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A B S T R A C T

Aircraft maintenance is key for safe and efficient aircraft operations. While most studies propose cost-efficient
maintenance strategies, the safety and efficiency of these strategies need to be quantified. This paper proposes a
formal framework to assess the safety and efficiency of maintenance strategies by means of agent-based mod-
elling, stochastically and dynamically coloured Petri nets, and Monte Carlo simulation. We model an end-to-end
aircraft maintenance process, considering several maintenance stakeholders. We apply our framework for air-
craft landing gear brakes, and use a Gamma process to model the degradation trends of the brakes. The nu-
merical results show that applying data-driven strategies reduces the number of inspections by 36%, while
maintaining the same level of safety as in the case of traditional time-based maintenance strategies.
Furthermore, in order to discuss the possibility to substitute all inspections by sensor monitoring, an advanced
data-driven strategy using prognostics is considered. Overall, our proposed framework is generic and can readily
be applied to assess the safety and efficiency of the maintenance of other aircraft components and maintenance
strategies.

1. Introduction

Aircraft maintenance is crucial for safe and efficient operations of
aircraft, and thus, airlines spend almost 9.5% of their operational costs
for maintenance [1,2]. While striving for cost-efficient maintenance,
safety remains a priority for aircraft operators. However, attaining
safety and efficiency in aircraft maintenance is not straightforward,
especially due to the complexity of the maintenance process. Some of
the drivers of the maintenance complexity are the large number of
stakeholders and the necessary cooperation between them, the in-
evitable human-machine interaction, the high costs with unscheduled
maintenance, the dependency between systems, and the strict and
specific maintenance regulations [3–6].
Given the criticality and complexity of the aircraft maintenance

process, stakeholders often make use of conservative maintenance
strategies. Here, a maintenance strategy implies a set of procedures and
rules to follow in order to generate, plan, and execute maintenance
tasks. In practice, many maintenance tasks are performed at fixed time
intervals, i.e., following a time-based maintenance (TBM) strategy
[7,8]. Under TBM strategies, shorter time intervals of tasks increase the
chance to detect severe degradation/failures. Thus, shorter time inter-
vals contribute to safety. On the other hand, shorter time intervals re-
quire more frequent maintenance tasks, increasing the cost of

maintenance. As such, many studies on TBM optimise the maintenance
time intervals [9–11]. Recently, condition-based maintenance (CBM)
strategies have been proposed to further decrease the number of
maintenance tasks while preserving safety [12,13]. CBM strategies
specify the moment of maintenance by utilising component/system
condition data collected by sensors. In this line, many studies propose
optimal CBM strategies to achieve a minimum maintenance cost
[3,12–17].
Yet, only a few studies consider the safety of maintenance, and even

here the authors use indirect metrics such as high penalties for system
failure [3,14,15], system availability [16], and reliability constraints
[17]. Using such indirect metrics makes it hard to distinguish the safety
aspects from the efficiency aspects, especially if the improved efficiency
compensates for the reduced safety. A clear distinction between these
metrics should be made so that the impact on safety and efficiency can
be explicitly quantified.
The simulation of maintenance models provides direct quantifica-

tion of the safety and efficiency of maintenance strategies. In particular,
Monte Carlo simulation can capture the impact of uncertainties in-
volved in maintenance, such as stochastic degradation of components,
errors in inspection, etc. Thus, several studies perform Monte Carlo
simulation for their maintenance models [18–24].
Methods generally used to model maintenance systems are Petri
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nets or agent-based modelling (ABM). Petri nets provide a formal vi-
sualisation for mathematical models of discrete event systems [25,26].
This method has been used to model the maintenance of complex sys-
tems such as railway [18,19], bridges [20], wind turbines [21,22], and
a fleet of aircraft [23]. However, these models focus on events and
processes, without considering the interplay between stakeholders.
Because aircraft maintenance involves multiple stakeholders, their in-
teraction needs to be explicitly considered. ABM is another technique to
represent maintenance systems, focusing on the interplay between
stakeholders [27,28]. ABM has been used to model interactive main-
tenance systems such as production lines [24], and repair service
companies [29]. While ABM is effective in formalising the interaction
between multiple stakeholders, the comprehensibility of ABM can be
further improved by graphical representations such as Petri nets. This
synergy between Petri nets and ABM is used in other domains such as
air traffic management [30,31], but has not been used in the above
studies on maintenance. Thus, the synergy between Petri nets and ABM
can be used to achieve a comprehensive multi-agent model of aircraft
maintenance.
In this paper, an integrated framework is proposed to assess the

safety and efficiency of various aircraft maintenance strategies. An ABM
of an end-to-end aircraft maintenance process is developed, where the
main maintenance stakeholders are considered. This ABM is formalized
by means of stochastically and dynamically coloured Petri nets
(SDCPNs). Based on the SDCPN formalisation of the ABM, Monte Carlo
simulations are conducted for several maintenance strategies. This
framework is illustrated for the maintenance of the aircraft landing gear
brakes. Here, the degradation of the brakes is modelled by means of a
Gamma process. As maintenance strategies for the brakes, a sensor-
driven CBM strategy, a prognostic-driven CBM strategy, and two TBM
strategies are proposed. Safety and efficiency indicators for these stra-
tegies are evaluated using this framework. Overall, this framework is
generic in that it supports a safety and efficiency analysis of various
aircraft maintenance strategies. Most importantly, our framework
supports the assessment of novel strategies, ahead of their im-
plementation in practice.
The remainder of this paper is organised as follows. Section 2 de-

scribes the aircraft maintenance process and identifies the agents in-
volved in this process. Section 3 formalises the agent models by means
of SDCPNs. A brief explanation of SDCPNs is given first. Then, detailed
SDCPN models for each agent are developed. Section 4 presents a case
study on the maintenance of aircraft landing gear brakes. Finally,
Section 5 provides conclusions and recommendations for future work.

2. Aircraft maintenance process – an agent-based modelling
approach

We model the aircraft maintenance process by means of agents and
interactions between these agents [27]. An agent is defined as an in-
dependent entity that makes decisions based on a set of rules, interacts
with other agents and has its own goals [27,28]. We identify the agents
considering the following four properties [28]: a) an agent is identifi-
able, having its own characteristics, decision-making rules, and phy-
sical or conceptual boundaries that the others can distinguish (Mod-
ularity), b) an agent can independently make decisions to change states
and to take actions (Autonomy), c) an agent has states that determine
its autonomy and that vary over time (Conditionality), and d) an agent
interacts with other agents (Sociality).
Among multiple stakeholders involved in the aircraft maintenance

process, we focus on the maintenance organisation and the aircraft
operator. The maintenance organisation is a company that keeps the
airworthiness of aircraft by means of maintenance, repair, and over-
haul. The aircraft operator is a commercial airline which flies with the
aircraft according to a flight schedule. These two stakeholders are re-
presented by several agents. Considering the four properties of an agent
mentioned above, we identify the following five key agents that are

representative for a maintenance organisation and an aircraft operator:

i) Aircraft (AC)
ii) Task Generating team (TG)
iii) Task Planing team (TP)
iv) Mechanics team (ME)
v) Flight Crews (CR)

Figure 1 shows the agents involved in the aircraft maintenance
process and the interactions between them. The boxes denote the agents
and the arrows denote the interactions between these agents.
i) Aircraft (AC) is a central agent in the maintenance process, given

that the purpose of the aircraft maintenance is to ensure the air-
worthiness of the aircraft during its operation [1]. Here, we assume that
an aircraft operates in terms of flight cycles (see Figure 2). A flight cycle
is defined as the time period between a departure and the subsequent
departure. After the aircraft has departed from a gate at time ,i

dep we
say that the agent AC is in state in-flight. Block-time is the period of time
between gate departure at time i

dep until the arrival time i
arr at the

gate. When the aircraft stops at the gate, we say that the agent AC is in
state on-ground. The time between the arrival ,i

arr and the subsequent
departure, +i 1

dep is referred to as ground-time. A set of flight cycles is
called a flight schedule. The agent AC is operated by flight crews, fol-
lowing a given flight schedule.
An aircraft consists of multiple components. These components

degrade as the aircraft is in use. When the degradation of a component
is significant, malfunctions or failures occur, which renders the aircraft
un-airworthy. Airworthiness is sustained by maintenance tasks such as
operational checks, inspections, lubrication, restoration, replacement,
or discard [1,32]. Maintenance Steering Group-3, which provides
guidelines for aircraft maintenance, suggests four main types of tasks

Fig. 1. Main agents of the aircraft maintenance process.

Fig. 2. Flight cycle of an aircraft.
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[32]: 1) Inspection, which is the task to find failures or degradation; 2)
Lubrication, which is the task that maintains the inherent design cap-
ability; 3) Restoration, which is the task to return a system to a specific
standard in order to avoid failure, and 4) Replacement, which is the
task to discard a component currently in use and install a new one.
Inspections, lubrication and restoration tasks are executed by me-
chanics, while operational checks are executed by flight crews.
Modern aircraft are equipped with sensors that monitor the condi-

tion of components [33,34]. The data collected during condition
monitoring is delivered to the task generating team. Based on the
analysis of the sensor data, the task generating team may generate
additional tasks. Sensor data analysis is an important part of CBM
strategies. ii) Task generating team (TG) is an agent that specifies which
maintenance tasks need to be performed and at which intervals of time.
The agent TG takes into account maintenance regulations, manuals and
guidelines provided by aircraft manufacturers, as well as feedback from
flight crews, mechanics, and sensor data. Using such inputs, the agent
TG generates a task by specifying the target component, the type of
task, the interval of time at which this task must be executed, and the
procedure required to execute the task. The process of task generation
reflects the type of maintenance strategy adopted. Under a TBM
strategy, the agent TG keeps generating the same tasks at fixed time
intervals. Under a CBM strategy, the agent TG analyses the sensor data
on the condition of a component and determines specific time intervals
to maintain this component. For instance, the agent TG estimates the
remaining useful life (RUL) of a component using sensor data, and
generates a necessary task. In both cases, the intervals are specified in
the form of flight cycles (FCs), flight hours (FHs), and/or calendar days
(DYs). The generated tasks and corresponding maintenance intervals
are further delivered to the task planning team. iii) Task planning team
(TP) is an agent that receives generated tasks from the agent TG and
plans these tasks in time. The agent TP receives as input a) the flight
schedules, and b) the tasks with their associated intervals. Based on the
flight schedules, the agent TP evaluates the availability of the aircraft
for maintenance. Finally, the agent TP plans maintenance tasks during
aircraft ground-time, while making sure that the specified intervals for
task execution are not exceeded. We refer to this as a scheduled task. iv)
Mechanics team (ME) is an agent that executes the scheduled tasks.
Once a task is executed, the agent ME may decide whether additional
tasks are necessary. If this is the case, the agent ME addresses it im-
mediately by executing unscheduled tasks. If the maintenance strategy
and the regulations allow, the agent ME can also postpone the execu-
tion of additional tasks and just report them to the agent TP or TG. v)
Flight crew (CR) is an agent that operates the aircraft, following a flight
schedule. The agent CR checks the condition of the aircraft components
before and/or after a flight. We call this activity an operational check. If
the agent CR observes a component/system failure, then the agent CR
reports this to the agent TG.

3. Formalisation of the agent-based model of the aircraft
maintenance process by means of Petri nets

In this section, we formalise the agent models of the aircraft
maintenance described in Section 2. Stochastically and dynamically
coloured Petri nets(SDCPNs) are used to graphically model the beha-
viour of the agents [25]. In Section 3.1, we introduce the concept of
SDCPNs. Then, five agents are modelled by means of SDCPNs in
Section 3.2. Finally, in Section 3.3 we explain how to assess main-
tenance strategies by means of simulation of agent-based modelling
(ABM).

3.1. Stochastically and dynamically coloured Petri nets

SDCPNs are extension of Petri nets that allow for the modelling of
stochastic and dynamic systems [25]. More precisely, SDCPNs are
graphs that consist of two sets of nodes: places ( ) and transitions ( ),

as well as a set of arcs ( ). These arcs connect the nodes. In addition,
SDCPNs may have tokens in a place. Figure 3 shows a graphical re-
presentation of SDCPN elements. The places represent the possible
states of a SDCPN. The location of a token defines the current state of
the SDCPN. When additional information is needed to describe the
current state, a colour is assigned to a token. The colour of a token can
be a continuous or a discrete variable or a set of variables. The locations
of the tokens are changed when a transitions fires, i.e., a transition
updates the status of a SDCPN. We consider three types of transitions.
The immediate transitions ( I) fires immediately if there is at least one
token in each input place connected by an incoming ordinary arc ( o)
and each enabling place connected by an enabling arc ( e), and there is
no token in each inhibitor place connected by an inhibitor arc ( i). For
instance, in Figure 4, the immediate transitions in (a), (c), and (e) fire
immediately. The transition in (b) does not fire because one of its input
places has no token. The transition in (d) does not fire because its en-
abling place has no token. The one in (f) does not fire because its in-
hibitor place has a token. The delay transitions ( D) require the same
conditions as discussed above, but they fire after a stochastic delay
time, as shown in (g) of Figure 4. The guard transitions ( G) fire only if
the colours of the tokens in the input places and the enabling places
satisfy its guard function ( ). For instance, in (h) and (i) of Figure 4, if
token 1 renders the guard function false and token 2 renders it true,
only the guard transition in (i) fires. When a transition fires, it removes
one token from each of its input places, but not from the enabling places
(see (a), (c), and (e)). Especially in the case of guard transitions, the
token satisfying the guard function is removed (see (i)). Also, a new
token is generated in each output place that is connected by an outgoing
ordinary arc. The colour of the new token is determined by the firing
function ( ) of the transition.
In order to make the agent models consistent and comprehensible,

we consider the following analogy between an agent and a SDCPN. The
possible states of the agents are represented by places. The actions and
interactions between agents are represented by transitions and arcs.
The places and the transitions needed to model a specific role of an
agent are grouped together. This group is called a local Petri net (LPN).
A LPN is constructed in such a way that the number of tokens residing
in the LPN is not directly changed by another LPN [25]. The interac-
tions between LPNs are modelled by enabling arcs ( e) or inhibitor arc
( i), which do not change the number of tokens. We also model in-
teractions between LPNs using interaction Petri nets (IPNs), which
consist of places and transitions that do not belong to any LPN [25].
As an example, a SDCPN formalisation of two agents is given in

Figure 5. Agent A has two states (places), ‘P-1’ and ‘P-2’, and it can take
two actions (transitions) ‘T-1’ and ‘T-2’. Agent B has two roles modelled
by two LPNs. The guard transition ‘T-1’ is fired when the colour of the
token in ‘P-3’ satisfies its guard function, i.e., agent A takes action ‘T-1’ if
a certain condition of agent B is satisfied. By ‘T-1’, the state of agent A
becomes ‘P-2’. ‘T-3’ cannot fire when its inhibitor place ‘P-2’ has a token,
i.e., agent B cannot take action ‘T-3’ while agent A is in ‘P-2’. The delay
transition ‘T-2’ fires after a stochastic delay, returning agent A to ‘P-1’. ‘T-
2’ also fires a token in ‘P-5’, and then ‘T-4’ immediately fires, which re-
moves the token in ‘P-5’ and updates the colour of the token in ‘P-4’, i.e.,
agent B immediately takes action ‘T-4’ each time agent A takes action ‘T-
3’. Place ‘P-5’ does not belong to any LPN, and it is called an IPN.

Fig. 3. Graphical representation of SDCPN elements.
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3.2. Formalisation of the aircraft maintenance agents using SDCPNs

Based on the aforementioned analogy and definition of LPNs, in this
section, we model the five agents introduced in Section 2 using SDCPNs.
Table 1 lists the LPNs of each agent considered for the aircraft main-
tenance process.

i) Aircraft (AC)

The agent aircraft (AC) is operated by the agent flight crew (CR),
following a flight schedule. When the agent CR triggers a departure, the
aircraft is pushed back from the gate, i.e., off-block. This changes the
state of the agent AC to in-flight. The in-flight state includes the taxi,
take-off, cruise, and landing phases of the operation of an aircraft (see
Figure 2). When the agent AC arrives at the gate, i.e., on-block, the state
of the aircraft from this moment on is on-ground.
The LPN in Figure 6 models the operation of the agent AC. Two

places ‘In-flight’ and ‘On-ground’ represent the two operational states of
the aircraft. The transition ‘Off-block’ changes the state of the aircraft
immediately from ‘On-ground’ to ‘In-flight’, when the place ‘Trigger off-
block’ gets a token. This token is generated when the agent CR performs
a departure. The transition ‘Off-block’ also fires a token to the place
‘Use of component-ξ’. The colour of this token accounts for u(Δτ), which

Fig. 4. Transitions in SDCPN.

Fig. 5. Example of SDCPN formalisation of two agents.

Table 1
LPNs of agents for the aircraft maintenance process

Agent LPN

i) Aircraft (AC)
Operation
Component-ξ
Sensor-ξ
Alert System

ii) Task Generating Team (TG)
Task Generation
Prognostics

iii) Task Planning Team (TP)
Task Planning

iv) Mechanics Team (ME)
Task Execution

v) Flight Crew (CR)
Operation

Fig. 6. LPN: Operation of the agent AC.
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is the amount of time that the component is used during the block-time
Δτ. This token triggers the degradation of the component. Depending on
the characteristics of the component, u(Δτ) can be represented in dif-
ferent formats. For example, the amount of use of an aircraft engine can
be represented as block-time, i.e., =u ( ) . On the other hand, the
number of flight cycles better represents the amount of use of aircraft
landing gear brakes, i.e., =u ( ) 1. The transition ‘On-block’ works in a
similar way as the transition ‘Off-block’. When the agent CR completes
a flight, the place ‘Trigger on-block’ gets a token. Then, the transition
‘On-block’ moves the token from the place ‘In-flight’ to the place ‘On-
ground’. We model the degradation of a component as a stochastic
process. Here, we assume that aircraft components degrade during in-
flight, while the degradation during on-ground is assumed to be neg-
ligible. Let X(t) be the degradation level of a component at time t.
Modelling the degradation process {X(t)} should consider different
degradation trends for different types of components. However, con-
sidering the nature of the degradation, we require the following prop-
erties of {X(t)}. Firstly, =X t( ) 0 if the component is new and has no
degradation. Secondly, X(t) is monotonically increasing unless main-
tenance is performed, and thus X(t) ≥ 0. This is based on the fact that
degradation is never recovered spontaneously without maintenance.
Thirdly, there is an unacceptable level of degradation, η. If X(t) > η, the
component is regarded as an unsafe or failed. Finally, we consider the
following increment of the degradation process {X(t)}:

+X t t X t f X u t( ) ( ) ( ; ( ), )X (1)

where Δt > 0, fX is the probability density function of the degradation
increment, and Θ is the set of parameters of fX.
The LPN AC Component-ξ in Figure 7 models the condition of

component-ξ changed by degradation, replacement, restoration and
lubrication. The place ‘Condition of component-ξ’ has a token de-
scribing the degradation process of component-ξ, i.e., the token is co-
loured by C:

= X t( , ( ), )C (2)

where ξ is the identifier of the component, Xξ(t) is the degradation level
of component-ξ at time t, and Θξ is a set of parameters describing the
degradation process of component-ξ. The transition ‘Degrade’ fires
when the operational state of the aircraft is ‘In-flight’ and the place ‘Use
of component-ξ’ got a token from the transition ‘Off-block’ in Figure 6.
The transition ‘Degrade’ updates Xξ(t) of the colour of the token in place
‘Condition of component-ξ’, following eq. (1). The transition ‘Degrade’
also fires a token to the place ‘Trigger sensor-ξ’, which triggers sensor-ξ
to start monitoring the component-ξ.
On the other hand, maintenance tasks such as replacement,

restoration, and lubrication change the degradation level of the com-
ponent Xξ(t) and/or the trend of the degradation Θξ. After a replace-
ment, Xξ(t) is updated to be the degradation level of the new compo-
nent, Xnew. If the new component is faultless, then =X 0new . If the new
component already has a level of degradation for some reason, Xnew can
be modelled as a constant (0 ≤ Xnew < 1) or a random variable with a
certain distribution. Restoration tasks update Xξ(t) to a specific stan-
dard, X ,res which can be assumed to be a constant or a random variable.
We consider lubrication as a task that changes the rate of the de-
gradation process. Thus, lubrication updates Θξ, the parameters of the
probability density function in eq. (1).
All these tasks are executed by the agent ME, following a main-

tenance schedule given by the agent TP. In Figure 7, the transitions,
‘Replacement’, ‘Restoration’, and ‘Lubrication’ fire when there is a
token in the places ‘Trigger Replacement’, ‘Trigger Restoration’, and
‘Trigger Lubrication’, respectively. These places get a token when the
agent ME executes the corresponding maintenance task on component-
ξ. These three transitions update the colour C of the token in the place
‘Condition of component-ξ’.
The LPN AC Sensor-ξ in Figure 8 models the sensor-ξ that monitors

the condition of component-ξ. When the sensor is working, the place
‘Sensor-ξ working’ has a token coloured by S:

= X t( , ˜ ( )),S (3)

where X t˜ ( ) is the degradation level of component-ξ monitored by
sensor-ξ. The transition ‘Monitor’ is triggered by the token in the place
‘Trigger sensor-ξ’. Assuming real-time monitoring, the place ‘Trigger
sensor-ξ’ gets a token every time the transition ‘Degrade’ fires (see
Figure 7). The token in the place ‘Condition of component-ξ’ is needed
for the transition ‘Monitor’. The transition ‘Monitor’ updates the colour

S of the token in the place ‘Sensor-ξ working’. Specifically, X t˜ ( ) is
updated as follows:

+ = +X t X t˜ ( ) ( ) ,S S (4)

where Exp( ¯ )S S is the time spent by the sensor to collect the data,
and ϵS is the measurement error of the sensor. The transition ‘Monitor’
also fires a token to the place ‘Trigger Estimate RUL’, which enables the
agent TG to estimate the RUL of component-ξ.
The LPN model of alert system is given in Figure 9. When the alert

system is activated, a token is located in the place ‘Alert activated’.
When X t˜ ( ) of the token in the place ‘Sensor-ξ working’ satisfies the
guard function ,Alert the transition ‘Alert’ fires a token in the place
‘Feedback from AC’. The transition ‘Alert’ also fires a token from the
place ‘Alert activated’ to the place ‘Alert deactivated’, preventing trig-
gering multiple feedback. The guard function Alert of the transition
‘Alert’ is defined based on the maintenance strategy. For example, the
function =X t X t( ˜ ( )) ( ˜ ( ) )Alert A is specified for a given strategy, and
defines the moment when a new task is generated to prevent de-
gradation.
The transition ‘Activate’ is fired if its guard function Activate is sa-

tisfied. When the place ‘Alert activated’ has a token, the alert system

Fig. 7. LPN: Component-ξ of the agent AC. Fig. 8. LPN: Sensor-ξ of the agent AC.
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checks the sensor data. In this case, the transition ‘Remove unnecessary
tasks’ may remove some task tokens that satisfies its guard function,
from the place ‘Task to execute’. Removal of maintenance tasks is only
applicable if the maintenance strategy allows it.

ii) Task Generating Team (TG)

The agent Task Generating team (TG) determines the tasks to be
performed based on the maintenance strategy and the feedback from
other agents. The procedures to consider the feedback are specific to the
maintenance strategy. In particular, the maintenance strategy defines
the conditions under which a specific type of task needs to be executed,
the specific component and the interval to perform this task. In SDCPN
formalisation, a task is represented as a token coloured by ,T which is
defined as:

= d t t i( , , , , , , )T
sch exe

0 (5)

where ξ is the target component of the task, ω is the type of the task and
Φω is a set of parameters describing the task, d is the interval of the task,
tsch and texe are scheduled time and the actual execution time of the
task, and i0 is the index of the first flight cycle after task execution. The
agent TG specifies ξ, ω, Φω, and d, while the other variables will be
specified by the agent TP and the agent ME.
The LPN in Figure 10 models how the agent TG generates tasks. A

token in the place ‘Generating tasks’ represents that the agent TG is
working, and it is required for all transitions in this LPN. The three
transitions generate tasks based on three sources of feedback, i.e., data
analysis from the agent TG, alert from the agent AC, and complaints
from the agent CR (see Figures 9, 11, and 14). Firing functions of these
transitions determine ξ, ω, Φω, and d of the task token coloured by T of
eq. (5). This new task token is put on the place ‘Task to plan’ and de-
livered to the agent TP.
Under CBM strategies, the agent TG makes use of metrics such as

RUL to determine intervals of tasks. We consider RUL as the remaining
time until the moment when the degradation level of component-ξ
reaches a predefined level η [35]. Thus, = +RUL t X t tmax{ | ( ) }
where t is the current time and +X t t( ) is the degradation level after
time t′. We estimate +X t t( ) using prognostics algorithms run on the
condition data set X t{ ˜ ( )}.
Figure 11 models the prognostics developed by the agent TG. The

prognostics are triggered by a token in the place ‘Trigger Estimate RUL’,
which is generated by the transition ‘Monitor’ of the agent AC (see
Figure 8). Thus, it is assumed that prognostics are immediately updated
each time new data is available. The transition ‘Estimate RUL of com-
ponent-ξ’ requires a token coloured by S on the place ‘Sensor-ξ

working’. A token in the place ‘Prognostics’ is coloured by P defined
as:

= RUL X t( , { ˜ ( )})P (6)

The transition ‘Estimate RUL of component-ξ’ updates RUL and X t{ ˜ ( )}
based on the given prognostics algorithm. If the estimated RUL meets a
predefined condition, feedback is generated by the guard transition
‘Alert TG based on RUL of component-ξ’. The new token generated in
the place ‘Feedback from TG’ enables the agent TG to generate a new
task (see Figure 10).

iii) Task Planning Team (TP)

The agent task planning team (TP) plans the time to execute the
tasks. The agent TP takes the input of the agent TG as the time intervals
at which tasks must be executed. Another input for the agent TP is the
aircraft flight schedule that specifies the ground-time when tasks can be
executed. Then, the agent TP finds the latest, feasible time for the tasks
to be executed such that the task execution intervals are not exceeded.
Formally, this scheduled time tsch is given to the task token coloured by

T in eq. (5).
The LPN of the agent TP is shown in Figure 12. A token in the place

‘TP working’ shows that the agent TP is ready to plan a task. The
transition ‘Plan task’ requires a token in the place ‘CR waiting’ of the
agent flight crew. This token has a colour representing flight schedules,

F:

Fig. 9. LPN: Alert system of the agent AC.

Fig. 10. LPN: Task generation of the agent TG.

Fig. 11. LPN: Prognostics of the agent TG.
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= I( , { } , { } )i i I i i IF
dep (7)

where I is a set of index of flights cycles, and { }i i I
dep and {Δτi}i ∈ I are

the set of departure times and the block times of the flight cycles. When
a task token coloured by T is given in the place ‘Task to plan’, the
transition ‘Plan task’ fires a task token to the place ‘Task to execute’.
The firing function of this transition determines tsch the colour T based
on the given task planning algorithm. As a result, the place ‘Task to
execute’ gets a task token with the execution time tsch.

iv) Mechanics Team (ME)

The agent mechanics team (ME) executes the tasks given from the
agent TP. When t≥ tsch, the agent ME prepares to execute the task. The
agent ME executes a given task when the aircraft is in the state ‘On-
ground’. Depending on the type of the task, the agent ME inspects,
replaces, restores, or lubricates a target component. Especially after the
inspection, the agent ME decides whether there an additional un-
scheduled task is needed. The decision is based the observed degrada-
tion level X t^ ( ) and the given maintenance strategy. Such an un-
scheduled task is executed right away. After completing the task, the
agent ME reports to the agent TP.
Figure 13 shows the LPN of the agent ME. A token coloured by T is

used in this LPN, representing the task allocated to the agent ME. The
token is placed in the place ‘Waiting’ when there is an available agent
ME to execute the given task. This LPN is triggered by the new task
token T in the place ‘Task to execute’, which is generated from the LPN
of the agent TG in Figure 10. The guard transition ‘Prepare task’ has the
guard function = t t( ),Prepare task

sch which fires the given task token
to the place ‘Starting’. Depending on the type of the task ω, specified in
the token colour ,T the relevant task transition fires. For example, if
the given task is a replacement, the guard transition ‘Replace’ fires. The
token stays in the place ‘Replacing’ until the delay transition ‘Replace’
fires the token to the place ‘Replacing’. The delay Exp( ¯ )rep rep
models the time spent on a replacement. Since the aircraft must be
available during the task execution, the task-related transitions are
enabled by the places ‘On-ground’ and ‘Condition of component-ξ’ (see
Figure 6 and 7). When the delay transition ‘Replace’ fires, meaning that
the agent ME completed the task, the task token is fired to the place
‘Completing’. At the same time, a new token is generated in the place
‘Trigger Replacement’. This new token enables the immediate transition
‘Replaced’ in the LPN of the component in Figure 7. The same process is
used for the restoration and the lubrication tasks. The transition ‘Re-
port’ fires the token to the place ‘Waiting’, meaning that the agent ME is
ready for the next task. If the completed task needs to be repeated later,
the transition ‘Report’ fires the task token to the place ‘Task to plan’,
making the agent TP to plan it again.
For the inspection task, the delay transition ‘Inspect’ does not fire a

token to the trigger places because the inspection does not change the
condition of the target component. The colour of this token has an
additional colour variable, i.e., the observed degradation level of the
component X t^ ( ).

+ = +X t X t^ ( ) ( )ins ins (8)

where ϵins is the error of the inspection, and Exp( ¯ )ins ins is time
spent to inspect the component or the delay of the transition ‘Inspect’.
Then, instead of firing a token to the place ‘Completing’, the delay

Fig. 12. LPN: Task planning of the agent TP.

Fig. 13. LPN: Task execution of the agent ME.

Fig. 14. LPN: Operation of the agent CR.
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transition ‘Inspect’ fires a token in the place ‘Deciding’ which is an in-
termediate place. Then, the guard transitions ‘Complete’ and ‘Generate
unscheduled task’ check X t^ ( ). The given maintenance strategy specifies
their guard functions. For instance, a restoration can be scheduled if the
observed degradation level X t^ ( ) is greater than a predefined threshold
ηins, i.e., = X t( ^ ( ) )Generate unscheduled task ins . Based on the main-
tenance strategy, the transition ‘Generate unscheduled task’ fires a new
task token to the place ‘Task to execute’. For this task token, =t tsch .

v) Flight Crew (CR)

The agent flight crew (CR) operates the aircraft based on a flight
schedule and conducts operational checks. The agent CR departs at
t ,i

dep if the aircraft is not under maintenance. After Δτi hours of
flights, the agent CR arrives at the destination airport. During the
ground-time, they can check the condition of the aircraft components,
i.e., operational check. The result is reported to the agent TG, which
may generate a new task.
Figure 14 shows the LPN of the agent CR. This LPN uses a flight

schedule token coloured by F in eq. (7). Initially, the token is placed in
the place ‘CR Waiting’, meaning that there is an available flight crew.
The guard transition ‘Depart’ has a guard function, = t( )iDepart

dep

where i ∈ I1 is the next flight cycle. This is disabled if there is a token in
one of the places ‘Restoring’, ‘Replacing’, ‘Lubricating’, and ‘Inspecting’,
meaning that the departure can be delayed if the agent ME is executing
a task at i

dep. The transition ‘Depart’ fires a token in the place ‘Trigger
off-block’, triggering the transition ‘Off-block’ of the LPN AC Operation
in Figure 6. It also moves the token from ‘CR Waiting’ to ‘CR Flying’.
After completing a flight, the guard transition ‘Arrive’ fires according to
its guard function = +t( )i iArrive

dep . A token is fired to the place
‘Trigger on-block’ by the guard transition ‘Arrive’, triggering the tran-
sition ‘On-block’ of the LPN AC Operation in Figure 6. The transition
‘Arrive’ also fires a token to ‘CR Waiting’.
The agent CR may conduct operational checks for a certain aircraft

components depending on the maintenance strategy. As in the case of
the inspection, a guard transition ‘Check’ and a delay transition ‘Check’
is used for the operational check of the the component condition. The
degradation level of the component observed by the agent CR, X̂CR is
updated as below:

+ = +X t X t^ ( ) ( ) ,CR CR CR (9)

where Exp( ¯ )CR CR is the time spent for the operational check, and
ϵCR is the error in the operational check. The result is reported to the
agent TG, when the delay transition ‘Check’ fires a token to the place
‘Feedback’.

3.3. Assessment of maintenance strategies by means of simulation of ABM

With the formalisation of the ABM in Section 3.2, we assess safety
and efficiency indicators of maintenance strategies of interest.
As a first step, we implement the maintenance strategy of interest to

the ABM by adjusting the transitions, the initial location of the tokens,
and the LPNs. For the delay transitions, the parameters are estimated
based on, for instance, maintenance manuals specific to the given
maintenance strategy, historical data on the execution of the task, etc.
For the guard transitions, the guard functions are also specified based
on the given maintenance strategy. For example, for the agent AC, the
guard function Alert of the transition ‘Alert’, and its parameter ηA are
specified based on the given maintenance strategy (see Figure 9). Si-
milarly, the firing functions of the transitions of the agent TG also need
to be specified based on the maintenance strategy (see Figure 10). For
instance, if the maintenance strategy requires to replace the component
when an alert is triggered by the agent AC, the firing function of the
transition ‘Generate task using feedback from AC’ is set to generate a
replacement task token. (see Figure 10).

Next, we mark the location of the initial tokens in the LPNs in
Section 3 (see Figures from 7 to 14). For the coloured tokens, the initial
colours are set as follows. The initial degradation level Xξ(0) of the
component-ξ is represented in the colour C of a token in the place
‘Condition of component-ξ’ (see Figure 7). The flight schedule I, { }i i I

dep

and {Δτi}i ∈ I is represented the colour F of a token in the place ‘CR
Waiting’ (see Figure 14).
Lastly, we can add and/or remove additional LPNs, according to the

maintenance strategy. For instance, when we consider a system of
multiple aircraft components, we add the LPN in Figure 7 to the agent
AC. When the given maintenance strategy does not require part of the
agents, we remove the unnecessary LPNs. For example, if prognostics
are not used under the given maintenance strategy, then we remove the
LPN in Figure 11 from the agent TG.
Following the adjustment of the ABM according to the given

maintenance strategy, we define safety and efficiency indicators to as-
sess this maintenance strategy. Let E be a safety/operations event that
we analyse using Monte Carlo simulation. For example, the release of
un-airworthy aircraft is considered as a safety event. Similarly, the
execution of maintenance task is seen as an operations event. We pro-
pose generic safety/efficiency indicators to evaluate the occurrence of
the event E as follows. Let TE(j) be the jth occurrence time of event E. Let
NE(t) be the number of occurrences of event E by time t> 0. Then, P[TE
(j) ≤ t], and N t[ ( )]E represent the probability to have the event E
before time t and the expected number of event E by time t, respec-
tively. These two indicators are estimated by conducting Monte Carlo
simulations of the ABM.

4. Assessment of maintenance strategies for aircraft landing gear
brakes

In this section, we illustrate the framework proposed in Section 2
and Section 3 for the maintenance of aircraft landing gear brakes. In
Section 4.1, we describe the maintenance of aircraft landing gear
brakes. In Section 4.2, we introduce a degradation model of the brakes.
In Section 4.3, we describe two TBM strategies derived from practice
and two CBM strategies that we propose. In Section 4.4, the safety and
efficiency indicators are introduced. In Section 4.5, the estimation of
the model parameters is discussed. In Section 4.6, we present the si-
mulation results. Finally, we discuss the obtained results in Section 4.7.

4.1. Problem description

We consider the maintenance of landing gear brakes of a wide-body
aircraft. The aircraft is equipped with 8 breaks equally distributed on
both sides (see Figure 15). Over time, due to wear, the thickness of a
brake disc reduces [7]. When the thickness of a brake disc is thinner
than a threshold, the brake is replaced, to ensure aircraft airworthiness.
Currently, the maintenance of the landing gear brakes is performed

under TBM strategies [7–9]. Specifically, two maintenance tasks are
used: brake inspections at fixed time intervals and replacements. If,
upon an inspection, a certain amount of degradation is observed, a
brake replacement is scheduled. In general, the interval of inspection is
much shorter than the expected life cycle of the brakes, for safety
reasons. As shown in [9], under such a fixed-interval inspection
strategy, short intervals reduce the probability to have undesired in-
cidents, but the increased number of inspections leads to additional
costs with the maintenance. Also, many of these inspections are re-
dundant as they do not lead to further actions such as replacement. On
the other hand, in spite of the frequent brake inspections, the de-
gradation of some brakes can still exceed the desirable threshold. In this
paper, we consider two TBM strategies, with medium and high fre-
quency of inspections.
For a better trade-off between frequent inspections (high costs) and

unexpected brake degradation levels, monitoring the condition of the
brakes using sensors is considered promising [13,33,34,36]. We
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propose two CBM strategies to determine the moment of inspections
and replacements. We compare these CBM strategies against the
medium and high frequency TBM strategies, with respect to safety and
efficiency indicators.
For our assessment, we simulate the maintenance process of a wide-

body aircraft that is operated according to a flight schedule for a period
of 10 years. The flight schedule has nFC flight cycles, where flight cycle i
is defined by the moments of departure ( i

dep) and arrival( i
arr), i ∈ {1,

⋅⋅⋅, nFC} (see Figure 2). We assume that the condition of the aircraft
brakes degrades over time according to a stochastic process. We also
assume that the maintenance tasks for brakes can be executed in all
destination airports. As a safety indicator, we define a brake-related
safety incident, and evaluate its frequency. As efficiency indicators, we
assess the number of required tasks, associated with these maintenance
strategies, and the remained thickness of the brake discs at the moment
of replacement.

4.2. Degradation model of the aircraft landing gear brakes

We model the continuous degradation of an aircraft brake using a
Gamma process [9,15,37]. During a flight cycle (see Figure 2), the
brakes are used: after take-off to stop the wheels before retraction,
during landing to decelerate, and during taxi to stop or to make turns.
These phases are shorter compared to the entire block-time. Thus, we
assume that the brakes are used the same amount of time in each flight
cycle, i.e., =u ( ) 1i i

arr dep in eq. (1).
Let the degradation level of a brake at the beginning and the end of

the block-time of flight cycle i be X ( )i
dep and X ( ),i

arr respectively.
Then, we model the brake degradation increment during block-time i as
follows (i.e., eq. (1) becomes):

X X a b( ) ( ) Gamma( , ),i i
arr dep (10)

where a> 0 is the shape parameter and b> 0 is the scale parameter of
the Gamma distribution. We also assume that the degradation is neg-
ligible during ground-time.
We consider two maintenance tasks: inspection and replacement of

the brakes. Following an inspection during the ground-time of flight
cycle i, the degradation level remains the same, i.e.,

= +X X( ) ( ).i i
arr

1
dep

Following a replacement at the ground-time of flight cycle i,

=+X ( ) 0,i 1
dep

which indicates that the brake is new and has no degradation at the
beginning of flight cycle +i 1.
For simplicity, when no brake replacement occurs during flight

cycle i, we denote the degradation level at the end of the block-time i as:

= = +X X X( ) ( )i i i
arr

1
dep (11)

Then, using this in eq. (10), +X X a bGamma( , )i i1 . Thus, during the
time between flight cycles i1 and i2, (i2 > i1), given that there is no
brake replacement, the degradation Xi follows a Gamma process with
the linear shape function a i i( )2 1 :

X X a i i bGamma( ( ), ).i i 2 12 1 (12)

If a brake is replaced during the ground-time of flight cycle irep, then
=+X 0,i 1rep and we restart the Gamma process from the flight cycle

+i 1rep .
Lastly, we consider a predefined degradation threshold η. Once

Xi ≥ η, the brake is assumed to be inoperative. Without loss of gen-
erality, under a proper scaling, we consider = 1.
Figure 16 shows an example of the degradation process {Xi} fol-

lowing eq. (12) where =a 2, =b 0.01. Here, we consider 100 flight
cycles and a degradation threshold = 1. The degradation level in-
creases until the brake is replaced at the flight cycle =i 40. A new
degradation process is restarted from flight cycle =i 41 with =X 041 .
As a result, eq. (11) does not hold for =i 40, i.e., X X( ) ( )40

arr
41
dep . In

the flight cycles i ≥ 98, Xi ≥ η, which implies that the aircraft is re-
leased with the brake degraded more than the acceptable level.
We construct the LPNs of the 8 brakes in the agent AC as shown in

Figure 17. Each LPN AC Brake-ξ shows the LPN of brake-ξ, where
= {1, 2, ,8} (see also Figure 15). Each LPN is made by taking only
two necessary transitions for degradation and replacement of brakes
from the LPN of a general aircraft component in Figure 7. Each LPN
uses tokens whose colour is given by the parameters of the degradation
process. For example, the token in the LPN AC Brake-ξ has colour

X a b( , , , ),i where Xi is the degradation level of the brake-ξ at the
end of the flight cycle i, aξ and bξ are the shape and the scale parameters
of the degradation process of brake-ξ, defined in eq. (12). Each tran-
sition ‘Replacement brake-ξ’ has the corresponding input places ‘Trigger
replacement brake-ξ’. Each transition ‘Degrade brake-ξ’ has its own
input place ‘Use of brake-ξ’, but has a common enabling place ‘In-flight’
because the operational state of the aircraft applies to all brakes.

4.3. Aircraft brake maintenance strategies

We consider four aircraft brake maintenance strategies, which we
refer to as TBM-CI, TBM-FI, CBM-SI, and CBM-SR. TBM-CI is a time-
based maintenance strategy that uses fixed time intervals (flight cycles)
at which visual inspections are conducted by mechanics. Such time-
based maintenance strategies are often used in practice. In this paper,
we consider TBM-CI to be a baseline strategy. The TBM-FI strategy is a

Fig. 15. Position of the 8 brakes of a wide-body aircraft with their position
index.

Fig. 16. A realisation of the degradation process following eq. (12).
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time-based maintenance strategy that requires more frequent inspec-
tions compared to TBM-CI, i.e., it uses shorter inspection interval. CBM-
SI is a condition-based maintenance strategy that uses sensor data such
that inspections are triggered only after the sensor data indicates a high
level of degradation. CBM-SR is a condition-based maintenance strategy
that uses sensor data to estimate the RUL of the brakes. In turn, using
the RUL, the moment for brake replacements is decided. Unlike the
other three maintenance strategies, CBM-SR does not rely on visual
inspections conducted by the mechanics, instead, utilises the sensor
data and RUL estimation. Below we specify these four maintenance
strategies
TBM-CI strategy requires periodic brake inspections at fixed inter-

vals of flight cycles. Under TBM-CI, we assume that the brakes are in-

spected every 50 FCs, i.e., =d 50 FCsins
TBM-CI . Upon an inspection, if X̂i

the observed degradation level of brake-ξ exceeds a replacement

threshold = 0.97,rep but is not larger than = 1, i.e., X̂ ,irep
then a replacement of brake-ξ is scheduled within 20 FCs. We call such

a replacement a scheduled replacement. If X̂ ,i then brake-ξ is re-
placed immediately, before the next flight cycle. We call such a re-
placement an unscheduled replacement.
Under the TBM-CI strategy, the agents are modelled as follows. The

agent TP generates a task token for scheduled inspections of the eight
brakes in every dins

TBM-CI. The agent ME (see Figure 18) executes in-
spections and replacements of the eight brakes. For simplicity,
Figure 18 shows two tasks: ‘Replacing brake-ξ’ and ‘Inspecting brake-ξ’,
which are applied in the same way for all eight brakes, ξ ∈ {1, 2, ⋅⋅⋅, 8}.
After an inspection, the agent ME has three possible actions, based on
the inspected condition of the brake X̂ (see Figure 18) in the form of

three guard transitions connected to the place ‘Deciding’: i) If <X̂ ,i rep
the transition ‘Complete’ moves the token from the place ‘Deciding’ to
the place ‘Completing’, without generating new task tokens. ii) If

<X ,irep the transition ‘Request scheduled replacement’ fires a
new task token to the place ‘Task to plan’, so that the agent TP can
schedule a replacement within 20 FCs. iii) If X ,i the transition
‘Generate unscheduled replacement’ fires a new task token to the place
‘Task to execute’. This unscheduled replacement is executed im-
mediately, before the next departure of aircraft.
For the agent AC, because TBM-CI does not use sensor data, we do

not have tokens in LPNs AC Sensor-ξ (Figure 8) and AC Alert System
(Figure 9). For the agent TP and CR, the agent model in Section 3 is
used.
The TBM-FI strategy is similar to TBM-CI, but now we consider

twice as many inspections, i.e., =d 25ins
TBM-FI FCs.

The CBM-SI strategy utilises X̃ ,i the sensor data on the condition of
the brakes, to decide the moment of brake inspections. As soon as
X̃i ins

CBM-SI with = 0.75,ins
CBM-SI we schedule inspections every 50 FCs,

i.e., =d 50ins
CBM-SI . We consider this strategy as an alternative to the

TBM-CI strategy, where potentially to frequent, unnecessary inspections
required under TBM-CI are now discarded under CBM-CI. In particular,
we are interested in discarding early inspections, when the degradation
level of the brake is low.
Under the CBM-SI strategy, agent models of AC and TG are mod-

ified, in comparison to the TBM-CI strategy, as follows. The agent AC
has additional LPNs, representing the sensors and the alert system. For
the 8 brakes, We have 8 sensor LPNs as shown in Figure 8. In each LPN
of sensor-ξ, transition ‘Monitor’ has its own input place ‘Trigger sensor-
ξ’ and enabling place ‘Condition of brake-ξ’. Also the LPN Alert System
(see Figure 19) is adjusted from the general LPN Alert System (see
Figure 9) for the 8 brakes. The transitions ‘Alert’ and ‘Activate’ have 8
enabling places for 8 sensors, i.e., ‘Sensor-ξ working’ for ξ ∈ {1, 2, ⋅⋅⋅,
8}. The transition ‘Alert’ is fired if ∃ξ ∈ {1, 2, ⋅⋅⋅, 8} such that
X t˜ ( )i ins

CBM-SI. The transition ‘Activate’ is fired if <X t˜ ( )i ins
CBM-SI for

∀ξ ∈ {1, 2, ⋅⋅⋅, 8}. Then, the agent TG generates periodic inspection
tasks using the token in the place ‘Feedback from AC’ (see Figure 10).
Lastly, the CBM-SR strategy schedules brake replacements based on

a data-driven estimation of the RUL (prognostic) of the brakes. We
define RUL as the predicted number of remaining flight cycles until the
degradation level of brake-ξ becomes unacceptable, Xi . Under
CBM-SR, the sensors monitor the condition of the brakes in every flight
cycles and the data on the condition of the brakes, X{ ˜ },i is stored.
Using a linear regression to analyse the sensor data, we estimate the

degradation level of the brakes in the upcoming flight cycles. Let +X̃ i j( )
be the degradation level after j flight cycles when i is the latest com-
pleted flight cycle at the moment of RUL estimation. In other words, we

Fig. 17. LPNs : Brakes of the agent AC.

Fig. 18. LPN : Task execution of the agent ME for the aircraft landing gear
brake maintenance.
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have data for X X{ ˜ , , ˜ }i0 and we estimate the degradation at flight
cycle +i j.
We consider the following linear regression model,

= ++X j˜ · ,i j( ) 0 1

where we estimate the coefficients 0 and 1 by the ordinary least
squares method. Then we have that:

= ++RUL j jmax{ | · 1}.0 1

Using this approach, we estimate RUL every flight cycles for eight
brakes. Now, if RUL 30 FCs, then brake-ξ is replaced after RUL FCs.
The agent TG under CBM-SR is specified by adding the LPN

Prognostics in Figure 11 and giving a token in the place ‘Prognostics’.
The agent TG receives the data X̃i from the token in the enabling places
‘Sensor-ξ working’. The transition ‘Estimate RUL of component-ξ’ stores
the data set X{ ˜ }i and estimates RUL , updating the token P in the place
‘Prognostics’. The guard transition ‘Report RUL of component-ξ’ fires a
token to the place ‘Feedback from TG’, if RUL 30 FCs. Then, the
agent TG generates a task token to replace brake-ξ, using the LPN Task
Generation (see Figure 10).

4.4. Safety and efficiency indicators of maintenance strategies for aircraft
landing gear brakes

In this section we define indicators that show the safety and effi-
ciency of the maintenance strategies for aircraft landing gear brakes. To
assess the safety of the maintenance strategy, we define a safety in-
cident, which is an undesirable event considering the safety of the
aircraft operation. The aircraft is designed to be safe even with some
inoperative brakes whose degradation level is greater than threshold,
i.e., X(t) ≥ η. The master minimum equipment list (MMEL) specifies the
minimum number of operable brakes to dispatch an aircraft safely. For
example, in the case of Airbus A350 and Boeing B787, MMEL specifies
that the aircraft can be dispatched if it has more than three operable
brakes on each side [5,6]. In line with the MMEL, if we dispatch an
aircraft with more than one inoperative brakes on at lest one side, we
regard it as a brake-related safety incident. A formal definition is as fol-
lows:

Definition 1 (brake-related safety incident). We say that there is a brake-
related safety incident at flight cycle i, if the incident indicator function

=i( ) 1, where i( ) is defined as follows:

=i X

X

( ) ( ) 2

( ) 2 ,

L i

R i
(13)

where =L {1, 2, 5, 6} and =R {3, 4, 7, 8} are the sets of position indices
of the brakes on the left and right side of the aircraft, respectively. And,
(·) is an indicator function which is 1 if the given logical expression is
true and 0 else.

Based on the brake-related safety incident, we define two safety
assessment indicators, T(j) and N(t) as below:

Definition 2. We say that if =i( ) 1 for flight cycle i, the brake-related
safety incident occurs at the arrival time i

arr. T(j) is the time when the
jth brake-related safety incident occurs, which is defined as follows:

= = >T j i I i T j( ) min{ , |( ( ) 1) ( ( 1))},i i
arr dep (14)

with =T (0) 0.

Definition 3. Let N(t) denote the number of brake incidents that occur
by time t > 0, which is defined as follows:

= <
=

N t T j t( ) ( ( ) )
j 1 (15)

Following Definitions 2 and 3, we denote by T(1) the time the first
brake incident occurs and by N(tH) the total number of brake incidents
occurred by the time horizon of simulation tH> 0. These two indicators
are used to understand the safety of brake maintenance strategies. For
instance, P[T(1) ≤ t], the probability to have an incident by time t, is
used to understand how risk evolves over time under a particular
maintenance strategy.
To assess the efficiency of the maintenance strategies, we consider i)

the number of maintenance tasks executed in a period tH, and ii) the
degradation level of brakes at the moment of replacement.

Definition 4. We denote by M(tH)s the total number of maintenance
tasks, both inspections and replacements, that occur under a
maintenance strategy-s in a period of time th.

Definition 5. We denote by Xirep the degradation level of brakes at the
moment of replacement, given that the brake is replaced after flight
cycle irep

In general, as long as safety is maintained, a low number of main-
tenance tasks is preferred. This is because a large number of main-
tenance tasks generally implies higher maintenance cost. The main-
tenance strategies given in Section 4.3 use two types of maintenance
tasks, i.e., inspection, and replacement. Inspection is generally less
expensive task compared to replacement. There are two types of re-
placement tasks, i.e., scheduled replacement and unscheduled re-
placement. Unscheduled replacements are not desired because they
may cause unexpected ground-time with a high chance, especially
when maintenance resources such as spare components, mechanics, or
hangars are not available [3].
Also, if >X ,irep the replacement is performed after the brake is

degraded beyond the threshold η. On the other hand, <Xirep implies
that the operable brake is replaced before the threshold η. This may be a
waste of resources in the sense that we replace the brake that can be
used more. Considering both safety and efficiency of the maintenance,
it is desired to have Xirep as large as possible, but not exceeding η.

4.5. Estimation of the model parameters

First, we estimate the parameters of the brake degradation model in
Section 4.2. The parameters a and b of the Gamma process in eq. (12)
are estimated based on the sensor data recording the thickness of the
brake discs. This data is collected from a fleet of wide-body aircraft,
where aircraft have been in operation for a period of 6 months up to 3
years.
The disc thickness data is scaled such that it indicates the de-

gradation level Xi of a brake following eq. (12). The thickness of a brand

Fig. 19. LPN : Alert system of the agent AC for the landing gear brake main-
tenance.
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new brake disc is scaled to be =X 0i . The thickness of a brake disc that
needs to be replaced is scaled to be =X 1,i in line with our replacement
threshold = 1.
Figure 20 shows the degradation level data obtained from brake-1,

X{ ˜ }i
1 . Each line indicates the recorded degradation data between two

consecutive replacements. The x-axis shows the number of the flight
cycles since the brake is replaced. Some data sets start from the non-
zero degradation level because some degraded brakes are initially in-
stalled in practice to avoid the case when multiple brakes become in-
operative at the same time.
We first estimate the parameters a and b of the Gamma process in

eq. (12) from the recorded degradation level data sets X{ ˜ },i using the
maximum likelihood estimation (MLE) method as follows. Let Δi be the
number of flight cycles between two successive data points X̃i and +X̃i i.
Thus, the increment of the brake degradation level between flight cycle
i and +i i follows a Gamma distribution:

+X X a i b˜ ˜ Gamma( , )i i i (16)

We now apply the MLE method to estimate the parameters a and b of
the gamma distribution in eq. (16) [38–40].
Table 2 shows the estimated parameters â and b̂ for each of the

eight brakes. The difference in the parameters among brake positions
can be explained by, for instance, the layout of the airport which re-
quires the aircraft to perform a different number of left and right turns
while taxiing at an airport.
Next, we conduct a Kolmogorov-Smirnov (KS) test to verify the

following null hypothesis:
H0: {Xi} follows a gamma process with shape parameter â and scale

parameter b̂ .
Since our Gamma process data points are not equally spaced, i.e.,

each data +X X˜ ˜i i i follows a different Gamma distribution, we cannot
directly apply KS test. To address this, based on the original data X{ ˜ },

we resample an equally spaced Gamma process data X{ ˜ }i i I such that I′
is an equally spaced flight index set [41]. The data X̃i is re-sampled
using the interpolation between two consecutive available data points

<X X˜ ˜i il r and by constructing a Gamma bridge as follows [41]:

X X
X X

a i i a i i
˜ ˜
˜ ˜ Beta ( ), ( ) ,i i

i i
l r

l

r l (17)

where a i i a i iBeta( ( ), ( ))l r is a Beta distribution with two shape
parameters a i i( )l and a i i( )r .
Figure 21 shows a part of the recorded, original break data X{ ˜ }i

which has unequal intervals Δi, and the equally spaced data X{ ˜ }i that is
re-sampled from the original data X{ ˜ },i as shown in eq. (17).
Because this approach is based on sampling from a Beta distribu-

tion, we repeat the KS test with different realisations of the resampling
and determine the average rejection rate[41]. Table 2 shows the re-
jection rate for 10.000 KS tests with a significance level of 0.05.
Apart from the brake degradation model, we also assume that the

inspection error ϵins in eq. (8), follows a normal distribution, i.e.,
(0, )ins ins

2 . Here, = ×7.53 10ins
5 is assumed based on the

minimum scale of the degradation measurement during visual inspec-
tion.
Lastly, we estimate the sensor accuracy ϵS in eq. (4) by comparing

the sensor data and the detailed brake inspection reports conducted by
the manufacturer of the brakes. Assuming that the detailed inspection is
accurate enough, we estimate = X X˜ ,i iS the error between the sensor
readings and the detailed inspection results, which has a mean and
standard deviation of 0.000327 and 0.0204, respectively. We assume
that ϵS follows a non-biased Gaussian distribution N(0, 0.02042). We
further test our assumption by means of a KS test with the null hy-
pothesis:

H0: (0, 0. 0204 )S
2 .

The p-value of the KS test is 0.4493, and, thus, the null hypothesis is
not rejected.

4.6. Monte Carlo simulation results

We conduct Monte Carlo simulations to evaluate the four main-
tenance strategies by integrating the brake degradation model
(Section 4.2), the agent models following several maintenance strate-
gies (Section 4.3), the safety and efficiency indicators (Section 4.4), and
the estimated parameter (Section 4.5).
We simulate the maintenance of the landing gear brakes for a period

of 10 years, i.e., =t 10H years. We generate flight cycles based on an
actual flight schedule of a aircraft operated during 2015-2019 by an
European airline. We initialise the degradation levels of the brakes with
the observed degradation level at a random moment in the recorded
data sets. This is due to the fact that, in practice, not all the eight brakes
are installed as new at the same time, in order to avoid the case when
all the eight brakes reach a maximum degradation level at the same

Fig. 20. Degradation level data of the aircraft brake-1.

Table 2
Estimation of the parameters of the aircraft brake degradation model Gamma(a,
b). In the first column, L and R indicate the brake is on the left and right side,
respectively.

Brake position Parameters KS test

ξ â b̂ rejection rate

1 (L) 3.350 2.063e-4 0.23%
2 (L) 4.146 1.836e-4 3.28%
3 (R) 3.546 2.217e-4 0.40%
4 (R) 3.390 2.171e-4 4.82%
5 (L) 4.667 1.715e-4 1.43%
6 (L) 4.100 1.856e-4 0.11%
7 (R) 3.068 2.329e-4 0.07%
8 (R) 2.583 2.852e-4 0.45%

Fig. 21. Degradation process data example – unequally spaced data points X̃ ,i
and equally spaced data points X ,i after resampling.
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time. For each maintenance strategy, 104 Monte Carlo simulation runs
are conducted.
Firstly, we consider the number of brake-related safety incidents by

tH, i.e., N(tH) defined in eq. (15). Table 3 shows N t[ ( )],H the expected
number of incidents by tH, under the four maintenance strategies and
the 95% confidence intervals of N t[ ( )]H . Under the baseline main-
tenance strategy, TBM-CI, 0.8248 incidents are expected to occur by tH.
When we inspect the brakes twice often, under TBM-FI, the expected
number of incidents decreases to 0.0470. Thus, this significantly im-
proves the safety indicators at the cost of double the number of in-
spections. Under CBM-SI, if we start the periodic inspections after the
sensor indicates 75% wear of the brakes, then the expected number of
incident are comparable to the case TBM-CI. Finally, under CBM-SR, if
we replace the brakes based on the RUL estimation, it is expected to
have 0.0386 incidents. This indicator is significantly smaller than in the
case of TBM-CI, and similar to the case of TBM-FI.
Another safety indicator is T(1), the time when the first brake-re-

lated safety incident occurs (see eq. (14)). Table 4 shows the probability
to have at least one brake-related safety incident in 10 years of aircraft
operation, i.e., P[T(1) ≤ tH]. Under TBM-CI, P[T(1) ≤ tH] is 0.1169.
Under TBM-FI and CBM-SR, P[T(1) ≤ tH] is 0.0154 and 0.0148, re-
spectively, which are significantly smaller than the case TBM-CI. Under
CBM-SI, P[T(1) ≤ tH] is slightly higher than TBM-CI. Thus, compared to
TBM-CI, Table 3 shows that the use of TBM-FI or CBM-SR significantly
improves the safety indicators of the brake maintenance in a similar
degree, while CBM-SI does not improve the safety indicators sig-
nificanly.
Figure 22 shows the empirical cumulative distribution function

(cdf) of T(1), i.e., P[T(1) ≤ t]. The cdf of T(1) significantly increases,
approximately every 3 years. This shows that the brake-related in-
cidents are concentrated in a short interval of time. This is because the
degradation of brakes reaches η after 1250-1400 FCs, which is ap-
proximately the number of flight cycles made in 3 years. By comparing
the different maintenance strategies, we observe that the jumps of P
[T(1) ≤ t] occurs at similar t. Thus, Figure 22, shows that the moment
of brake-related safety incident is less affected by the maintenance
strategies.
For the analysis of efficiency, Table 5 shows the expected number of

tasks in =t 10H years under the four maintenance strategies. Here, we
consider three types of tasks: inspections, scheduled replacements, and
unscheduled replacements. Under TBM-CI, 632.0 inspections, 18.5
scheduled replacements, and 4.8 unscheduled replacements are ex-
pected to be carried out in 10 years of aircraft operation. TBM-FI uses
twice as much inspections, 1272.0 but needs almost no unscheduled
replacements. In this case, additional costs with inspections are ex-
pected, while the costs with the unscheduled replacements are expected
to decrease. Thus, TBM-FI is expected to be more cost efficient com-
pared to TBM-CI if 640 additional inspections are cheaper than 4.8
additional unscheduled replacements. Because CBM-SI starts the rou-
tine inspections later, it requires only 402.8 inspections, i.e. with 33%
less inspections than TBM-CI. The amount of scheduled and

unscheduled replacements remain the same as in the case of TBM-CI.
Thus, CBM-SI is expected to be more cost efficient than TBM-CI since it
requires less inspections. Lastly, CBM-SR requires the least amount of
tasks since this strategy does not rely on inspections and unscheduled
replacements. The number of scheduled replacements under CBM-SR is
almost the same as the total amount of replacements under TBM-CI.
This is because we need the same number of replacements for a given
period of tH, as we are using the same brakes for the same flight sche-
dule.
We also analyse the degradation level of the brakes at the moment

of replacement, i.e., Xirep. Table 6 shows the expected value of Xirep
under each maintenance strategy. Here, >X[ ] 1irep under TBM-CI and
CBM-SI, while <X[ ] 1irep under TBM-FI and CBM-SR. This is in line
with the safety indicators of TBM-CI and CBM-SI in Table 3. Con-
sidering the 95% confidence intervals, X[ ]irep of CBM-SR is higher than
that of TBM-FI. This implies that the brakes are used efficiently without
exceeding the threshold η under CBM-SR.

Sensitivity analysis

We next analyse the sensitivity of the safety and efficiency in-
dicators with respect to the key parameters of each maintenance
strategy.
Again, we consider the indicators of TBM-CI as a baseline. In the

case of TBM-FI, we consider d ,ins
TBM-FI the interval of inspection as a key

parameter. Here, TBM-FI with =d 50ins
TBM-FI FCs is identical to TBM-CI.

In the case of CBM-SI, we vary ,ins
CBM-SI i.e., the routine inspection is

started at different degradation level. Lastly, in the case of CBM-SR, we

Table 3
Number of brake-related safety incidents in =t 10H years of operations.

TBM-CI TBM-FI CBM-SI CBM-SR

N t[ ( )]H 0.8248 0.0470 0.8377 0.0386
95% C.I. [0.7692,

0.8804]
[0.0382,
0.0558]

[0.7818,
0.8936]

[0.0312,
0.0460]

Table 4
Probability to have at least one brake-related safety incident by =t 10H years.

TBM-CI TBM-FI CBM-SI CBM-SR

P[T(1) ≤ tH] 0.1169 0.0154 0.1215 0.0148

Fig. 22. Empirical cumulative distribution function of T(1).

Table 5
Average number of maintenance tasks executed in =t 10H years.

TBM-CI TBM-FI CBM-SI CBM-SR

Inspections 632.0 1272.0 402.8 -
Scheduled

replacements
18.5 23.50 18.3 23.2

Unscheduled
replacements

4.8 10 4 4.9 -

Table 6
Expected degradation level at the moment of brake replacement, =t 10H years.

TBM-CI TBM-FI CBM-SI CBM-SR

X[ ]irep 1.00096 0.99487 1.00128 0.99887

95% C.I. [1.00080,
1.0011]

[0.99475,
0.99498]

[1.00112,
1.00144]

[0.99878,
0.99895]
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consider ϵS, the sensor error as a key parameter since the sensitivity
associated with the sensor accuracy is one of the major concerns in the
CBM strategies.
Figure 23 shows the expected number of incidents N t[ ( )]H and the

total number of tasks under TBM-FI for d20 80ins
TBM-FI FCs. As

shown in Figure 23a, the expected number of incidents increases as the
interval of inspection increases because of the higher chance of missing
a critical degradation level. Figure 23b shows the decrease of the total
number of tasks. This is mainly due to a gradual decrease of inspections
as dins

TBM-FI increases.
In the cause of CBM-SI, Figure 24 shows that the number of tasks

decreases while the number of incident remains in the same level when
the routine inspections are triggered later, i.e., higher ins

CBM-SI. In par-
ticular, in Figure 24a, N t[ ( )]H stabilises around 0.8, which is similar to
the case of TBM-CI. Figure 24b shows a linear decrease in the total
number of tasks. However, in Figure 26, the number of scheduled and
unscheduled replacements does not change significantly as ins

CBM-SI in-
creases. Thus, the decrements are mainly attributed to the reduced
number of inspections. The results obtained for CBM-SI show that we
can decrease the number of tasks while keeping the same level of safety
indicators if we replace early routine inspections by the condition
monitoring.
Lastly, under CBM-SR, although the expected number of incident

N t[ ( )]H increases slightly as ϵS increases, the increase is limited in

comparison to TBM-CI. Figure 25a shows that, even when ϵS is 0.08,
only 0.21 safety incidents are expected, which is significantly less than
the indicator under TBM-CI. Overall, Figure 25a shows that CBM-SR
significantly reduces the probability of having brake-related safety in-
cidents when the sensor accuracy ϵS ≤ 0.8. In the case of the number of
tasks, CBM-SR relies only on scheduled replacements, and thus the
number of tasks of CBM-SR is incompatible to the other strategies that
also make use of routine inspections and unscheduled replacements. For
this reason, Figure 25b only shows the number of scheduled replace-
ments, which is independent of the sensor error.

4.7. Discussion

In this paper, we propose two CBM strategies, CBM-SI and CBM-SR,
and assess them against two TBM strategies, TBM-CI and TBM-FI.
TBM-FI, which uses frequent inspections, has better safety in-

dicators when compared with the baseline TBM-CI. However, it is not
cost-efficient if the increment of the number of inspections is more
expensive than the reduced number of unscheduled replacements.
For CBM-SI, which replaces early inspections with sensor data

analysis, the safety indicators are similar to those for TBM-CI, but the
number of tasks, especially inspections, is reduced significantly.
The CBM-SR strategy has similar safety indicators as TBM-FI, but

requires significantly fewer tasks, since it uses the RUL estimation to

Fig. 23. Expected number of the brake-related safety incidents and expected total number of tasks under TBM-FI with different dins
TBM-FI.

Fig. 24. Expected number of the brake-related safety incidents and expected total number of tasks under CBM-SI with different ins
CBM-SI.
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schedule replacements. Moreover, the efficiency indicators of CBM-SR
show an improvement relative to all other strategies. In fact, CBM-SR
makes the most use of the breaks. This is shown by the fact that, under
CBM-SR, the brakes are used until their degradation level is very close
to a predefined degradation threshold.
Lastly, following our sensitivity analysis, the safety indicators under

CBM-SI are not affected when the start of periodic inspections is de-
layed. Also, our numerical results show that the safety indicators under
CBM-SR are better than in the case of TBM-CI, even when considering
larger sensor errors.
From a methodology point of view, the basic model proposed in

Section 3 can be readily adapted to other aircraft components, main-
tenance strategies, as well as additional agents and characteristics of the
maintenance process.

5. Conclusions

We propose a framework to assess safety and efficiency of the air-
craft maintenance process. We develop an agent-based model (ABM) of
the end-to-end aircraft maintenance. The agent models are formalised
by means of stochastically and dynamically coloured Petri nets
(SDCPNs). Next, we specify the agent models for several aircraft
maintenance strategies. Using a Monte Carlo simulation of the ABM, we
assess safety and efficiency indicators for the considered maintenance
strategies.

We illustrate our framework for the maintenance of the aircraft
landing gear brakes. We propose two condition-based maintenance
(CBM) strategies and compare them to time-based maintenance (TBM)
strategies. Then the safety and efficiency of these strategies are as-
sessed. Our results show a trade-off between safety and efficiency. In
particular, the strategy based on data-driven prognostics shows im-
proved safety and efficiency indicators compared to TBM strategies.
In conclusion, this framework supports the assessment of novel

maintenance strategies, ahead of their implementation in practice. As
the ABM is designed to be generic, different aircraft components, or
different strategies can be readily analysed. Moreover, this framework
is expected to be the basis of follow-up research for the design and
analysis of maintenance strategies considering more realistic interac-
tions of agents in practice.
As future work, we plan to extend our ABM for aircraft maintenance

by considering heterogeneous components, limited availability of spare
parts and hangars, aircraft fleet, human behaviours, and various error
models.

CRediT authorship contribution statement

Juseong Lee: Conceptualization, Methodology, Software, Formal
analysis, Investigation, Data curation, Writing - original draft,
Visualization. Mihaela Mitici: Conceptualization, Methodology,
Validation, Investigation, Writing - review & editing, Supervision,
Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agree-
ment No 769288.

References

[1] Hessburg J. Air Carrier MRO Handbook. New York: McGraw-Hill Professional;
2001. ISBN 978-0071361330

[2] IATA. AIRLINE MAINTENANCE COST EXECUTIVE COMMENTARY (FY2016 data).
Tech. Rep. December. IATA’s Maintenance Cost Task Force; 2017. https://doi.org/

Fig. 25. Expected number of the brake-related safety incidents and expected total number of tasks under CBM-SR with different ϵS.

Fig. 26. Expected number of scheduled and unscheduled replacements under
CBM-SI with different ins

CBM-SI

J. Lee and M. Mitici Reliability Engineering and System Safety 202 (2020) 107052

15

http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0001
https://doi.org/10.4271/400063


10.4271/400063.
[3] Zhou X, Xi L, Lee J. Reliability-centered predictive maintenance scheduling for a

continuously monitored system subject to degradation. Reliability Engineering and
System Safety 2007;92(4):530–4. https://doi.org/10.1016/j.ress.2006.01.006.

[4] Chemweno P, Pintelon L, Muchiri PN, Van Horenbeek A. Risk assessment meth-
odologies in maintenance decision making: A review of dependability modelling
approaches. Reliability Engineering and System Safety 2018;173(January):64–77.
https://doi.org/10.1016/j.ress.2018.01.011.

[5] FAA Flight Operations Evaluation Board (FOEB). Master Minimum Equipment List
(MMEL) Airbus A350-900 Series, All Models. 2017.

[6] FAA Flight Operations Evaluation Board (FOEB). Master Minimum Equipment List
BOEING 787. 2015.

[7] Ghobbar AA. Aircraft Maintenance Engineering. Encyclopedia of Aerospace
Engineering 2010:1–14. https://doi.org/10.1002/9780470686652.eae552.

[8] Wang H. A survey of maintenance policies of deteriorating systems. European
Journal of Operational Research 2002;139(3):469–89. https://doi.org/10.1007/
springerreference_23399.

[9] Kallen MJ, van Noortwijk JM. Optimal maintenance decisions under imperfect in-
spection. Reliability Engineering and System Safety 2005;90(2-3):177–85. https://
doi.org/10.1016/j.ress.2004.10.004.

[10] Taghipour S, Banjevic D, Jardine AK. Periodic inspection optimization model for a
complex repairable system. Reliability Engineering and System Safety
2010;95(9):944–52. https://doi.org/10.1016/j.ress.2010.04.003.

[11] Shen J, Cui L, Ma Y. Availability and optimal maintenance policy for systems de-
grading in dynamic environments. European Journal of Operational Research
2019;276(1):133–43. https://doi.org/10.1016/j.ejor.2018.12.029.

[12] Jardine AK, Lin D, Banjevic D. A review on machinery diagnostics and prognostics
implementing condition-based maintenance. Mechanical Systems & Signal
Processing 2006;20:1483–510. https://doi.org/10.1016/j.ymssp.2005.09.012.

[13] Alaswad S, Xiang Y. A review on condition-based maintenance optimization models
for stochastically deteriorating system. Reliability Engineering & System Safety
2017;157:54–63. https://doi.org/10.1016/j.ress.2016.08.009.

[14] Grall A, Bérenguer C, Dieulle L. A condition-based maintenance policy for sto-
chastically deteriorating systems. Reliability Engineering and System Safety
2002;76(2):167–80. https://doi.org/10.1016/S0951-8320(01)00148-X.

[15] Crowder M, Lawless J. On a scheme for predictive maintenance. European Journal
of Operational Research 2007;176(3):1713–22. https://doi.org/10.1016/j.ejor.
2005.10.051.

[16] Liao H, Elsayed EA, Chan LY. Maintenance of continuously monitored degrading
systems. European Journal of Operational Research 2006;175(2):821–35. https://
doi.org/10.1016/j.ejor.2005.05.017.

[17] Gao Y, Feng Y, Zhang Z, Tan J. An optimal dynamic interval preventive main-
tenance scheduling for series systems. Reliability Engineering and System Safety
2015;142:19–30. https://doi.org/10.1016/j.ress.2015.03.032.

[18] Andrews J, Prescott D, De Rozières F. A stochastic model for railway track asset
management. Reliability Engineering and System Safety 2014;130:76–84. https://
doi.org/10.1016/j.ress.2014.04.021.

[19] Zhang D, Hu H, Roberts C. Rail maintenance analysis using Petri nets. Structure and
Infrastructure Engineering 2017;13(6):783–93. https://doi.org/10.1080/
15732479.2016.1190767.

[20] Le B, Andrews J, Fecarotti C. A Petri net model for railway bridge maintenance.
Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability 2017;231(3):306–23. https://doi.org/10.1177/1748006X17701667.

[21] Santos F, Teixeira ÂP, Soares CG. Modelling and simulation of the operation and
maintenance of offshore wind turbines. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability 2015;229(5):385–93. https://doi.
org/10.1177/1748006X15589209.

[22] Leigh JM, Dunnett SJ. Use of Petri Nets to Model the Maintenance of Wind
Turbines. Quality and Reliability Engineering International 2016;32(1):167–80.
https://doi.org/10.1002/qre.1737.

[23] Sheng J, Prescott D. A coloured Petri net framework for modelling aircraft fleet
maintenance. Reliability Engineering and System Safety 2019;189(November
2017):67–88. https://doi.org/10.1016/j.ress.2019.04.004.

[24] Kaegi M, Mock R, Kröger W. Analyzing maintenance strategies by agent-based si-
mulations: A feasibility study. Reliability Engineering and System Safety
2009;94(9):1416–21. https://doi.org/10.1016/j.ress.2009.02.002.

[25] Everdij MH, Klompstra MB, Blom HA, Klein Obbink B. Compositional Specification
of a Multi-agent System by Stochastically and Dynamically Coloured Petri Nets.
Stochastic Hybrid Systems. 2006. p. 325–50. https://doi.org/10.1007/
11587392_10.

[26] Everdij M, Blom H, Stroeve S, Kirwan B. Agent-based Dynamic Risk Modelling for
ATM. Tech. Rep.. Eurocontrol; 2014. http://www.nlr-atsi.nl/downloads/agent-
based-dynamic-risk-modelling-for-atm.pdf

[27] Macal CM, North MJ. Tutorial on agent-based modelling and simulation.
Proceedings of the Winter Simulation Conference. IEEE; 2005. p. 14. https://doi.
org/10.1057/jos.2010.3.

[28] Macal CM. Tutorial on agent-based modeling and simulation: ABM design for the
zombie apocalypse. Proceedings of the 2018 Winter Simulation Conference. 2018.
p. 207–21. ISBN 9781538665725

[29] Panteleev V, Kamaev V, Kizim A. Developing a model of equipment maintenance
and repair process at service repair company using agent-based approach. Procedia
Technology 2014;16:1072–9. https://doi.org/10.1016/j.protcy.2014.10.121.

[30] Blom HA, Krystul J, Bakker GJ, Obbink BK. Free Flight Collision Risk Estimation by
Sequential MC Simulation. Stochastic Hybrid Systems. 2006. p. 249–81. https://
doi.org/10.1016/B978-0-12-375158-4.00010-9. ISBN 9780123751584

[31] Mitici M, Blom HA. Mathematical Models for Air Traffic Conflict and Collision
Probability Estimation. IEEE Transactions on Intelligent Transportation Systems
2018;20(3):1–17. https://doi.org/10.1109/TITS.2018.2839344.

[32] Air Transport Association of America. ATA MSG-3 - Operator/Manufacturer
Scheduled Maintenance Development. 2002. http://www.airlines.org.

[33] Hale J. Boeing 787 from the Ground Up. Aero 2006:17–23. http://www.boeing.
com/commercial/aeromagazine/articles/qtr_4_06/article_04_1.html

[34] Wenk L, Bockenheimer C. Structural Health Monitoring: A real-time on-board
âstethoscope’ for Condition-Based Maintenance. Airbus technical magazine, Flight
Airworthiness Support Technology 2014:22–8.

[35] Si XS, Wang W, Hu CH, Zhou DH. Remaining useful life estimation - A review on the
statistical data driven approaches. European Journal of Operational Research
2011;213(1):1–14. https://doi.org/10.1016/j.ejor.2010.11.018.

[36] Seyte P, Garcia CP. Health Monitoring and Prognostics. Airbus technical magazine,
Flight Airworthiness Support Technology 2016:36–41. https://doi.org/10.1002/
9781118841716.ch18.

[37] van Noortwijk JM. A survey of the application of gamma processes in maintenance.
Reliability Engineering and System Safety 2009;94(1):2–21. https://doi.org/10.
1016/j.ress.2007.03.019.

[38] Edirisinghe R, Setunge S, Zhang G. Application of Gamma Process for Deterioration
Prediction of Buildings from Discrete Condition Data. Sri Lankan Journal of Applied
Statistics 2012;12(1):13–25. https://doi.org/10.4038/sljastats.v12i0.4965.

[39] Huang X, Chen J. Time-dependent reliability model of deteriorating structures
based on stochastic processes and bayesian inference methods. Journal of
Engineering Mechanics 2015;141(3):04014123. https://doi.org/10.1061/(ASCE)
EM.1943-7889.0000845.

[40] Mahmoodian M, Alani A. Modeling Deterioration in Concrete Pipes as a Stochastic
Gamma Process for Time-Dependent Reliability Analysis. Journal of Pipeline
Systems Engineering and Practice 2014;5(1):1–10. https://doi.org/10.1061/(ASCE)
PS.1949-1204.0000145. http://tsdr.uspto.gov/#caseNumber=3473287&
caseType=US_REGISTRATION_NO&searchType=statusSearch

[41] Grall-Maës E. Use of the Kolmogorov-Smirnov test for gamma process. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
2012;226(6):624–34. https://doi.org/10.1177/1748006X12462522.

J. Lee and M. Mitici Reliability Engineering and System Safety 202 (2020) 107052

16

https://doi.org/10.4271/400063
https://doi.org/10.1016/j.ress.2006.01.006
https://doi.org/10.1016/j.ress.2018.01.011
https://doi.org/10.1002/9780470686652.eae552
https://doi.org/10.1007/springerreference_23399
https://doi.org/10.1007/springerreference_23399
https://doi.org/10.1016/j.ress.2004.10.004
https://doi.org/10.1016/j.ress.2004.10.004
https://doi.org/10.1016/j.ress.2010.04.003
https://doi.org/10.1016/j.ejor.2018.12.029
https://doi.org/10.1016/j.ymssp.2005.09.012
https://doi.org/10.1016/j.ress.2016.08.009
https://doi.org/10.1016/S0951-8320(01)00148-X
https://doi.org/10.1016/j.ejor.2005.10.051
https://doi.org/10.1016/j.ejor.2005.10.051
https://doi.org/10.1016/j.ejor.2005.05.017
https://doi.org/10.1016/j.ejor.2005.05.017
https://doi.org/10.1016/j.ress.2015.03.032
https://doi.org/10.1016/j.ress.2014.04.021
https://doi.org/10.1016/j.ress.2014.04.021
https://doi.org/10.1080/15732479.2016.1190767
https://doi.org/10.1080/15732479.2016.1190767
https://doi.org/10.1177/1748006X17701667
https://doi.org/10.1177/1748006X15589209
https://doi.org/10.1177/1748006X15589209
https://doi.org/10.1002/qre.1737
https://doi.org/10.1016/j.ress.2019.04.004
https://doi.org/10.1016/j.ress.2009.02.002
https://doi.org/10.1007/11587392_10
https://doi.org/10.1007/11587392_10
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0024
http://www.nlr-atsi.nl/downloads/agent-based-dynamic-risk-modelling-for-atm.pdf
https://doi.org/10.1057/jos.2010.3
https://doi.org/10.1057/jos.2010.3
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0026
https://doi.org/10.1016/j.protcy.2014.10.121
https://doi.org/10.1016/B978-0-12-375158-4.00010-9
https://doi.org/10.1016/B978-0-12-375158-4.00010-9
https://doi.org/10.1109/TITS.2018.2839344
http://www.airlines.org
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0030
http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_1.html
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30553-6/sbref0031
https://doi.org/10.1016/j.ejor.2010.11.018
https://doi.org/10.1002/9781118841716.ch18
https://doi.org/10.1002/9781118841716.ch18
https://doi.org/10.1016/j.ress.2007.03.019
https://doi.org/10.1016/j.ress.2007.03.019
https://doi.org/10.4038/sljastats.v12i0.4965
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000845
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000845
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000145
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000145
http://tsdr.uspto.gov/#caseNumber=3473287%26caseType=US_REGISTRATION_NO%26searchType=statusSearch
https://doi.org/10.1177/1748006X12462522

	An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets
	Introduction
	Aircraft maintenance process – an agent-based modelling approach
	Formalisation of the agent-based model of the aircraft maintenance process by means of Petri nets
	Stochastically and dynamically coloured Petri nets
	Formalisation of the aircraft maintenance agents using SDCPNs
	i) Aircraft (AC)
	ii) Task Generating Team (TG)
	iii) Task Planning Team (TP)
	iv) Mechanics Team (ME)
	v) Flight Crew (CR)
	Assessment of maintenance strategies by means of simulation of ABM

	Assessment of maintenance strategies for aircraft landing gear brakes
	Problem description
	Degradation model of the aircraft landing gear brakes
	Aircraft brake maintenance strategies
	Safety and efficiency indicators of maintenance strategies for aircraft landing gear brakes
	Estimation of the model parameters
	Monte Carlo simulation results
	Sensitivity analysis
	Discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References




