
^ Bibliotheek TU Delft 
r Faculteit der Luchtvaart- en Ruimtevaarttedmie! 

Kluyverweg 1 
T 2629 HS Delft 

s 
c NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM 

NATIONAL AEROSPACE LABORATORY NLR 

THE NETHERLANDS 

NLR MP 78012 U 

THE USE OF PANEL METHODS FOR STABILITY DERIVATIVES 

BY 

R. ROOS 





NLR MP 78012 U 

THE USE OF PANEL METHODS FOR STABILITY DERIVATIVES 

by 

R. Roos 

Paper presented at AGARD Conference "Dynamic Stability Parameters" he.ld 
by AGARD Fluid Dynamics Panel, Athens, 22-2U May 1978. 

11 pages 
B i b l i o t h e e l . TU Del+t. L&F 

Ï i a 0 3 £ l 

Division: Fluid Dynamics 

Prepared: RR/ 1 ^ -^ 

Approved: HT/ ^ ' 

Completed : 

Ordernumber: 

Typ. : 

7_V-1978 

108.802 

GC 





21-1 

THE USE OF PANEL METHODS FOR 
STABILITY DEKIVATIVES* 

by 
R. Roos 

National Aerospace Laboratory, NLR 
Amsterdam 

The Netherlands 

SUMMARY 

The possibilities of panel methods for computing aerodynamic stability derivates are reviewed. 
Emphasis is put on unsteady panel methods, results of which are compared with experimental data. 

LIST OF SYMBOLS 

A.. aerodynamic force (eq. Al) 3 shape function 
a speed of sound S wing surface area 
C rolling-moment coefficient s semi span 
C pitching-moment coefficient t time 
m . . 
C yawing-moment coefficient U free stream velocity 
C side-force coefficient u perturbation in forward velocity 
C normal-force coefficient V prescribed normal wash 
c mean chord w normal wash 
F functional dependence of a singularity distribution x,y,z Cartesian co-ordinate system 
g density of a singularity distribution a angle of attack 
h displacement 6 angle of side slip . 
K wave number (eq. 6) B subsonic; (l-M ) ' ' ^ ; supersonic ( M ^ - l ) ' ^ 
k reduced frequency symmetric motions: k = u£/U y flight path angle 

antisymmetric motions: k = aiil/2Û  6 control surface deflection 
I reference length ^jn,C Cartesian co-ordinate system 
M Mach number n state variable of structural vibration mode 
n unit normal 9 angle of pitch 
p roll rate p density 
Q-. generalized aerodynamic force * velocity potential; mode shape 
q pitch rate (fi perturbation velocity potential; 
r yaw rate angle of roll 

ijj angle of yaw 
Ü) oscillation frequency 

Superscripts 
' transformed variable (eq. h.6} 

time derivative 
Subscripts 
e referring to a aerodynamic co-ordinate axis system 
g referring to a gust 
s referring to a stability co-ordinate axis system 
" referring to the free stream condition 

1. INTRODUCTION 

The panel methods referred to in this paper have been developed to determine the potential flow 
about complex airplane configurations. Their name follows from the fact that the surface of the configu­
ration is divided into a set of small segments, called "panels". Each of these panels is assumed to carry 
a distribution of so-called singularities, which form elementary solutions of the potential flow equation. 
By requiring the flow to follow the contour of the particular configuration the density of the singularity 
distribution on each panel can be found. The combined effect of all singularities results in a description 
of the sought flow field. 

In this paper it is explained in what way panel methods can be instrumental in evaluating the aero­
dynamic input for investigations on aircraft dynamics. This aerodynamic input is required in the form of 
aerodynamic derivatives such as stability derivatives, control surface derivatives and gust derivatives. 
The use of panel methods to compute these derivatives is not new. For example, already in 1969 one finds 
applications of panel methods for computing stability derivatives (Refs 1,2). 

The potentialities of panel methods are clear. In the design phase of an airplane it is necessary to 
know how changes in the configuration will affect the stability characteristics. While for such studies 
wind tunnel experiments are prohibitively expensive, the flexibility of panel methods allows for parameter 

(
studies at relatively low costs. Further, for configurations like the wide-body transports, the SST or for 
aircraft equipped with multiple stores, the traditional methods to estimate the derivatives (aerodynamic 
strip theory or data sheets) have become marginal in their applicability. Here also, panel methods can be 
extremely useful. 

Next to this, it becomes more and more necessary to account for the effects of structural deforma­
tions. The introduction of large transport planes and higher flight speeds has set off a trend towards 
increased structural flexibility, which cannot always be ignored in flight dynamic investigations. 
Similarly the increased application of flight control systems in modern military aircraft may lead to 
adverse effects due to coupling with structural deformations. This increased importance of the structural 
deformations results in an aerodynamic coupling of the rigid body motions and the structural motions, 
making a time dependent or frequency dependent analysis of the stability derivatives necessary. In this 
respect it is important to recognize the existence of unsteady (harmonic) panel methods, used in 
aeroelastie investigations. 

* This investigation was carried out under contract for the Scientific Research Branch, Air Materiel 
Directorate, Royal Netherlands Air Force, (RNLAF). 
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In the following it is tried to give some insight how panel methods may be used for computing 
aerodynamic derivatives. First the basics of both steady and unsteady panel methods are touched upon. 
Next some observations are made as to the possibilities of the different methods. Finally some compari­
sons are made between calculated and measured stability derivatives. Here emphasis is put upon the use of 
unsteady panel methods, which introduce the possibility to compute "dynamic" stability derivatives. The 
material presented in this paper is based partly on reference 3. 

2. PANEL METHODS 

2.1. Fundamentals 

The starting point for the description of the compressible flow field about an aircraft configura­
tion, as applied in panel methods, is the assumption of irrotational, (inviscid), flow. This makes it 
possible to introduce a velocity potential * = U x + ((i, in which U^ is the freestream velocity and (ji a 
perturbation potential. After linearization this perturbation potential satisfies the equation 

(1-M2) 1 2 — = 0 (1) 

and is subject to the boundary condition 

1^ + (U + V(ti).7S = 0 , 
dt ™ 

Which states that at all times the flow should be tangential to the surface of the configuration, 
described by the shape function S(x,y,z,t) = 0. 

For incompressible flow equation (1) reduces to the well known Laplace equation 

0 
XX ^yy zz 

(2) 

(3) 

which then in addi t ion holds for the fu l l p o t e n t i a l *. In the case of steady compressible flow the 
Göthert co-ordinate transformation .-—» 

x' X , y ' = By , z ' Bz (M 
transforms for subsonic conditions equation (1) into a Laplace equation, while for supersonic conditions 
the wave equation 

V'y' z ' z ' 

i s obtained. In many unsteady flow appl ica t ions the per turbat ion p o t e n t i a l <> can be assumed to have a 
harmonic behaviour: • = ifie iiflt Here the Gothert t ransformation combined with the subs t i t u t ion 

•iKM,„x 
M e , K = 

(5) 

(6) 

results in a Helmholtz equation 

x'x' - y'y' - z'z' (7) 

In all types of panel methods the solutions of the Laplace, Helmholtz or Wave equation are found by 
8, linear superposition of fundamental solutions of these equations. For this purpose in general the 
"source", "doublet" and "vorticity" distributions are used. For the source and doublet distributions the 
general solutions for the equations then are found as an integral over the weighted distributions placed 
on the surface of the configuration and the wake: 

(x',y',z',K) = 11 g(5',n',C') F(x'-5',y'-n',z'-C',K) dS 

s(5',n',;') 

(8) 

in which the fundamental solution F depends on the type of distribution used. A general solution for the 
velocity field is easily found by differentiation. When using a vorticity distribution a similar surface 
integration gives immediately the general solution for the velocity field. In all cases the weighting 
function g indicates the still unknown density of a particular distribution. 

After having applied the reverse of the transformations defined by (U) and (6), the general solution 
for ths velocity field can be substituted in equation (2), thus effecting the tangential flow condition. 
This results in an integral equation for the normal wash: 

1= // 
S(£,n,C) 

g(£; ,n,C,iij) F(x,y,z,u)) dS = V (x,y,z,u) (9) 

from which the unknown density g can be solved. 

Jn panel methods the surface, of the configuration, is divided in individual elements, called panels. 
On the panels the source, doublet or vorticity density are taken to vary in a certain way: the earlier 
jpeth°4Bi Buch as the source panel method of Hess and Smith (Ref. U),use a constant density over each 
pî lBll the newer methods use higher order functions to approximate the variation of the density per panel, 
with at the same time enforcing some continuity condition on the panel edges. 

This (Hivision in panels reduces the integral equation to a system of linear algebraic equations. The 
un|wowns are the coefficients in the approximations for the distributions per panel. The right-hand side 
of each ecjuation contains the specified normal velocity in one or more points per panel (depending on the 
number of unknowns). Substitution of the coefficients in the pertinent formulae, results in values for the 
velocity and pressure distribution along the surface of the configuration. 
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For a more detailed description of the fundamentals the reader is referred to references 5 and 6. 

2.2. Types of panel methods 

Over the years several kinds of panel methods have been devised. The major difference lies in the 
type of fundamental singularity or combination of singularities used. In the following only a few of them 
are mentioned. 

As far as steady methods are concerned, the Vortex-lattice (VL) method is perhaps the first and most 
simple peinel method ever developed. The original idea of Falkner (Ref. T) was implemented on the computer 
a.o. by Hedman (Ref. 8). The wing, which is regarded as infinitely thin, is covered with a network of 
horseshoe-vortices, with their trailing legs extending downstream to infinity and composing the wajte. 
This method is capable of treating lifting surfaces, but due to its neglect of thickness it can not 

I handle complete configurations. 

The first method to describe the potential flow about thick bodies was the method of Hess and Smith 
(Ref. 3), who employed constant source panels. A source distribution is not capable of describing a wake 
in which the vorticity, shed from a lifting configuration, is carried off to infinity. Therefore this 
method is limited to non-lifting configurations. 

The earlier methods for thick lifting configurations used a combination of two types of distributions: 
a source distribution on the surface of the configuration and a vorticity or doublet distribution on the 
wake surface and on the intgraal camber surface. This scheme forms the basis for methods developed a.o. 
at Boeing (Ref. 9 ) , Douglas (Ref. 10), NLR (Ref. 11), BAC (Ref. 12) and MBB (Ref. 13). Clearly other set­
ups are possible to describe this type of flows, such as a doublet or vorticity distribution on both the 
surface of the configuration and the wake surface. Lately a trend is developing towards methods with 
higher order distributions. 

The most popular panel method for unsteady flow is the Doublet-lattice (DL) method. This method 
originally developed by Albano and Rodden (Ref. lU) can be regarded as the unsteady version of the 
Vortex-lattice method. It describes the unsteady flow field about an infinity thin, harmonically 
oscillating lifting surface configuration. The singularity used is the pressure doublet, which through 
chordwise integration over a panel reduces to an unsteady lifting line formulation equivalent to the 
horseshoe-vortex approach. 

Based on the Doublet-lattice formulation several attemps were made to incorporate also the effects 
of the fuselage and stores into the description of the unsteady flow field. First Kalman, Rodden and 
Giesing (Ref. 15) computed oscillatory wing/body interference by panelling the body as a ring wing. Later 
a slender body formulation was added to be able to calculate the unsteady forces on the bodies also 
(Ref. 16). 

At the NLR, the Doublet-lattice method was combined with an unsteady source panel method (Ref. 17). 
In this (NLRI) method the surfaces of the bodies are covered with panels containing a harmonically 
oscillating constant source distribution, for which the basic formulation was developed earlier by Hess 
(Ref. 18). The thicjmgas of the lifting surfaces is still neglected. 

Finally Morino (Ref. 19) has developed an unsteady panel method in which source and dipole distribu­
tions are placed on the surfaces of both the bodies and the lifting elements of the configuration. 

3. POSSIBILITIES FOR CALCULATING STABILITY DERIVATIVES 

When considering the use of panel methods to compute aerodynamic derivatives necessary for flight 
dynamic investigations it is useful first to examine the possibilities of such methods more closely. In 
doing so, certain derivatives can be excluded beforehand, since the assumptions inherent to panel methods 
make it impossible to compute them with sufficient accuracy. Further a preliminary choice as to the type 
of panel method most suitable for computing a particular derivative may be made. 

3.1. Limitations due to the neglect of viscosity 

Common to all panel methods is the assumption of potential flow, implying the neglect of viscosity. 
This means that the viscous boundary layer along the surface of the configuration is taken to be non-
existing. For the high Reynolds number condition encountered with aircraft, this approximation is accept­
able when computing coefficients depending on lift. But for estimates on the drag a modelling of viscous 
effects is indispensable. Some attempts have been made to combine a panel method approach with a 3D-
boundary layer calculation, however, such methods are not yet available for routine computations. 

This neglect of the boundary layer has several consequences. Some of the derivatives used in stability 
investigations depend very much on the drag experienced by the aircraft. This drag is built up of viscous 
drag and induced drag, while for flows with shock waves the wave drag may give an appreciable contribution 
also. It is clear that this type of derivatives cannot be computed with panel methods in which the 

I boundary layer is not modelled. One possible exception should be mentioned. When the drag derivatives 
• depend mainly on the induced drag, being a function of the lift coefficient, a reasonable estimate might 
be obtained. 

Further the forces experienced by control surfaces depend strongly on the boundary layer also. 
Therefore panel methods do not seem very promising for predicting control surface derivatives. On the 
other hand it is possible that although no accurate values may be obtained, trends may be predicted 
reasonably well, provided that no flow separation occurs. 

This introduces an additional serious limitation of the neglect of viscosity namely that flow separa-
, tion cannot be modelled. A possible exception is the case of leading edge separation, as occurring for 
delta wings at high angles of attack, where recently some progress was made. Here the assumption of 
potential flow could be retained by assuming a vortex sheet to be shed from the leading edge and to roll 
up into a core of concentrated vorticity. Typical examples of panel methods following this approach are 
presented in references 20 and 21. 
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3.2. Modelling of compressibility 

The assumption of a perturbation potential and the linearization, makes it impossible to treat 
transonic flow conditions with panel methods based on equation (l). In addition the results of such 
methods will have a Mach number dependence following the (1-M^) behaviour of the Göthert rule, which is 
acceptable up to moderately subsonic flow. For high subsonic ?low conditions compressibility corrections 
such as the one devised at NLR (Ref. 3) may be used. In unsteady methods a "local Mach number correction" 
Ref. (22) may be useful. 

Derivatives with respect to the forward velocity are usually expressed in terms of a sum of deriva­
tives with respect to Mach number, dynamic pressure and thrust coefficient. Of these, only derivatives 
with respect to Mach number can be evaluated with panel methods. This may be done by performing computa­
tions for two different Mach numbers and determining the coefficient according to 

3C ^ C(M + AM) - C(M) 
3M "" AM 

3.3- Representation of thickness of wings and bodies 

For panel methods a clear distinction can be made between planar and non-planar methods. In the 
planar methods the thickness of the lifting surfaces and the fuselage type parts of the configuration are 
neglected, while in the fully non-planar methods the thickness of all parts of the configuration is taken 
into account. A mixture of both is obtained when the lifting surfaces are taken to be thin, while the 
fuselage is represented correctly. An example of this approach is the NLRI method mentioned in section 2.2 

Experience with panel methods has shown that including the wing thickness while neglecting the 
boundary layer leads to an overestimation of the normal force derivatives on the wing. Due to that the 
results of planar methods often compare better with experimental data. Clearly, for derivatives to which 
the fuselage or other thick bodies (such as stores) contribute significantly, non-planar methods' or the 
mixture type methods seem suited most. 

In general, applying non-planar methods is more expensive than using planar methods. Therefore, 
including the effects of fuselage or stores is relatively costly. However, it is possible to introduce 
the effects of such bodies in an approximate way in planar methods. This is done by representing these 
bodies in the form of a ring wing, an endplate or a cross. Of course, one has to be careful in applying 
this type of idealizations, as a certain representation might give good results for one derivative but 
not for another. 

3.^. Application of methods for harmonic motions 

The aerodynamic derivatives may be divided in two groups. One group can be computed in principle by 
a steady method, while the second one can only be evaluated with an unsteady method. In table 1 it is 
indicated which coefficient belongs to which group. Of course, when making this distinction it should be 
mentioned that in principle all derivatives can be computed with an unsteady method. The type of unsteady 
panel methods most commonly in use are those in which small harmonic motions are assumed. In the appendix 
it is indicated how such methods can be used to obtain the necessary aerodynamic coefficients. In this 
context it is of interest to mention that all coefficients given in tables A.2 and A.3 can be computed 
individually. This may be in aid of interpreting results of unsteady windtunnel experiments where many 
coefficients can be measured only in combination. 

TABLE 1 

The method of computation of the aerodynamic derivatives depending on their state variable 

Steady 
method 

Unsteady 
method 

Syimietric motions 

u, a, q, n 
6 

<i, q, n 

Antisymmetric | 
motions 

B, p, r, n 
6 

^, t, i-, f\ . 

3.5- Relation between aircraft motions and input for steady methods 

In the stability axis system an a-variation is equivalent to a variation in the constant upwash 
experienced by the airplane (Fig. l). Therefore it is equivalent also to the angle of attack variation to 
be prescribed in the panel methods, where an aerodynamic axis system is used. A variation with respect to 
q as defined in the stability axis system is felt by the airplane as a linearly varying upwash (see Fig.2). 
Computation of the corresponding derivatives is possible with steady panel methods when the normal wash is 
specified individually for each panel. 

These observations made for the derivatives with respect to the symmetric variables a and q,are 
valid also for the derivatives with respect to the anti-symmetric variables B, p and r. However, for the 
derivatives with respect to 6 and r the accuracy may become questionable at large yawing angles, when 
there is a large shadow-effect of the fuselage on the lee side wing and a strong interference of the wake 
of the weather-side wing with the fuselage (see Fig. 3). The shadow effect depends very much on the 
development of the boundary layer along the fuselage and therefore is not represented in inviscid panel 
methods. The direct interference of the wake with the fuselage cannot be represented either, although 
alignment of the trailing vortices with the free stream direction will account for part of the wake 
effect. 

Derivatives resulting from structural deformation, may be calculated also with steady panel methods 
by specifying the local normal wash per panel. This normal wash is then derived from a given upwash 
distribution over the configuration, an example of which is given in figure k. 

Lh. •V iiV 
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RESULTS OBTAINED WITH UNSTEADY PANEL METHODS 

The applicability of steady panel methods for computing stability derivatives is well documented in 
the literature. Therefore in~tTiis paper the emphasis is put on results obtained with unsteady panel 
methods ,'Vhich are hard to find in the literature. As far as planar methods are concerned, Rodden and 
Giesing (Ref. 21*) showed the possibilities of the Doublet-lattice method by computing the longitudinal 
dynamic stability derivatives for a jet transport wing. Unfortunately no comparison with experimental 
data was given. 

To the authors knowledge the first application of an unsteady non-planar method was reported in 
reference 22. Using the NLRI-method, discussed in section 2.2, the longitudinal dynamic stability deriva­
tives were computed for a delta wing-fuselage configuration at zero angle of attack. The panelling 
scheme (for symmetry reasons only one half of the configuration) and the results are given in figure 5. 
For the few derivatives, obtained in an oscillatory vindtunnel experiment (Ref. 25), the theory shows a 
reasonable agreement. 

Recently the NLRI panel method was applied also to calculate the lateral stability derivatives for a 
T-tail transport configuration. For this configuration experimental data were obtained with the small 
eimplitude forced oscillatory roll mechanism at Nasa Langley (Ref. 26). The panelling scheme used in the 
calculations is shown in figure 6 (again for symmetry reasons only one half is shown). The fuselage of 
the configuration was approximated by a blunt nosed cylinder with in contrast to the experimental model, 
no tapering at the rear. The fuselage mounted engine nacelles were not modelled in the calculations, 
since in the tests their effect was found to be negligible. 

In table 2 a comparison is presented of the calculated and measured derivatives for the configura­
tions with and without wings. For the configuration without the wing the agreement between theory and 
experiment is reasonably good. The effect of adding the wing is predicted fairly well also, except for 
the cross derivative C„ . However, this latter difference can be expected since the main contributions of 
the wing to this derivative come from profile drag and leading edge suction, which are not modelled in the 
NLRI-method. 

TABLE 2 

Comparison of calculated and measured lateral stability derivatives for a T-tail transport 

Cj 
«-P 

• '̂̂ ^p 

\ 

^'% 

Fuselage + T-tail 

Theory 

-0.029 

0 

0.052 

0 

Experiment 

-0.025 

0 

0.060 

0 

Fuselage + wings 1 
+ T-tail •"-•"=' 1 

Theory 

-0.531 

0 

0.012 

0.001 

Experiment 1 

-O.I465 

o.ooU 

-O.OI4 

0 

Calculations were performed also for isolated parts of the configuration such as the fuselage, the 
wing suid the T-tail. The results (table 3) clearly show the effect on the derivatives when the configura­
tion is made more complex by adding T-tail and wings to it. They indicate also that summing up the con­
tributions due to the isolated parts of the configuration in general is not allowed, because of 
aerodynamic interference. A typical example for this is the Cy derivative. 

To illustrate in more detail the importance of the aerodynamic interference, the individual contri­
butions of the different parts of the configuration to the derivatives have been listed in table U. Com­
parison of tables 3 and I4 show that in general the wing itself is less affected by interference. However, 
the presence of the wing has a marked influence on the body and even more strongly on the T-tail. 
Clearly the wake of the wing should be taken into account when computing the contribution due to the 
T-tail. 

5. CONCLUDING REMARKS 

In the foregoing the use of panel methods for computing stability derivatives has been discussed. 
Reasons were given why not all derivatives, especially those which are dominated by viscous drag, can be 
computed with the same level of accuracy. 

The unsteady peinel methods, developed for aeroelastie applications, were shown to be very useful for 
computing "dynamic" stability derivatives. With the aid of some computed examples compared with experi­
mental data, the value of such methods was demonstrated. In addition the calculations showed that param­
eter studies, in which the contribution of different parts of the configuration are evaluated, can be 
carried out very succesfully with panel methods. 

It was further indicated that planar panel methods, which are cheaper to use, in many cases will 
give satisfactory results. 
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TABLE 3 

C a l c u l a t e d l a t e r a l s t a b i l i t y d e r i v a t i v e s f o r 
d i f f e r e n t p a r t s o f a T - t a i l t r a n s p o r t c o n f i - , 

c 
^B 

C 

C 

^ p 

c 
^ r 

'̂ ^̂  

^^B 

^̂ 6 

P 

r 

c 
"B 

c 
"6 

c 
p 

c 

c 
n 

C 

1 r 

F u s e l a g e 

- 0 . 0 5 2 

- 0 . 1 3 3 

0 

0 

- 0 . 6 1 8 

2 0 . 8 

0 

0 

0 

0 

0 

0 

0 .052 

- 0 . 0 0 7 

0 

0 

-0 .121* 

- 2 1 . 0 

Wings 

- 0 . 0 0 1 

0 

0 .029 

0 

0 

0 .020 

0 .015 

0 

- 0 . 5 0 6 

0 .010 

- 0 . 0 0 1 

-3.01* 

0 

0 

0 

0 

0 

0 

T - t a i l 

- 0 . 0 8 2 

- 0 . 0 0 6 

0 .039 

0 . 0 0 3 

- 0 . 1 9 1 

32 .9 

0 .030 

- 0 . 0 0 1 

- 0 . 0 2 7 

0 

0 . 0 5 8 

- 1 1 . 8 

- 0 . 0 7 1 

- 0 . 0 0 6 

0 .035 

0 . 0 0 3 

- 0 . 1 6 9 

28.l t 

F u s e l a g e 
T - t a i l 

- 0 . 2 0 0 

- 0 . 1 0 5 

0 .060 

- 0 . 0 1 1 

-O.80I1 

8 0 . 0 

0.01*3 

- 0 . 0 0 2 

- 0 . 0 2 9 

0 .007 

0 .081 

- 1 7 . 1 

- 0 . 0 7 3 

O.OII* 

0 .052 

- 0 . 0 0 8 

- 0 . 2 9 6 

2 8 . 9 

F u s e l a g e 
wings 
T - t a i l 

- 0 . 2 3 7 

- 0 . 0 7 2 

- 0 . 0 3 5 

0 .116 

- 0 . 6 7 5 

9 5 . 0 

0 .025 

- 0 . 0 0 5 

- 0 . 5 3 1 

- 0 . 0 0 8 

0 .066 

-9.95 

- 0 . 0 8 0 

0 .037 

0 .012 

0 . 0 7 7 

- 0 . 2 0 6 

31 .9 

V > 

TABLE U 

Contributions of the different parts of the con­

figuration to the calculated lateral stability 

derivatives VVL <|yW (^|i,A. ̂  >}'--f-t('i 

c 
^6 

c 
H 

c 
y., 

p 
c 

y-
p 

c 
^ 

c 
^ f 

\ s 
Cf 

p 
c, 

p 

s r 
r 

Cn 
"B 

C 

"è 
c 

" p 
c 

p 
c 

n 
C 

r 

F u s e l a g e 

- 0 . 1 1 5 

- 0 . 0 7 7 

- 0 . 0 6 5 

0 .068 

-O.I463 

1*6.0 

0 

0 

0 

0 

0 

0 

0 .029 

O.O3I* 

0 .010 

0.031* 

- 0 . 0 1 6 

- 1 1 . 8 

Wings 

0 . 0 0 3 

0 

0 .031 

- 0 . 0 0 1 

0 .001 

- 1 . 1 6 2 

- 0 . 0 2 3 

0 .002 

- 0 . 5 2 3 

0 .016 

0 .007 

9 .2 

0 

0 

0 .001 

0 

0 

0 .129 

1 

S t a b i ­
l i z e r 

0 

0 

0 

0 

0 

0 

O.OIT 

- 0 . 0 0 6 

- 0 . 0 0 8 

- 0 . 0 1 2 

0 .008 

-6.9 

0 

0 

0 

0 

0 

0 

s '•' 

F i n 

- 0 . 1 2 6 

0 .005 

- 0 . 0 0 1 

0.01*9 

- 0 . 2 3 2 

50 .2 

0 .030 

- 0 . 0 0 1 

0 

- 0 . 0 1 2 

0 .051 

- 1 2 . 2 

- 0 . 1 0 9 

0 . 0 0 3 

0 

0.01*3 

- 0 . 1 9 0 

1*3.5 

F u s e l a g e 1 
wings 
s t a b i l i z e r 
f i n 

- 0 . 2 3 7 

- 0 . 0 7 2 

- 0 . 0 3 5 

0 .116 

- 0 . 6 7 5 

9 5 . 0 

0 .025 

- 0 . 0 0 5 

- 0 . 5 3 1 

- 0 . 0 0 8 

0 .066 

- 9 . 9 5 

- 0 . 0 8 0 

0 .037 

0 .012 

0 .077 

- 0 . 2 0 6 

3 1 . 9 
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APPENDIX : ANALYTICAL DESCRIPTION OF THE AERODYNAMIC DERIVATIVES 

In the stability axis system a typical aerodynamic force is defined as: 

A..(t) = 5 pU^ S C. (t) e.(t) 
IJ 

(A.l) 

0 

in which £• represents a state variable (rigid or flexible), a control surface deflection or gust 
variable. The index i refers to one of the rigid body motions or one of the structural vibrations. The 
non-dimensional aerodynamic derivative is defined as: 

( t ) 

'i 
kll ()). dS (A.2) 

with Cp being the change in the local pressure distribution due to a change in the state variable (, •. 

(f. represents the i mode shape. For the rigid body motions ^^ takes very__̂ simple forms; for symmetric 
motions e.g.: longitudinal <t> = (1,0,0), normal (f = (0,0,l) and in pitch <|i = ( I "', 0, - ( I "i) • 

The aerodynamic force as defined in (A.l), can be expanded as follows: 

A (t) = i pU2 8 
ij <» w 

C- + C. £ . 0(c) (A.3) 

Neglecting the terms involving 5 and higher order derivatives, the aerodynamic force can be regarded as 
being built up of a steady term and an unsteady term. The derivative Cĵ  is a quasi-steady quantity and 
thus can be computed with a steady aerodynamic method (see table 1). ^j 

The derivative Ĉ _ can be obtained with the existing aerodynamic methods for harmonic aircraft 

^j . . . 
motions, developed for aeroelastie applications. As a rule, the output of these methods comes in the form 
of generalized aerodynamic forces which refer to an axis system x y z with the Xg-axis pointing in the 
direction of the undisturbed flight path, while the origin is translating in that direction with a speed 
U„. These generalized aerodynamic forces are defined as a function of the oscillation frequency u: 

A (u) = 5 pu2 s2 
mn «> 

in which 

Tiin Tnn 

Q = — / ƒ C n . J" dS 
mn 2 II V "1 

s^ •'•' '̂ n 

(A.U) 

(A.5) 

As small disturb€inces have been assumed, simple conversion rules exist between harmonic motions in 
the X y z stability axis system and the x 

frequency m these rules are given in table A.l. 
both the x^y z stability axis system and the x y z axis system. For the rigid body motions with a 

thes ' •' '" ^-'— • • 

TABLE A.l 

Conversion rules between the stability and the aerodynamic axis system 

Symmetric 

motions 

Antisymmetric 

motions 

^sys^s 
stability system 

a = 

1 

B 

P 

r = 

^e^e^e . 
aerodynamic space-
oriented axis system 

h 
ik =2. + e 

ike 

h 
ik =^ - 41 

c 

5 ik* 

5 ik* 

The factor 5 in the expressions for p and r enters due to non-dimensionalizing with 2 U„ instead of U„ 

as in the case of q. 

In this table k is the non-dimensional (reduced) frequency and h^ and h are translatory motions in 
the z and y directions respectively. The orientation of both axis systems is illustrated in figure 7-
The expressions describing the structural vibrations, control surface deflections and atmospheric gusts 
are the same in both axis systems. 

Applying a Fourier transformation the aerodynamic force defined in (A.3) can be written as: 

A..( j) = ! PU2 S. + ikC. .̂i 
(A.6) 

Comparing the expressions (A.l*) and (A.6) and using the conversion rules as given in table A.l relations 
between the two types of aerodynamic derivatives are derived easily. They are given in tables A.2 and A.3 
for the symmetric and antisymmetric derivatives respectively, (taken from ref. 23). 
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TABLE A.2 

Relation between symmetric aerodynamic derivatives 
and generalized aerodynamic forces 

a 

d 

q 

q 

J 

r 
b 

6 

a 
g 

a 
e 

'z 

s 2 « 2 2 
S k 

w 

s 2 < 2 

"^„ k^ 

1 1 

S ^26 
w 

2 2ö 
s 
S k 

w 

w g 

S k 
w 

C 
m 

3 ^ * 3 2 
S k 

w 

S , 2 
w k 

^ V "̂  k /̂ 

-rf-'-§) 
Hi. 
S k 

w 

Q " 
s2 30 

S k 
w 

^̂1 1 

s' <2 

^ k^ 

^V*^ kV 

s'(<3 K'2\\ 

e»;. 
2 Q. . 

S k 
w 

S i 5 
w 

Q " 

S k 
w 
2 . 

— 0 
S ^ i a w g 1 

Q " 
2 l a 

s s. 
5 k 

w 1 

Subscripts of Q^^ indicate the mode shape: 

2 = vertical translation, 3 = pitching motion, i,j = structural vibration, 
6 = control surface deflection, a = c;ust 
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TABLE A.3 

Relation between antisymmetric aerodynamic derivatives and generalized aerodynamic forces 

3 

0 

P 

P 

r 

f 

r 
s 
5 

6 

a 

g 

Pg 

^ 

C 
y 

1 1 

s^ \ l 
S k 

w 

s2 «11 

^ k^ 

S k 
w 

s2 2«12 

^ k^ 

^ V '̂  k^/ 

^ V k ^ k̂  / 
2 

— 0 ' 

S k 
w 

2 ! Q ' 
S ^16 
w 

^ 2 ^ 1 5 

S k 
w 

S ^ l a 

2 « la 

S k 
w 

2 
— ft' 
s n p 

S k 
w 

' t 

1 1 

s2 «21 
S k 
w 

s2 2«22 
S k 
w 

. 2 2«22 

^ k2 

s 2 / 2 « 2 3 2 « 2 l \ 

\ V "̂  k2 /* 

S k 
w 

s^ 
i - «26 

w 
t t 

s^ «25 

S k 
w 

2 

S~ «2a 
w s 

I t 

2 «2a 

S k 
w 

s^ ' ^ ^ , 
S k 
w 

C 
n 

1 1 

S k 
w 

^w k^ 

s^ 2«32 

^ k2 

s^(K;_ii) 
^ V "̂  k̂  / 

^ 2 / 2 0 ^ 2Q3, \ 

%W' k^/ 

t«. 
S k 

w 

s ^ 

S k 
w 

2 

i - «3a 

2 « ^ 
s ft 
S k 

w 

^ Q' 

2 «3G 

S k 
w 

= ^ 1 

f t 

s2 « u 
S k 

w 

s2 « i l 

^w k^ 

s2 2 Q ' ; 

S k 
w 

s2 2«;2 

\ k2 

s^/fil Ki\ 
^ V ' ^ k ^ / 

\ V k̂  kW 
2 , 

— 0 

S k 
w 

2 

i - «ib 
w 

s^ < ^ 
S k 

w 

2 

1 1 

2 « la 

S k 
w 

s^ ' 

S k 
w 

Subscripts of C}^^ indicate the mode shape: 

1 = horizontal translation, 2 = rolling motion, 3 = yawing motion, 
i,,i = structural vibration, 6 = control surface deflection, 
a ,g = gust 
g g 








