization of java’s concurrent access modes.
Proc. ACM Program. Lang., 3(OOPSLA):142:1–142:28, 2019. doi: 10.1145/
3360568.

[15] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. Valor:
Efficient, software-only region conflict exceptions. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2015, page 241–259, New York, NY,
USA, 2015. Association for Computing Machinery. ISBN 9781450336895. doi:
10.1145/2814270.2814292. URL https://doi-org.tudelft.idm.oclc.org/10.
1145/2814270.2814292.

[16] Hans-J. Boehm. Can seqlocks get along with programming language memory models?
In Proceedings of the 2012 ACM SIGPLAN Workshop on Memory Systems Perfor-
mance and Correctness, MSPC ’12, page 12–20, New York, NY, USA, 2012. Asso-
ciation for Computing Machinery. ISBN 9781450312196. doi: 10.1145/2247684.
2247688. URL https://doi-org.tudelft.idm.oclc.org/10.1145/2247684.
2247688.

[17] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory
model. In PLDI’08, 2008. doi: 10.1145/1375581.1375591.

[18] Ahmed Bouajjani and Michael Emmi. Bounded phase analysis of message-passing
programs. In Tools and Algorithms for the Construction and Analysis of Systems -
18th International Conference, TACAS 2012, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings, pages 451–465, 2012.

66

https://doi-org.tudelft.idm.oclc.org/10.1145/2814270.2814292
https://doi-org.tudelft.idm.oclc.org/10.1145/2814270.2814292
https://doi-org.tudelft.idm.oclc.org/10.1145/2247684.2247688
https://doi-org.tudelft.idm.oclc.org/10.1145/2247684.2247688

Bibliography

[19] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding robustness against
total store ordering. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 428–440. Springer, 2011.

[20] Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification for
relaxed memory models. In International Conference on Computer Aided Verification,
pages 107–120. Springer, 2008.

[21] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. A randomized scheduler with probabilistic guarantees of finding bugs. In
James C. Hoe and Vikram S. Adve, editors, Proceedings of the 15th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2010, Pittsburgh, Pennsylvania, USA, March 13-17, 2010, pages 167–178.
ACM, 2010.

[22] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted and au-
tomatic generation of high-coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[23] cbloom rants. Mcs list-based lock. http://cbloomrants.blogspot.com/2011/
07/07-18-11-mcs-list-based-lock_18.html, 2012.

[24] cbloom rants. A look at some bounded queues. http://cbloomrants.blogspot.c
om/2011/07/07-30-11-look-at-some-bounded-queues.html, 2012.

[25] Soham Chakraborty and Viktor Vafeiadis. Grounding thin-air reads with event struc-
tures. 3(POPL), 2019. doi: 10.1145/3290383.

[26] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[27] Edmund M Clarke, Orna Grumberg, Marius Minea, and Doron Peled. State space
reduction using partial order techniques. International Journal on Software Tools for
Technology Transfer, 2(3):279–287, 1999.

[28] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. Rust-
belt meets relaxed memory. Proceedings of the ACM on Programming Languages, 4:
1–29, 12 2019. doi: 10.1145/3371102.

[29] Changxue Deng. Mabain: A fast and light-weighted key-value store library. https:
//github.com/chxdeng/mabain, 2018.

[30] Dongdong Deng, Wei Zhang, and Shan Lu. Efficient concurrency-bug detection across
inputs. Acm Sigplan Notices, 48(10):785–802, 2013.

67

http://cbloomrants.blogspot.com/2011/07/ 07-18-11-mcs-list-based-lock_18.html
http://cbloomrants.blogspot.com/2011/07/ 07-18-11-mcs-list-based-lock_18.html
http://cbloomrants.blogspot.com/2011/07/07-30-11-look-at-some-bounded-queues.html
http://cbloomrants.blogspot.com/2011/07/07-30-11-look-at-some-bounded-queues.html
https://github.com/chxdeng/mabain
https://github.com/chxdeng/mabain

BIBLIOGRAPHY

[31] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded scheduling.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages
411–422, 2011.

[32] Patrice Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. Springer, 1996.

[33] Patrice Godefroid. Model checking for programming languages using verisoft. In Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’97, page 174–186, New York, NY, USA, 1997. Association
for Computing Machinery. ISBN 0897918533. doi: 10.1145/263699.263717. URL
https://doi-org.tudelft.idm.oclc.org/10.1145/263699.263717.

[34] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated ran-
dom testing. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213–223, 2005.

[35] ISO/IEC 14882. Programming language C++, 2011.

[36] ISO/IEC 9899. Programming language C, 2011.

[37] Alan Jeffrey and James Riely. On thin air reads: Towards an event structures model of
relaxed memory. In LICS’16. ACM/IEEE, 2016. doi: 10.1145/2933575.2934536.

[38] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A
promising semantics for relaxed-memory concurrency. In POPL’17, POPL 2017,
page 175–189, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450346603. doi: 10.1145/3009837.3009850. URL https://doi.org/
10.1145/3009837.3009850.

[39] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei, and
Georg Weissenbacher. Randomized testing of distributed systems with probabilistic
guarantees. PACMPL, 2(OOPSLA):160:1–160:28, 2018.

[40] Michael Kuperstein, Martin Vechev, and Eran Yahav. Automatic inference of mem-
ory fences. SIGACT News, 43(2):108–123, jun 2012. ISSN 0163-5700. doi:
10.1145/2261417.2261438. URL https://doi-org.tudelft.idm.oclc.org/10.
1145/2261417.2261438.

[41] Ori Lahav and Udi Boker. What’s decidable about causally consistent shared memory?
ACM Trans. Program. Lang. Syst., 44(2), apr 2022. doi: 10.1145/3505273.

[42] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Re-
pairing sequential consistency in C/C++11. In PLDI 2017, pages 618–632, 2017. doi:
10.1145/3062341.3062352. Technical Appendix Available at https://plv.mpi-sws
.org/scfix/full.pdf.

68

https://doi-org.tudelft.idm.oclc.org/10.1145/263699.263717
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi-org.tudelft.idm.oclc.org/10.1145/2261417.2261438
https://doi-org.tudelft.idm.oclc.org/10.1145/2261417.2261438
https://plv.mpi-sws.org/scfix/full.pdf
https://plv.mpi-sws.org/scfix/full.pdf

Bibliography

[43] Leslie Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Transactions on Computers c-28, 9:690–691, 1979.

[44] Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. Correct
and efficient work-stealing for weak memory models. ACM SIGPLAN Notices, 48(8):
69–80, 2013.

[45] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur,
Ori Lahav, and Viktor Vafeiadis. Promising 2.0: Global optimizations in relaxed mem-
ory concurrency. In PLDI 2020, page 362–376, 2020. doi: 10.1145/3385412.3386010.

[46] Christopher Lidbury and Alastair F. Donaldson. Dynamic race detection for C++11.
In POPL 2017, pages 443–457, 2017. doi: 10.1145/3009837.3009857.

[47] Alexander Linden and Pierre Wolper. A verification-based approach to memory fence
insertion in relaxed memory systems. In International SPIN Workshop on Model
Checking of Software, pages 144–160. Springer, 2011.

[48] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, and Eran Yahav.
Dynamic synthesis for relaxed memory models. SIGPLAN Not., 47(6):429–440, jun
2012. ISSN 0362-1340. doi: 10.1145/2345156.2254115. URL https://doi-org.t
udelft.idm.oclc.org/10.1145/2345156.2254115.

[49] Nian Liu, Binyu Zang, and Haibo Chen. No barrier in the road: A comprehensive
study and optimization of arm barriers. In PPOPP’20, page 348–361, 2020. doi:
10.1145/3332466.3374535.

[50] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug characteristics. In Proceed-
ings of the 13th international conference on Architectural support for programming
languages and operating systems, pages 329–339, 2008.

[51] Weiyu Luo and Brian Demsky. C11tester: a race detector for c/c++ atomics. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 630–646, 2021.

[52] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In
POPL ’05. ACM, 2005.

[53] Roy Margalit and Ori Lahav. Verifying observational robustness against a c11-style
memory model. Proc. ACM Program. Lang., 5(POPL), 2021. doi: 10.1145/3434285.

[54] John M Mellor-Crummey and Michael L Scott. Synchronization without contention.
ACM SIGPLAN Notices, 26(4):269–278, 1991.

[55] Maged M Michael and Michael L Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, pages 267–275, 1996.

69

https://doi-org.tudelft.idm.oclc.org/10.1145/2345156.2254115
https://doi-org.tudelft.idm.oclc.org/10.1145/2345156.2254115

BIBLIOGRAPHY

[56] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic test-
ing of multithreaded programs. In Proceedings of the ACM SIGPLAN 2007 Confer-
ence on Programming Language Design and Implementation, San Diego, California,
USA, June 10-13, 2007, pages 446–455, 2007.

[57] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic test-
ing of multithreaded programs. ACM Sigplan Notices, 42(6):446–455, 2007.

[58] Santosh Nagarakatte, Sebastian Burckhardt, Milo M. K. Martin, and Madanlal Musu-
vathi. Multicore acceleration of priority-based schedulers for concurrency bug detec-
tion. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 543–554, 2012. doi:
10.1145/2254064.2254128. URL https://doi.org/10.1145/2254064.2254128.

[59] Robert HB Netzer and Barton P Miller. Improving the accuracy of data race detection.
In Proceedings of the third ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 133–144, 1991.

[60] Robert HB Netzer and Barton P Miller. What are race conditions? some issues and
formalizations. ACM Letters on Programming Languages and Systems (LOPLAS), 1
(1):74–88, 1992.

[61] Brian Norris and Brian Demsky. Cdschecker: checking concurrent data structures
written with c/c++ atomics. In Proceedings of the 2013 ACM SIGPLAN international
conference on Object oriented programming systems languages & applications, pages
131–150, 2013.

[62] Peizhao Ou and Brian Demsky. Checking concurrent data structures under the c/c++11
memory model. SIGPLAN Not., 52(8):45–59, jan 2017. ISSN 0362-1340. doi:
10.1145/3155284.3018749. URL https://doi-org.tudelft.idm.oclc.org/10.
1145/3155284.3018749.

[63] Scott Owens. Reasoning about the implementation of concurrency abstractions on
x86-TSO. In ECOOP, pages 478–503, 2010.

[64] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-
tso. In International Conference on Theorem Proving in Higher Order Logics, pages
391–407. Springer, 2009.

[65] Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Simin Oraee. Trace aware ran-
dom testing for distributed systems. Proc. ACM Program. Lang., 3(OOPSLA):180:1–
180:29, 2019.

[66] Doron Peled. All from one, one for all: on model checking using representatives. In
International Conference on Computer Aided Verification, pages 409–423. Springer,
1993.

[67] Gary L. Peterson. Myths about the mutual exclusion problem. 1981.

70

https://doi.org/10.1145/2254064.2254128
https://doi-org.tudelft.idm.oclc.org/10.1145/3155284.3018749
https://doi-org.tudelft.idm.oclc.org/10.1145/3155284.3018749

Bibliography

[68] Jean Pichon-Pharabod and Peter Sewell. A concurrency semantics for relaxed atomics
that permits optimisation and avoids thin-air executions. In POPL 2016, pages 622–
633, 2016. doi: 10.1145/2837614.2837616.

[69] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter
Sewell. Simplifying ARM concurrency: multicopy-atomic axiomatic and operational
models for ARMv8. PACMPL, 2(POPL):19:1–19:29, 2018. doi: 10.1145/3158107.

[70] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent soft-
ware. In Tools and Algorithms for the Construction and Analysis of Systems, 11th
International Conference, TACAS 2005, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings, pages 93–107, 2005.

[71] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concur-
rent systems in cesar. In International Symposium on programming, pages 337–351.
Springer, 1982.

[72] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Un-
derstanding power multiprocessors. In Proceedings of the 32nd ACM SIGPLAN con-
ference on Programming language design and implementation, pages 175–186, 2011.

[73] Koushik Sen. Effective random testing of concurrent programs. In 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2007), November
5-9, 2007, Atlanta, Georgia, USA, pages 323–332, 2007. doi: 10.1145/1321631.
1321679. URL https://doi.org/10.1145/1321631.1321679.

[74] Koushik Sen and Gul Agha. Automated systematic testing of open distributed pro-
grams. In International Conference on Fundamental Approaches to Software Engi-
neering, pages 339–356. Springer, 2006.

[75] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for
c. ACM SIGSOFT Software Engineering Notes, 30(5):263–272, 2005.

[76] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: data race detection
in practice. In Proceedings of the workshop on binary instrumentation and applica-
tions, pages 62–71, 2009.

[77] and Eddie Kohler Stephen Tu, Wenting Zheng. Silo: Multicore in-memorystorage
engine. https://github.com/stephentu/silo, 2013.

[78] Jiaquan Sun, Guanjun Liu, Dongming Xiang, and Changjun Jiang. A petri-net-based
method for detecting bugs in multiple threads. In 2019 IEEE 16th International Con-
ference on Networking, Sensing and Control (ICNSC), pages 150–156, 2019. doi:
10.1109/ICNSC.2019.8743177.

71

https://doi.org/10.1145/1321631.1321679
https://github.com/stephentu/silo

BIBLIOGRAPHY

[79] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concurrency testing using
schedule bounding: an empirical study. In José E. Moreira and James R. Larus, edi-
tors, ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’14, Orlando, FL, USA, February 15-19, 2014, pages 15–28. ACM, 2014.

[80] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 18–32, 2013.

[81] Viktor Vafeiadis. Formal reasoning about the c11 weak memory model. In Proceed-
ings of the 2015 Conference on Certified Programs and Proofs, pages 1–2, 2015.

[82] Antti Valmari. Stubborn sets for reduced state space generation. In International
Conference on Application and Theory of Petri Nets, pages 491–515. Springer, 1989.

[83] Zan Wang, Dongdi Zhang, Shuang Liu, Jun Sun, and Yingquan Zhao. Adaptive ran-
domized scheduling for concurrency bug detection. In 2019 24th International Con-
ference on Engineering of Complex Computer Systems (ICECCS), pages 124–133.
IEEE, 2019.

[84] Zhendong Wu, Kai Lu, Xiaoping Wang, and Xu Zhou. Collaborative technique for
concurrency bug detection. International Journal of Parallel Programming, 43(2):
260–285, 2015.

[85] Zhendong Wu, Kai Lu, and Xiaoping Wang. Surveying concurrency bug detectors
based on types of detected bugs. Science China Information Sciences, 60(3):1–27,
2017.

[86] Dongming Xiang, Guanjun Liu, Chungang Yan, and Changjun Jiang. Detecting data
inconsistency based on the unfolding technique of petri nets. IEEE Transactions on
Industrial Informatics, 13(6):2995–3005, 2017. doi: 10.1109/TII.2017.2698640.

[87] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. Maple: A
coverage-driven testing tool for multithreaded programs. In Proceedings of the ACM
international conference on Object oriented programming systems languages and ap-
plications, pages 485–502, 2012.

[88] Xinhao Yuan, Junfeng Yang, and Ronghui Gu. Partial order aware concurrency sam-
pling. In Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II, pages 317–335, 2018.

[89] Naling Zhang, Markus Kusano, and Chao Wang. Dynamic partial order reduction for
relaxed memory models. SIGPLAN Not., 50(6):250–259, jun 2015. ISSN 0362-1340.
doi: 10.1145/2813885.2737956. URL https://doi-org.tudelft.idm.oclc.or
g/10.1145/2813885.2737956.

72

https://doi-org.tudelft.idm.oclc.org/10.1145/2813885.2737956
https://doi-org.tudelft.idm.oclc.org/10.1145/2813885.2737956

Bibliography

[90] Xinjing Zhou. Iris: A low latency asynchronous c++ logging library. https://gith
ub.com/zxjcarrot/iris, 2015.

73

https://github.com/zxjcarrot/iris
https://github.com/zxjcarrot/iris

Appendix A

Glossary

A.1 Experiment Set Up

A.1.1 Set Up Environment

The experiments in this thesis are from three tools - C11Tester, C11Tester with PCT and
C11Tester with PCTWM.

• Download and install the vagrantBox.

• Git clone the C11Tester in the varagntBox.

• Git clone the PCT-version C11Tester and PCTWM-version C11Tester in the vagrant-
Box. From the GitHub link https://github.com/GMYMingyu/C11_PCT_PCTWM.
git.

A.1.2 Run the Script

The detailed instruction to run the script will be kept updating in the Readme file of the
GitHub Repo https://github.com/GMYMingyu/C11_PCT_PCTWM.git.

Run the Data Structure Benchmark

• Go to the directory c11tester-benchmarks/cds check modified. Run the run all.sh file.
c11tester-benchmarks/tasn11 missingbug. Run the run all.sh file.

Run the Real Application Benchmark

• Go to the directory c11tester-benchmarks. Run the run all.sh file.

75

https://github.com/GMYMingyu/C11_PCT_PCTWM.git
https://github.com/GMYMingyu/C11_PCT_PCTWM.git
https://github.com/GMYMingyu/C11_PCT_PCTWM.git

Appendix B

Requirements and Guidelines

This chapter details some requirements and guidelines for MSc theses submitted to the
Software Engineering Research Group.

B.1 Requirements

B.1.1 Layout

• Your thesis should contain the formal title pages included in this document (the page
with the TU Delft logo and the one that contains the abstract, student id and thesis
committee). Usually there is also a cover page containing the thesis title and the
author (this document has one) but this can be omitted if desired.

• The final thesis and drafts submitted for reviewing should be printed double-sided on
A4 paper.

B.1.2 Content

• The thesis should contain the following chapters:

– Introduction.
Describes project context, goals and your research question(s). In addition it
contains an overview of how (the remainder of) your thesis is structured.

– One or (usually) more “main” chapters.
Present your work, the experiments conducted, tool(s) developed, case study
performed, etc.

– Overview of Related Work
Discusses scientific literature related to your work and describes how those ap-
proaches differ from what you did.

– Discussion/Evaluation/Reflection
What went well, what went less well, what can be improved?

77

B. REQUIREMENTS AND GUIDELINES

– Conclusions, Contributions, and (Recommendations for) Future Work

– Bibliography

B.1.3 Bibliography

• Make sure you’ve included all required data such as journal, conference, publisher,
editor and page-numbers. When you’re using BIBTEX, this means that it won’t com-
plain when running bibtex your-main-tex-file.

• Make sure you use proper bibliographic references. This especially means that you
should avoid references that only point at a website and not at a printed publication.

For example, it’s OK to add a URL with the entry for an article describing a tool to
point at its homepage, but it’s not OK to just use the URL and not mention the article.

B.2 Guidelines

• The main chapters of a typical thesis contain approximately 50 pages.

• A typical thesis contains approximately 50 bibliographic references.

• Make sure your thesis structure is balanced (check this in the table of contents).

Typically the main chapters should be of equal length. If they aren’t, you might want
to revise your structure by merging or splitting some chapters/sections.

In addition, the (sub)section hierarchies with the chapters should typically be bal-
anced and of similar depth. If one or more are much deeper nested than others in the
same chapter this generally signals structuring problems.

• Whenever you submit a second draft, include a short text which describes the changes
w.r.t. the previous version.

78

	Preface
	Contents
	List of Figures
	Introduction
	Background
	Weak Memory Concurrency
	PCT v.s. Naive Random Testing
	C11Tester - Automatic Testing Tool

	Overview
	C11Tester
	A Naive Application of PCT to Weak Memory
	Revising Concurrency Bug Depth
	PCTWM: PCT for Weak Memory

	Weak Memory Concurrency Model
	Event
	Relation
	Execution
	Example

	Algorithm and Examples
	PCT Algorithm and Theoretical Guarantee
	PCTWM Algorithm

	Implementation
	C11Tester Implementation and Plugins for Algorithms
	PCT and PCTWM: Parameters
	PCT Implementation
	PCTWM Implementation

	Experiment and Evaluation
	Benchmarks
	RQ1. Bug Detection Ability with Estimated Parameters
	RQ2. Bug Detection Ability Varying Bug Depth and History
	RQ3. Bug Detection Ability Comparison: C11Tester v.s. PCT v.s. PCTWM
	RQ4: PCTWM vs PCT: Bug Detection Performance
	RQ5: Does or why PCTWM cause the overhead in the C11Tester?
	RQ 6. Parameter's effect on PCTWM algorithm

	Related Work
	Concurrency and consistency
	Concurrency Bugs Types
	Concurrency testing
	Techniques for Detecting Concurrency Bugs in the Weak Memory Model

	Conclusions and Future Work
	Summary
	Future work
	Self-Reflection

	Bibliography
	Glossary
	Experiment Set Up

	Requirements and Guidelines
	Requirements
	Guidelines

