
Zubair Nawaz

Recursive Variable Expansion

A Transformation for Reconfigurable Computing

Recursive Variable Expansion
A Transformation for Reconfigurable Computing

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 11 januari 2011 om 12:30 uur

door

Zubair NAWAZ

Master of Science in Computer Science
Lahore University of Management Sciences

geboren te Lahore, Pakistan

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. H.J. Sips

Copromotor: Dr. K.L.M. Bertels

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. H.J. Sips Technische Universiteit Delft, promotor
Dr. K.L.M. Bertels Technische Universiteit Delft, copromotor
Prof. dr. O. Nieto-Taladriz García Technical University of Madrid
Prof. Dr.-Ing. J. Becker University of Karlsruhe
Prof. Dr.-Ing. M. Berekovic Technishe Universität Braunschweig
Prof. dr. ir. M. J. T. Reinders Technische Universiteit Delft
Dr. P. Diniz University of Southern California
Prof. dr. K.G. Langendoen Technische Universiteit Delft, reservelid

Zubair Nawaz

Recursive Variable Expansion - A Transformation for Reconfigurable Computing
Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica - III
PhD Thesis Technische Universiteit Delft.

Met samenvatting in het Nederlands.

ISBN:978-90-72298-11-9

Subject headings: compiler optimization, high performance computing, reconfig-
urable computing, automatic pipeline design algorithm, Smith-Waterman accelera-
tion, dynamic programming acceleration.
Copyright c© 2011 Zubair Nawaz

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechan-
ical, photocopying, recording, or otherwise, without permission of the author at
zubair.nawaz@gmail.com.

Printed in The Netherlands

This dissertation is dedicated to my father

Raja Muhammad Nawaz

My inspiration and the one who gave me every opportunity to what I am.

Recursive Variable Expansion
A Transformation for Reconfigurable Computing

Zubair Nawaz

Abstract

RECONFIGURABLE computing, in which general purpose processor (GPP)
is augmented with one or more FPGAs, is increasingly used for high-

performance computing where massive fine-grain parallelism and pipelining
can be exploited. A challenge is to exploit such massive parallelism on FP-
GAs and more specifically how to map an application on the heterogeneous
underlying platform.

Similar to software compilers, hardware compilers can use loops to exploit
such parallelism. The existence of a dependence between data is one the con-
straints that limits parallelism in a program. In this dissertation, we propose a
transformation called Recursive Variable Expansion (RVE), which can be ap-
plied to an important category of loops. It removes all the data dependences
by expanding the variable with its dependence expression until the expression
becomes only a function of known variables. We classify two types of expres-
sions, one which expands polynomially, and other which expands exponen-
tially on the number of input variables. Irrespective of the type of expression,
when we map an expression on an FPGA, the area (LUT) required on an FPGA
is proportional to the number of terms in the expression.

We present an automated pipeline design algorithm for the problems whose ex-
pression expands polynomially. This algorithm determines the largest pipeline
size that fits the FPGA. Furthermore, the algorithm also ensures that the time to
feed the data is less than the time to process an instruction through the pipeline.
We apply this algorithm to DCT, a widely used signal processing kernel, which
shows a comparable performance to the hand optimized implementation.

The exponentially expanding version is applicable to the category of dynamic
programming (DP) problems for which RVE is combined with dataflow. We
demonstrated better performance than dataflow only, which is the best tech-
nique known so far for such problems. We generalize the approach by propos-
ing a framework such that the technique can be applied to a large range of DP
problems.

i

Finally, we validate the proposed DP framework using the Smith-Waterman
(SW) algorithm, which is a widely used, computation and data intensive appli-
cation in bioinformatics. We show that our implementation yields a 2.29x
speedup at the cost of 2.82x more area as compared to the conventional
dataflow systolic array implementation. Moreover, we propose a parallel
FPGA design for SW traceback stage, whose bandwidth requirement is also
well within limits of the current off-the-shelf FPGA boards.

ii

Table of Contents

Abstract . i

Table of Contents . vi

List of Tables . vii

List of Figures . xii

List of Algorithms . xiii

List of Acronyms and Symbols . xv

1 Introduction . 1
1.1 Motivational Example . 2
1.2 Applicability Conditions . 4
1.3 Contributions . 4
1.4 Dissertation Organization . 6

2 Data Dependences and Loop Transformations 7
2.1 Dependence Relation . 7

2.1.1 Representing the Dependence Relations 9
2.1.2 Loop Dependence Analysis 10
2.1.3 Iteration Space . 12
2.1.4 Distance Vectors . 13
2.1.5 Direction Vectors . 14

2.2 Loop Transformations . 15
2.2.1 Parallelizable Loops 15
2.2.2 Loop Interchange . 17
2.2.3 Loop Skewing . 18
2.2.4 Loop Reversal . 20
2.2.5 Strip Mining . 20

iii

2.2.6 Loop Tiling . 20
2.2.7 Loop Distribution . 23
2.2.8 Loop Fusion . 24
2.2.9 Loop Unrolling . 25
2.2.10 Software Pipelining 25

2.3 Summary and Conclusion . 28

3 Recursive Variable Expansion . 29
3.1 Related Work . 30
3.2 Motivational Example . 31

3.2.1 Applying Loop Skewing Transformation 32
3.2.2 Applying Recursive Variable Expansion Transformation 33

3.3 Recursive Variable Expansion 35
3.3.1 Classification of Expressions 36
3.3.2 Constraints of RVE 40
3.3.3 Benefits of RVE . 42

3.4 Experimental Results . 42
3.4.1 Kernels . 42
3.4.2 Software and Hardware Implementation 43
3.4.3 Results . 43

3.5 Summary and Conclusion . 45

4 Pipelined Design for RVE . 47
4.1 Related Work . 48
4.2 Basic Concepts . 50

4.2.1 Suffix Trees . 50
4.3 Problem Statement . 53

4.3.1 Motivational Example 54
4.3.2 Problem Statement 56

4.4 Flexible Pipelining Design Algorithm 58
4.4.1 Find possible candidates for pipelining 58
4.4.2 Select the optimal repeat from among the possible

candidates. 58
4.4.3 Feed data to pipeline 59
4.4.4 Eliminate redundant expressions 59
4.4.5 Convert optimal repeat to a pipeline circuit 61

4.5 Balancing the Datapath and Memory Access Operations . . . 62
4.6 Experiments and Results . 64

iv

4.7 Summary and Conclusion . 67

5 RVE for Dynamic Programming Problems 69
5.1 Related Work . 70
5.2 Representative Problems . 71

5.2.1 Maximum Contiguous Subsequence Sum (MCSS)
Problem . 71

5.2.2 Fibonacci Numbers 72
5.2.3 Needleman-Wunsch (NW) Algorithm 72
5.2.4 Longest Common Subsequence (LCS) Problem 73

5.3 Generic RVE Algorithm for DP Problems 74
5.3.1 Step 1: Apply RVE 74
5.3.2 Step 2: Remove redundant sub-equations 74
5.3.3 Step 3: Group sub-equations 77
5.3.4 Step 4: Precompute cost function 78
5.3.5 Step 5: Fill the block and mix with dataflow 79

5.4 Performance Evaluation . 83
5.5 Applicability of the RVE Techniques to DP Problems 88
5.6 Summary and Conclusion . 91

6 Acceleration of Smith-Waterman . 93
6.1 The Smith-Waterman algorithm 94
6.2 Related Work . 98
6.3 Application of RVE to SW Algorithm 98

6.3.1 Clipping Error . 100

6.3.1.1 Patch . 104
6.3.2 Mapping Equations to Circuits 105

6.4 Performance Evaluation . 108
6.5 Summary and Conclusion . 111

7 A parallel Smith-Waterman traceback 113
7.1 Related work . 114
7.2 Memory Bandwidth Bottleneck 115
7.3 Compression and Backtracking 116
7.4 Design Overview . 118

7.4.1 Computing max in the optimal value matrix 118
7.4.2 Generating the direction matrix 121
7.4.3 Storing direction vectors in BRAM 121

v

7.4.4 Traceback . 125
7.5 Experimental Validation . 125
7.6 Summary and Conclusion . 128

8 Conclusions . 129
8.1 Summary and Contributions 129
8.2 Future Directions . 131

Bibliography . 133

List of Publications . 147

Samenvatting . 149

Acknowledgments . 151

Curriculum Vitae . 153

vi

List of Tables

3.1 Time and Area estimates for different transformations for ex-
ample in Figure 3.1a . 35

3.2 Performance and Area Utilization for Software only and Vir-
tex II platform . 44

4.1 Memory access time . 64

4.2 Comparison of automatically optimized DCT with Xilinx’s
hand optimized DCT core . 65

5.1 Results to show time and hardware utilized 86

6.1 Results to show time and hardware utilized 108

7.1 Bandwidth requirement for different implementations 115

7.2 Comparison of bandwidth requirement for different imple-
mentations . 126

vii

List of Figures

1.1 Motivational example . 3

2.1 Dependence graph . 9

2.2 Perfect nest with n loops . 11

2.3 Loop carried dependences examples 12

2.4 Iteration Space dependence graphs 13

2.5 Parallelizable loops . 15

2.6 Code and ISDG for Loop Interchange 16

2.7 Illegal loop interchange . 17

2.8 Loop Skewing . 18

2.9 Typical use of loop reversal 19

2.10 Strip mining . 21

2.11 Loop Tiling . 22

2.12 Loop distribution . 23

2.13 Loop Fusion . 24

2.14 Loop Unrolling . 26

2.15 Software Pipelining . 27

3.1 Motivational Example . 32

3.2 Recursively substituting the values 34

3.3 Best case for binary operation on t terms 36

3.4 Recurrence in two variables. Grey boxes are the inputs 37

3.5 Lower bound for the worst case of Recursive Variable Expansion 37

ix

3.6 Example with a control structure 41

4.1 Suffix tree for mississippi . 51

4.2 A simple example . 53

4.3 Expanded expressions after applying RVE on example in Fig-
ure 4.2 . 54

4.4 Circuits for Figure 4.3. 54

4.5 Generic Expressions . 55

4.6 Pipeline circuit for repeats in generic expression as given in
Figure 4.5 . 55

4.7 Suffix tree of i*c+i*c+i*c+i*c>>c 57

4.8 Area optimization . 60

4.9 Computing kernel in Figure 4.2 using optimal repeat i*c+i*c . 61

4.10 Architecture to balance datapath with memory access 62

4.11 2 stage pipelining, when Tp = Tc ≥ Tr + Tw 62

4.12 DCT code . 63

5.1 MCSS problem . 71

5.2 Matrix, for NW g = −2 and x [i , j] = 1 when S [i] = T [j]
otherwise −1. Elements in bold show the traceback. 72

5.3 LCS . 73

5.4 Partially RVE expanded recursion trees 75

5.5 MCSS vector . 79

5.6 Fibonacci vector . 79

5.7 Systolic array for MCSS . 79

5.8 NW matrix for B = 2 that shows the elements from which
F (i − i

′
, j − j

′
) are computed. The shaded square represents

already known values. 80

x

5.9 Sequence of fill of the F (i , j) scoring matrix of Equation 5.9,
starting from the top left light shaded square numbered 1 (rep-
resent the time instance to compute) and moving diagonally
down as shown by trailing numbers. All the squares with the
same number can be executed in parallel. Antidiagonal lines
show the dataflow. 80

5.10 Systolic array . 81

5.11 matrix to show elements to be found 82

5.12 Example showing the traceback for NW Algorithm after RVE
is applied with b=2 . 83

5.13 Circuits for each element in dataflow 83

5.14 Circuits for each element in RVENP, bold lines define the crit-
ical path . 84

5.15 Circuits for each element in RVEP, , bold lines define the crit-
ical path . 85

5.16 Graph to show speedup/ area-overhead w.r.t. systolic dataflow 87

6.1 Matrix for an example of SW algorithm, when a = −2 and
x(i , j) = +2 when S[i]=T[j] otherwise −1. Elements in the
traceback are shown in bold. 95

6.2 Data dependence graph for Equation 6.1 and 6.2 (different
shades of gray in circles show the elements which can be exe-
cuted in parallel). 97

6.3 Reduced graphs . 100

6.4 Clipping error . 101

6.5 Graph to show intermediate vertex 102

6.6 Patch for clipping. The intermediate vertices with +ve out-
going edges are shown by large black circles. The paths that
need to be checked for clipping are shown by bold lines 104

6.7 F [i , j] computation in a block for SW with linear gap penalties 106

6.8 Filling the whole table . 107

6.9 Graph to show the speedup/area-overhead w.r.t dataflow for SW 110

xi

7.1 Row to store the optimal values for B = 2. Blocks at the top
show the hardware to be used in each column. Block (u, v)
specifies that v block circuit is used in u cycle to compute the
optimal value. 116

7.2 Scoring matrix and its corresponding directon matrix 117

7.3 Finding max. for the block of 2× 2 119

7.4 Computation block and the sequence to compute it 120

7.5 Classification of BRAM according to the way to fill the direc-
tion matrix of 8× 12, with B = 2 and b = 4 122

7.6 Elements stored in BRAM 122

7.7 Classification of BRAM according to the direction vectors
among the neighboring blocks, Region I: i < r ; Region II:
i = r and Region III: i > r , here r = 4 123

7.8 BRAM Address translation 124

xii

List of Algorithms

3.1 Counting exponential leaves 39
7.1 Pseudo-code to generate the direction vector for an element (i , j) 121
7.2 Pseudo-code for traceback 124

xiii

List of Acronyms and Symbols

ASIC Application Specific Integrated Circuit
DWARV DelftWorkbench Automated Reconfigurable VHDL Generator
DCT Discrete Cosine Transform
DP Dynamic Programming
FIR Finite Impulse Response filter
FPGA Field Programmable Gate Arrays
GPP General Purpose Processor
HDL Hardware Description Language
HLL High Level Language
HPC High Performance Computing
ISDG Iteration Space Dependence Graph
LCS Longest Common Subsequence problem
MCSS Maximum Contiguous Subsequence Sum problem
MM Matrix Multiply
NW Needleman-Wunsch algorithm
PE Processing Element
RVE Recursive Variable Expansion
RVENP Recursive Variable Expansion with No Precomputation
RVEP Recursive Variable Expansion with Precomputation
SW Smith-Waterman algorithm
VHDL Very High Scale Integrated Circuits Hardware

Description Language

xv

1
Introduction

THERE are many computer applications from various fields whose compu-
tational demands exceed conventional processor’s capability. A few ex-

amples include applications in the domain of financial analytics, bioinformat-
ics, data mining, medical imaging and scientific computations. Even though
all these applications have different program requirements, performance is a
common objective.

Over last few years, we have seen a shift towards heterogeneous systems for
high performance computing (HPC). In heterogeneous systems, a general pur-
pose processor is augmented with application specific hardware or processors.
This heterogeneous system of processors can be on multiple boards or one
board connected with high bandwidth interconnections or can be on a sin-
gle chip. The application specific hardware gives better performance/area and
performance/power for specific applications as compared to a homogeneous
system of processors, therefore overall, heterogeneous systems reduce the area
and power requirements. The application specific hardware can be an FPGA,
GPU, Cell, ASIC or some other application specific processor. Convey HC-
1ex and Tianhe 1A are some of the latest examples of such systems, which use
FPGAs and GPUs respectively as co-processors.

Recently, FPGAs have also taken the interest of the HPC community. In this
dissertation, we are considering reconfigurable computing based on field pro-
grammable gate arrays (FPGAs) as co-processors. FPGAs consist of logic
and memory blocks, interconnected through a programmable network. The
logic block is a programmable device, which holds the configuration of the
FPGA. A programmer can make the FPGA application specific by changing
its configuration. An FPGA can be reconfigured an unlimited number of times.
The computations are implemented spatially, computing in parallel millions of
operations across the silicon chip. Moreover, logic and memory blocks can

1

2 CHAPTER 1. INTRODUCTION

be arranged into a deep pipeline to exploit pipeline parallelism. Even though
FPGAs operate at a lower frequency than the GPPs, they usually outperform
GPPs in many applications due to the higher degree of parallelism they can
exploit.

However, it is hard for many software-oriented programmers in HPC commu-
nity to program FPGAs. They are usually proficient with high level languages
(HLL), whereas FPGAs require deep hardware knowledge and the ability to
program using a hardware description language (HDL). Moreover, they are
also required to extract parallelism for a specific kernel, which is usually writ-
ten for a single processor.There exist some advanced compiler tools such as
the hArtes toolchain [2] that provide substantial (semi) automatic support for
the entire mapping process. One of the components of this toolchain is the
DWARV hardware compiler that generates synthesizable VHDL from C-code.

In this dissertation, we propose a transformation called Recursive Variable
Expansion (RVE) which can automatically expose parallelism from the code
more than the conventional techniques. The resulting parallelized code can
be mapped on to FPGA for increased performance. We have also applied our
technique to a class of optimization problems which are solved by dynamic
programming technique. RVE should be seen as part of the DWARV hardware
compiler that can generate highly optimized VHDL for a specific set of loops.

In the next section, we present a motivational example that describes our tech-
nique. In Section 1.2, we present the type and conditions of the problems on
which our solutions can be applied. In Section 1.3, we present the contributions
made in the dissertation. Finally in Section 1.4, we describe the organization
of each chapter of the dissertation.

1.1 Motivational Example

Figure 1.1a depicts a simple real world example of a 4-tap FIR filter. We
would like to extract maximum parallelism to get the result in minimum time.
Loop unrolling is a widely used transformation in reconfigurable computing
to extract the parallelism [27]. When the inner loop is fully unrolled and all
the statements are scheduled with respect to dependences, we get the modified
code as shown in Figure 1.1b and the scheduled data flow graph (DFG) as
shown in Figure 1.1e. The adders are chained, due to data dependences of the
statements.

When applying RVE, we can transform the code to remove the dependences

1.1. MOTIVATIONAL EXAMPLE 3

for i = 0 to n

 d[i]= 0

 for j = 0 to 3

 d[i]=d[i]+s[i+j]x c[j]

 end for

end for

(a) 4-tap FIR filter source code

for i = 0 to n

S1 d[i]= 0

S2 d[i]=d[i]+s[i+0]x c[0]

S3 d[i]=d[i]+s[i+1]x c[1]

S4 d[i]=d[i]+s[i+2]x c[2]

S5 d[i]=d[i]+s[i+3]x c[3]

end for

(b) FIR filter code after inner
loop fully unrolled

S1 d[i]= 0

S2 d[i]=s[i+0]x c[0]

S3 d[i]=s[i+0]x c[0]+s[i+1]x c[1]

S4 d[i]=s[i+0]x c[0]+s[i+1]x c[1]+s[i+2]x c[2]

S5 d[i]=s[i+0]x c[0]+s[i+1]x c[1]+s[i+2]x c[2]+s[i+3]x c[3]

(c) RVE is applied to unrolled code

for i = 0 to n

S5 d[i]=s[i+0]x c[0]+s[i+1]x c[1]+s[i+2]x c[2]+s[i+3]x c[3]

end for

(d) FIR filter code after RVE

(e) DFG, when fully unrolled (f) DFG, when RVE is applied

Figure 1.1: Motivational example

4 CHAPTER 1. INTRODUCTION

resulting in a shorter tree depth of the dataflow graph. In Figure 1.1c, we sub-
stitute the values of the dependent variable in the unrolled code as given in
Figure 1.1b. Statement S5 in Figure 1.1c computes d [i] and is free of depen-
dences. We call this transformation as Recursive Variable Expansion. The
transformed FIR code after applying RVE is shown in Figure 1.1d. The data
flow graph for the resulting code after applying RVE is shown in Figure 1.1f,
which shows that FIR can be computed more efficiently by applying RVE in-
stead of using unrolling only.

1.2 Applicability Conditions

When RVE is applied to an arithmetic expression, the number of terms can
grow. The resulting expression can even grow to exponential number of terms.
The growth of expression changes the way RVE is applied. Therefore, we
distinguish between two types of the expressions, based on the exponential
and polynomial growth of the terms when RVE is applied to them.

In order to be able to apply RVE to the polynomially expanding problems, a
number of conditions needs to be satisfied, which are as follows:

1. The bounds of the loops must be known at the compile time.

2. The indexing of the variables should be a function of surrounding loop
iterators and/or constants.

3. If the kernel produces more than one output variables, then the length of
the generic expression for those output variables should be equal.

However, when we deal with dynamic programming problems that expand
exponentially when RVE is applied, the following constraint needs to be re-
spected.

1. In each recursive expression, there is a constant number of recurrence
terms and the distance vector between the current and all the dependent
recurrence terms remains the same.

1.3 Contributions

This dissertation makes the following contributions.

1.3. CONTRIBUTIONS 5

• It describes a transformation called RVE for a certain class of problems
that removes all the data dependences. Hence, increased parallelism can
be achieved compared to existing loop transformations. We obtained
speedups up to 77x as compared to GPP, when area is not the constraint.
(Chapter 3)

• For polynomially expanding problems, we propose an automatic
pipeline design algorithm which chooses an optimal pipeline size keep-
ing in view the resources like area and memory bandwidth available on
the FPGA. We apply the algorithm on a kernel from real world applica-
tions showing a comparable performance to the hand optimized imple-
mentation at the cost of more area. (Chapter 4)

• For exponentially expanding problems, we propose a generic framework
for dynamic programming problems as well as two variants of the RVE
algorithm, named RVE with no pre-computation (RVENP) and RVE
with pre-computation (RVEP). When applied to various dynamic pro-
gramming problems, we demonstrate that they outperform any known
technique. We obtained speedups of up to 3.01x at the cost of 1.68x
area overhead. (Chapter 5)

• The RVEP and RVENP solutions presented in Chapter 5 are limited to
dynamic programming problems that do not clip values. We have also
extended our RVE solution to the DP problems which clip the values.
(Chapter 6)

• We present an extensive case-study by applying RVEP extended for clip-
ping to the Smith-Waterman (SW) algorithm, which is one of the most
widely used algorithm in bioinformatics. We show that our implemen-
tation gives 2.29x speedup at the cost of 2.82x more area as compared
to the dataflow implementation, which is the highest speedup reported
in the literature1. (Chapter 6)

• We propose a parallel FPGA design for RVEP Smith-Waterman trace-
back implementation, that can compute the alignment after performing
the matrix fill for the whole database once. Moreover, it addresses the
memory bandwidth issue that arises after changing the traceback from
serial to parallel. We show that our technique can reduce the memory
bandwidth requirement from 49.36 Gb/sec to 8 Kb/sec even for existing
approaches. (Chapter 7)

1to the best of our knowledge

6 CHAPTER 1. INTRODUCTION

1.4 Dissertation Organization

The dissertation is organized as follows:

One of the advantages of RVE is that it eliminates data dependences that can
occur inside loops. Chapter 2, therefore, discusses the different existing loop
transformations and how they address some of these dependences and what
issues are still unsolved.

In Chapter 3, we describe a transformation called Recursive Variable Expan-
sion (RVE), which removes data dependences. Furthermore, we investigate
the maximum parallelism that can be achieved, when area is not the constraint.
For that reason, we have implemented four widely used kernels on FPGA and
have shown its performance gain over GPP based execution.

Chapter 4 presents the extension for polynomially expanding expressions and
allows an upper bound to be placed on the available area on which the RVE
expression will be mapped.

Chapter 5 deals with the dynamic programming (DP) problems. We present
a generic algorithm to apply RVE to DP problems, that can generate highly
efficient circuits. We devise two variants of our technique namely RVENP and
RVEP.

Smith-Waterman (SW) is a widely used bioinformatics algorithm. In chapter 6,
we apply RVENP and RVEP to Smith-Waterman. It also addresses the clipping
to zero problem and devise a general algorithm to avoid this.

In Chapter 7, we propose a parallel traceback design for SW on FPGA, which
can give the alignment immediately after performing the matrix fill.

Finally, we conclude our dissertation in Chapter 8 by summarizing the chapters
presented and emphasizing the contributions made in this research. We also
discuss future research directions.

2
Data Dependences and Loop

Transformations

LOOPS are an important source of performance improvement. The highest
payoff is achieved by parallelizing the various iterations of the loop nest,

which can be assigned to different processors. So, a major speedup can be
obtained through loop parallelization. However, a loop in a program is not
always parallelizable due to data dependences. Transformations are needed to
make it work and this is done either manually or automatically.

The selection of suitable parallelization techniques among many available
techniques depends upon the type of loop nests and dependency relationships
encountered. Usually there are more than one loop level optimization tech-
nique that can be applied to the code. Finding the right combination and
schedule of optimisation is a challenge as different choices will lead to dif-
ferent outcomes. There is also a need to verify that the transformation does not
change the meaning of the program, which is called the legal transformation.
As the proposed transformation Recursive Variable Expansion (RVE) elimi-
nates data dependences, we dedicate this chapter to an in-depth discussion of
data dependences and loop transformations. We first present the different de-
pendences and then show how different transformations can change the order
of execution to avoid dependences.

2.1 Dependence Relation

A dependence relation governs the sequence of data access to a memory. Given
a program, if there is a constraint on the execution order of any two statements,
then there is a dependence relationship between these statements. Any order-
ing based transformation that does not modify the dependence relationship

7

8 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

among statements is guaranteed to run the program correctly. There are two
types of dependences at a higher level. First is due to a dependence arising
from the control flow. It is called the control dependence. For example :

S1 if (x<7) then
S2 y=0
S3 end if

We cannot interchange S1and S2 in the program because the execution of S2
depends upon S1. So, there is a control dependence between S1 and S2, written
as S1δcS2 .

The other type is designed to ensure the correct order of data definition and
data use. This is called data dependence. For example,

S1 a = 4
S2 b = 3
S3 c = 2 * a * b

Statement S3 depends on both S1 and S2, as the variables used in S3 are defined
in S1 and S2. So S3 must come after S1 and S2 in the transformed program,
however, the order of S1 and S2 does not matter, so S1, S2, S3 is the same as
S2, S1, S3 and they both produce the same result.

Data dependence is further divided into three types of dependences given be-
low.

True dependence

A statement computes and stores a value in a variable and some later state-
ment/statements use the variable. For example

S1 a = 10
S2 b = c + a

So S1 must be executed before S2, as the value written in S1 is used in S2. This
type of dependence is also called flow dependence and is denoted by S1δS2.

Antidependence

A statement reads a value stored in a variable and some later statement com-
putes a new value for the same variable. For example:

2.1. DEPENDENCE RELATION 9

S1 S2 S3

Figure 2.1: Dependence graph

S1 b = a + 10
S2 a = c + 5

Here again, S1 and S2 cannot be interchanged in the transformation, as after
interchange b will get a wrong value. Antidependence in the above example
is denoted by S1δ

−1S2. Antidependence is not restricted like the true depen-
dence. One can avoid this restriction by using two memory variables, like a1
in S1 and a2 in S2. Now, even if the statement S2 is executed before S1, the old
value is still in a2.

Output dependence

Both the statements write the same variable. For example

S1 a = 10
S2
S3 a = b

S1 and S3 cannot be interchanged in the transformation as if there is another
statement using the variable a after these definitions, then the variable a will
get the wrong value in it. Output dependence in the above example is denoted
by S1δ

oS2.

2.1.1 Representing the Dependence Relations

Like other relations, the dependence relations between different statements can
be represented by a graph [128]. It is not only a convenient way to understand
the dependence relationship, but there are also many well known graph algo-
rithms which can help to analyze the structure more closely. In a graph, each
statement is represented by a node and the relationship between two statements
is represented by a directed edge from a node called source to a node called
sink. There can be more than one type of dependence between the same pair
of vertices, therefore, the graph is essentially a multigraph.

10 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

S1 a = b + 10
S2 c = a * 5
S3 a = c/2

The following dependences in the above example are also represented in the
dependence graph in Figure 2.1.

S1δS2, S1δoS3, S2δS3, S2δ−1S3

2.1.2 Loop Dependence Analysis

When there is a loop, then each statement in a loop is executed many times.
There can be not only a dependence relation between the different statements
in the same iteration, but also a dependence relation between the same/different
statement(s) in the different iterations. For example

for i = 1 to n
S1 a[i] = a[i-1] + c
S2 b[i] = a[i] * a[i-1]
end for

In the above example, when i = k , S2 reads a[k], which is computed in the
last statement S1 in the same iteration, this is called the loop independent de-
pendence [60]. Whereas, in the same iteration i = k , S1 reads the value of
a[k − 1] computed by the same statement S1 in iteration i = k − 1. Similarly,
in iteration i = k , S2 reads a[k − 1] computed by the statement S1 in iteration
i = k − 1. The latter two are called the loop carried dependences [60].

In the example above, i is called the loop index, here its lower bound is 1 and
its upper bound is n. Generally we have loops like this:

for i = L to U step S
...

end for

In the example given above, the loop index i has lower bound L and the upper
bound is U and the step is S . In this case, the loop index does not indicate
which iteration is it executing. When i = L, it does not mean that the loop is
in the Lth iteration, as it is its 1st iteration. So, we have an iteration number
which defines the iteration the loop is in. The compiler optimization techniques

2.1. DEPENDENCE RELATION 11

for i1 = l1 to u1
for i2 = l2 to u2
...
for in = ln to un
a[f1(i1, ... , in), ... , fm(i1, ... , in)] = ...
... = a[g1(i1, ... , in), ... , gm(i1, ... , in)]

end for
...
end for

end for

Figure 2.2: Perfect nest with n loops

usually require that the loop index should run from 1 to some upper bound in
steps of 1. This can be done using loop normalization [60]. For this chapter,
we implicitly consider unit loop step, otherwise it will be mentioned explicitly.

Figure 2.2 shows the generalized perfect loop nest of n loops, in which array
a of m dimensions is read and written in different statements. fi and gi are
the functions on the n dimensional loop index resulting in the i th dimension
of a. This generalized loop may read and write the same locations in different
iterations giving rise to a different type of dependence.

A unique iteration in a nested loop is characterized by a vector i =
(i1, i2, ... , in) of n dimensions, called the iteration/index vector [11, 60]. The
leftmost loop index represents the outermost loop. Each loop index is bounded
by the corresponding lower and upper limits for that index.

The execution order is important for the dependence, as one needs to know
which iteration is executed before some other iteration. Let i be a vector, ik
is the kth element of i , and i [1 : k] be the leftmost k elements of i . We say
that iteration i is executed before the iteration j , denoted by i ≺ j and formally
defined as [11].

i ≺ j iff ∃k : (ik < jk ∧ ∀m < k : im = jm) (2.1)

It means that an iteration vector i is executed before another iteration vector j
if and only if any statement executed in the iteration described by the iteration
vector i is executed before any statement executed in the iteration described by
the iteration vector j .

12 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

for I = 1 to n

 for J = 1 to n

 a[I+1,J-1]=a[I,J]+a[I,J+1]

 end for

end for

(a)

for I = 1 to n

 for J = 1 to n+1

 a[J]=a[J]+a[J-1]+a[J+1]

 end for

end for

(b)

Figure 2.3: Loop carried dependences examples

Formally, we say that there is a loop carried dependence from the iteration i
to the iteration j , if both of them access the same memory location in which
one of them is writing it, and i ≺ j ∧ fk(i) = gk(j), where 1 ≤ k ≤ n [11].
It means that there is a dependence between two different iterations when the
values of subscripts are the same in these iterations. If there are no two such
iterations, then the memory access is independent across all the iterations.

The loop carried dependence examples are given in Figure 2.3. Consider the
iteration i = [2, 3] in Figure 2.3a when a[3, 2] is written, the same value is
read in later iterations j = [3, 1] and k = [3, 2]. It means that there is a true
dependence from iteration i to iteration j and k . We represent the dependence
between these iterations as i → j and i → k .

2.1.3 Iteration Space

The iteration space is a good representation for understanding the way loops
are executed and which loop carried dependences exist among the different
iterations [128]. An iteration space of n-nested do loops is represented by
an n-dimensional discrete Cartesian space. The iteration space of the loop
nest is the set of all possible values of i = (i1, i2, ... , in), i.e. the set of all
points in n dimensions is constrained by their respective limits, described for-
mally as {i ∈ Zn : lx ≤ ix ≤ ux , x = 1, 2, ... , n}. Each do-loop is represented
by a unique axis in the iteration space. For example, for the code shown in
Figure 2.3a, we have two loops given by loop indices I and J , so we have a
2-dimensional discrete Cartesian space shown in Figure 2.4a.

The space is composed of discrete points which represent the possible iteration
vectors. The dotted arrow lines show the order in which the iterations will be
executed. The dependence between different iterations is shown by the solid
arrow lines. This type of graph is called the Iteration Space Dependence Graph

2.1. DEPENDENCE RELATION 13

1 2 3 4

1

2

3

I

J

i

j

k

4

(1
,-2

)

(1,-1)

(a) Iteration space dependence graph for example in
Figure 2.3a with n = 4

1 2 3

1

2

3

I

J

i

j

k

4

(1,0)

(1,-1)

(0
,1

)

(b) Iteration space dependence graph for
example in Figure 2.3b with n = 3

Figure 2.4: Iteration Space dependence graphs

(ISDG) [128]. In an ISDG, a dependence arrow is drawn between the source
and the sink iteration vectors. Figure 2.4a shows the ISDG for the example
shown in Figure 2.3a.

An ISDG and the iteration space are helpful to understand the dependence rela-
tionship in the loops and especially when the loop transformations are applied.

2.1.4 Distance Vectors

It is sometime beneficial to have an idea about the distance between the source
and the sink of a dependence in the iteration space. If we have i → j , then
the distance vector d(i , j) of length n is defined such that d(i , j)k = (jk − ik),
where 1 ≤ k ≤ n [60, 68, 86]. In the example given in Figure 2.3a, we have
a distance vector for the same statement due to i → j is (1,−2) and due to
i → k is (1,−1), so, we have the distance vectors {(1,−2), (1,−1)}.
Given a distance vector d(i , j), showing the distance between the source i
and the sink j , the first non-zero element must be positive. The first non-zero
negative element implies that the sink occurs before the source, which is not
possible.

Another example given in Figure 2.3b has the distance vectors
{(0, 1), (1, 0), (1,−1)}. The iteration space dependence graph is given

14 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

in Figure 2.4b.

2.1.5 Direction Vectors

Sometimes it is not possible to find the dependence distance between the it-
erations at compile time. However, there is enough information to get an
idea about the dependences between the iterations by using the direction vec-
tors [128, 129].

Given i → j , we define the direction vector D(i , j) as a vector of length n such
that

D(ik , jk) =

< if ik < jk

= if ik = jk

> if ik > jk

where 1 ≤ k ≤ n (2.2)

The direction vectors for example in Figure 2.3a are {(<,>), (<,>)} and for
example in Figure 2.3b are {(=,<), (<, =), (<,>)}. Given i → j , another
way to define the direction vector D(i , j) as a vector of length n is as follows
[60]:

D(ik , jk) =

< if d(ik , jk) > 0

= if d(ik , jk) = 0

> if d(ik , jk) < 0

where 1 ≤ k ≤ n (2.3)

For a loop carried dependence, there is an important characteristic called the
level of a loop carried dependence, defined as the index of the leftmost non-
“=” of D(i , j). It means that it is the index of the outermost loop index that
varies between the source and the sink. The outermost loop is counted as 1.

for I = 1 to n
for J = 2 to n-1

a[I,J] = a[I,J-1]
end for

end for

The level of the dependence for the above example is 2, as D(i , j) is (=,<).

2.2. LOOP TRANSFORMATIONS 15

for I = 1 to n

 for J = 1 to n

 C[I,J]=A[I,J]+B[I,J]

 end for

end for

(a) Both loops are parallelizable

for I = 1 to n

 for J = 1 to n

 A[I,J]=A[I,J-1]+A[I,J-2]

 end for

end for

(b) Outer loop is parallelizable

for I = 1 to n

 for J = 1 to n

 A[I,J]=A[I-1,J]+A[I-1,J+1]

 end for

end for

(c) Inner loop is parallelizable

Figure 2.5: Parallelizable loops

2.2 Loop Transformations

The maximum gain in performance is achieved from the part of the program
which takes the maximum time of the program - iterative loops. The loops are
an important source of the performance improvement. The loop transforma-
tions change the order of execution of statements in the loops, so that more
performance can be achieved.

The benefits and the legality are the two things that need to be discussed for
every loop transformation. The benefits of the loop transformation cannot be
evaluated without the knowledge of the underlying hardware architecture. A
loop is transformed only if it is legal. A loop transformation is called legal if
the transformation preserves the dependence relationship. Another way to say
the same thing is that the transformation is legal if the transformed dependence
vector is lexicographically positive as described in Section 2.1.4.

There are many loop transformations from parallelizing software compilers,
which are commonly used in the compilers for the reconfigurable systems. In
this section, we will briefly discuss the loop transformations which are the
most significant to enhance the performance of the reconfigurable systems.

2.2.1 Parallelizable Loops

In case of the vector architecture machine, we always look for loops which
are parallelizable. For example, the loop given in Figure 2.5a can be easily
recognized as suitable for the vector machine, since it does not have any loop

16 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

for I = 1 to n

 for J = 2 to n

 A[I,J]=A[I,J-1]+C

 end for

end for

(a) Before loop interchange

for J = 1 to n

 for I = 2 to n

 A[I,J]=A[I,J-1]+C

 end for

end for

(b) After loop interchange

1 2 3

1

2

3

I

J

(0
,1

)
(c) ISDG for Figure 2.6a

1 2 3

1

2

3

I

J

(1
,0

)

(d) ISDG for Figure 2.6b

Figure 2.6: Code and ISDG for Loop Interchange

carried dependences and both the loops are parallelizable. Therefore to check
whether a loop is parallelizable, we check whether that loop induces loop car-
ried dependences or not. Formally, we define the k-th loop is parallelizable in
distance vector V = (v1, ... , vk , ... , vn) [11], when

∀V , vk = 0 ∨ ∃l < k : vl > 0 (2.4)

The example in Figure 2.5a has the distance vectors {(0, 0), (0, 0)}, which also
means that both loops are parallelizable. Now we look at the two other exam-
ples which have loop carried dependences, but which can still be parallelized.
The example in Figure 2.5b is outer loop parallelizable. Its distance vectors
are {(0, 1), (0, 2)}, its outer loop has zero in both the vectors. The example
in Figure 2.5c has a distance vector {(1, 0), (1,−1)}. The inner loop is paral-
lelizable, since its distance is zero in the first vector. Although in the second
vector the distance is−1, but the distance of the outer loop is greater than zero.

2.2. LOOP TRANSFORMATIONS 17

for I = 1 to n

 for J = 1 to n

 A[I+1,J]=A[I,J+1]+C

 end for

end for

(a) Before loop interchange

for J = 1 to n

 for I = 1 to n

 A[I+1,J]=A[I,J+1]+C

 end for

end for

(b) After loop interchange

1 2 3

1

2

3

I

J

(1,-1)

(c) ISDG for Figure 2.7a

1 2 3

1

2

3

I

J
(-1,1)

(d) ISDG for Figure 2.7b

Figure 2.7: Illegal loop interchange

2.2.2 Loop Interchange

One of the most useful transformations to enhance the performance is the
loop interchange, in which two loops are interchanged in a perfect loop nest
[8, 125, 128]. Generally a compiler interchanges a sequential inner loop with
an outer loop which carries no loop carried dependences. It has many benefits,
such as enabling vectorization, improving vectorization and improving data
locality. Figure 2.6a shows an example in which the inner loop cannot be par-
allelized/vectorized due to the loop carried dependency. The distance vector
for the example in Figure 2.6a is {(0, 1)}. After loop interchange in Figure
2.6b, the distance vector becomes {(1, 0)}, in which the inner loop does not
have any loop carried dependency and it can be parallelized. The ISDG after
loop interchange in Figure 2.6d shows that dependence vector is lexicographi-
cally positive and hence legal.

It is not always possible to legally apply loop interchange, as after loop in-
terchange distance vector can violate the legality definition. For example, the
code in Figure 2.7a is legal, but when the loop interchange is applied (as shown
in Figure 2.7b), it is no more legal and it is easily seen in the ISDG for the code

18 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

for i = 1 to n

 for j = 1 to m

 A[i,j]=A[i-1,j]+A[I,j-1]

 end for

end for

(a) Before loop skewing

for I = 1 to n+m-1

 for J = max(1,I-n+1) to min(m,I)

 A[I-J+1,J]=A[I-J,J]+A[I-J+1,J-1]

 end for

end for

(b) After loop skewing

1 2 3

1

2

3

i

j

4 5

4

1 2 3 4 5

6

7

8

(c) ISDG for code in Figure 2.8a

1 2 3

1

2

3

I

J

4 5

4

6 7 8

(d) ISDG for code in Figure 2.8b

Figure 2.8: Loop Skewing

after the loop interchange in Figure 2.6d, where the distance vector becomes
{(−1, 1)}, and is not lexicographically positive. Formally, the two loops i and
j in a perfect loop nest of m loops are legal to interchange, when each dis-
tance vector d = (d1, · · · , di , · · · , dj , · · · , dm) in the original loop nest is lex-
icographically positive after conversion to d ′ = (d1, · · · , dj , · · · , di , · · · , dm)
[8, 11, 127].

2.2.3 Loop Skewing

Loop skewing is a quite useful and widely used transformation for parallel
processing and is combined with loop interchange [86, 126], which is used for
the wavefront or hyperplane computation [76]. Lets look at a simple example
shown in Figure 2.8a. Its ISDG is shown in Figure 2.8c and its dependence vec-
tors are {(1, 0), (0, 1)}, and none of the loops are parallelizable as described
in Section 2.2.1. However, if we change the way the elements are traversed
to the sequence as followed by the diagonal lines shown in Figure 2.8c, then
all the elements along each diagonal line can be computed in parallel as they
are independent of each other. Similarly, all the elements in the next diagonal
can be computed in parallel and so on. This diagonal computation is called
the wavefront computation. The iteration space is changed from a rectangle to
a parallelogram, whereas the memory references remain the same to achieve

2.2. LOOP TRANSFORMATIONS 19

for I = 1 to n

 for J = n to 1 step -1

 A[I+1,J]=A[I,J+1]+C

 end for

end for

(a) loop reversal for code in Figure
2.7a

for J = 1 to n

 for I = 1 to n

 A[I+1,J]=A[I,J+1]+C

 end for

end for

(b) after loop interchange for code in
Figure 2.9a

1 2 3

1

2

3

I

J
(1,1)

(c) ISDG for code in Figure 2.9a

1 2 3

1

2

3

I

J

(1,1)

(d) ISDG for code in Figure 2.9b

Figure 2.9: Typical use of loop reversal

loop skewing. The code after the loop skewing is shown in Figure 2.8b, and its
iteration space and the dependence is shown in Figure 2.8d.

For a two dimensional space as given by the code in Figure 2.8a, the iteration
space is redefined by introducing two new variables I and J . Where I and J
are defined as:

I = i + j − li (2.5)

J = j (2.6)

where li is the lower bound for the outer loop i in Figure 2.8a. Similarly,
bounds for the outer and inner loops are modified accordingly as shown by
code in Figure 2.8b. The way memory is referenced, is not changed in the
transformed code and, therefore, iteration variables are written in terms of a
new iteration space as given by Equations 2.5 and 2.6.

20 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

2.2.4 Loop Reversal

Loop reversal reverses the direction of the loop iteration on which it is ap-
plied [122]. It is often used with the other loop transformations like the loop
interchange, loop skewing and loop fusion [13, 128]. It can also improve the
cache performance. The loop reversal of some loop i negates the i th entry of
each distance vector d associated with the loop, similarly, the corresponding
entry in all the direction vectors is reversed. The loop reversal is legal if each
reversed distance vector d ′ is lexicographically positive. Lets look at how the
example in Figure 2.7a can be made suitable for loop interchange after loop re-
versal. The code in Figure 2.7a has distance vector {(1,−1)} and as described
earlier in Section 2.2.2, the code is not suitable for the loop interchange. After
loop reversal shown in Figure 2.9a, the distance vector is changed to {(1, 1)},
which is perfect for the loop interchange as shown in Figure 2.9b. It is also
used to enable loop fusion when the two loops have different directions.

2.2.5 Strip Mining

Strip mining or loop sectioning is often used by vectorizing compilers to divide
a single loop into two nested loops [6, 9, 81]. The outer loop iterates between
the consecutive strips and the inner loop iterates each iteration within a strip.
The maximum number of iterations of the inner loop is equal to the maximum
vector length of the machine. Thus a loop in Figure 2.10a is transformed to
two nested loops in Figure 2.10b, where s is the size of the strip. It is used for
SIMD compilation [124] as well as for improving the memory performance.
It is always legal to apply the strip mining, however it adds a dimension to the
iteration space as it splits a loop into two loops as shown in Figures 2.10c and
2.10d.

2.2.6 Loop Tiling

Strip mining can also be applied to multiple loops, called loop blocking. When
block loops are interchanged and moved to the outer position, it is called loop
tiling. It is primarily used to improve the memory performance [6, 42, 75]. It
partitions the iteration space into tiles/blocks, so that the memory access in
the loop remains in the cache. The tile size can also be chosen to suit the
available vector operations in a vector machine. The program in Figure 2.11a
with distance vector {(1, 0)} is first stripmined to the code in Figure 2.11b with
the distance vector {(0, 1, 0, 0)} and then the loops are interchanged to Figure

2.2. LOOP TRANSFORMATIONS 21

for i = 1 to n

 A[i]=B[i-1]+C

end for

(a) code before strip mining

for is = 1 to n step s

 for i = is to min(n,is+s-1)

 A[i]=B[i-1]+C

 end for

end for

(b) code after strip mining

i

1 2 3 4 5 6 7 8 9 10 11 12 13

(c) ISDG before strip mining with n = 13

1 2 3

1

2

3

is

i

4

4

(d) ISDG after strip mining with n = 13 and s =
4

Figure 2.10: Strip mining

22 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

for i = 1 to n

 for j = 1 to m

 A[i,j]=A[i-1,j]+C

 end for

end for

(a) original loop

for it = 1 to n step tn
 for i = it to min(n,it+tn)

 for jt = 1 to m step tm

 for j = jt to min(m,jt+tm)

 A[i,j]=A[i-1,j]+C

 end for

 end for

 end for

end for

(b) Loop blocking: strip mining the two loops

for it = 1 to n step tn
 for jt = 1 to m step tm

 for i = it to min(n,it+tn)

 for j = jt to min(m,jt+tm)

 A[i,j]=A[i-1,j]+C

 end for

 end for

 end for

end for

(c) Loop tiling: loop interchange of the code in Figure

i

j

n

m

tn

t m

(d) Iteration Space

Figure 2.11: Loop Tiling

2.2. LOOP TRANSFORMATIONS 23

for i = 1 to n

 for j = 1 to m

S1 A[i,j]=B[i,j-1]+5

S2 B[I,j]=C[I,j-1]*2

S3 C[I,j]=1/B[I,j]

S4 D[I,j]=C[I,j-1]-1

 end for

end for

(a) original code

for i = 1 to n

 for j = 1 to m

S2 B[I,j]=C[I,j-1]*2

S3 C[I,j]=1/B[I,j]

 end for

end for

for i = 1 to n

 for j = 1 to m

S1 A[i,j]=B[i,j-1]+5

 end for

end for

for i = 1 to n

 for j = 1 to m

S4 D[I,j]=C[I,j-1]-1

 end for

end for

(b) After loop distribution

S1 S2 S3 S4

(0,1)

(0,0)

(0,1)

(0,1)

(c) Dependence graph for code in Figure 2.12a

S1

(0
,1

) (0,1
)

S2-3

S4

(d) Dependence graph for
code in Figure 2.12b

Figure 2.12: Loop distribution

2.11c with distance vector {0, 0, 1, 0} to complete loop tiling. tn × tm defines
the tile size. The outer two loops in Figure 2.11c step the tiles and the inner
two loop steps the elements in each tile. Loop tiling is legal if loop interchange
is legal.

2.2.7 Loop Distribution

Loop distribution or loop fission splits a single loop into more than one loop,
showing the same iteration space as the original [67,86]. Each loop contains a
subset of the statements of the original loop. It is used to improve the memory
performance and also used to remove loop carried dependences [83]. We look
at the example in Figure 2.12a, its dependence graph is given by Figure 2.12c.
There is a loop carried dependency at loop j . Strongly connected components

24 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

for i = 1 to n

S1 A[i] = B[i] + 1

end for

for i = 1 to n

S2 C[i] = A[i] / 2

end for

for i = 1 to n

S3 D[i] = 1 / C[i+1]

end for

(a) original code

for i = 1 to n

S1 A[i] = B[i] + 1

S2 C[i] = A[i] / 2

S3 D[i] = 1 / C[i+1]

end for

(b) Illegal loop fusion

for i = 1 to n

S1 A[i] = B[i] + 1

S2 C[i] = A[i] / 2

end for

for i = 1 to n

S3 D[i] = 1 / C[i+1]

end for

(c) Legal loop fusion

Figure 2.13: Loop Fusion

are found in the dependence graph, then the statements in a strongly connected
component are kept in the split [67]. The order of execution among the dif-
ferent loops is determined by the acyclic graph among the strongly connected
components as shown in Figure 2.12d. The code is transformed as given by
Figure 2.12d, where S2 and S3 are kept in the same loop followed by the loops
containing S1 and S4. The resulting code is shown in Figure 2.12d, where the
loops containing S1 and S4 can be executed in parallel.

2.2.8 Loop Fusion

Loop fusion is the opposite of loop distribution and it merges two or more
adjacent loops with the same loop limits into one loop. When the loop limits do
not match then other loop transformations like loop peeling [11] can be applied
to match the loop limits. The fused loop can increase cache locality when all
the loops access the same memory area in the cache [11,61,83]. It is also used
with other loop transformations to improve the cache performance [82, 130].
After fusion, the larger loop bodies enable more effective scalar optimizations
such as common subexpression elimination and instruction scheduling [105].

2.2. LOOP TRANSFORMATIONS 25

The loop overhead is also decreased after the loop fusion.

Loop fusion is legal when all the dependence relations are preserved. Lets look
at the code in Figure 2.13a. In this figure, all three loops have the same limits
so they can be merged together. When, we merge all three loops, the code in
Figure 2.13b is obtained. This fusion is illegal, as the dependence relation is
not preserved. The original code has dependences S1δS2 and S2δS3, whereas,
the code after fusion has the dependences S1δS2 and the loop carried S3δ

−1S2.
The fused loop will not generate correct results as none of the values of C used
by S3 are created in S2. However, if only the first two loops are merged, then,
the dependence relation is preserved and therefore is legal as shown in Figure
2.13c [82].

2.2.9 Loop Unrolling

Loop unrolling replaces copies of the loop with u copies of the loops and then
iterates with step u. The number of copies, u, is called the unrolling factor and
the original loop is called the rolled loop. It reduces the overhead of executing
the loop and increases the chance of instruction level parallelism as it increases
the block size and the scheduler can pack more instructions. Similarly, in a
larger block there are more chances of the common-subexpression elimination
and the induction variable optimization. It also enables software pipelining
which is discussed in the next section. A simple example of loop unrolling
is shown in Figure 2.14. The underlying machine can issue one load, one
add and one add with a constant in one cycle. All instructions have a single
clock latency except the load instruction which takes two cycles. Figure 2.14b
shows the assembly code of the loop body in Figure 2.14a, which takes 4
cycles. When the loop body is unrolled 4 times and the registers are allocated
to avoid the interference, it takes 16 cycles as shown by Figure 2.14c. When
instruction scheduling is applied to the unrolled loop, it takes 7 cycles as some
independent instruction can be parallelized as shown in Figure 2.14d.

2.2.10 Software Pipelining

Most parallelism can be achieved when the loops are fully unrolled. The in-
struction scheduler then tries to optimally pack the instructions, however, this
will increase the code size. If loop is unrolled to some reasonable factor, a pat-
tern can be seen repeating itself again and again, which can be considered as a
kernel in the loop until that pattern is finished. Lets again look at the example
in Figure 2.14b . The loop is unrolled 12 times and after which instruction

26 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

for i = 1 to n

 sum=sum+a[i]

(a) original code

LD R1,0(R0)

nop

ADD R2,R2,R1

ADDI R0,R0,#4

(b) Loop body in as-
sembly language

LD R1,0(R0)

nop

ADD R2,R2,R1

ADDI R0,R0,#12

LD R4,0(R3)

nop

ADD R2,R2,R4

ADDI R3,R3,#12

LD R7,0(R6)

nop

ADD R2,R2,R7

ADDI R6,R6,#12

LD R10,0(R9)

nop

ADD R2,R2,R10

ADDI R9,R9,#12

(c) Loop body unrolled
4 times and allocate reg-
isters

LD R1,0(R0)

LD R4,0(R3)

ADD R2,R2,R1 LD R7,0(R6)

ADDI R0,R0,#12 ADD R2,R2,R4 LD R10,0(R9)

ADDI R3,R3,#12 ADD R2,R2,R7

ADDI R6,R6,#12 ADD R2,R2,R10

ADDI R9,R9,#12

(d) Loop unrolling with Instruction scheduling

Figure 2.14: Loop Unrolling

2.2. LOOP TRANSFORMATIONS 27

LD R1,0(R0)

LD R4,0(R3)

ADD R2,R2,R1 LD R7,0(R6)

ADDI R0,R0,#12 ADD R2,R2,R4 LD R10,0(R9)

ADDI R3,R3,#12 ADD R2,R2,R7 LD R1,0(R0)

ADDI R6,R6,#12 ADD R2,R2,R10 LD R4,0(R3)

ADDI R9,R9,#12 ADD R2,R2,R1 LD R7,0(R6)

ADDI R0,R0,#12 ADD R2,R2,R4 LD R10,0(R9)

ADDI R3,R3,#12 ADD R2,R2,R7 LD R1,0(R0)

ADDI R6,R6,#12 ADD R2,R2,R10 LD R4,0(R3)

ADDI R9,R9,#12 ADD R2,R2,R1 LD R7,0(R6)

…

ADDI R0,R0,#12 ADD R2,R2,R4 LD R10,0(R9)

ADDI R3,R3,#12 ADD R2,R2,R7

ADDI R6,R6,#12 ADD R2,R2,R10

ADDI R9,R9,#12

Repeating
pattern

(a) Loops unrolled and with instruction scheduling

LD R1,0(R0)

LD R4,0(R3)

ADD R2,R2,R1 LD R7,0(R6)

ADDI R0,R0,#12 ADD R2,R2,R4 LD R10,0(R9)

ADDI R3,R3,#12 ADD R2,R2,R7 LD R1,0(R0)

ADDI R6,R6,#12 ADD R2,R2,R10 LD R4,0(R3)

ADDI R9,R9,#12 ADD R2,R2,R1 LD R7,0(R6)

ADDI R0,R0,#12 ADD R2,R2,R4 LD R10,0(R9)

ADDI R3,R3,#12 ADD R2,R2,R7

ADDI R6,R6,#12 ADD R2,R2,R10

ADDI R9,R9,#12

P
ro

lo
g

K
e

rn
e
l

E
p
ilo

g

(b) Software Pipelined

Figure 2.15: Software Pipelining

28 CHAPTER 2. DATA DEPENDENCES AND LOOP TRANSFORMATIONS

scheduling is applied. We obtain the code in Figure 2.15a. A repeating pattern
can be easily identified, which is called the kernel. That code can be called in
a loop until it vanishes as shown in Figure 2.15b. The code before the kernel is
called the prolog and after the kernel is called the epilogue. This way the code
size is reduced as compared to a fully unrolled loop and the same parallelism
is achieved.

2.3 Summary and Conclusion

In this chapter, we discussed the different concepts and techniques that fo-
cus on loops as a source of performance improvement. Crucial in any loop
optimization is the notion of dependence as they contribute the main barrier
towards parallelization. First, this chapter gives an overview of the data de-
pendences. Later, it describes few loop transformations which are oftenly used
in reconfigurable systems.

3
Recursive Variable Expansion

IN this chapter, we introduce a transformation called Recursive Variable Ex-
pansion (RVE). This transformation is meant for high performance com-

puting where FPGA area is not the major concern and performance is the main
objective. In this chapter, we present the basic idea of our transformation and
how it provides high degree of parallelism by removing data dependences.
This is achieved by backward substituting for those variables which are creat-
ing dependences. This chapter highlights the acceleration that can be achieved
when area is not a constraint. Furthermore, we distinguish between two types
of expressions, namely polynomially and exponentially expanding.

More specifically, the contribution of this chapter is:

• A loop transformation technique called Recursive Variable Expansion
(RVE), which removes all the data dependences from the program; then,
the parallelism is only bounded by the amount of resources one has. In
the suggested transformation, we have assumed that the area available
on the FPGA is infinite. In contrast to prevalent loop transformation
techniques which are basically developed for computers with multiple
processors, the suggested single transformation exploits the flexibility
and area of FPGA to give more parallelism without making wide selec-
tion and scheduling among other loop transformations.

• We obtained speedups of up to 77 times on Virtex II Pro platform FPGA
compared to the software only implementation for the considered ker-
nels running on a PowerPC processor.

The chapter is organized as follows. In section 3.1, we discuss the related
work. Section 3.2 presents a motivational example in which we compare RVE
with another parallelizing transformation. Section 3.3 formally describes the

29

30 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

Recursive Variable Expansion along with its benefits and limitations. Section
3.4 presents the experimental validation and results obtained.

3.1 Related Work

The idea behind RVE is not new. After the publication of our first paper,
we found the reference to the work of Muroaka et al. [69], who in 1972
proposed a similar technique that he framed statement substitution [69, 86] .
Kuck et al. claimed that statement substitution extracts more parallelism than
any other transformation, when there is unlimited parallelism available [67].
The problem is that they did some theoretical calculation and no machine was
built, as there was no machine which has that much parallelism. Later, sim-
ilar techniques like look ahead computation [37, 38, 63, 73] and block back-
substitution [102] were proposed. In all these techniques, the recurrence is it-
erated M times, expanded and rearranged to calculate the result of M iterations
of the original recurrence. In these transformations, there are lot of redun-
dant computations, however the critical path is reduced by using tree height
reduction algorithm [12, 16, 64, 65, 69, 71, 86, 92].

Our RVE transformation is different from these techniques as recurrence is
iterated, expanded and rearranged to the full extent of the loop. It does not
stop there, it is further extended to other loop bodies. This makes it suitable
even for small loops, which otherwise do not exploit the parallelism and there
are free hardware resources available. In contrast to block back-substitution, it
is not limited to the innermost loop iteration.

A large part of programs has at least a first order recurrence equation [30].
Recurrence equations are one of the most difficult parts to parallelize [69].
A lot of work has been done to solve linear recurrence equations in parallel
[25, 30, 40, 46, 56, 59, 63, 73, 74, 84, 86, 100, 109, 116, 121]. A formalization
of the problem and resulting graphs are presented in [59]. An algorithm for
computing a general class of recurrence equations using statement substitution
and tree height reduction algorithm is given in [86]. Kogge and Stone et al.
[63] present recursive doubling decomposition algorithm to solve mth-order
recurrence equation for parallel machines like Illiac IV. Buzbee and few others
used the cyclic reduction technique to solve the problem [25, 30, 54]. Partition
method is also used to solve such equation, which takes fewer resources than
cyclic reduction [29, 40, 121].

One important technique that we will be using in RVE is tree height reduc-
tion. It computes an arithmetic expression by making a parse tree with the

3.2. MOTIVATIONAL EXAMPLE 31

lowest height. An arithmetic expression is any well formed string containing
atleast one operator and two variables. It can be composed of variables, op-
erators and brackets. Here, we assume that operators are only of four types
(i.e. +,−,×, /). These arithmetic expressions can be computed in many
ways by making parse trees for the expressions. The goal is to compute the
expression with a parse tree which has the lowest height. This problem is
called tree height reduction. In tree height reduction, the arithmetic expres-
sion is tranformed to another equivalent expression by using associative, com-
mutative and distributive laws, such that the tree height is the lowest. Tree
height reduction techniques have been studied by a number of researchers.
Many issues have been investigated such as the optimal way to achieve the
best tree height reduction [12, 16, 64, 65, 69, 71, 86, 92]. What are the bounds
for such algorithms [14, 23, 24, 66, 70, 71] ? How many resources are re-
quired? [14,24,30,66,71]. All these approaches are purely theoretical and most
of them have assumed that all the operators take the same time, except [65]
and [71], where different operators can take different time.

Our work is different from the earlier in two ways.

1. All the earlier transformations were applied on a basic block, whereas
we propose to do it for whole kernel.

2. We present a working implementation that is also used for validation
purposes.

3.2 Motivational Example

To clearly explain the loop transformation proposed by us, we use a motiva-
tional example (see Figure 3.1a). Figure 3.1c shows the iteration space with de-
pendences among the various iterations of the loop nest. During the execution,
A[3, 4] is written in iteration (3, 4) and read in iterations (4, 4) and (3, 5), so
the distance vectors are (4− 3, 4− 4), (3− 3, 5− 4) = (1, 0), (0, 1). Without
any kind of transformation, none of the loops can be parallelized as given by
Equation 2.4. Statement reordering is also not possible due to S1δS2, which
is used by instruction scheduling in the backend of the compiler. It is not
useful to implement this loop nest on FPGA because no parallelism will be ex-
tracted and implementation will only decelerate the overall application as the
FPGA operates at a lower frequency compared to the general purpose proces-
sor (GPP).

32 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

for i = 2 to n

 for j = 2 to m

S1 A[i, j]= A[i-1, j] + c

S2 B[i, j]= A[i, j]+ A[i, j-1]

 end for

end for

(a) A Simple example code

for I = 2 to m+n

 for J = max(2,I-n) to min(m,I)

S1 A[I-J, J]= A[I-J-1, J] + c

S2 B[I-J, J]= A[I-J, J]+ A[I-J, J-1]

 end for

end for

(b) After Loop Skewing

i=1 2 3 4 5 6

j=1

2

3

4

5

l=1 2 3 4 5

i=1 2 3 4 5 6

j=1

2

3

4

5

l=1 2 3 4 5

(c) Iteration Space after loop skewing show-
ing dependences among the iterations. White
points are inputs and black points are com-
puted.

Figure 3.1: Motivational Example

Let’s look at two ways to parallelize the example in Figure 3.1a. First is loop
skewing, which is widely used loop optimization for such kind of code and
second is Recursive Variable Expansion, which will be introduced to show
that it outperforms loop skewing by consuming more area. We have tried to
estimate time and area for both the transformations. For estimation, we have
assumed that each addition takes one cycle and the area taken by the FPGA is
directly proportional to the number of terms being added.

3.2.1 Applying Loop Skewing Transformation

As shown in Figure 3.1c, if the sequence to access the array A is changed to
a sequence followed by slanted dashed lines, then it does not violate the de-
pendences between the iterations and it also keeps the same program behavior.
For the given example , first the single black point on slanted line with l = 1 is
executed, then the two black points on slanted line with l = 2 at parallel, then
the three black points on slanted line with l = 3 simultaneously, and so on.
This sequence of execution is valid, since it does not modify the dependences

3.2. MOTIVATIONAL EXAMPLE 33

of the program and all the points executed in parallel are independent to each
other. This particular type of transformation is called loop skewing [13, 126].

In the transformed code (see Figure 3.1b), suppose m and n are greater
than 3 + 4 = 7; then A[3, 4] is written in iteration (7, 4), while the
same is read in iteration (8, 4) and (8, 5), so the distance vectors are
(8− 7, 4− 4), (8− 7, 5− 4) = (1, 0), (1, 1), which shows that the inner loop
is parallelizable by the rule discussed above.

Area estimate for Loop Skewing. The number of operands to be added is 4
(i.e. A[I−J−1, J], c , A[I−J, J], A[I−J, J−1]) for each iteration of the inner
loop. As all the iterations of the inner loop are expanded, then the maximum
number of operands to be added will be 4× maximum number of iterations of
the inner loop for some outer loop. Since the lower bound for the inner loop is
max(2, I − n), the lower bound for the inner loop remains 2 until I becomes
n + 2, so the upper bound for the same I becomes min(m, n + 2). Using this
upper and lower bound, the number of iterations for the inner loop is going to
be min(m, n + 2)− 1. After this, as the lower bound is increased by one with
the increase of I , it either increases the upper bound with the same amount if I
is smaller than m, or it remains m, if m is smaller than I , which shows that the
maximum number of iterations for the inner loop is min(m, n + 2)− 1. So the
maximum terms that need to be added are 4× (min(m, n + 2)− 1).

Time estimate for Loop Skewing. The inner loop is parallelizable, if it is
fully expanded on to the FPGA and executed in parallel, then the time for each
iteration of the outer I loop is 2 cycles for the two adders which cannot be
executed in parallel as S1δS2. The total time to execute the transformed code
will be 2 × (m + n − 1) cycles, as the number of times the outer loop will be
iterated is m + n − 1.

3.2.2 Applying Recursive Variable Expansion Transformation

When Loop Skewing is applied, only the inner loop is parallelizable. However,
let us take the same example and fully unroll both loops. As it is, unrolling
will not provide any parallelism. If we look at the example in Figure 3.1a with
i = 4 and j = 3 (see Figure 3.2), A[3, 3] is needed to compute A[4, 3], however
if we replace A[3, 3] with its computation, then A[4, 3] is no more dependent
on A[3, 3], but rather on A[2, 3]. We repeat this procedure until A[4, 3] is only
the function of input variables, then it can be computed without waiting for
other results, if provided enough resources. The same can be done for every
statement.

34 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

A[4, 3]= A[3, 3] +c
= A[2, 3] +c +c
= A[1, 3] +c +c +c

Figure 3.2: Recursively substituting the values

Area Estimate for Recursive Variable Expansion. The way the transfor-
mation is applied, we can get the number of operands to be added in exam-
ple of Figure 3.1a by a recurrence equation. Given that the statement S1 is
only dependent on i . Suppose the number of operands to be added in S1 is
denoted by T (i) and is given by T (i) = T (i − 1) + 1. The solution to
this equation is T (i) = i . Similarly, suppose the number of operands to be
added in S2 is denoted by S(i) is given by S(i) = 2T (i), which solves to
S(i) = 2i , so the number of operands to be added for both the statements is
τ(i) = S(i) + T (i) = 3i . If we expand, as discussed earlier, both the state-
ments for all iterations until they cannot be expanded further, then the total
number of operands to be added τ is given by

τ =
n∑

i=2

m∑
j=2

τ(i) =
3

2
(m − 2)(n2 + n − 2) = O(n2m) (3.1)

Suppose the output of the loop nest or variable which is used (live variable)
later is only B[n,m], then there is no need to expand all the terms in all it-
erations on to FPGA, because after expansion, B[n,m] is a function of only
inputs, which can be computed readily. Since we are doing this expansion at
compile time, all the other terms can be discarded keeping only B[n,m] ex-
panded on to the FPGA. Then the total number of operands to be added is
τ = S(n) = 2n.

Time Estimate for Recursive Variable Expansion. The expressions ex-
panded in width contain only addition operators and there are no dependences
in the expression. The addition operator is associative, therefore the most effi-
cient way to add them efficiently is adding in parallel in a complete binary tree
fashion (see Figure 3.3), where each level takes one cycle. Then O(log n) cy-
cles is required to add n terms. Since all the terms are expanded and executed
in parallel then maximum time taken by any statement will be the one which
has maximum number of operands to be added, which in this example is 2n.
So the overall time will be O(log n) cycles.

Time and area estimation for both transformations is summarized in Table 3.1.
It shows that the time to compute the code in Figure 3.1a is O(logn) in Re-

3.3. RECURSIVE VARIABLE EXPANSION 35

Time (cycles)
Area (no. of operands to be

added)
Loop

Skewing
2(m + n − 1) 4× (min(m, n + 2)− 1)

Recursive
Variable

Expansion
log(n) 3

2(m − 2)(n2 + n − 2)

Table 3.1: Time and Area estimates for different transformations for example in Fig-
ure 3.1a

cursive Variable Expansion as compared to linear in m or n for loop skewing.
This speedup is at the expense of larger area. However, the area required is not
large when the live variable is only B[n,m] as it can be only 2n.

3.3 Recursive Variable Expansion

Recursive Variable Expansion (RVE) is a transformation which removes all
data dependences among different statements in a program, thereby making
suitable for parallel execution. The basic idea is the following. If any state-
ment Gi is waiting for some statement Hj to complete for some iteration i
and j respectively due to some data dependency, both of the statements can
be executed in parallel, if the computation done in Hj is replaced with all
the occurrences of the variable in Gi which create the dependency with Hj .
This makes Gi independent of Hj at the cost of redundant computation. Sim-
ilarly, computations can be substituted for all the variables which creates de-
pendences in other statements. This process can be repeated recursively till
all the statements are function of known values and all data dependences are
removed. Hence, all the statements can be executed in parallel provided the
required resources are available. The transformation is named Recursive Vari-
able Expansion, because all variables that create dependences are recursively
substituted with their values. The suggested loop transformation is applied in
the following steps

• Given a program, loops that spend most of the time in the whole program
are identified using profiling information.

• The identified loops are fully unrolled.

• The values for every assignment statement are recursively substituted.

36 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

Figure 3.3: Best case for binary operation on t terms

• Constant folding is applied and then any possible computation during
the compile time is done to reduce the computation at runtime.

• Tree height reduction algorithm is applied [69]. The resulted tree will
provide the sequence to parallelize the statements with least number of
levels.

Since the values for the variables are recursively substituted, thereby repeating
the same pattern again and again until all the statements are expanded in width
and are functions of only known values. This repetition of the same pattern
resulting in known independent variables gives the ability to largely parallelize
the operations depending only on the precedence of the operators and whether
the operators are associative. For associative binary operators, a statement of t
terms is expected to be computed in O(log2 t) levels (see figure 3.3) by using
recursive doubling decomposition algorithm or tree height reduction [63, 68].

Do all the expressions solve so efficiently? In the next section, we classify the
type of expression which can affect the way RVE can be applied.

3.3.1 Classification of Expressions

We distinguish between two different kinds of recurrence equations: first re-
sults in an expression with a polynomial number of terms and second with an
exponential number of terms.

The polynomial recurrence equation is defined as follows

A(n,m) = bA(n − 1,m)⊕ c (3.2)

3.3. RECURSIVE VARIABLE EXPANSION 37

1 2 m

1

2

n

…

…

Figure 3.4: Recurrence in two variables. Grey boxes are the inputs

Figure 3.5: Lower bound for the worst case of Recursive Variable Expansion

38 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

where ⊕ is a binary operator. It is called first order recurrence equation as
the solution is dependent on one of its predecessor. Such an expression ex-
pands polynomially when RVE is applied. When ⊕ is an associative operator
and we apply tree height reduction to the expanded expression, it becomes
log(nk) = k log n, which is logarithmic in input size. The code in Figure 3.1a
is an example of such recurrence equation.

Second and higher order recurrences expand exponentially when applying
RVE. Some of the exponentially expanded expression can be reduced to poly-
nomial number of terms. Lets look at one such example of second order recur-
rence equation, which expands exponentially but can be reduced to polynomial
number of terms.

A(n,m) = A(n − 1,m)⊕ A(n,m − 1) (3.3)

Suppose m ≥ n, then the recursion tree [114] for this recurrence is shown in
Figure 3.5. Figure 3.4 shows the way, it is computed. It is a recurrence in
two index variables and both reduce by one at each level. Since every node
has two children, then the number of nodes at level n are 2n−1. It means
that the number of terms which needs to be computed are at least exponential
in 2. Even if it is assumed that there is infinite area, it would be useless to
apply RVE as the time to compute after tree height reduction will be linear as
log(2n−1) = O(n). This becomes even worse for higher order recurrences.

However, if we look at the recursion tree more closely, we find many duplicate
terms in the tree. Lets assume that ⊕ in Equation 3.3 is +. Can we take
benefit of this structure? Yes, we can, no matter how large the expression is
expanded, we know that the expression will ultimately be only a function of
input variables.There are only n +m− 1 input variables, therefore, the unique
terms are only n + m − 1. The operator between each term is addition and
addition of c unique x terms can be written as cx . The equation 3.3 can be
represented as.

A(n,m) = a1A(1, 1) + a2A(2, 1) + · · ·+ anA(n, 1)

+an+1A(1, 2) + an+2A(1, 3) + · · · (3.4)

+an+m−1A(1,m)

where a1, a2, · · · , an+m−1 are the constant multiplication factor for input terms
A(1, 1),A(2, 1), · · · ,A(1,m) respectively. To find each constant multiplica-
tion factor, we need to count the respective terms. Since there are an expo-

3.3. RECURSIVE VARIABLE EXPANSION 39

nential number of leaf nodes, a naive method of counting will take exponential
time. As there is a lot of overlapping, it is beneficial to use the bottom up
approach of dynamic programming as shown in Algorithm 3.1. We maintain
an array of input variables with count of each variable. Initially the count for
all variables is zero. The count function on a subexpression keeps track of the
count of input variables in that subexpression. The maximum number of input
variables for which the count variable can be modified is n + m− 1, therefore
this counting can be done in nm(n + m − 1) steps. This expression reduction
is done at compile time and Algorithm 3.1 ensures that the compilation may
not take exponential time.

Algorithm 3.1 Counting exponential leaves
for i = 2 to n

for j = 2 to m
count(A(n,m)) =count(A(n − 1,m)) +

count((A(n,m − 1))
end for

end for

We can reduce the exponential number of terms to nk , where k is some con-
stant, if the following conditions are met:

1. Number of inputs are polynomial

2. All the operators in the expanded expression are associative with respect
to each other.

3. The operators applied on some number of the same terms in the ex-
panded expression reduce to one operator which can be a same (like
max.) or a different operator. For example, addition of the same terms
can be reduced to a single multiplication, similarly multiplication of the
same terms can be reduced to power and subtraction to division.

Let’s now look at another example of Smith-Waterman (SW). SW is a dynamic
programming based problem, which if expanded fully with RVE can generate
an exponential number of terms which cannot be reduced to a polynomial num-
ber of terms. It is defined by the following recurrence equation:

40 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

F (i , j) = max

F (i , j − 1) + g

F (i − 1, j − 1) + x(i , j)

F (i − 1, j) + g

0

(3.5)

Equation 3.5 is a third order recurrence equation. Like Equation 3.3, it also
generates exponential number of terms, as every term generates four children
and the level is decreased by one. The max operator also supports reduction
as max(c , c , c) = max(c) = c . However, the problem is that it can not be re-
duced to a polynomial number of terms as the operator between the four subex-
pressions is max. Although, max alone is associative in nature, but max and
addition are not associative with each other. Therefore, a term in one subex-
pression cannot be added to a term in other subexpression, which hinders the
reduction to a polynomial number of terms. We present ways to effectively ap-
ply RVE on SW and other similar dynamic programming problems in Chapter
5 and 6.

A loop body with control structure can also grow into a exponential number
of terms when applied with RVE. Lets look at a simple example in Figure
3.6a, which has a control structure in a loop. When we apply RVE to this, the
number of statements will expand exponentially as shown in Figure 3.6b. We
deal with one type of control structure in dynamic programming problems by
using predicated execution in Chapter 5. The general case of control structure
in a loop structure will be dealt in future work.

The success of RVE depends on the statements having associative binary oper-
ators. Because once such statements are expanded in width and are functions
of known and independent variables, then these associative operators allow us
to largely parallelize the operations by applying tree height reduction. Even
if there are some non-associative operators, they can be handled in a special
way [69]. An expression of t terms and depth d of parenthesis can be computed
in O(1+2d +dlog2 ne) levels using at most

⌈
n−2d

2

⌉
processing elements [70].

3.3.2 Constraints of RVE

RVE can be applied to a class of problems, which satisfy the following condi-
tions.

1. The bounds of the loops must be known at the compile time.

3.3. RECURSIVE VARIABLE EXPANSION 41

d = 0

for i = 1 to n

 if (d > c[i])

 d = d + a[i]

 else

 d = d + b[i]

end for

(a) Loop with a control struc-
ture

(b) Graph showing exponential expansion

Figure 3.6: Example with a control structure

42 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

2. The indexing of the variables should be a function of control variables
and/or constants.

3.3.3 Benefits of RVE

If these restrictions are satisfied, the following benefits hold:

• It removes all the data dependences from the part of the program on
which it is applied, then the parallelism is only bounded by the amount
of resources one has.

• Unlike other loop optimizations, RVE is more appropriate for hardware
implementation, as it does not use memory to store intermediate results
and hence minimizes the memory accesses. Initially all the input vari-
ables are read once and then all the computations are done using those
values and finally the output is written back to the memory.

• This single transformation exploits more parallelism without making
wide selection and scheduling other loop transformations.

• This transformation can also work with non-perfectly nested and unnor-
malized loops.

3.4 Experimental Results

This section presents the experimental setup, results and discussion. It demon-
strates the benefit of our transformation. We compare an FPGA implementa-
tion to a pure software execution on the GPP. To this purpose, we have chosen
four kernels. We look at area consumption and execution time for these ker-
nels.

3.4.1 Kernels

As there is no support for floating point computations on the PowerPC proces-
sor included in Virtex II Pro platform, only integer version for the following
kernels are chosen to make a fair comparison.

• SOBEL is a 3× 3 convolution mask over an integer image.

3.4. EXPERIMENTAL RESULTS 43

• MM is a 16-bit integer matrix multiplication of a 12×6 matrix by a 6×4
matrix.

• FIR is a finite impulse response filter with 16 tap over 32 consecutive
8-bit elements.

• DCT is an integer implementation of 2D Discrete Cosine Transform.

Each application is written as a standard C program. The selected kernels have
2D (or more) non perfectly nested loops.

3.4.2 Software and Hardware Implementation

Each kernel executed on the PowerPC is referred to as the pure software ex-
ecution. For the pure software implementation, the kernels written in C are
compiled using GCC 4.2.0 with level 3 optimization, in which the inner loop
is fully unrolled. The compiled codes are simulated for IBM PowerPC 405
processor immersed into the FPGA fabric, which runs at 250MHz. To estimate
the time taken by the software only implementation, the machine instructions
are counted and segregated into computation and memory access instructions
using PSIM simulator [4].

To accelerate the kernels by parallelizing them on FPGA, we apply the Re-
cursive Variable Expansion transformation as described in Section 3.3, which
outputs only those statements that are used later in the program. The resulting
expressions are free from any loop and are largely expanded. All the input vari-
ables required to compute the statements are read from the memory and stored
in the registers on the FPGA. Since the VHDL code is intrinsically parallel, all
the possible computations are performed in parallel according to the sequence
provided by the tree height reduced expression. Finally the results are written
back to memory. We have used two memory models: on chip memory and the
DDR on the board, to evaluate the performance.

The Field-Programmable custom computing machine (FCCM) used in our ex-
periment is Molen prototype targeted on the Virtex II Pro platform FPGA of
Xilinx as described in [72]. Xilinx ISE version 8.2.022 , XST and ModelSIM
SE are used to generate, synthesis and simulate the VHDL respectively.

3.4.3 Results

In this section, we describe the performance improvement due to RVE, when
the different kernels are mapped on FPGA as compared to when mapped on

44 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

Pure
Softw

are
E

xecution
H

ardw
are

E
xecution

on
V

irtex
IIPro

platform
O

n
C

hip
D

D
R

O
n

C
hip

D
D

R
C

om
-

puta-
tion

(cyc)

M
em

(cyc)

Total

(cyc)

M
em

(cyc)

Total

(cyc)

Frequ-
ency

(M
H

z)

C
om

-
puta-
tion

(cyc)

M
em

(cyc)

Total

(cyc)

Speed

up

M
em

(cyc)

Total

(cyc)

Speed

up

A
rea

(Slices)

Sobel
59

84
143

560
619

127.14
4

43
92.4

1.53
215

430.64
1.44

541
M

M
797

1224
2021

8160
8957

118.67
2

102
219.1

9.22
966

2039.3
4.39

64792
FIR

1025
1536

2561
10240

11265
129.60

2
32

65.6
39.05

286
555.55

20.28
13850

D
C

T
6439

9147
15586

60980
67419

110.81
3

86
200.8

77.63
966

2186
30.84

1067552

Table
3.2:

Perform
ance

and
A

rea
U

tilization
forSoftw

are
only

and
V

irtex
IIplatform

3.5. SUMMARY AND CONCLUSION 45

GPP. The results are summarized in Table 3.2. The time is measured in clock
cycles and area in case of FPGA is measured in slices. Since the PowerPC
runs at 250 MHz. and the synthesis on Virtex II Pro platform gives lower fre-
quency, the time for the execution on the Virtex II Pro platform is normalized
according to the clock speed of the general purpose processor (PowerPC 405)
to make a fair comparison. Then, based on the normalized time for Virtex
II Pro, speedup is calculated. The speedup for the hardware implementation
compared to the software one for the given kernels is between 1.5 and 77 times
in case of on chip memory. A large gain is achieved in the computation time,
but also the memory access is improved as the whole block of the memory is
read instead of a variable and stored in the registers, from where data can be ac-
cessed efficiently. Currently, the bottleneck is memory, so the speedup can be
enhanced further if the time to access the memory is improved. The memory
access in DDR is more expensive than on chip memory, therefore the speedup
is reduced and ranges from 1.4 to 30 times the software only execution. The
results also depict that the speedup is higher for computation intensive kernels
(DCT) than the memory access intensive (Sobel). The area occupied by the
first three kernels is well within the area provided by the current FPGAs, like
Virtex 4-XC4VLX200 contains 89, 088 slices [5]. However, the area covered
by the DCT is around 10 times more than the available in today’s FPGAs. The
area estimates for DCT are made by extrapolating the linear regression model
between the number of operations and the area occupied. The time estimates
for DCT are made by mapping only one out of 64 elements on the FPGA and
taking that time for the whole block of 64 elements, as we have assumed un-
limited resources, all the 64 elements can be mapped on to the FPGA and can
be computed in parallel.

3.5 Summary and Conclusion

In this chapter, we have presented the Recursive Variable Expansion transfor-
mation which allows to eliminate dependences that may exist in certain kinds
of loops. Given certain conditions, RVE allows to parallelize loops by perform-
ing backward substitution up to the point that the entire expression is defined
in terms of the known variables. Moreover, conventional loop transforma-
tions require to read and write the result before and after any operation, which
is easily avoided in our transformation. The whole computation starts after
once reading the data from the memory. The input is fed to the operations,
which compute and forward the results to other operations in the sequence till

46 CHAPTER 3. RECURSIVE VARIABLE EXPANSION

the circuit generates the output of the computation. So our loop transforma-
tion reduces the memory access time, which is a very common bottleneck in
many other transformations used to parallelize the code on FPGA. The RVE
transformation removes all the data dependences in the applied region and a
highly parallelized code is generated. This loop transformation was applied on
four kernels taken from various applications and the generated code was im-
plemented on Molen prototype and it showed speedup ranging from 1.5 to 77
times depending upon the intensity of the computation with respect to memory
access. This performance gain was at the cost of more area on the FPGA. Three
out of four kernels could be mapped on current FPGAs. We also identified the
type of expressions according to the number of terms after expansion, when
RVE is applied. The first type of expressions grows polynomially whereas the
second type expands exponentially.

In the next chapter, we will look at the polynomial recursive expression and de-
vise an automatic and flexible pipelining for Recursive Variable Expansion. It
automatically chooses a largest part of the code to pipeline that can be mapped
on the available area and data required to feed the pipeline is less than the
available bandwidth.

Note.

The content of this chapter is based on the the following paper:

Z. Nawaz, O.S. Dragomir, T. Marconi, E. Moscu Panainte, K.L.M. Bertels,
S. Vassiliadis, Recursive Variable Expansion: A Loop Transformation for
Reconfigurable Systems, proceedings of International Conference on Field-
Programmable Technology 2007, pp. 301-304, Kokurakita, Kitakyushu,
Japan, December 2007.

4
Pipelined Design for RVE

EVEN though the hardware capacity has substantially improved, a number
of constraints still limit potential performance improvement, of which

area is a dominant one. The other major constraint is the memory bandwidth
for many data intensive kernels. Therefore, it would be useless to waste area
for enhancing the parallelism, when the data to feed the circuit is not available
at the required interval [15].

This chapter deals with the expressions that expand polynomially when RVE is
applied as defined in the last chapter. The goal is to achieve the maximum par-
allelism given some limited hardware resources and bandwidth. We present an
algorithm to automatically generate a pipeline design for the Recursive Vari-
able Expansion (RVE) algorithm, which not only helps in restricting the area,
but also tries to utilize free resources, if any. Pipelining is a technique, in which
various similar tasks are sequenced and overlapped in time, so that all the avail-
able resources are being utilized at the same time by scheduling different tasks
to different stages. In this chapter, we introduce a flexible pipelining design al-
gorithm for RVE, which not only fulfills the area constraints on a given FPGA
but also hides the memory access latency by overlapping the memory access
with the computation. The proposed algorithm can be applied on the prob-
lems that fulfill the constraints listed in Section 3.3.2 as well as the following
constraint.

• When a kernel produces more than one output variables, then the length
of the generic expression for those output variables should be equal.

The contributions of this chapter are as follows:

1. For the loops that contain polynomially expanding expressions, we ex-
tend the RVE basic algorithm by proposing a pipelined design that take

47

48 CHAPTER 4. PIPELINED DESIGN FOR RVE

area and bandwidth constraints into consideration. We only deal with
those loops that expand polynomially.

2. We validate the pipeline design algorithm using a real world kernel,
showing a comparable performance to the hand optimized implemen-
tation at the cost of more area.

The chapter is organized as follows. In the next section, we present the related
work. Section 4.2 presents the background information. A formal descrip-
tion of our pipeline design is given in Section 4.3. The algorithm to solve
the optimal pipeline design is described in Section 4.4. Section 4.5 describes
the architecture to hide the memory access latency. Section 4.6 describes the
experimental setup and the results are presented and discussed. Finally the
chapter is summarized in Section 4.7.

4.1 Related Work

Extensive research has been done in the area of loop pipelining. Few tech-
niques only work with intra-loop dependences in the loop nest. Software
pipelining [7] is one such technique, in which the compiler generates a sched-
ule where various iterations execute concurrently in an overlapped manner.
This technique was primarily developed for VLIW architecture and is now
also used for reconfigurable computing. It is used in the Garp Compiler [26],
which only pipelines inner loops with intra-loop dependences. The other re-
configurable compilers which use the software pipelining are NAPA-C [44]
and PICO [104]. In a similar approach [107], the iterative modulo scheduling
of software pipelining is integrated with the retiming and slowdown [77] (that
is used to pipeline synchronous circuit) to reduce the pipelining delays in the
reconfigurable hardware. In addition to dealing with the intraloop dependences
in the loop nest, our algorithm can also produce a pipeline for any type of the
loop nest with the loop carried dependences in RVE polynomially expanded
expression.

Loops with loop carried dependences are more difficult to parallelize and
pipeline. A significant work has been done in exploiting the parallelism for
the loop carried dependences. For example in the pipeline vectorization [123],
various loop transformations like the loop unrolling, loop tiling, loop fusion
and loop merging are used to remove the loop-carried dependences in the in-
nermost loop. Beside this, the retiming technique [77] is used in pipeline vec-
torization [123] for an efficient pipelining. Some new loop transformations

4.1. RELATED WORK 49

like the unroll and squash [96] are also proposed to deal with the inner loops
containing loop carried dependences. In contrast, our pipeline algorithm re-
moves the loop carried dependences from all the loops, hence provide extra
parallelism.

Some techniques use the dataflow graph approach instead of the conventional
loop transformations. In these technique, the functions or loops waiting for
some data may start computing as soon as the required data is available, which
can be out of order. One of the earliest example is the technique described
by Ziegler et al. [134], which uses FIFO buffers to synchronize between the
subsequent stages. Another is called the Reconfigurable Dataflow control
scheme [112], which is also applicable to nested loops with loop carried de-
pendences. This approach uses the Tagged-Token execution model [118] to
control the sequence of execution. A more recent technique called the pipelin-
ing of sequences of loops [99] uses a more fine grain synchronization and
buffering scheme. An iteration of a loop starts before the end of the previous
iteration, as soon as the data is available. Interstage buffers are maintained,
which signal and trigger the subsequent stages. Therefore, the sequence of the
production and consumption of the data can be different. Hash functions are
used to reduce the size of the interstage buffers. As our pipeline algorithm is
based on RVE, which removes all the loop carried dependences, therefore the
computation can be done out of order.

As mentioned earlier, our pipelining technique is meant for RVE, which is
similar to the techniques like back substitution [69], look ahead computa-
tion [63, 73] and block back-substitution [102]. In all these techniques, the
recurrence is iterated M times, expanded and rearranged to calculate the re-
sult of M iterations of the original recurrence. The different pipelining ap-
proaches used for look ahead computation are clustered look ahead, scattered
look ahead and block processing [94]. Identification of certain algebraic struc-
tures which allow to apply the well known look ahead computations has been
done in [37, 38].

Our RVE technique is different as the recurrence is iterated, expanded and rear-
ranged to the full extent of the loop. It does not stop there and further extended
to the other loop bodies as discussed later in Section 4.6 for the DCT code.
This makes it suitable even for sequence of small loops, where other tech-
niques exploit limited parallelism even though hardware resources would be
available. In contrast to the block back-substitution, it is not limited to the in-
nermost loop iteration. Our pipelining approach is similar to block processing,
in which inputs are processed in the form of non-overlapping blocks to gen-

50 CHAPTER 4. PIPELINED DESIGN FOR RVE

erate non-overlapping blocks of outputs. The difference in our and the earlier
pipelining approach is in the way the block is chosen. As mentioned earlier,
they expand the loop to a predefined size M and then make a circuit for that.
In our algorithm, we expand the entire loop body loop bodies and then try to
find the largest repeated pattern that satisfies the memory and area constraint.
There are two advantages of doing this. First, we can find larger pattern even
if the loop is small. Second, when all the loops are expanded, we can remove
the redundant computations which are present due to intraloop dependences or
redundant registers which contain the same variables. Since we have expanded
all the loop bodies, there are more chances of finding redundant computations
and registers. The core idea of our technique is that first we expand the re-
currence to its full extent and then try to find the redundant computations and
registers which can be removed without sacrificing the throughput.

4.2 Basic Concepts

We first introduce the basic concepts that we need to formalize the problem
statement. A string is a finite set of symbols from an alphabet Σ. The number
of symbols in an alphabet set is defined by |Σ|. The length of a string T
denoted by |T | is the number of symbols in that string. Let Σ∗ denotes the set
of all finite length strings formed by using symbols from the alphabet Σ. The
zero-length empty string, denoted by ε, also belongs to Σ∗ . The concatenation
of two string T and S is written as TS , i.e. the string T followed by the string
S , where |TS | = |T |+ |S |. We say that the string S is a suffix of the string U ,
if U = TS for some T ∈ Σ∗. T [i] denotes the i th character of T . T [i ..j] is the
substring T [i]T [i+1]...T [j] of T . A Kleene star of a string T , denoted by T ∗,
is the set of all the strings obtained by concatenating zero or more copies of
string T . We define T+ = TT ∗, which means that T+ is the smallest set that
contain T and all the strings that are concatenation of more than one copies of
T .

4.2.1 Suffix Trees

A suffix tree is a data structure that is used to efficiently solve many string
search related problems. We are going to use this data structure extensively
to solve our pipeline design problem. This data structure is built by pre-
processing the search string at the start of search. A simpler way to understand
a suffix tree is to look at the suffix trie [48] first. We take an example string

4.2. BASIC CONCEPTS 51

m

i

s

s

i

s

s

i

p

p

i

$

i

s

s

i

s

s

i

p

p

i

$

s

s

i

s

s

i

p

p

i

$

root

i

s

s

i

p

p

i

$p

p

i

$

p

p

i

$

p

p i

$

p

p

i

$

p

p

i

$

i$

$

$

2

5

8

11

3

6 4

7

9

10

12

1

1. mississippi$
2. ississippi$
3. ssissippi$
4. sissippi$
5. issippi$
6. ssippi$
7. sippi$
8. ippi$
9. ppi$
10. pi$
11. i$
12. $

(a) Suffix trie of mississippi

mississippi$
i s p $

ssi ppi$ $

ssippi$ ppi$

si i

ssippi$ ppi$ ssippi$ ppi$

pi$ i$

1

2 5

8 11

3 46 7

9 10

12

2,5

2,5,8,11

3,6 4,7

3,6,4,7 9,10

m i s s i s s i p p i $

1 2 3 4 5 6 7 8 9 10 11 12

(b) Suffix tree of mississippi

Figure 4.1: Suffix tree for mississippi

52 CHAPTER 4. PIPELINED DESIGN FOR RVE

S = mississippi that ends with $, as end marker, then make a suffix trie of it as
shown in Figure 4.1a. A suffix trie [48] is a type of tree which has at most |Σ|
branches from each node. The edge labels on the path from root to each leaf
node i give a suffix S [i ..L], where L is the length of S . The starting character
of the label of every edge coming out of a node is unique. Once a suffix trie is
constructed for string S , searching a pattern s of length l in S is very simple
because of the organization of the suffix trie for S . We start from the root and
choose the path in the tree which matches the characters of the search pattern
s until we exhaust all the characters of s or we do not find a path in the suffix
trie starting with the corresponding character in s . When all the characters of
s are exhausted, we got a match in String S , otherwise a mismatch, therefore
it takes O(l) time to find a pattern of length l . The reason for not using the
suffix trie is its time to construct it, which is O(L2), which makes overall time
as quadratic. Other best known string searching techniques like Knuth-Morris-
Pratt (KMP) [62] and Boyer-Moore (BM) [22] take time Θ(L+l), which makes
them better than suffix trie for the string matching purpose.

We can beat the KMP and BM algorithm in the pattern searching if we change
the data structure to the Suffix tree, which is a suffix trie after path compres-
sion. The path compression is a process in which edges of the nodes with a
single descendant are compressed to a single edge until a node with more than
one descendant is found. Therefore, every internal node in the suffix tree ex-
cept the root has at least two children. The suffix tree for S =mississippi is
shown in Figure 4.1b. The advantage of suffix tree over suffix trie is that it is
built in O(L) time [115] as compared to O(L2) for a string of length L.

In this chapter, we are interested in finding repeats1 in a string. Given a string
S , a repeat r is any substring of S which is found in S at more than one posi-
tion. We compare two approaches to find a repeat, one using the best known
string matching algorithm and other using the suffix tree.

The simplest approach to find all the repeats is to start from a pattern of length
2 and find all the repeated expressions for all the possible patterns of length
2 in the expression E of length L. Increase the pattern length by one and
try to find the repeated expressions for all the patterns of that length until we
get some pattern length l + 1 for which the repeated pattern is not found for
any possible pattern of that length. This means that the last pattern length l for
which there were some repeated expression or expressions is the largest repeat.
The upper bound for l is L

2 . If we use one of the best string matching algorithm

1Perhaps repeating term would be a better name, but the term repeat is a standard in the
literature.

4.3. PROBLEM STATEMENT 53

for i=1 to 5
A[i]=0
for j=1 to 4

A[i]=A[i]+d[j]*i
end for
A[i]=A[i]>>8

end for

Figure 4.2: A simple example

like Knuth-Morris-Pratt [62], string matching for one pattern will take Θ(L),
as there are Θ(L) possible patterns for any pattern length l ≤ L

2 . Therefore, to
find repeated pattern for one pattern length will take Θ(L2). Since the possible
pattern lengths can be L

2 −1, ranging from 2 to L
2 , it will take Θ(L3) to find the

optimal repeat.

Using the suffix tree as the data structure is a well known in bioinformatics
and is the best known repeat finding method [48]. Lets again take the example
S =mississippi and look at its suffix tree in Figure 4.1b. Every internal node
except the root in suffix tree has at least two children. It essentially means
that the string s which is made by concatenating the labels of the edges from
the root to any specific internal node, is present in the main string S equal
to the number of children of that internal node. For Example, i is present
in mississippi 4 times at positions 2, 5, 8, 11, similarly issi is present twice at
position 2, 5. Therefore, every path from the root to any internal node is a
repeat, which can be found in O(L). There can be no more than O(L) internal
nodes or repeats, as there are L leaf nodes and every internal node has at least
two children, therefore, it would not take more than O(L2) to find the all the
repeats.

4.3 Problem Statement

In this section, we first present a motivational example to provide a sketch of
the pipelined RVE. Then, in Section 4.3.2, we describe the problem formally.

54 CHAPTER 4. PIPELINED DESIGN FOR RVE

A[1]=A[1]>>8
=(A[1]+d[4]*1)>>8
=(A[1]+d[3]*1+d[4]*1)>>8
=(A[1]+d[2]*1+d[3]*1+d[4]*1)>>8
=(A[1]+d[1]*1+d[2]*1+d[3]*1+d[4]*1)>>8
=(0+d[1]*1+d[2]*1+d[3]*1+d[4]*1)>>8
=(d[1]*1+d[2]*1+d[3]*1+d[4]*1)>>8

...
A[5]=(d[1]*5+d[2]*5+d[3]*5+d[4]*5)>>8

Figure 4.3: Expanded expressions after applying RVE on example in Figure 4.2

d[1] 1

x

+

d[2] 1

x

d[3] 1

x

d[4] 1

x

+

+

8

>>

A[1]

…

d[1] 5

x

+

d[2] 5

x

d[3] 5

x

d[4] 5

x

+

+

8

>>

A[5]

Figure 4.4: Circuits for Figure 4.3.

4.3.1 Motivational Example

We use the simple example shown in Figure 4.2 in the rest of this chapter to
illustrate the RVE technique and to show how we can perform the computation
in the example in a pipelined way. d [1], d [2], d [3] and d [4] are the four inputs
and A[1],A[2], · · · ,A[5] are the five outputs to the example in Figure 4.2. Af-
ter applying RVE, we get the expanded expressions as shown in Figure 4.3. As
all the loop carried dependences are removed, we can get all the outputs by
computing their respective expanded expressions in parallel by using the re-
cursive doubling algorithm for each output as shown in Figure 4.4. Computing
like this gives a lot of parallelism, at the same time it requires a lot of area.
This area can be reduced if all the circuits can be pipelined.

When a circuit is to be made from an expression, then the type and sequence
of operators along with the type of the operands are important. Therefore, the
expanded expressions in Figure 4.3 can be transformed to the generic expres-
sions in Figure 4.5, by replacing the variables with their types. In Figure 4.5, i
stands for an integer and c for a constant. The information in a generic expres-
sion is sufficient enough to infer the type and sequence of the operators along

4.3. PROBLEM STATEMENT 55

i = i*c+i*c+i*c+i*c>>c

...

i = i*c+i*c+i*c+i*c>>c

A[1]

A[5]

Figure 4.5: Generic Expressions

x

+

x x x

+

+

>>

i

cycle 1

cycle 2

cycle 3

cycle 4

i c i c i c i c c

(a) Pipelined circuit for (i*c+i*c+i*c+i*c)>>c

x

+

x

44

cycle 1

cycle 2

i c i c

i

(b) Pipelined circuit for
i*c+i*c

x

cycle 1

i c

i

(c) Pipelined
circuit for i*c

Figure 4.6: Pipeline circuit for repeats in generic expression as given in Figure 4.5

with the type of the operands. Figure 4.5 shows that the generic expression (i.e.
(i ∗c + i ∗c + i ∗c + i ∗c)� c) for all the outputs (A[1],A[2], · · · ,A[5]) is the
same, which means that the sequence and type of the operators in a circuit of all
outputs is the same. We can save area and compute all the outputs by just mak-
ing a circuit for one output and using each stage of the circuit for different out-
puts. For that, we need to insert intermediate registers to store the intermediate
values of all the stages in progress as shown in Figure 4.6a. However, if the
memory or area constraints are not met for the chosen expression, then we can
divide the expression into some smaller repeated equivalent sub-expressions
such that when we make a circuit for any of those sub-expressions, it satisfies
the area and memory constraints. This smaller sub-expression can be pipelined
easily as it is small enough to satisfy the area and memory constraints and there
are more than one such expressions, for which the corresponding data can be
provided accordingly. For example in Figure 4.5, some repeats are: i ∗c + i ∗c
repeated 10 times and i ∗ c repeated 20 times. The corresponding pipelined
circuits are shown in Figure 4.6b and Figure 4.6c. This means that the prob-
lem of enumerating the pipelining candidates for an expanded expression is
equivalent to finding the repeated equivalent subexpressions or the repeats in

56 CHAPTER 4. PIPELINED DESIGN FOR RVE

the corresponding generic expression. The chances of finding various repeats
is very high in a RVE generic expression because it is generated from the loop
body without the conditional statements which is doing some repetitive task,
as shown in Figure 4.5.

Let E be a generic expression of length L. There can be many possible repeated
sub-expressions e ∈

{
el1 , el2 , ... , elj

}
with corresponding number of repeats

n ∈
{
nl1 , nl2 , ... , nlj

}
, where lj is the length of the sub-expression elj , l1 ≤

l2 ≤ ... ≤ lj and lj ≤ L
2 . The repeated sub-expression e in a generic expression

E is defined as

E = (uev)+ (xey)+ (4.1)

where u, v , x , y ∈ Σ∗ . In other words, e is any non-overlapping sub-
expression in E which is repeated at least twice.

4.3.2 Problem Statement

Following are the notations used to define the problem statement. Let

• E denotes the generic expression of length L.

• AE is the estimated area on FPGA required by expression E .

• TE is the time to transfer data for expression E from memory.

• TC is the time to compute the expression E on FPGA F .

• AF is the available area on the FPGA F .

Let AE > AF , which means that the expression E as a whole cannot be mapped
on to the FPGA or TE > TC , which means that the data transfer for ex-
pression E cannot be hidden. Find such k non-trivial repeated expressions
eGr ∈

{
el1 , el2 , ... , elj

}
of length lGr ∈ {l1, l2, ... , lj} > 1 for 1 ≤ r ≤ k and

k ≥ 1, which is repeated nGr time where nGr ∈
{
nl1 , nl2 , ... , nlj

}
such that

nGr lGr = max
1≤i≤j

nli li (4.2)

for which AeGr
≤ AF and TeGr

≤ TcGr
. The condition nGr lGr ≤ L is always

true. where

4.3. PROBLEM STATEMENT 57

Figure 4.7: Suffix tree of i*c+i*c+i*c+i*c>>c

• AeGr
is the area required by the expression eGr when mapped on to the

FPGA F ,

• TeGr
is the time to transfer the data of expression eGr from the memory,

and

• TcGr
is the time to compute the expression eGr on the FPGA F .

Equation 4.2 means that we choose all the k repeated expressions whose prod-
uct is the maximum among all the expressions, when the length of each ex-
pression is multiplied with the corresponding number of times it is repeated
in E and they also meet the memory and the area constraints. The lengths of
those expressions should be greater than 1 to make it non-trivial.

Finally we would choose the repeat e and call it an optimal repeat, which
satisfies Equation 4.2 as well as the following equation.

e =

{
eGm | lGm = max lGr

∀eGr

}
(4.3)

Equation 4.3 means that we will choose the expression eGm , which has the
maximum length among all eGr when k > 1.

58 CHAPTER 4. PIPELINED DESIGN FOR RVE

4.4 Flexible Pipelining Design Algorithm

This section describes the flexible pipelining design algorithm. The five main
steps in our algorithm are as follows:

4.4.1 Find possible candidates for pipelining

As mentioned in Section 4.3.1, finding all possible candidates for pipelining is
equivalent to finding all repeats in a generic expression E . We use suffix tree
for that purpose as described in Section 4.2.1.

By making a suffix tree for the generic expression E as shown in Figure 4.5,
it gives us all the repeats along with their start positions in E . Some of the
repeats in (i ∗ c + i ∗ c + i ∗ c + i ∗ c) � c as shown by Figure 4.7 are
i ∗ c + i ∗ c + i ∗ c , ∗c + i ∗ c + i ∗ c , +i ∗ c + i ∗ c , i ∗ c + i ∗ c and ∗c + i ∗ c .
Every repeat is a candidate for converting into a circuit for pipelining. The list
of the repeats can be refined by removing non-valid repeats like ∗c+i ∗c+i ∗c ,
+i ∗c + i ∗c , ∗c + i ∗c etc. To remove non-valid repeats, we fully parenthesize
the generic expression E according to the priority of the operators to make it
((i∗c)+(i∗c)+(i∗c)+(i∗c)� c) and then build suffix tree from it. We filter
only those repeats which are properly parenthesized and remove any substring
after matching the closing parenthesizes. For example, non-trivial valid repeats
in parenthesized E are (i ∗ c), (i ∗ c) + (i ∗ c) and (i ∗ c) + (i ∗ c) + (i ∗ c).
The non trivial non-overlapping valid repeats in parenthesized E are (i ∗c) and
(i ∗ c) + (i ∗ c).

4.4.2 Select the optimal repeat from among the possible candi-
dates.

Once the candidate repeats are shortlisted, we find the effective lengths le of the
repeat e by removing all the parenthesizes and apply Equation 4.2 and Equation
4.3 to all of them to get the optimal repeat. In the example, the shortlisted
candidates from the generic expression (i ∗ c + i ∗ c + i ∗ c + i ∗ c)� c are
(i ∗ c) and (i ∗ c) + (i ∗ c) with effective lengths 3 and 7 and frequencies 4 and
2 respectively. Applying Equation 4.2 gives max(3× 4, 7× 2) = 7× 2, which
selects (i ∗ c) + (i ∗ c) considering it satisfies the memory and area constraints
as the only option, which becomes the optimal repeat after applying Equation
4.3. We call our algorithm a flexible pipelining design algorithm as it chooses
the best among many candidates with different area and memory requirements

4.4. FLEXIBLE PIPELINING DESIGN ALGORITHM 59

and can adapt when the requirements are changed.

4.4.3 Feed data to pipeline

After selecting the optimal repeat for the pipelined circuit, we extract the data
that needs to be fed to the registers after each cycle at the input of the pipelined
circuit. We extract it by comparing the generic expression with the expanded
expression in all the regions where e is repeated, as there is a one to one cor-
respondence between the expanded expression and the corresponding generic
expression as shown in Figure 4.8a. If le is the effective length of the optimal
repeat e, then we define the number of operands in optimal repeat e as oe ,
which excludes the number of operators from the effective length le .

4.4.4 Eliminate redundant expressions

Since many variables and computations can be repeated in RVE, there are
many redundant operands or operators that can be removed without sacrificing
the speed. This, in turn, can reduce the area requirement. When oe values that
need to be fed are finalized after every cycle in the start of the pipeline. Then
there is a chance to remove some redundant registers. As the data fed to them
after each cycle is the same as fed to other registers. Let r1, r2, ... , roe be the
positions of the oe registers. Let n be the total number of cycles to compute
the expression e. Let d1, d2, ... , dn and f1, f2, ... , fn be the data fed to the reg-
isters at position rj and rk , where 1 ≤ j ≤ oe and 1 ≤ k ≤ oe and j 6= k
in cycles c1, c2, ... , cn. If di = fi for 1 ≤ i ≤ n, then one of the registers
can be removed. As both of the registers carry the identical data in respective
cycles, and a link from one register can be fed to the operator, which initially
takes the input from the other register. Let’s assume that the optimal repeat is
e = (i ∗ c + i ∗ c + i ∗ c + i ∗ c)� c , then Figure 4.8a shows the circuit for the
expression e and also the data fed to each register. Since data in the registers
r4, r5 and r6 is the same as r0, r1 and r2 respectively for every n cycles, we can
easily remove registers r4, r5 and r6 and feed their values from r0, r1 and r2
respectively for every n cycles. This is shown in Figure 4.8b. Doing this will
reduce the area as we have eliminated 3 registers in the given example. Now
according to Figure 4.8b, e can be evaluated as

e = (r0 ∗ r1 + r2 ∗ r3 + r0 ∗ r1 + r2 ∗ r7)� r8 (4.4)

We can further try to reduce the area by removing some redundant operators

60 CHAPTER 4. PIPELINED DESIGN FOR RVE

x

+

x x x

+

+

>>

e

r0 r1 r2 r3 r4 r5 r6 r7 r8

cycle 1

cycle 2

cycle 3

cycle 4

a

d

..
.

3

3

..
.

a

e

..
.

4

4

..
.

a

d
..
.

3

3

..
.

a

e

..
.

b

c

..
.

8

8

..
.

g0,1 g4,5

(a) before optimization

x

+

x x x

+

+

>>

e

r0 r1 r2 r3 r7 r8

cycle 1

cycle 2

cycle 3

cycle 4

a

d

..
.

3

3

..
.

a

e

..
.

4

4

..
.

b

c

..
.

8

8

..
.

g0,1 g4,5

(b) after register optimization

x

+

x x

+

+

>>

e

r0 r1 r2 r3 r7 r8

cycle 1

cycle 2

cycle 3

cycle 4

a

d

..
.

3

3

..
.

a

e

..
.

4

4

..
.

b

c

..
.

8

8

..
.

g0,1

(c) after operator optimization

Figure 4.8: Area optimization

4.4. FLEXIBLE PIPELINING DESIGN ALGORITHM 61

for i=1 to 5
A[i]=e1+e2>>8 (E)

end for

Figure 4.9: Computing kernel in Figure 4.2 using optimal repeat i*c+i*c

and the registers. In Equation 4.4, subexpression r0 ∗ r1 is repeated once. We
can remove the computation of the second occurrence of the subexpression
r0∗r1 by providing the result from the first occurrence. This is done by feeding
the data needed at the link g4,5 from the link g0,1 as shown in Figure 4.8c. This
further reduces an operator and a register in the given example. We can again
find such repeated sub-expression by using the suffix tree method as described
in Section 4.4.1. The bigger the expanded expression is, more are the chances
to find the redundant registers and the common operators. The chances of
finding the registers with same values in each cycle and common operators is
high because of the nature of RVE.

4.4.5 Convert optimal repeat to a pipeline circuit

Once the optimal repeat e is selected, it is converted to a deep pipelined circuit
and mapped on to the FPGA. When e is evaluated, then the expression E can
be computed serially as given by Equation 4.1 either on the GPP or the FPGA.
In the given example, E = (i ∗ c + i ∗ c + i ∗ c + i ∗ c)� c and let the optimal
repeat be e = i ∗ c + i ∗ c , then e is computed for two different sets of inputs
using the pipelined circuit of Figure 4.6b, and let the results are temporarily
saved as e1 and e2. The example in Figure 4.2 is changed to Figure 4.9 and
can be computed on the GPP or the FPGA by making a pipelined circuit for E ,
provided enough area is available.

After applying the pipelining to an expanded expression E , it is divided into
very few serial computations as compared to the number of iterations of the
loop body, which means extensive parallelism. Beside extensive parallelism,
another advantage of finding the optimal repeat is the minimal memory ac-
cesses, as a large part of the expanded expression E is computed in a large
pipelined circuit for e without saving the intermediate results in the memory.

If the kernel produces some number of output variables, when RVE is applied
to those output variables, then it is recommended that the length of the generic
expression for those output variables should be equal as in Figure 4.5, the
length of the generic expression for all the 5 outputs is the same. This is

62 CHAPTER 4. PIPELINED DESIGN FOR RVE

Datapath for

E
RI RO

Memory

Stage I Stage I

Stage II

Figure 4.10: Architecture to balance datapath with memory access

Tr Tc

Tc

Tc

Tp

0 1 2 3 4 5

Tw

Tw

Tw

TpTpTpTp

Tr

Tr

Figure 4.11: 2 stage pipelining, when Tp = Tc ≥ Tr + Tw

a limitation for the current pipelining algorithm. However, there are many
kernels from real life applications which satisfy this limitation like DCT, Finite
Impulse Response (FIR) filter and matrix multiplication.

4.5 Balancing the Datapath and Memory Access Op-
erations

Usually kernels are continually run in many applications, therefore, there is
a need to balance the datapath with the memory access operation. We are
considering the worst case scenario in which reads from and writes to memory
are not possible at the same time, therefore it is recommended to divide the
kernel computation as a two stage pipeline as shown in Figure 4.10. In the first
stage, all the data computed earlier and saved in register set RO is written to
the on chip memory, then data for the next iteration of the kernel is read from
the memory into a register set RI for one run of the kernel. In the second stage,
data is read from RI and datapath operations are done and output is saved in the
register set RO as shown in Figure 4.10. As both the stages, read/write (Stage
I) and computation (Stage II), use their own resources, we can pipeline them

4.5. BALANCING THE DATAPATH AND MEMORY ACCESS OPERATIONS 63

for (i=0; i<8; i++) {
for (j=0; j<8; j++) {

s1=0; s2=0;
for (k=0; k<8; k++) {

s1+=(block[8*i+k])*(c1[j][k]);
s2+=(block[8*i+k])*(c2[j][k]);

}
tmp1[8*i+j]=s1; tmp2[8*i+j]=s2;

}
}
for (i=0; i<8; i++) {

for (j=0; j<8; j++) {
s1=0; s2=0;
for (k=0; k<8; k++) {

s1+=(c1[i][k])*tmp1[8*k+j];
s2+=(c1[i][k])*tmp2[8*k+j]

+(c2[i][k])*tmp1[8*k+j];
}
s2+=8388591;
out[8*i+j]=((s2>>8)+s1)>>16;

}
}

Figure 4.12: DCT code

as shown in Figure 4.11 and call it a memory-computation pipeline. Let the
time for reading the memory, doing the datapath operations and writing back
to the memory are Tr , Tc and Tw respectively. The latency of this pipeline is
defined as Tp = max(Tr +Tw ,Tc). The best is to choose the largest datapath
for which Tp = Tc ≥ Tr + Tw provided it also fits the area on the FPGA.
By doing this, the memory access latency is totally concealed and the datapath
is computed efficiently in every stage by using the optimal resources. The
pipelining approach in Section 4.4 is different from what is discussed here as
the pipelining in Section 4.4 refers to pipelining in the datapath operations.
Reading at the beginning and writing to the memory at the end of the kernel
has two advantages. First, the total time to access the memory is minimized as
all ports are used on every cycle. Second, the ordering of the accesses become
irrelevant.

64 CHAPTER 4. PIPELINED DESIGN FOR RVE

Table 4.1: Memory access time

Description cycles
Time to read 8-bit 64 elements of 8× 8 block 8×64

64 × 3 = 24

Time to transfer 2 parameters through XREG 2× 3 = 6

Time to write 9-bit 64 elements 9×64
64 × 1 = 9

Total memory access time for a kernel of DCT 39

4.6 Experiments and Results

In this section, we brief the experimental setup to implement the pipelined
design algorithm and then discuss the results.

In order to facilitate the experiments, we have developed a program to auto-
matically generate the pipelined design in VHDL. The resulting synthesizable
VHDL code is used in the Xilinx simulator to obtain the results.

We use a Molen [117] prototype targeted on the Xilinx Virtex II pro plat-
form XC2VP30 FPGA, which contains 13696 slices. The automatically gen-
erated code is simulated and synthesized on ModelSIM and Xilinx XST of ISE
8.2.022 respectively.

To evaluate and demonstrate the pipelining algorithm for RVE, we have used
an integer version of the DCT as given in Figure 4.12, which satisfies all the
constraints of the technique given in Sections 3.3 and 4.4. We automatically
generate VHDL for two versions of RVE, one is with the area optimization and
the other is without the area optimization. The results of the two versions of
automatically optimized and different pipeline sizes for the DCT are compared
to the hand optimized and pipelined DCT core2 provided by Xilinx on the same
platform. All the implementations take 8-bit input block element and output
DCT of 9-bit. The port size to access on chip memory is 64 bits. It takes 3
cycles to read from the on-chip memory and store it in register set RI , whereas
it takes 1 cycle to write from RO to the on-chip memory. The total memory
access time to transfer the data for a block of DCT is 39 cycles as given in
Table 4.1.

A kernel of DCT outputs 64 elements whose generic expressions are the same.
We find the best candidate for the optimal repeat e for the DCT, which comes
out to be the generic expression of one element, therefore, we refer to it as
full element in the experiment. This is the largest repeat which satisfies the

2https://secure.xilinx.com/webreg/clickthrough.do?cid=55758

4.6. EXPERIMENTS AND RESULTS 65

Table 4.2: Comparison of automatically optimized DCT with Xilinx’s hand optimized
DCT core

Frequency latency

Computation
time for a
block of

8× 8 (cycles)

Slices

(MHz) (cycles) (cycles) (ns)
Xilinx
DCT
core

171.223 92 64 373.8 1213

DCT full
element

121.479 13 64 526.9 9215

DCT 1
3

element
265.354 8 192 723.6 2031

DCT full
element

opt.
120.943 13 64 529.2 4939

DCT 1
3

element
opt.

265.354 8 192 723.6 1820

66 CHAPTER 4. PIPELINED DESIGN FOR RVE

area and memory requirements for XC2VP30 FPGA, therefore, it is chosen
as the optimal repeat. However, if there is less area available on FPGA, the
next largest repeat is one third of the generic expression of the one element,
therefore we refer to it as 1

3 element. When area optimization is applied, we
refer to them as full element opt. and 1

3 element opt., respectively.

Table 4.2 shows the results for different implementations of the DCT after
synthesis. The Xilinx DCT core is hand optimized by knowing the properties
of a 2D DCT. A 1D DCT is only implemented with buffering and taking the
transpose of the 8 × 8 block. Initially, 1D DCT is computed from the inputs,
then the output is transposed and fed back to the same 1D DCT circuit to
produce the 2D DCT. The generated code is very small and well pipelined,
therefore, it has very few slices and high frequency. However the initial latency
is high due to transposition and computing again the 1D DCT. Once the initial
latency is spent, the circuit produces an entire DCT block every 64 cycles.

Our automatic optimization does not take advantage of the knowledge of the
properties of the 2D DCT. It takes the unoptimized code of the 2D DCT, fol-
lows some generic steps to apply the RVE and then designs a flexible deep
pipeline as discussed in Section 4.4, trying to satisfy the area and memory con-
straints. The code generated for DCT full element is very large as compared
to the hand optimized, therefore it has low frequency. However, it extracts lots
of parallelism and utilizes the resources to its capacity and produces an output
of the DCT block every 64 cycles with a lower initial latency of 13 cycles,
which is basically the depth of the pipeline. The code for the DCT one-third
is relatively small but still larger than the Xilinx DCT core. It produces better
frequency than Xilinx core at the cost of 3 times more cycles and lower initial
latency of 8 cycles to compute one DCT block. The time to compute DCT
using one third element is increased by 37% with a 78% decrease in area as
compared to computing with the full element.

When area optimization is applied to both pipelining candidates, then the area
is reduced by 46.4% for the full element and by 10.4% for the 1

3 element. The
reduction in area after the area optimization for the full element is larger than
1
3 element, which shows that there is more potential for reducing area in larger
pipelines.

The results show that our pipelining design algorithm for RVE, which applies
on some limited type of problems, gives a comparable performance at the cost
of extra hardware than the hand optimized code. Although, it is not better than
the hand optimized in performance, the main benefits of our approach is auto-
mated design, optimization, and hardware generation of kernels starting from

4.7. SUMMARY AND CONCLUSION 67

a program code. The design time and quality of the optimization for the hand
optimized is quite variable depending on the human intelligence. Whereas, the
design time and quality of the optimization in our technique is quite determin-
istic. Secondly, this automated approach can be used to automatically generate
high performance code for other kernels which satisfy the given constraints
for which the hand optimized codes are not generated and saves a lot of design
time.

4.7 Summary and Conclusion

In this chapter, we have presented a pipelining algorithm for RVE, which au-
tomatically generates an extensively parallel and pipelined VHDL code for a
certain class of problems, which can compare in performance with hand op-
timized codes. Although the algorithm produces better performance for large
area FPGA, still it can be used to get good performance for reasonably small
FPGA. Our algorithm is a good choice for kernels, for which hand optimized
codes are not available, area is not major concern and high performance is the
requirement in short design time.

In the next chapter, we will look at a class of dynamic programming prob-
lems, which produces exponential number of terms when RVE is applied on it
naively. We will describe a better approach to tackle such problems.

Note.

The content of this chapter is based on the the following paper:

Z. Nawaz, T. Marconi, T. P. Stefanov, K.L.M. Bertels, Flexible Pipelining De-
sign for Recursive Variable Expansion, International Parallel and Distributed
Processing Symposium, pp. 915-922, Rome, Italy, May 2009.

5
RVE for Dynamic Programming

Problems

DYNAMIC programming (DP) is a powerful method, which is typically used
to compute a large number of discrete optimization problems in various

fields. Examples of DP problems1 are Knapsack problem, Traveling sales-
man problem, Smith-Waterman, shortest paths, Viterbi algorithm and Plan-
ner’s problem. Beside the optimization problems, it is also used in other prob-
lems as computing Fibonacci numbers and Binomial coefficients.

Optimization problems are usually very important problems and take consider-
able amount of time to compute. There is always a need to solve them quickly,
possibly using parallel computation. Therefore such problems are good candi-
dates for hardware acceleration.

Earlier in Chapter 3, we saw that when RVE was applied to the Smith-
Waterman problem (DP problem), it expanded exponentially. In this chapter,
we show that our technique can be applied to a large class of DP problem,
which have a constant number of dependences for which the distance vector
between the current and constituent subproblem or subproblems is also con-
stant. Generally, each element in dynamic programming problems is computed
using dataflow on FPGA. Whereas, we present a hybrid approach to accelerate
such problems. We use RVE to compute the blocks of elements in parallel and
use dataflow between the blocks. The contribution of this chapter is as follows:

• We have devised the formulation of a generic framework as well as two
variants of the RVE algorithm, named RVE with no pre-computation
(RVENP) and RVE with pre-computation (RVEP). When applied to var-
ious Dynamic Programming problems, we demonstrate that they outper-

1The term ’dynamic programming problems’ refer to problems that can be formulated in
dynamic programming [120].

69

70 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

form any known technique.

Both RVENP and RVEP can generate highly parallel, pipelined hardware ac-
celerators for DP problems using Reconfigurable systems. Later, we will dis-
cuss under what conditions the two versions gives better performance than the
other. As these algorithms expose more parallelism, it is possible to achieve
more acceleration than any other parallel technique at the cost of extra area on
FPGA. These algorithms are especially suitable for cases where high perfor-
mance is a priority and extra area can be used to achieve this.

This chapter describes a methodology for the application of our algorithm on
4 representative problems to show its speedup and area overhead as compared
to a dataflow implementation. Later a generalized version of DP problems is
defined that shows that the devised steps are generic enough to tackle a large
class of DP problems.

The chapter is organized as follows. In the next section, we present the related
work. In Section 5.2, we briefly introduce the four representative problems.
Then in Section 5.3, we describe some generic steps and apply them on each
of the problems to clarify its effects. In Section 5.4, we have compared the
hardware acceleration by the both RVE implementations with dataflow. Sec-
tion 5.5 describes how these steps are generalized to be applicable on a large
number of DP problems. Finally, Section 5.6 summarizes the chapter.

5.1 Related Work

Our acceleration is based on RVE, which is similar to techniques like back
substitution [69], look ahead computation [63,73] and block back-substitution
[102]. The first known implementation of look ahead in DP problems was
done in [36], where it was applied to the Viterbi algorithm and showed its
potential for DP problems. It was shown that the add-compare-select (ACS)
operation, which is nonlinear in nature, is difficult to parallelize. Later, this
work was extended to DP problems [94, 95], again showing only the Viterbi
algorithm example and without much discussing the general properties of DP.
Fettweis [37, 38] also presented the algebraic properties for identifying the
class of problems on which look ahead computation can be applied. As re-
sources were very limited at that time, parallelism exposed was less. No hint
was given to tackle conditional statements in generic DP formulations.

Systolic arrays have been the choice of many researchers for mapping dynamic
programming problems on to a VLSI chip. Li and Wah [119] have classified

5.2. REPRESENTATIVE PROBLEMS 71

1 2 3 4 5 6

A -3 12 -5 14 -6 3

1 2 3 4 5 6

M -3 12 7 21 15 18

Figure 5.1: MCSS problem

DP problems according to the functional equations. They have also proposed
systolic arrays for each type. Few have devised two-dimensional systolic ar-
rays for the dynamic programming problems [28, 47, 80]. Others have pro-
posed a linear systolic arrays to map dynamic programming problems [87,97].
In this chapter, we compare our implementation with the linear systolic array
implementation of the four representative dynamic programming problems.

5.2 Representative Problems

In this section, we describe some problems that are representative for a broad
range of DP problems. Here Maximum Contiguous Subsequence, Needleman-
Wunsch and Longest Common Subsequence are optimization problems.

5.2.1 Maximum Contiguous Subsequence Sum (MCSS) Problem

Given an array of n real numbers a1, a2, · · · , an. We want to find i and j such
that

∑j
k=i ak is maximized and 1 ≤ i ≤ j ≤ n [20]. The solution to this

problem is trivial, if all the numbers are non-negative. However, it becomes
interesting when there are some negative numbers as well. Practically this
problem can be seen as finding the maximum number of people in a room over
a time where we get some numbers representing the people entering or leaving
the room over that time. Let M[j] defines the max sum over all the windows
ending at j , then M[j] can be computed using the following recurrence equa-
tion.

M[j] = max

{
M[j − 1] + A[j]

A[j]
(5.1)

A vector M is filled starting from left side using the Equation 5.1. Figure 5.1

72 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

G A C G G A

0 -2 -4 -6 -8 -10 -12

G -2 1 -1 -3 -5 -7 -9

A -4 -1 2 0 -2 -4 -6

T -6 -3 0 1 -1 -3 -5

C -8 -5 -2 1 0 -2 -4

G -10 -7 -4 -1 2 1 -1

G -12 -9 -6 -3 0 3 1

A -14 -11 -8 -5 -2 1 4

Figure 5.2: Matrix, for NW g = −2 and x [i , j] = 1 when S [i] = T [j] otherwise −1.
Elements in bold show the traceback.

shows an example which computes vector M from vector A and MCSS is 21,
where i = 2 and j = 4. Using dynamic programming, it is solved in O(n).

5.2.2 Fibonacci Numbers

The Fibonacci numbers N[i] is given by the following equation.

N[i] = N[i − 1] + N[i − 2] (5.2)

where N[0] = 0 and N[1] = 1

5.2.3 Needleman-Wunsch (NW) Algorithm

Needleman-Wunsch (NW) is a global alignment algorithm for the two biologi-
cal sequences [91]. The optimal alignment score F [i , j] for two sub-sequences
S [1..i] and T [1..j] is given by the following recurrence equation:

F [i , j] = max

F [i , j − 1] + g

F [i − 1, j − 1] + x [i , j]

F [i − 1, j] + g

(5.3)

where F [0, 0] = 0,F [0, j] = g × j and F [i , 0] = g × i , for 1 ≤ i ≤ n, 1 ≤
j ≤ m, n and m are lengths of S and T respectively. The x [i , j] is the score for
match/mismatch, depending upon whether S [i] = T [j] or S [i] 6= T [j]. The

5.2. REPRESENTATIVE PROBLEMS 73

a b a c d a c c

0 0 0 0 0 0 0 0 0

c 0 0 0 0 1 1 1 1 1

a 0 1 1 1 1 1 2 2 2

d 0 1 1 1 1 2 2 2 2

c 0 1 1 1 2 2 2 3 3

d 0 1 1 1 2 3 3 3 3

d 0 1 1 1 2 3 3 3 3

c 0 1 1 1 2 3 3 4 4

Figure 5.3: LCS

g is some constant penalty for inserting a gap in any sequence. An example
of NW algorithm is shown in Figure 5.2, where a matrix is generated and the
two sequences are placed along the row and the column. First, the top row and
left column are filled with boundary conditions. Then the rest of the matrix
is filled using Equation 5.3 starting from the top-left corner. The elements are
filled from left to right and from top to bottom. After filling the whole matrix,
a traceback to find the optimal solution is started from the bottom right corner.
For most of the DP problems, the traceback is done in a similar way. The
global alignment as a result of the traceback shown in Figure 5.2, is
GA-CGGA

|||||||

GATCGGA

5.2.4 Longest Common Subsequence (LCS) Problem

Given a string of characters, if some of the characters are deleted from that
string, then the resulting string is called a subsequence. For example, Z =
〈a, d , c〉 is a subsequence of X = 〈a, b, a, c , d , a, c , d〉. Given two sequences
X and Y , we say that Z is a common subsequence of X and Y , if Z is a
subsequence common to both X and Y . LCS is defined as the longest of all
the possible subsequences of X and Y [114]. The Unix diff command works
by finding the LCS of two files, where each line is treated as a character. Let
c[i , j] is the length of the LCS for sequences Xi and Yj , then its formulation
for i , j > 0 is given by:

74 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

c[i , j]=

{
c[i − 1, j − 1] + 1 if xi = yj ,

max{c[i , j − 1], c[i − 1, j]} if xi 6= yj .
(5.4)

where c[i , j] = 0 for i = 0 or j = 0. An example of LCS is shown in Figure
5.3. Similar to NW, a matrix is filled by using Equation 5.4 and then traceback
is started from bottom right corner of the matrix. The LCS as we get from
Figure 5.3 is 〈a, c , d , c〉. The condition in the recursive formulation along
with finding the maximum make it different from the previous three examples.
Another very well known problem which has a similar structure is Knapsack
problem.

5.3 Generic RVE Algorithm for DP Problems

In this section, we describe the generic steps that can largely increase the par-
allelism, consisting of applying a modified version of RVE and subsequently
a dataflow based transformation. First we expand the equation by partially
applying RVE on the DP recurrence equation and remove the redundant sub-
equations. The remaining sub-equations are grouped together. As will be dis-
cussed below, certain terms can be precomputed. If we exploit that possibility
then we obtain the RVE with pre-computation version, denoted as RVEP. If not
exploited, then it is called RVE without pre-computation, denoted as RVENP.
Finally, all the unknown variables in a block are computed in parallel and
subsequent blocks are computed in a dataflow manner. We first illustrate the
approach using the four representative problems described above.

5.3.1 Step 1: Apply RVE

We partially apply RVE on all the representative problems in Section 5.2 and
we get the recursion trees shown in Figure 5.4. The edge labels in Figure 5.4d
define the condition as A defines xi = yj , B defines xi = yj−1, C defines
xi−1 = yj−1, D defines xi−1 = yj and A′, B ′, C ′, D ′ are the complement of A,
B , C , D respectively.

5.3.2 Step 2: Remove redundant sub-equations

Once the expression is expanded, we identify some redundant nodes in the re-
cursion trees in case of optimization problems as they can be removed without

5.3. GENERIC RVE ALGORITHM FOR DP PROBLEMS 75

(a) Maximum Contiguous Subsequence Sum (b) Fibonacci number

(c) NW (d) LCS

Figure 5.4: Partially RVE expanded recursion trees

76 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

affecting the solution.

In case of MCSS, there is no redundant node, therefore, nothing can be re-
moved and we get the following equation.

M[j] = max

a M[j − 3] + A[j − 2] + A[j − 1] + A[j]

b A[j − 2] + A[j − 1] + A[j]

c A[j − 1] + A[j]

d A[j]

(5.5)

Fibonacci number is not an optimization problem, so nothing can be removed.

In case of NW, there are some leaf nodes which are redundant, therefore we
can reduce the number of sub-equations in the max equation by removing re-
dundant nodes. For NW, the reduced equation after removing the redundant
nodes is the following.

F [i ,j]=max

i F [i ,j−2]+2g

ii F [i−1,j−2]+g+x[i ,j−1]

iii F [i−1,j−2]+3g

iv F [i−1,j−2]+g+x[i ,j]

v F [i−2,j−2]+2g+x[i−1,j−1]

vi F [i−2,j−2]+x[i−1,j−1]+x[i ,j]

vii F [i−2,j−1]+3g

viii F [i−2,j−1]+g+x[i ,j]

ix F [i−2,j−1]+g+x[i−1,j]

x F [i−2,j]+2g

(5.6)

The 13 leaf nodes in Figure 5.4c are reduced to 10 sub-equations in Equation
5.6.

If conditional statements are part of the recurrence equation of a DP problem,
then it is not obvious to remove the redundancies as shown in Figure 5.4d.
Here, the conditional statements are mixed with max statements. The non-
associative nature of conditional statements make it difficult to get benefit after
applying RVE. However we can still remove redundant nodes after making a
small algebraic transformation. It is algebraically correct to take the maximum
value of all the unique nodes and any statement will be only effective when its
accompanying conditional statement is also true, otherwise it will be 0. This is

5.3. GENERIC RVE ALGORITHM FOR DP PROBLEMS 77

similar to predicated execution, which was implemented in Cydra 5 computer
[98]. The c[i , j] after RVE expansion can thus be written as following.

c[i , j] =

c[i − 2, j − 2] + 2 A1

max

c[i − 1, j − 2] + 1 A2

c[i − 2, j − 1] + 1 A3

c[i , j − 2] A4

c[i − 2, j − 2] + 1 A5

c[i − 1, j − 2] A6

c[i − 2, j − 1] A6

c[i − 2, j] A7

(5.7)

where A1 = A∧C , A2 = (A∧C ′)∨(A′∧B), A3 = (A∧C ′)∨(A′∧D), A4 =
(A′∧B ′), A5 = (A′∧B ′∧C)∨(A′∧D ′∧C), A6 = (A′∧B ′∧C ′)∨(A′∧D ′∧C ′)
and A7 = A′ ∧D ′. Here A ∧ C means A AND C , A ∨ C means A OR C . The
Equation 5.7 has only 8 sub-equations as compared to 13 leaf nodes in Figure
5.4d.

5.3.3 Step 3: Group sub-equations

After having removed the redundant sub-equations, we can group and simplify
the remaining components of the equation.

Equation 5.5 for MCSS is already grouped and cannot be simplified any fur-
ther.

The Fibonacci number as given in Figure 5.4b is simplified and grouped as
following

N[i] = 3N[i − 3] + 2N[i − 4] (5.8)

In NW, Equation 5.6 can be rearranged and simplified to the follows:

F [i , j] = max

i (F [i , j − 2] � F [i − 2, j]) + 2g

ii F [i − 1, j − 2] + C1

iii F [i − 2, j − 2] + C2

iv F [i − 2, j − 1] + C3

v 0

(5.9)

78 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

where C1 = ((g + (x [i , j − 1] � x [i , j])) � 3g), C2 = ((2g + x [i − 1, j −
1]) � (x [i − 1, j − 1] + x [i , j])) = (2g � x [i , j]) + x [i − 1, j − 1] and
C3 = (3g � (g + (x [i , j] � x [i − 1, j]))) for Equation 5.6. Here � is defined
as the max operator.

In LCS, Equation 5.7 can be rearranged and simplified to the following.

c[i , j] =

c[i − 2, j − 2] + 2 A1

max

c[i − 1, j − 2] + C ′1 A2 ∨ A6

c[i − 2, j − 1] + C ′2 A3 ∨ A6

c[i , j − 2] A4

c[i − 2, j − 2] + 1 A5

c[i − 2, j] A7

(5.10)

where C ′
1=max

1 if A2

0 if A6
and C ′

2=max

1 if A3

0 if A6
.

It is possible that A2 and A6 are true at the same time. Similarly for A3 and
A6.

5.3.4 Step 4: Precompute cost function

Precomputation for an iteration means that part of the computation for the
current iteration can be done in the previous iteration, because all variables are
known. This can reduce the critical path and increase parallelism with little
increase in area on an FPGA.

In Equation 5.5 of MCS, the contents of sub-equation b,c and d are known
from the start. Therefore they can be pre-computed for next j th iteration de-
noted by j ′ while M[j] is computed.

Pre-computation cannot be done for Fibonacci numbers as all its contents are
dynamic and nothing is known from the start in Equation 5.8.

In NW, the contents of C1, C2 and C3 in Equation 5.9 are known in advance
and can be precomputed. While F [i , j] is being computed C1, C2 and C3 for
next (i , j) iteration defined as (i ′, j ′) can be computed in parallel as shown in
Figure 5.15b.

Similarly, in LCS, the contents of C ′1 and C ′2 in Equation 5.10 are known in
advance, therefore, C ′1,C ′2, A4 and A7 for the next (i , j) iteration defined as

5.3. GENERIC RVE ALGORITHM FOR DP PROBLEMS 79

1 j-3 j-2 j-1 j j+1 j+2 j+3 n

… …

Figure 5.5: MCSS vector

0 i-4 i-3 i-2 i-1 i i+1 i+2 i+3 i+4 i+5 n

… …

Figure 5.6: Fibonacci vector

(i ′, j ′) can be computed in parallel with the computation of c[i , j] for the cur-
rent i, j values. In other words, C ′1,C ′2, A4 and A7 to be used in next iteration
(i ′, j ′) are computed in current iteration (i , j). The circuit for LCS as given
by Equation 5.10 is shown in Figure 5.15c. C ′1 and C ′2 are further reduced to
C ∗[i , j] in Figure 5.15c.

When the pre-computation is applied, then we speak of RVEP (RVE with pre-
computation) and in case it is omitted we speak of RVENP (RVE with no
precomputation). The choice of choosing between them is left to the user.

5.3.5 Step 5: Fill the block and mix with dataflow

Next, we look at the elements which can be filled in parallel and also figure out
the elements whose computation can be avoided without affecting the solution
of the problem, as the computation of the output can be arranged without them
too.

Equation 5.5 of MCSS can be mapped to a vector as shown in Figure 5.5,
where the j th index of vector M is computed from j − 3rd index. Similarly,
j − 1st and j − 2nd indices can be computed from j − 3rd index in parallel to
the computation of j th index, as there is no dependency among them. Later
the j + 1st , j + 2nd and j + 3rd indices are computed in parallel from j th

index, which are done serially after j th index computation. A one dimensional
systolic array is used to compute the three unknowns as shown in Figure 5.7.

j-3 j-2 j-1 j

Figure 5.7: Systolic array for MCSS

80 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

j-1j-2

i-2

i-1

i

j

������

��

� O1O3

O2O4

(a)

j-1j-2

i-2

i-1

i

j

O1

O3

O2

O4

(b)

i-2

jj-1j-2

i-1 O3O4

O2 O1i

(c)

j-1j-2

i-2

i-1

i

j

i

O1O2

O3O4

(d)

Figure 5.8: NW matrix for B = 2 that shows the elements from which F (i− i
′
, j− j

′
)

are computed. The shaded square represents already known values.

0 -2 -4 -6 -8 -10 -12 -14 -16 -18

-2 O2 O2 O2 O2

-4 O3 O1 O3 O1 O3 O1 O3 O1 O3

-6

-8

-10

-12

-14

-16

-18

1 2 3 4 5

O2 O2 O2

O3 O1 O3 O1 O3 O1 O3
2 3 4

O2

O1 O3

O2 O2 O2 O2

O3 O1 O3 O1 O3 O1 O3 O1 O3
3 4 5 6 7

O2 O2 O2

O3 O1 O3 O1 O3 O1 O3
4 5 6

O2

O1 O3

5 6

8

O2 O2 O2 O2 O45 6 7

7

8 9

1 2 3 4 5 6 7 8 9

10

11

12

13

14

15

16

17

Figure 5.9: Sequence of fill of the F (i , j) scoring matrix of Equation 5.9, starting from
the top left light shaded square numbered 1 (represent the time instance to compute)
and moving diagonally down as shown by trailing numbers. All the squares with the
same number can be executed in parallel. Antidiagonal lines show the dataflow.

5.3. GENERIC RVE ALGORITHM FOR DP PROBLEMS 81

O1O3

O2O4

F[i,j-2]

F[i-1,j-2]

F[i-2,j-1] F[i-2,j]

F[i,j-1] F[i,j]

F[i,j-2]

F[i-1,j]

To temp

store
From temp

store

Figure 5.10: Systolic array

Similarly, Equation 5.8 of Fibonacci number can be mapped to the vector
shown in Figure 5.6. The i th index of vector N is computed from i − 3rd

and i − 4th indices. Likewise, i − 1st and i − 2nd indices can be computed
from i − 3rd and i − 4th indices in parallel to the computation of the i th in-
dex. A one dimensional systolic array similar to Figure 5.7 is used to compute
Fibonacci numbers.

In NW, Equation 5.9 when mapped on to tabular form gives us a 3× 3 matrix,
where the terms to be computed (O1 to O4) are represented by a 2 × 2 block
as shown in Figure 5.8. Figure 5.8a shows how F (i , j) (i.e. O1) is calculated
from Equation 5.9. Similarly we can compute F (i , j − 1) (i.e. O2 in Figure
5.8b), F (i − 1, j) (i.e. O3 in Figure 5.8c) and F (i − 1, j − 1) (i.e. O4 in Figure
5.8d) using the same steps as applied for O1. All the unknown variables in a
block can be computed in parallel, as there are no dependences among them.
The whole matrix can be filled as shown in Figure 5.9, which is like dataflow
at block level. We define the size of the unknown block as the blocking factor
B , which is set to 2. In the example discussed here, we assume that the matrix
size is the multiple of blocking factor for simplification. Otherwise, we can
always find the next smaller matrix which satisfies this condition, and continue
with our method. This structure of matrix filling motivates us to use a systolic
array as shown in Figure 5.10. This shows that when a block is computed, the
outputs taken out in the vertical direction are fed back as input for the same
block circuit to compute the next iteration in the fill. The horizontal data is

82 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

j - 2 j - 1 j

i - 2

i - 1 O2

i O3 O1

(a) for b=2

j - 3 j - 2 j - 1 j

i - 3

i - 2 O4

i - 1 O2

i O5 O3 O1

(b) for b=3

Figure 5.11: matrix to show elements to be found

stored in some temporary storage like BRAM, which is used in some later
iteration. Similar to NW, LCS matrix can also be filled.

In most of the DP problems, we can avoid filling the whole matrix and still can
obtain the optimal solution as is the case with NW and LCS. Figure 5.8 shows
how some elements depend upon elements which are already computed. Since
we know that the maximum value is always at the bottom right corner, O1 will
contain the maximum value. O1 is chosen from any of five boundary element
shaded as gray in Figure 5.8a, therefore the traceback will lead to that element.
Similarly, O2 and O3 can also be traced back to any of the boundary elements
shaded in gray in Figure 5.8b and 5.8c respectively. The optimal solution is
obtained while tracing back like this. There is no need to find the elements
inside the block as shown in Figure 5.11a, since the solution can be obtained
even without computing it. This saving can be increased from 1

4 to 4
9 , when

we increase the blocking factor from 2 to 3 as shown in Figure 5.11b. The
example given in Figure 5.12 shows the traceback without completely filling
the matrix with blocking factor B = 2, thus avoiding area which is otherwise
used to compute the element inside the block.

Similarly for computing the Fibonacci numbers shown in Figure 5.6, we only
compute the gray shaded elements, as they suffice to generate the solution.

We cannot avoid filling some elements in case of MCSS, as according to algo-
rithm, the traceback starts from the maximum value in the vector, which can
be located anywhere in the matrix. Therefore, we have to completely fill the
vector.

5.4. PERFORMANCE EVALUATION 83

G A C G G A

0 -2 -4 -6 -8 -10 -12

G -2 -1 -5 -9

A -4 -1 2 0 -2 -4 -6

T -6 0 -1 -5

C -8 -5 -2 1 0 -2 -4

G -10 -4 2 -1

G -12 -9 -6 -3 0 3 1

A -14 -8 -2 4

Figure 5.12: Example showing the traceback for NW Algorithm after RVE is applied
with b=2

M[j-1]

+

A[j] A[j]

M[j]

�

(a) MCSS

N[i-1]

+

N[i-2]

N[j]

(b) Fibonacci
number

F(i, j-1) g

+ +

F(i-1, j)

�
+

F(i-1, j-1)

�

x(i, j)

F(i, j)

(c) NW

�
1

+

c[i,j-1] c[i-1,j]

M
u

x

c[i-1,j-1]

=

y[j]x[i]

c[i,j]

(d) LCS

Figure 5.13: Circuits for each element in dataflow

This reduction technique can be used for most of the DP problems, as in most
of them, the traceback starts from the bottom right corner in a matrix or from
the right end in case of the vector. Therefore, in cases where the maximum is
at the bottom right corner, the user can switch to this reduction.

5.4 Performance Evaluation

This section presents the implementation details for the four representative
DP problems and then presents the performance comparisons for the dataflow
only, RVENP and RVE versions..

The circuit diagrams for implementing one element using dataflow for all the
four problems using Equation 5.1, 5.2, 5.3 and 5.4 are shown in Figure 5.13.
Similarly, the circuit diagrams for implementing one element using RVENP

84 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

�
A[j-2]A[j]

� �
A[j-1] M[j-3]

+

���
M[j]

(a) MCSS as given by Equa-
tion 5.5

×

23

+

N[i-4]N[i-3]

N[i]

×

(b) Fibonacci as given by
Equation 5.8

+

F[i,j-2] F[i-2,j] 2g

��
gx[i, j-1]

+

3g

�

x[i, j] 2g

�
x[i, j] x[i-1, j-1]

+

F[i-1,j-2]

+

F[i-2,j-2]

+

�
gx[i-1, j]

+

3g

�

x[i, j] F[i-2,j-1]

+

� ��
F[i,j]

(c) NW as given by Equation 5.9

�

c[i-1,j-2]

�

c[i,j]

c[i-2,j-1] c[i,j-2] c[i-2,j]

�
A4

M
u

x

0 A7

M
u

x

0

1

+

2c[i-2,j-2]

+
A5

M
u

x

0 A1

M
u

x

0

� +

�
0

M
u

x

0
A2vA6A3vA6

M
u

x

A2vA3

M
u

x

01

(d) LCS as given by Equation 5.10

Figure 5.14: Circuits for each element in RVENP, bold lines define the critical path

5.4. PERFORMANCE EVALUATION 85

�
A[j’-2]A[j’]

� �
A[j’-1] M[j-3]

+

� �
b[j’]e[j’]

b[j] e[j]

M[j]

d[j’] c[j’]

(a) MCSS as given by Equation 5.5,
where e[j’] and b[j’] are pre-computed
for next iteration

+

F[i,j-2] F[i-2,j] 2g C1

�
F[i,j]

�
F[i-1,j-2]

+

C2F[i-2,j-2]

+

C3F[i-2,j-1]

+

��
�

gx[i’, j’-1]

+

3g

�

x[i’, j’]

C1

2g

�
C2

x[i’, j’] x[i’-1, j’-1]

+

(b) NW as given by Equation 5.9. C1, C2 and C3 are precomputations. C3 is similar to C1.

�

c[i-1,j-2]

�

c[i,j]

�
c[i-2,j-1] C*[i,j]

+

�
0

M
u

x

0 A2vA6A3vA6

M
u

x

c[i,j-2] c[i-2,j]

�
A4

M
u

x

0 A7

M
u

x

0

1

+

2c[i-2,j-2]

+
A5

M
u

x

0 A1

M
u

x

0
A2"vA3"

M
u
x

01

C*[i’,j’]

A4" A7"

(c) Cicuit for LCS as given by Equation 5.10. A2”,A3” and A4”,A7” are precomputations.

Figure 5.15: Circuits for each element in RVEP, , bold lines define the critical path

86 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

Table 5.1: Results to show time and hardware utilized

Type Imple-
mentat-

ion

Freque-
ncy

(MHz.)

Time to
com-
pute
n ×m

ele-
ments
(ns)

Speed-
up

Slices area
over-
head

NW RVEP 88.75 439.43 1.69 8018 2.29
(B=2) RVENP 78.91 494.24 1.5 7557 2.16
n =

40,m =
40

Systolic 106.58 741.25 1 3500 1

LCS RVEP 97.68 399.27 1.03 3772 3.62
(B=2) RVENP 115.73 337 1.22 3641 3.49
n =

40,m =
40

Systolic 192.20 411.02 1 1043 1

MCSS RVEP 159.26 6.28 2.47 118 3.02
(B=3) RVENP 101.71 9.83 1.58 120 3.08

Systolic 193.09 15.54 1 39 1
Fibonacci RVENP 202.55 4.94 3.01 69 1.68

(B=4) Systolic 269.14 14.88 1 41 1

and RVEP for all the representative problems is shown in Figure 5.14 and
5.15.

To appreciate the performance of the two RVE techniques, we have imple-
mented the systolic array for both the RVE techniques and the systolic array of
dataflow technique for the four problems, targeted for Xilinx 4 platform, which
contains 25280 slices. We call the systolic array dataflow implementation as
Systolic in Table 5.1. The processing element design is written in VHDL and
simulated and synthesized on ModelSim 6.5 and Xilinx 10.5 respectively. The
results are summarized in Table 5.1 and graph in Figure 5.16. The speedup
and area-overhead is computed with respect to the dataflow systolic array im-
plementation.

We have implemented NW by using both RVE techniques with a blocking
factor B = 2 and then have compared it to its systolic array dataflow imple-

5.4. PERFORMANCE EVALUATION 87

Type Implementation Frequency (MHz.)Time to compute n\times m elements (ns)Speedup Slices Area overheadSlices

RVEP 88.75 0.43943662 1.68683 8018 2.290857 8018

RVENP 78.908 0.494246464 1.499768 7557 2.159143 7557

Element 106.576 0.741255067 1 3500 1 3500

RVEP 97.677 0.399275162 1.029419 3772 3.616491 3772

RVENP 115.727 0.337000009 1.219649 3641 3.490892 3641

Element 192.204 0.411021623 1 1043 1 1043

RVEP 159.261 6.279 2.474439 118 3.025641 118

RVENP 101.709 9.832 1.580248 120 3.076923 120

Element 193.087 15.537 1 39 1 39

NW RVEP B=2

NW RVENP

B=2

LCS RVEP

B=2

LCS

RVENP

B=2

MCSS

RVEP B=3

MCSS

RVENP

B=3

Fibonacci

RVENP

B=4

Speedup 1.69 1.5 1.03 1.22 2.47 1.58 3.01

Overhead 2.29 2.16 3.62 3.49 3.03 3.08 1.68

NW RVEP B=2

NW RVENP

B=2

LCS RVEP

B=2

LCS

RVENP

B=2

MCSS

RVEP B=3

MCSS

RVENP

B=3

Fibonacci

RVENP

B=4

Speedup/

area-

overhead 0.737991266 0.69444444 0.284530387 0.34957 0.815182 0.512987 1.791667

NW (B=2)

LCS (B=2)

MCSS

(B=3)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

NW RVEP

B=2

NW RVENP

B=2

LCS RVEP

B=2

LCS RVENP

B=2

MCSS RVEP

B=3

MCSS

RVENP B=3

Fibonacci

RVENP B=4

Speedup/area-overhead

Figure 5.16: Graph to show speedup/ area-overhead w.r.t. systolic dataflow

mentation. The results show that the both RVEP and RVENP implementations
are 1.69x and 1.5x faster than the systolic implementation respectively. These
speedups are at the cost of more area, which is 2.29x and 2.16x respectively
higher than the systolic implementation. Figure 5.16 shows that speedup/area-
overhead for RVEP is better than RVENP for NW as the critical path for RVEP
is shorter than RVENP as shown in Figure 5.14c and 5.15b. The exclusion of
pre-computation from the critical path makes the critical path short. The slight
increase in slices for RVEP with respect to RVENP is due to the extra registers
needed to store the intermediate pre-computed element.

We have implemented LCS using both RVE techniques with a blocking factor
B = 2. The results show that the time to compute the block of n = 40
and m = 40 using RVEP implementation is approximately the same as the
time for the systolic approach. The speedup/area-overhead for RVEP is less
than RVENP as shown in Figure 5.16. Therefore, it is not beneficial to apply
RVEP. However, there is a 1.22x speedup in case of RVENP on top of Systolic
with less area usage than RVEP but still substantially more area than in the
Systolic case. In an attempt to explain the lack of good enough performance
improvement for RVEP, we found that RVENP is faster in spite of the same
critical path (see Figures 5.14d and 5.15c). The reason is that the portion of
elements that are pre-computed is not enough to compensate for the additional
routing complexity in the RVEP circuitry.

We have chosen B = 3 for both RVE techniques in the implementation of
MCSS. The RVEP implementation is 2.47x faster than the systolic implemen-
tation but with twice the area usage. The RVENP implementation is only 1.58x

88 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

faster than systolic also with around twice more area usage. This shows that
RVEP results in a faster implementation than RVENP with similar area con-
sumption. The critical path of the RVEP implementation is shorter than the
RVENP implementation. The area of RVEP is slightly lower despite the use of
more registers because it uses less adders than the RVENP implementation as
shown in Figures 5.14a and 5.15a.

There is only RVENP implementation for the Fibonacci algorithm, as it does
not have any pre-computation part. We have implemented the multipliers in
Figure 5.14b with shifts and adds. We choose B = 4 for RVENP implementa-
tion of Fibonacci numbers. The results show that RVENP implementation of
Fibonacci is 3.01x faster than the systolic implementation at the cost of 1.68x
area. Figure 5.16 shows that the speedup/area-overhead for RVENP in case of
Fibonacci is better than dataflow, because we are able to optimize the RVENP
circuit for area more than before.

The results show that usually RVEP gives a higher speedup than the RVENP
implementation shown for both NW and MCSS. However, the RVENP solu-
tion is preferable than RVEP when there are little or no pre-computations to be
done as in the case of LCS. The speedup of both the RVE techniques depends
upon the structure of the recurrence equation and the number of associative
operators in the recurrence equation which will be explained in the next Sec-
tion.

5.5 Applicability of the RVE Techniques to DP Prob-
lems

In this section, we generalize the RVE variants and define a framework such
that they can be applied to the class of dynamic programming problems as
long as they comply to the earlier formulated conditions: a constant number of
dependences and the constant iteration space distance.

DP is usually applied to a class of optimization problems which exhibit two
basic properties [114].

1. The problem exhibit optimal substructure property. An optimization
problem has a optimal substructure if the optimal solution to the prob-
lem depends on the optimal solution of its subproblems.

2. There exist overlapping subproblems meaning that one can find the solu-
tion by recursion over the same subproblem. The total number of distinct

5.5. APPLICABILITY OF THE RVE TECHNIQUES TO DP PROBLEMS 89

subproblems is polynomial in the input size.

The optimal substructure implies that DP problems are defined by a recur-
rence functional equation whose left hand side is the function name and the
right hand side is max/min expression of some monotonous cost function [17].
The general form of DP optimization problem with a constant number of de-
pendences, for which the RVE approach is applicable is the following:

P[Ii ,j] =

∏
P[I0]⊕2 C0 if A(I0)

...
...∏

P[Ih]⊕2 Ch if A(Ih)

M

∏

P[Ih+1]⊕2 Ch+1

...∏
P[Im]⊕2 Cm

if A(Ih+1)

(5.11)

where
∏

P[Ik] = P[Ik,0]⊕1 P[Ik,1]⊕1 · · · ⊕1 P[Ik,nk], for 0 ≤ k ≤ m

Here P[Ii ,j] is the optimization problem that needs to be solved. P[Ik,l] for 0 ≤
l ≤ nk is a subproblem of P[Ii ,j]. Furthermore, M = max or min depending
upon the nature of the problem, I ∈ Zn defines the position of problem in
the n-dimensional space, Ii ,j − Ik,l remains constant for any iteration, which
means the position of the subproblems is invariant w.r.t to the reference it is
being computed. ⊕1 is the operator between the recursive functions and ⊕2

is the operator between the recursive function and the cost function Ci , which
can be constant or a function of I . In most of the DP problems, ⊕1 and ⊕2

are associative in nature. A(Ig) for g = 0, 1, 2, · · · , h + 1 is the condition that
chooses the relevant solution accordingly. If nk = 0 then it is called monadic
otherwise it is called polyadic. The general form of monadic DP problems with
constant number of dependences derived from Equation 5.11 is the following.

P[Ii] =

P[I0]⊕2 C0 if A(I0)
...

...
P[Ih]⊕2 Ch if A(Ih)

M

P[Ih+1]⊕2 Ch+1

...
P[Im]⊕2 Cm

if A(Ih+1)

(5.12)

Here P[Ii] is the optimization problem that needs to be solved. P[Ik] for
0 ≤ k ≤ m is a subproblem of P[Ii]. NW, LCS and MCSS are monadic

90 CHAPTER 5. RVE FOR DYNAMIC PROGRAMMING PROBLEMS

DP problems with a constant number of dependences and that follow Equa-
tion 5.12. Equation 5.12 shows that the optimal solution of P[I] depends on
the optimal solution of its m subproblems, therefore, if we apply RVE, then
the number of sub-equations will be exponential in m, which generally can-
not be solved efficiently. This can be seen from Figure 5.4c and 5.4d for NW
and LCS respectively, where every node at each level is expanded to 3 nodes.
Therefore, we apply the mixed solution by combining RVE and dataflow to
limit the growth of sub-equations to be solved as shown in Figure 5.9 in case
of NW.

The Fibonacci algorithm as given by Equation 5.2 is one of the simplest
polyadic DP problem and it follows Equation 5.11, where k = 0 and l = 1. It
is not an optimization problem and also have no condition. Finding Binomial
coefficient by using Pascal’s triangle is another polyadic DP problem. Sim-
ilar to monadic DP problems, polyadic problems also expand exponentially,
therefore, requiring the hybrid approach.

Since DP problems have the overlapping subproblems property, redundant leaf
nodes obtained after RVE application can be removed without loss of general-
ity in the min/max equation. We can even improve the overall speedup when
the number of overlapping problems is higher as only one has to be solved to
find the global solution. This is seen in Section 5.3.2, where 13 leaf nodes in
case of NW were reduced to 10 and 13 leaf nodes to 8 in case of LCS.

The cost function Ci as given by Equation 5.11 and 5.12 is either a constant or
a function of I , which is known in advance, therefore Ci can be precomputed
for the next position I ′ which is also known while the optimization problem
for the current position I is computed. E.g., C1, C2 and C3 were precomputed
for the next (i , j) values, while F [i , j] for the current (i , j) is being computed
in case of NW described in Section 5.3.4. This increases parallelism and can
help in reducing the critical depth of the pipeline.

The depth reduction of a pipeline for a problem after RVE is applied, depends
upon number of reasons. The main reason is that when RVE is applied, it
increases the number of terms in each sub-equation, between which an asso-
ciative operator is applied. More the terms in a sub-equation with associative
operator between them, more they can be computed efficiently by computing
them in a balanced tree as done in the recursive doubling decomposition algo-
rithm [63]. Secondly, after RVE, there are a number of sub-equations which are
identical as the DP problems have overlapping subproblem property. We can
eliminate those sub-equations while taking the max/min, as taking the max/min
of two identical sub-equations is the same. Taking into account all these fac-

5.6. SUMMARY AND CONCLUSION 91

tors, we can explain the difference of acceleration between MCSS, Fibonacci,
NW and LCS as compared to traditional dataflow approach.

To minimize the memory access, RVE blocks connected with other RVE
blocks in a dataflow manner, can be arranged efficiently in a systolic array
as described in [119] for elements connected with other elements in dataflow.

5.6 Summary and Conclusion

In this chapter, we have presented a generic algorithm to apply RVE to DP
problems, that can generate highly efficient circuits. We have devised two
variants of our technique to implement on FPGA called as RVENP and RVEP.
Both can accelerate the DP problems better than the well known dataflow ap-
proach. Section 5.5 provided a detailed discussion of how Equation 5.11 can
be applied to the class of DP problems as long as they comply to the conditions
stated explicitly in the beginning of the chapter. In the next chapter, we apply
the same technique on Smith-Waterman (SW) algorithm, which is again a type
of DP problems and is very widely used in molecular biology.

Note.

The content of this chapter is based on the the following paper:

Z. Nawaz, T. P. Stefanov, K.L.M. Bertels, Efficient hardware generation for
dynamic programming problems, proceedings of International Conference on
Field-Programmable Technology 2009, pp. 348-352, Sydney, Australia, De-
cember 2009.

6
Acceleration of Smith-Waterman

SEQUENCE alignment is one of the most widely used operations in com-
putational biology. It is typically used to compare newly determined se-

quences to known sequences in a database and to find the similarities among
them. This helps in discovering functional, structural and evolutionary infor-
mation in biological sequences of DNA, RNA and proteins. There are two
types of sequence alignment namely local and global. The choice of align-
ment depends upon the type of problem, but the most widely used is local
alignment. Smith-Waterman (SW) algorithm [106] computes the optimal local
alignment. It is used to align two apparently dissimilar sequences which in-
clude some pattern which is highly conserved. The algorithm finds that highly
conserved pattern and ignores the patterns that show little similarity. This al-
gorithm belongs to the family of dynamic programming problems, which has
time and space complexity O(mn), where m and n are lengths of the sequences
being aligned. Although this complexity seems to be acceptable, the exponen-
tial growth in bio-sequence databases of known sequences makes this com-
plexity extremely challenging to manage [19, 41]. Therefore as the database
size grows larger, faster algorithms become important to quickly compare and
align the sequences. Even a small relative improvement can still have a large
absolute impact.

There are some heuristic techniques like FASTA [79] and BLAST [10], which
also compute the local alignment. These algorithms have lower time complex-
ity and are thus faster. However, they do not guarantee to find the optimal
alignment. As Smith-Waterman belongs to the category of dynamic program-
ming problems, it seems likely that it can be parallelized to obtain a shorter
execution time.

Smith-Waterman algorithm belongs to the category of exponentially expanding
RVE expansion. Therefore, we have to use the RVENP and RVEP variants in

93

94 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

order to control this exponential expansion. In this chapter, we apply RVENP
and RVEP on SW and show that our implementation accelerates more than
dataflow approach at the cost of more area. This increase of area is not a prob-
lem because of two reasons. First, we are looking at high performance com-
puting, where we are ready to give away more area to achieve higher speed.
Second, future generations FPGA’s will have enough area thanks to Moore’s
law.

The main contributions of this chapter are

1. To provide an actual implementation of RVENP and RVEP for different
versions of SW and varying blocking factors for RVE. As stated above,
we obtain performance improvements ranging from 1.46x up to 2.29x at
the expense of up to 3x higher area consumption.

2. Modify RVE such that the algorithm adopts to clipping to zero factor
and give correct optimal values.

The rest of the chapter is organized as follows. In the following section, we
briefly describe the Smith Waterman algorithm and how it is implemented on a
uniprocessor. In section 6.2, we present the related work. Section 6.3 describes
the way the RVE technique is applied to SW and also shows the mapping
to actual circuits. Section 6.4 discusses the experimental setup and obtained
results showing the execution time and hardware usage for different versions
of SW with different blocking factors of RVE. Finally, we conclude the chapter
in Section 6.5.

6.1 The Smith-Waterman algorithm

Smith-Waterman algorithm is a dynamic programming algorithm, which fills a
two-dimensional matrix with optimal alignment scores as shown in Figure 6.1.
The two sequences to be aligned are placed along the row and column of the
matrix. The matrix is filled row-wise starting from the top-left corner. After
the matrix is filled, a traceback is performed starting from the maximum value
in the matrix, like 6 from Figure 6.1.

Let S [1..m] and T [1..n] be the two sequences of length m and n for the
sequence alignment. The optimal alignment score F [i , j] for the two sub-
sequences S [1..i] and T [1..j] is given by the following recurrence equation.

6.1. THE SMITH-WATERMAN ALGORITHM 95

G T C G C A A C

0 0 0 0 0 0 0 0 0

T 0 0 2 0 0 0 0 0 0

C 0 0 0 4 2 2 0 0 2

C 0 0 0 2 3 4 2 0 2

A 0 0 0 0 1 2 6 4 2

T 0 0 2 0 0 0 4 5 3

G 0 2 0 1 2 0 2 3 4

Figure 6.1: Matrix for an example of SW algorithm, when a = −2 and x(i , j) = +2
when S[i]=T[j] otherwise −1. Elements in the traceback are shown in bold.

F [i , j] = max

D[i , j]

F [i − 1, j − 1] + x [i , j]

E [i , j]

0

(6.1)

and

D[i , j] = max

{
F [i , j − 1] + a

D[i , j − 1] + b

E [i , j] = max

{
F [i − 1, j] + a

E [i − 1, j] + b

where F [0, 0] = D[0, 0] = E [0, 0] = F [0, j] = D[0, j] = E [0, j] = F [i , 0] =
D[i , 0] = E [i , 0] = 0, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. The x [i , j] is the
similarity score obtained from a scoring/similarity matrix for the correspond-
ing characters S [i] and T [j]. Equation 6.1 is called the SW algorithm for the
affine gap penalties [45]. There are many scoring matrices and the choice of
a scoring matrix depends upon the type of biological sequence and the goal of
analysis. The scoring matrix has both the negative and the positive values. a
is the penalty for opening a gap and b is the penalty of the following gaps in
any sequence. Both a and b have the negative values. For a local alignment,
b > xl > a, i.e. the lowest score in the scoring matrix xl is greater than the
continuing gap penalty b and is less than the opening gap penalty a. Other-

96 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

wise, the alignment will have more gaps and will eventually change from a
local to a global type of alignment, even though a local alignment algorithm
is used [31, 52, 108]. This observation is used in Section 6.3 to simplify the
RVE optimized equation for the affine gap penalties. Equation 6.1 takes care
of the fact that probability of having a gap is low, but probability of having n
consecutive gaps is not as bad as n × a.

Sometimes, a simplified version of SW algorithm is also used, in which a = b.
This is called SW algorithm for linear gap penalties and Equation 6.1 can be
simplified as following:

F [i , j] = max

F [i , j − 1] + a

F [i − 1, j − 1] + x [i , j]

F [i − 1, j] + a

0

(6.2)

Here xl > a, which is used in Section 6.3 to simplify the RVE optimized
equation for linear gap penalties.

Once, the whole matrix is filled, we find the maximum score in the whole ma-
trix and then start the traceback from that element to one of the three elements
from which the alignment score is calculated. This process is repeated till the
score drops below a certain threshold or to zero. In the traceback, if the corre-
sponding row and the column elements match then the alignment is computed
from the top-left element, otherwise, it is computed from any of the three el-
ements depending on which of them produces a maximum. When an element
is computed from the top element then there is a gap in the sequence along
the row, and similarly when an element is computed from the left element then
there is a gap in the sequence along the column. The local optimal alignment
for the example in Figure 6.1 is as follows.

The computation of optimal alignment score F [i , j] as given by Equation 6.1
and 6.2 takes constant time, and since there are m × n elements to be com-
puted, the time complexity for SW algorithm is O(mn). The traceback takes
O(m + n) steps, as the longest path in the m × n matrix is from top left to
the bottom right, which is O(m + n), and the time to determine the source of
the computation for an element is constant. We need to keep the table of size
m× n to compute the optimal score as well as to perform traceback, therefore,

6.1. THE SMITH-WATERMAN ALGORITHM 97

(i, j)

(i, j-1)

(i-1, j-1) (i-1, j)

Figure 6.2: Data dependence graph for Equation 6.1 and 6.2 (different shades of gray
in circles show the elements which can be executed in parallel).

the space complexity for the algorithm is also O(mn).

To parallelize SW algorithm we need to look at its data dependence graph as
shown in Figure 6.2. Blank circles are the elements after the initialization
with the boundary conditions. Any iteration (i , j) cannot be executed until
iterations (i − 1, j), (i − 1, j − 1) and (i , j − 1) are executed first, due to the
data dependences. However, if we traverse the elements in a wavefront manner
starting from the top-left corner as shown in Figure 6.2, all the elements in the
diagonal can be executed in parallel. The degree of parallelism is constrained
to the number of elements in the anti-diagonal. The maximum number of the
processing elements required will be equal to the number of elements in the
longest anti-diagonal (ld). ld is defined as follows:

ld = min(m, n) (6.3)

Here, we have assumed that the processing elements are equal in number to the
length of the shorter sequence. Theoretically, the lower bound to the number
of steps required in this parallel implementation is equal to the number of anti-
diagonals required to reach the bottom-right element is as follows:

m + n − 1 (6.4)

The profiling of SW algorithm shows that filling the matrix takes 98.6% of the

98 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

overall time to find the optimal alignment [110]. Therefore, filling the matrix
is an obvious choice to be accelerated on an FPGA.

6.2 Related Work

As sequence alignment is one of the most widely used operation in computa-
tional biology, a lot of work has been done to accelerate it by using different
hardware. In addition to the specific architectures designed for sequence align-
ment, many solutions for special purpose hardware like SIMD, CELL/BE and
FPGAs have been devised [51].

Several implementations for SIMDs have been proposed as MGAP, Kestrel and
Fuzion [21,32,103]. A recent implementation is done on a Intel Xeon 2.0 GHz
using a technique called Striped Smith-Waterman, which claims to achieve a
speedup of six times over the other SIMDs implementations [34]. SIMDs
contain the general purpose processors, therefore, it is programmable and is
used for a wider range of applications like image processing and scientific
computing. The drawback is that they are expensive. The striped SW has also
been modified for Cell/BE [35, 113].

FPGAs are a good choice to accelerate sequence alignment as they provide a
lot of parallelism. A linear systolic implementation of the dataflow approach is
widely used for this purpose. Some of the solutions based on FPGAs using the
dataflow are given in [18,78,93,131–133]. Recently, Jiang et al. [57] modified
SW algorithm formula by introducing a new variable, thereby, reducing the
critical path.

The implementations similar to ours are presented in [49,50]. Both of them are
mere implementation of RVENP technique [88] and model only SW algorithm
with linear gap penalty. In [50], a hardware implementation is done based on
a rectangular systolic array implementation. [49] is more close to our current
implementation, as it is also a linear systolic array implementation. We have
not only implemented RVENP but also RVEP using a linear systolic array for
both linear and affine gap penalties.

6.3 Application of RVE to SW Algorithm

Instead of computing one element, we can compute a block of k × k elements
in parallel, by applying the RVENP or RVEP for a blocking factor B = k .

6.3. APPLICATION OF RVE TO SW ALGORITHM 99

When it is applied for a blocking factor B = 2 to Equation 6.1 and Equation
6.2, we get the following equations for F [i , j] in a 2× 2 block.

F [i , j] = max

i D[i , j − 2] + 2b

ii F [i , j − 2] + c2

iii F [i − 2, j] + c2

iv E [i − 2, j] + 2b

v (D[i − 1, j − 2] � E [i − 2, j − 1]) + c1

vi F [i − 1, j − 2] + c3

vii F [i − 2, j − 1] + c4

viii F [i − 2, j − 2] + c5

ix 0

(6.5)

where c1 = b + x [i , j], c2 = a + b, c3 = a + (x [i , j] � x [i , j − 1]), c4 =
a + (x [i , j] � x [i − 1, j]) and c5 = x [i , j] + x [i − 1, j − 1] in Equation 6.5.
Here � is defined as the max operator.

F [i , j] = max

i (F [i , j − 2] � F [i − 2, j]) + 2a

ii F [i − 1, j − 2] + C1

iii F [i − 2, j − 2] + C2

iv F [i − 2, j − 1] + C3

v 0

(6.6)

where C1 = a + (x [i , j − 1] � x [i , j]), C2 = x [i , j] + x [i − 1, j − 1] and
C3 = a + (x [i , j] � x [i − 1, j]) in Equation 6.6.

Equation 6.5 or 6.6 can be visually understood as finding the longest path in
a graph reduced from the dependency graph by removing some of the edges
which can never be a part of the solution. Equation 6.6 gives the longest path in
the reduced graph showing the reduced paths from the known vertices (F [i , j−
2], F [i −1, j−2], F [i −2, j −2], F [i −2, j−1] and F [i −2, j]) to an unknown
vertex O1(F [i , j]) as shown in Figure 6.3a. Likewise, Equation 6.5 and 6.6
to compute F [i , j], we can find the equations to compute F [i − 1, j] (O2) and
F [i , j − 1] (O3) in parallel for affine and the linear gap penalties. Figure 6.3b
and 6.3c show the reduced path for RVE optimized equation for F [i−1, j] (O2)
and F [i , j −1] (O3) using the linear gap penalties. The diagonal edges in these
graphs can have the positive or the negative weights depending upon the x [i , j]
value. All the vertical and horizontal edges always have negative weights and

100 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

j-1j-2

i-2

i-1

i

j

O1O3

O2O4

(a) F[i,j] (O1)

j-1j-2

i-2

i-1

i

j

O1O3

O2
O4

(b) F[i-1,j] (O2)

j-1j-2

i-2

i-1

i O1
O3

O2

j

O4

(c) F[i,j-1] (O3)

Figure 6.3: Reduced graphs

represent a gap in the alignment. The unknown variables (O1, O2, O3 and O4)
can be computed in parallel, as shown in Figure 6.3 for the blocking factor
(B = 2). Similarly, Equation 6.5 can be taken as representing the longest path
in a similar graph with three levels [58].

6.3.1 Clipping Error

An aspect of SW is that negative values for the optimal score are not allowed
and then always clipped to zero. This clipping introduces an error in the com-
putation of the final optimal values when using the RVE method and thus has
to be compensated for. In this section, we describe the patch to RVE which
solves this issue.

In original SW algorithm Equations 6.1 and 6.2, which is for an element com-
putation, F [i , j] can never be negative, as a negative value is clipped to zero.
Algebraically, the formulas for computing F [i , j] as given in Equation 6.5 and
6.6 are correct, however due to the clipping it can produce smaller values than
produced by the original formula for SW element as given by Equations 6.1
and 6.2.

This problem is explained in Figure 6.4, suppose F [i , j] is computed from F [i−
2, j − 2] and F [i − 1, j − 1], F [i , j] path. Lets look at the computation of
F [i , j] using Equation 6.2. Figure 6.4a shows a scenario when all the unknown
elements (i.e. F [i − 1, j − 1], F [i , j − 1], F [i − 1, j] and F [i , j]) are computed
in a dataflow sequence using Equation 6.2. First F [i − 1, j − 1] is computed
from F [i − 2, j − 2] to 0, as max(3 − 5, 2 − 3, 4 − 5, 0) = 0, then F [i , j] is
computed from F [i − 1, j − 1] (as F [i − 1, j − 1] + x [i , j] = 0 + 5 = 5) to
5. However, when using the sub-equation (iii) of Equation 6.6 (as shown in
Figure 6.4b) F [i , j] is computed to 4. This difference is due to the clipping to

6.3. APPLICATION OF RVE TO SW ALGORITHM 101

j-1j-2

i-2

i-1

i

j

5

-3

-5

-5

2 3

4 0
-2-1

-1
5

(a) computed using Equation 6.2

j-1j-2

i-2

i-1

i

j

4

-3

2 3

4
5

(b) computed using Equation 6.6

Figure 6.4: Clipping error

zero of the intermediate vertex F [i − 1, j − 1] value as governed by Equation
6.2, when all the paths give the negative values. The problem is that Equation
6.6 computes F [i , j] without explicitly computing the intermediate vertices and
ignoring the clipping to zero for these intermediate vertices when the value
becomes negative. A naive solution is to check all the paths that contain any
intermediate vertex to compute an unknown element. Therefore, to compute
O1 (F [i , j]), there are 7 paths which contain some intermediate vertices, which
need to be checked for the clipping as shown in Figure 6.3a. Similarly to
compute O2 (F [i − 1, j]) and O3(F [i , j − 1]), there are two paths that need
to be checked for the possible clipping as shown in Figures 6.3b and 6.3c,
respectively. So overall for SW algorithm with the linear gap penalties, 11
paths need to be checked for the clipping error, when B = 2. We now show
that it is enough to check only one path for the clipping error in case of B = 2.

To simplify the understanding, lets redefine the Equation 6.2 for some inter-
mediate vertex p as shown in Figure 6.5.

Fp = max

{
fp

0
(6.7)

where fp = {F1 + w1,F2 + w2,F3 + w3}.
According to Equation 6.7, Fp is clipped to zero when fp < 0.

We call a vertex r is patched for the clipping, when the effects of the clipping
are taken into account.

102 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

Figure 6.5: Graph to show intermediate vertex

Theorem 6.3.1 : Given a reduced graph having paths from known vertices
to an unknown vertex q for the RVE optimized SW algorithm equation. Let
p be an intermediate vertex in a path to compute the vertex q, which satisfy
the clipping to zero requirement (i.e. fp < 0). Then only those paths going
through p need to be clipped, whose outgoing edge wp from p has a positive
weight and fp + wp > 0.

Proof. We look at the computation of Fq for some vertex q by using the RVE
optimized equation, which has an intermediate vertex p satisfying the clipping
to zero requirement (i.e. fp < 0). Let p have three incoming edges e1, e2 and e3
from vertices 1, 2 and 3 with weights w1, w2 and w3 and three outgoing edges
e4, ep and e5 to vertices 4, p and 5 with weights w4, wp and w5, respectively.
Similarly, q have three incoming edges from vertices 6, p and 7 with weights
w6, wp and w7 and three outgoing edges as shown in Figure 6.5.

We prove this theorem for Equation 6.6, the proof is generalized enough to be
extended for Equation 6.5 also. Lets look at the computation of Fq by using
Equation 6.6 in which p is an intermediate vertex. We show that even when p
satisfies the properties for the clipping as given by Equation 6.7 (i.e. fp < 0),
we will not clip Fp to zero while computing Fq until wp > 0 and fp + wp > 0.

Lets look at an outgoing edge wp from p to q which can have a negative or a
positive weight and fp < 0.

When wp is negative (i.e. wp < 0), then fp < 0 does not effect the evaluation
of the optimal value Fq for the vertex q. As fp +wp < 0, and is clipped to zero
at the vertex q by Equation 6.6, when all the other incoming paths to q are also
negative (i.e. f6 + w6 < 0 and f7 + w7 < 0). Otherwise, Fq gets the value of

6.3. APPLICATION OF RVE TO SW ALGORITHM 103

max(f6 + w6, f7 + w7), assuming the intermediate vertices 6 and 7 have been
patched for clipping to zero. In this case, there is no need to correct the vertex
p for clipping as it will not effect the result.

When wp is positive (i.e. wp > 0), and produces fp + wp > 0, then fp + wp

produces a lower value than when computed by Equation 6.2 in the evaluation
for Fq , when max(fp + wp, f6 + w6, f7 + w7) = fp + wp , since fp + wp <
Fp + wp as fp < 0 and Fp = 0. Therefore, fp needs to be corrected to zero
in Equation 6.6 for producing the correct result. However, when wp > 0 and
produces fp + wp < 0, then it is similar as stated in positive weight case, and
no correction is needed.

Similarly, using the same methodology, the theorem can also be proved for
Equation 6.5.

Theorem 6.3.1 assumes that p is an intermediate vertex which satisfies the
clipping requirement (i.e. fp < 0). There are still many paths going to vertex
q through vertex p and they need to be checked for clipping to zero (e.g. in
Figure 6.5, paths from 1 to q, 2 to q and 3 to q). Now to check whether p
satisfies the clipping to zero requirement, we prove that the checking of any
one the path to p for clipping to zero, and then clipping to zero is sufficient to
make a valid clipping instead of checking all the paths to p.

Theorem 6.3.2 Given a reduced graph for the RVE. let p be an intermediate
vertex, which needs to be checked for clipping. Then checking of any one of
the paths to p for clipping to zero and then making the correction, if that path
has negative weight, will correct the clipping error for all the paths via p.

Proof. To compute Fq at a vertex q, Equation 6.5 and 6.6 can be written as
Fq= max(weights of all the paths in a reduced graph from known vertices to a
vertex q). p is one of the intermediate vertices where clipping to zero needs to
be checked. Let’s assume that a path going through p gives the max value, as
the clipping effect at p is only visible at vertex q, when it is maximum, then

Fq = max(fp + wp, 0) (6.8)

where fp = {F1 + w1,F2 + w2,F3 + w3}
As given by the statement, we check only one path to the vertex p, let it be
from the vertex 2 to the vertex p, for clipping to zero, i.e. we check whether
F2 + w2 < 0. If F2 + w2 < 0, we call vertex 2 a potential candidate for the
clipping, then we make the correction and put F2 +w2 = 0, otherwise we keep
the same. So, if all the other paths to p (i.e. from vertex 1 and vertex 3) are

104 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

j-1j-2

i-2

i-1

i

j

(a) Block with B=2

j-2j-3

i-3

i-2

i-1

j-1 j

i

(b) Block with B=3

Figure 6.6: Patch for clipping. The intermediate vertices with +ve outgoing edges
are shown by large black circles. The paths that need to be checked for clipping are
shown by bold lines

also negative (i.e. F1 + w1 < 0 and F3 + w3 < 0), then according to Equation
6.8, correction to zero in the path from vertex 2 corrects the clipping error for
all the paths to p and returns Fq = wp . Otherwise, any other positive edge
takes the effect and no clipping error correction is required. It means that Fq
can never have a negative value according to Equation 6.8, and it will compute
wp , when fp < 0.

6.3.1.1 Patch

Theorems 6.3.1 and 6.3.2 define a patch to correct the clipping error in an RVE
block of any blocking factor. First, according to Theorem 6.3.1, we shortlist
the intermediate vertices with possible +ve outgoing edges. Then according to
Theorem 6.3.2, for each shortlisted vertex, we consider only one path from the
known vertices to a shortlisted intermediate vertex to check whether it is the
potential candidate for the clipping. Let p is one of the shortlisted intermedi-
ate vertex and we choose path from any known vertex i to vertex p to check
whether Fi + wi < 0, where Fi is the optimal score at vertex i and wi is the
weight of the path from i to p. If Fi + wi < 0, we put Fp = 0, otherwise keep
the same. This way, the clipping error can be corrected for the whole block.

6.3. APPLICATION OF RVE TO SW ALGORITHM 105

Now according to Theorems 6.3.1 and 6.3.2, we need to check only one path
going through F [i − 1, j − 1] while computing F [i , j] using Equation 6.6 as
shown in Figure 6.6a, instead of 11 paths as described earlier for B = 2.
Similarly, we check only four paths for clipping in case of B = 3 as shown
in Figure 6.6b. We implemented this patch and found that our implementation
gives the same result as the results of the original SW Equations 6.1 and 6.2.

6.3.2 Mapping Equations to Circuits

There are two ways Equations 6.5 and 6.6 can be mapped to the circuits as
discussed in Chapter 5. The first, RVENP (RVE with No Pre-computation), is
a simple implementation of the RVE equation for each iteration (i , j).

In the second implementation, we divide the RVE equation for one iteration
(i , j) into two parts. One that can be computed prior to the current iteration
(i , j) (pre-computed) as it is known earlier and second, which becomes known
at the current iteration (i , j), this implementation is called as RVEP (RVE with
pre-computation). In Equation 6.5, c1, c2, ... , c5 for any iteration can be com-
puted in advance as all its content are known in the start of the computation.
Similarly, in Equation 6.6, C1,C2 and C3 can be pre-computed. The RVE im-
plementation for SW algorithm with linear gap penalty is shown in Figure 6.7a
and RVEP implementation is shown in Figure 6.7b. Both these figures include
correction for the clipping error.

The pre-computation increases the parallelism by dividing the same equation
into two parts and computing both of them in parallel. This, however, slightly
increases the area with the introduction of the extra registers to save the pre-
computed values. This way, pre-computation may also reduce the critical path
depending upon the problem. First implementation, RVENP, of SW algorithm
for the linear gap penalties has the critical path from F [i , j − 2] to F [i , j] as
shown in Figure 6.7a, which has 5 levels. However, in the RVEP implementa-
tion, the critical path is reduced to 4 levels from F [i , j − 2] to F [i , j] as shown
in Figure 6.7b.

A block in optimal value matrix is computed using the circuit in Figure 6.7a or
6.7b and other circuits to compute F [i−1, j], F [i , j−1] and F [i−1, j−1], we
call all these circuits as the block circuit. Similarly, we map n

B block circuits
on the FPGA. The blocks in the optimal value matrix is computed using the
block circuits as shown in Figure 6.8a where block circuit v computes the
optimal value block (u, v) in cycle u. This structure of filling motivates us to
use a systolic array as shown in Figure 6.8b. This shows that when a block is

106 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

F[i, j-2]

F[i-2, j]

2a

a

F[i-1, j-2]

x[i, j-1]

x[i, j]

x[i-1, j]

a

F[i-2, j-1] x[i-1, j-1]

F[i-2, j-2]

� + + +

+

� �
�

+ + +

0

�

� �

M
u
x

M
u
x

0

<

0

A
b
s

<

F[i,j]

(a) RVENP

F(i, j-2)

F(i-2, j)

2a

C3

F[i-2,j-1]

0

F[i-1,j-2]

C1

� +

+

�
� �

F[i,j]

�
� M

u
x

C2

F[i-2,j-2]C8

Xi1

� �

x[i,j-1]

x[i,j]

�+

a

x[i-1,j]

� +

a

C1 C3

x[i,j]

x[i-1,j-1]

�

C2

0

�M
u

x

0

A
b
s

Xi1C8

(b) RVEP

Figure 6.7: F [i , j] computation in a block for SW with linear gap penalties

6.3. APPLICATION OF RVE TO SW ALGORITHM 107

O4

O4

O4O4

O4

O4

0 0 0 0 0 0 0 0 0 0

0 O2 O2 O2

0 O3 O1 O3 O1 O3 O1

0 O2 O2

0 O3 O1 O3 O1

0 O2

0 O3 O1

0

1,1 2,2

2,1

3,3

3,2

3,1

Block 1 Block 2 Block 3 Block 4

Block

C
ycle

(a) Sequence of fill, Blocks at the top show the hardware to be used in
each column. Number in red represent the block used and the number in
blue represent the cycle in which it is used.

O1O3

O2O4

F[i,j-2]

F[i-1,j-2]

F[i-2,j-1] F[i-2,j]

F[i,j-1] F[i,j]

F[i,j-2]

F[i-1,j]

To temp

store
From temp

store

(b) Systolic array

Figure 6.8: Filling the whole table

108 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

Table 6.1: Results to show time and hardware utilized

Type Imple-
ment-
ation

Freque-
ncy

(MHz.)

Time to
com-
pute
n ×m

ele-
ments
(ns)

Speed-
up

Slices overhead

SW
(B=2)

RVEP 79.33 491.60 1.65 9150 2.05

Linear RVENP 70.31 554.74 1.46 8683 1.94
n =

40,m =
40

Systolic 97.59 809.51 1 4468 1

SW
(B=3)

RVEP 73.215 286.818 2.29 12335 3.21

Linear RVENP 56.148 374.01 1.76 11790 3.06
n =

36,m =
36

Systolic 98.797 657.93 1 3848 1

SW
(B=2)

RVEP 60.35 414.25 1.68 12497 2.85

Affine RVENP 59.32 421.48 1.65 12872 2.94
n =

26,m =
26

Systolic 72.959 699.01 1 4380 1

computed, the output taken out in the vertical direction is fed back as input for
the same block circuit to compute the next iteration in the fill. The horizontal
data is stored in some temporary storage like BRAM, which is used in some
later iteration.

6.4 Performance Evaluation

We compared two variants of the RVE implementation with single element sys-
tolic array implementation for three different cases by changing the blocking
factor B and two variants of the SW algorithm. The results show that the RVE

6.4. PERFORMANCE EVALUATION 109

implementation is faster than the single element systolic array implementation.
Furthermore, the results show that the RVEP implementation is faster than the
RVENP. We have generated the PE design in VHDL and targeted the Xilinx
Virtex II pro platform, which contains 13696 slices. The code was simulated
and synthesized on ModelSIM SE 6.5 and Xilinx ISE 10.1 respectively.

First, we have implemented the linear systolic dataflow implementation of
Equation 6.1 and 6.2, which is equivalent to other comparable implementa-
tions on FPGA [57, 93, 131, 132]. We call this implementation as Systolic in
Table 6.1.

The query sequence and corresponding row of the scoring matrix is loaded as
the preprocessing step. This loading is done for aligning the query sequence
with all the known sequences in the database. However, when a new sequence
is to be aligned with all the sequences in the database, we can load the new
unknown sequence and its corresponding row of the scoring matrix by utilizing
the partial reconfiguration of the reconfigurable fabric.

We have implemented the protein sequence alignment using Blossum 62 as
the scoring matrix, in which the highest value is 11 and the lowest is −4.
Therefore, 5 bits can be used to store an element in the LUT. The data width
for each block computation is 16 bit, which is sufficient to align a sequence
of more than 5k length. We have chosen protein sequence alignment as it has
higher values for x [i , j] and therefore, the same design can be used for DNA
sequence alignment by changing the corresponding LUTs.

The number of block processing elements p available for computing the se-
quence alignment depends upon the size of FPGA used. This also limits the
size l of the query sequence used, as the length of the query sequence that can
be accommodated on the FPGA is equal to q = B × p. In this chapter, we
are producing the results when l ≤ q. However, if the size of query sequence
l is larger than that can fit on the available number of PEs (i.e. l > q) on the
FPGA, then two solutions can be used. First simpler and easier solution is to
split the length l into k parts, such that ((k − 1) × q) < l ≤ (k × q), and
then execute k passes sequentially by storing the intermediate results in some
temporary storage. The second method, which is more suitable for this kind of
implementation, but expensive to implement is to use high end machines like
CrayXD1, which can have 150 FPGAs mounted on a single machine [110]. All
these FPGA can be used to map the circuits and run in parallel when required.

There is no issue to accommodate the length d of database sequence in the
design. It can be very large as it only depends upon the size of temporary
storage available, BRAM in our case for storing the intermediate results.

110 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

Type Implementation Frequency (MHz.) Time to compute n\times m elements (ns)Speedup slices overhead

RVEP 79.33 491.6 1.65 9150 2.047896

RVENP 70.31 554.74 1.46 8683 1.943375

Element 97.59 809.51 1 4468 1

RVEP 73.215 286.818 2.29 12335 3.205561

RVENP 56.148 374.01 1.76 11790 3.063929

Element 98.797 657.93 1 3848 1

RVEP 60.35 414.25 1.68 12497 2.853196

RVENP 59.32 421.48 1.65 12872 2.938813

Element 72.959 699.01 1 4380 1

SW linear

RVEP B=2

SW linear RVENP

B=2

SW linear

RVEP B=3

SW linear

RVENP

B=3

SW affine

RVEP B=2

SW affine

RVENP

B=2

Speedup 1.65 1.46 2.29 1.76 1.68 1.65

Overhead 2.04789615 1.94 3.205561331 3.063929 2.853196 2.938813

SW linear

RVEP B=2

SW linear RVENP

B=2

SW linear

RVEP B=3

SW linear

RVENP

B=3

SW affine

RVEP B=2

SW affine

RVENP

B=2

Speedup/area-overhead0.805704918 0.75257732 0.714383462 0.574426 0.588813 0.561451

SW (B=2)

SW (B=3)

SW (B=2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SW linear

RVEP B=2

SW linear

RVENP B=2

SW linear

RVEP B=3

SW linear

RVENP B=3

SW affine

RVEP B=2

SW affine

RVENP B=2

Speedup/area-overhead

Figure 6.9: Graph to show the speedup/area-overhead w.r.t dataflow for SW

In the first case, we selected SW algorithm with linear gap penalties and ap-
plied both the RVE techniques with B = 2 and compared with the Systolic
implementation. To compute a block of 40 × 40 elements, RVEP is 1.65x
faster than the Systolic implementation, which is used in all previous SW par-
allel implementations. Similarly, RVENP is 1.46x faster than the Systolic im-
plementation. This speedup is at the cost of around 100% area on top of the
Systolic implementation. In the second case, we compute a block of 36 × 36
elements for the same SW version, however the blocking factor for RVE is
increased to 3. By increasing the blocking factor, the speedup is increased to
2.29x in the case of RVEP and 1.76x in the case of RVENP as compared to
the Systolic implementation for the same block computations. This speedup
is again at the cost of around 2.82% more area than the Systolic implementa-
tion. This increase of speedup by increasing the blocking factor shows that the
speedup can be improved by increasing the blocking factor which, however,
also increases the area consumed. The higher speedup of RVEP as compared
to RVENP is due to the reduction of critical path, which is done by splitting
the computations into two parts. This requires more intermediate registers to
store the pre-computation results. Therefore, it consumes a bit more area than
RVENP.

Finally, we implemented SW algorithm with the affine gap penalty and chose

6.5. SUMMARY AND CONCLUSION 111

B = 2 for the RVE implementations. RVEP shows a speedup of 1.68x more
than the Systolic implementation, which is also more than the RVENP’s 1.65x
speedup. The interesting thing was that its area consumption was less than
the RVENP, despite the fact it used extra registers to store the intermediate
pre-computation results. Both of these RVE implementations were optimized
for speed. The critical path of both RVE techniques took the same number of
levels, that’s why the difference in speedup is not big. However, in the case
of RVEP, we were able to increase the reuse of sub-expression in Equation 6.6
as compared to RVENP, while keeping the speed as the priority. Therefore, in
the case of RVEP, we were able to process the same block in less area than
the RVENP. This also reduced the net delay for the RVEP as compared to the
RVENP and created a small difference in time. These results are summarized
in Table 6.1. The graph depicted in Figure 6.9 shows that the speedup/area-
overhead of RVEP is better than RVENP, therefore, it is recommended to use
RVEP to accelerate Smith-Waterman algorithm.

6.5 Summary and Conclusion

In this chapter, we have applied the generic steps devised in Chapter 5 to an
important bioinformatics algorithm, Smith-Waterman. Smith-Waterman for-
mula contains a clipping factor that does not allow negative values. This leads
to incorrect values when RVE is applied. We have proposed an efficient patch
that compensates that error for SW RVE implementation with any blocking
factor. We have implemented two RVE based variants, RVENP and RVEP, for
two versions of SW formulation and with varying blocking factor which pro-
duce more speedup for SW than the widely used dataflow approach. We im-
plemented RVENP and RVEP on Xilinx Virtex II pro platform showed 2.29x
more speedup at the cost of 2.82x more area than dataflow approach. Likewise
Chapter 5, the results show that RVE techniques are again better than dataflow
to get high performance when area utilization is not the major restriction. Fur-
thermore, we also show that RVEP gives better performance than RVENP for
SW problem.

In the next chapter, we will describe a pipelined design for SW traceback that
returns the sequence alignment immediately after once performing the matrix
fill for all the sequences in the database. We will also discuss the memory
bottleneck that arises due to the change in procedure. We have devised the
solution for this memory bottleneck, which can be easily implemented on the
current off-the-shelf FPGA boards.

112 CHAPTER 6. ACCELERATION OF SMITH-WATERMAN

Note.

The content of this chapter is based on the the following paper:

Z. Nawaz, M. Shabbir, Z. Al-Ars, K.L.M. Bertels, Acceleration of Smith-
Waterman Using Recursive Variable Expansion, 11th Euromicro Conference
on Digital System Design (DSD-2008), pp. 915-922, Parma, Italy, September
2008.

Z. Nawaz, H. Sumbul, K.L.M. Bertels, Fast Smith-Waterman hardware imple-
mentation, International Parallel and Distributed Processing Symposium, pp.
1-4, Atlanta, USA, April 2010.

7
A parallel Smith-Waterman traceback

IN the last chapter, we saw that there are two stages in Smith-Waterman (SW)
algorithm namely matrix fill and traceback. First, we fill the matrix with

optimal score found, then we find the maximum of the optimal score. Finally
we perform the traceback starting from the maximum value. This procedure
is performed for all the sequences in the database. Since the matrix fill stage
takes 98.6% of the overall time [110], all FPGA implementations use FPGAs
for accelerating the matrix fill stage.

There are two methods to perform the sequence alignment on a reconfigurable
system. In the first method, the matrix is filled on an FPGA and then the matrix
data is sent to the GPP, where the traceback is performed. This method creates
a memory bottleneck in any off-the-shelf FPGA board. In the second method,
a sequence is shortlisted by finding the maximum value after performing the
matrix fill stage for the whole database. Later, that maximum value and the
index of the corresponding sequence is transferred to the GPP. The matrix fill
stage for the shortlisted sequences is repeated on the GPP and the traceback is
performed to get the optimal alignment.

In this chapter, we propose a parallel FPGA design of the SW traceback, which
performs the alignment immediately after completing the matrix fill for all the
sequences in the database. This way, we can avoid the second matrix fill stage
for the shortlisted sequences at the expense of more area consumption. It can
be easily implemented on off-the-shelf FPGA boards as it uses the BRAM and
bandwidth within limits of the current FPGA boards. The main benefits of the
proposed technique are as follows:

1. The proposed solution gives the alignment after scanning the database
once. We show that the bandwidth requirements is within the limits of
present day FPGAs.

113

114 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

2. The whole solution can be easily implemented as a pure FPGA based
implementation without needing a GPP.

3. Our solution is generic and can be used to design hardware for any
dataflow systolic array implementation.

In this chapter, we propose a hardware design for a RVEP SW [90] implemen-
tation, which has a higher bandwidth requirement than the classical dataflow
implementation for the same size of matrix. However, this design can be easily
adapted to address the bandwidth issue for a dataflow systolic array implemen-
tation.

The Chapter is organized as follows. The next section presents the related
work. Section 7.2 gives the detailed description of the memory bandwidth
bottleneck in case of SW. Then Section 7.3 discusses the proposed solution.
Section 7.4 discusses the design challenges and their possible solutions. Sec-
tion 7.5 discusses the different solutions and bandwidth requirements depend-
ing upon the what is needed. Finally Section 7.6 summarizes contents of the
chapter.

7.1 Related work

Several people have worked on approaches using the first method. Hoang and
Lopresti [53] gave a linear systolic array implementation on a SPLASH recon-
figurable logic array, in which the data of the matrix fill was stored in memory
and then a traceback was performed. They only used the edit distance formula,
which is a special case of Smith-Waterman algorithm. This method requires
substantial memory bandwidth which is not available, as will be shown in Sec-
tion 7.2. Yamaguchi et al. [131] and Moritz et al. [85] implemented SW on a
linear systolic array. They both applied compression and saved direction vec-
tors of 2 bits for each element instead of 16 bits. The compression reduced
the memory bandwidth requirement. However, still it was high enough to be
implemented using off-the-shelf FPGA boards and became the bottleneck as
described later in Section 7.2.

Most of the implementations follow the second method, in which FPGAs are
only used to find the maximum value after filling the matrix [18, 33, 57, 111,
133].

Our implementation is more close to the first method. Our goal was to avoid
the memory bandwidth problem such that off the shelf FPGAs can be used.

7.2. MEMORY BANDWIDTH BOTTLENECK 115

Table 7.1: Bandwidth requirement for different implementations

Implementations p dw Frequency Time I Bandwidth I
bits MHz. sec Gb/sec

Zhang07 [133] 384 20 66.7 1.56× 10−4 49.36
Oliver05 [93] 252 16 55 1.86× 10−4 27
Jiang07 [57] 80 20 82 1.23× 10−4 13.04

Nawaz10 [90] 40 16 79.3 6.33× 10−5 12.6

7.2 Memory Bandwidth Bottleneck

In this section, we describe the memory bandwidth bottleneck that arises when
we use the first method. Here, we assume to store only the direction vector,
which is of 2 bits as in [85,131]. A double buffering technique can be used, in
which one can keep two copies of the direction matrix in which one stores the
data alternatingly. When the FPGA is computing the next sequence alignment
and storing that result in one buffer, the other buffer can be transferring its
contents to the shared memory for later traceback use by the GPP. The time to
transfer the direction matrix from memory should not be more than the matrix
fill time for the next pair of sequences, so that the memory bandwidth does not
become the bottleneck.

In order to better quantify the memory bottleneck problem, we discuss the
memory requirements for different implementations. In Table 7.1, we present
the numbers for four different SW implementations. The first three are
dataflow implementations and the last is the RVEP implementation. p rep-
resents the maximum number of PEs that can be accommodated on the FPGA
available in the respective implementation. We take m = 10000, which is a
higher end value for a sequence, as only 13 out of 468851 protein sequences
are longer than 10000 symbols in the UniProt database and 99.5% of the se-
quences are less than 1000 symbols [55]. The storage size of an element in the
optimal value matrix is defined as dw . The frequency used for computing each
element in case of a dataflow implementation and for computing a block in
case of the RVEP implementation is given under Frequency. Time I is the time
needed to fill the whole matrix for one sequence alignment by the respective
implementations. Bandwidth I is computed for the transfer of the direction
matrix and is computed by the following formula:

Bandwidth I =
2nm

Time I
(7.1)

116 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

O4

O4

O4O4

O4

O4

0 0 0 0 0 0 0 0 0 0

0 O2 O2 O2

0 O3 O1 O3 O1 O3 O1

0 O2 O2

0 O3 O1 O3 O1

0 O2

0 O3 O1

0

(1,1) (2,2)

(2,1)

(3,3)

(3,2)

(3,1)

Block 1 Block 2 Block 3 Block 4

Block

C
ycle

Figure 7.1: Row to store the optimal values for B = 2. Blocks at the top show the
hardware to be used in each column. Block (u, v) specifies that v block circuit is used
in u cycle to compute the optimal value.

When combining all these data, we obtain a bandwidth requirement of up to
49.36 Gb/sec which is more than what is available on even the largest FPGA’s.
The Xilinx-6 FPGA Connectivity Development Kit enables advanced connec-
tivity designs with PCI Express 1.1/2.0, Ethernet, SATA and other proprietary
high-speed serial protocols with line rates up to 6.5 Gb/sec [3].

7.3 Compression and Backtracking

In order to solve the bottleneck as quantified above, we propose to perform
back tracking in addition to the compression. Even though this twofold solu-
tion is presented here in the context of the RVEP for Smith Waterman, it can be
easily modified to be useful for any classical dataflow implementation. In this
section, we are using B = 2,p = 40, m = 10000, n = 1000, and dw = 16,
where B is the blocking factor, p represents the maximum number of PEs that
can be accommodated on the FPGA, n and m are lengths of the sequences and
dw is the data width of the optimal values in bits.

During the matrix fill, the elements in a block can be computed only from the
adjacent elements in the preceding block [89]. As depicted in Figure 7.1, all
the elements in the anti-diagonal of blocks in cycle 4 can be computed using

7.3. COMPRESSION AND BACKTRACKING 117

G T C G C A A C

0 0 0 0 0 0 0 0 0

T 0 0 2 0 0 0 0 0 0

C 0 0 0 4 2 2 0 0 2

C 0 0 0 2 3 4 2 0 2

A 0 0 0 0 1 2 6 4 2

T 0 0 2 0 0 0 4 5 3

G 0 2 0 1 2 0 2 3 4

(a) Matrix for an example of SW algorithm,
when a = −2 and x(i , j) = +2 when
S[i]=T[j] otherwise −1. Elements in the trace
back are shown in bold.

G T C G C A A C

0 0 0 0 0 0 0 0 0

T 0 0 2 0 0 0 0 0 0

C 0 0 0 2 1 2 0 0 2

C 0 0 0 3 2 2 1 0 2

A 0 0 0 0 3 3 2 1 1

T 0 0 2 0 0 0 3 2 1

G 0 2 0 2 2 0 3 3 2

(b) Direction matrix for the example in Figure
7.2a

Figure 7.2: Scoring matrix and its corresponding directon matrix

the adjacent elements from the preceding anti-diagonal of blocks, as shown by
the pattern filled elements. Hence to compute the optimal score for the current
anti-diagonal of blocks, we only need to store the optimal score data for the
adjacent elements from the preceding anti-diagonal in the BRAM using a FIFO
buffer. We thus avoid to store the entire matrix of optimal values. The size of
memory required to store this is p× 2B × dw = 20× 2× 2× 16 = 1280 bits,
where p is the number of block PEs that can be accommodated on the FPGA.

Instead of the optimal value matrix, we only store the direction matrix which
contains direction vectors to construct the sequence alignment. There are only
3 directions from which an element can be computed. So similar to [85, 131],
only 2 bits are needed to indicate the direction it is computed from. As de-
scribed earlier in Section 6.1, the traceback is stopped beyond a threshold
value. We give the direction value 0 in the direction matrix for the corre-
sponding threshold value in an optimal value matrix. Similarly we fill a 1,2 or
3 value in the current element of the direction matrix, if the current element
is computed from the left, top left or top element respectively. The maxi-
mum value 6 in the matrix from Figure 7.2a is computed from the top-left
element, therefore, the corresponding element in the direction matrix contains
2 as shown in Figure 7.2b. The required storage space is determined by two
factors: the first is the row to keep the optimal values given by p×2B×dw and
second to keep the direction matrix which is 2nm. So the total space required
in BRAM is p × 2B × dw + 2nm = 1280 + 2 × 107 bits, which is less than
dw (nm) = 16 × 1000 × 10000 = 64 × 107 bits which are required without

118 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

compression. Now there are FPGAs available with 6.5× 107 bits BRAM [1].

Since the bandwidth requirement is still high after compression, we propose to
move the traceback stage to the FPGA, which further reduces the bandwidth
requirement. It means the complete solution is now on the FPGA, which is
easier to maintain as it is in one place. So, the traceback is performed on the
direction vector in BRAM and the alignment results are sent to the main mem-
ory, which are far less than the whole direction matrix. We perform another
task, which starts the traceback from the direction value in the direction matrix
corresponding to the maximum value in the optimal value matrix in BRAM
and transfer only direction vectors which come across the traceback path. For
the example shown in Figure 7.2a, the maximum value is 6, so we go to the
corresponding element in the direction matrix shown in Figure 7.2b, which is
2 and start the traceback from there. We perform the traceback according to
the direction vector and get the traceback as shown in Figure 7.2b, which is
the same as in Figure 7.2a. The length of the traceback path is O(max(m, n)),
which is the worst case and usually the length of the traceback is far less than
this.

7.4 Design Overview

In this section, we present the design overview for the proposed technique
for an RVEP implementation of Smith Waterman with parameter B = 2. As
explained above, the traceback is done in parallel with the matrix fill stage.
This design is on top of the circuit for optimal value computation as given in
Chapter 6. The proposed design is composed of computing the maximum of
the values stored in the optimal value matrix, generating the corresponding
direction matrix, storing the direction values in BRAM and finally doing the
traceback on the direction vectors starting from the maximum optimal value.
This implementation can be easily modified for RVEP with higher blocking
factors. The details are discussed in the following sections.

7.4.1 Computing max in the optimal value matrix

The first step is to find the maximum value in the optimal value matrix. We do
that by first finding the maximum of the block and then finding the maximum

7.4. DESIGN OVERVIEW 119

�

Max from

Previous

block

O1 O2 O3 O4

� �

�
Max to

next

block

Figure 7.3: Finding max. for the block of 2× 2

among all the blocks in a block column and then finding the maximum value
among all the block columns to find the maximum of the matrix.

As mentioned earlier in Chapter 6, we compute the optimal values in a systolic
array. After the optimal values are computed for a block, we compute the max-
imum of the optimal values from the previous and current blocks in the same
block column by using the circuit in Figure 7.3. In the meanwhile, the optimal
values for the next block in the same block column are computed systolically
by the computation block. This continues until the optimal values for the col-
umn block and later in the next cycle the maximum of the whole column is
computed. The resource and time used for computing the optimal value and
then the maximum for the matrix shown in Figure 7.4a is given in Figure 7.4b.
It shows that first the optimal value for block (1, 1) i.e. C1,1 is computed. In
the next cycle, C2,1 is computed systolically and the maximum of block (1, 1),
i.e. M1,1 is computed. The maximum of block column 1 is computed in cycle
5 and similarly the maximum of block column 2 is computed in cycle 6. The
maximum of block column 1 and 2 is computed in cycle 7 by using a single
comparator as given by m1_2. At the same cycle 7, the maximum of the col-
umn 3 is computed and then the same comparator that is used to compute m1_2

120 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

(1,1) (2,2) (3,3)

(2,1) (3,2) (4,3)

(3,1) (4,2) (5,3)

(4,1) (5,2) (6,3)

Block 1 Block 2 Block 3

Block

C
ycle

(a) Computation block. A number in red represent
the block used and the number in blue represents
the cycle in which it is used.

Time

(cycles)
column

max

1 C1,1

2 C2,1 M1,1 T1,1 C2,2

3 C3,1 M2,1 T2,1 C3,2 M2,2 T2,2 C3,3

4 C4,1 M3,1 T3,1 C4,2 M3,2 T3,2 C4,3 M3,3 T3,3

5 M4,1 T4,1 C5,2 M4,2 T4,2 C5,3 M4,3 T4,3

6 M5,2 T5,2 C6,3 M5,3 T5,3

7 M6,3 T6,3 m1_2

8 m2_3

9

Block 2 Block 3Block 1

(b) Computation sequence for the computation block in Figure 7.4a, C stands for Computing the
optimal value, M for finding the Maximum of the optimal value in a block and T for generating
the direction vectors for elements in the block. Red arrows show the computation of max block
and direction vector for the corresponding computation block. Blue arrows show the computation
of maximum of block columns.

Figure 7.4: Computation block and the sequence to compute it

7.4. DESIGN OVERVIEW 121

in cycle 7 is used to compute the maximum of block 3 and all block columns
< 3, we call it m2_3 in cycle 8. This way the maximum of all elements of the
optimal value matrix is computed.

Algorithm 7.1 Pseudo-code to generate the direction vector for an element
(i , j)

if (F[i,j]=0)
output=0

else if (F[i,j]=F[i,j-1]+a)
output=1

else if (F[i,j]=F[i-1,j]+a)
output=3

else
output=2

7.4.2 Generating the direction matrix

The direction vectors for a direction matrix block are computed after the com-
putation of the optimal value block. In Figure 7.4b, the direction vectors Ti ,j

for any block (i , j) are computed in the next cycle to Ci ,j . Similar to compute
optimal values and computing a maximum for a block, direction vectors of a
block are also computed systolically. The pseudo-code to generate a direction
value for an element is shown in Algorithm 7.1.

7.4.3 Storing direction vectors in BRAM

After the direction vectors for a block have been generated, they are stored in
BRAM as an intermediate result. All the values of the direction vectors for the
same i block are generated in parallel as shown in Figure 7.5. In this section,
we are looking at Figure 7.5 as an example where n = 8 and B = 2, b = 4
and r = n

B = 4.

Three regions can be distinguished as shown in Figure 7.5. The first one where
the number of blocks needed to be written to the memory is increasing starting
from 1 to (r−1) = 3 blocks and generating 1×b = 4 addresses to (r−1)b =
12 addresses. The second one where the number of blocks remain constant at
r blocks to generate rb = 16 addresses and the third one where the number of
blocks again decreases from (r − 1) = 3 to 1 block.

122 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

(0
,0

)

(1
,1

)

(2
,2

)

(3
,3

)

(1
,0

)

(2
,1

)

(3
,2

)

(4
,2

)

(2
,0

)

(3
,1

)

(4
,1

)

(5
,1

)

(3
,0

)

(4
,0

)

(5
,0

)

(6
,0

)

(4
,3

)

(5
,3

)

(5
,2

)

(6
,2

)

(6
,1

)

(7
,1

)

(7
,0

)

(8
,0

)

j

i

R
eg

io
n

1

R
eg

io
n

2

R
eg

io
n

3

Figure 7.5: Classification of BRAM according to the way to fill the direction matrix
of 8× 12, with B = 2 and b = 4

j = 0 1 2 3 rb-1

O4 O3 O2 O1 O1

…

Figure 7.6: Elements stored in BRAM

7.4. DESIGN OVERVIEW 123

(0
,0

)

(1
,1

)

(2
,2

)

(3
,3

)

(1
,0

)

(2
,1

)

(3
,2

)

(4
,2

)

(2
,0

)

(3
,1

)

(4
,1

)

(5
,1

)

(3
,0

)

(4
,0

)

(5
,0

)

(6
,0

)

(4
,3

)

(5
,3

)

(5
,2

)

(6
,2

)

(6
,1

)

(7
,1

)

(7
,0

)

(8
,0

)

j

i

2,1

1
,0

1,1

2,0

1,0

1
,1

2,-1

1
,1

1,0

R
eg

io
n

I

Region III

R
eg

io
n

II

R
eg

io
n

III

Figure 7.7: Classification of BRAM according to the direction vectors among the
neighboring blocks, Region I: i < r ; Region II: i = r and Region III: i > r , here
r = 4

It is interesting to choose the suitable width in BRAM to store these direction
vectors. Lets look at two extremes. One possibility is to generate an address
for each block and store it separately. In this case, 2b = 8 bits are allocated
to store b = 4 elements. Therefore, in Region 2, we need r memory ports for
writing into BRAM. The second possibility is to generate one address for the
whole anti-diagonal of blocks. This way 2rb = 32 bits are allocated to store
rb = 16 elements, and we need at most one port to write. In this case, we need
to do stuffing in Region 1 and 3 and some memory will be wasted, however
the advantage is that only one memory port is required.

We have chosen the second option and we made the BRAM width = 2rb = 32
bits. The way elements are stored is shown in Figure 7.6. This whole BRAM
width is filled in one cycle using one write port. The data is always filled
starting from 0.

One can further optimize the memory waste by choosing the BRAM width
between these two extremes.

124 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

Algorithm 7.2 Pseudo-code for traceback
GetTrace(i,j,trace){

k = j mod b
if (((i<r) and ((j>2) and
!((j>=i*4) and (j<i*4+3))))
or ((i>=r) and ((j>2) and !((j>=r*4-4)
and (j<r*4-1)))) and (m>0) {
I = GetI(k,m(i,j)) // Get I from Figure 7.8
J = GetJ(k,m(i,j)) // Get J from Figure 7.8
trace = trace + m(i,j) // + is concatenation
GetTrace(I,J,trace)

} else {
trace = trace + m(i,j)
}

}

1 2 3

I=i-1 I=i-2 I=i-1

J=j-2+d J=j-1+e J=j+1+d

I=i-1 I=i-1 I=i

J=j-2+d J=j-3+d J=j-1

I=i I=i-1 I=i-1

J=j-2+d J=j+1+d J=j+1+d

I=i I=i I=i

J=j-2+d J=j-3 J=j-1

where d=0,e=0 if i<r; d=b, e=b if i=r and d=b, e=2b if i>r

k=3

m(i,j)

k=0

k=1

k=2

Figure 7.8: BRAM Address translation

7.5. EXPERIMENTAL VALIDATION 125

7.4.4 Traceback

The traceback is started from the point in the direction matrix corresponding
to the maximum value of the optimal value matrix. The data is stored in a
different coordinate system (rotated at 45 degree to horizontal) as compared to
what was earlier suggested by the formula in Equation 6.2 and secondly each
2-dimensional block is linearized as shown in Figure 7.6. We need to translate
the traceback formula accordingly.

There are three regions classified by the direction vectors between the blocks
as shown in Figure 7.7. The traceback is possible to three neighboring blocks.
The block direction vectors are different in different regions as shown in Figure
7.7. The direction vectors among the neighboring blocks remain the same in
each region and hence the traceback formula too. The traceback code, which
also takes care of each of these regions is given in Algorithm 7.2. The first
call to the traceback code is GetTrace(i,j,ε), where ε is the empty string and
(i , j) is the position of the maximum value in the optimal value matrix. The
trace variable in Algorithm 7.2 will finally give the traceback path from which
the alignment can be easily computed. The traceback code has a linear time
complexity and takes less time than the time to fill the matrix in either the
dataflow or RVEP case. The address translation is summarized in Figure 7.8.
m(i , j) refers to the direction value at (i , j) position in the BRAM.

7.5 Experimental Validation

In order to assess the impact of our compression scheme with traceback, we
explore two extreme cases of memory transfer. The memory bandwidth re-
quired for these two cases is given in Table 7.2, which is a extension of Table
7.1. The first case, considered as the worst case is as follows. We keep two
direction matrices for double buffering to do the sequence alignment continu-
ously. When one matrix is being filled, the other can be used to transfer the
traceback result of the sequence alignment done recently. We generate the
direction matrix for every alignment one after the other; however, we do not
transfer the traceback direction vector for every alignment. The idea is that we
start the alignment, find the maximum score in the optimal value matrix of the
first pair, declare it as global maximum score and send its traceback direction
vector to the main memory. We proceed with the second pair, generate the
direction matrix, find its maximum score, but only send its traceback direction
vector when the maximum score of the second pair is larger than the global

126 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

Table
7.2:

C
om

parison
ofbandw

idth
requirem

entfordifferentim
plem

entations

Im
plem

entations
P.E

.
D

ata
w

idth
Frequency

Tim
e

I
Tim

e
II

B
andw

idth
I

B
andw

idth
II

B
andw

idth
III

bits
M

H
z.

sec
sec

G
b/sec

M
b/sec

K
b/sec

Z
hang07

[133]
384

20
66.7

1.56
×

10
−
4

2.48
49.36

128.8
8

O
liver05

[93]
252

16
55

1.86
×

10
−
4

3.02
27

107.2
6.64

Jiang07
[57]

80
20

82
1.23

×
10
−
4

2.02
16.3

162.4
9.92

N
aw

az10
[90]

40
16

79.3
6.33

×
10
−
5

1.13
12.6

316
17.6

7.5. EXPERIMENTAL VALIDATION 127

maximum score and declare that as global maximum. We will repeat this for
the rest of the known sequences in the database.

In the worst case, we need to transfer the traceback vector for every comparison
when every next sequence in the database has a higher maximum optimal value
than the current sequence. In that case, we need to send O(2 × max(m, n))
bits for some unit time (which is equal to the time to fill the matrix, Time I in
Table 7.2) instead of O(2nm) bits, which is linear as compared to quadratic
in normal case. The chances of this worst case are close to impossible. We
have also computed the bandwidth requirement for our proposed technique
keeping in mind the worst case referred to as Bandwidth II in Table 7.2. Here,
the maximum bandwidth is 316 Mb/sec which is easily achievable in normal
FPGA boards.

The best case is described as follows. We find the maximum value in the op-
timal value matrix for the first sequence alignment, find the traceback vector
along with the maximum optimal value. We set the maximum value as global
maximum and also save the traceback vector in BRAM. We repeat the same for
the next alignment and compare the maximum value with the previously saved
global maximum value. The previously saved global maximum is replaced
with the maximum value of the current alignment, if the maximum value of
the current sequence is larger than the global maximum. The traceback vector
corresponding to the new global maximum is also saved. We repeat this for the
rest of the sequences in the database. Finally, we are left with the maximum
value of the sequence and its corresponding traceback vector, which is trans-
ferred to the main memory. In this scenario, the traceback path and maximum
will be sent once after scanning the entire database, which contains 468851
protein sequences in case of UniProt [55]. The time it takes to scan the whole
database is given under the header Time II. The memory bandwidth require-
ment for this implementation using Time II is shown as Bandwidth III in Table
7.2. The maximum bandwidth under heading Bandwidth III is 17.6 Kb/sec.

The implementation strategy can be easily changed, if there is a requirement
for computing some k-best alignments from the database. The bandwidth for
any such strategy will fall in between Bandwidth II and Bandwidth III.

Our solution is better than other approaches described in [33, 93, 111] in the
sense that it gives the optimal alignment between the unknown sequence and
the known sequence in the database after once scanning through the database
and there is no need to repeat the sequence alignment for some smaller subset.
Secondly, the whole solution is based on FPGA, so there is no need to maintain
the solution at two different places, which is cheaper and at lower risk.

128 CHAPTER 7. A PARALLEL SMITH-WATERMAN TRACEBACK

7.6 Summary and Conclusion

In this chapter, we have proposed a parallel FPGA design of the SW trace-
back phase, which constructs the optimal alignment between the unknown se-
quence and its closest known sequence from the database. We have shown that
compression alone is not enough to address the memory bandwidth problem.
We have proposed to perform a traceback on the compressed data to reduce
the memory bandwidth and can be easily implemented on current off-the-shelf
FPGA boards. Moreover, we have proposed a hardware design for a SW RVEP
implementation that can be easily extended to any other dataflow systolic array
implementation.

Note.

The content of this chapter is based on the the following paper:

Z. Nawaz, M. Nadeem, H. V. Someren, K.L.M. Bertels, A parallel FPGA
design of the Smith-Waterman traceback, proceedings of International Confer-
ence on Field-Programmable Technology 2010,pp. 1-6, Beijing, China, De-
cember 2010.

8
Conclusions

FPGAS are increasingly becoming a choice in high-performance comput-
ing due to high degree of parallelism they provide. The traditional HDL

compilers use many loop transformations to extract the required parallelism.
The area on FPGA is increasing with an increase in transistor density due to
the trend called Moore’s law. This motivated us to investigate the methods
that can utilize the extra area available on FPGA to extract more parallelism
beyond the traditional loop transformations.

In this final chapter, we first summarize the work done in the earlier chapters
and also present the contributions made in each of them in the next section.
Finally, in Section 8.2, we propose the future research directions.

8.1 Summary and Contributions

We started by discussing a number of loop optimizations and explained the
kind of dependences that limit the parallel execution in Chapter 2.

The goal of loop parallelization techniques is to change the sequence to execute
the instructions, so that the dependences are not violated and more computa-
tions can be performed in parallel. In Chapter 3, we introduced a transfor-
mation called Recursive Variable Expansion (RVE) as a more powerful loop
transformation suitable for a large class of problems. RVE removes all the
data dependences in an expression by a backward substitution, which results
in expansion. We identified two types of recurrences namely polynomially ex-
panding and the other exponentially expanding. We showed analytically by
an example that our transformation achieved more acceleration than the tra-
ditional approaches like loop skewing. We applied RVE on four kernels and
then compared the obtained results with a GPP implementation. It showed

129

130 CHAPTER 8. CONCLUSIONS

speedups to 77x as compared to the GPP implementation. The basic version
of RVE assumes unlimited area, an assumption which was relaxed later.

The contribution made in Chapter 3 can be summarized as

• We proposed a transformation called Recursive Variable Expansion.
When applied to a certain class of problems, all the data dependences
are removed and a high degree of parallelism can be achieved.

In Chapter 4, we imposed the constraints like the limited available area and
usable memory bandwidth. We tried to build a pipelined hardware design for
the problems that expand polynomially when RVE is applied. We used the
suffix tree data structure to find repeating patterns in the generic version of
the expanded expression. The largest repeating pattern that satisfies the area
and memory constraints determines the pipeline circuit. Furthermore, without
compromising performance, we optimized the area of the pipelined circuit.

The contribution made in Chapter 4 can be summarized as :

• We presented an automatic pipelining design algorithm for polynomially
expanding expression that defines an optimal pipeline which satisfies
both the area and memory bandwidth constraints. We applied this algo-
rithm on the 2D DCT kernel, which showed that it produces a pipeline
circuit with comparable performance to the hand optimized pipeline cir-
cuit for 2D DCT kernel provided by Xilinx.

Chapter 5 dealt with the dynamic programming (DP) problems, which are
characterized by an exponential expansion when RVE is applied. We proposed
a hybrid approach that mixed the RVE with the dataflow to limit the growth.
We chose four representative DP problems, and applied RVE to them. Finally,
we generalized our approach to show that it can be applied to a large class of
DP problems, which have a constant number of dependences.

The contribution made in Chapter 5 can be summarized as :

• We proposed a generic framework and two variants of the RVE based
algorithms (RVENP and RVEP) that can accelerate a large number of
DP problems more than a pure dataflow approach.

In Chapter 6, we provided an in-depth discussion of an important bioinformat-
ics algorithm, Smith-Waterman (SW). Smith-Waterman is also a DP problem.
The fact which makes it different from most of the other DP problems is that

8.2. FUTURE DIRECTIONS 131

the SW formula contains a clipping factor which does not allow negative val-
ues. However, when RVE based algorithms devised in Chapter 5 are applied,
they exclude the clipping factor for the intermediate vertices. As a conse-
quence, RVE cannot be applied as such but needs modifications to compensate
for this error.

The contributions in Chapter 6 can be summarized as :

• We applied RVEP and RVENP on SW algorithm and showed that our
solution outperforms the dataflow approach.

• We proposed a generic algorithm that defines a patch to extend the RVE
formulations and takes care of the clipping factor on a RVE block for
any blocking factor.

Finally, we further optimize our RVE and dataflow implementation of SW by
performing the traceback at the same time when performing the matrix fill.
This requires a higher bandwidth, which is not available on off-the-shelf FPGA
boards. To this purpose, we have developed a compression scheme to address
the bandwidth constraints and storage needs.

The contributions in Chapter 7 can be summarized as :

• We proposed a new pipelined SW traceback FPGA design that computes
the alignment immediately after scanning the database.

• We resolved the memory bandwidth bottleneck problem that arises due
to the change in the design from serial to parallel traceback.

8.2 Future Directions

In Chapter 3, we proposed our transformation Recursive Variable Expansion
(RVE). We applied this transformation to kernels which have certain con-
straints, which also limits the type of kernels on which it can be applied. How-
ever, RVE can be applied to more kernels if we relax some of these constraints.
One of the constraints is that we apply RVE to a loop body which is free from
any conditional statement. Another assumption made for the application of
RVE is that the bounds of the loops must be known at compile time. In future,
we plan to relax these constraints by using techniques developed by Ghuloum
et. al [39, 43] and Schlansker et. al [101]. This way RVE can be applied to
more kernels.

132 CHAPTER 8. CONCLUSIONS

In Chapter 4, we proposed a pipeling design algorithm for the polynomially
expanding expression that chooses an optimal pipeline that fits both the area
and memory bandwidth requirement. However, our approach was only appli-
cable to equal sized generic expressions. We can relax this constraint by using
loop tiling with RVE expansion of some constant number of steps, where loop
tiling will iterate between the RVE blocks.

In Chapter 5 and 6, we proposed an algorithm that dealt with a large class of dy-
namic programming problems. We applied our algorithm semi-automatically
on a number of such problems. A fully automatic implementation of the algo-
rithm that becomes part of the compiler would be a useful enhancement. This
way, more dynamic programming problems that satisfy the given constraints
can be accelerated. In the current work, we have kept the blocking factor to
at most 3, because the problem size becomes so large to be handled manually.
When fully automated, we could investigate the speedups for large block sizes.
Another intriguing extension can be to use rectangular blocks instead of square
blocks to investigate the performance gains at the cost of consumed area.

As said earlier in Chapter 1, we plan to make RVE as part of the DWARV
compiler, as we can identify the loops and expressions, on which it can be
applied efficiently.

In Chapter 7, we have proposed a parallel FPGA design for Smith-Waterman
traceback stage. We plan to implement that design on FPGA to see the perfor-
mance benefit that can be achieved at the cost of consumed area. A complete
solution of the sequence alignment problem, that takes inputs from the user
on a computer, computes the alignment with all the sequences in the database,
and then return the final alignment result at the end is being done on Convey
supercomputer.

Bibliography

[1] 7 Series FPGAs Overview. online: http://www.xilinx.
com/support/documentation/data_sheets/ds180_
7Series_Overview.pdf.

[2] hArtes. online: http://www.hartes.org/.

[3] New Xilinx Virtex-6 and Spartan-6 FPGA Connectivity Develop-
ment Kits. online: www.xilinx.com/products/devkits/
EK-V6-ML605-G.htm.

[4] PSIM. online: http://sourceware.org/psim/.

[5] Virtex-4 family overview. online: http://www.xilinx.com/
bvdocs/publications/ds112.pdf.

[6] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the Performance En-
hancement of Paging Systems Through Program Analysis and Transfor-
mations. IEEE Transactions on Computers, 30(5):341–356, 1981.

[7] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and Stephen J. Allan.
Software pipelining. ACM Computing Surveys, 27(3):367–432, 1995.

[8] John R. Allen and Ken Kennedy. Automatic loop interchange. In SIG-
PLAN ’84: Proceedings of the 1984 SIGPLAN symposium on Compiler
construction, pages 233–246, New York, NY, USA, 1984. ACM.

[9] John Randal Allen. Dependence analysis for subscripted variables and
its application to program transformations. PhD thesis, Houston, TX,
USA, 1983.

[10] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.
Basic Local Alignment Search Tool. Journal of Molecular Biology,
pages 403–410, 1990.

[11] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler trans-
formations for high-performance computing. ACM Computing Surveys,
26(4):345–420, 1994.

[12] J. L. BAER and D. P. BOVET. Compilation of arithmetic expressions
for parallel computations. In Proceedings of the IFIP Congress, pages
340–346. North-Holland Pub. Co., Amsterdam, 1968.

133

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.hartes.org/
www.xilinx.com/products/devkits/EK-V6-ML605-G.htm
www.xilinx.com/products/devkits/EK-V6-ML605-G.htm
http://sourceware.org/psim/
http://www.xilinx.com/bvdocs/publications/ds112.pdf
http://www.xilinx.com/bvdocs/publications/ds112.pdf

134 BIBLIOGRAPHY

[13] U. Banerjee. Unimodular Transformations of Double Loops. Advances
in Languages and Compilers for Parallel Processing, pages 192–219,
1991.

[14] U. Banerjee, Shyh-Ching Chen, D. J. Kuck, and R. A. Towle. Time and
Parallel Processor Bounds for Fortran-Like Loops. IEEE Transactions
on Computers, 28(9):660–670, 1979.

[15] Nastaran Baradaran and Pedro C. Diniz. A compiler approach to manag-
ing storage and memory bandwidth in configurable architectures. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
13(4):1–26, 2008.

[16] James C. Beatty. An axiomatic approach to code optimization for ex-
pressions. Journal of the ACM (JACM), 19(4):613–640, 1972.

[17] R. Bellman and S.E. Dreyfus. Applied Dynamic Programming. Prince-
ton University Press, Princeton, NJ, 1962.

[18] K. Benkrid, Ying Liu, and A. Benkrid. A Highly Parameterized and Ef-
ficient FPGA-Based Skeleton for Pairwise Biological Sequence Align-
ment. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 17(4):561 –570, apr. 2009.

[19] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Os-
tell, Barbara A. Rapp, and David L. Wheeler. GenBank. Nucleic Acids
Research, 28(1):15–18, 2000.

[20] Jon Bentley. Programming Pearls. Addison-Wesley, 1999.

[21] M.J. Borah, M. Bajwa, R.S. Hannenhalli, and S. Irwin. A SIMD solu-
tion to the sequence comparison problem on the MGAP. In Proceedings
of International Conference on Application Specific Array Processors,
1994.

[22] Robert S. Boyer and J. Strother Moore. A fast string searching algo-
rithm. Communications of the ACM, 20(10):762–772, 1977.

[23] Richard P. Brent. The Parallel Evaluation of Arithmetic Expressions in
Logarithmic Time. In Complexity of Sequential and Parallel Numerical
Algorithms, pages 83–102. Academic Press, 1973.

[24] Richard P. Brent. The Parallel Evaluation of General Arithmetic Ex-
pressions. Journal of the ACM (JACM), 21(2):201–206, 1974.

BIBLIOGRAPHY 135

[25] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On Direct Methods
for Solving Poisson’s Equations. SIAM Journal on Numerical Analysis,
7(4):627–656, 1970.

[26] Timothy J. Callahan and John Wawrzynek. Adapting software pipelin-
ing for reconfigurable computing. In CASES ’00: Proceedings of the
2000 international conference on Compilers, architecture, and synthe-
sis for embedded systems, pages 57–64, New York, NY, USA, 2000.
ACM.

[27] João M.P. Cardoso and Pedro C. Diniz. Modeling Loop Unrolling:
Approaches and Open Issues. In Proceedings of the 4th International
Workshop on Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS ’04), 2004.

[28] Marina C. Chen. A design methodology for synthesizing parallel algo-
rithms and architectures. Journal of Parallel and Distributed Comput-
ing, 3(4):461–491, 1986.

[29] S. C. Chen, D. J. Kuck, and A. H. Sameh. Practical Parallel Band Tri-
angular System Solvers. ACM Transactions on Mathematical Software
(TOMS), 4(3):270–277, 1978.

[30] Shyh-Ching Chen and D. J. Kuck. Time and Parallel Processor Bounds
for Linear Recurrence Systems. IEEE Transactions on Computers,
24(7):701–717, 1975.

[31] M O Dayhoff. Survey of new data and computer methods of analysis.
In Atlas of Protein Sequence and Structure, volume 5, page 29, 1978.

[32] Andrea Di Blas, David M. Dahle, Mark Diekhans, Leslie Grate, Jeffrey
Hirschberg, Kevin Karplus, Hansjorg Keller, Mark Kendrick, Francisco
J. Mesa-Martinez, David Pease, Eric Rice, Angela Schultz, Don Speck,
and Richard Hughey. The UCSC Kestrel Parallel Processor. IEEE
Transactions on Parallel and Distributed Systems, 16:80–92, January
2005.

[33] Philippe Faes, Bram Minnaert, Mark Christiaens, Eric Bonnet, Yvan
Saeys, Dirk Stroobandt, and Yves Van de Peer. Scalable hardware ac-
celerator for comparing DNA and protein sequences. In InfoScale ’06:
Proceedings of the 1st international conference on Scalable information
systems, page 33, New York, NY, USA, 2006. ACM.

136 BIBLIOGRAPHY

[34] Michael Farrar. Striped smith-waterman speeds database searches six
times over other simd implementations. Bioinformatics, 23(2):156–161,
2007.

[35] MS Farrar. Optimizing Smith-Waterman for the Cell Broadband En-
gine. http://farrar.michael.googlepages.com/SW-CellBE.pdf.

[36] G. Fettweis and H. Meyr. Parallel Viterbi algorithm implementation:
breaking the ACS-bottleneck. IEEE Transactions on Communications,
37:785 – 790, 1989.

[37] G. Fettweis, L. Thiele, and G. Meyr. Algorithm transformations for
unlimited parallelism. IEEE International Symposium on Circuits and
Systems, pages 1756–1759 vol.3, May 1990.

[38] G.P. Fettweis and L. Thiele. Algebraic recurrence transformations for
massive parallelism. IEEE Transactions on Circuits and Systems I: Fun-
damental Theory and Applications, 40(12):949–952, Dec 1993.

[39] Allan L. Fisher and Anwar M. Ghuloum. Parallelizing complex scans
and reductions. ACM SIGPLAN Notices, 29:135–146, June 1994.

[40] D. D. Gajski. An Algorithm for Solving Linear Recurrence Systems
on Parallel and Pipelined Machines. IEEE Transactions on Computers,
30(3):190–206, 1981.

[41] Michael Y. Galperin. The Molecular Biology Database Collection:
2007 update. Nucleic Acids Research, 35:D3–D4(1), January 2007.

[42] Dennis Gannon, William Jalby, and Kyle Gallivan. Strategies for Cache
and Local Memory Management by Global Program Transformation.
In Proceedings of the 1st International Conference on Supercomputing,
pages 229–254, London, UK, 1988. Springer-Verlag.

[43] Anwar M. Ghuloum and Allan L. Fisher. Flattening and parallelizing
irregular, recurrent loop nests. ACM SIGPLAN Notices, 30:58–67, Au-
gust 1995.

[44] Maya B. Gokhale, Janice M. Stone, and Edson Gomersall. Co-Synthesis
to a Hybrid RISC/FPGA Architecture. Journal of VLSI Signal Process-
ing Systems, 24(2-3):165–180, 2000.

[45] O. Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162(3):705–708, December 1982.

BIBLIOGRAPHY 137

[46] A.C. Greenberg, R.E. Ladner, M.S. Paterson, and Z. Galil. Efficient
parallel algorithms for linear recurrence computation. Information Pro-
cessing letters, 5:31–35, 1982.

[47] C. Guerra and R. Melhem. Synthesizing non-uniform systolic designs.
In International Conference on Parallel Processing, 1986.

[48] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Com-
puter Science and Computational Biology. Cambridge University Press,
1997.

[49] L. Hasan and Z. Al-Ars. An Efficient and High Performance Linear Re-
cursive Variable Expansion Implementation of the Smith-Waterman Al-
gorithm. In Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pages 3845–3848, September 2009.

[50] L. Hasan, Z. Al-Ars, Z. Nawaz, and K.L.M. Bertels. Hardware Imple-
mentation of the Smith-Waterman Algorithm Using Recursive Variable
Expansion. In Proceedings of 3rd International Design and Test Work-
shop IDT08, December 2008.

[51] L Hasan, Z. Al-Ars, and S. Vassiliadis. Hardware Acceleration of Se-
quence Alignment Algorithms - An Overview. In Proceedings of Iner-
national Conference on Design & Technology of Integrated Systems in
Nanoscale Era, pages 96–101, September 2007.

[52] S Henikoff and JG Henikoff. Amino Acid Substitution Matrices from
Protein Blocks. In Proceedings of the National Academy of Sciences,
volume 89, pages 10915–10919, 1992.

[53] Dzung T. Hoang and Daniel P. Lopresti. FPGA Implementation of Sys-
tolic Sequence Alignment. In International Workshop on Field Pro-
grammable Logic and Applications, 1992.

[54] R. W. Hockney. A Fast Direct Solution of Poisson’s Equation Using
Fourier Analysis. Journal of the ACM (JACM), 12(1):95–113, 1965.

[55] E. J. Houtgast. Scalability of Bioinformatics Applications for Multicore
Architectures. Master’s thesis, T U Delft, 2009.

[56] L. Hyafil and H. T. Kung. The complexity of parallel evaluation of
linear recurrence. In STOC ’75: Proceedings of seventh annual ACM
symposium on Theory of computing, pages 12–22, New York, NY, USA,
1975. ACM.

138 BIBLIOGRAPHY

[57] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun. A Reconfigurable Accel-
erator for Smith-Waterman Algorithm. IEEE Transactions on Circuits
and Systems II: Express Briefs, 54(12):1077–1081, Dec. 2007.

[58] Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinformatics
Algorithms. MIT press, 2004.

[59] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The Or-
ganization of Computations for Uniform Recurrence Equations. Journal
of the ACM (JACM), 14(3):563–590, 1967.

[60] Ken Kennedy and John R. Allen. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kaufmann Pub-
lishers Inc. San Francisco, CA, USA, 2001.

[61] Ken Kennedy and Kathryn S. Mckinley. Typed fusion with applica-
tions to parallel and sequential code generation. Technical report, Rice
University, 1993.

[62] Donald E. Knuth, Jr. James H. Morris, , and Vaughan R. Pratt. Fast
Pattern Matching in Strings. SIAM Journal on Computing, 6:323–350,
1977.

[63] P M Kogge and H S Stone. A Parallel Algorithm for the Efficient Solu-
tion of a General Class of Recurrence Equations. IEEE Transactions on
Computers, C-22:786–793, 1973.

[64] G. P. Kozhevnikova and A. K. Sinitskii. Tree transformation prob-
lem in microparallelism algorithms. Cybernetics and Systems Analysis,
19(5):604–614, September 1983.

[65] Paul William Kraska. Parallelism exploitation and scheduling. PhD the-
sis, University of Illinois at Urbana-Champaign, Champaign, IL, USA,
1972.

[66] D. J. Kuck and K. Maruyama. Time Bounds on the Parallel Evaluation
of Arithmetic Expressions. SIAM Journal on Computing, 4(2):147–162,
1975.

[67] David J. Kuck. A Survey of Parallel Machine Organization and Pro-
gramming. ACM Computing Surveys, 9(1):29–59, 1977.

[68] David J. Kuck. Structure of Computers and Computations. John Wiley
& Sons, Inc. New York, NY, USA, 1978.

BIBLIOGRAPHY 139

[69] D.J. Kuck, Y. Muraoka, and Shyh-Ching Chen. On the Number of Oper-
ations Simultaneously Executable in Fortran-Like Programs and Their
Resulting Speedup. Transactions on Computers, C-21:1293– 1310,
1972.

[70] Muraoka Y. Kuck, D.J. Bounds on the parallel evaluation of arithmetic
expressions using associativity and commutativity. Acta Informatica,
3:203–216, September 1974.

[71] H. T. Kung. New Algorithms and Lower Bounds for the Parallel Eval-
uation of Certain Rational Expressions and Recurrences. Journal of the
ACM (JACM), 23(2):252–261, 1976.

[72] G.K. Kuzmanov and S. Vassiliadis. Arbitrating Instructions in an ρµ-
coded CCM. In Proceedings of the 13th International Conference on
FPL’03, pages 81–90, September 2003.

[73] Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation.
Journal of the ACM (JACM), 27(4):831–838, 1980.

[74] S. Lakshmivarahan and Sudarshan K. Dhall. New Parallel Algorithms
for Solving First-Order and Certain Classes of Second-Order Linear Re-
currences. In Proceedings of ICPP, pages 843–845, 1985.

[75] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache
performance and optimizations of blocked algorithms. In ASPLOS-IV:
Proceedings of the fourth international conference on Architectural sup-
port for programming languages and operating systems, pages 63–74,
New York, NY, USA, 1991. ACM.

[76] Leslie Lamport. The parallel execution of DO loops. Communications
of the ACM, 17(2):83–93, 1974.

[77] Charles E. Leiserson and James B. Saxe. Retiming synchronous cir-
cuitry. Algorithmica, 6:5–35, 1991.

[78] Hsien-Yu Liao, Meng-Lai Yin, and Yi Cheng. A parallel implementa-
tion of the Smith-Waterman algorithm for massive sequences searching.
In 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, volume 2, pages 2817 –2820, 2004.

[79] D. J. Lipman and W. R. Pearson. Rapid and sensitive sequence compar-
ison with FASTP and FASTA. Methods Enzymol., 183:63–98, 1990.

140 BIBLIOGRAPHY

[80] B. Louka and M. Tchuente. Dynamic programming on two-dimensional
systolic arrays. Information Processing Letters, 29(2):97–104, 1988.

[81] David B. Loveman. Program Improvement by Source-to-Source Trans-
formation. Journal of ACM (JACM), 24(1):121–145, 1977.

[82] Naraig Manjikian and Tarek S. Abdelrahman. Fusion of Loops for Par-
allelism and Locality. IEEE Transactions on Parallel and Distributed
Systems, 8(2):193–209, 1997.

[83] Kathryn Mckinley, Ken Kennedy, Ken Kennedy, and Kathryn S. M C
Kinley. Maximizing Loop Parallelism and Improving Data Locality via
Loop Fusion and Distribution. In Languages and Compilers for Parallel
Computing, pages 301–320. Springer-Verlag, 1994.

[84] Xiangzhen Qiao Mi Lu and Guanrong Chen. A parallel algorithm for
evaluating general linear recurrence equations. Circuits, Systems, and
Signal Processing, 15:481–504, 1994.

[85] Guilherme L. Moritz, Cristiano Jory, Heitor S. Lopes, and Carlos
R. Erig Lima. Implementation of a Parallel Algorithm for Protein Pair-
wise Alignment Using Reconfigurable Computing. In 2006 IEEE Inter-
national Conference on Reconfigurable Computing and FPGA’s (Re-
ConFig 2006), pages 1 –7, Sep. 2006.

[86] Yoichi Muraoka. Parallelism exposure and exploitation in programs.
PhD thesis, University of Illinois at Urbana-Champaign, Champaign,
IL, USA, 1971.

[87] Jean Myoupo. Mapping dynamic programming onto modular lin-
ear systolic arrays. Distributed Computing, 6:165–179, 1993.
10.1007/BF02242705.

[88] Z. Nawaz, M. Shabbir, Z. Al-Ars, and K.L.M. Bertels. Acceleration of
Smith-Waterman Using Recursive Variable Expansion. In 11th Euromi-
cro Conference on Digital System Design (DSD-2008), pages 915–922,
September 2008.

[89] Z. Nawaz, T. P. Stefanov, and K.L.M. Bertels. Efficient hardware gener-
ation for dynamic programming problems. In International Conference
on Field-Programmable Technology, December 2009.

BIBLIOGRAPHY 141

[90] Z. Nawaz, H. Sumbul, and K.L.M. Bertels. Fast Smith-Waterman hard-
ware implementation. In International Parallel and Distributed Pro-
cessing Symposium, April 2010.

[91] S. Needleman and C. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Jour-
nal of Molecular Biology, 48:443–453, 1970.

[92] Alexandru Nicolau and Roni Potasmann. Incremental tree height re-
duction for high level synthesis. In DAC ’91: Proceedings of the 28th
ACM/IEEE Design Automation Conference, pages 770–774, New York,
NY, USA, 1991. ACM.

[93] T.F. Oliver, B. Schmidt, and D.L. Maskell. Reconfigurable architectures
for bio-sequence database scanning on FPGAs. IEEE Transactions on
Circuits and Systems II: Express Briefs, 52(12):851–855, Dec. 2005.

[94] K.K. Parhi. Look-ahead in dynamic programming and quantizer loops.
In IEEE International Symposium on Circuits and Systems, volume 2,
pages 1382–1387, May 1989.

[95] K.K. Parhi. Pipelining in dynamic programming architectures. IEEE
Transactions on Signal Processing, 39(6):1442–1450, Jun 1991.

[96] Darin Petkov, Randolph Harr, and Saman Amarasinghe. Efficient
Pipelining of Nested Loops: Unroll-and-Squash. In Proceeding of the
International Parallel and Distributed Processing symposium, 2002.

[97] V. K. Prasanna Kumar and Yu-Chen Tsai. Mapping dynamic program-
ming onto a linear systolic array. The Journal of VLSI Signal Process-
ing, 1:335–343, 1990. 10.1007/BF00929926.

[98] B.R. Rau. Cydra 5 directed dataflow architecture. In COMPCON Spring
88 33rd IEEE Computer Society International Conference, pages 106 –
113, 1988.

[99] Rui Rodrigues, Joao M. P. Cardoso, and Pedro C. Diniz. A Data-
Driven Approach for Pipelining Sequences of Data-Dependent Loops.
In FCCM ’07: Proceedings of the 15th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 219–228,
Washington, DC, USA, 2007. IEEE Computer Society.

142 BIBLIOGRAPHY

[100] Ahmed H. Sameh and Richard P. Brent. Solving Triangular Systems on
a Parallel Computer. SIAM Journal on Numerical Analysis, 14(6):1101–
1113, 1977.

[101] M. Schlansker, V. Kathail, and S. Anik. Height reduction of control
recurrences for ILP processors. In Microarchitecture, 1994. MICRO-
27. Proceedings of the 27th Annual International Symposium on, pages
40 – 51, 1994.

[102] Michael S. Schlansker and Vinod Kathail. Acceleration of First and
Higher Order Recurrences on Processors with Instruction Level Paral-
lelism. In Proceedings of the 6th International Workshop on Languages
and Compilers for Parallel Computing, pages 406–429, London, UK,
1994. Springer-Verlag.

[103] Bertil Schmidt, Heiko Schröder, and Manfred Schimmler. Massively
Parallel Solutions for Molecular Sequence Analysis. In Proceedings of
the 16th International Parallel and Distributed Processing Symposium,
Washington, DC, USA, 2002. IEEE Computer Society.

[104] Robert Schreiber, Shail Aditya, B. Ramakrishna Rau, Vinod Kathail,
Scott Mahlke, Santosh Abraham, and Greg Snider. High-Level Synthe-
sis of Nonprogrammable Hardware Accelerators. In ASAP ’00: Pro-
ceedings of the IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, Washington, DC, USA, 2000.
IEEE Computer Society.

[105] Sharad K. Singhai, Kathryn, and S. McKinley. A Parametrized Loop
Fusion Algorithm for Improving Parallelism and Cache Locality . The
Computer Journal, 40, 1997.

[106] T. Smith and M. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

[107] Greg Snider. Performance-constrained pipelining of software loops
onto reconfigurable hardware. In FPGA ’02: Proceedings of the 2002
ACM/SIGDA tenth international symposium on Field-programmable
gate arrays, pages 177–186, New York, NY, USA, 2002. ACM.

[108] D.J. States, W. Gish, and S.F. Altschul. Improved Sensitivity of Nucleic
Acid Database Search Using Application-Specific Scoring Matrices. In
Methods: A companion to Methods in Enzymology, volume 3, pages 66
– 77, 1991.

BIBLIOGRAPHY 143

[109] Harold S. Stone. Parallel Tridiagonal Equation Solvers. ACM Transac-
tions on Mathematical Software (TOMS), 1(4):289–307, 1975.

[110] Olaf Storaasli and Dave Strenski. Experiences on 64 and 150 FPGA
Systems. In Proceedings of the Fourth Annual Reconfigurable Systems
Summer Institute (RSSI’08), 2008.

[111] Olaf O. Storaasli and Dave Strenski. Exploring Accelerating Science
Applications with FPGAs. In Proceedings of the Third Annual Recon-
figurable Systems Summer Institute (RSSI’07), 2007.

[112] Henry Styles, David Barrie Thomas, and Wayne Luk. Pipelining Design
with Loop Carried Dependencies. In International Conference on Field-
Programmable Technology, 2004.

[113] Adam Szalkowski, Christian Ledergerber, Philipp Krähenbühl, and
Christophe Dessimoz. SWPS3 - fast multi-threaded vectorized Smith-
Waterman for IBM Cell/B.E. and x86/SSE2. BMC Research Notes,
1:107, 2008.

[114] Ronald L. Rivest Clifford Stein Thomas H. Cormen, Charles E. Leis-
erson. Introduction to Algorithms. MIT Press, McGraw Hill, second
edition, 2001.

[115] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–
260, 1995.

[116] H. A. van der Vorst and K. Dekker. Vectorization of linear recur-
rence relations. SIAM Journal on Scientific and Statistical Computing,
10(1):27–35, 1989.

[117] S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K.L.M. Bertels, G.K. Kuz-
manov, and E. Moscu Panainte. The Molen Polymorphic Processor.
IEEE Transactions on Computers, 53(11):1363– 1375, November 2004.

[118] A. H. Veen. Dataflow machine architecture. ACM Computing Surveys,
18(4), 1986.

[119] Benjamin W. Wah and Guo jie Li. Systolic processing for dynamic
programming problems. Circuits, Systems, and Signal Processing,
7(2):119–149, June 1988.

144 BIBLIOGRAPHY

[120] Benjamin W. Wah and Guo-jie Li. Systolic processing for dynamic pro-
gramming problems. Circuits, Systems, and Signal Processing, 7:119–
149, 1988. 10.1007/BF01602094.

[121] H. H. Wang. A Parallel Method for Tridiagonal Equations. ACM Trans-
actions on Mathematical Software (TOMS), 7(2):170–183, 1981.

[122] Dorothy Wedel. Fortran for the Texas Instruments ASC system. In Pro-
ceedings of the conference on Programming languages and compilers
for parallel and vector machines, pages 119–132, New York, NY, USA,
1975. ACM.

[123] M. Weinhardt and W. Luk. Pipeline vectorization. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
20(2):234–248, Feb 2001.

[124] Michael Weiss. Strip mining on SIMD architectures. In ICS ’91: Pro-
ceedings of the 5th international conference on Supercomputing, pages
234–243, New York, NY, USA, 1991. ACM.

[125] M. J. Wolfe. Advanced loop interchanging. In Proceedings of the 1986
International Conference on Parallel Processing, 1986.

[126] M. J. Wolfe. Loop Skewing: The Wavefront Method Revisited. In-
ternational Journal of Parallel Programming, 15(4):279–293, August
1986.

[127] Michael Wolfe. Iteration Space Tiling for Memory Hierarchies. In Pro-
ceedings of the Third SIAM Conference on Parallel Processing for Sci-
entific Computing, pages 357–361, Philadelphia, PA, USA, 1989. Soci-
ety for Industrial and Applied Mathematics.

[128] Michael Wolfe. Optimizing Supercompilers for Supercomputers. MIT
Press Cambridge, MA, USA, March 1989.

[129] Michael Wolfe and Utpal Banerjee. Data dependence and its application
to parallel processing. International Journal of Parallel Programming,
16(2):137–178, 1987.

[130] Jingling Xue. Enabling Loop Fusion and Tiling for Cache Performance
by Fixing Fusion-Preventing Data Dependences. In ICPP ’05: Pro-
ceedings of the 2005 International Conference on Parallel Processing,
pages 107–115, Washington, DC, USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 145

[131] Yoshiki Yamaguchi, Yosuke Miyajima, Tsutomu Maruyama, and Aki-
hiko Konagaya. High Speed Homology Search Using Run-Time Recon-
figuration. In 12th International Conference on Field-Programmable
Logic and Applications, pages 281–291, London, UK, 2002. Springer-
Verlag.

[132] C. W. Yu, K. H. Kwong, K. H. Lee, and P. H. W. Leong. A Smith-
Waterman Systolic Cell. In FPL’03, 2003.

[133] Peiheng Zhang, Guangming Tan, and Guang R. Gao. Implementation
of the Smith-Waterman algorithm on a reconfigurable supercomputing
platform. In HPRCTA ’07: Proceedings of the 1st international work-
shop on High-performance reconfigurable computing technology and
applications, pages 39–48, New York, NY, USA, 2007. ACM.

[134] Heidi E. Ziegler, Mary W. Hall, and Pedro C. Diniz. Compiler-
Generated Communication for Piplined FPGA Applications. In
DAC2003, 2003.

List of Publications

International Conferences

1. Z. Nawaz, M. Nadeem, H. V. Someren, K.L.M. Bertels, A parallel
FPGA design of the Smith-Waterman traceback, proceedings of Inter-
national Conference on Field-Programmable Technology 2010,pp. 1-6,
Beijing, China, December 2010.

2. Z. Nawaz, H. Sumbul, K.L.M. Bertels, Fast Smith-Waterman hardware
implementation, International Parallel and Distributed Processing
Symposium, pp. 1-4, Atlanta, USA, April 2010.

3. Z. Nawaz, T. P. Stefanov, K.L.M. Bertels, Efficient hardware genera-
tion for dynamic programming problems, proceedings of International
Conference on Field-Programmable Technology 2009, pp. 348-352,
Sydney, Australia, December 2009.

4. Z. Nawaz, T. Marconi, T. P. Stefanov, K.L.M. Bertels, Flexible Pipelin-
ing Design for Recursive Variable Expansion, International Parallel and
Distributed Processing Symposium, pp. 915-922, Rome, Italy, May
2009.

5. L Hasan, Z. Al-Ars, Z. Nawaz, K.L.M. Bertels, Hardware Implemen-
tation of the Smith-Waterman Algorithm Using Recursive Variable
Expansion, Proceedings of 3rd International Design and Test Workshop
IDT08, pp. 135-140, Monastir, Tunisia, December 2008.

6. Z. Nawaz, M. Shabbir, Z. Al-Ars, K.L.M. Bertels, Acceleration of
Smith-Waterman Using Recursive Variable Expansion, 11th Euromicro
Conference on Digital System Design (DSD-2008), pp. 915-922,
Parma, Italy, September 2008.

7. Z. Nawaz, O.S. Dragomir, T. Marconi, E. Moscu Panainte, K.L.M.
Bertels, S. Vassiliadis, Recursive Variable Expansion: A Loop Trans-
formation for Reconfigurable Systems, proceedings of International
Conference on Field-Programmable Technology 2007, pp. 301-304,
Kokurakita, Kitakyushu, Japan, December 2007.

147

148 LIST OF PUBLICATIONS

Local Conferences

1. Z. Nawaz, T. Marconi, T. P. Stefanov, K.L.M. Bertels, Optimal pipeline
design for Recursive Variable Expansion, ACACES 2009, pp. 85-88,
Terrassa, Spain, July 2009.

2. L Hasan, Z. Al-Ars, Z. Nawaz, A Novel Approach for Accelerating the
Smith-Waterman Algorithm using Recursive Variable Expansion, An-
nual Workshop on Circuits, Systems and Signal Processing (ProRISC
2008), pp. 40-45, Veldhoven, The Netherlands, November 2008.

3. Z. Nawaz, M. Shabbir, Z. Al-Ars, K.L.M. Bertels, Acceleration of
Biological Sequence Alignment using Recursive Variable Expansion,
ProRISC07, Veldhoven, The Netherlands, December 2007.

Non-related Publications

1. T. Abdullah, K.L.M. Bertels, L.O. Alima, Z. Nawaz, Effect of the
Degree of Neighborhood on Resource Discovery in Ad Hoc Grids, Pro-
ceedings of the International conference on Architecture of Computing
Systems (ARCS), Hannover, Germany, February 2010

SAMENVATTING 149

Samenvatting

RECONFIGURABLE Computing, waarin een general purpose processor
(GPP) is uitgebreid met een of meerdere FPGAs, wordt steeds meer ge-

bruikt voor high performance computing, waar op grote schaal fijnmazig par-
allellisme en pipelining toegepast kan worden. Het is een uitdaging om zulk
grootschalig parallellisme op FPGAs aan te wenden en, specifieker, om een
applicatie op het onderliggende heterogene platform te verdelen.

Vergelijkbaar met software compilers kunnen hardware compilers loops ge-
bruiken om zulk parallellisme uit te buiten. Het bestaan van afhankelijkheden
tussen verschillende data is een van de beperkingen die het parallellisme in een
programma begrenst. In deze dissertatie stellen we een transformatie genaamd
Recursive Variable Expansion (RVE) voor, welke toegepast kan worden op
een belangrijke categorie van loops. Het verwijdert alle data afhankelijkheden
door de variabele met zijn afhankelijkheidsexpressie uit te breiden totdat de
expressie slechts een uitdrukking is in gekende variabelen. We onderscheiden
twee typen expressies: één welke polynomiaal groeit, en een andere welke ex-
ponentieel groeit in termen van het aantal invoer-variabelen. Ongeacht het type
van de expressie, wanneer we een expressie toewijzen aan een FPGA, dan is de
benodigde oppervlakte (LUTs) op de FPGA evenredig aan het aantal termen
in de expressie.

We presenteren een geautomatiseerd pipeline ontwerp-algoritme voor de
vraagstukken die polynomiaal groeien. Dit algoritme bepaalt de grootste
pipline-grootte dat op de FPGA past. Bovendien verzekert het algoritme ook
dat er minder tijd nodig is om de data toe te voeren dan om een instructie
door de pipeline te laten verwerken. We passen dit algoritme toe op DCT,
een op grote schaal gebruikte kernel voor signaalverwerking, die vergelijkbare
prestaties vertoont met de handgeoptimaliseerde implementatie.

De exponentieel expanderende versie is toepasbaar op de categorie van dy-
namisch programmeerbare (DP) problemen, waarvoor RVE gecombineerd
word met dataflow. We tonen aan dat RVE betere prestaties levert dan alleen
de toepassing van dataflow, terwijl deze tot dusver de beste techniek is voor
dergelijke problemen. We generaliseren onze benadering door een raamwerk
voor te stellen waarin ze toegepast kan worden op een breed scala aan DP
problemen.

Ten slotte valideren we het voorgestelde DP-raamwerk met het Smith-
Waterman algoritme. Dit algoritme is een veelgebruikte, rekenintensieve en
dataintensieve applicatie in de bio-informatica. We tonen dat onze implemen-

150 ACKNOWLEDGMENTS

tatie een snelheidswinst van 229% behaalt ten koste van 282% van de oor-
spronkelijke oppervlakte in verhouding tot de conventionele dataflow systolic
array implementatie. Daarenboven, stellen wij een parallel FPGA-ontwerp
voor, voor het SW traceback stadium, waarvoor de benodigde bandbreedte
ook voldoende binnen de perken van de huidige beschikbare FPGA-borden.

ACKNOWLEDGMENTS 151

Acknowledgments
In the name of Allah the most gracious, the most merciful

First and foremost, I thank Allah SWT for endowing me with health, patience
and the knowledge to complete this thesis.

This dissertation would not have been possible without the help of many peo-
ple who helped me in making it a reality. I owe my deepest gratitude to Prof.
Stamatis Vassiliadis, who accepted me as a PhD student in his group. He
shared the basic idea of RVE with me and asked me to explore it further in my
PhD. I am especially grateful to my supervisor Koen Bertels, who was sup-
portive of my ideas and gave me the freedom to decide about the next levels
of research. His help and support was always there for technical as well as
personal problems. I really enjoyed working with him. I am thankful to Zaid
al-Ars for encouraging me to continue working on Smith-Waterman problem.
I am grateful to Todor Stefanov, with whom I have worked on two papers. He
critically reviewed my work and gave me helpful suggestion to improve it. I
am fortunate to work with Hans van Someren, who has been always generous
with his time to discuss my ideas, provided positive feedback and also gave
me the insight of the working compilers. I am thankful to Prof. Henk Sips for
acting as a promotor. I would like to extend my gratitude to the PhD examina-
tion committee, especially to Pedro Diniz, whose detailed comments helped to
improve the dissertation.

I am also fortunate to work with many other wonderful people. I would like
to thank especially Elena, Ozana, Thomas, Mudassir, Laiq, Ekin and Nadeem,
who helped me in implementing the algorithms. I extend my thanks to Carlo,
Yana, Vlad, Kamana, Mojtaba, Arash and Roel from the Delft Workbench
team. It has been nice working with them. I express my sincere thanks to Jae,
Sandra, Tariq, Laiq, Naeem, Faisal, Fakhar, Aqeel and Nadeem for providing
me a good company over these years and having long non-technical discus-
sions. I am thankful to Roel Meeuws for translating synopsis and propositions
into Dutch and Tariq Abdullah for proof-reading my thesis. My thanks also go
to Lidwina and Monique for their administrative assistance and to Bert, Eric
and Eef for their technical support through out these years.

I have been very lucky to have a good social life in Delft through the acquain-
tance of many Pakistani friends and their families. We used to have regular
family gathering during the weekends and on other social events, which my
family and I enjoyed a lot.

152 ACKNOWLEDGMENTS

I would like to thank Sarmad Abbasi, who introduced me with theoretical com-
puter science. He urged (induced) me to think many fundamental questions
about computer science. He was always available to discuss the theoretical
problems. He motivated me to pursue PhD, which was not in my plan earlier.

I am highly indebted to my parents, who did a lot for their children. They
provided me with the best possible education that I could think of. This would
not have been possible without their prayers, blessings and sacrifices. I am
also thankful to my younger siblings Khurram, Bilal and Annie for their love
and support.

I am really grateful to my wife for her love and support over the years. This
PhD would not have been possible, if she had not relieved me of the household
activities. She almost single handedly managed our children Dayyan and the
newborn Rayyan. Finally, Dayyan deserves special thanks for his patience
and understanding during the times when I used to work till late in the office.

Zubair Nawaz
Delft, The Netherlands, 2011

CURRICULUM VITAE 153

Curriculum Vitae

Zubair Nawaz was born on February 15, 1973 in Lahore, Pakistan. He did
his BS Mechanical Engineering from Ghulam Ishaq Khan (GIK) Institute of
Engineering Sciences and Technology in 1997. From 1997 to 1999, he worked
as piping design engineer at DESCON Engineering Limited Lahore. He grad-
uated with MS in Computer Science from Lahore University of Management
Sciences (LUMS) in 2002. Later, he joined Punjab University College of Infor-
mation Technology (PUCIT) at University of the Punjab, Lahore as a faculty
member in 2002, where he taught undergraduate and graduate level Computer
Science courses.

In November 2005, he joined Computer Engineering Lab, in EEMCS faculty
at Delft University of Technology for pursuing his PhD. He worked on loop
transformations for reconfigurable computing under the supervision of Prof.
Stamatis Vassiliadis and Koen Bertels. The research conducted by him is pre-
sented in this thesis.

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of Acronyms and Symbols
	Introduction
	Motivational Example
	Applicability Conditions
	Contributions
	Dissertation Organization

	Data Dependences and Loop Transformations
	Dependence Relation
	Representing the Dependence Relations
	Loop Dependence Analysis
	Iteration Space
	Distance Vectors
	Direction Vectors

	Loop Transformations
	Parallelizable Loops
	Loop Interchange
	Loop Skewing
	Loop Reversal
	Strip Mining
	Loop Tiling
	Loop Distribution
	Loop Fusion
	Loop Unrolling
	Software Pipelining

	Summary and Conclusion

	Recursive Variable Expansion
	Related Work
	Motivational Example
	Applying Loop Skewing Transformation
	Applying Recursive Variable Expansion Transformation

	Recursive Variable Expansion
	Classification of Expressions
	Constraints of RVE
	Benefits of RVE

	Experimental Results
	Kernels
	Software and Hardware Implementation
	Results

	Summary and Conclusion

	Pipelined Design for RVE
	Related Work
	Basic Concepts
	Suffix Trees

	Problem Statement
	Motivational Example
	Problem Statement

	Flexible Pipelining Design Algorithm
	Find possible candidates for pipelining
	Select the optimal repeat from among the possible candidates.
	Feed data to pipeline
	Eliminate redundant expressions
	Convert optimal repeat to a pipeline circuit

	Balancing the Datapath and Memory Access Operations
	Experiments and Results
	Summary and Conclusion

	RVE for Dynamic Programming Problems
	Related Work
	Representative Problems
	Maximum Contiguous Subsequence Sum (MCSS) Problem
	Fibonacci Numbers
	Needleman-Wunsch (NW) Algorithm
	Longest Common Subsequence (LCS) Problem

	Generic RVE Algorithm for DP Problems
	Step 1: Apply RVE
	Step 2: Remove redundant sub-equations
	Step 3: Group sub-equations
	Step 4: Precompute cost function
	Step 5: Fill the block and mix with dataflow

	Performance Evaluation
	Applicability of the RVE Techniques to DP Problems
	Summary and Conclusion

	Acceleration of Smith-Waterman
	The Smith-Waterman algorithm
	Related Work
	Application of RVE to SW Algorithm
	Clipping Error
	Patch

	Mapping Equations to Circuits

	Performance Evaluation
	Summary and Conclusion

	A parallel Smith-Waterman traceback
	Related work
	Memory Bandwidth Bottleneck
	Compression and Backtracking
	Design Overview
	Computing max in the optimal value matrix
	Generating the direction matrix
	Storing direction vectors in BRAM
	Traceback

	Experimental Validation
	Summary and Conclusion

	Conclusions
	Summary and Contributions
	Future Directions

	Bibliography
	List of Publications
	Samenvatting
	Acknowledgments
	Curriculum Vitae

