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SUMMARY

A finite element approach to the dynamic
analysis of continuous skin-stringer panels is pre-
sented. The method is illustrated in the calculation
of vibration modes and random response of a five-bay
stringer-stiffened panel with all outer edges clamped.
The panel skin is represented by finite plate elements
and the stringers, which are assumed infinitely stiff
in bending, are represented by beam torsional ele-
ments.

Results are presented for the first 35 panel
vibration modes. These modes occur indistinct groups
with five similar modesin each, the numberfive corre-
sponding to the number of panel bays. The response of
the panel to plane wave propagation of acoustic noise
(propagatingnormal to the stringers) is also calculated.
The resulting response power spectral densities were
found to be fundamentally different from those asso-
ciated with single span panels. These power spectra did
not have widely separated peaks, but rather the peaks
tended to be squeezed into groups corresponding to the
groupings of natural frequencies for the panel.
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SYMBOLS

Definition

Arbitrary constants, eq. (1)

Length and width of plate element, Fig. 3
Complex influence matrix = BR + iBI, eq. (11)
Acoustic propagation speed = 1140 fps

Warping constant

Height and width of stringer cross section, Fig. 2
Plate bending rigidity = E h3/ 12(1 - vz)

Young's modulus

Transverse load vector, eq. (9)

Fourier transform of load vector, eq. (10)
Structural damping parameter, eq. (8)
Plate or panel thickness

Moment of inertia for stringer, Appendix A
Stiffness Matrix, eq. (7)

Length of stringer element, Appendix A
Overall length of five-bay panel

Mass matrix, eq. (7)

Corner moments on plate element, Fig. 3

Mean square acoustic pressure

Damping matrix, eq. (8)
Cross-spectral density for load vector, eq. (14)

Power spectral density for displacement component X,
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SYMBOLS (Cont'd)
Definition

Power spectral density for panel displacement w

Power spectral density for panel slope
End torques on torsional beam element, Appendix A
Corner shears on plate element, Fig. 3

Panel displacement

Corner displacements on plate element, Fig. 3

Width of five-bay panel

Panel displacement vector

Fourier transform of displacement vector ;(t)
Panel and plate element co-ordinates, Fig. 2 and 3
Frequency parameter = pu W a4/ 1680 D, eq. (10)

End rotations of torsional beam element, Appendix A

Eigenvalue

Panel mass per unit area = ph
Poisson's ratio

Panel material density

Corner slopes of plate element, Fig. 3

Circular frequency

Cut-Off frequency for white acoustic noise
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VIBRATION MODES AND RANDOM RESPONSE OF A MULTI-BAY
PANEL SYSTEM USING FINITE ELEMENTS

1.0 INTRODUCTION

Almost all aerospace structures incorporate some sort of panel-rib-
stringer configuration. One of the most common is that in which a thin continuous
panel is attached to closely spaced, flexible stringers and relatively stiffer and
wider spaced ribs running at right angles to the stringers. The number and
complexity of possible vibration modes in such a configuration increase rapidly
with the number of bays. As a result, the work required to analyze the random
response of this kind of structure, using the customary modal methods, soon
becomes prohibitive. Furthermore, the modal frequencies are not widely sep-
arated, but rather become squeezed together into distinct bands, the number of
frequencies in each band usually being equal to the number of panel bays. This
fact implies that the correlations between different modes will no longer be neg-

ligible, thereby further increasing the complexity of the modal analysis.

One alternate approach to these problems is the method of transfer
matrices; this has been successfully developed by Lin (Ref. 1) and Mercer
and Leavey (Ref. 2). This method is somewhat limited, however, in that it is

based on the assumption that the panel is simply supported along the ribs.

Another approach; which can account for other boundary conditions
(e.g. clamped edges) along the ribs, is to use finite element techniques. This

method is developed and illustrated with an example application in this Report.

The analysis for a five-bay, stringer-stiffened panel with all outer
edges clamped is presented in detail. The stringers are considered to be
infinitely stiff in bending but to have finite torsional stiffness and rotational
inertia. TFinite plate elements are used to represent the panel. These are
the well-known twelve degree of freedom models derived from virtual work

principles. Calculations of the vibration frequencies and mode shapes for the



panel assembly are carried out using a 3 x 3 and a 4 x 4 gridwork of elements
for each bay. An ad hoc approximation for the effective stringer torsional
stiffness and rotational inertia is used to derive corrections to the system
stiffness and mass matrices, respectively.

The random response of this five-bay panel system is also presented
for the particular type of excitation known as plane wave propagation (propagating
normal to the stringers) of clipped white acoustic noise. The calculations are
carried out for the 3 x 3 element grid per bay representation, with the excita-
tion approximated by concentrated shear forces acting at the finite element
corner junctions. The resulting dynamic system is analyzed by a generalized
harmonic method, and the power spectral density for each degree of freedom
is calculated for particular frequencies. These power spectral densities are
then integrated numerically over all frequencies to obtain the mean square
response of the panel system.

2.0 THEORETICAL FORMULATION

A typical configuration used in many aerospace structures is depicted
in Figure 1. The design incorporates a thin, continuous panel either bonded or
riveted to a framework of ribs and stringers running at right angles to each
other. The example illustrated is especially simple in that all panels are
identically constructed.

The analysis of the complete structure shown in Figure 1 is beyond
present day capabilities and, hence, some simplifying approximations must
be introduced. It has been found in practice that the stringers are generally
much more flexible than the ribs, and are usually spaced much closer to each
other. These conditions suggest the now well-known approximation of neglecting
all interactions between panels across the ribs. This leaves only the problem

of analyzing a single row of panels and stringers, as depicted in Figure 2.

Previous transfer matrix approaches to this problem (Ref. 1 and 2)
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have employed the assumption of simply supported boundary conditions at the
ribs. Unfortunately, this assumption is in direct conflict with the assumption

of no interaction between panels across the ribs. It is clear that it would be
more consistent to assume clamped boundary conditions at the ribs. However,
the transfer matrix technique is not applicable in the case of clamped boundaries

because the spatial dependence of the panel deflection is no longer separable.
2.1 Finite Plate Elements

In the case of clamped boundaries an exact solution is unattainable,
and approximate techniques must be employed. The approach taken here, which
is proving most efficient, is the use of finite plate elements. These are the
well-known twelve degree of freedom models derived from virtual work prin-
ciples. The derivation of the stiffness and mass matrices for these elements

is well documented (Ref. 3 and 4) and need only be described briefly.

Consider the plate element shown in Figure 3. The deflection of
any point on this element may be expressed as a finite series of polynomials
in x and y as
xz * asyz

w(x,y)=a0+a x+a2y+a3xy+a

1 4

(1)
2 2 3 3 3 3
+aXy +agXy” +agXs +oagy” +a; X'y + oa Xy

Note that this equation is the general solution of the biharmonic plate equation
pviw =0 2

The arbitrary constants in equation (1) are determined as functions of the twelve

corner displacements Pyi® ?’in’
tution back into equation (1) yields an equation relating the displacement anywhere

Wi (i = 1 to4) for the element. Then substi-

on the element to the displacements of the four corner points. Differentiating
this equation and substituting into the strain-displacement relations from plate




theory yields the element strains, and finally, substituting these strains into
Hooke's Law yields the element stresses.

The plate element has external corner forces M., Myi' Vg =1
to 4) (Fig. 3) acting on it that must be in equilibrium with the internal stresses.
The stiffness matrix relating these corner forces with the corner displacements
is obtained from the principle of virtual work. That is, the system is subjected
to a set of compatible virtual displacements, and the external virtual work done
by the external forces is equated to the internal virtual work done by the stresses.
This equation yields the stiffness matrix shown in Table I.

The distributed mass matrix is found similarly by equating the external
virtual work done by the external D'Alembert forces to the internal virtual work
done by the internal D'Alembert forces. The resulting mass matrix is shown

in Table II, where the asterisks designate D'Alembert forces.
2.2 Torsional Element

As mentioned in the Introduction, for the problem of interest herein
the stringers are considered infinitely rigid in bending but have finite torsional
stiffness and rotational inertia. Hence, an approximation for this stiffness and
inertia that is compatible with the finite plate element representations is re-

quired.

A consistent lumped parameter representation for the simple torsional

beam element shown in Figure 4 as derived in Appendix A is
4 5 1 -1 6 2 1 0

1
= - o 3)
T L la 1 0 6

where T1 and T2 are the externally applied torques, and 91 and 92 are the



resulting rotations at the two ends of the element. The equivalent lumped pa-
rameter representation for a plate element with a stringer attached to one edge
may now be obtained by suitably incorporating the results of equation (3) into

the stiffness and mass matrices for the plate.

However, the simple beam element used as the basis for equation
(3) is not a good approximation for the type of stringers depicted in Figure 2
because it neglects the effect of cross-sectional warping. This deficiency may
be corrected by replacing the torsional stiffness factor GJ in equation (3) by an
effective stiffness factor ((}J)e that includes some warping effect. The equation

governing the motion of a stringer attached to a panel (eq. (7-129) in Ref. 1) is

85w 83w
EC - GJ + Inertia terms = M_ - M (4)
w 4 2 T [
9x 0y 90X 0y

where Cw is the warping constant with respect to the shear centre, and Mr

and M]2 are the moments transmitted from the skin panel on the right and left,
respectively, of the stringer considered (see Fig. 2 for co-ordinate system).
In order to obtain an estimate of the effect of warping, it is assumed that the
panel deflection has n half waves in the y direction, hence w is approximately

proportional to sin £ 4 Equation (4) may then be put in the form

W
83w
(GJ) + Inertia terms = M_ - M (5)
e 2 r {
0xX 0y
where
- 2
(GJ)e = GJ + E CW (ﬂw) (6)

is the required effective torsional stiffness factor. Since it is expected that the
effect of the stringers on the panel dynamics will be most pronounced for deflec-

tions with one half wave in the y direction, n is assumed equal to unity in




equation (6). This means that the effective stringer torsional stiffness will be
correct for panel deflections with one half wave in the y direction, but will be

underestimated for deflections with more than one half wave in the y direction.
2.3 Vibration Modes and Random Response

The stiffness and mass matrices for an approximate representation
of the multi-bay panel may now be established from the results of Sections 2.1
and 2.2. Once these are available, the vibration modes for the panel are

calculated by setting up the eigenvalue problem

K - AM) x = 0 (7
where K and M are the system stiffness and mass matrices and A = pu wz a4/
1680 D is the non-dimensional eigenvalue, and carrying out the computation
on the digital computer. This will be done for a particular example in Section
3.0.

These stiffness and mass matrices may also be employed in deter-
mining the panel response to a random excitation field. The only additional
requirement is a suitable matrix representation for the structural damping in
the panel. In the following work, the panel damping matrix P is approximated
by

P =igkK (8)

where g is a small constant. It may be noted that equation (8) is a commonly
adopted approximation for structural damping that, in effect, assumes that the
damping forces are proportional to, and 90 degrees out of phase with, the
elastic restoring forces in a structure. This type of approximation is justified
in that the actual mechanism of damping in structures is largely unknown, and

only the overall energy dissipation can be accurately represented.

Using equation (8), the matrix equation governing the panel response



then becomes

2-—-
X
2

d
dt

k M + (1+igKx =1 ( 9)

Where k = p 34/ 1680 D and x and f are the nondimensional displacement and
load vectors for the system, respectively. In this case, f will be a discrete
set of random loads that approximates the spatially distributed loading acting

on the panel.

Following the method developed in Reference 5, equation (9) is first
Fourier transformed to give

—

[(1 +ig K - aM] X=F (10)

9 . =
where a = pw a%/1680D and X (w) and F (w) are the "truncated" Fourier

transforms of ;c.(t), respectively. Then inverting equation (10) yields

—

F (11)

i

=BF = (B +1iB)

where

. 1
B = [1 - aK lM:I I:(l+g2) K- 2aM + oMK} M]

(12)
-1

jos]
[

i -g [(1+ gz)K—ZaM+oz2MK_1M]

Writing equation (11) in index notation and combining with its complex conjugate

yields

* * *
X, X, = JE ; By By Ty Fy (13)

Dividing by 2T, where T is the characteristic time used in the "truncated"
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Fourier transforms, and taking the limit as T — «, yields the power spectral

density for the ith generalized co-ordinate as

*
X.

_ limit g | _ *
S D "7_.0 T = Z ; BB Spp @ (9
j

where
F.F *
_ limit j k
Spik (@ “p L & 2T

-

is the cross-spectral density for the discretized random loads f(t). It may be

* - - - -
shown (Ref. 5) that Sij = Sij , so that equation (14) may be simplified to
N k-1 N
S =) |B ? Ry |s #2 ), ¥ B Boo $B..B
xii (@) = | Fjj (@ £ g Rij "Rik T P1ij Crik | ©
J: J: =

(15)
R( [Sij (w)jl + |:BRij Bk - Brik BIiJ I'm [Sij (w):li
where R'f and I'm denote real and imaginary parts, respectively. The mean

square amplitude for the ith displacement is then the integral of this power

spectral density over all frequencies
X< =2 Oj S,i; (w) dw (16)

The procedure then is to calculate the power spectral densities for particular
values of frequency from equation (15) and evaluate equation (16) by some

numerical integration procedure such as Simpson's rule.

3.0 EXAMPLE APPLICATION

The analysis for the five-bay, stringer-stiffened panel illustrated

in Figure 2 is presented in the following. The edges y = 0 and y = W represent



the ribs and are considered to be clamped. The overall length L is divided

into five equal bays by the stringers, as shown. The edges x = 0 and X = L
are also assumed to be clamped. Since the stringers in most aerospace struc-
tures are usually much stiffer in bending than in torsion, it is assumed explicitly
that the stringers are infinitely stiff in bending but have finite torsional stiffness
and rotational inertia. The numerical calculations are carried out for a typical

panel having the following properties

E = 10" psi, » = 0.3, L =45.0in

W = 16.5in, d = 1.0in, e = 0.75in 17
2,. 4 .

p = 0.000259 Ibsec”/in", h = 0.052 in

The quantities required in equation (6) then become J = 0.000 10 in4,

c,, = 0.0055 in®, and T = 0.031 ¥

The two finite element representations used to approximate the five-
bay panel are illustrated in Figure 5. The procedure for building up the system
matrices (stiffness and mass) for these representations is quite standard and

need only be described briefly.

The three generalized co-ordinates sz, qby, and w at the plate
element corners are made continuous at all element corner junctions, and the

sum of corresponding corner moments and shears Mx’ M_, and V (ordinary

plus D'Alembert ones) are set equal to the applied loads ¥or the response
problem or to zero for the eigenvalue problem. There are no degrees of
freedom on the outer edges of the panel because of the clamped boundary con-
ditions, and there is only one degree of freedom ¥, at each corner junction

on a stringer because of the assumption of no stringer bending. At all other
corner junctions, there are 3 degrees of freedom Py "by’ and w. Hence, the

3 X 3 grid per bay representation shown in Figure 5a has 68 degrees of freedom,

and the 4 X 4 case shown in Figure 5b has 147.
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Stringer torsional elements are added to the grid works shown in
Figure 5 along the lines marked ""stringers''. These elements are the same
length as the plate elements, i.e. W/3 or W/4 for Figure 4a or 4b, respective-
ly, so that the stringer element rotations 6 may be set equal to the plate element
slopes sz. The stringer rotations are taken to be zeroat y = 0 and W. The
stringer stiffnesses and masses calculated from equations (3) and (6) are added
to the appropriate places in the system stiffness and mass matrices generated

from the plate element matrices.
3.1 Vibration Modes

Calculations of eigenvalues and eigenvectors for the dynamic systems
generated by the foregoing process were carried out on the National Research
Council Computing Center IBM 360-50 Digital Computer. It should be noted
that, whereas the 68 degree of freedom model could be handled directly, the
147 degree of freedom model had to be broken down into four smaller systems
by using symmetry. That is, since the panel shown in Figure 5 exhibits sym-
metry in both the x and y directions, all its vibration modes are either sym-
metric or antisymmetric in these directions. Hence, all modes may be classi-
fied into four categories, which are the four combinations of symmetry in the
two directions. The numbers of degrees of freedom obtained in each sub-problem

are as follows:

Mode Shape Degrees of Freedom
(i) Symmetric in both x and y 42
(ii) Symmetric in x, antisymmetric in y 33
(iii) Antisymmetric in X, symmetric in y 41
(iv) Antisymmetric in both x and y 31

The numerical results are shown in Tables III and IV. Table III
gives a comparison of the results obtained from the 3 X 3 grid/bay represen-
tation and the 4 X 4 grid/bay representation, with the effect of stringers in-

cluded in both. The corresponding mode shapes (eigenvectors), as obtained
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from the 4 x 4 grid/bay representation, are plotted in Figures 6 to 23. The
heavy lines in these Figures represent the outer clamped boundaries of the panel
and the four stringers across it. The light curves show the panel deflection at
the junctions of the plate elements, and the dashed curves represent the nodal
lines. The panel deflection curves were obtained by fitting third-order poly-
nomials to the appropriate eigenvector components (;bx or I‘Dy and w) of adjacent

control points.

The vibration modes occur in distinct groups of five each because
there are five bays in the panel. These groups are labelled arbitrarily A, B,
C, etc., for identification purposes, as shown in Column 1 of Table IIl. The
symmetry character of each mode is indicated in Columns 4 and 5, where the
symbols S and A stand for symmetric and antisymmetric, respectively. The
predominant number of half waves present in the mode shapes in each direction

are also indicated by the numbers in these columns.

As shown in the Figures, the fifth mode in each group has a mede shape
with zero slope across each stringer. Hence, in these modes each bay vibrates
effectively as though the stringers were clamped edges, and the frequencies may
be compared with those predicted for a clamped plate the size of each bay. Such
a prediction is shown in Column 6 of Table III as obtained from Warburton's
Rayleigh solutions (Ref. 6).

The comparison of the fifth frequency in each group, with the
Warburton results, is very interesting. For the mode groups A, D, E, and G,
these frequencies appear to converge towards the Warburton result as the finite
element modelling is increased from the 3 x 3 to the 4 X 4 grid/bay represent-
ation. On the other hand, for groups B, C, and F, they appear to diverge
slightly from the Warburton results. Presumably, a finer grid work of elements
would be required to make these latter groups converge to the correct result.
However, it may be noted that the maximum error in these frequencies, as
predicted by the 4 x 4 grid/bay representation, is only 15 percent. It is
expected that the accuracy of the other four frequencies in each group would be



-12-

the same or better than that of the fifth. Hence, it appears that the first 35
vibration frequencies for the five-bay panel are predicted to within 15 percent
by the 4 x 4 grid/bay finite element representation.

Only the fifth frequency in each of the higher groups H to N are
presented in Table III. It is clear that these predictions are far less accurate

than the lower ones, although they are the correct order of magnitude.

The modes shapes associated with the frequencies in Table III, and
exhibited in Figures 6 to 23, also reveal some interesting effects. The first
ten modes are very clear, having one or two half waves in the y direction.
However, the next four modes exhibit unusual nodal patterns in the x direction.
These are fundamentally different from the straight nodal lines that would occur
if the panel edges y = 0 and W were simply supported. In the present problem,

the clamped boundary conditions preclude the possibility of a separable solution

for the panel deflection that can always be obtained for the simply supported case.

Hence, the unusual nodal patterns found herein may be associated with these
clamped boundary conditions. As shown in the Figures, more non-straight
nodal lines in the x direction are revealed in some of the higher modes. In

particular, see Figures 21 to 23.

Numerical results were also obtained for the five-bay panel frequen-
cies with the effect of stringers neglected, i.e. for the panel simply supported
at the stringers. These were obtained from the 4 x 4 grid/bay representation
and are shown in Table IV along with the results for stringers. It is seen that
including the effect of the stringers pushes up the lower frequencies in each
group. The fifth frequency is not changed because the stringers are effectively
clamped for the modes associated with these frequencies, as noted earlier.
Hence, the effect of the stringers is to decrease the frequency bandwidth of

each modal group.
3.2 Random Response

The calculation of the panel response to a random pressure loading is

TR
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also carried out using the finite element representations. Numerical results
are presented for the particular excitation known as plane wave propagation

of acoustic white noise. This type of random loading is of special interest
because it may be considered as an idealization of the pressure fields induced
downstream by jet engine exhausts. Hence, many parts of a modern jet aircraft
such as the rear fuselage, horizontal stabilizer, and vertical rudder, encounter

this type of noise excitation.

Plane wave propagation of white acoustic noise is characterized by

the following cross-spectral density (Ref. 5)

p
_ 0 iwé
S(&,w)-wc exp -I:C] forlwlﬁwc
(18)
=0 for | w | >w
c
where
po2 = mean square amplitude of pressure, (psi)
W, = the cut-off frequency, which is assumed large, (rad/sec)
c = acoustic propagation speed
¢ = distance between field points (measured in the direction

of propagation).

The direction of noise propagation is taken to be down the panel in the x direc-
tion (Fig. 5).

The numerical calculations are carried out for the 3 x 3 grid/bay
representation shown in Figure 5a. The distributed acoustic loading on the
panel is approximated by a set of concentrated transverse shear loads acting

at the finite element corner junctions, points 1 to 27 in the Figure. The root

mean square amplitude of each concentrated load will be ab _/ p02 , i.e,, equal
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to the rms acoustic pressure times the area of one element. It is assumed
that the cross-spectral density functions for these concentrated loads are given
by equation (18) with £ measured between the loads; that is

32 b2 pOZ

SF]k(w) = T exp _[%U_J (gk_ ‘EJ)] (19)

where .gj is the x co-ordinate of point j. The foregoing approximations will be
reasonably good as long as the acoustic wave lengths associated with the fre-
quencies that dominate the panel response are long compared with the finite
element width a. This will indeed be the case for the present problem, since

the predominant panel frequencies are from 100 to 500 cps.

Since the plane wave noise propagation does not vary in the y direc-
tion, the panel response must be symmetric in y. Hence, by using this sym-
metry condition, the 68 degree of freedom system associated with Figure 5a
may be reduced to 34 degrees of freedom. The numerical calculations involved
in equations (15) and (16) are carried out for this 34 degree of freedom system,
and the results are presented in Figures 24 to 37 for a structural damping of
g = 0.02. Note that the calculations were not continued above 500 cps, since

the major part of the panel response occurs at frequencies below this value.

Figures 24 to 33 show the power spectral densities for the displace-
ments at points 1, 3, 7, 9, 13, 15, 19, 21, 25, and 27 on the panel (Fig. 5a).
Since the panel response is symmetric in y, the power spectral densities for
displacements at the symmetric points 2 to 28 will be identical with Figures
24 to 33, respectively. The three relatively wide peaks exhibited in these
Figures are clearly recognizable as being associated with modal groups A, C,
D, and G shown in Table III. Furthermore, some of the small individual peaks
in the Figures are recognizable as being associated with individual modes.

For example, in Figure 26 the five small peaks from 103 to 141 cps are asso-
ciated with the five individual modes in group A, and in Figure 25 the five peaks

from 274 to 335 cps are associated with the five modes in group D. On the other
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hand, the response of modal group G appears to be dominated by the three peaks
at 416, 427 and 443 cps.

Modal group C, which should also be excited by the acoustic noise,
is not recognizable in these Figures because the panel modes of this group have
modal lines very close to the control points 1 to 28 (see Fig. 16 to 18). Hence,
the response associated with these modes at these points is too small to show
up in the displacement power spectral density curves. The modal groups B,
E, and F are not recognizable in the Figures, since they are antisymmetric in

y and are not excited by the noise field.

Figure 34 shows the power spectral density for the panel slope in the

x direction, "bx’ at the control point 27 (Fig. 5a). It may be noted that this power
spectral density curve is very similar to that for the displacement at point 27
(Fig. 33). In particular, the shape of the first response band from 103 to 141

cps is almost identical in the two Figures. It is interesting to note that, whereas
some of the individual peaks in the second response band from 274 to 335 cps
were not evident in Figure 33, they show up clearly in Figure 34. The corre-
sponding results for the other control points were very similar and hence are

not presented herein.

Figure 35 shows the power spectral density for the panel slope in the
y direction, wy’ at the same control point 27, for comparison. The first re-
sponse band from 103 to 141 cps is very similar to that in Figure 33. However,
the second response band from 274 to 335 cps is somewhat different in that
relative to the first band it is about one order of magnitude larger than it was
in Figure 33, and exhibits individual peaks at 274, 317 and 335 cps that were
absent in Figure 33.

Actually, panel modes that have several half waves in the y direction
should have larger power spectral densities for slope zpy than for displacement
w compared with those with fewer waves in the y direction. Hence, the modal
responses associated with group C should be emphasized more in Figure 35
than those associated with group D (Table III). However, it appears that the

il A oh b ath S TR S
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response due to both groups has been increased in Figure 35. This result must
be associated with the fact that the 3 x 3 grid/bay finite element representation
for the panel does not adequately separate the modes of groups C and D. In
other words, the mode shapes predicted by the 3 x 3 grid/bay representation
for modes 11 to 20 (273.84 to 335.23 cps) all had about equal '""waviness' in

the y direction, whereas (as shown in Fig. 11 to 15) the 4 X 4 grid/bay repre-
sentation did clearly separate the modes into groups C and D. Hence, the fact
that some of the modes of group D are emphasized in Figure 35 must be attrib-
uted to this limitation in the 3 x 3 grid/bay representation. Finally, it may be
noted that the response of modal group G (410 to 453 cps) is increased in Fig-
ure 35 as expected, since the modes in group G have three half waves in the

y direction.

The mean square response for each degree of freedom was also ob-
tained by numerical integration of its power spectral density curve, using
Simpson's rule. This was done simultaneously with the calculation of the power
spectra. A frequency step size of 1.0 cps was used within the response bands,

and one of 10.0 cps was used between the bands.

The results in terms of root mean square amplitude are shown in
Figures 36 and 37. Figure 36 shows the longitudinal distribution of the rms

panel response. It is interesting to note that this response is not symmetric

with respect to the centre bay and, in particular, the maximum amplitude occurs

in the last downstream bay. These results are a consequence of the direction-
ality of the excitation field. Figure 37 shows the lateral distributions of the

rms panel response in the centre and last bays. These curves indicate that the

panel response is dominated by modes with one half wave parallel to the stringer.

The relative flatness of the top of these curves is evidence of the presence of

higher modes, even though their contribution is small.

4.0 CONCLUDING REMARKS

A finite element approach to the analysis of continuous skin-stringer

———
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panels has been presented. The method was illustrated in the calculation of
vibration modes and random response of a five-bay stringer-stiffened panel

with all outer edges clamped. The panel skin was represented by finite plate
elements and the stringers, which were assumed infinitely stiff in bending, were

represented by beam torsional elements.

The panel vibration modes were obtained from botha 3 x 3 and a
4 x 4 grid of plate elements per bay. It was estimated that the first 35 panel
frequencies obtained from the latter representation were within 15 percent of
the correct values. The vibration modes occurred in distinct groups with five
similar modes in each, the number five corresponding to the number of panel
bays. A comparison of the results obtained with and without the effect of string-
ers included, showed that the stringers effectively reduce the frequency band-

width of each group of five modes.

The response of the panel to plane wave propagation of acoustic noise
(propagating normal to the stringers) was also obtained, using the 3 x 3 grid/
bay of finite elements. The resulting response power spectral densities were
found to be fundamentally different from those associated with single span panels.
These power spectra did not have widely separated peaks, but rather the peaks
tended to be squeezed into groups corresponding to the groupings of natural fre-
quencies for the panel. The individual modal responses within each group were
blurred together, indicating that the response cannot be thought of as the sum-

mation of independent modal responses.
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Mode
Group

3 x 3 grid/bay
68 deg of
freedom (cps)

103.
112.
124.
136.
141.

177.
180.
185.
188.
190.

288.
294,
295,
299.
299,

273.
303.
317.
330.
335. 28

354.

391.

410,
415,
426,
443.
452,

FIVE-BAY PANEL VIBRATION FREQUENCIES
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TABLE III

(Effect of Stringers Included)

4 x 4 grid/bay
147 deg of
freedom (cps)

105.
114.
127.
139.
144.

174.
178.
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281,
282,
284,
287.
287.

280.¢
304,
332.
358.
370.

454,
455.
455.
455,
346 .
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368,
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383
454 .
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466 .
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477.

738.
578.
662,
629,
861.

800.
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(cps)

152.4

207.2

303.4

391.1

439.8

444 .2

534.0

614.2

663.1

749.8

803.3

831.4

891.1
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TABLE 1V

EFFECT OF STRINGERS ON PANEL FREQUENCIES
(Obtained from 4 x 4 grid/bay representation)

Panel Frequencies Panel Frequencies
Mode without effect of including effect
Group stringers of stringers

(cps) (cps)

89.154 105.06

101.78 114.36

A 119.20 127.17
136.54 139.38

144 .77 144 .77

155.11 174 .82

162.44 178.21

B 172.98 182.71
183.47 186.66

188.25 188.25

263.79 281.41

268.96 282.417

C 276.18 284.18
283.92 287.01

287.03 287.03

262.78 280.37

291.36 304.16

D 325.22 332.59
356.43 358.89

370.60 370.60

453.81 454.61

454.50 454 .83

E 454 .92 455.02
455.11 455.13

455.17 455.17

304.81 346.39

325.36 3566.11

F 350.79 368.47
373.42 378.97

383.16 383.16

405.02 454.08

422 .80 459.54

G 445.91 466.84
467.56 473.88

477 .45 477.45

T TT

TITIT T T




- 93

STRINGER

——— — — — RIB

‘F

-+

IDENTICALLY CONSTRUCTED PANELS

FIG. |



T e T e TR TR TR TR R I TR LI T’ L IR

T

L L LS,

24 -

LLL T LL LML L L LIS,

I
|
OO \I\\\\\\\\

\\\\\\\\\II\ OO
I
I

LHRL LA

AALLS ST

LA LLAT LS

VI LTI TOTI LI

L

L.

WA

FIG.

2

1
H
\

FIVE-BAY STRINGER-STIFFENED PANEL



FIG. 3

_25_

PLATE ELEMENT




FIG. 4

Ry

atr

TORSIONAL BEAM ELEMENT




- 27 -

y
STRINGERS
ARTRLA G P TR L FI T FTTAP 2B PSSP IEIITTIL SRR TTERL ST
i L
,// s
2 ¢
/] 2 la |6 |8 lio |2 [1a i lis8 |20 |22 |24 |26 |8
/] L
/
/ .
5 [
/] | 3 5 id 9 11 13 15 |7 19 21 23 25 27 ¢
T
/] |
/*0_- J [
P TG T LT H TS T I ETETETTTRTITETETETD
t
3x3 GRID PER BAY REPRESENTATION
y
STRINGERS
I PRI IES SRS BL, IR E Db VB ORD LNV PR ////
] %
/ 2
? %
Vs %
/] %
/ ’
9 %
/
7 [/
75
ST T T 7 7. I T T Tl
L
4x4 GRID PER BAY REPRESENTATION
FIG. 5

FINITE ELEMENT REPRESENTATIONS FOR FIVE-BAY PANEL




_28..

300W

I—=¥ 300N

™

p——

e e T T T e e T T TR T T T T T T T T R T T T T N T T T R T s I E T I T T T T T 1T B

FIG.6

XJ 2 a8 v




t—v 300N €—-V 300W

@
b4
L =
o
m
E=4

T

- 29 -

L

X4 2 g8 v 2 =]

<
i
(&)
(]
L4

>

FIG.7



- 30 -

I-8 300W

S-V 300N

FIG.8




-31-

FIG.9









-

¥-2 340N
% €-0 300w

FIG.12



-.35_

I-a 300N

S-0 3a0W

h

o

FIG.13



R

€-0 3J0W

300N

L — —

i+

<

- —
n...-\\ T
[ —_— ]
|~ -
g e
- -
g =
— —
e ——
—_——
-
P ~
- b
i e

FIG.14



=G =

S-0 300w

-1
@
£-4

>

>

uwml

FIG. IS



3 300W
i a8 v ) g Y
T __ T T ___ TT "
— -
_ _ H , ﬁ _
__,\\!/_m/fx.\\_r Jfrl\w}“!f\lw\lhu!
. Ses -
— ]
T B e =
i bﬂ\f&_,\vﬁq
N— Mee? | ~ Ner”
j—| = | |
/ | A\ " :
ﬂ // _ | T/X_
“ \ %_/f\___\r/
~
_ / _ | _
| 7 | | |
i i, 9 7| a9,
[N N 1. B
L e \l/r\}
~—" | _ ey
o S
— —
|
7:&\\!.,/7/[\\‘1 _
| — | S P
et I o,
L m P e - gl 4




u_ m_ v Y
1 w_ T
F L= |
N~
, L= ~
e
_ gl |
h/.:lu.,\a_ m/flu\\\
| : | |
" | m _
gl _ |
L L -
_ _ | _
=< .;_ = = ,
_ |
| N ﬁ
7 _ &
/ _ \
iiiiiiiiiiiiii -
\ | /
, | \| _ #
A
\ _ i | _
< 1 2 _ |
\ ! / | \
e A ——— — = .
T |
I A
! | ,_ __ * |
L __ sy | [N
1 I | il | ¥
mmmmmm 2 a v




IIIIII




-.41_

£—4 3JdJOW

2—4 300W

2 8 v
T

_.\\\..lllr/ai{.fll

_
|
_
||.|ul|.........u.1||.”||l..fr/._
P~ _——— |

|
|

e

e e e s e e

g I ——————

FIG.19



.

v—4 300W

-4 3A0W
3 g v A
Ell m T . 7 E v
;
=
|||||| Iflllll?ll!l
P .
_.//.Iul.\\ll
= — | 5] =
7[1.\\\\\)]
_
||||||| ._||||||..I|.
e |
I / __ . |
_ _ _
| o | | (N e ——— ]
| ~ |
llllll |_I1|||||||. -
i |
N __./l.ulli\\\\\.\..l
— - * -]
| e .
_/|\\.\\\|\A
|.|||— ||||| —
D i
P
|
L _ _
_ |
|
— |
| |
||||||| e e ,
v I;I..-\\\\\.]....f/._- -

X g

FIG.20



——t e e

2-9

Ele]el}]

-9 300N

Xy

ge— e

N/
EE——— S S




-9 300W €-9 300N

©
™
a
¥y >
1]

T

..44_

| _ .//!prl\.\\_m

. & . T
) v/ ) S

| L~
S~—"1 _ S at? |

h __ & o : _m

_
— #_ -
. e _

A r - R

] I
e

IiIILIIIITIIII
e SO | >
4 _ ’ / ] / | __
o] | S
I Nl | —
== .\\I — ——— — e
) e
T T
1 : - ] L _
_ _ | _
_ | P S | il
/ T - L -
| L

FIG. 22



. O

S-9 300W

FIG.23



2
]

w

c

POWER SPECTRAL DENSITY, w. D S (w) /900 a°b® p

=

ON FIVE-BAY PANEL

FREQUENCY (cps)

FIG. 24
PSD FOR w,
g=0.02
(0] 100 200 300 400

]
500



2
4]

POWER SPECTRAL DENSITY, w_D? S_(w) /900 a?b® p

sl =

ON FIVE-BAY PANEL

10
FIG. 25
PSD FOR ws
g=0.02
10k
10°F
10
10"+
IO-G 1 | | 1
0 100 200 300 400

FREQUENCY (cps)

500



2
4]

() /900 a?b® p

POWER SPECTRAL DENSITY, w_ D? S,

-4

-6

- 48 -

FIG.26
PSD FOR W, ON FIVE-BAY PANEL
g=0.02
1 | 1 | |
0 100 200 300 400 500

FREQUENCY (cps)




TRV BIESE ST 4 S A S . M iiii.d Ao —dedd. A EBlBR3 I8 2

WE e lelsrEm=t el

ITERANEET 91 S/ 10 Inw R FREE

Ps

D? S, (w) /900 a?b®

4

POWER SPECTRAL DENSITY, w

- 49 -

ON FIVE-BAY PANEL

10
FIG. 27
PSD FOR wy
g=0.02
104
10°f
O pe
10"k
10"8 1 ] ] L
0 100 200 300 400

FREQUENCY (cps)

S |
500



2
o

POWER SPECTRAL DENSITY, w, D? S (w) /900 a®b® p

- 50 -

FIG. 28
PSD FOR W3 ON FIVE-BAY PANEL
g=0.02
100 200 300 400 500

FREQUENCY (cps)




— il

— L

-1

" AN IR TEFNE e

=R
[+]

(w) /900 a®b® p

W

POWER SPECTRAL DENSITY, w, D?s

-4

- 81 -

FIG. 29

PSD FOR w,;s ON FIVE-BAY PANEL
g= 0.02

1 = R

]
100

L |
200 300 400 500
FREQUENCY (cps)



2
[}

D2 S, () /900 a?b® p

POWER SPECTRAL DENSITY, w,

- 52 -

FIG. 30

PSD FOR w,g ON FIVE-BAY PANEL

g=0.02

100

200 300
FREQUENCY (cps)

400

500




2
0

, (@) /900 a?b® p

c

w D% S

POWER SPECTRAL DENSITY,

e

& i
FIG. 31
PSD FOR W, ON FIVE-BAY PANEL
g=0.02
10
10°f
10°}
10" F
|0'B 1 1 1 1 |
0 100 200 300 400 500

FREQUENCY (cps)



/900 a®b® p?

D? S (w)

c

POWER SPECTRAL DENSITY, w

- 54 =

FIG. 32
PSD FOR Wos ON FIVE-BAY PANEL
J g=0.02
10k
10°F
10
10"
io“a | 1 1 1
0 100 200 300 500

FREQUENCY (cps)




/900 a?b® p?

w. D? Sw(w]

c

POWER SPECTRAL DENSITY,

Z=hh =

FIG. 33

PSD FOR w,, ON FIVE-BAY PANEL

g=0.02

100

200 300
FREQUENCY (cps)

400

500




2
0

(w) /900 a?b* p

2
D S,

c

POWER SPECTRAL DENSITY, w

=56 =

10 o
FIG. 34
PSD FOR y,,, ON FIVE-BAY PANEL
g= 0.02
10k
10°F
T
10"
|0"3 1 L i 1 1
0 100 200 300 400 500

FREQUENCY (cps)



POWER SPECTRAL DENSITY, w, D S, (w)/900 oa®b* p?

-3

- 57 -

FIG.35

10
PSD FOR lpyz? ON FIVE-BAY PANEL
g=0.02
1o
10°
-6
10
10"
|0'8 1 1 1 | |
0 100 200 300 400 500

FREQUENCY (cps)




. .

IASNOdS3Y T3INVd SWYH 40 NOILNGIY1SIA TTYNIGNLIONOT

X ‘NOILISOd TVYNIGNLIONOT

NOIlV9VYd0dd 3ISION =—

S¢ '9l1d
0
0o FZ2 s
£lmn=
N|e?
3 |2B
o<z
3 E
<
i
: c
..I_O il H o
S
w M
o Hgo
o m
T «
o e,
J:V
d__MN
o
<20 "TIGFE




-59 -

>
0
(@]
._Hu
w
(@]
=1 o
. |
<
[0
L
-
<
=l
l o 1
2d leqo 0g/2m g 2z/ ™)
G1/12 =x 1v Gl/Ngl=x 1v

IN3IW3OV1dSIA 13NVd
40 3ANLITTdNVY SWY

IN3W302V1dSIQ 13Nvd
40 34NLITdAVY SWY

LATERAL POSITION, y

FIG. 37

LATERAL DISTRIBUTIONS OF RMS PANEL RESPONSE






=61=

APPENDIX A

DERIVATION OF STRINGER TORSIONAL ELEMENT

Assuming the rotation of the beam element shown in Figure 4 varies
linearly in x, leads to the expression

X
0 (x) = (1 - ﬂi) 6y + 7 0, (A-1)
The strain energy for the beam element is
y a0, 2
E, = 5 0fGJ G) dx (A-2)

where GJ is the beam torsional rigidity, and the kinetic energy is

2

[ 2 e
1 do W 2
Ek=?0f1(a£-) dszéfIG dx (A-3)

for harmonic time dependence where I is the moment of inertia per unit length

of beam.

Substituting the expression for 6 (x) into the energy integrals and

carrying out the integrations, yield

1 T
E, =5 X KX (A-4)
2
- w T
Ek =3 X" MX
where
T _
X" = [67. 6,]
and

_@if1 -1
E = E[—l 1:|
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M—EZI
-6 |1 2

are the stiffness and mass matrices for the beam torsional element. Hence,

and

the equation relating the end rotations 91 and 82 to the applied end torques
T1 and T2 (Fig. 4) may be put in the form

T 1 -1][e z. [2 1]z
1|_GJ 1]_1:»2[ }[1] et
|:sz| [ I:-1 1} [Bz 6 [1 2|0,
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