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Synopsis

A new depth averaged model for suspended sediment transport in
open channels has been developed based on an asymptotic solution
to the two dimensional convection-diffusion equation in the ver-
tical plane. The solution for the depth averaged concentration
is derived from the bed boundary condition and the computation
of transport rate and entrainment rate are performed therefore.
Expressions are derived for adaptation length and time. The
model is economical and easy to apply even in unsteady flow
situations and compares favourably with the full two dimensional
solution for steady flow. The stability of bed level change cal-
culations including numerical effects can be analysed prior to
application of the model. The extension to three-dimensions is

outlined.
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water depth

constant of proportionality for bed load formula
constant of proportionality for equilibrium sus-
pended load formula

concentration profile function

exponent in bed load formula

exponent in equilibrium suspended load formula
concentration of suspended sediment by veolume
depth averaged concentration as defined by (4.2)
concentration at the reference level z = z, t 7y
equilibrium concentration profile

mean equilibrium concentration as defined by (%.2)
ith term of asymptotic solution for ¢
concentration profile function

as defined by (7.16)

acceleration due to gravity

as defined by (7.27)

water depth above reference level

normalised velocity profile

porosity of bed

water discharge per unit width

as defined by (7.13)

bed load transport per unit width

suspended load transport per unit width

total sediment trabsport per unit width
equilibrium suspended load transport per unit width
time

dimensionless time

horizontal velocity in x-direction

dimensionless velocity

depth averaged velocity defined by (4.2)

shear velocity
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true depth averaged velocity
vertical velocity component
dimensionless vertical velocity
particle fall velocity

horizontal coordinate (longitudinal)
dimensionless horizontal coordinate
horizontal coordinate (lateral)
vertical coordinate

dimensionless vertical coordinate
height of reference level above bed
elevation of bed

elevation of water surface

constant given by (7.7)

length scale in lateral direction

Chezy coefficient

differential operator by (4.14)

integral operator defined in section 4.5.
virtual diffusion coefficient

scale for turbulent diffusion coefficient for
sediment

dimensionless diffusion cofficient

depth scale

longitudinal length scale

adaptation length

as defined in (7.5)

time scale

adaptation time

velocity scale (longitudinal)

suspension parameter as defined by (7.17)
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pseudoviscosity

dimensionless transport due to profile a3
given by (7.8)

value of aij at L = o

small parameter

turbulent diffusion coefficient for sediment
particle

dimensionless diffusion coefficient defined by
(4.15)

transformed vertical coordinate defined by (4.1)
weighting factor

von Karmann's constant

dimensionless transport due to profile e;
value of ei at ¢t = o

transformed longitudinal coordinate defined by
(4.6)

as defined by (8.32)

Courant number

transformed time defined by (4.6)

(= all(C)) normalised equilibrium concentration
profile

as defined by (3.5)



INTRODCUTION

General

The transport of suspended sediment in a stream by convec-
tion and turbulent diffusion under gravity can be expressed mathe-
matically in the form of a linear partial differential equation
for the local sediment concentration in space and time. If the
flow field in known in advance, this equation can be solved if
an empirical boundary condition is applied at the bed where sedi-
ment exchange takes place. The numerical procedure necessary to
obtain such a solution is sufficiently expensive and time consu-
ming to preclude, for the time being, application in many mathe-

matical models, especially in three dimensional flow fields.

The objective of a sediment transport calculation is usually
to make predictions of morphological changes. The level of sophis-
tication of the mathematical model used must also be decided upon
in this context. The principal feature that distingsuishes sus-
pended sediment transport from bed load transport is the time

taken for the suspension to adapt to changes in flow conditions.

The suspended sediment concentration profile is not entirely
determined by local conditions. For a given flow there is a local
adaptation length and an adaptation time that characterise the
response of the concentration profile and therefore the sediment
entrainment or deposition rate to a change in the flow conditions.
However, there are many instances where the time and length scales
of the problem under consideration far exceed the adaptation lengths
and times of the suspension. In such cases there is little to be
gained by using sophisticated models that take the adaptation
phenomena into account. Rather, it would then be more appropriate
to consider the suspended load to be a part of the total sediment

load which is predicted by a formula based on local conditions.




There are also instances where the time and length scales of a
problem are small enough to make it necessary that the mathema-
tical model reflects the transient nature of suspended sediment,
where solving the full convection-diffusion equation is still

too expensive.

It is therefore necessary to develop simplified models
which, while being easier to apply, still retain the essential
characteristics of the convection-diffusion process. It is also
necessary to study the assumptions on which such a simplified
model is based so that an understanding is reached about the
limits of its applicability. As many flow models used in morpho-
logical computations are based on depth averaged quantities it
seems reasonable that the corresponding model for suspended sedi-

ment should also be based on depth averaged quantities.

This report describes one such model based on an asymptotic
solution of the two-dimensional (in the vertical plane), unsteady
convection diffusion equation. The model is developed for uni-
form or nearly uniform sediment which can be represented by a sin-
gle fall velocity and the transport process is described by a
partial differential equation for the depth averaged concentration
in terms of the other depth averaged quantities, the horizontal
coordinate and time., The equation incorporates the bed boundary
condition explicitly. Once the depth averaged concentration is
found it is possible to compute the transport rate and the sedi-
ment entrainment rate at the bed. The coefficients of the equa-
tions can be determined in advance if standardised profiles are
used for velocity and for the diffusion coefficient for sediment.
The vertical component of velocity can be taken into account.
Expressions have also been derived for adaptation length and

time.
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Numerical and analytical solutions have been obtained and
compared with existing numerical solutions of the full convection-
diffusion equation for steady conditions. The comparison has been
favourable not only for prediction of concentration levels but
also for calculation of bed levels. The stability of the bed level
computations is also investigated. It has been demonstrated that

the model could be applied to unsteady flow situations.

It should be noted that the work reported here is only the
first step towards developing a depth averaged model for a three-
dimensional flow field. Possibilities of further work have been

discussed in the last chapter.
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THEORETICAL BACKGROUND

The Mass-Balance Equation

The partial differential equation that governs the transport
of suspended sediment by convection and turbulent diffusion under

gravity is

dc ac dc de _ dc 3 dc
§E+u-é—§+vva-§-+ws‘£—ws§—z-+x(€§;)+

9 ac 9 Jdc

‘3?(8 53,-) +-é—z—(€ 5‘2-) (2.1)

where z is the vertical coordinate.

If the diffusion terms other than the vertical diffusion term
are neglected and the equation is written for a two-dimensional

flow in the vertical plane

Jc dc dc _ dc 3 d¢
T T UL t W, T W as s (e 5;) (2.2)

The turbulent diffusion coefficient £ is not exactly equal
to the eddy viscosity for the motion of water (Coleman, 1970).
Modified expressions based on flume and field measurements have
been suggested (DHL, 1978). Equation (2.2) has been solved nume-
rically for steady conditions (Kerssens 1974, DHL 1980) using a
transformed grid in the vertical direction for greater resolution

of the region near the bed.
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Boundary conditions

The concentration profile at the upstream boundary must be
known at all time steps. The surface boundary condition is that

there is no sediment flux across the surface.

. dc -
Le.,(wsc+€52) =0 (2.3)

surface

The bed boundary condition is either

[c]bed = f(flow and sediment parameters) (2.4)
ac _ .
or (5E)bed = f(flow and sediment parameters) (2.5)

or a combination of (2.4) and (2.5) (DHL, 1980)

The bed boundary condition is not applied at the bed (z = zb)
itself but at some small distance z = zy + z, above it (see

fig. u.1).

The Depth Averaged Equation

If the mass balance equation (2.2) is integrated vertically,
using the surface boundary condition (2.3) while neglecting the

vertical velocity

%(héh%(h'ﬁ): E (2.6)

where h is the depth of flow, ¢ the mean concentration,

_ za-rzb-fh
h uc = uc dz (2.7)

Zat %

and the entrainment rate E is given by
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E==- (w,ct e%g) (2.8)
2=z +z

a b

If (2.68) is to used to compute concentration levels some

assumptions have to be made about the concentration profiles

in order to calculate ue and E.

It has been shown (Taylor 1953, Elder 1959) that the tran-
sport and dispersion of a dissolved substance in a fluid flowing
in a conduit can be represented by a single virtual diffusion
coefficient that takes into account the combined action of
sheared convection and turbulent diffusion. A similar apprcach,

if applied to suspended sediment, will lead to

—_— . dc
uc = hauc hD == (2.9)

where Dv is the virtual diffusion coefficient and o is given by

o= (Uc_)/(uc) (2.10)
e e

where the'subscript 'e' refers to equilibrium conditions,

Under certain conditions it is possible to justify (2.9)
theoretically and even obtain an expression for DV (Vreugdenhil,
1982). It is, however, necessary to use an empirical expression
for the entrainment rate E to make it possible to solve for the
mean concentration. The bed boundary condition (2.4) or (2.5)

will be then implicitly be included in that empirical expression,

Vermaas (1982) obtained empirical expressions for D, and E
by comparing (2.6) with the numerical solution of (2.2) for a
steady uniform flow with zero upstream concentration. It was
found that DV had only a small effect on the results and that E was

proportional to (, - ¢).
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PRELIMINARY CONSIDERATIONS I

Scales and Magnitudes

Let the flow under consideration be characterised by the

following scales.
Horizontal distance

L
Vertical distance H
Time T

U

Horizontal velocity
Vertical velocity UH/L

Turbulent Diffusion coefficient E

Equation (2.2) may now be made dimensionless so that

B dc  HU ., 3¢ v 9¢y 8¢ E 9 v C
EA- R R~ R P v i 5z (B 5

where all quantities marked with ( ') have been made dimensionless

using the corresponding scale.

The order of magnitude of E is roughly

Fi-

E~dxuls Kl/%UHNO.OOSUH

and

L0005 YL
w_H W

S S

where C in the Chezy coefficient.

The terms on the right hand side of (3.1) are both of the
same order of magnitude and are responsible for the vertical

readjustment of the concentration distribution.
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The magnitude of the terms on the left hand side depend on the
values of the parameters WET and é%i. If both these parameters
S

are of 0(§) or smaller it is possibﬁe to construct an asymptotic

solution to (3,1).

Two possibilities are considered in the subsequent analysis.

Case A é%i = § << 1
s (3.2)
H _
wr o8t
s

This implies that T = L/U so that the time scale is inter-

nal.

Case B UH =8 << 1
Lwg
(3.3)
2
_HTP‘:(S
Vs

This implies that the unsteady term is smaller than the

convection terms and that
T wSLQ/HU2 ~ ELZ/H202

which corresponds to the assumption made by Daubert, A., (1975)

3.2. Asymptotic Solution - Case A

Using (3.2), (3.1) may be written as

de E 09 Bc)

ot ;;ﬁ'§§T (E' e (3.4)

(LS 4 ur 22, 4w 25 =
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which will admit a solution of the form

- - i n+1

c= £ &y +o"ThH (3.5)
i=zo a
where
Y oY
s

and
o, R

i E 3 i,_, 3 3 9
PO CLIA S PR TU N LA A FL L A

for 1 2 1 (3.7)

It is possible to revert (3.6) and (3.7) to the original

coordinates by writing

n R n
c= I &'y, = I e, (3.8)
. i . i
izo i=zo
Consequently,
ac dc
W o= 2 (e =) = o (3.9)

s 9z 9z 9z

and
dc. dc.
i 3 i 3 P 3
s 3z Taz ) T Gt TYag) Cioa
for i 3 1 (3.10)

It should be noted that cs will be an order of magnitude

+1
smaller than ci.
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Asymptotic Solution - Case B

For Case B, (3.1) may be written as

dc ac ac _E 3

2 3c _
St Womr e T tuawr B own
n . n
Assuming ¢ = I st v, = z ey
izo izo
Mooz 5 mMo_
9z w H oz ' 9z
3] Y
1 E 3 1, ] y 9
P P PN A A
and
S T S S T ST S B
z! wSH oz oz!' ot’ ox' 9z'  Ti-1
for 1 > 2
Reverting to the original coordinates
dc de
o 9 oy _
s 5z Y3z £ 3n) T O
ac aC
1 3 1, _ 9 3
Mo Tz taz Fn) T stV o
dc, dc. dc
i ] i 1-2 3 9
Vs 3z T3z (30 e T m TR

for i » 2

(3.

(3

(3.

(3.

(3.

(3.

.11)

8)

.6)

12)

.13)

9)

1)

15)
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Implications

LI 1 implies that the time taken for a particle to settle

Lw
. S . . .
is much smaller than the time it takes to be convected along a dis-
tance L. Similarly ;Ef << 1 implies that the settling time is
less than the time scale. It is still difficult to say just how

small the parameters should be in order to make the solution con-

verge.

However, if (3.8) is substituted in (2.2) and the result
is compared with the final equations for case A and case B (3.9,

3.10, 3.14 and 3.15) it can be demonstrated that the following

quantities have been neglected (or assumed to be O(&n.%l) or
smaller).
3c dc dc
Case A: Tﬁ? +u i;?-+ W 7;5-: O(6n*‘l) (3.186)
dc dc dc
n-~-1 n n _ n+1l
Case B: T+u§—+w—§?—0(5 )
(3.17)
8cn nt+?2

It is not intended that this solution is applied for values
of n greater than 1 or 2. Furthermore, it can be shown that Case
A is more general than Case B. Therefore, in subsequent chapters,
the a@nalysis will be given in detail only for Case A. The corres-
ponding expressions for Case B are given where they are of inte-

rest.
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z 4 -
—_— C-]\__z:zs
w
tou
h a
—---—"'—\\\ z
>~ a
—
L1 (=0 — _ _z=z42,
NANANNN
Zy
0 & X
Fig. 4.1, The Flow Field
u = horizontal velocity component
W = vertical velocity component
z = surface elevation
zy = bed elevation
a = depth of flow

= depth above reference level

Z = a-h
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PRELIMINARY CONSIDERATIONS II

Definitions

Figure (4.1) shows the two-dimensional flow field.

= full depth of flow
=a-z = depth of suspended sediment transport

the elevation of the water surface

4

Z
S

The bottom boundary condition is applied at z = z, t 2.
All transport below z = z, t 2z is included in the bed level

transport.

The new vertical coordinate [ is defined as

z - (zb + Za)

= ————— (4.

h

The vertical mean of any quantity is defined as

z, ta
f= {fd; :%( fdz (4.
o] b+Za
9 _ ]
where EE-— h e (4.

It should be noted that f is not necessarily independent of

% and t. Therefore if £(r) is a function of [ only,

Q
Hh
<%

2 _ BF 3¢

3% - 37 Bx (4
1A

where w can be shown to be

B._ _ 1 . % 3

3% h (z 7% | 3= (Za * Zb)) (4.

1)

2)

3)

W)

5)
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Similar expressions can be obtained for 3 and other deviations

ot
of C.

New coordinates are introduced in horizontal direction as well

as in time.

3 T3
9F W 9x
(4.6)
3.n 3
9T ~ w_ ot
s
where
1
;- { " dz (4.7)
o

It should be mentioned that the transformation (4.6) can
give rise to difficulties because of the fact that uh and h
are not constant. These difficulties are aveided because no dif-
ferential or integral operations are carried out in the £ - T
space. Therefore the transformation (4.6) is only used as a
convenient shorthand and to obtain simpler expressions. The final
solution is obtained only after reverting to x-t coordinates.
Care has to be exercised in returning to x -t cocordinates.

For example

It is possible to express the horizontal velocity component

u(x, t, z) as




4,

2.
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u =u (g, 1p(g) (4.8)

where u is independent of . p(z) however is not necessarily inde-

pendent of x and t. From the definition of u it can be shown that

1
dec:l (4.9)

o]

Transformed Equations

Equation (3.9), (3.10). (3.14) as (3.15) may now be trans-
formed using (4%.3), (4.6) and (4.8).

Case A D[co] = o0 (4.10)
_ .0 3 w 9 .
D[Ci] = (5?-+ P 3E + ;g 55) ¢y for i 3 1 (4.11)
Case B D[co] ) (4.10)
_ ) w3
D[cl] = (p 5§'+ ;g SE) g (4.12)
ac
- _i-2 . S
D[ci] =5t (p 3¢ + v 3C) c; _qfor 32 (4.13)
where
29 L3 (er O
D'a;*ag (e 5% (4.14)
and
_ €
ev_m. (4.15)
s

The boundary condition at the surface is
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[LI e =1

5 n
c, e' =—=( I e¢)=o0o at =1 (4.18)

o

Assumptions
1
a) Let J c dg = c(g, 1) (4.17)

o]

i.e. it is assumed that the higher order terms do not

contribute to the mean concentration.

As cy has to satisfy (4.19) which is an ordinary differential

equation in T, it is possible to write
c, T ¢ (&, T) ¢O(C) (4.18)

where
1
J $,(zg) dg = 1 (4.19)
o
and

3 30
~2 ., 2 (e'-iﬁ? = o (4.20)

¢O is then the normalised equilibrium profile which ensures
that e, does not contribute to any net vertical movement of
sediment. It also follows that if the suspended sediment is
in equilibrium

c, = Ze () (4.21)

b) It is assumed that the consequence of assumption (4.17) as well

as the surface boundary condition (4.16) will hold for all

values of n 3 o.
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The consequence of (4.17) is that
1
J Ci,dc =0

o]

[ e o]

i=1

The surface boundary condition is that

n Bci
.é {ci + ¢! Tﬁf} = o
i=o

t=1

If these are to hold for all values of n

J c, dz = o for all 1 » 1
o
and
dc
c; t+ e’ —§é£ =0
r=1

For i = o, substituting (4.18) in (4.24)

3¢
@) - =)

CI3 I

(4.22)

(4.16)

(4.23)

(4.24)

(4.25)

If g' is known, (4.20), (4.19) and (4.25) allows ¢O(C) to be

determined completely.
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The Diffusion Coefficient

The diffusion coefficient for momentum in a uniform channel

flow with a logarithmic velocity profile is

€ (z - z.) z -z
= = b {1 - b} (4.26)
u_a a a

This distribution of diffusion coefficient was used by Rouse
(1937) to obtain an analytical expression for the equilibrium
concentration profile, as the solution of (3.9) using a known
concentration at some reference level to obtain the constant of
integration., However, in the interest of obtalining a better fit with
laboratory and field measurements the following modification have

been suggested (DHL, 1980) in the expression for €.

: L W e N ™
R =T

a
3
zZ - Zb
for ——— < 0.5 (4.27)
€ Vs " “- Zb
Ta = OLl + oz2 (E—; for e > 0.5 (4.28)

where

0.1, o, = 0.38 and Oy = 4,31 for flumes

O.l3,0¢2 = 0.20 and ay = 2.12 for natural channels: (4.29)

with suitable rearrangement it can be shown that

E.:__e__:f(c_”fg_z_g) ‘ (4.30)
wsh >y ? a )
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The Operator D-l[ ] (Definition)
If the function F(7) satisfies the differential
D[F(g)] = G6(T),

with the boundary conditions

F+e! é% =0
z-1
and
i
{ Fdg = o
o

then let F(Z) be described by the convention
-1
F(g) =D “[6(D)]

It can be demonstrated that (Appendix A)
1 1
= - £
F(r) = J G dg + ¢o J ¢o dz + B ¢o
z z

where the constant B is obtained from (4.33).

equation

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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THE GENERAL SOLUTION FOR SLOWLY VARYING FLOW

In this section it is assumed that the vertical velocity

w is zero and that the shear stress cganges slowly enough to
make it possible to neglect 7;? and ng. The detailed analysis

only treats Case A.

The General Solution (Case A)

The solution is

n
c= I «c. (3.8)

c, = c (5§, T) 9,(%) (u.18)
and

_ .0 d .
Dle;]l = GG + p'é—g-) e g iz (5.1)
9c; 3

(5.1) is from (4.11) by neglecting %L 5T

S

Substituting (4.18) in (5.1) for i=1

3c

- dc
D[Cl] = ¢O-§—’E+ P ¢o_§§ (5.2)
dc dc .
where 37 and 3% are completely independent of 7.
-1 3c -1 dc
Cl =D [¢O] 3'—(- + D [p ¢O] —a—'g- (5-3)

automatically ensures that c. satisfies the boundary condition

(4.23) and (4.24) for i = 1.

1

CE 3 (5.1)

i.e., ey = an(C) ¥t aQQ(C) 3
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where

a, (©) =07 [4.]
(5.5)

a,,(2) =D ' po]

Similarly, substituting (5.%) in (5.1) for i = 2 and so on it is

possible to obtain the general solution

i-1_ i-1_ i-1
o] a c 3 6
c, ., = a, = ta,, =5t .o +a,, —ir (5.6)
i-1 1l aTl 1 i2 aTl 2ag ii agl 1
where
o1
ail(C) - D [ai”l,l]
-1 . .

\ = . . . . < < .
al](g) D [pal_l,]_l + al_l,j] 1<j<i (5.7)
a,,(z) =D " [pa ]

ii i-1,1i-1

The ntP order solution for c may now be assembled from (3.8).

n+l 1 i-1_
- ) c
c = z z a,.(n) —IIETTTTEOT
iz13=1 M att 3 a7?
where
a,,(2) = 9,(2) (5.9)

(5.8) satisfies the complete two dimensional equation (2.2)
subject to the error shown in (3.16). The boundary condition at
the surface is satisfied. The bed boundary condition is yet to
be applied.

It should also be noted that if p(z) and ¢O(§) are known all the

functions aij(g) can be evaluated.
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The zero order solution is

¢ =a;, (@ c (&, 1) = 9,(2) c (5, 1) (5.10)

The represents a concentration distribution which is always

in vertical equilibrium.

The first and second order solutions for Case A are respecti-

vely,

- - dc dc
cTajcotay sotay, 3 (5.11)

- = 2- 2= 2~

_ - dgc dc 9 ¢ 9 ¢
C A tay g tangE Aot A gwee t R o)
The corresponding expressions for Case B are

- - dc
c=ajyc a5 (5.13)
c=a,,c +a %, EER, —3-2—5— (5.14)

11 2131 7 "22 B T 733 g2 :

The Bed Boundary Condition

There are several types of bed boundary condition that could
be applied. In this analysis only one type (for the value of c
at ¢ = o) is applied. It must be noted that any other type of
boundary condition could also be applied equally well (see sec-

tion 6.9).

It is assumed that c, the value of the concentration at

z = 2z + z, (or T = o) is known in terms of the local flow and

b
sediment parameters. In other words e, is known in advance.
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e, = f(ux, W U, b, etc ...) (5.15)
from (5.8)

n+l i Bi-la
c (&, 1) = I L e (5.16)
a t=1 =1 9 57 dpgd7L
where
Yij = aij(o) (5.17)

Often it would be reasonable to assume that the reference
concentration c, is the same as the equilibrium concentration
at the same level in a uniform flow with the same flow para-

meters.

The equilibrium concentration profile must satisfy (4.18),

(4.19) and (4.20). Therefore

ce = ey (&, DO (D)= c (E,T) a, () (5.18)

e

where the subscript 'e' refers to equilibrium conditions.

at ¢ = o, e, T e, T Yy S (5.19)
(5.16) is a partial differential equation for ¢ in & and T

with known coefficients. If s is known, this equation could

be solved numerically by applying a sufficient number of boun-

dary conditions for c¢ and derivatives of c.

In practice, however, it is not possible to work in the
transformed coordinates T and £. Therefore it is necessary to

revert to the original coordinates.
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Assuming that c Ee’ (5.16) will become

a” Y11

a) Zero Order e, = e

b) First Order (Case A)

c = c_+ B 2, uh dc
Y11% 7 Y11% 7 Yo1 Wy 3t T V22 wg Bx
c) Second Order (Case A)
- - h dc uh dc h
Y11% = Y11t Yo 75t T Vo w5k T Va1 w
s s s
h 3 ,uh dc uh & ,uh
*Ya w3t Gow) T Va3 w 3w Gi_ B
s s s s
The corresponding expressions for Case B are
a) Zero Order Ee =c
b) First Order
S ooy D .. ¢
¥11% % Y11 ¢ W Y22 Tx
c¢) Second Order
- - h dec th dc
Y11% = Y11°© +Y21§;"¥'*YQQG;5§
Y33 % 9x w_ 0X
s s

(5.20)

(5.21)

(5.20)

(5.23)

(5.24)
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As aij(c) are constructed from p(L) and ¢O(§) the coeffi-

. . u ¥s Za
cients Y.,. are functions of —, — and —.
i u ’ u a

3

It is assumed that p{Z) is a family of curves entirely determined

by the shear stress and the mean velocity.

Z
g, ) (5.25)
a

*u

=

Vi T Vg ¢

wclc'
ae

Thus ¢ is finally fixed by the application of the bottom
boundary condition and ¢ is obtained by solving the resulting
partial differential equation. The precise equation to be solved
(e.g. any one of the equation (5.20) to (5.24)) is determined by

the type and order of the approximation.

The Sediment Transport Rate

The rate of transport of suspended sediment s is given by

zb+a

s uc dz (5.28)

s
Zb+Za

1
= h J uc dg (5.27)
[o]

Substituting (5.8) in (5.27)

_ n+1l i Bi"la
SS = uh b3 z C)Li. —-—F""———_"l (5.28)
izl4d=1 I ot ]853
where
1
14 = J P ay ag (5.29)
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In the original coordinates (Case A)

Zero Order s = a.., uhec (5.30)
s 11

First Order

2= .= 2-2 .-
_ - = h™u 9dc hu” de
SS = Otll uvhc + OL21 —W '5? + 01.22 —-——-—-w -BT(- (5.31)

The first order expression for Case B is

_ - = h“u” dc
sg = Yy uhc + —_— (5.32)

- - == hu dc h“u” 3c
SS s = Ctll uh (¢ Ce)‘i'OLQl’——-é-_g'l‘ OLQQ—‘;;—E (5.31a)
where
So T Y uh Ee is the equilibrium transport rate.

As c in governed by (5.21) and Ee is a function of the local para-
meters only, (5.31a) explains why the S, T S, diagram exhibits
a hysteresis~like behaviour. If ¢ is obtained from the quasistea-

dy equation (5.23) this behaviour would again be different.

The Entrainment Rate

The sediment entrainment rate E is given by

3(eh) . 3(h uc)

E= Jt X

- 3
= Aeh) | Zs (5.33)

ot ox
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The first order expressions are

Case A:

E= a(aath) ¥ 'aa_x {0‘11 hue + 0y, %%’ T %2 hif gi]

Case B

E = §(_35§l + % [allhﬁé +a, hi‘j%}%} (5.35)

Case B corresponds exactly to (2.6) where the virtual diffusion

coefficient DV is

_ hu
DV = -0, (5.36)
or
u Vs, -
DV = (- %hn 'u—/'{l—).uh (5.37)
* ®
_ c ,VYs, -
D, = (- a,, /E/ u*).uh (5.38)

where C is the Chezy coefficient.
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SOME FEATURES OF INTEREST

Adaptation length and time

Consider a steady uniform flow where the suspended sedi-

ment is not in equilibrium. Then equation (5.21) may be written

as
- _ - dc dc
Ce_C+TAﬁ+LA—§; (5-1)
where
Y
T, =21 B (6.2)
Y11 Vs
and
Yo -
Y11 ¥s

In steady uniform flow T, and Ly will be constants and (6.1)

will have straight characteristics in the x-t plane. It can also
be shown that (c - Ee) will decay exponentially with an adaptation
length LA and adaptation time TA. The adaptation length/time is

defined as the interval required to make (ec - Ee) decrease by a

1ot

factor ‘'e'.

u’Y
The characteristic speed of propagation is 22.

Some idea of the orders of magnitude of L, and TAwgguld be
obtained froT figure 9.4. Let za/a = 0,01 and the Chezy coeffi-
cient = 60 m*/s (ﬁ/u* = 19). If the fall velocity is w_ = 0.015
m/s consider the combinations of u = 0.5 and 1.0 m/s and h = 10

and 20 m.




2=0.5m/s, h=10m L= 114 m, TA = 110 s
5= 1.0 m/s, h=10m, L, =304 m, T, = 285 s
5= 0.5m/s, h=20m, L,=228m, T, = 2208
Z=1.0m/g, h=2m, L,=608m T, = 570 s

1t should also be noted that from the definition of LA
and TA the length and time required for 95 percent adaptation

are L, in (20) and T, 1in (20) respectively.

The values of L, and T, should be compared with the dimen-—
sions of the major features of the problem under consideration
and with the mesh size of the computational grid and the time
step of the calculation when a decision has to be made about the

pelative importance of adaptation phenomena.

Concentration profiles

Consider a steady non-uniform flow. Then the concentration

profile (first order) is (from 5.11).

c = all(C) c + a22(§) 5E (6.5)
i.e
o = uh 3¢ (6.6)

¢O(C) c + aQQ(C) ;;—5;
Figure (6.1) shows the typical shapes of ¢O(C) and aQQ(C).

The bed boundary condition (5.21) for steady flow is

(6.7)

g‘?f‘

- - 3
Y11% = Y11 * Vo2 W) Bx
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1 - L=1
ayll) = 8,(C) apll)
\
+ =0 = +
0 i 0| Y22
Typical Profiles
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c <ec c >c
e e
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Fig. 6.1.

Concentration Profiles
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or

R

%*i-gg =A@ -9 (6.8)
s Y20

Figure (6.1) also.shows how the concentration profile is modi-

fied during

{a) Sedimentation ¢ ~c > o or §£-< o)
e Ix
. - - dc

and (b) erosion c-c <o or =—>o0
e %

When the solution is convergent, higher order sclutionswill
give better and better approximation of the true concentration

profile.

Validity of the Approximation

The solution is based on the assumption that c; is an order
of magnitude smaller than ¢y 1 (see 3.8). Therafdre in the 15t

order steady solution (6.5),

uh 3c -
= = << .
a,,(%) s ox a;,(@e (6.10)
or
a - -~
—22 uh %‘3 <«< 1 (6.11)
811 cwg X
Y
The largest value of T (figure 6.1) appears to occur at { = o.
11
¥ - -
I-gﬁ-,ih—-g-‘i << 1 (6.12)
Yy CW, 9%

Substituting from (6.8)

<< 1 (6.13)




g

0

aIE,

&

(€

o
~3

0.5

SUTRENCH
- — == order(1)
order{2)

%

chezy=50m"?/s
W /u = 0.01064

g

P

NS

chezy=50m!/%/s
WZ]ZS

S
G

~

P

SN

0.25 —~—
\\\
\\\
~ 5
0 15 30 45 60 75 90
Fig. 6.2. Adaptation from zero concentration

(uniform flow, z5/a = 0.0125)

X

+

_Oh_




- 41 -

Therefore the error in the solution should increase as the
local mean concentration moves away from the mean equilibrium con-

centration. The worst case is when c = o.

Adaptation from zerc concentration

Notwithstanding the conclusions of the previous section,
the analysis was applied to a steady uniform flow where the initial
mean concentration was zero. The solution could be obtained analyti-
cally because_of the censtant coefficients. Figure (6.2) shows

Co - W
the decay of =2 € for two values of-ﬁi. The first and second
c

order analyticafisolutions as well as the numerical solution of
the two dimensional mass balance equation (2.2) (Vermaas, 1982)
are shown. It can be seen that while errcrs of adaptation rate
are present when ¢ is small, the comparison improves conside-

rably as c increases.

It should be mentioned here that when the mean concentra-
tion is zero, the first order solution (6.5) will give negative
values of concentration in the upper part of the flow! Agreement
between the full numerical solution and the asymptotic solution
(from the point of view of the adaptation rate) is quite reasona-

ble for (ce - c)/ce < 0.5.

which is

Expressions for Transport Rate

In a steady non-uniform flow, the first order expression
for the suspended sediment transport rate can be obtained from

(5.31).




6.6,

I TE, .

- - 3252 3e
_ : ush< dc
sg = Gy uhe + Y, —;;— = (6.14)

Substituting for %§ from (6.8)

s =a ., uhc+ o0, uh Zii (¢ -¢) (6.15)
s - %11 22 Y, Ce )

If c=c - Ee and the equilibrium transport rate Se is given by

s =& _ uho (6.16)
%22 Y1

) (6.17)
Yo2

sg T s, t uhAc (ull

The deviation from equilibrium could be expressed in the dimen-

sionless form

s -s Oy Y
—EE;._E.: éE (1 - _EEL_EE) (6.18)
e e %1y Yoo

%2 Y11
%1 Y22
(6.18) gives an indication of the error present when fitting

The typical order of magnitude of (1 - )y~ 1.2,

a transport formula to field measurements of suspended sediment
which has not reached equilibrium. This point is of significance
because the bed boundary condition in a suspended sediment calcu-

lation is often obtained from such a formula.

Expressions for the Entrainment Rate

The entrainment rate for steady flow may be derived from
(6.15) as
s .9 T

E='a“;=‘§[m“h°+Y22':r;§;] (6.19)
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If the coefficients 0 and Y are assumed to be nearly constant and

uh = constant it is possible to substitute from (6.8) and (6.17)

to obtain

Y Oy Yoq _ L -y, ¢
;f-:— = 11 a, (1 - azg-——l-l—)(c - o)+, 9-—‘5—1—1-—5—6- (6.20)
s Yoo 11 Y22 wg Yoo OF

If the equilibrium transport formula is

- - = _ _=b
S T Ogq hce— au (6.21)
then
Y o Y _ _ Y _ -
;?—:—}-l—all (1-5—3.—11—)@ —c)+a22§————l}-bc -g—“ (6.22)
s Yoo 11 Yoo s Yoo & 9%

(6.22) shows that E «(Ee - ¢) is strictly valid only for uniform
flow. However, the modified expression containing %% could easily
be included in the solution if a depth averaged entrainment equa-~

tion of the type (2.6).

It is also possible to obtain the entrainment rate directly

from the concentration profile as

E = (wsc + € P (6.23)

z = z. +
b Za

which may also be written as

E dc
— (C + E:' —-—) (6-2”’)
W oL r=o

If ¢ is represented by the steady first order solution



T TR

- = dc
c = all(C) c + aQQ(C) 3 (6.25)
it is possible to evaluate E from (6.24).

As all(C) = ¢O(C) and

3¢
¢, + € —522 = o for all z, (6.26)

only aQQ(C) will contribute to entrainment.

aQQ(C) satisfies (5.5) which means that (see section 4.5)

da da

22 ) 22, _
et ap (€' ) = p o, (6.27)
where
da
22 _
[322 + €' 57 ] = o (6.28)
=1

By integrating (6.27) between the limits £ = o and 1,

da
22 -
l:aQQ + ! —a—t—'} ) = all (6.29)
T =o

(see definition of ayq - (5.28))

From (6.24), (6.25) and (6.26)

- da
E _ _ 3¢ 22
=g (ayy v ) (6.30)

s Z=o




- 45 -

E _ th dc
T (6.31)
8 s
Substituting from (6.8)
Y - - ,
§L =0y, SESS (e, = ¢) (6.32)
s Y22

Now it is apparent that (6.32) does not agree with (6.19).

This discrepancy may be explained in the following way.

In the first order solution c¢ = e, * Cqs Oy ~ 0(1) and

ey~ 0(3). c, does not produce any entrainment and therefore

the expression (6.32) ~ 0(§).

In the derivation of (6.19) by differentiating the transport

rate gives rise to two terms

E E

E _o, 1 (6.33)
W W W

s s s
where

Eo 11 - - uh dc
— =y, ~={(c_ -c) =y, — =~ 0()
Wy 11 92 e 11 W ax
and
E - 2 a=

1 uh~ dc 2
v = Yoo st -~ 0(87) (6.35)

The expression for E, can also be obtained by starting with the

1
second order concentration profile.

Thus (6.19) and (6.32) are not contradictory.
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The absence of an 0(1) term in the entrainment makes it desirable
to include the 0(62) term to maintain the same precision (rela-
tively) as the first order solution which has terms of 0(1) and

0(3).

Depth-Averaged Solutions

There are two possible approaches to solving for the mean

concentration. One approach is to solve the entraimment equation.

2= .= 2=2 =
. o(ch) . 3 - - h“u 3¢ u” dc
E= ==+ [allhuc+ 0y W ot te, s aX] (5.34)

or the equivalent steady flow equation

2=2 o=
_ 2 - = h“u” 3¢
el [all huc + Oy ———-—WS ———ax] (6.36)

by substituting an appropriate expression for E.

Expression of the type E«x(Ee - &) are widely used. The use

of such expressions seem to be justified in the light of (6,32),
although the modification suggested in (6,22) would give a bet-
ter approximation in non uniform flow.

In fact, if (6.32) is substituted into (6.36) while at the same

. . . h232 3¢ .
time the diffusion term o —=— is neglected
22 wg 9%
Yiu - - - 3¢
W, oy ?;; (Cé - c) = o uh T (6.37)

which reduces to the first order bed boundary condition

c = \oP c + Yoo dc (6.7)

Y11 %

The solution of (6.7) to obtain the first order steady mean con-

centration is the alternative approach suggested in this report.
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This reasoning leads to the following conclusion.

a)

c)

c)

Solving the entraimment equation without the diffusion term
and Ea:(Ee - ¢) will make it possible to obtain a solution
accurate to 0(8) for both ¢ and E. The equation to be solved
is a first order ordinary differential equation in c.

Upstream boundary condition are sufficient.

If a more accurate expression (6.13) is used for the entrain-
ment rate and the diffusion term is included, both ¢ and E
could be cbtained to a higher degree of accuracy (0(62)).

The equation to be solved is, however, a second order ordi-
nary differential equation which requires a downstream boun-
dary condition (for no obvious physical reason) because Ohn

is negative.

If the bed boundary condition (6.7) is solved ¢ is obtained
to an accuracy of 0(8). If this concentration is used to
obtain the entrainment rate from (6.36) the answer will be
of a higher order of accuracy then (a) and probably of the
same accuracy as (b). The equation to be solved does not

require a downstream boundary condition.

As the calculation of the entrainment rate is likely to be

the most important objective of a suspended sediment transport

calculation, the alternmative (c) seems to have the most promise.

It should however be noted that both approaches, i.e., the

entrainment equation and the bed boundary condition, lead to

the same answer asymptotically. It should also be noted that the

bed boundary condition cannot be applied in the case of zero

entrainment e.g. armoured beds, fixed beds etc.
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Zero Entrainment

It is obvious that the bed boundary condition (5.16) cannot
be applied where there is zero entrainment.

Consider the first order solution for the concentration profile

- - uh 3c
c = all(c) c + a22(C) W; ™ (6.7)
as a;q = ¢O cannot give rise to entrainment, the other term on

the right hand side also should not give rise to any entrainment.

The only possible solution is therefore trivial, i.e. ¢ = constant.
If a non-trivial solution is required, the second order

solution has to be used. Then it can be shown that

_22 -
_ 9 - - u"h” de, _
E =+ (0,, uhc + 050 —;;—~5;) =0 (6.38)

Because o, is negative the solution of (6.38) requires the appli-
cation of a downstream boundary condition which so restricts the
influence of the diffusion term that in uniform flow it gives

rise to the same trivial solution ¢ = constant. It should be

noted that (6.38) can also be obtained by differentiating the

first order expression for the transport rate.

An Alternative Bed Boundary Condition

The boundary condition described in section (5.2) assumes
that the value of the concentration c at z =z, + 2y is known
in advance. If this value is the same as the equilibrium value
then, for example, the first. order steady equation

- uh 3c
Y11 % T Y11 ¥ 3% (6.7)

may be derived.
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If an alternative boundary condition, i.e., that the
concentration gradient at z = z, t+ 2y is equal to the equili-

brium value, is used the first order steady solution would yield

da _ da _ = da -

2 g g aedgBh (6.39)
C=0 t=o s t=o

From (4.25) and (5.5) it can be shown that

SR 3.4
g r=o o

and

da,, .0 a,,(0) (0, +¥,p)

L, T JP % 4 - Ty T T Tee o oD

- o
Thus (6.39) will reduce to
Y1y G = Yyp ¢ * (Y T o) go oy (6.42)

Therefore, the use of this boundary condition will lead to larger
adaptation lengths than before. For very fine sediment (wS + 0),

it can be shown that a,. > 1 while y22/ws remains finite.

11
So the adaptation length will become infinite.
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THE COMPLETE FIRST ORDER QUASISTEADY SOLUTION

The analysis given in this chapter takes into account the
vertical velocity and the changes of shape of both the velocity
profile 'p' and the equilibrium concentration profile ¢O. For
the sake of simplicity equations are derived only for quasisteady

motion.

The Vertical Velocity Component

The vertical velocity must satisfy the continuity equation

du 9w _ (7.1)

with the surface boundary condition

3z oz

Wl ., = 50+ ap (1) 5 (7.2)

where zg = 24 + zy + h is the elevation of the water surface.

As the bed level changes slowly it may be assumed that

st

_ oh
W—'a—_t'(l-fe) (7.3)

where
Z
B =4

The normalised velocity profile p(Z) is not necessarily constant
in shape. In some circumstances, such as fully rough flow, the
shape of p(Z) could be assumed to depend only on one parameter

f =
*

‘Iz

L
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Then

3f
op _ % 3¢, 3p __% (7.4)
9x 9r " 9x 3f ° 3¥x :

The integration of (7.1) is given in Appendix B and leads to

of
_ oh B(uh) 3L 3P 7=
wos et + P(L) —=— hp(i;)8 + uh af v (7.5)
where
1
P(z) = J p(g) dg
g

If the velocity profile is logarithmic Appendix B also shows that

dh 9 =y _ 3 -
%t 5% (uh) = A ™ (uh/fx) (7.8)
where
=z 8 1In (8 E l) (7.7)
and
Za
B = 5y (a constant) (7.8)

4 as defined by (4.2) is not the true depth averaged velocity.
Tt can be shown (Appendix B) that the true depth averaged velo-

city v is given by
v= (1= A/f) u (7.9)

where




7.2.

- 570 -
- Zn+a
v = l { udz
a
%

The Vertical Velocity in Quasisteady Flow

When %% = o, (7.6) becomes
3 .-, _ . 3 ,uh
TR (uh) = A B (?;) (7.10)

which may also be written as
uh (1 - A/f) = constant (7.11)

It is shown in Appendix B that the vertical velocity is now

gives by
-, of 3
w = e(r) % % - p(0) Th & (7.12)

where (for logarithmic profiles)
r(g) = - P(g)/(1 - A/£) + (1 -0) (7.13)

The vertical velocity can also be expressed as

_VL:.I_‘LQ.__’.E_ P(C)’é'g‘ (7_14)

The Variation of ¢o in Quasisteady flow

The equilibrium concentration profile ¢o can be shown (see

Appendix B) to be of the genmeral form

¢, = B exp (z £(z)) (7.16)
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where B is a constant obtained from the normalising condition

and f is a function of r only. The suspension parameter Z is

given by

aw,
A~ .17
H'Emax 727

It can be shown that the suspension parameter is a function of

W
EE only and that B is a function of Z. The simplest expression
b3

for Z is (Rouse, 1937)

However, if (4.27) and (4.28) are used, more complicated expres-
sions will result. In general the variation of ¢O along the x-

direction could be expressed as

o Yo s, o a2 (7.19)
X z x 37 ° 3x :

as w_ is constant

s
32 _ 97 a(u-i) Ys 3z 1 Ouy (7.20)
ox s 3% u. ' L ¥s.'u % '
3(—) x o(—) =
u u
% ®
37 %

Complete expressions for £(Z), g and 7ﬁ§vare given in

Appendix B. Uy

As fx is defined by

_uK
fx_a.. (7.21)
%
_1_3_%:.1_.3.@ - __1...8.1.125 (7.22)
£  9x u 9x u X *
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However, from (7.11)

R TR W O G (7.23)
h 9 4 9x (1 -A/f)"Ff_ f_ 93x ’
X £ %
2% 1w 1 1% (7.98)
u x  hox (1 -A/f) f_ 3 :
* 3
Substituting in (7.20) and (7.19)
¥ % an ¥ az fian, 11 v
9x ~ 9T ° Ax 37 W, lhox (1-A/f ) f 3x| u :
(T) * % %
%
or
¥ Mo ar, ylia, 1 1% (7.96)
3% 9r " ax | B2 hx " (1-A/E) f, ox :
where
w, 99
gz(z;) = 'u—s_—éig' E?,JZ (7.27)
* (=)
u
*
The Quasisteady Solution
The first order solution is (from 4.11)
c=c to (7.28)
where
Bco w Bco
D[Cl] =P 3E + v 3T (7.29)




- 55 -

and
e, = ¢ ¢O(C) (7.30)
Substituting in (7.30) and (7.26)
- 3¢ 29
_ c -Yo W o -
D[Cl] —p¢o'§g+pc—§€-+;;—é-i—c (7.31)
Using (7.14) and (7.26)
- 90 Y
Coe B, % ar 1, 1 1%
Dle)] = p ¢, 3 *{P 3¢ *9E T P8 [h 5 T T-AE, T, z;j}
v 9%y % -829—35- (7.32)
f dE 3r TP I % ’
= ¢ ..a_é+ .}.a_h_+ pg2 r’aq)o)_l_.afEE a
P %3 "\P82'1n 3 (1-A/F) 5 F_ 9t J°
(7.33)

Equation (7.33) may now be integrated with the boundary condition

(4.23) and (4,24) to yield

] bs (o0 g e, (D) 2f,
cp = ay(@) 52'*{ h 3E E % } ¢
where

-1
e, (2) =D “lpg,]

- a0
ey(2) =D l[ng/(b A/E) + 7 TE?:

(7.34)

(7.35)

(7.36)
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The first order solution may now be written as

of

e e -
_ 1 dh 2 ®, - dc
c = (all t T §§-+ ?; 7§?) cta, 3 (7.37)

The bottom boundary condition is now

33 u,. of -
i Voo, M2 ¥ e
¢ = Oy *wae * £ 520 ¢t Yoo 3F (7.38)

when ul = el(o) and My = e2(o) (7.39)
If e, = Yllge and reverting to the original coordinates
a - of = T
_ Hqu -
1% oh uh 3 uh dc (7.40)

Vi1 % T O * 5 PR s k) Yo W o

s s % s
It can be seen in figure 9.3 that the values My and U, are rather
small when compared with Yy The relative importance of these two

s i dh uh Ofy .
additional terms (ul ;;-gz-and Uy = F 3% ), which have appeared
because of the variations in the concéntration profile and the
velocity profile in the x-directiog, cannot be estimated because

4 4k of
it depends entirely on %%? and %E 7;} which can vary from problem

to problem. Both additional term® will become zero when the flow

is truly uniform.

The suspended sediment transport rate could also be obtained as

- - af - -
. =3 4 oh uh %) o uh 3¢
Ss ~ uh {(all * Al W X * AQ w f_ 98x e+ 0£22 W OX } (7.41)
s S % s
where
1
A= J e, pdc (7.42)

[e]
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and
1
XQ z J e, pdzg (7.43)
o
Il 3f
The term ¥?'7;§ is related to the Chezy coefficient C by
3
af
1 "=_132C
£, 9x ~ C ¥x (7.44)

Furthermore, if the actual roughness height is kept constant then

of

x_13%h
% " b ow (7.45)

Therefore, for constant roughness height, the boundary condition

(7.40) becomes

- u oh}) - uh dc
Y11 % 7 {Yll + (“1”2/%)&; 'BEZ}C T Y0 W Bx (7.486)

Discussion

The analysis given in this chapter takes into account the
variation in the x-direction of the equilibrium profile ¢O as well
as the component of vertical velocity that is generated by the
changing shape of the velocity profile. The major contribution
(usually) to the vertical velocity is due to the shape of the
bed and the water surface. It can be seen that this particular
term is cancelled out by the rate of change of ¢O induced by the
transformed vertical coordinate. Therefore it could be said that
this component of the vertical velocity is implicit in the coor-
dinate transformation and also that this component is therefore

included in the analysis of Chapter 5 also.
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There are, however, some basic assumptions underlying this

analysis that should be stated clearly.

al

b)

The equilibrium profile ¢o and therefore all other concentra-
tion profiles an(C), el(c) etc., are based on an assumption
that the turbulent diffusion coefficient is the same as that
found in uniform flow. The suspension parameter wS/Kuﬁrelates
the shape of the profiles directly to the bottom shear stress.
This would obviously be wrong in rapidly changing flow situa-

tions.

In the analysis it is assumed that the shape of the velocity
profile is governed by a single parameter Kﬁ/ux. This would
also not be true in rapidly changing flow.

However, a two or three parameter velocity profile could be

accommodated quite easily. It has been found (DHL, 1980) that
the results of computations based on a two dimensional model
were not very sensitive to refinements in the description of

the flow field.
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CALCULATION OF BED LEVEL CHANGE

Basic considerations

Changes in bed level are the result of non-uniformity of se-
diment transport along the channel. In the case of suspended sedi-
ment transport the time rate of change of the amount of sediment
held in suspension will also influence bed level change, but this
effect is usually very small. The interaction between bed level
change and the flow must be taken into account in formulating
a mathematical model. It has however been demonstrated (de Vries,
1965) that for bed load transport the celerity of small distur-
bances in the bed geometry is usually very much smaller than the
two characteristic celerities of water motion and that it is
possible therefore to uncouple the hydraulic computation from the
bed level computation: Thus it is possible to carry out the hydrau-
lic computation and the bed level adjustment alternately and to
take large time steps where the flow conditions permit. These

considerations are likely to apply to suspended sediment also.

It is necessary to analyse the equation governing bed level

change due to suspended sediment to determine.

a) The order of magnitude of the celerity of bed disturbances

and the stability of the equation for bed level calculations.

b)  The possibility of instabilities being introduced by the nu-
merical scheme and whether it is necessary to introduce a pseudo-
viscosity term (Vreugdenhil and de Vries, 1973) to ensure sta-

bility.

The Basic Equation

It is assumed that the calculation of concentration could be
carried out on a quasi-steady basis. Then the full first order

solution when applied to the bottom boundary condition is
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- u dh uh x, - uh dc
Vi1 % T (Vg T My o Bx M2 eE 5% © T Va2 W Bx (7.40)

Ee could be determined (in terms of the flow parameters) if a
transport formula is available for the equilibrium sediment tran-
sport rate S, All the other coefficients of the first order dif-
ferential equation (7.40) are also fully determined by the flow

field. The equilibrium transport rate is given by

S = o, uhc (8.1)

If the roughness height is constant, then there is a relationship

of
between §E~and =X (see 7.45).

ox ox
Then
- u 9h\| - uh dc
Y11% 7 {Yll Ty /e W Bx} ¢ T Yoo Bx (7.46)

If the mean concentration c is known, then the suspended sediment

transport rate may be calculated from

- - 3f - -
.- u oh uh ®, — uh dc¢
Ss T uh {(all * >\l W 5§‘+ AQ w T BX) C~ka22 W Bx} (7.41)
s s % s
For constant roughness height
_ - u Bh, - uh 3dc
SS = uh {(O(.ll + [)\l + )\Q/fﬁi} ;q-; -é‘;) c + 0L22 ":I‘S‘ BX} (8.2)

For a specific flow situation it is usually possible to
construct transport formulae for the suspended sediment and for

the bed load separately. Let these formulae be
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—= +
at (1 - pb)
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_ bs
s = a_ u (8.3)
e s
and
_b
S, = 3, u b (8.4)

where the constants ag, bs, ay and bb are determined from field

measurements.
Then from (8.1)
E = a —-\-l—~—:'— (8.5)

If the porosity of the bed is Py, and the storage term 82;?) is

negligible, the rate of change of the bed level 2 could be

expressed as

9z, 1 98y sy
—— [:—5;{—1'—3—;— = 0O (8.6)

The Stability of the Linearised Equations

Consider a uniform steady flow where the suspended sediment
is in equilibrium. Let ugs ho and e, be the mean velocity, depth
and mean concentration respectively. Comsider a small ripple on

the bed so that

- 1
h = ho + h (8.7)
where
h' = H exp(At + ik x) (8.8)

Let the perturbations in the mean velocity and concentration

be u' and c' respectively so that
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- _ ,
4=, (8.9)
c=c +c!
o
If the discharge remains constant
uh = uoln)= q {(constant) (8.10)
Let the total sediment transport rate be
s, = s +s' (8.11)
t o}
where Sq is the unperturbed total transport.
As h' is small (8.5) could be linearised as
_ bsh'
e, = co(l - ho ) (8.12)

The governing equation (for constant roughness height) (7.46) could

be linearised to become

ac' v - ' sh'
v + Be'= alh ta, 5% (8.13)
where
Y W
g=-L-S (8.14)
becw vy
a _______.__Sho s 11 (8.15)
03 ¥22

a = - Q (8.16)
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1
From (8.8) Sh' = ikh!
Ix
and

Sh' _
ot An

Substituting in (8.13)

o (al ta, ik) .
- (B + ik)

(8.17)

(8.18)

where the homogeneous solution of (8.13) is neglected because

it would decay along the x-axis

If (8.2) and (8.4) are combined and linearised

s' ' oh' ac'’ .
T byl by ot byt b,h
where
by = %
U5
= +
b, (xl AQ/fx) -
s
- 9.
by = w. %22
s
and
b o= - Pb%ho
y =
hoq
Then

(bl-fb3 ik)(al+-a ik)

(B + ik)

2

3 1
+b21k+b;|h

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)
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300 X10%m/s

200t
100} \ Propagation velocity of bedforms
1 2 3 4 5 kim™)
-100} Damping coefficient Re(\) /k 2
-200
=300
-400-x1075

Fig. 8.1. Stability of linearised equations for bed level change

(physical parameters as in sectiom 9.6.).
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. o ) .
Assuming that —= = - == (rigid 1id assumption)
ot ot
(8.6) becomes
oh _ 9s'
(l - pb)-a-{——§; (8.26)

Substituting (8.18) and (8.25)

(b, +b ik)(a, ta, ik)
A(1 - pp) :qikL R +b,ik + b, (8.27)

The propagation velocity is - Im(X)/k and the criterion for

stability is
Re(M) < o (8.29)

It is apparent that bed load imtroduces a positive propagation
velocity which is independent of the wave-length of the bed dis-
turbance and does not influence stability. The propagation velo-
city induced by suspended sediment transport is not independent
of the wave-length of the disturbance.

The number of parameters involved in this analysis is very large.
Therefore it is not possible to investigate the stability of the
equations with respect to every parameter. It is however possible
to investigate stability with respect to a specific problem and
its associated parameters. This analysis was applied to the para-
meters of the computation of the siltation of a dredged trench
described in sections 9.5 and 9.6. The results are shown in figure

8.1.

Numerical Stability

If h' = h?, ¢! = cg etc.

at x = jAx and t = nAt the equation (8.13) and (8.20) may be

written as difference relatiomns.
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cr -l nt - n"
jt+l j-1 no_ n i+1 i-1
AR + Bcj alhj + a, i (8.30)

n n n n n

s, h. - h. c. - C, n
3. n J+1 j-1 j+1 -1

3 blcj+b2 " +b3 ———~———l-—2AX +b4hj (8.31)
Assume that the bed disturbance is of the form
ik
N = Hp" et X (8.32)

and that the other quantities are alsc of a similar form, e.g.,

n 1k
crjl = ¢ o efFE e, (8.33)

From (8.30), (8.33) and (8.32)

a, +a,. im

_ 1 2
C——*—m‘— H (8.43)
where
. sin §<AX) (8.35)
X

Similarly (8.31) becomes

(b, +b_im)(a, + a, im)
s _ 1"P1 773 17 % .
3 = [ CREE) + b2 im + b4 H (8.36)
where
s‘j1 =g ot otk (8.37)

The calculation of the bed levels for the next step could be

written as



-67 -

n

. . a1 -

(- o) ] Si-1 (1 pb),hn
b At 2 Ax 2 At i+l

-2n%+0% )=o
j o i-1

(8.35)

where o is the pseudoviscosity which might have to be introduced

to obtain stability. (8.38) could also be expressed as

o, _
(l—pb)(p~l-ot(cos(kAx))~A—£— imsS = o (8.39)
or

(b, +b_ im)(a, +a,im)
At . 1 3 1 2
= o -

p = 1+ 0(cos(kAx) 1)+(l_pb) qlm[ CGEET)) +

+b2 im+ bq] (8.40)
The condition for stability is
o] €1 for all kAx (8.41)
The relevant range is o sk Ax <™
If kAx = 7, (8.41) becomes
a g1 (8.u42)

The extent of additional damping could be obtained be comparing
with the analytical solution in section 8.3. The relative damping

factor for a single step is

- D
~ exp(Re(MAL)) (8.43)
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0.1 03 05 07 4%5

Fig. 8.2. MNumerical stability: minimum values of a

(parameters given in section 9.6).
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The ratio of celerities is

_ arg(p)
Cr‘ —m%-?)— (8.’4‘4)

Fig. 8.2. shows the minimum values of o required to obtain
stability for all k in the problem that is analysed in section 8.3

for various values of éﬁ and the Courant number ¢ = E%%;.

h

This analysis offers a reasonably straightforward means of
determining the main stability parameters for a specific bed
level change calculation with both bed level and suspended load.
Figure 8.2. shows the marked influence of the ratio of Ax/h in
determining how large a time step could be taken in the bed level
computation large values of Ax/h are usually present in river
models. In calculating trench siltation problems however it
becomes necessary to use a small value of Ax so that the trench
geometry could be represented accurately. This will thus place
a limitation on the size of time step that could be employed.
In river models however the time step is more likely to be re-
stricted by the necessity to represent the incoming hydrograph

accurately.
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COMPUTATIONS

General

The solution of the depth averaged equations that are deve-
loped in this report requires the prior knowledge of the coeffi-

J
tration Ee. If a transport formula is available for the equili-

cients Yij’ Oscy Wy etc. as well as the mean equilibrium concen-
brium transport rate it is possible to obtain Ee from the local
hydraulic conditions (see 8.5). If the coefficients and c, are
known it is easy to set up a numerical scheme for the solution

of the differential equation that governs the mean concentration
c. Analytical expressions for obtaining the coefficients have been
given in the text. It can be seen that all the coefficients could

be obtained if the following quantities are known.

al z the level where the bottom boundary condition is applied.
This is determined by the dimensionless quantity z,/a orza/h=
B.
b) The normalised velocity profile p(f). If the flow is assumed
to be fully rough the shage of p(g) can be shown to depend on
Ku

only the parameter fﬁ =T (see Appendix B) and B.
: 3

¢) The normalized equilibrium concentration profile ¢O(C). This
profile can be shown (Appendix B) to depend on the parameters

W
S
T and B.

%
Thus all the coefficients could be shown to depend on 3
- W
dimensionless parameters B,ii- and T
* 3
It is possible, however, to reduce this to two parameters by
assuming that in a given problem a constant value of B is used.

The derivations of Appendix B assume that B is constant.
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Computation of Profile Functions and Coefficients

Once p(Z) and ¢O(C) are known, the concentration profile
function aij(c) a?i ei(g) can be obtained by the applicatifg
of the operator D [ ]. It is shown that (see Appendix A) D [ ]
involves two indefinite integrals and one definite integral in
the dimensionless vertical coordinate . Some care has to be
taken in evaluating these integrals because of the rapid varia-

tion of the integrand near the bed.

The results presented in this report have been obtained

from the following numerical procedure. The functions were eva-
luated on a 201 point grid from £ = o to § = 1. All integrations
were performed twice; once over a fine grid Az = 0.005 and once
over a coarse grid Af = 0.01, using Simpson's rule. The error in
the integral over the coarse grid should be 16 times as large as
the error on the fine grid. Thus an estimate of the error could
be made at alternate grid points. The error estimate at the other
grid points were obtained by linear interpolation and then the

integral was corrected using these error estimates.

For a given value of za/a, the values of the coefficients
were evaluated for a range of values of ﬁ/ux and ws/u*. It was
found that the values so obtained could be fitted by the follo-

. . u .
wing functions of e and ws/ux, for a fiven value of 8.

Y W 4 we 171
E;EL = Ifi exp I a (Tfi) (9.1)
11 S i=1 %
r i-1
Y W 4 u \
72-3 === | I b + 2 ) (9.2)
11 k- 3 Li: 1 u *
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JEN——— ZG/G '-:001
——= 2q/a =0.05
=0.2
T = T i 1
3 4 5 6 oo 7
1.
0 —— 2Zgq/a=0.01
408 ---z/a=0.05
| . uspension Parameter
Uo4 u =25 as for flumes (DHL,1980)
1A Ux
0.2\'-\;
L o I |
-1 0 1 2 3 a,(D
1y Ws20.2
} Ux
an u
a, (041 u, 2
o, 29 =001
e
_ ay,lh)
L = = ( -xx\ i 211§
-3 -2 -1 0 1 2 3
5"033( C,)
5x e, (Q)

Fig. 9.1.

Typical Profile fundtions
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Fig. 9.2. Y and o coefficients

(for natural channels)
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2 y i-1

Y W u W

73‘3' =D oew | T+ DD (9.3)
11 % i=1 u ¥

i-1

Ul _ ws 4 ux Yig

7o (E~) z (fi + = gi)(5~) (9.4)
11 ® 1i=1 u x

3 Ug, Vs

o, = (h, + =)(==) (9.5)

11 =1 1 G ux

H2
The values of §EI’ kl, AQ, Opqs Onps Ogn can also be fitted with
expression of the type (9.4). The constants ass bi etc. can be
fitted to obtain the coefficients to an accuracy of 2 percent

W
for a range of -2 26 to 0.75 and = = 12 to 25.

u u

% 3
The typical shapes of the profile functions aij(C) and

ei(E) used to build up the concentration profile are shown in
figure 9.1. The values of the main coefficient are shown in figu-
res 9.2 and 9.3. The coefficients required to construct the fit-
ted function for Yij’ My etc. are given in Appendix C. Values of
the adaptation length and time as defined in section 6.1 are shown

in figure 9.4.

Unsteady Flow Calculation

If the effects of the
changing shape of the velocity

profile and the equilibrium j+1

profile are neglected, the

basic equation that governs J

the first order variation of

the mean concentration is - & X
i=1 i i+1
(from chapter 5). :

The six-point scheme
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Fig. 9.4. Adaptation length and time

(for natural channels)
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Y11% = V11 ©* Yor 5; %% ALY %S gi (5.21)

which may also be written as

Ee =c+ L, %§-+ Ty %% (9.6)

where

LA = ;ZZ-%E and TA = ;2} %L» (9.7)
11 s 11 s

The six-point scheme shown above is used for expressing this

equations in finite-difference form.

_ 13
LI S (9.8)
ot At :
dc _ USSR j+1_ 3+l
ol {(l 6)(ci+l Ci—l) +0 (ci+l ci+l) /20 (9.9)
c =(1-8) c? + 0 c;+l
1
- i i+l
s =(1-8c +8c
(> ei ei
(9.10)
i i+l
TA:(I—G)TJ_+6T.
i 1
3 i+1
L= (1-8) L) +6L]
1 1

As ﬁ, h, ux etc are known beforehand, - Ee’ TA’ LA could be

Y
calculated from (9.10) using the fitted relations to obtain 2L
Y22 Y11

d === f i i, 3).
an Y11 or each point (i, 3)

Using (9.8), (9.9) and (9.10), (9.6) could be written as
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al = b3 Iy P I o o (9.11)
i i-1 "i-1 1 i i+l
where

i - i i ,
by 4 = - L,8/20x, by = T,/At + 8, by, = OL,/20x (9.12)
and

. T . . L . .

J -z CA 3 - J _ A 3 _ .3
a; = ¢, + iz (1 -~9) c3 (1-8) T (ci+l ci-l) (9.13)

If the upstream and downstream boundaries are i = o and 1=n,
the equations (9.11) will hold for i = 2 ton-1. 8 is the weigh-
ting factor which will normally be taken to be 0.55.

At the upstream boundary ci is known as well as cg+l. Therefore

a:lj = bji ci+l+ bg cg+l (9.13)
where

bi = TA/At + 9, bg =6LA/2AX (9.11)
and

ai = Ee + —Z:-fg cili -~ (1-8) ci - (1-8) —2%5; (cg-cg)-l—i—ﬁ; ci+l (9.15)

At the downstream boundary a four point scheme is required. Then

. . . . AX
CEARII L N L
3¢ _ ' n n-1 n n-1 :
P AT (9.18) j#

At
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dc _ B j_ 3 j+1 _ j+1

el {(l 0)(c - e ;) +8(c o ) /bx (9.17)
R CE S S I VL N (A It (9.18)
G,z (-0 el +cd /240 CARERAGRYE. (9.19)

And expressions similar to (9.18) + (9.19) for TA’ L, etc.
Substituting in (9.8)

ad = b’ cj+l + bl cj+l (9.20)
n n-1 n-1 n n
wherebi_1 and bg can be evaluated from the preceding equations.

Equations (9.11), (9.138) and (9.20) represent a set of n simul-
taneous equations for c3+l from i = 1 to n. ag is known if the

i
concentrations c§ at the previous time step are known. The solu-

tion requives the inversion of a tri-diaginal matrix. The boundary

conditions required are
a) cg for all values of j (upstream condition)
and

b) ci for all values of i (initial condition)

Once the mean concentration is obtained, the sediment transport

rate can be calaulated from equation (5.31), by putting

e (Jd _Jd
2S = (o, - of_;)/2bx (9.21)
___gc = (3t C Iy 0t (9.22)
t 1 1
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j.

.
1

and ¢ = c:i’ to obtain s

The entrainment rate is obtained from (5.33) by using

: gCh"‘) = (3T It o 3T 3 hy o (s.23)
t i i i i

Suspended Sediment Transport due to a Flood Wave

The numerical scheme described above was applied to a flood
wave down a 20 km stretch of river of uniform bed slope 5 x lO—5
and a Chezy coefficient of 50 m%/s. A rather rapid flood was ge-
nerated and computed using the ICES sybsystem FLOWS (Booij, 1980).
The mean velocities and depths were calculated for all grid
points at all time levels and stored on disc for use in the sedi-
ment transport computation as it progressed. A fifth power law
was used yo compute the equilibrium rate for suspended sediment
(i.e. sq @ 55). The constant of proportionality was chosen arbi-
trarily because the purpose of the computation was to compare
different types of solutions. Therefore no units are presented
for the values of transport rated and mean concentration computed.

A comparison is made of the results of the following computations:

a) An equilibrium calculation c = Ee _
3
ot

¢) A full first order unsteady flow calculation

b) A quasisteady calculation (first order)

The initial condition was a uniferm river with sediment in
equilibrium all along it. The upstream boundary condition was
found to extend someway down the river, especially when a zero
upstream concentration was assumed. As the characteristic speed
of propagation of c was H?XZZ ~ ﬁ, it was possible to take a
long stretch of river and escape the effect of the upstream boun-

dary condition.
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The upstream boundary condition used in the computation was that
the suspended sediment was in equilibrium at x = o. The effect

of adding a second order term (corresponding to second order Case
B) was also examined and found to be not significant.

As %% and %% happened to be of the opposite sign it was
found that the equilibrium solution (a) was closer to the 'com-
plete! unsteady solution than the quasisteady solution (b). The
difference in the total bed level change calculated by (b) and
(¢) was small and insignificant in the context of the errors
inherent in morphological computations. Figure 9.5 shows the
variation of mean velocity, depth, sediment transport rate and
bed level with time at a station x = 8 km. Figure 9.6 does the

same at x = 16 km. Figure 9.7 shows the relationship between the

actual transport rate and the equilibrium transport rate.

In the case of tidal flow %ﬁ and %% are usually of the same
sign. Thus it could be expected that %% and g% will also be of

the same sign. Then these two terms will reinforce each other
and the differences between the equilibrium solution and the

unsteady solution should become much larger.

Bed Level Change Calculations (Quasisteady flow)

The first order equation governing the mean concentration,
in a flow when the roughness height is assumed to remain constant,

is given by (7.46) which may also be expressed as

S - 3y 5, 3¢
e, = (1 + GA Bx) c + LA . (9.25)
where

- u
G, = (ul + U,/ f ) (9.26)

¥ Y11
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Equation (9.25) is solved at each time level independently.

The following difference scheme was used to set up the simulta-

neous equations to solve for cg from i = 1 to n.

ac _ i 3
3% - (Cie1 T Cioq)/?0%
for i =1ton -1 (9.27)
9h _ .3 _ .3
el (hi+l hi_l)/QAx
- Al
Ca = Gay;
. - _
LA = LAi »i=1 to n 1 (9.28)
c = cd
e e,
i

Substituting (9.27) and (9.28) in (9.25) will yield n-1 equations

in ci for 1 = 1, n. The last equation is obtained by writing the

differential equation for x = (n-3)Ax.

Then

LI R (9.29)
9x n n-1 '
sh _ .3 _ .1

el (h- he_,)/bx (9.30)
G, = (Gj + Gj )/2 ete. (9.31)
A An Ap-1

Therefore it is possible to express (9.25) as n simultaneous

equations for cg for 1 = 1 to n. cg is the known boundary condition.

The coefficients of the equations depend on the known values hg,

i 3 J J
uis Ceyos LAi and GAi'
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Once ¢l is known the sediment transport rate in calculated from

(8.2) and (8.4).

b —
_ - - u dh |- oh dc
ST = au + uh {[all + (>\1+>\2/fx)—-—wS——aX]c+ Qyy —-—-ws ——Bx} (9.32)

by expressing it in finite difference form.

The new bed level is calculated from

i .3
J¥L_ 3 __ 1 (8341 7 Si-)
%, Z]:)i (1 - pb) 2Ax

1

)

t o+ m5a(zg —22;
i+l i-1

(9.33)

.

3 3 J . Cpr s .
The term O.S(X(Zbi+1 2 Zp, t Zbi~l) is an artificially in

troduced "pseudoviscosity' term. The smallest possible value of
o compatible with stability is used. Once the new bed profile
is known it is possible to compute the new flow yield etc, using

. j+1 j .
an appropriate procedure. Hence ui s h%+l etc may be obtained.

The Siltation of the Dredged Trench

In order to test the effectiveness of the depth averaged
approach, the numerical cheme described above was applied to a
siltation problem for which there was already experimental data
as well as a numerical model that solved the full convection-
diffusion equation in two dimension. The problem selected was the
siltation of a dredged trench with mild (1:10) side slopes in a
laboratory flume reported in DHL (1980). The numerical sclution
by the SUTRENCH model is described in detail in PHL (1980). Only

the details relevant for a proper comparison are given below.
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Incoming bed load Spo T 0.010 kg/sm
Incoming suspended load S0 © 0.030 kg/sm
Upstream flow velocity vy = 0,51 m/s
Upstream flow depth a, = 0.39 m2
Maximum diffusion coefficient €nax” 0.00165 m /s
Particle fall velocity w, o= 0.013 m/s
Equivalent sand roughness Kg = 0.025 m
Porogity of Bed sediment Py = 0.4

Density of sediment o, = 2650 kg/m3
Density of water ol = 1000 kg/m3
Boundary level above bed z, = 0.0125 m
Longitudinal space interval Ax = 0.25

Time step At = 900 s
Vertical grid interval Az (variable) 10 steps

The bed boundary condition

- 9s
- 95
a Yll Ce for 3x - °
de =0 for 95 <
9z" 9x
z=z +z

The water surface was assumed to be horizontal (rigid 1id). The
diffusion-coefficient was assumed to be the parabolic-constant
type which is also used in this report. The following transport

formulae were used

bb = 3 and 8y = 0.010 kg/sm when v = 0.5
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and

when by = 5.5 and s_ = 0.030 kg/sm when v = 0.5,

In the computation using the depth averaged model idential values

were used with the following differences.

)

2)

3)

u)

1)

2)

3)

It was not possible to use z, = 0.0125 m because it was
necessary to use za/a = constant. Therefore an intermediate
value of za/a = 0.02667 was used.

As the coefficients were calculated for fully rough flow,
ks = 0.025 was used with z :I(S/3O when calculating the velo-
city profiles (see Appendix B). The maximum diffusion coeffi-
cient was not varied independently.

A single boundary condition

c_ = was used

a Yllce

The proportion between bed load and suspended load was
varied (while keeping the total load constant) in order to fit
the propagation velocity of the trench to the measured values.

This was the only calibration employed. The final values used were

5p

S
e

0.018 kg/sm
0.022 kg/sm

Three variants of the depth averaged solution were applied.

The full quasisteady solution where ux was determined by
keeping ks = constant along the flumg:

The full solution while keeping f(ii-z fEE constant along
the flume (equal to the upstream valud).

A restricted solution where py, = My = A, = A, = o, which

1 1 2
corresponds to the solution discussed in chapter 5.
The value of o used in all computation was 0.05, with a

time step of 450 seconds.
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The difference between (1) and (2) were found to be extreme-
ly small. Therefore the results of (1) and (3) with the results
of the SUTRENCH calculation and the measurements from DHL (1880).
Figures (9.8) and (9.9) show the bed profiles after 7.5 hours and
15 hours respectively. Figure 9.10 shows the total sediment tran-

sport at t = o over the undisturbed trench.

The results show very good agreement between experiment and
the depth averaged model on the upstream side of the trench. The
agreement is not so good further downstream where the model has
underestimated the erosion as is the case to a lesser extent with

SUTRENCH.

The differences between the depth averaged model and SUTRENCH
could also be caused by the different boundary conditions and the
differences in apportioning bed load and suspended load. This

could be thought of as two different methods of calibration.
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CONCLUSION

. Summary

A general asymptotic solution has been found for the two-
dimensional convection~diffusion equation the transport of sus-
pended sediment in an open channel. The concentration is expres-
sed in terms of a series of previcusly determined profile func-
tions multiplied by the mean concentration and its derivatives
in time and space. The profile functions are based on known
families of equilirbium concentration profiles and velocity pro-

files.

The asymptotic solution is based on a small parameter UH/LWS.
Although it is not possible to conclude how large this parameter
may be allowed to become, it has been shown that the solution
is valid when the deviation of the mean concentration from the

equilibrium mean value is not too large (say 50%).

The application of the bottom boundary condition gives rise
to a partial differential eqguation which for the first order of
approximation may be expressed as
- _ = dc dc
cg T et Ty=x+ L, = (10.1)
Expressions have been derived for the adaptation time TA and

the adaptation length L, in terms of the local hydraulic and

sediment parameters. Th: mean equilibrium concentration Ee is
obtained from a suitable transport formula Equation (10.1) how-
ever does not take into account the effects of rapid changes
of velocity profiles or equilibrium concentration profiles.
Higher order approximations will yield equations with higher

derivations of c. In steady or quasisteady flow
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- _ - 3c
Ce C+LA—é‘£ (10.2)

Expressions have also been obtained for sediment transport
rate and entrainment rate, again based on ¢ and its derivatives
and previously derived coefficients. The first order expression for
entrainment in quasisteady flow is found to correspond directly
to the depth averaged convection diffusion equation where the
effect of convection and diffusion due to the sheared flow is
represented by a virtual diffusion coefficient. It should be noted
that the expression for entrainment is only used to evaluate en-
trainment after ¢ has been obtained from (10.1) or (10.2). It has
also been shown that the assumption of entraimment being propor-
tional to (Ee - ¢) is only strictly true in uniform flow.

It has been concluded that when concentrations are obtained by
solving the entrainment equation, the assumed expression for
entrainment plays a much larger role in the solution than the

virtual diffusion coefficient.

The application of the unsteady first order equation to a
severe flood wave gave an indication that adaptation processes
did not play an important part in the final morphological effect
of the flood.

The solution was extended to obtain the full solution for
quasisteady flow. This solution took into account all changes in
velocity profiles and equilibrium concentration profiles. The
resulting differential equation was of the type
- _ - dh It dc
Ce—-C(l'f‘HA ax‘i‘FA ax)fLAg (10.3)
which is essentially a modified version of (10.2) with similar
properties. HA and FA are also determined from the flow and se-

diment parameters.
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The stability of this equation was investigated when ccupled with
the equation for bed level change. A procedure has been devised
to determine in advance the value of pseudoviscosity required to
eliminate numerical instabilities in a specific bed level change

calculation.

The full quasisteady solution was compared with an existing
numerical solution of the full convection diffusion equation for
the siltation of a dredged trench for which flume measurements
were also available. Satisfactory agreement was obtained subject
to calibration which was carried out by changing to proportion
of suspended load to bed load in the incoming flow while keeping
the total load constant. The additional terms in equation (10.3)
were found to have an influence especially on the shape of the

upstream slope of the trench.

Comments

It has been demonstrated that the asymptotic approach can,
in some circumstances atleast, be used as a cheaper alternative
to the full two dimensional model. This approach uses fewer
empirical inputs than methods that use straightforward depth
averaging in conjunction with an empirical entrainment function.
The model describes how the mean concentration adapts in time

and space towards the local mean equilibrium concentration.

The single computation carried out for a rather severe flood
wave points to the possibility that no real advantage can be
gained by applying an unsteady transport calculation for calcu-
lating bed level changes. As this effect was due to the fact that
in this instance insteadiness tended to cancel out the effects
of non-uniformity in the flow, no firm conclusion could be drawn

until many more computations are made.
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The advantages of using the unsteady solution should be greatest
in the case of tidal flows where unsteadiness and non-uniformity

could be expected to reinforce each other.

Although the model was able to give a satisfactory prediction
of the siltation of a dredged trench in a laboratory flume it
should be noted that for this application the basic assumption of
small deviations from the mean equilibrium concentration would
have been extended to the limit. The model could be expected to
perform atleast as well when it is applied to larger scale pro-
blems. Two of the major advantages of the model are that it is
able to predict adaptation lengths and times and that it makes
it possible to estimate propagation velocities and numerical

stability prior to its application.

The usefulness of the model must ultimately be proven in
the field. It will be necessary to modify and extend the basic
model described in this report before it could be applied to a
real flow situation. These extensions and modifications will
have to be carried out in the context of the specific problem
to be solved. As the model is two-dimensional, its applicability
in the field will be extremely limited. Thus it is essentual

that the theory be extended to cover a three dimensiomal flow.

Extension to Three Dimensions

The three dimensional solution requires the inclusion of

the following terms in the convection diffusion equation.

dc

dc 3 3¢
3y

Yoy By ¢

3 ac
) and 5;(85;)
If the length scale in the y-direction is B and the velocity
scale for v is UB/L, it can be shown that the above terms could

be included in the dimensionless equation (3.1) as
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2 2

GRS ST N A T RN B S
IJWS M oy ° wSI{(B) oy’ & ay) and WSE{(L) ax' (E BX')
resgpectively.

As it has been shown that E/wSI{ ~ 0(1), it would be justi-
fied to assume that (H/L)2 ~ 0(62) and ignore longitudinal dif-
fusion.

It is unlikely that (H/B)2 will be larger than 0(8). Therefore
ir could be assumed that lateral diffusion is of the same order
(or smaller) as the convection terms. These arguments lead to a

first order asymptotic solution where

c =gty (10.4)
where

WS%CZEJ,%(EE%S): ° (10.5)
and

ws%+%(e%):%+u%+v%~%(€% (10.6)

It would be perfectly feasible to construct a solution for
(10.5) and (10.6) along the lines used for the two-dimensional
solution if it possible to describe v in terms of a family or
families of profiles. On application of the bottom boundary con-

dition the basic differential for ¢ could be obtained.
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Appendix A The Operator D-l[ ]

The operator D-l[ 1 was defined as

0] = £(2) (a1)
if

pIE@] = 5L+ & (e 3D = g0 (a2)
where

[f+€'—g~§-]czl=o (a3)
and

1

[ fdz = o (al)
o]

The equation (a2) could be integrated once directly, using the

boundary condition (a3). Then

1
3f
f+ e 37T J g(z) dg = 6(T) (a5)
C
. . . 3G
which also implies that —— = g(T) (ab)

E14

As ¢O satisfies the equation

3¢
¢o+€'_§Zq:° (a7)

the solution of (a5) may be written in the form
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= A(D) ¢_(D)

Substituting (a8) in (a2) and using the property (a7}, we

A G( )
9L €' ¢y

3 (L =__i_3?i
However 3% (¢O) ¢ 37

Again substituting in (a7)

9 QQ;) - 1
3L ¢, e'o
Thus

1

A= j gi (éL dz + constant
C
¢C] dC +a constant

Substituting from (ab) and (ab)

. G(©) g(z)
A= ¢O(§) + J 5 az + B

o
where B is a constant.

The solution (a8) may now be written as

- _ g(g)
£(z) = J g(2)dg + ¢ _(2) J 5(0y 5B

4

(a8)

obtain

(ag)

(all)

(al2)

(al3)

(aiu)

(als)
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B may now be obtained from

1
I £(g)dr = o (a4)
o
Therefore
1
D'ltg]=—Jgdc+¢o[f—dc+B¢o (a16)
z r °

It should be noted that the solution does not require an explicit
knowledge of €'. D_l[g] can always be obtained if the equilibrium
concentration profile (normalised) ¢O is known and the integration

1
of j ~-5—-&; does not cause difficulties at f = 1.
Z %o

In the Rouse (1937) profile ¢O(l) = o. However, it turns out that
the functions g that arise have the property that g/(i)o is finite
at £ = 1. The modified profiles used in the computations in this

report have the property ¢o(l) > o.
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Appendix B Velocity Profiles and the Equilibrium Concentration
Profile

1) The Horizontal Velocity Profile

If the flow is fully rough the
velocity profile may be expres-
sed as

u
w=-%1In () (b1)

Z
o]

By the definition (4.2)

Zg+h Zg+h
u
uh = udz = :? (ln z - 1n Zo) dz (b2)
Z Z
a a
Z
If B = 7? (a constant) (b3)
- Uy
vh = 1? {8 1n ( B ) +1n (B + 1)h - lnzo - l} (bu)
Sou-n= X 2 GEB-pm ELE 4y (b5)
=4
ASP(C)—G
_ Uxg z+ 8B B
P(C)‘l+"u'£[ln(1+8)+81n(8+1)+l] (b6)
1 _ Ugx
If?—--a{, then (b7)
x
=1+ M) - as ) (b8)
£
where

A=g 1n(B 1 (b9)
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Therefore

§¥1-= - ?L (-1 (b10)
® ®

and

. ___ 1 (b11)

FY fX (z + B)

The Depth Averaged Coritinuilty Equation

The flow between the bed and the reference level z, must be
included in this equation. Let Aq be the flow below the refe-
rence level. Then
Za
Aq = Zx J 1n (Z)dz (b12)
K Z

o
Zo

As zg is usually very small,

uxza

K

Agq = [1n z, - 1 - 1n zo] (b13)

From (b3) and (b4) it is possible to eliminate z from (b13)

b =ghil1 -+ @+ 1) 1w EXD)
*

Now the depth averaged continuity equation may be written
2 ({B + 1)n) + 2 uh + Aq\ = o0 (b15)
at 9%

Substituting (bik)

B + l) ii
B 3ax

A2 (uh) = B 1In ( uh/f (b16)
X k3
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- a9 (T
= A s (uh/f§)
The total discharge is uh + Aq.

The true mean velocity v = ??;:éAh

which turns out to be v = (1 - %L)a
*

In steady flow

uh(l + %L) = constant
x

o

The Vertical Velocity Component

The vertical velocity must satisfy

B,
Ix 9z
or

Zg

where Wy
z =z +z, ¢t h (see figure u4.1)

92g - 3zg
R S

Zg Zs
du 3
But J — dz = = J u dz - [ul}
? Ix 9x z= 2
z z

Z
dzg 5 (%
ee WO E —§€'+ % [ udz
z

is the vertical velocity at the surface and

(b17)

(b18)

(b19)

(b20)

(b22)

(b23)

(b2u)

(b25)
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9z

S-S B

where
1

P(g) = J p(D)dg

o)
or

_ @
p(Z) = 5%

Therefore (b26) becomes

a(uh> 9T , 5, P ofy

Bz
Y :—5'—' P(C) hp(C) ’8’; af BX

As the bed level does not change quickly

h - - 2 -
= (1+8) %{ + P(T) %(uh) —uhp(?;)-g}%+ uh —B—R-

af
%
From (bl17)
3fyg

A, 9 -~ - A _
(1 + B)——'i' (1 —f—x-)-a—g(uh)+uh‘§;§'—a;— o

The Quasisteady Vertical Velocity

oh

If % - O then from (b30)
2 () = - A 1%
9x (1 - A/ ¥)' fx' fX X

Integrating (b6) and rearranging

Bf¥

3

(b26)

(b27)

(b28)

(b28)

(b29)

(b30)

(b31)
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1
P(g) = [ pdg
z
S (-0 4 B0 - D 4t 1 ESp)
:& (b32)
oP (1 - ¢)-P(L)
Then -EF = '—"—"_‘—"—‘f (b33)

E3

Substituting (b31) and (b33) in (b29), the vertical velocity

becomes
w=r(l;)%}:%f;§— uhp(C)%g- (b3u)
where

r(z) = - P(g)/(1 - A/f¥) + (1 -2) (b35)

(b34) could also be written as

w _ r(g) fo 9z
W fﬁ BE &

The Diffusion Coefficient for Sedimerit Particles

All expressions for the diffusion coefficient € and the resul-
ting equilibrium concentration profile d)o have been obtained

from DHL, (1980)

For instance

a3

e Wy z - 7y z - zp z -z
————-L&{a ta, (B;) }( A Y(1- S ) for

< 0.5 (b37)
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and
a3

w z -
£ -q +a, () for o5 (b38)
u a 1 2 "u a

# #
where
0 F 0.1, 0y = 0.38, 0y = 4,31 for Humus
oy = 0.13, a, = 0.20, oy = 2.12 for natural channels
z - (z_ + 2.)

Using ¢ = ____,_{%___ll_ , Zz_ =Bh

a (b39)

et= g/u,h and a = (1 + P

it is possible to transform (b37) + (b38) to

e = % %%—}—ﬁl {1 Z+8) gopr< 0.5 (L-8) (b40)

B\ T8
and
e =5 forL30.5(1-8) (bu1)
where
2= u(81+ 1) %i - Ws 03 (042)

% [ul +a, (;rﬁ 1
%

The maximum diffusion coefficient € ax is given by

wSh
Chax - HZ (6.43)
A . .
o hay be easily obtained from (bu2).
()
u

-3
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6) The Normalised Equilibrium Profile

The equilibrium profile ¢O must satisfy

Lo
¢, t+ €' —529 =0 (6.26)
where
1
I ¢0 dz = 1 (4.19)

[o]

The following expressions for ¢O can be obtained from DHL, 13980.

(1+B)Z

el -T
b, = B(C + B) £ <0.5(1-8) (b4h)
& =Bexp [-u2Z{g - 0.5(1 - B)HL20.5 (1 - B) (bu5)

The constant B may be obtained from the normalising condition

(4.19). It should however be noted that B is a function of Z.
Thus if ¢o = B exp [Z £()] (7.16)

F(Z) = (1 + B8) In {(1 -7)/(z + B)} forg< 0.5 (1-B) (b.us)

£(L) = -4 {z - 0.5(1 - B)} fForZ 3 0.5 (1-B) (bu7)
Furthermore

L)

—2 = £(2) 6, (2) + 92 exp [Z £(D)] (bk8)

Integrating (b48) between L = o and £ = 1
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1 1
9 1
57 (J ¢>O dz) J £(t) ¢0(§) t3
o o
1
As J ¢o g = 1
S
1
3 -
A (J ¢O dg) = o

1

. 9B _ _

R BJf‘bodC
(o]

3o
37

or

at;bo
57 - ¢, (2) [£(T) -

f

1

[e]

£ ¢, dt]

28

A

1
(5,

o}

:~2=ﬂm¢gm-<[f%dmsem[zﬂml

(b49)

(b50)

(b51)

(b52)

(b53)
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Appendix C Formulae for Coefficients

Each coefficient is built up from eight constants ass bi from
i =1 to 4, The values of a; and bi required to compute eleven
coefficients for each combination of values of ws/u* and u/ugE
are given later in this appendix. The formulae to be used are

as follows.

K= 1 Yzl/yll = (ws/ux) exp(f)
K= 2 Yoo!/Yi1 = (ws/ux)QexP(f)
K = 3 Y33/Yll = (ws/ux) exp(f)
K= B M/ = wf/uy
K =03 Hy/Yqq = wgfluy
K= 6 11 - £
kK= 7 a21 = wsf/ux
K = 8 Oyy = wsf/ux
K= 9 a33 = wa/ux
K = 10 Al = wsf/ux
kK = 11 KQ = wsf/ux
where
4 Ug Vs -t
f= I (a. +b, =)(=)
i i u
i=1 u ®

where a, and bi are obtained from the tables cl to ¢3 for the
corresponding value of k for za/a = 0.01, 0.02 and 0.05. The
computations were based on the suspension parameter for natural

channels.




z_/a
N

© © =N o o, Fow N e &
i

I
[

o O O O O = ©O O B o

0.01

1

L9779
. 9782
. 094y
.0109
.0107
.0000
.0000
.0098
.0004
.0007
.0008

1
0.000
0.543
5.632
0.808
0.819
0.114
3.852
4,254
0.006
0.307
0.311

o O O O O O £ F £ O O

L3214
.3255
. 3437
. 8698
. 8663
.0000
.0001
.0382
.0245
.a547
.0585

2
0.000
3.331

13.537
11.781
12.471
7.995
3.763
5.325
4.787
13.221
13.370

Table C1

a
3

3.256
3.272
2.844
12.161
12.150
0.000
0.000
0.0u42
0.068
0.135
0.1u43

for natural channels

.00
LHO
15.
39.
40,
.04

5.

3.
11.
26.
217.

34
05
93

25
52
27
98
28

0.193
0.181
3.812
8.041
8.033
0.000
0.012
0.012
0.049
0.088
0.093

0.00
1.79
5.77

30.26

31.56
3.48
7.03
6.52
7.34

14.75

14.91
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[
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1

.7883
.7887
.9619
L0177
.0175
.0000
.0000
.0084
.0003
.0005
.0006

0.
0.
. 942
.565
.680
.091
. 372
.715
.006
.212
.216

o O O w o ow O O o

1
000
570

o O o O o O F O F O F oOorowu

.7733
.7832
. 3581
L1797
L1743
.0000
.0000
.0313
.0189
L0420
.0n72

i

0.
3.
10.

10.

10.
10.

a
000 2.
000 2.
455 - 2,
.906 10.
959 - 10.
040 - 0
.239 - 0
.522 0
.780 0
435 0
637 0

Table C2

860
872
423
487
470

.000
.000
.036
.052
.105
.116

for natural channels

0.00
0.56
11.06
31.50
34.28
3.16
2.16
0.68
- 8.98
- 22.13
- 22.55

0.226
0.217
3.440
6.955
6.9.42
0.000
0.000
0.012
0.037
0.070
0.076

|

0.00
1.43
3.70
23.95
25.85
1.76
4.48
3.98
5.89
12.64
12.88
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1.4856
1.4859
0.6944
0.0198
0.0185
1.0000
0.0000
0.0059
0.0002
0.0002
0.0004

o o O NN O o O F O O

.000
.576
.006
.300
. 320
.059
.535
.776
.013
.110
.115

4,9986
.0016
.2619
.1905
.1820
.0000
.0000
.0206
.0113
.0252
.0320

o O O O O O w w F u

.000
416

145
. 745
.363 -
.937 -
777
LH12
.710
.973

o O N F W oo NN O

Table C3

914 -

2.306
2.314
1.902
7.985
7.960
0.000
0.000
0.024
0.030
0.064
0.079

1

for natural channels

0.00
0.72
6.62
21.48
25.64
3.u8
0.47
1.45
5.73
14.83
15.40

0.247
0.242
2.895
5.280
5.262
0.000
0.000
0.008
0.022
0.0uu
0.053

0.00
0.91
1.77
15.91
18.72
0.30
1.85
1.49
3.75
8.87
9.21
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