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Inspired by crystallography, the periodic assembly of trusses into
architected materials has enjoyed popularity for more than a
decade and produced countless cellular structures with bene-
ficial mechanical properties. Despite the successful and steady
enrichment of the truss design space, the inverse design has
remained a challenge: While predicting effective truss properties
is now commonplace, efficiently identifying architectures that
have homogeneous or spatially varying target properties has
remained a roadblock to applications from lightweight structures
to biomimetic implants. To overcome this gap, we propose a
deep-learning framework, which combines neural networks with
enforced physical constraints, to predict truss architectures with
fully tailored anisotropic stiffness. Trained on millions of unit cells,
it covers an enormous design space of topologically distinct truss
lattices and accurately identifies architectures matching previ-
ously unseen stiffness responses. We demonstrate the application
to patient-specific bone implants matching clinical stiffness data,
and we discuss the extension to spatially graded cellular structures
with locally optimal properties.

inverse design | truss | metamaterial | deep learning | stiffness

Opportunities for selecting materials in the engineering de-
sign process have fundamentally changed over the past

decade due to innovation in materials systems with tailored
properties. Specifically with maturing additive manufacturing
techniques across length scales, metamaterials or architected
materials have gained momentum, whose periodic or nonpe-
riodic structural architecture on smaller scales has enabled us
to control the characteristic material behavior on larger scales.
Popular examples are periodic assemblies of truss, plate, or
shell networks, whose underlying unit cell (UC) architecture can
be leveraged to explore a tremendous design space, including
previously unattainable effective material property and function-
ality combinations. This includes lightweight materials with high
specific stiffness and strength (1–3), materials for acoustic wave
guiding (4–6) and impact energy absorption (7) and further for
heat transfer (8–10) and vibration control (11, 12), to mention
but a few properties of interest. Beneficial structure–property
relations have been identified by user intuition as well as by
computational optimization (13) and by taking inspiration from
natural cellular architectures (14). While the result is an ever-
growing space of candidate UC architectures, the selection pro-
cess for a specific application too often relies on lookup tables
(15) rather than inverse design. The latter is the challenge of
identifying architectures that possess specific effective properties
on demand (as opposed to the well-understood forward problem
of extracting effective properties from a given UC).

To illustrate this challenge and, moreover, to offer a solution,
we focus on one of the most fundamental effective properties,
the elastic stiffness of a material, which in general is direction de-
pendent or anisotropic. The elastic stiffness not only governs the
linear stress–strain response, but also is essential for, e.g., wave
motion, buckling, and limit loads. Anisotropic behavior is fre-
quently encountered in nature, e.g., in bone (16). Consequently,
material solutions for bone implants should ideally reproduce the
mechanical and physiological properties of their natural analogs.

This, in turn, requires finding cellular architectures whose effec-
tive anisotropic stiffness matches that of bone (which commonly
varies not only from patient to patient but even from location
to location within a specific bone). If unsuccessful, mismatches
in stiffness can lead to stress shielding with detrimental conse-
quences for bone atrophy (17, 18). Prior research has identified a
myriad of architectures with tailored anisotropy—behaving stiff
in some directions and compliant in others. Most popular for
its simple fabrication and property extraction has been the class
of truss lattices (13, 18–28). In principle, arbitrary thermody-
namically admissible stiffness combinations can be achieved by
the complex arrangement of trusses (20), which may be guided
by topology optimization schemes (also referred to as inverse
homogenization) (13). Most prior work, however, has relied
on simple parametric studies (21, 29) (with a limited range of
achievable [an]isotropy), structural optimization techniques (13,
27) (which are expensive in three dimensions [3D] and may not
guarantee manufacturability), or the selection from a precom-
puted UC database (14, 15) (which becomes prohibitively large
for high-dimensional parameter spaces). Moreover, identified
topologies for different elastic stiffnesses are often incompatible
and hence not continuously convertible into each other, which
prevents their use in structures with spatially varying, locally
optimized stiffness, such as in bone.

In recent years, machine-learning (ML) algorithms such as
deep neural networks (NNs) have gained attention to meet
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the inverse design challenge. Existing approaches of single- and
multiscale topology optimization commonly leverage data-driven
surrogate models for the structure-to-property map, which by-
pass expensive computational homogenization of the microscale
UC and thereby accelerate structural optimization (30–34). Gen-
erative models based on variational autoencoders and generative
adversarial networks typically search for optimal designs with
target properties from within a continuous latent (design) space
of reduced dimensionality (23, 28, 35–37). The biggest challenge
in inverse-designing truss architectures is the lack of a unifying
design parameterization describing the enormous set of truss
lattices identified over the years. While a pixelated/voxelated
microstructure representation has been successful for, e.g., com-
posite materials (37–40), it is highly inefficient for sparse 3D
truss UCs. Other approaches, like the library of tens of thousands
of unique truss lattices introduced recently (14) with inspiration
from molecular structures, do not admit a consistent design pa-
rameterization (unlike their molecular analogs). Consequently,
existing works (23, 25, 30, 41) have typically considered only a
small number of fixed lattice topologies, whose superposition
with different strut thicknesses and/or base materials results in
a limited design space for the effective properties—but with
the added benefit of enabling spatial gradients. In addition, the
common focus on cubic and hence orthotropic UCs (26, 35)
ignores shear–normal and shear–shear coupling components in
the effective stiffness tensor—although it has been recognized
that those may be beneficial for, among others, compliance min-
imization and wave guidance (22, 42). By contrast, a completely

random topology (based on a random placement and connection
of struts in a truss) results in an overwhelmingly high-dimensional
and nonlinear parameterization with low symmetry and a pro-
hibitively small fraction of mechanically useful UCs (not even
to think of smooth spatial transitions between different random
topologies). More recently, graph neural networks (leveraging
the analogy between trusses and graphs) have shown promising
results in predicting the response of truss metamaterials (albeit in
a semisupervised setting of the forward problem only), and their
use for design optimization is the subject of current research (43).

We here propose an ML-driven inverse design framework for
the instant prediction of diverse truss lattices with fully tailorable
3D anisotropic stiffness. Our framework admits an enormous,
unified design space of topologically distinct lattices with an effi-
cient design parameterization. The property space spans several
orders of magnitude in stiffness, including previously unexploited
shear–shear and shear–normal couplings. The inverse design
admits variational sampling to propose multiple distinct archi-
tectures that exhibit a given target stiffness response—all while
maintaining the ability to smoothly transition between different
UCs, which is an ongoing challenge for periodic structures (44).

Creating a Diverse Lattice Design Space
We start by defining a large, structured design space of truss lat-
tices by drawing inspiration from the truss descriptors proposed
by Zok et al. (45). Fig. 1A illustrates our approach for generating
truss UCs, which differ in their 1) topology, 2) geometry, and
3) relative density. To define the topology, we introduce a set S

A

B C D

Fig. 1. Generation of a diverse truss dataset. (A) Sequence of generating different lattice realizations, showing the corresponding elastic surfaces at
each stage. First, a topology is randomly drawn by superimposing and tessellating up to three unique elementary topologies (45). Next, its geometry
is transformed by four affine deformations to break the orthotropic symmetry and enable shear–shear and shear–normal coupling, while maintaining
continuous design/stiffness spaces. Elastic surfaces were obtained by FE simulations and qualitatively illustrate the effective directional Young’s modulus
E(n) for all directions n ∈ S2 in the Cartesian basis {e1, e2, e3}. (B–D) Examples of truss UC realizations, showcasing the diverse elastic responses (normalized
by the base material’s Young’s modulus Eb). While all three shown examples have a relative density ρ = 0.05, the actual dataset randomly samples ρ to cover
a large range of stiffness responses.
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of seven elementary lattice topologies as fundamental building
blocks (details provided in SI Appendix, Fig. S1). These comprise
both well-studied topologies (like the octet) and nonstandard
ones to admit a wide range of anisotropic responses with a
relatively small number of beam elements. From this set, we
sample three lattices (S1,S2,S3)⊂ S3 with repetitions allowed,
each of which is placed inside a unit cube either as a 1× 1× 1
tessellation or as a 2× 2× 2 tessellation (for short, denoted by
1× or 2×, respectively). Superimposing the three lattices yields
a compound lattice t1 × S1 + t2 × S2 + t3 × S3 with ti ∈ {1, 2}.
The topological design parameters (S1,S2,S3, t1, t2, t3) result
in a set of 262 unique topologies.* Any intersections of struts
during the superposition of the elementary lattices are resolved
by splitting the affected struts and introducing a new vertex at the
intersection.

Owing to the symmetries of the seven chosen elementary lat-
tices, all resulting lattices are orthotropic (i.e., their 3D stiffness
tensors have only nine independent constants). To expand the
achievable stiffness space in a continuous manner, we enlarge
the design space by applying a series of affine geometric trans-
formations to the obtained lattice topology, which transforms
every vertex at a location X j to its new location x j as follows:
Assuming that the UC aligns with the Cartesian coordinate
axes {e1, e2, e3}, we first stretch the UC with a stretch tensor
U = diag(U1,U2,U3) with principal stretches U1,U2,U3 > 0,
followed by a rigid-body rotation RI ∈ SO(3). Next, we apply an-
other round of stretches via V = diag(V1,V2,V3) with eigenval-
ues V1,V2,V3 > 0 and a rigid-body rotation RII ∈ SO(3), both
with respect to the same (original) reference frame {e1, e2, e3}.
This four-stage process affinely transforms the original UC, such
that any vertex position X is mapped to

x =RIIVRIUX . [1]

Note that U stretches the lattice along its orthotropic symmetry
planes, while the combination of RI and V shears the lattice,
thus breaking the orthotropic symmetry and introducing shear–
shear and shear–normal coupling (characterized by 21 indepen-
dent constants in the 3D stiffness matrix). The final rotation RII

allows for orienting the UC arbitrarily in 3D space.
A rich set of anisotropic lattices is created by generating

random transformations for each of the 262 topologies intro-
duced above. To obtain physically reasonable lattices, all princi-
pal stretches are sampled from the range Ui ,Vi ∈ [0.5, 2]. These
six stretches, together with the six parameters describing rota-
tions RI and RII (each characterized uniquely by three param-
eters in the axis-angle representation in 3D), thus constitute the
geometrical design parameters, which can be applied to any given
topology. As shown in Fig. 1A, this drastically influences the 3D
stiffness response and lets us access an expanded domain in the
stiffness space.

Finally, we vary the relative density (i.e., the fill fraction of the
UC) in the range ρ ∈ [0.002, 0.1] by controlling the uniform thick-
ness d of all struts in the UC (assuming circular cross-sections).
Jointly with Young’s modulus Eb of the base material (which we
assume to be isotropic with Poisson’s ratio ν = 0.3), ρ essentially
affects the effective UC stiffness—not only its magnitude but
also its anisotropy by controlling the balance between bending—
vs. stretching-dominated deformation.† As the latter depends on

*By topology we refer to a class of (infinitely many) UCs that can be continuously
transformed into each other by stretching or rotation (as discussed below). Two UCs
have the same topology if they have the same elementary lattices and respective
tessellations.

†The stiffness of a strut in stretching vs. bending scales differently with the strut thickness
(namely, with the cross-sectional area A ∝ d2 vs. with the area moment of inertia
I ∝ d4, respectively). Therefore, the UC response to straining depends considerably and
nonlinearly on the strut thickness.

the UC topology, there unfortunately is no simple scaling law
to predict the effective UC response (14, 46), which necessitates
mechanical homogenization simulations.

A major advantage of the above explicit truss descriptor
becomes obvious when computing the homogenized response.
Unlike voxel-based approaches, whose required resolution
quickly becomes computationally infeasible in 3D (35), the truss-
based description allows for efficient computations, in which each
strut is modeled as a linear elastic Timoshenko beam (which is
sufficient for the considered small-strain response). We use a
finite-element (FE) setting with periodic boundary conditions
applied to the UC (SI Appendix, section 2) to extract the ho-
mogenized stiffness tensor (47), producing a dataset of millions
of randomly generated lattices along with their corresponding
(physically admissible) homogenized stiffness components Cijkl

(i , j , k , l ∈ {1, 2, 3}), satisfying positive definiteness, having
symmetries Cijkl = Cjikl = Cklij = Cklji (48), and honoring the
Voigt upper bound for the maximally achievable stiffness for a
given relative density. Owing to the linear scaling, we normalize
all stiffness values by Eb .

We emphasize that our design and stiffness spaces of truss
lattices (categorized into 262 unique topologies) are vastly larger
than those of the closest comparable approaches (19, 21, 49),
which examined a small set of topologies and limited the property
space by varying only the relative density of elementary building
blocks. As illustrated by the examples in Fig. 1 B–D, our design
space includes a wide range of anisotropic (nonorthotropic) re-
sponses by combining topological and geometrical manipulations
of the UC. Of course, our design parameterization is not unique
(there is flexibility in the selection of elementary lattices and the
parameterization of the affine transformations); the main idea is
to offer an elegant and, most importantly, sufficiently rich design
space that covers a sufficiently large anisotropic stiffness space.

An Inverse Design Framework with Physics-Guided Stochastic
Deep Learning
While FE homogenization provides an accurate forward model
that maps design parameters onto stiffness responses, the
inverse problem has remained a challenge. We therefore
introduce an inverse design framework that can efficiently
reverse engineer a UC design, whose stiffness approximates
any (physically admissible) 3D anisotropic stiffness tensor
characterized by its 21 independent elastic constants. To train
the inverse framework, we create a large dataset of truss lattices,
D = {{Θi ,C

∗
i }, i = 1, . . . ,n}, consisting of n = 3,000,000 pairs

of 1) design parameters Θ (details provided in SI Appendix,
section 1) and 2) corresponding true stiffness C∗.

The inverse design problem is inherently ill-posed, as multiple
combinations of design parameters may represent the same UC
and, moreover, multiple distinct UCs may produce the same
effective stiffness. For example, due to the cubic symmetry group
of our elementary cells, all rotations RI about a coordinate
axis e i with angle kπ, k ∈ Z correspond to the same UC and
stiffness response. Apart from the inherent degeneracy of our
lattice descriptor, physically different lattices may show similar
anisotropic stiffness responses. Hence, going the direct route of
predicting a lattice described by Θ as a function of the target
anisotropic stiffnessC by minimizing the prediction loss of an NN
G : C→Θ parameterized by weights and biases ω on the dataset
D as

G ← min
ω

1

n

n∑

i=1

‖Gω[C∗
i ]−Θi‖ 2 [2]

is ill-posed (28) due to the one-to-many mapping from C to Θ.
Consequently, the NN incorrectly penalizes potentially correct
designs and leads to a poorly trained inverse model, irrespective
of the complexity of the NN.
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To bypass this challenge, we propose an inverse design frame-
work based on a combination of stochastic and physics-guided
NN models, which takes inspiration from dual-network models
(28, 50, 51) so far used only outside the context of trusses. Fig. 2
illustrates the ML architecture. Instead of training for an accu-
rate prediction of design parameters Θ as in Eq. 2, we aim for an
accurate reconstruction of the stiffness response of the predicted
lattice with respect to a given target stiffness. This defines our
inverse model and is in line with our original goal of identifying a
truss architecture whose response matches a given stiffness—not
restricting the prediction solely to the same truss that was used
to generate said stiffness in the precomputed dataset.

To efficiently train the inverse model G : C→Θ (mapping
from a given stiffness to a potential lattice candidate), we in-
troduce a separate forward model F :Θ→ C (mapping from a
given lattice to its stiffness). The latter is an efficient surrogate
for FE homogenization and reconstructs the stiffness of the truss
proposed by the former, thus enabling a direct comparison with
the target stiffness. In addition, the forward model provides the
ability to track gradients via automatic differentiation, which is
crucial for the backpropagation algorithm (52) used to train the
inverse model (28). The forward model F , parameterized by
weights and biases τ , is trained to minimize the prediction error
in the stiffness as

F ← min
τ

1

n

n∑

i=1

‖Fτ [Θi ]− C
∗
i ‖ 2

. [3]

Once the forward model has been trained, the inverse model
is subsequently trained to minimize the reconstruction error
(computed by F) in the stiffness of the predicted UC (computed
by G) as

G ← min
ω

1

n

n∑

i=1

‖F [Gω [C∗
i ]]− C

∗
i ‖ 2

. [4]

Note that the pretrained forward model is not updated during
training of the inverse model.

Unlike Eq. 2, Eq. 4 provides a coherent measure of loss,
which penalizes only deviations from the target stiffness. Using
a standard “black box” approach of directly passing the design
features or stiffness labels into an NN architecture, however, did
not yield sufficiently accurate results for both forward and inverse
models despite a wide range of network hyperparameters (such
as the depth and width of the underlying multilayer perceptrons)
being optimized for. Instead, we observed major improvements
in accuracy by introducing physically interpretable NNs as sub-
networks within both forward and inverse models, as illustrated
in Fig. 2. These mimic the proposed four-stage UC descriptor
(Fig. 1A), as we explain in the following.

The Forward Model. The forward model F is a composition
of two subnetworks. We first trained a subnetwork F1 to
predict an intermediate stiffness Cort solely based on the UC
topology [described by a selection of the three elementary
lattices (S1,S2,S3) and their tessellations (t1, t2, t3), which
are represented as one-hot encoded binary vectors], as well
as the relative density ρ and eigenvalues (U1,U2,U3) of the
first stretch tensor—without introducing any rotation or shear.
Therefore, Cort is orthotropic and represented compactly by only
nine nonzero stiffness constants. Subsequently, we transform
Cort using the rotation RI . [Fourth-order tensor C transforms
under R ∈ SO(3) as C̃pqrs = RpiRqjRrkRslCijkl using Einstein’s
summation convention; in practice, the rotational transformation
is implemented using Voigt notation (53) for computational
efficiency (SI Appendix, section 3.B)]. The resulting stiffness

Fig. 2. Framework to generate truss lattices with given stiffnesses. The inverse model takes the 21 independent elastic constants of C
∗ as input and first

predicts a posterior distribution of possible lattice topologies, from which one (composite) topology is sampled and passed, jointly with C
∗, to a second NN,

which predicts the corresponding geometrical parameters. The stiffness of the proposed lattice candidate is then reconstructed with the (independently
trained) forward model and compared to the target stiffness. Predictions for C1111 of the forward and inverse models are compared to the actual stiffness
(obtained via FE modeling and the forward model, respectively) and the corresponding R2 deviations indicated (evaluated on a test set of 30,000 truss
lattices). Further details of the NN architecture, training schemes, and accuracy are summarized in SI Appendix, section 3.
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tensor C̃ is passed as an input feature—together with the given
eigenvalues (V1,V2,V3) of the second stretch tensor—into a
second subnetwork F2, which is solely trained on the task of
identifying the sheared stiffness tensor Ĉ and does not need to
learn the intricate rotational transformations of higher-order
tensors. As the last step, we compute the final rotation of the
sheared stiffness tensor Ĉ by RII (analogous to RI ). Most
importantly, we continue tracking the computational graph
of all these operations (including rotational transformations
of intermediate stiffness tensors) to allow for automatic
differentiation, which is necessary for the gradient evaluation
in the training stage of the inverse model. Subnetworks F1 and
F2 within the forward model are trained independently, each
with the mean-squared error as loss function between predicted
and ground-truth stiffness (consisting of the 9 orthogonal and
full 21 elastic constants in the first and second subnetworks,
respectively). As shown in the example correlation plot between
the true and predicted stiffness responses of an unseen test
set for C1111 in Fig. 2 (from the forward model), this setup is
sufficiently accurate to evaluate the stiffness response of the
predicted lattices, verified by the coefficient of determination
R2 ≥ 0.98 across all elastic constants (see SI Appendix, Fig. S3
for details). We highlight that, unlike the presented architecture,
a single neural network—without any embedded information
about the lattice generation process—fails to learn the structure-
to-property map. Leveraging the existing knowledge underlying
the provided data to enable or accelerate the deep-learning
framework aligns with the spirit of recent applications of deep
learning to physical problems (54, 55).

The Inverse Model. Like the forward model, the inverse model
G includes two subnetworks—the first subnetwork G1 predicts a
topology, which is later geometrically manipulated by the second
subnetwork G2 to closely match the given target stiffness. G1

takes the target stiffness as input and predicts the choice of the
elementary lattices (S1,S2,S3) and their tessellations (t1, t2, t3),
which jointly define the topology of the UC. Since these are cate-
gorical design parameters, we expect discrete (one-hot) encoded
outputs. We hence pass the predictions of the penultimate NN
layer through a softmax layer (56) with a fixed temperature τ , the
output of which is interpreted as a probability distribution. For a
categorical target output with k classes, the softmax outputs the
probability of each class as

pi =
exp(−qi/τ)∑k
j=1 exp(−qj/τ)

for i = 1, . . . , k , [5]

where {qi : i = 1, . . . , k} are the outputs from the penultimate
layer of G1. This classical setup deterministically collapses to
predicting the categorical output with the highest posterior
probability—however, we suspect that multiple topologies (with
a corresponding set of geometrical parameters) may be equally
suited to match the given stiffness and thus share similar
posterior probabilities. To access these predictions, we allow
for stochastic sampling via the so-called Gumbel-Softmax trick
(57). Given the probabilities {pi : i = 1, . . . , k} from the softmax
layer, we draw a sample z as

z = arg max
i

(gi + log pi), [6]

where {gi : i = 1, . . . , k} are independent and identically dis-
tributed samples drawn from the Gumbel distribution via gi =
− log(− log(xi)) with uniformly distributed xi ∼ U [0, 1]. While
we use the arg max operator in the forward pass to constrain
the sampling to physical (i.e., discrete) predictions only, we allow
for differentiation via backpropagation in the backward pass by
replacing it with

zi =
exp [(gi + log pi)/τ ]∑k
j=1 exp [(gj + log pj )/τ ]

for i = 1, . . . , k , [7]

also known as the straight-through Gumbel estimator (57). This
allows for the straightforward use of the reparameterization trick
(50) typically found in variational autoencoders, which permits
backpropagation through stochastic nodes by differentiating only
with respect to the parameters of the distribution but not the
sampling (i.e., the Gumbel noise) itself. For τ → 0, we recover
the categorical distribution pk , while for larger τ we approach a
uniform distribution over all categories. We fixed τ = 1 during
our training process.

The sampled topology (from the Gumbel Softmax) and the
target stiffness are jointly passed to the second subnetwork G2,
which learns the geometric manipulations required to achieve the
target stiffness. Outputs of G2 are the relative density ρ, the six
eigenvalues of the stretch tensors U and V , and the rotation
matrices RI and RII . While any rotation SO(3) is uniquely
determined by three independent constants, any such param-
eterization is discontinuous and challenging for NNs to learn.
We therefore use a continuous six-dimensional representation
(58) per rotation to efficiently learn rotation matrices using NNs
(SI Appendix, section 3.B). Note that, contrary to the forward
model, both subnetworks G1 and G2 of the inverse model must
be trained simultaneously, as we evaluate only the stiffness of the
fully assembled UC, which includes topological and geometrical
design parameters.

The reconstruction accuracy of the inverse model for, e.g.,
C1111 is included in Fig. 2, where we show the correlation plot
between the target (C∗) and reconstructed stiffness (of the UC
with Θ= G[C∗]), evaluated on the same unseen test set used for
the forward model, but not considering the given design param-
eters. The inverse model accurately identifies lattice candidates
with constitutive properties closely matching the target stiffness,
demonstrated by R2 ≥ 0.95 across all stiffness components (the
dominant components C1111, C2222, and C3333 have a higher
R2 ≈ 0.985 compared to the less influential shear–shear cou-
plings with a lower R2 ≈ 0.95; SI Appendix, Fig. S4).

Our variational inverse model (enabled by the Gumbel Soft-
max) attempts to find the underlying categorical probability dis-
tribution for candidate topologies matching a target stiffness
and may propose different design realizations, giving the user
freedom in choosing an appropriate UC, considering, e.g., man-
ufacturability or secondary functions of importance beyond the
target stiffness. To give a concrete example, experimental studies
have shown that the distances between struts (which naturally
vary with topology) are commensurate with the pore size of
bone, which plays a key role in transporting nutrients into bone
(and bone implants) for cell growth and also for bone ingrowth
(59). Our results (presented in SI Appendix, section 3.E) show
that, on average, only one in 100 of the inverse-designed truss
lattices share the same topology as the lattice from the train-
ing set, from which the target stiffness was computed. Notably,
repeated drawing of inverse predictions for the same test set with
a different random seed gives, on average, in approximately two
out of three draws a different lattice realization (setting τ = 1),
which highlights the generative nature of the inverse variational
model. Additionally, this corroborates that Eq. 2 is ill-posed and
restrictive.

Generalization to outside the Training Domain, Artificial
Bones, and Spatial Grading
To assess the performance of our inverse model on stiffness
queries outside the proposed lattice design space, we consider
two test scenarios. First, we evaluate its performance on
randomly drawn (normalized) stiffnesses from a recently
reported catalog (lacking a design parameterization) of over
17,000 unique topologies and corresponding stiffnesses based on
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crystallographic network topologies (14), a few representative
results of which are presented in Fig. 3A (further evaluations on
the full dataset are presented in SI Appendix, section 4). We also
provide the normalized mean-squared error (NMSE), defined as

NMSE(Ctarget,Cpred.) =

6∑

i,j=1

(C
target
ij − C

pred.
ij )2

(C
target
ij )2

, [8]

where C
target
ij and C

pred.
ij are, respectively, the stiffness compo-

nents of the target and inversely predicted designs (using Voigt

notation). This allows for a quantitative comparison as well as
a further improvement of our inverse predictions: Owing to
the generative model of our inverse framework, we may obtain
different lattices for different random seeds. Once the networks
are trained (SI Appendix, section 3.H), we can hence efficiently
sample a large variety of lattice candidates and select the one(s)
with the lowest NMSE (SI Appendix, section 4). The resulting
inverse model successfully proposes different UCs of distinct
topologies, which closely match the target anisotropic stiffness.
We note that, if more exotic anisotropic stiffnesses cannot be

A

B

Fig. 3. Inverse-designed truss metamaterials: generalization beyond the training dataset and functional grading. (A) Inverse design with queries from
outside the generated dataset and the corresponding predicted lattice candidates including their elastic surfaces. Two examples are chosen from each of the
crystallography-inspired catalogs of periodic truss architectures of ref. 14 and the bovine femoral bone specimens of ref. 16, whose 3D anisotropic stiffness
is used as a target for the inverse design. The performance of the inverse design framework is illustrated by projections of the elastic surfaces of the target
stiffness and the inverse prediction onto the e1-e2, e1-e3, and e2-e3 planes. Two unique designs (denoted by A and B) are predicted (Pred.) for each target
to showcase the variational sampling of the inverse design framework. Microtomography images are adapted with permission from Springer Nature: ref.
16. (B) A functionally graded architecture is generated by interpolating between the two predictions for the queried bone samples, locally closely matching
the given anisotropic stiffness (details on the predictions and interpolation scheme are given in SI Appendix, sections 4 and 5). Struts are shown twice as
thick for improved visibility.
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matched within our design space, one may add elementary lat-
tices to S to further enrich the design space. (While the train-
ing of the NNs may become more intricate due to the higher
dimensionality of our design space, we do not foresee funda-
mental limitations in increasing the design space in this manner.)
Besides, we compared the obtained predictions to the best match
of the training set to assess the performance of our inverse
model as opposed to a lookup-table approach. Results show that
the inverse model can identify lattices much closer to a given
anisotropic response than the closest match in our given database
(SI Appendix, section 3.G).

Second, we apply our design framework to synthetic bone.
The anisotropic stiffness of an anatomical site on a bone sample
provides the gold standard for an ideal bone implant, which
avoids stress shielding and improves long-term compatibility (17,
18). To test our inverse design, we take experimentally measured
anisotropic stiffness data of trabecular bone (16) as the target.
We consider all 21 elastic constants (not restricting to orthotropic
symmetry, as done before) (16, 28) and Ti-6Al-4V with Young’s
modulus E = 114GPa (60) as base material, which is used for
implants due to its excellent biocompatibility and corrosion resis-
tance (17). The results in Fig. 3A confirm that the inverse model
generates UCs whose effective stiffness closely matches the tar-
get 3D anisotropic response (details on the inverse predictions
can be found in SI Appendix, section 4 and Tables S9–S12). It is
hard to give a general guarantee that the network can find designs
for any arbitrary (physically admissible) choice of the 21 elastic
constants. Yet, the framework performs very well for all reason-
able combinations tested (SI Appendix, section 4). Furthermore,
we can always obtain an estimate of the performance of the
generated designs by using the forward model, which warns us
if the generated structure is not able to mimic the given stiffness
(e.g., if it is physically inadmissible).

Compared to competing methods, the proposed inverse model
provides several advantages. First, the data-driven framework
is highly efficient and predicts truss lattices corresponding to
a prescribed 3D stiffness tensor in fractions of a second (e.g.,
evaluating a test set of 30,000 stiffness inputs in less than 1 min).
This is orders of magnitudes faster than, e.g., classical topology
optimization techniques, which iteratively optimize within an
extremely large design space (restarting for every given target
stiffness), typically by discretizing the UC domain into large
numbers of voxels (61). Compared to more recent methods, it
also avoids the need for iterative optimization in a latent space
required to identify a structure with the target properties (35).
Another advantage of the proposed truss-based descriptor lies
in the guaranteed manufacturability, as all predicted UCs are
composed of simple structural elements and hence achievable
by additive manufacturing, which is not guaranteed in general
for voxel-/pixel-based architectures (35, 37). Furthermore, such
space-filling architectures typically have lower bounds on the
relative density (since bicontinuity cannot be ensured and disjoint
solid domains may result below a certain density) (28, 62), which
makes those architectures infeasible for lightweight structures
made of stiff base materials such as Ti-6Al-4V for surgical im-
plants. We emphasize that every inverse prediction corresponds
to a physical lattice, since our categorical variables can take only
discrete outputs. This bypasses postprocessing steps necessary in

approaches that optimize within a latent design space, where not
every point may correspond to a physical configuration (23).

A further advantage of the chosen design space lies in its
applicability to spatially graded trusses. By introducing a smooth
functional grading between any set of predicted UCs, we enable
the generation of larger structures with locally tailored stiffness,
as, e.g., required for bone implants that mimic the strong spatial
variations in the stiffness of natural bone (63). UCs may vary
in the shape of their external bounding box (due to the applied
affine transformations) and their internal topology, both of which
must be considered when introducing spatial gradings between
UCs. Without the introduced rotations and affine transforma-
tions, a smooth transition from one topology to another could be
achieved by grading the diameters of the struts in the UCs (23, 41,
49, 64), since all topologies have the same cube bounding box and
connectivities to the corner vertices. Here, by contrast, smooth
transitions between affinely transformed UCs (which maintain
their connectivity but alter the bounding box) are challenging.
We leverage the fact that all predicted UC bounding boxes are
trapezoidal primitive cells spanned by three translation vectors
{a1,a2,a3} (Fig. 3B). We transform these—spatially varying—
translation vectors in a graded structure into their reciprocal
lattice space, where we perform the required spatial interpo-
lation, before converting this interpolated representation back
to real space. This results in a spatially graded structure, which
smoothly interpolates between the given primitive cells or, in our
case, between different affine transformations of the formerly
cubic UCs (for details see SI Appendix, section 5). In addition, we
perform the aforementioned smooth grading of strut diameters
to connect dissimilar UC topologies. An example is illustrated in
Fig. 3B, which smoothly transitions between two UCs previously
predicted to match bone stiffnesses (Fig. 3A). This approach
produces graded truss networks, whose effective anisotropic
stiffness varies from point to point and can be tuned to match
known stiffnesses at control points (e.g., anatomical sites in bone
samples with measured stiffness). The spatial grading of UCs
can be applied more generally to functionally graded structures,
optimized, e.g., for the response to known loads (such as in
multiscale topology optimization) (31) and, by locally tailoring
wave motion by lattice topology, for wave guidance (6) and
acoustic cloaking (65).

Materials and Methods
Details of the generated lattice design catalog (SI Appendix, section 1);
the computational homogenization scheme (SI Appendix, section 2); the
machine-learning framework, training protocols, and accuracy (SI Appendix,
section 3); the evaluation on stiffnesses outside the proposed design space
(SI Appendix, section 4); and the method to create spatially graded lattices
(SI Appendix, section 5) are provided in SI Appendix.

Data Availability. The code used to train the inverse design framework
and obtain predictions has been uploaded to GitHub (https://github.
com/jhbastek/InvertibleTrussDesign) (66). The corresponding training data
has been deposited in the ETHZ Research Collection (https://doi.org/
10.3929/ethz-b-000520254) (67).
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