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Abstract: We develop a multiscale simulation strategy, namely, algebraic dynamic multilevel 
(ADM) method, for simulation of fluid flow and heat transfer in fractured geothermal reservoirs 
under varying thermodynamic conditions. Fractures with varying conductivities are modeled using 
the projection-based embedded discrete fracture model (pEDFM) in an explicit manner. The devel-
oped ADM method allows the fine-scale system to be mapped to a discrete domain with an adaptive 
grid resolution via the use of the restriction and prolongation operators. The developed framework 
is used a) to investigate the impacts of formulations with different primary variables on the simula-
tion results, and b) to assess the performance of ADM in a high-enthalpy reservoir by comparing 
the simulation results against those obtained from fine-scale grids. Results show that the two for-
mulations produce similar results in the case of single-phase flow, which indicates that the molar 
formulation is a favorable option that can be applied to varying thermodynamic conditions. More-
over, the ADM can provide accurate solutions with only a fraction of fine-scale grids, e.g., for the 
studied case, the maximum error is by average 1.3 with only 42% of active cells, thereby improving 
the computational efficiency. This is promising for applying the developed method to field-scale 
geothermal systems. 

Keywords: geothermal energy; mass and heat transfer; multiscale simulation 
 

1. Introduction 
The demand of geothermal energy is expected to increase within the next decades 

due to its high potential of sustainability [1–3]. The successful development of geothermal 
fields counts on accurate predictions of fluid and heat transport via the use of numerical 
simulations. However, there are key challenges in achieving such simulations. The spatial 
heterogeneity in rock properties, such as porosity and permeability, across multiple scales 
poses computational complexity which may result in poor convergence. Moreover, the 
fracture networks, which have been observed in many geothermal reservoirs, add to the 
complexity of the system further [4–7]. Fractures can act as either highly conductive flow 
channels, or impermeable faults blocking the flow. Additionally, their mechanical (ther-
moelastic) responses due to changes in temperature and pressure may alter their aper-
tures [8,9]. Hence, they are expected to impact the heat production significantly. On the 
other hand, geothermal reservoirs can be categorized into different types with varying 
thermodynamic behaviors. In the case of high-enthalpy systems where multi-phase flow 
can occur, the convergence behavior becomes more severe [10,11]. These challenges 
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emphasize the necessity of developing an advanced numerical framework that provides 
robust performance and high computational efficiency. 

Several simulators have been developed for geothermal applications. TOUGH2 [12], 
which was developed for geothermal reservoir engineering originally, has been widely 
used in geothermal projects [13]. TOUGH2 employs the natural formulation in which 
pressure and temperature are primary variables. The AD-GPRS also provides geothermal 
capabilities [14]. Both natural and molar formulations are implemented, where the molar 
formulation takes pressure and enthalpy as primary variables. Recent development in-
cludes DARTS [10], in which the molar formulation is employed. A comparison study on 
the non-linear performance between both formulations has been performed [15], which 
concludes that there is no apparent preference in terms of formulation and the perfor-
mance is largely dependent on the complexity of the model problem. Nevertheless, for the 
fractured system, the difference between the two formulations remains relatively unex-
plored. In addition, the large size of field-scale geothermal reservoirs demands imposing 
a large number of computational grids, which challenges the computational performance 
of conventional numerical models. An advanced solution strategy is, therefore, necessary 
to accelerate solving highly non-linear systems with systematic control of error. 

Multiscale methods have been developed to solve the elliptic (or parabolic) pressure 
equation efficiently by constructing a coarse-scale system in which the fine-scale hetero-
geneities are preserved [16–18]. The full domain is divided into a set of coarser grid cells 
and the local solution, i.e., the basis function, is computed for each coarse grid cell. The 
system is then solved on a coarse grid resolution which will be mapped to the fine-scale 
resolution using the basis function. To improve the accuracy, iterative multiscale tech-
niques have been introduced which allows for a systematic reduction of the error in the 
multiscale approximation [19]. Moreover, higher computational efficiency is achieved by 
using an algebraic framework for multiscale methods [20]. In the algebraic framework, 
the mapping between fine-scale and coarse-scale resolution is completed by using the pro-
longation and restriction operators. The prolongation operator, responsible for mapping 
from coarse-scale to fine-scale, contains locally computed basis functions. The restriction 
operator, on the contrary, maps from fine-scale to coarse-scale using the finite volume 
approach to ensure mass conservation. The local grid refinement (LGR), or dynamic LGR, 
is another technique that employs fine-scale grids in the computational domain where 
needed [21–26]. The algebraic dynamic multilevel (ADM) method is developed by extend-
ing the LGR and exploiting the basis functions from only one level into multiple levels to 
increase the efficiency even further [27–29]. 

In this work, the ADM method is developed for coupled mass–heat flow in fractured 
geothermal reservoirs for both high- and low-enthalpy systems. Due to the high non-lin-
earity of the system (arising from the strong mass–heat coupling), the mass balance and 
the energy balance equations are coupled together using the fully implicit method (FIM). 
The projection-based embedded discrete fracture model (pEDFM) is used to explicitly rep-
resent fractures with varying permeability contrast comparing the hosting rock matrix. 
The discretized system of equations is obtained for the two primary unknowns (depend-
ing on the formulation) at fine-scale resolution. It is worth mentioning that the local ther-
mal equilibrium is assumed to be valid in the simulation. This indicates the fluid and the 
hosting rock have identical temperatures at each grid cell, which is considered a safe as-
sumption for the majority of the applications because of the large contact area between 
the liquid and solid phases [30]. It should be noted that analytical expressions have been 
developed to determine whether the fractured system satisfies the local thermal equilib-
rium [31]. Specifically, an idealized reservoir in which the matrix is intersected by two sets 
of fractures perpendicular to each other is considered. The resulting criterion, however, 
may not be appropriate for the system with complex fracture geometries. 

This paper is structured as follows. First, the governing equations along with the 
choice of primary variables are presented. Next, the pEDFM implementation is covered, 
followed by a discussion on the ADM strategy. The two test cases are then presented to 
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investigate the impact of formulations on simulation results, and to examine the perfor-
mance of the ADM method, respectively. We close with the key findings of this work. 

2. Materials and Methods 
For a geothermal system, the flow can be either single-phase or multi-phase depend-

ing on thermodynamic conditions. In the case of low-enthalpy system, the phase change, 
i.e., evaporation of liquid phase into vapor phase and vice versa, does not occur. On the 
other hand, in high-enthalpy systems, due to more intense thermodynamic conditions, 
phase change may happen when fluid is subject to sudden changes in pressure or temper-
ature. Here, we consider a general multi-phase formulation. The conservation law for each 
phase is added together to form one equation for the entire domain. 

2.1. Mass and Energy Balance 
The equation for conservation of mass for a single-component (water) multi-phase 

system is given by 
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(2) 

for the fracture (𝑓𝑓𝑖𝑖). In these equations, subscript 𝛼𝛼 denotes the phase (either vapor or 
liquid phase); superscripts 𝑚𝑚, 𝑓𝑓𝑖𝑖, and 𝑤𝑤 refer to the rock matrix, the 𝑖𝑖-th fracture, and 
the well, respectively. 𝜙𝜙  is rock porosity, 𝜆𝜆𝛼𝛼  is phase mobility expressed as 𝜆𝜆𝛼𝛼 =
𝑘𝑘𝑘𝑘𝑟𝑟,𝛼𝛼/𝜇𝜇𝛼𝛼, where 𝑘𝑘 is the absolute permeability of the rock, 𝑘𝑘𝑟𝑟,𝛼𝛼 and 𝜇𝜇𝛼𝛼 are the relative 
permeability and viscosity of phase 𝛼𝛼. Additionally, 𝜌𝜌𝛼𝛼  and 𝑆𝑆𝛼𝛼  are the phase density 
and saturation. 𝑞𝑞𝛼𝛼

𝑚𝑚,𝑓𝑓𝑖𝑖  and 𝑞𝑞𝛼𝛼
𝑓𝑓𝑖𝑖,𝑚𝑚 are the flux exchanges between matrix and fractures, and 

𝑞𝑞𝛼𝛼
𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗  are the flux exchange between intersecting fractures 𝑖𝑖 and 𝑗𝑗. The well flux, i.e., 
𝑞𝑞𝛼𝛼
𝑚𝑚,𝑤𝑤, is calculated using Peaceman well model. 

The energy balance equation assuming local equilibrium is given by 
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(4) 

for the fracture (𝑓𝑓𝑖𝑖). Here ℎ𝛼𝛼 is the fluid enthalpy. (𝜌𝜌𝜌𝜌)eff is the effective internal energy 
per unit of mass given by 
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(𝜌𝜌𝜌𝜌)eff = 𝜙𝜙�𝜌𝜌𝛼𝛼𝑆𝑆𝛼𝛼𝑈𝑈𝛼𝛼
𝛼𝛼

+ (1 − 𝜙𝜙)𝜌𝜌𝑟𝑟𝑈𝑈𝑟𝑟 , (5) 

where 𝑈𝑈𝛼𝛼 and 𝑈𝑈𝑟𝑟  are the specific internal energy for fluid and rock, respectively. Λeff is 
the effective thermal conductivity expressed as 

Λeff = 𝜙𝜙�𝑆𝑆𝛼𝛼Λ𝛼𝛼
𝛼𝛼

+ (1 − 𝜙𝜙)Λ𝑟𝑟 , (6) 

where Λ𝛼𝛼  and Λ𝑟𝑟  are the thermal conductivities for fluid and rock, respectively. Note 
that Λeff𝑚𝑚 = 𝜙𝜙𝑚𝑚 ∑ 𝑆𝑆𝛼𝛼Λ𝛼𝛼𝛼𝛼 + (1 − 𝜙𝜙𝑚𝑚)Λ𝑟𝑟 , and Λeff

𝑓𝑓𝑖𝑖 = 𝜙𝜙𝑓𝑓𝑖𝑖 ∑ 𝑆𝑆𝛼𝛼Λ𝛼𝛼𝛼𝛼 + (1 − 𝜙𝜙𝑓𝑓𝑖𝑖)Λ𝑟𝑟 . 𝑟𝑟𝑚𝑚,𝑓𝑓𝑖𝑖, 𝑟𝑟𝑓𝑓𝑖𝑖,𝑚𝑚, 
and 𝑟𝑟𝑓𝑓𝑖𝑖,𝑓𝑓𝑗𝑗 are the conductive heat flux exchanges between the rock matrix and the inter-
secting fractures. 

2.2. Choice of Primary Variables 
According to Gibbs phase rule [32], two independent primary variables are required 

to fully define the thermodynamic state of a single-component, two-phase system. As a 
result, we have two sets of formulations: (a) the natural formulation based on pressure (𝑝𝑝) 
and temperature (𝑇𝑇), and (b) the molar formulation based on pressure (𝑝𝑝) and total en-
thalpy (𝐻𝐻). 

The use of the natural formulation poses difficulties when describing a two-phase 
system, in which pressure and temperature are dependent, i.e., 𝑝𝑝 = 𝑝𝑝sat(𝑇𝑇). This means 
that an additional variable is required to define the thermodynamic state of the system. 
Saturation is used as a viable alternative. On the other hand, the molar formulation en-
sures that the thermodynamic state is uniquely defined in both single- and two-phase 
conditions, as the pressure and enthalpy remain independent in both scenarios. The ther-
modynamic state of the system can be determined by comparing the total enthalpy of the 
system to the saturated phase enthalpies [11,33]. This is given by 

Phase state = �
single phase (𝑙𝑙),          if ℎ𝑙𝑙(𝑝𝑝) ≥ 𝐻𝐻
multiphase,   if ℎ𝑙𝑙(𝑝𝑝) < 𝐻𝐻 < ℎ𝑣𝑣(𝑝𝑝)
single phase (𝑣𝑣),         if 𝐻𝐻 ≥ ℎ𝑣𝑣(𝑝𝑝)

 (7) 

In two-phase region, the saturation of each phase can be calculated directly from the 
total enthalpy given by 

𝑆𝑆𝑣𝑣 =
𝜌𝜌𝑣𝑣(ℎ𝑣𝑣 − 𝐻𝐻)

𝐻𝐻(𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑣𝑣) − (ℎ𝑙𝑙𝜌𝜌𝑙𝑙 − ℎ𝑣𝑣𝜌𝜌𝑣𝑣) (8) 

For low-enthalpy systems, the single-phase liquid water is the main working fluid, 
whereas for high-enthalpy fields, either single phase vapor or two-phase mixtures can be 
present depending on thermodynamic condition of the reservoir. In general, thermody-
namic properties are presented in terms of pressure and temperature, for this reason the 
natural formulation may be preferred for simulations in single-phase conditions. The mo-
lar formulation requires the use of implicit relations which describe the properties as func-
tions of pressure and enthalpy. 

2.3. pEDFM Implementation 
Fractures are represented in an explicit manner via embedded discretization. The 

non-conforming embedded discrete method, i.e., EDFM, allows the fracture and the host-
ing rock to be modeled independently, and therefore, it provides significant flexibility in 
terms of the gridding structure for matrix and fractures. Especially, when dealing with a 
dynamic system where fracture closure or propagation occurs, changes in fracture geom-
etries can be captured by modifying the gridding structure readily. 

EDFM has been shown to provide accurate solutions for highly conductive fractures 
[34,35], i.e., fractures have a relatively higher permeability than the surrounding matrix. 
Nevertheless, it is not capable of modeling flow barriers. This is due to the fact that EDFM 



Energies 2023, 16, 928 5 of 16 
 

 

introduces extra connectivities between matrix and fractures on top of the classical con-
nections between the neighboring cells [36]. In the case of blocking fractures, the flow is 
expected to be impeded, yet the classical connections provide flow pathways, which re-
sults in non-physical leakage. To address this issue, the projection-based embedded dis-
crete fracture model (pEDFM) was introduced [36]. 

In pEDFM, a projection path is generated for each fracture along the interface of ma-
trix cells. The connectivities between two neighboring matrix cells on the affected inter-
faces are disconnected. This ensures flux occurs only in one route through matrix–frac-
ture–matrix. An example is shown in Figure 1. A fracture element 𝑓𝑓 crosses the matrix 
cell 𝑖𝑖 with an intersection area of 𝐴𝐴𝑖𝑖𝑖𝑖. Two projections are created along the interface be-
tween matrix cell 𝑖𝑖 and its neighboring cells (in purple). For each dimension the projec-
tion area fraction is calculated by 

𝐴𝐴𝑖𝑖𝑖𝑖⊥𝑥𝑥𝑒𝑒 = 𝐴𝐴𝑖𝑖𝑖𝑖 × 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾), (9) 

where 𝛾𝛾 is the angle between the fracture element and the interface on which the fracture 
element is projected. As a result, new transmissibilities between fracture element 𝑓𝑓 and 
the non-neighboring matrix cells (i.e., 𝑗𝑗 and 𝑘𝑘) are established, which are given by 

𝑇𝑇𝑖𝑖𝑒𝑒𝑓𝑓 =
𝐴𝐴𝑖𝑖𝑖𝑖⊥𝑥𝑥𝑒𝑒
〈𝑑𝑑〉𝑖𝑖𝑒𝑒𝑓𝑓

𝜆𝜆𝑖𝑖𝑒𝑒𝑓𝑓, (10) 

where 〈𝑑𝑑〉𝑖𝑖𝑒𝑒𝑓𝑓 denotes the average distance between fracture element 𝑓𝑓 and matrix cell 
𝑖𝑖𝑒𝑒. Moreover, the transmissibility between matrix cell 𝑖𝑖 and its neighboring cells affected 
by the projection is modified given by: 

𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒 =
𝐴𝐴𝑖𝑖𝑖𝑖𝑒𝑒−𝐴𝐴𝑖𝑖𝑖𝑖⊥𝑥𝑥𝑒𝑒

Δ𝑥𝑥𝑒𝑒
𝜆𝜆𝑖𝑖𝑒𝑒𝑓𝑓. (11) 

In the implementation, the transmissibilities are modified via multiplication of coef-
ficient. If the entire interface is covered by the projection area, the resulting coefficient is 
1 for most cases. This indicates that the transmissibility between matrix cells in those cases 
becomes zero, i.e., 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒 = 0. In this way, the classical connections are removed. We refer to 
the recent literature for more details about the pEDFM on complex grids [37] and compo-
sitional physics [38]. 

 
Figure 1. Schematic of pEDFM for a 2D domain with a 1D fracture. 

2.4. ADM Strategy 
After obtaining the linearized system at fine-scale resolution, the computed residual 

and Jacobian are given as the input for the ADM method. At each Newton’s iteration step, 
the fine-scale system is reduced to a multilevel resolution system using ADM restriction 
(𝑹𝑹) and prolongation (𝑷𝑷) operators. The converted ADM system is given by 

𝑹𝑹�𝑙𝑙𝑙𝑙−1 …𝑹𝑹�10𝑱𝑱0𝑷𝑷01 …𝑷𝑷𝑙𝑙−1𝑙𝑙 𝛿𝛿𝑥𝑥𝑙𝑙 = −𝑹𝑹�𝑙𝑙𝑙𝑙−1 …𝑹𝑹�10𝑟𝑟0. (12) 
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Here, 𝑹𝑹�𝑙𝑙𝑙𝑙−1 denotes the restriction operator mapping part of the solution vector at 
resolution 𝑙𝑙 − 1 (𝛿𝛿𝑥𝑥𝑙𝑙−1) to a coarser resolution 𝑙𝑙 (𝛿𝛿𝑥𝑥𝑙𝑙). The term 𝑷𝑷𝑙𝑙−1𝑙𝑙  refers to the pro-
longation operator which maps part of the solution vector at level 𝑙𝑙 to a finer level 𝑙𝑙 − 1. 
The next step is to solve the system at ADM resolution. The approximated solution at the 
fine-scale resolution 𝛿𝛿𝑥𝑥0′  (the exact fine-scale solution as reference is denoted as 𝛿𝛿𝑥𝑥0) is 
computed as 

𝛿𝛿𝑥𝑥0 ≈ 𝛿𝛿𝑥𝑥0′ = 𝑷𝑷01 …𝑷𝑷𝑙𝑙−1𝑙𝑙 𝛿𝛿𝑥𝑥𝑙𝑙 . (13) 

The ADM prolongation and restriction operators between every two levels are as-
sembled from the static multilevel multiscale operators, which are computed only at the 
beginning of the simulation. The multilevel multiscale prolongation operator 𝑷𝑷𝑙𝑙−1𝑙𝑙  is 
structured as 

𝑷𝑷𝑙𝑙−1𝑙𝑙 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡��𝑷𝑷𝑥𝑥1�𝑙𝑙−1

𝑙𝑙 �
𝑚𝑚,𝑚𝑚

��𝑷𝑷𝑥𝑥1�𝑙𝑙−1
𝑙𝑙 �

𝑚𝑚,𝑓𝑓
0 0

��𝑷𝑷𝑥𝑥1�𝑙𝑙−1
𝑙𝑙 �

𝑓𝑓,𝑚𝑚
��𝑷𝑷𝑥𝑥1�𝑙𝑙−1

𝑙𝑙 �
𝑓𝑓,𝑓𝑓

0 0

0 0 ��𝑷𝑷𝑥𝑥2�𝑙𝑙−1
𝑙𝑙 �

𝑚𝑚,𝑚𝑚
0

0 0 0 ��𝑷𝑷𝑥𝑥2�𝑙𝑙−1
𝑙𝑙 �

𝑚𝑚,𝑚𝑚

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑁𝑁𝑙𝑙−1×𝑁𝑁𝑙𝑙

, (14) 

and the restriction operator is given by 

𝑹𝑹𝑙𝑙𝑙𝑙−1 =

⎣
⎢
⎢
⎢
⎢
⎡�𝑹𝑹𝑙𝑙

𝑙𝑙−1�𝑚𝑚 0 0 0

0 �𝑹𝑹𝑙𝑙𝑙𝑙−1�
𝑓𝑓 0 0

0 0 �𝑹𝑹𝑙𝑙𝑙𝑙−1�
𝑚𝑚 0

0 0 0 �𝑹𝑹𝑙𝑙𝑙𝑙−1�
𝑓𝑓
⎦
⎥
⎥
⎥
⎥
⎤

𝑁𝑁𝑙𝑙×𝑁𝑁𝑙𝑙−1

. (15) 

To ensure mass conservation, a finite volume restriction operator is used: 

𝑹𝑹𝑙𝑙𝑙𝑙−1(𝑠𝑠, 𝑡𝑡) = �1, if finer cell 𝑠𝑠 inside coarser cell 𝑡𝑡,
0, otherwise.  (16) 

Note that the blocks of the prolongation operator for different unknowns (𝑥𝑥1 refers 
to pressure 𝑝𝑝, and 𝑥𝑥2 refers to either temperature 𝑇𝑇 or the total enthalpy 𝐻𝐻 depending 
on the formulation), i.e., �𝑷𝑷𝑥𝑥1�𝑙𝑙−1

𝑙𝑙  and �𝑷𝑷𝑥𝑥2�𝑙𝑙−1
𝑙𝑙 , are treated differently due to different 

nature of the unknowns [28]. In this work �𝑷𝑷𝑥𝑥2�𝑙𝑙−1
𝑙𝑙 = �𝑹𝑹𝑙𝑙𝑙𝑙−1�

𝑇𝑇, where the superscript 𝑇𝑇 
denotes the transpose operator. Figure 2 illustrates the workflow for the proposed ADM 
strategy. 

The prolongation operator, which includes the basis functions at different coarsening 
levels, is constructed in an algebraic manner [39]. To compute the basis functions, the fine-
scale system is assembled first. Next, coarse grids are imposed on the fine-scale domain. 
For example, we consider a 2D domain with 75 × 75 fine-scale matrix grids and three 
fractures. The coarsening ratio for the matrix and the fracture is given by 𝛾𝛾𝑚𝑚𝑙𝑙 = 5 × 5 and 
𝛾𝛾𝑓𝑓𝑙𝑙 = 5, respectively. Instances of a few basis functions for the above-mentioned domain 
in two coarsening levels are visualized in Figure 3. 
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Figure 2. Workflow for the ADM strategy. 

 
(a) 
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(b) 

Figure 3. Visualization of some basis functions for (a) coarsening level 1, and (b) coarsening level 2 
for a 2D domain with 75 × 75 fine-scale matrix grids and three 1D fracture each with 75 grids. 

3. Results and Discussions 
In this section, the ADM method for fractured geothermal reservoirs is studied using 

two test cases. In the first test, a comparison between the results of the simulations for the 
molar and the natural formulations is presented. In the second part, through a 3D frac-
tured test case, the performance of the ADM method is demonstrated for the high-en-
thalpy multi-phase flow with the implementation of the molar formulation. 

3.1. Comparison between Natural Formulation and Molar Formulation 
Here, a comparison is made between the natural and the molar formulation for sin-

gle-phase flow in low-enthalpy geothermal systems. Figure 4 shows a schematic overview 
of the production strategy and fracture geometry in a 2D domain of 100 [m] × 100 [m]. 
Two injection/production wells are placed on the left/right corners of the domain, respec-
tively. The domain consists of 30 mix-conductive fractures. Table 1 shows the physical 
parameters and simulation settings used in the test case. The initial reservoir temperature, 
rock matrix properties, and permeability field are chosen such that the test case represents 
the geothermal fields of Middenmeer in the Netherlands. The geothermal fluid is assumed 
to be pure water. The computation of fluid properties is presented in Appendix A. 

  
(a) (b) 

Figure 4. Schematic of the (a) production strategy and (b) fracture geometry applied in the single-
phase test case. The highly conductive fractures are shown in red color and the impermeable ones 
are colored in blue. 
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Table 1. Input parameters used in the single-phase flow test case. 

Property Value 
Porosity 0.2 

Rock density 2600 [Kg/m3] 
Rock specific heat capacity 830 [J/Kg/K] 
Rock thermal conductivity 2.9 [W/m/K] 

Fracture permeability {1.0 × 10−8, 1.0 × 10−20} [m2] 
Fracture aperture 5.0 × 10−3 [m] 
Fracture porosity 1.0 

Initial temperature 400 [K] 
Initial pressure 1.0 × 107 [Pa] 

Injection temperature 300 [K] 
Injection pressure 1.4 × 107 [Pa] 

Production pressure 0.8 × 107 [Pa] 
Simulation time 2000 [days] 

Tolerance for convergence 1.0 × 10−4 [-] 
ADM coarsening levels 2 
ADM coarsening ratio 3 × 3 

To compare the results between the two formulations, a formulation error is intro-
duced to quantify the relative difference between the numerical solutions obtained from 
both formulations. The formulation error is calculated as 

𝑒𝑒𝑓𝑓 =
�𝑥𝑥(𝑝𝑝−𝐻𝐻) − 𝑥𝑥(𝑝𝑝−𝑇𝑇)�2

�𝑥𝑥(𝑝𝑝−𝑇𝑇)�2
, (17) 

where �𝑥𝑥(𝑝𝑝−𝐻𝐻)�2 and �𝑥𝑥(𝑝𝑝−𝑇𝑇)�2 are the 𝐿𝐿2-norms of a given variable 𝑥𝑥 using the molar 
and natural formulation, respectively. Note that the result obtained from the natural for-
mulation is used as a reference solution. 

Figure 5 shows the results of multiple runs with both formulations on fine-scale and 
ADM. As shown, the maps obtained from the two formulations exhibit similar behavior 
for both simulation strategies. In cases of ADM, fine-scale grids are employed in the vi-
cinity of the displacement front so that the dynamics of flow are captured accurately, and 
coarser grids are used in regions away from the front to improve computational efficiency. 
We also observe that the temperature inside the impermeable fractures is higher than that 
in the highly conductive ones. This is because heat convection is hindered by the flow 
barriers. The time-lapsed formulation error is presented in Figure 6. Among the three in-
vestigated properties, enthalpy and temperature have relatively larger errors compared 
to the pressure. This is because local variables, i.e., enthalpy and temperature, evolve 
along with the transport of the cold water through the reservoir, and consequently, they 
are more sensitive to the grid resolution (levels of coarsening). Nevertheless, the maxi-
mum relative error is approximately 3%, which indicates that the difference in perfor-
mance between both formulations is insignificant. 
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Figure 5. The pressure (top row), temperature (middle row), and the total enthalpy (bottom row) 
of the fine-scale and ADM simulations, both for the natural and the molar formulation. 

  
(a) (b) 

Figure 6. The formulation error for (a) fine-scale, and (b) ADM simulations. 

3.2. High-Enthalpy System Using Molar Formulation 
In this subsection, the ADM method is assessed for multiphase flow in high-enthalpy 

fractured geothermal reservoirs using the molar formulation. The ADM results on differ-
ent ADM grid resolution selection tolerances of Δ𝐻𝐻 = {0.25,0.5,1.0,2.0,4.0} × 105 [J/Kg] 
are compared against the fine-scale results as a reference solution. The ADM error is cal-
culated as 

𝑒𝑒𝑥𝑥 =
‖𝑥𝑥FS − 𝑥𝑥ADM‖2

‖𝑥𝑥FS‖2
, (18) 
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with 𝑥𝑥 being a solution vector of either of the primary variables. Table 2 lists the input 
parameters that are used in this multiphase flow test case. A 3D domain of 100 [m] × 100 
[m] × 40 [m] with 15 fractures is considered. The matrix has homogeneous permeability 
of 1.0 × 10−14 [m2], whereas the fractures have mixed conductivity with the permeability of 
1.0 × 10−8 [m2] for highly conductive fractures and 1.0 × 10−20 [m2] for the impermeable ones. 
Figure 7 illustrates the geometry of the fracture network with different colors highlighting 
their differences in conductivities. Well configuration is similar to the previous test case 
shown in Figure 4. 

 
Figure 7. Schematic of fracture geometry applied in the multiphase test case. The highly conductive 
fractures are shown in red color and the impermeable ones are colored in blue. 

Table 2. Input parameters used in the multiphase flow test case. Thermodynamic properties for 
water of liquid and vapor phase are referred to [40]. 

Property Value 
Porosity 0.2 

Rock permeability 1.0 × 10−14 [m2] 
Rock compressibility 1.0 × 10−8 [1/Pa] 

Rock density 2600 [Kg/m3] 
Rock specific heat capacity 850 [J/Kg/K] 
Rock thermal conductivity 3.0 [W/m/K] 

Fracture permeability {1.0 × 10−8, 1.0 × 10−20} [m2] 
Fracture aperture 5.0 × 10−3 [m] 
Fracture porosity 1.0 
Initial enthalpy 1.6 × 106 [J/Kg] 
Initial pressure 5.0 × 106 [Pa] 

Water liquid compressibility 1.0 × 10−9 [1/Pa] 
Water vapor compressibility 1.0 × 10−6 [1/Pa] 

Water liquid specific heat capacity 4200 [J/Kg/K] 
Water vapor specific heat capacity 8000 [J/Kg/K] 
Water liquid thermal conductivity 0.6 [W/m/K] 
Water vapor thermal conductivity 0.1 [W/m/K] 

Injection enthalpy 3.0 × 105 [J/Kg] 
Injection pressure 6.0 × 106 [Pa] 

Production pressure 4.0 × 106 [Pa] 
Simulation time 200 [days] 

Figure 8 shows the simulation results for fine-scale and the ADM with grid resolution 
selection tolerance of Δ𝐻𝐻 = {1.0,4.0} × 105 [J/Kg]. In the ADM runs, two coarsening lev-
els are used with the coarsening ratio of 𝛾𝛾 = 3 at each dimension. These results are at 
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simulation time 𝑡𝑡 = 28 [days]. Saturation of vapor water, temperature, and the total fluid 
enthalpy distribution at the mentioned simulation time are presented. Unlike the single-
phase flow test in which the temperature and the total enthalpy maps exhibit comparable 
distribution, here the front of total enthalpy propagates further compared to that of the 
temperature. Due to a highly diffusive front, more fine-scale grids are used at the front 
depending on the tolerance. 

 
Figure 8. Fine-scale and ADM results from the tolerances of Δ𝐻𝐻 = {1.0,4.0} × 105 [J/Kg]. Starting 
from the top row to the bottom row, the results of saturation, temperature, and total enthalpy are 
presented. Note that for better visualization, only a portion of grids in the solutions are visible. 

More details regarding the errors and the percentage of the active grid cells used in 
the simulation are presented in Figure 9. Note that the percentage of active grid cells refers 
to the ratio of the number of grid cells used to solve the linearized system in the ADM 
over that of the fine-scale. As the ADM tolerance increases, fewer active grids are used 
thereby improving the computational efficiency. On the other hand, the error increases 
especially for saturation, whereas for temperature, the error is relatively insensitive to the 
changes in ADM tolerance. 

Simulation results from these two test cases indicate that the molar formulation is a 
better option in terms of implementation, as the pressure and the total enthalpy stay in-
dependent regardless of thermodynamic conditions. In addition, the error for saturation 
is in general greater than that for pressure and temperature. This implies that one can 
devise more accurate multilevel basis functions for saturation as the next step. 
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Figure 9. ADM errors and the percentage of the active cells used for each ADM run. The error for 
each parameter as well as the percentage of the active cells for each ADM run are averaged over the 
entire simulation. 

4. Conclusions 
An algebraic dynamic multilevel (ADM) method for coupled mass–heat multiphase 

flow in fractured geothermal reservoirs under varying thermodynamic conditions is pre-
sented. The pEDFM model is used to account for fractures with varying conductivities in 
an explicit manner. The non-linear mass and energy balance equations are coupled using 
the fully implicit method, and the resulting fine-scale system is mapped to a discrete do-
main with dynamic grid resolution via the use of restriction and prolongation operators. 
These operators are assembled from the static multiscale basis functions, which are calcu-
lated only at the beginning of the simulation. Matrix–fracture interactions are incorpo-
rated in the multiscale basis functions. Main findings are summarized as follows. 
• Numerical results indicate that the two formulations with different primary variables, 

i.e., natural formulation (𝑝𝑝-𝑇𝑇) and molar formulation (𝑝𝑝-𝐻𝐻), produce similar results 
in the case of single-phase flow. In the case studied, the maximum formulation error 
for the fine-scale and the ADM simulation are 1.9 and 3.0%, respectively. 

• The performance of ADM is evaluated by comparing the simulation results with 
those obtained from the fine-scale grids. We observe that the ADM method provides 
computational efficiency by reducing the size of the linear system, while keeping the 
accuracy at a user-defined level. In the case with the highest tolerance, only 42% of 
grid cells are active, and the maximum error is 1.3% from the saturation map. 
Because of its algebraic framework, the ADM method can be applied to large-scale 

fractured geothermal reservoirs for scalable simulation of coupled mass–heat processes. 
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Appendix A 
Thermodynamic properties of pure water and steam are expressed depending on 

primary variables. The natural formulation uses correlations developed by [30], and the 
molar formulation employs correlations developed by [41]. All variables are presented in 
SI units. 

Appendix A.1. Natural Formulation 
The density of the liquid phase is treated as a function of pressure and temperature 

given by 

𝜌𝜌𝑙𝑙(𝑝𝑝,𝑇𝑇) = 𝜌𝜌𝑙𝑙,𝑠𝑠(𝑇𝑇)�1 + 𝑐𝑐𝑓𝑓(𝑇𝑇)(𝑝𝑝 − 𝑝𝑝sat)�, (A1) 

where the saturation pressure 𝑝𝑝sat has a constant value of 105 [Pa]. 𝜌𝜌𝑙𝑙,𝑠𝑠(𝑇𝑇) and 𝑐𝑐𝑓𝑓(𝑇𝑇) are 
obtained from empirical correlations: 

𝜌𝜌𝑙𝑙,𝑠𝑠(𝑇𝑇) = −0.0032𝑇𝑇2 + 1.7508𝑇𝑇 + 757.5, (A2) 

𝑐𝑐𝑓𝑓(𝑇𝑇) = (0.0839𝑇𝑇2 + 652.73𝑇𝑇 − 203714) × 10−12. (A3) 

The liquid phase enthalpy is treated as a function of pressure and temperature given 
by 

ℎ𝑙𝑙(𝑝𝑝,𝑇𝑇) = 𝑈𝑈𝑙𝑙,𝑠𝑠 + 𝐶𝐶𝑝𝑝,𝑙𝑙(𝑇𝑇 − 𝑇𝑇sat) +
𝑝𝑝
𝜌𝜌𝑙𝑙

, (A4) 

where 𝑇𝑇sat is the saturation temperature with a constant value of 373 [K]; 𝑈𝑈𝑙𝑙,𝑠𝑠 = 420000 
[J/Kg] and 𝐶𝐶𝑝𝑝,𝑙𝑙 = 4200 [J/Kg/K]. 

The viscosity of the liquid phase is treated as a function of temperature expressed by 

𝜇𝜇𝑙𝑙(𝑇𝑇) = 2.414 × 10−5 × 10�
247.8
𝑇𝑇−140�. (A5) 

Appendix A.2. Molar Formulation 
The liquid and vapor phase densities are treated as functions of pressure and en-

thalpy given by 

𝜌𝜌𝑙𝑙(𝑝𝑝,𝐻𝐻) = (1.00207 + 4.42607 × 10−11𝑝𝑝 − 5.47456 × 10−12𝐻𝐻 +
5.02875 × 10−21𝑝𝑝𝑝𝑝 − 1.24791 × 10−21𝐻𝐻2) × 103, (A6) 

𝜌𝜌𝑣𝑣(𝑝𝑝,𝐻𝐻) = (−2.26162 × 10−5 + 4.38441 × 10−9𝑝𝑝 − 1.79088 × 10−19𝑝𝑝𝑝𝑝 +
3.69276 × 10−36𝑝𝑝4 + 5.17644 × 10−41𝑝𝑝𝐻𝐻3) × 103. (A7) 

The saturated liquid and vapor phase enthalpies are functions of pressure given by 

ℎ𝑙𝑙(𝑝𝑝) = (7.30984 × 109 + 1.29239 × 102𝑝𝑝 − 1.00333 × 10−6𝑝𝑝2 +
3.9881 × 10−15𝑝𝑝3 − 9.90697 × 1015𝑝𝑝−1 + 1.29267 × 1022𝑝𝑝−2 −

6.28359 × 1027𝑝𝑝−3) × 10−7, 
(A8) 

ℎ𝑣𝑣(𝑝𝑝) = (2.82282 × 1010 − 3.91952 × 105𝑝𝑝−1 + 2.54342 × 1021𝑝𝑝−2 −
9.38879 × 10−8𝑝𝑝2) × 10−7. (A9) 

The temperature in the compressed water region is given by 

𝑇𝑇(𝑝𝑝,𝐻𝐻) = 273.15 − 2.41231 + 2.5622 × 10−8𝐻𝐻 − 9.31415 × 10−17𝑝𝑝2 −
2.2568 × 10−19𝐻𝐻2, (A10) 

and in the superheated stream region by 
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𝑇𝑇(𝑝𝑝,𝐻𝐻) = 273.15 − 374.669 + 4.79921 × 10−6𝑝𝑝 − 6.33606 × 10−15𝑝𝑝2

+ 7.39386 × 10−19𝐻𝐻2 − 3.3372 × 1034𝐻𝐻−2𝑝𝑝−2

+ 3.57154 × 1019𝑝𝑝−3 − 1.1725 × 10−37𝐻𝐻3𝑝𝑝
− 2.26861 × 1043𝐻𝐻−4. 

(A11) 

Note that in the two-phase region, the saturated liquid phase enthalpy is used in the 
equation instead. 

The liquid and vapor phase viscosities are computed as functions of temperature: 

𝜇𝜇𝑙𝑙(𝑇𝑇) = 2.414 × 10−5 × 10�
247.8
𝑇𝑇−140�., (A12) 

𝜇𝜇𝑣𝑣(𝑇𝑇) = (0.407 × (𝑇𝑇 − 273.15) + 80.4) × 10−4. (A13) 
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