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Abstract

Energy produced from wind is one of the techniques that is still being used
to successfully produce green energy. To meet the growing demand for green
energy, existing wind turbines have to be made more powerful and efficient.
To make wind turbines more efficient and durable, research is done on the
aero-elastic stability limits of the blades. Aero-elastics of wind turbines can
be analyzed by the vibrations that occur on the blade during normal oper-
ational conditions. Until now several methods have been used to measure
the vibrations of a wind turbine such as strain accelerometers, strain gauges
and Laser Doppler Vibrometers. Because all these techniques are limited to
some extent, a new technique has been investigated in this study to measure
the vibrations using high speed photogrammetry .

By placing targets on the blades of the wind turbine and taking images
with two synchronized high speed cameras, the motion of the blades is cap-
tured. High speed cameras produce a large number of images, making manual
target measurements impractical. In this study, it is investigated how target
measurements in high speed images can be automated and what accuracy
can be obtained for the reconstructed the object coordinates.

To automate the target measurements, a method is developed based on
target detection and tracking. Since the targets describe a circular motion a
circle can be fitted to the first three positions of a target and after that its
position can be predicted in the next frames. The targets in the first three
frames are detected using a threshold histogram segmentation. To establish
correspondence between the targets, four constraints of a circular motion are
used. To obtain a target measurement with subpixel precision, the edges
from the target are detected and a circle is fitted to the edges.

To reconstruct the object coordinates a Direct Linear Transformation
(DLT) is used. The equitations of DLT are linear and can easily be solved
with standard Least Squares Estimation (LSQ). To solve the DLT parame-
ters a minimum of six reference points is needed, which is not a limitation
for this application.

An experiment was performed on a model wind turbine placed in a wind

v



tunnel with thirty two retro-reflective targets placed on the blades. The
images were acquired with a high speed camera of 500 Hz at a rotational
speed of 260 rotations per minute (rpm).

Using the images of the experiment a robustness analysis was carried
out for the developed method for automatic target measurement and track-
ing. From this analysis, it could be concluded that targets can be precisely
measured and tracked in high speed images works, even in the presence of
outlying features or noise. The target tracking and establishing correspon-
dence could be performed successfully for an acquisition frequency of 125 Hz
and higher.

Since no reference measurements were made available for this study, the
proposed DLT method could not be directly used. Instead, two other soft-
ware packages were used, namely PhotoCore to measure reference measure-
ments and PhotoModeler to perform a relative orientation to calculate model
coordinates in an arbitrary scale. These model coordinates were used to cal-
culate DLT parameters, from which model coordinates were calculated of the
targets in all images. Using the reference targets, an affine transformation
was obtained and used to apply an absolute orientation.The final 3D object
coordinates had a accuracy of 1.32 millimeter.

The vibrations of a target were obtained by means of Principal Com-
ponent Analysis (PCA). Using PCA, the track of coordinates of a target
were transformed to a new coordinate system. The xy plane of this new
coordinate system coincides with the rotation plane of the target and the
z is perpendicular to it, containing the vibrations. The measured vibration
had a maximum amplitude of 6 mm, with an accuracy of 0.56 mm in the
vibration component.

From the performed experiment with the model wind turbine, it can
be concluded that the blade vibrations can be measured using high speed
photogrammetry.
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Chapter 1

Introduction

1.1 Motivation

Wind turbines are one of the icons of the Dutch landscape as can be seen
in the picture taken at the Afsluitdijk in North Holland (Figure 1.1). Wind
turbines are able to convert kinetic energy of the air (wind) into rotational
energy of the blades, which was used in the past for various purposes, such
as pumping water, grinding wheat, sawing wood and is now mainly used
for generating electrical energy (Brush, 2008). Energy production with wind
turbines produces no waste, making this an environment friendly energy
source. With the increasing demand for sustainable energy more pressure is
put to improve and further develop wind turbines.

A research topic to make wind turbines more powerful and efficient in
producing electrical energy is related to the aero-elastic stability limits of
flexible wind turbines. Research about aero-elastic stability limits is inter-
esting because it provides insights about structural stability and the life span
of wind turbines. Aero-elastic models are used for two purposes (Rasmussen,
2003):

• to analyze the load stresses that a wind turbine can take, such as fatigue
and load spectra to estimate the fatigue lifetime;

• to design and optimize new turbines, a detailed understanding of aero-
elastic response characteristics is required, e.g. the stability of a wind
turbine is vital for its behavior and operational lifetime.

The aero-elasticity of wind turbines can be physically translated as the
maximum stress the blades of a turbine can take without breaking. The stress
on the blades manifests itself in the form of vibrations. The measurements
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Chapter 1. Introduction

Figure 1.1: Wind turbine park at the Afsluitdijk in Noord Holland

of the vibrations of the blades at normal operational speed are necessary for
studying the aero-elastic stability of the blade (Meng, 2009).

Basic studies of aero-elastic stability of wind turbines are usually per-
formed on scale models put in a wind tunnel with controlled conditions. In
such an experiment the vibrations can be measured at various wind speeds
and rotation speeds. Measuring the vibration of a scale model wind tur-
bine it should be kept in mind that the rotational speed and the vibration
frequencies are larger compared to an full scaled wind turbine.

At present, accelerometers, strain gauges, fiber optic strain gauges and
Laser Doppler Vibrometers (LDVs) are systems, that are commonly used to
measure vibrations of a wind turbine. When accelerometers are put on the
blades, they influence the aero-dynamics of the blades. The strain gauges are
placed inside the blades, which makes installing of cables for energy and data
transfer difficult around a rotation axis. LDVs are used remotely, but the
blade has to be static. In order to have an optimal vibration measurement
system, it has to be a non contact measurement system and it should be able
to measure at normal operational speed. A measurement system that fulfills
these criteria is high speed photogrammetry (Ozbek et al., 2010).

High speed photogrammetry is able to capture images of a wind turbine
remotely without influencing the aero-dynamics of the blades. Images can be
measured with an acquisition frequency up to 5000 Frames Per Second (fps)
(GOM, 2010) enabling the system to measure the vibrations while in motion.
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1.2. Problem Statement

1.2 Problem Statement

According to the sampling theory of Shannon (1949), a signal can be fully
reconstructed if it is sampled with a frequency that is equal to or larger than
twice the frequency bandwidth of the signal. If a wind turbine has a vibration
frequency of 250 Hz, it needs to be measured with an acquisition frequency
of at least 500 fps.

On the other hand, to be able to understand dynamical phenomena it is
also important to measure the motion for a relatively long time. Measuring
with a high acquisition frequency for a relatively long time results in a large
amount of data. For example, if the vibrations are measured with two high
speed cameras with an acquisition frequency of 500 Hz for 1.5 seconds, they
will produce 1500 images. And if in each image 50 targets are measured, than
for all images 75000 targets need to be measured. Since manual measurement
of this large amount of targets is impossible, it is necessary to automate the
target measurement.

1.3 Research Objective and Questions

In order to get a better understanding of the aero-elastic stability limits of a
flexible wind turbine, blade vibrations need to be measured at normal oper-
ating conditions.

The main objective of this research is to investigate and develop methods
to automate the process of measuring vibrations of the blades of a wind tur-
bine using high speed photogrammetry.

To achieve the main goal four research questions are formulated, namely:

1. how can the target measurement in the images be automated?

2. is it possible to track the targets in a sequence of images and how
reliable is it?

3. what factor influences the performance of automated target measure-
ment?

4. what is the accuracy of the target measurement in image space and
object space for a typical setup?

3



Chapter 1. Introduction

1.4 Related Research

In the study of Shortis et al. (1994), an analysis was conducted to measure
circular targets in digital images with subpixel accuracy. The study demon-
strated that precise target measurement can be done in two steps, namely
target recognition and precise localization. The targets in an image can be
detected using predefined patterns or by image segmentation. Once tar-
gets are identified their centers can be located precisely using edge fitting.
Centroid and ellipse fitting were demonstrated to be the best methods to
precisely determine the center of large binary targets. Furnee et al. (1997)
also demonstrated that circle fitting can be used to precisely determine target
centers.

Studying dynamical phenomena requires that correspondence has to be
established between targets measured in a sequence of images. This corre-
spondence problem was studied by Ariyawansa and Clarke (1997). For a
fixed camera registering moving targets two solutions were described:

• using unique markers. By using coded targets or unique markers these
can be recognized unambiguously. The disadvantage of this method
is the large amount of unique targets that needs to be recognized in
each image. The coded targets also limit the angle of view to prevent
perspective distortions;

• target tracking. This relies on the fact that the time between successive
images is short enough to capture the motion without any discontinu-
ities. Target tracking can be carried out in different ways, e.g. with
Kalman filtering, velocity or direction prediction.

A model based tracking was performed successfully by Kolahi et al. (2007)
in a research of tracking marker based human motion. The model based
tracking used was performed in two steps. First, correspondence was created
between targets of the first few frames by fitting a representative motion
model. Once the model was determined, it was used to predict the location
of the targets in the next frames. In the research a biomechanical kine-
matic constraint was used, implying that accelerations of a moving human
body may have no discontinuities. This was assured by a continuous second
derivation of the motion.

Once the targets are measured in the images, the next step is to recon-
struct its object coordinates. In traditional photogrammetry, collinearity
equations are the basis for camera calibration and object reconstruction. In
recent studies of motion monitoring with high speed videogrammetric sys-
tems, another method common in machine vision is used, namely Direct

4



1.5. Thesis Outline

Linear Transformation (DLT). The equations of DLT are obtained by re-
arranging and combining terms of the collinearity equations. DLT consists
of 11 parameters, is linear and no initial values are needed. Burner et al.
(2001) studied DLT to determine the static and dynamic aero-elastic defor-
mation of wind tunnel models. An optimized DLT was used, as developed by
Tianshu et al. (2000), to increase the to accuracy of the camera calibration.
More recent studies where DLT was used include the study of Hedrick et al.
(2004) who studied the swimming motions of fish and Zheng et al. (2009)
who studied the flight mechanisms of insects.

1.5 Thesis Outline

The structure of this report is as follows:

• In Chapter 2 background information is given about vibrations of a
wind turbine. A review is made of the different methods to measure
the vibrations and the most appropriate method is selected.

• The photogrammetric process is described in Chapter 3. This consists
of the imaging system, methods for automated target measurement in
digital images and the mathematics for object reconstruction.

• Chapter 4 discusses the developed method for automated target mea-
surement and tracking in a sequence of images.

• In Chapter 5 the setup and results of the performed experiments are
described.

• Using the images of the experiment a robustness analysis is performed
of the automated target measurement and the accuracy is assessed of
the calculated object coordinates in Chapter 6.

• The conclusions and recommendations are provided in Chapter 7.
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Chapter 2

Vibration Measurement of a
Wind Turbine

2.1 Vibrations of Wind Turbines

A wind turbine is a rotating machine which converts the kinetic energy of
wind into mechanical energy. If the mechanical energy is directly used by
machinery, such as a pump or grinding stone, the machine is called a wind-
mill. If the mechanical energy is converted to electrical energy, the machine
is called a wind generator or wind turbine (Brush, 2008).

Wind turbines are usually mounted on a tower of 30 meters or more above
the ground, where they can capture energy from fast and less turbulent winds.
The energy of the wind is caught with the propeller-like blades of the turbine.
Usually, two or three blades are mounted on a shaft to form a rotor (energy
world.com, 2009). The blades act much like an aeroplane airplane wing.
When the wind blows, a pocket of low-pressure air forms on the downwind
side of the blade. The low-pressure air pocket then pulls the blade towards it,
causing the rotor to turn. This is called lift. The force of the lift is actually
much stronger than the wind’s force against the front side of the blade, which
is called drag. The combination of lift and drag causes the rotor to spin like a
propeller, and the turning shaft spins a generator to make electricity (energy
world.com, 2009).

Traditionally, wind turbine rotors were designed without considering any
aero-elastic stability properties. However, in the early 1990s some first sta-
bility problems appeared in the form of severe edgewise vibrations (Riziotis
et al., 2004). These damages could not be explained because earlier research
about aero-dynamic damping were mainly focused on the critical flapping
mode. The reason why stability problems appeared at that time was be-
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cause of the new emerging blade designs and manufacturing technologies.
Following the demand for lighter blades, new composite materials and ad-
vanced fabrication methods resulted in reduced structural damping. On the
other side, abandoning geometric similarity in an attempt to scale up with
increased performance and lower weight led to an uncontrollable decrease
in aero-dynamic damping. The combination of these two led to disastrous
instability in modern wind turbines. Because of the risk of vibrations, a
new era started in wind turbine research to understand aero-elastic stability
properties in order to make better wind turbines to meet the new demands
(Riziotis et al., 2004).

2.2 Review of Vibration Measurement Tech-

niques

According to the sampling theory of Shannon (1949), a signal can be com-
pletely reconstructed if its sampling frequency is equal or larger than twice
the frequency of the signal. So in order to capture the full vibration motion
of a wind turbine, a measurement system is needed that fulfills the criterion
of the sampling theory. Ozbek et al. (2010) made an inventory of existing
vibration measurement systems for wind turbines:

1. Accelerometer
An accelerometer is an instrument that can measure acceleration rel-
ative to free fall (Britannica, 2010). Conceptually, an accelerometer
behaves as a damped mass on a spring. When the accelerometer experi-
ences an acceleration, the mass is displaced to the point that the spring
is able to accelerate the mass. This mechanical motion is converted into
an electrical signal which can be registered (Jonathan, 2010).

Accelerometers are one of the commonly used instruments to perform
dynamical tests on wind turbines. However this measurement is sensi-
tive to lightning and electromagnetic fields. It also has to be mounted
on the blades of the wind turbine disturbing its aero-dynamic proper-
ties.

To obtain the positions of blades or tower, acceleration data has to
be integrated twice. However, even small errors in the acceleration
measured will yield a rapid increase of errors due to error accumulation
(Corten and Sabel, 1995).

2. Strain gauges
A strain gauge is a device for measuring the changes in distances be-
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tween points in solid bodies that occur when the body is deformed
(Britannica, 2010). The gauge measures the strain using a foil strain
element (metal strip). If the strip of conductive metal is stretched, it
will become thinner and longer, resulting in an increase of electrical
resistance from end to end. Conversely, if the strip of the conductive
metal is placed under compressive force, it will broaden and shorten.
If these stresses are kept within the elastic limit of the metal strip,
the strip can be used as a measuring element for physical force, thus
the amount of applied force is inferred from the measured resistance
(Sensorland, 2010).

Like accelerometers, strain gauges are also sensitive to lightning and
electromagnetic fields. If strain gauges are installed within the rota-
tion blades, they require special installation of cables for power supply
and data transfer. For large commercial turbines, the required instal-
lation and preparation (sensor calibration) is very expensive and time
consuming (Corten and Sabel, 1995)

3. Fiber optic strain gauges
Fiber optic strain gauges are composed of a multimode fiber optic cable,
which is wounded in an elliptical pattern and bonded to the structure of
interest. A laser is fixed within an adjustable cylindrical steel enclosure
and aimed at one end of the optical fiber. The laser light emerging from
the other end of the fiber forms a speckle pattern that changes as strain
is applied to the structure (Figueroa et al., 2007).

These fiber optic strain gauges are a promising alternative to accelerom-
eters and conventional strain gauges, since they are not prone to electro-
magnetic fields or lightning. However, this technique is still in devel-
opment, and additional feasibility tests are still needed to ensure its
effective and cost efficient use. Factors affecting the performance of the
fiber optic sensors, such as sensitivity to temperature variations and
the related error compensation are still being investigated (Rademak-
ers et al., 2004).

4. Laser Doppler Vibrometer
A Laser Doppler Vibrometer (LDV) is an instrument that is used to
make non-contact vibration measurements of a surface. The vibrom-
eter is a two beam laser interferometer that measures frequency (or
phase) difference between an internal reference beam and a test beam.
The test beam is directed to the target, and scattered light from the
target is collected and interfered with the reference beam (Kilpatrick
and Markov, 2008).
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The limitation of the LDV is that vibrations can be measured only along
the line of the test beam, therefore limiting the vibration measured of
the wind turbine at static mode.

5. Photogrammetry
Photogrammetry is a measurement technique whereby 3D coordinates
or displacements of an object can be obtained by using 2D images of
the same object taken from different views. The main advantage of
photogrammetry is that the images are captured remotely. Measuring
points on the blades can be identified with reflective targets, which are
relatively thin and do not influence the aero-dynamics of the blades.
Images are able to record a relative large extent of space, such that the
whole wind turbine can be measured in one image.

The challenge of this technique is to measure the relatively high fre-
quency vibration for the blade with a high speed camera. Per frame
a lot of data is obtained which is temporary stored in Random Access
Memory (RAM). The transfer from RAM to permanent storage is rel-
atively slow compared to the acquisition frequency and therefore limits
the acquisition time to the available space in RAM. Another challenge
lies in processing, since a large amount of computations (target mea-
surements) have to be done in the images, before the 3D coordinates
or vibration of the wind turbine can be calculated.

2.3 Comparison of Vibration Measurement

Techniques

In order to identify the strengths and weaknesses of the described techniques
to measure vibrations of a model wind turbine a comparison matrix is made.
In this comparison matrix the following criteria are used that limit the op-
erability and reliability of the measurement system:

1. Flow field
The flow field of the wind is directly related to the stress caused on the
blade. The shape of the blades are specially designed to minimize the
stress caused by the flow field. If an instrument is put on the blades,
it will affect the flow field and result in incorrect measurement;

2. Direct vibration measurement
Direct vibration measurement is relatively difficult therefore alternative
forces of the blades are measured from which the blade vibration can
be calculated;
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3. Influence of external factors
A measuring device can be prone to external effects, for instance elec-
trical or magnetic fields, or weather conditions creating errors in the
measurements;

4. Operation modes
The vibration of a wind turbine can be measured in dynamic and static
modes by exciting the blade with a sudden stress. The drawback of
measuring at static mode is that the damping of the blade is measured,
but not in operational conditions;

5. Installation
The rotation of a wind turbine makes it difficult to install devices in
the blade that need to be connected with cables. To overcome this, slip
rings or wireless connected devices can be installed.

Table 2.1: Comparison matrix of different vibration measurement techniques

Criteria 1 2 3 4 5

Accelerometer - - - + -

Strain gauges + - - + -

Fiber optic strain gauges + - + + -

LDV + + + - +

Photogrammetry + + + + +

Using the five criteria, the measurement techniques described in Section
2.2 are compared to each other in Table 2.1. A negative sign is assigned to a
measurement technique if it does not fulfill the criteria. From the comparison
matrix it can be directly noticed that photogrammetry is the most appro-
priate technique to measure vibrations of a model wind turbine. Points of
interest on the blades are measured by placing markers (targets), which are
relatively thin and do not influence the flow field. Vibrations can be directly
measured by applying 3D reconstruction with targets measured in images
made from more then two views. Photogrammetry is not prone to external
factors as electric or magnetic fields, it is easy to install and can operate in
both static and dynamic modes.
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Chapter 3

High Speed Photogrammetric
Measurement

From the Greek words photo (light writing) gram (graphic) metry (measure)
comes the root of the science of photogrammetry. Photogrammetry is a
method for image measurement and interpretation in order to derive the
shape and location of an object from one or more photographs of that object
(Luhmann et al., 2006). The term Close Range Photogrammetry is used
when the distance to the object to be measured is less than 100 meters from
the camera’s position (Atkinson, 1996).

The basic steps of reconstructing an object from photographs or images
are illustrated in Figure 3.1. On the left side of the figure the principal
instrumentations are indicated and on the right side the methods involved.
An image of an object can be correctly acquired if it is illuminated by a light
source, such as the sun or any artificial light. In case of an analog camera, the
reflected light from the object is recorded on film and for a digital camera it
is recorded with a sensor. Objects in images can be identified and measured
by their form, brightness or color distribution. For every object in an image,
values can be measured in the form of radiometric data (gray value, color
value) and geometric data (shape and position in the image). If an object is
photographed from more than two positions, a mathematical model can be
constructed on the basis of the geometrical differences caused by the shape
of the object. From this mathematical model, the Three Dimensional (3D)
coordinates of points on the object can be reproduced.

In Section 3.1, a more detailed description of the imaging system and
its suitability for high speed applications will be given. The different target
measurement techniques in digital images will be reviewed in Section 3.2.
The mathematics needed to construct the 3D coordinates from images will
be described in Section 3.3.
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measurement system

image acquisition

image measurement
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object

processing system
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imaging system physical models
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Figure 3.1: The photogrammetric process from object to model (Luhmann
et al., 2006)

3.1 High Speed Imaging

Image acquisition is a fundamental process in photogrammetry. Images of
the objects of interest must be captured and stored to allow photogrammet-
ric measurements to be made. In general photogrammetry relies on optical
processes to acquire images. Such images are typically recorded in the vis-
ible or near infrared region of the electromagnetic spectrum. The radiation
is recorded by means of a perspective projection by a lens system to the
plane sensor. In order to have bright and sharp images, it is important to
expose the sensor to enough radiation to have a sufficient amount of energy
to record. On the other hand if too much energy reaches the sensor, it will
get saturated and the image will have less contrast. To control the light
conditions a shutter is mounted between the lens and the sensor, which can
vary in opening width and exposure time.

3.1.1 High Speed Cameras

To measure highly dynamical phenomena, it is important that the imaging
system can acquire images faster than the deviations in the motion. That
is why in high speed photogrammetry Charge-Coupled Device (CCD) chips
are used, which can register (or capture) images rapidly. They also have a
relatively short delay between image capture, data read and storage in RAM.
CCD chips sense the light by converting photons from electromagnetic energy
to electrical charge and digitizing it with an analog-to-digital converter (see
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Figure 3.2) (Atkinson, 1996).

Figure 3.2: Bucket array to capture electromagnetic energy (Atkinson, 1996)

In a study of Maas (1992) he divined that a camera can be considered
to be high speed, if it has an imaging rate of more then 100 fps. Further
he distinguished two main types of high speed cameras. The first type are
factory floor systems, which are complete systems consisting of a camera,
storage device, monitor and control panel. This type of camera is used to
monitor assembly lines and is not meant for geometric reconstructions. The
second type is a computer based system, where the high speed camera is
connected to a computer board and RAM to store the images. This system
has more flexibility and can be used for geometric reconstruction.

In the manual of a Kodak high speed camera the following technical de-
scription is given (Balch, 2004). The camera has an electronic shutter and
a CCD sensor able to operate at a rate of 1000 fps. The electronic shutter
operates as fast as 50 µs exposure. The camera supports a monochrome or
color sensor. The color sensor has a Color Filter Array which produces accu-
rate 24-bit color. The color processing is done outside the camera when the
images are transferred to a computer. This simplifies the amount of hard-
ware in the camera and reduces the necessary data to transfer by one third.
All the signal processing electronics for the CCD are within the camera’s
body. The camera digitizes the image data and stores it into a large memory
bank. Images are then transferred to the Memory Module or through a high
speed serial interface to an image server. Figure 3.3 shows a simplified block
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diagram of the camera.

Figure 3.3: Main elements of a high speed camera (Balch, 2004)

After the images are acquired, they need to be stored on permanent
memory. Since the storage process on permanent memory is relatively slow
compared to the acquisition, this creates a limitation to high speed systems.
Therefore it can be concluded that the amount of pictures taken in one
sequence is limited by the amount of images that can be stored in the RAM
of the system.

3.1.2 Retro-Reflective Targets

Retro-reflective targets are targets that reflect light with a strong intensity
parallel to the incident direction of the incoming light. In high speed pho-
togrammetry retro-reflective targets are used to identify objects of interest,
which need to be measured. The short acquisition time (in order of µs) used
in high speed photogrammetry limits the amount of light available to get a
bright and clear image. If a high speed acquisition would be made without
any artificial light, the sensor would get few reflected light and the image
would be dark. By using retro-reflective targets and illuminating them with
a bright flash, they become visible in high speed images (see Figure 3.4).

Retro-reflective targets are made of retro-reflective materials, which are
either covered by a black surrounding (mask) or are stamped in the mate-
rial with a special pattern. The retro-reflective material consists of a dense
arrangement of small reflective balls (≈ 80 µm) or an array of micro prisms.
Incident light is reflected internally within each ball or micro prism, to return
parallel to its incident path (Figure 3.5). In order to achieve high contrast im-
ages, retro-reflective targets must be illuminated from the viewing direction
of the camera (Luhmann et al., 2006).

Even though a target can have any size and shape, usually for retro-
reflective targets a circular shape is chosen. Circular shapes are ideal because
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Figure 3.4: Image made with a high speed camera of circular retro-reflective
targets

(a) Corner reflector (b) Ball reflector

Figure 3.5: The principle of retro-reflective targets (Goldman, 1996)
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of their radial-symmetric design to measure the actual 3D point. Determin-
ing the target’s center is rotation invariant and over a wide range of image
magnifications also scale invariant.

Circular targets are not only useful for manual interaction, but also for
automated digital target detection and measurement. In manual image pro-
cessing, the center of the circular targets can be determined by centering a
symmetric circular or point shaped marker. In digital image processing, the
target center can be calculated by centroid methods, correlation with a ref-
erence pattern, or analytically by fitting a circle or ellipse (Luhmann et al.,
2006).

3.2 Automatic Target Measurement in Digi-

tal Images

In order to reconstruct an object from images, it is necessary to measure its
position in two or more images made from different viewing angles. The im-
age measurement process can be divided in two main steps, namely position
measurement in individual images and establishing correspondence between
the measured position in images of more views or a sequence of images.
The target measurement in individual images is discussed in Section 3.2.1.
In Section 3.2.2 methods are discussed to establish correspondence between
measured positions in multiple images.

3.2.1 Target Measurement in Individual Images

In images a position can be measured of image features or targets. Image
features are natural visible features of objects as homogeneous segments,
boundaries, edges and other object shapes. Targets have a predefined shape
as a circle or a coded pattern such that it can be clearly distinguished from
other natural features. As explained in Section 3.1.2, this study uses circular
retro-reflective targets and therefore the measurement of image features are
out of scope and will be not discussed further. To measure circular targets
in images the following techniques can be used:

1. Template matching

Template matching is a technique to find small specific parts of an
image which match a template image or computer aided model (Kim
and Arajo, 2007). Template matching is commonly used if the shape
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of the template is known, as from a circle with a known radius or from
coded targets.

The basic method of template matching uses a convolution mask (con-
taining the template) which is moved over the searched image to detect
similar features in it. This technique can be easily performed on gray
scale images or edge images. The convolution output will be highest
at the places where the image structure matches the mask structure,
since large image values get multiplied by large mask values.

This method is normally implemented by first selecting a part of the
search image to use as a template. The search image can be defined
as S(x, y), where (x, y) represent the coordinates of each pixel in the
search image. The template can be defined as T (xt, yt), where (xt, yt)
represent the coordinates of each pixel in the template. By moving the
center (or the origin) of the template T (xt, yt) over each (x, y) point
in the search image the sum is calculated of the products between the
coefficients in S(x, y) and T (xt, yt) over the whole area spanned by the
template. As all possible positions of the template with respect to the
search image are considered, the positions with the highest scores are
the matching positions in the search window (Kim and Arajo, 2007).

The drawback of template matching is that every position in the search
image has to be considered to find matching features, making this tech-
nique computationally inefficient and therefore not suitable to process
the large number of images acquired in high speed applications.

2. Image segmentation

Segmentation partitions an image into non-overlapping regions and
boundaries, so that pixels belonging to a region have uniform gray val-
ues, while combinations of pixels in adjacent regions have significant
non-uniform values. The main objective of segmentation is to reduce
the amount of data to be processed and to obtain useful information
about features, objects and object boundaries in the image. Another
importance of segmentation is that it provides input for the next pro-
cessing steps, e.g. feature recognition, matching, and image coordinates
of targets to obtain exterior orientation parameters or to calculate the
3D coordinates of an object in space (Atkinson, 1996).

There are numerous methods of performing image segmentation. The
most common and simplest method used is based on histogram thresh-
olding (Atkinson, 1996). By constructing a histogram of the pixel val-

19



Chapter 3. High Speed Photogrammetric Measurement

ues, the main features, such as background and the targets can be
separated from each other by a range of gray-level values centered at
the peaks. In Figure 3.6 an example is given of an image with two
major features respectively the coins and the background. These two
features can directly be recognized by the two peaks in the histogram.
The high peak belongs to the background and the second peak belongs
to the coins. By assigning pixel values above a threshold to the object
and the rest to the background the image is segmented.

Threshold segmentation is a simple but sufficient method to detect
targets in images taken with high speed. They are taken with a short
exposure time, limiting the amount of light accessing the sensor. The
special reflective targets are the only features that are visible in the im-
age, while everything else is dark and can be considered as background.

3. Edge detection and circle fitting

Once a target is detected and an approximate position of it is known, its
center can be calculated with subpixel precision in two steps. First the
edges are detected from the target based on the approximate position.
Then a circle can be fitted to the edges to obtain a precise target center.

Edges are primarily image structures used for object recognition and
are therefore of fundamental interest for digital image measurement
and pattern recognition. Every object stands out from the background
on the basis of a characteristic change in the relevant image structure.
This change in image structure can be due to (Luhmann et al., 2006):

• significant changes in pixel values along physical object edges;

• changes in pixel color values (color edge);

• changes in surface texture (e.g. hatched vs. point pattern).

Besides object recognition, edges are also used to carry out precise
digital image measurement or target measurement. Shortis et al. (1994)
showed that once the edges of a target are detected, several methods
can be applied to obtain a subpixel accurate center of the target. One
of the successful methods he used, was to find a least squares fit of an
arbitrary ellipse to the edges of the target.

Like for all other operations in digital image processing, there are var-
ious methods to find edges in images. The most straightforward and
simple method is based on gradient changes between pixel brightness
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(a) Grayscale image of coins (b) Segmented image
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Figure 3.6: Image segmented by histogram threshold
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values (f(x, y)) of an image. By calculating partial derivatives in the
x direction ∂f/∂x and the y direction ∂f/∂y a gradient image can be
constructed. Abrupt changes in the gradient image indicate edges of
the image (Gorte, 2006).

Figure 3.7: Edge detection using Canny edge detection method

A more advanced edge detection method is by Canny, which can detect
edges in the presence of noise even if they are weak or not clearly
visible (Figure 3.7). The Canny edge detection is performed in six
steps (Green, 2002):

(a) first an image smoothing is performed to filter out any noise from
the original image;

(b) then the image gradient is calculated to highlight regions with
high spatial partial derivatives;

(c) from the gradient values in the x and y direction, an edge direction
is computed;

(d) the edge direction is related to eight directions that can be traced
in the image;

(e) after the edge directions are known, a non maximum suppression
is applied by tracing along the edge directions and removing any
pixel value that is not considered to be an edge;
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(f) at last, breaks in the edges are removed by a threshold. If the
difference is below a threshold they are joined, otherwise they are
disconnected.

To the detected edges a circle can be fitted to obtain the target center
with subpixel precision. The circle fitting will be described in Section
4.6.4.

3.2.2 Establishing Correspondence Between Mul-
tiple Images

Once targets have been measured in a pair or a sequence of images, the
next step is to establish correspondences between them. In a pair of im-
ages establishing correspondence between targets is necessary, because
the position of a target in two or more images is needed to calculate its
object coordinates. In high speed applications usually two cameras are
used with fixed positions. Since there are only two views containing
a relatively small number of targets, it is already efficient to establish
the correspondence manually.

In order to monitor the motion of an object or target, it is important to
establish correspondence between the targets measured in the sequence
of images. Establishing correspondences within a sequence of images
has the advantage that only once correspondence has to be established
between multiple views. Techniques for creating correspondence are:

(a) Coded targets

Coded targets are targets encoded with individual point identifi-
cation numbers so that the point identification can be automated.
The point codes are arranged in lines, rings or regions around the
central target point (see Figure 3.8). In practice, several coded
point identification numbers can be designed which should meet
the following requirements (Luhmann et al., 2006):

• invariance with respect to position, rotation and size;

• invariance with respect to position or affine distortion;

• robust decoding;

• precisely defined and identifiable center;

• sufficient number of different point identification numbers;

• fast processing times for pattern recognition.
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The point identification is decoded by image analysis of the num-
ber and configuration of the code pattern. The pattern displayed
in Figure 3.8(a) is based on barcode techniques, where the code
can be reconstructed from a series of black and white marks. The
pattern displayed in Figure 3.8(b) consists of additional points ar-
ranged in a local coordinate system where the target identification
number is a function of the local distribution of points.

Coded targets can be automatically recognized and identified in
digital images by means of image processing techniques, such as
Hough transform and template matching (Shortis et al., 2003).
However, the computational effort is high, and the reliability of
finding the coded target is sensitive to local image quality (Ceasar
and Michaelis, 1997).

(a) Circular coded target (b) Coded target with a
unique pattern

Figure 3.8: An example of two coded targets (Moriyama et al., 2008)

(b) Image Matching

Image matching can be described as a method to identify and
uniquely match identical object features (points, patterns, edges)
in two or more images of the object (Luhmann et al., 2006).

In practice, a wide range of matching methods exist, which are
grouped as area based matching, feature based matching and rela-
tional based matching (Khoshelham, 2009). Applying these tech-
niques to find corresponding targets in a sequence of images ac-
quired at high speed requires a method that is simple and fast to
be executed. From all these methods the area based least squares
matching is chosen, because this method uses a priori proximate
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location to find the match, instead of searching the whole image
to find a match.

In the least squares method a target is selected by a template
window and can be represented with a discrete function f(x, y).
The conjugate of the target in another stereo image can also be
defined by a search window of the same size and represented by the
function g(x, y). Matching between the two windows is established
if (Atkinson, 1996):

f(x, y) = g(x, y) (3.1)

Because of random noise effects in both images a noise vector is
added.

f(x, y)− e(x, y) = g(x, y) (3.2)

By assuming that the position of the corresponding targets in
both images will be relatively close to each other, which is true
for images taken at high speed, the two targets can be interrelated
by a translation. There might be some shear between both targets
(Figure 3.9) and to model this the translation is extended to an
affine translation.

x = a11 + a12xo + a21yo (3.3)

y = b11 + b12xo + b21yo

(a) Circular target (b) Sheared circular target

Figure 3.9: Shear between matching targets

Where a11 and bb11 are the transformation parameters and a12,
a21, b12 and b21 are the affine parameters respectively in the x and
y axis. This equation is linearized (by differentiation to dx, dy)
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and two radiometric parameters rs (shift) and rt (scale) are added
to the system (see the book of Atkinson (1996) for more details),
resulting in:

f(x, y)− e(x, y) = go(x, y) + gxda11 + gxxoda12 + (3.4)

gxyoda21 + gydb11 + gyxodb12 +

gyyodb21 + rs + go(x, y)rt

from which the unknown parameters are:

xT = {da11, da12, da21, db11, db12, db21, rs, rt}

Using Equation 3.4, a set of equations can be constructed between
pixels of the template and search window to solve the affine pa-
rameters. The unknown parameters can be calculated by means of
a least squares estimation. With the obtained affine parameters,
the position of the targets in the search image can be refined. The
quality of the affine parameters is defined by the residuals of the
least squares estimation. As the quality in the first least squares
estimation may not be satisfying due to an imperfect match, the
whole estimation process can be repeated until a desired quality
of match is achieved (Figure 3.10).

(a) Feature selected in reference image (b) Match in the search image

Figure 3.10: Least squares matching between two overlapping images

The drawback of least squares image matching is that the match
does not necessarily converge to a correct solution, but it can
diverge or even stays oscillating between two or more wrong so-
lutions. In Figure 3.11 an example is given where least squares
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matching is applied on a high speed image. The blue dot is the
approximated position of the target in the search image, the dots
in magenta are the positions calculated in the iteration, the red
dot is the match that was found and the green dot is the correct
position in the image. It can be noticed that the match did not
converge to the correct solution which can be explained as follows:

• the targets are representative patterns, and are therefore in-
distinguishable from each other;

• the background has no texture which can lead the match to
the correct solution. Instead the background is random, which
also explains the random path of the matches.

Figure 3.11: Example of least squares image matching applied on high speed
images

(c) Target Tracking

The reason for using high speed imagery in most applications is to
capture dynamical motion on a fast and frequent base so that it
can be completely reconstructed. This knowledge of a minimum
motion between a sequence of images can also be used to find an
approximate location of the corresponding targets. Tracking can
also be achieved by fitting a mathematical model to the motion
detected in the first frames and predicting the position in the
next frames. The prediction or approximate location can then
be further refined by image matching or with edge detection and
circle fitting. By the use of a mathematical model in the tracking,
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this method is not prone to representative patterns of the targets
in high speed images.

In a study by Ariyawansa and Clarke (1997) about high speed
correspondence of object recognition and tracking, they demon-
strated that target tracking in a sequence of images is relatively
simple compared to directly finding the match. It saves process-
ing time, making the whole process faster. An example of human
motion tracking is illustrated in Figure 3.12, where the correspon-
dence was created using a mathematical constraint assuring that
the acceleration (second derivative) of a moving human body may
have no discontinuities.

Figure 3.12: Tracking of human motion (Kolahi et al., 2007)

3.3 Mathematical Fundamentals of Pho-

togrammetry

The position of a point in object space is defined by three coordinates.
However, in images this is reduced to a two dimensional space while
information is lost in one dimension. By making images of the object
from two or more viewing positions, the third dimension can be recon-
structed. The relative change between the position of the camera and
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the object causes geometric changes to the shape of the object in the
image. By mathematically modeling the geometric changes, the central
perspective imaging system and optical distortions the object can be
reconstructed in 3D (Luhmann et al., 2006).

In Section 3.3.1 a brief overview will be given of the different coordinate
systems involved in photogrammetry. These coordinate systems are
related to each other with mathematical transformations and are called
orientations. The interior orientation of the camera is explained in
Section 3.3.2, while the exterior orientation is explained in Section 3.3.3.
The mathematical equation relating the object points and the image
points is described in Section 3.3.4 and Section 3.3.5. The 3D object
reconstruction from image coordinates is described in Section 3.3.6.

3.3.1 Coordinate Systems

In photogrammetry there are multiple coordinate systems in which
measurements are made. These spaces need to be interconnected to
obtain reliable 3D information. The coordinate systems are as follows
(Khoshelham, 2009):

• Pixel coordinate system
this quantifies the image in a two dimensional coordinate system
defined by the rows and columns of the matrix sensor. The origin
is usually chosen at the center of the image (see Figure 3.13(a));

• Camera coordinate system
is a 3D coordinate system defined by the perspective center of the
camera. The perspective center plays a key role in the mathemat-
ical model to relate points in the image to its correspondence in
object space. The origin of this system is defined at the optical
center of the camera. The x and y axis are parallel to the image
sensor and the z axis approximately coincides with the optical axis
(see Figure 3.13(b));

• Model coordinate system
is a 3D system that describes the relative position and orientation
between two or more images. Normally its origin is chosen at the
perspective center of one of the images. In addition the x and y
axis can be parallel to the related camera coordinate system (see
Figure 3.13(c));
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• Object coordinate system
this can be any global or local reference cartesian coordinate sys-
tem (X, Y, Z) defined by reference points on the object. For exam-
ple national geodetic coordinate systems are defined by geodeti-
cally measured reference points. An example of a local system is a
workpiece system of the body of a car defined by its constructional
chassis (see Figure 3.13(d)).
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Figure 3.13: The Coordinates systems used in photogrammetry (Luhmann
et al., 2006)

In order to reconstruct objects measured in images, these coordinate
systems need to be related to each other by mathematical transfor-
mations. The pixel coordinate system can be related to the camera
coordinate system by an interior orientation process. In the interior
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orientation, the internal geometry of the camera is reconstructed by
aligning the image plane to the perspective center of the lenses. The
lenses also cause distortions in the image, which are also corrected in
the interior orientation. In Section 3.3.2 a more detailed description is
given of the interior orientation.

The camera coordinate system and the object coordinate system are
related to each other by an exterior orientation process. In this pro-
cess, the position and orientation of the origin of the perspective cen-
ter is determined in the object coordinate system. Once the position
and orientation of the perspective center are determined, the object
coordinates of image points can be calculated using a projective trans-
formation defined by the collinearity conditions. Usually the exterior
orientation is performed in two steps namely relative orientation and
absolute orientation. In relative orientation, a 3D model of an object is
reconstructed in an arbitrary scale by orienting one image with respect
to its stereo pair. The obtained relative model in arbitrary scale can
then be transformed to the object coordinate system by an absolute
orientation process. In Section 3.3.3 a more detailed description will
be given of the exterior orientation.

The mathematics of all the orientation steps are based on the collinear-
ity equation and will be described in Section 3.3.4. Since the collinearity
equations are nonlinear an alternative linear method called DLT is de-
scribed in Section 3.3.5 to obtain the interior and exterior orientation.

3.3.2 Interior Orientation

The interior of a camera can be modeled as a spatial system contain-
ing a planar imaging area (film or electronic sensor) and a lens with a
perspective center O′. In the theoretical model of the perspective pro-
jection, the optical perspective axis O′H ′ coincides with the center of
the pixel coordinate m′. However, in reality there is an offset between
the image center and the intersection of the optical axis with the image
plane, as illustrated in Figure 3.14 (Luhmann et al., 2006).

The parameters of the interior orientation of a camera define the spa-
tial position of the perspective center, the principal distance and the
location of the principal point. They also include deviations caused
by lens imperfections such as radial and tangential lens distortions and
image affinity and orthogonality. The interior orientation consists of
the following parameters (Khoshelham, 2009):
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Figure 3.14: Interior geometry of a camera (Luhmann et al., 2006)

• Focal length
to correct the z coordinate or the distance from the perspective
center to the image center;

• Principal point offset
to correct for the deviation between the center of the image plane
and the principal point. The correction is applied by a 2D trans-
lation and in case of a shear angle between the axes, a 2D affine
transformation is applied;

• Lens distortions
to rectify radial and tangential distortions;

• Pixel size
to transform the discrete pixel coordinates to continuous coordi-
nates.

If all these parameters are known, the error free imaging factor x′ in
Figure 3.14 can be defined with respect to the perspective center using
the equation:

x′ =


x′

y′

z′

 =


x′p −x′0 −∆x′

y′p −y′0 −∆y′

−c

 (3.5)

x′p, y
′
p: measured coordinates of image point P ′

x′0, y
′
0: coordinates of the principal point H ′

∆x′,∆y′: axis related correction lens distortions
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All interior orientation parameters are estimated in a camera calibra-
tion process. This is done by obtaining several images of a pattern of
points, with known positions in object space. Then, the image coor-
dinates of the pattern points are measured in all images. The image
and object coordinates of the pattern are put together with the other
calibration parameters in a mathematical model, the collinearity equa-
tions (Equation 3.19, which will be discussed in Section 3.3.4). For more
background information about the camera calibration see the book of
Luhmann et al. (2006).

3.3.3 Exterior Orientation

After the interior geometry of an image is reconstructed, the next step
is to construct the exterior geometry by locating the position of the
camera coordinate system in object space and relative to other im-
ages (Figure 3.15). The exterior orientation consists of six parameters
which describe the spatial positioning and orientation of the camera
coordinate system with respect to the global coordinate system.
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Figure 3.15: External orientation of a camera (Luhmann et al., 2006)

The spatial position of the camera coordinate system is defined by the
translation vector Xo from the origin in space to the perspective center
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O′. The angular orientation in space is defined by three independent
rotations ω, ϕ, κ about the axes X, Y, Z respectively. The elements of
the rotation matrix can be defined as a trigonometric function of the
rotational angles.

X0 =


X0

Y0

Z0

 : translation vector (3.6)

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 : rotation matrix (3.7)

R =

 cos(ϕ) cos(κ)− sin(ϕ) sin(ω) sin(ϕ) − sin(ϕ) cos(ω) cos(ϕ) sin(κ) + sin(ϕ) cos(κ)

sin(ϕ) sin(κ)− cos(ϕ) cos(ω) cos(ϕ) − cos(ϕ) sin(ω) sin(ϕ) cos(κ) + cos(ϕ) sin(κ)

− cos(ω) sin(κ) sin(ω) cos(ω) cos(κ)


With the given parameters of the exterior orientation, the vector from
the perspective center O′ to the image point P ′ (image vector x′) can be
transformed into an absolute oriented spatial ray from the perspective
center to the object point P . For a single image, the exterior orienta-
tion parameters can be computed if object coordinates of at least three
points are known, which do not lie on a straight line. This method
is called space resection(Luhmann et al., 2006). The exterior orienta-
tion can also be performed in two steps, namely relative and absolute
orientation.

Relative Orientation

The relative orientation is performed on a pair of stereo images of an
object. The images are relatively oriented with respect to each other,
from which a relative 3D model of the object can be constructed.

The relative orientation describes the translation and rotation of one
image with respect to its stereo pair in a common local model coordi-
nate system. The numerical model of the relative orientation is defined
by a local three dimensional coordinate system xyz located in the per-
spective center of the first (left) image and oriented parallel to its image
coordinate system (see Figure 3.16). The parameters of the exterior ori-
entation of the left image with respect to the model coordinate system
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are therefore:

x1 = 0 ω1 = 0

y1 = 0 ϕ1 = 0

z1 = 0 κ1 = 0

(3.8)
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Figure 3.16: Relative orientation of the two stereo images (Luhmann et al.,
2006)

The second (right) image is oriented in the model coordinate system
by three translations and three rotations:

x2 = bx ω2

y2 = by ϕ2

z2 = bz κ2

(3.9)

The base space vector b between the perspective centers O′ and O′′ is
defined by the base components bx,by and bz. The relative orientation
parameters can be calculated using the coplanarity constraint. This
constraint implies that an object point P imaged to P ′ P ′′, the vectors
r′, r′′ and b are coplanar and lie in the epipolar plane of the target P
and the two perspective centers O′ and O′′. Relative to the primary
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axis these vectors are:

a1 = − [ x1 y1 −c1 ]t

a2 = −Rt [ x2 y2 −c2 ]t

b = [ bx by bz ]t
(3.10)

where R is the rotational matrix. The triple scalar product of the three
coplanar vectors is zero, so ba1 × a2 = 0, or

det


bx x1 r11x2 + r11y2 − r31c2
by y1 r12x2 + r12y2 − r32c2
bz z1 r13x2 + r13y2 − r33c2

 = 0 (3.11)

Assuming that at least one of the components (say bx) is nonzero and
putting Rt a2 = a′2 = [x′2 y

′
2 z
′
2]
t:

det


1 x1 x′2
by
bx

y1 y′2
bz
bx
−c1 z′2

 = 0 (3.12)

This equation is the coplanarity equation of the target P . There are
five elements in the relative orientation that need to be solved: (by/bx),
(bz/bx), ω,ϕ and κ. Three image coordinates well distributed over the
object space are needed to evaluate the parameters of the relative orien-
tation. To optimize the quality of the solution, it is recommended to use
more than the required minimum and evaluate it with a least squares
estimation. For more details about relative orientation, the books of
Atkinson (1996) and Luhmann et al. (2006) are recommended.

Using the obtained relative orientation parameters and image coordi-
nates of a target measured in the two stereo images, 3D coordinates
can be calculated relative to the (x1, y1, z1) axes. These coordinates are
referred to as model coordinates.

Absolute Orientation

Absolute orientation describes the transformation of the model coor-
dinates xyz obtained from a relative orientation with an arbitrary po-
sition, rotation and scale, into the object coordinate system XY Z via
reference points (Luhmann et al., 2006). Reference points are object
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points measured in the model space and have known coordinates in the
object coordinate system.

Mathematically, the absolute transformation is described as a spatial
similarity transformation with three translations, three rotations and
one scaling factor. The transformation is given by the equation (Luh-
mann et al., 2006):


X

Y

Z

 =


Xm

Ym

Zm

 +m


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.13)

where m is the scale.

To solve the parameters of the transformation, a minimum of seven
suitable point elements are required, which can be obtained from three
spatially well distributed XY Z reference points. Figure 3.17 gives an
illustration of the transformation of the model coordinate system xyz
to the object coordinate system XY Z.

object

model 

of object

X

Y

Z

R1 

R2 

R2 XM
YM

ZM

x

y

z

M

x

XM

Figure 3.17: Absolute orientation of a model coordinate system to the object
coordinate system (Luhmann et al., 2006)
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3.3.4 Collinearity Equations

The previously described orientation steps are based on the central
perspective projection of the imaging system. This implies that a point
in object space, its projection in the image and the perspective center
all lie on one line or are collinear. Thus coordinates (X) of the object
point P from Figure 3.15 can be derived from the principal point offset
vector Xo and the vector X∗ from the perspective center to the object
point.

X = X0 +X∗ (3.14)

The vector X∗ is given in the object coordinate system. The image
vector x’ may be transformed into object space by a rotation matrix
R and scaled by a factor m.

X∗ = mRx′ (3.15)

The projection of an image point into a corresponding object point can
be formulated as:

X = X0 +mRx′ (3.16)


X

Y

Z

 =


X0

Y0

Z0

 +m


r11 r12 r13

r21 r22 r23

r31 r32 r33



x′

y′

z′

 (3.17)

The scale factor m is an unknown value which varies for each object
point. If only one image is available, then only the direction to an object
point P can be determined but not the absolute position in space. The
3D coordinates of P can be computed if this spatial direction intersects
another geometrical known element (e.g. intersection with a second
ray from another image). By inverting the Equation 3.17, adding the
principal point offset H ′(x′o, y

′
o) and introducing the correction terms

δx′ (image distortion parameters), the image coordinates are given by:

x′ − x′o −∆x′ =
1

m
R−1(X −Xo)


x′ x′0 −∆x′

y′ y′0 −∆y′

z′

 =
1

m


r11 r12 r13

r21 r22 r23

r31 r32 r33



X −X0

Y − Y0
Z − Z0

 (3.18)
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By dividing the first and the second equations by the third equation, the
unknown scaling factor m is eliminated and the collinearity equations
are obtained:

x′ = x′o + z′
r11(X −X0) + r21(Y − Y0) + r31(Z − Z0)

r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)
+ ∆x′

y′ = y′0 + z′
r12(X −X0) + r22(Y − Y0) + r32(Z − Z0)

r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)
+ ∆y′ (3.19)

These equations describe the transformation of object coordinates (X, Y, Z)
into corresponding image coordinates (x′, y′) as a function of the inte-
rior orientation parameters (x′0, y

′
0, c,∆x

′,∆y′) and the exterior orien-
tation parameters (X0, Y0, Z0, ω, ϕ, κ).

The drawback of collinearity equations is, that they are nonlinear and
therefore cannot be solved with standards LSQ adjustment. To solve
the unknown parameters the system of equations have to be linearized
and initial values are needed.

3.3.5 Direct Linear Transformation

An alternative method of calculating a transformation between image
coordinates and object coordinates is the Direct Linear Transformation
(DLT). This method is commonly used in machine vision and was
developed by Karara and Abdel-Aziz (1971). This method is based on
the collinearity equations, extended by an affine transformation of the
image coordinates. The transformation equations of the DLT are as
follows:

x =
L1X + L2Y + L3Z + L4

L9X + L10Y + L11Z + 1

y =
L5X + L6Y + L7Z + L8

L9X + L10Y + L11Z + 1
(3.20)

x and y are the image pixel coordinates and X, Y and Z are the
3D coordinates of the reference points. The coefficients L1 to L11 are
the DLT parameters to be estimated. From these parameters, three
interior orientations and six exterior orientations parameters can be
derived. The two remaining elements describe the shearing and scaling
of the affine transformation. The equation to derive the orientation pa-
rameters from the DLT parameters the book of Luhmann et al. (2006)
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is referred. By rearranging Equation 3.20, the following linear system
is obtained:

L1X + L2Y + L3Z + L4 − xL9X − xL10Y − xL11Z − x = 0

L5X + L6Y + L7Z + L8 − yL9X − yL10Y − yL11Z − y = 0 (3.21)

In order to solve this system of equations for n reference points (n ≥ 6),
a LSQ model of y = Ax̂+ e can be used, were the y is the observation
vector, A the design matrix and e the residuals. The design matrix A
is composed as follows:



X1 Y1 Z1 1 0 0 0 0 −x1X1 −x1Y1 −x1Z1

0 0 0 0 X1 Y1 Z1 1 −y1X1 −y1Y1 −y1Z1

X2 Y2 Z2 1 0 0 0 0 −x2X2 −x2Y2 −x2Z2

0 0 0 0 X2 Y2 Z2 1 −y2X2 −y2Y2 −y2Z2

...
...

...
...

...
...

...
...

...
...

...

Xn Yn Zn 1 0 0 0 0 −xnXn −xnYn −xnZn
0 0 0 0 Xn Yn Zn 1 −ynXn −ynYn −ynZn


(3.22)

In order to solve the eleven DLT parameters, a minimum of six reference
points are required. Since the Equations 3.22 are linear, no approxi-
mate values are required to solve the unknown parameters. Because of
the affine transformation applied to the measured image coordinates,
there is no need for a fixed coordinate system defined in the camera. In-
stead, it is directly possible to use measurements made by an arbitrary
measuring device with non orthogonal axes and different axial scale
factors e.g. pixel coordinates. Images made from non metric cameras,
which have no image coordinate system or have an unknown interior
geometry, can also be evaluated by this method.

3.3.6 3D Object Reconstruction

Once the DLT parameters are calculated the object coordinates can
be calculated using the standard DLT Equations 3.20. In this case
the DLT parameters and the image coordinates are known and the
object coordinates (X, Y, Z) need to be estimated. Since their are three
unknowns to be solve and per image only two observation are available,
the image coordinates (x, y) of the object point, a second image of the
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object is needed to gain four observation resulting in a redundancy of
one. The model y = Ax̂+e to solve the object coordinates is composed
as follows:

x1 − L4

y1 − L8

x2 − L4

y2 − L8

 =


L1 − x1L9 L2 − x1L10 L3 − x1L11

L5 − y1L9 L6 − y1L10 L7 − y1L11

L1 − x2L9 L2 − x2L10 L3 − x2L11

L5 − y2L9 L6 − y2L10 L7 − y2L11

 (3.23)

The accuracy of the unknowns (x̂) in the LSQ can be calculated using
linear error propagation of the errors in the observation vector (σy2).
The equation to calculate the accuracy of x̂ is (Teunissen, 2003):

σ2
x̂ = (A∗QyA)−1 (3.24)

were Qy is the covariance matrix containing the variance (accuracy) of
the observations in the diagonal elements.

Unfortunately the standard error propagation rules of LSQ cannot be
used to calculate the errors of the object coordinates calculated with
DLT. These equations are only valid if all errors of the observations
are only present in the observation vector y. The design matrix A in
Equation 3.22 used estimate the DLT parameter also contained ob-
servations, which have an error. For these observations in the design
matrix no errors are added in the error matrix Qy and therefore this
error propagation method cannot be used.

An alternative method to get an estimate of the accuracy of the calcu-
lated object coordinates is to calculate the residuals in the LSQ. The
residuals can be calculated as follow (Teunissen, 2003):

ê = y − ŷ
ê = y − Ax̂

(3.25)

The residuals give an estimate of the quality of the fitted model. By
calculating the mean and standard deviation of the residuals an overall
accuracy of the calculated object coordinates can be obtained.

3.4 Vibration Measurement of Reconstructed

3D Position

Using the photogrammetric techniques described in the previous section
3D positions, of the targets pleased on the blades of the wind turbine,
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can be reconstructed from images made from two cameras. At normal
operational conditions, the high speed acquisition frequency allows to
measure the blades position dense enough, such that all motions of the
wind turbine can be captured. By tracking the 3D position of a target
in all the frames the vibration of the target can be derived. There are
three main types of vibrations:

• flapwize vibrations are vibrations of the blade perpendicular to
the rotational plane of the blade;

• edgewise vibrations are vibrations of the blade in the rotational
plane;

• structural vibrations are vibrations of the whole structure of the
wind turbine.

Deriving all these vibrations from the tracked positions is out of the
scope of this thesis. To analyze the measuring capabilities of pho-
togrammetry the most important vibration type, the flapwise vibration,
will be calculated.

If the blades of the wind turbine would rotate without any vibrations,
the track of a target would lie in a plane. But due to the vibrations the
track of the target deviates from this ideal plane. Since the blade is an
elastic object, the vibrations will have a goniometrical function. So if a
LSQ plane is fitted to the 3D position of the tracked target, this should
coincide with the plane without any vibrations. The vibrations of the
plane can be measured by the distance between the object coordinates
of the targets and the LSQ fitted plane. A mathematical method to fit
a LSQ plane to a dataset and measure the distance of the points of the
dataset to the LS plane is PCA.

PCA is mathematically defined as an orthogonal linear transformation
that transforms a given set of coordinates to a new coordinate system,
such that the greatest variance by any projection of the data comes to
lie on the first coordinate (called the first principal component), the
second greatest variance on the second coordinate, and so on. PCA is
theoretically the optimum transformation for a given data set in least
square terms. A more detailed description of PCA can be found in
Jolliffe (2002).

Using PCA, the object coordinates of the tracked target are trans-
formed into a new coordinate system, such that the new X Y plane is
defined by the rotational plane and the flapwise vibrations are defined
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along the Z axis. In Figure 3.18 an example is given of the three prin-
ciple components (the magenta arrows) of the positions (the blue dots)
of a tracked target. The green plane is the LSQ fitted plane, consisting
of the first and second principal components and the black lines are the
vibrations in the direction of the third principal component.

Pc1   

Pc3   

Pc2   

X

Y

Z

Figure 3.18: The principal components of the tracked positions of a target
to derive flapwise vibrations

To determine the accuracy by which the vibrations can be measured,
it is necessary to transform the errors from the 3D coordinates to the
principal components. The error estimation of the 3D coordinates will
be discussed in Section 3.3.6. Since the transformation to the principal
components is linear, the errors in the principal components can be
computed using linear error propagation (Teunissen, 2003):

σ2
x̂ = (A∗Q−1y A)−1 (3.26)

were A is the transformation matrix of the PCA, Qy is the error matrix
containing the errors of the X, Y and Z coordinates in the diagonal
matrix and σ2

x̂ is the calculated error in the three principal components.
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Chapter 4

Automated Target
Measurement and Tracking

As previously mentioned in the problem statement, the large number
of targets measured in images taken at high speed makes manual pro-
cessing impossible. A method is developed in this thesis to automate
the target measurement process. The developed method is based on
image processing techniques to detect targets and the physical behavior
of the motion to track the targets in a sequence of images. In Section
4.1 a flow diagram of the process of the developed method is given. A
detailed description of each processing step is given in the rest of this
chapter.

4.1 Workflow of Automatic Target Track-

ing

As illustrated by Ariyawansa and Clarke (1997) and Kolahi et al. (2007)
in Section 1.4, target tracking offers great possibilities to measure a
large number of targets in a sequence of images taken at high speed.
The tracking concept is based on the assumption that motions are
smooth by nature. If the motion is sampled with a high frequency,
the position of a target in a sequence of images will change minimally.
And if a minimum number of target positions is known from which
the motion can be modeled mathematically, the position in the next
image can be predicted. A wind turbine makes a circular motion and
its projection in image space is an ellipse, which can be approximated
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Set correspondence 

between target

Figure 4.1: Flow diagram for automated target measurement and tracking
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by a circle. For a circular motion at least three target positions are
needed to fit the mathematical function in order to track it.

The automatic tracking is performed in two major steps (Figure 4.1):

• detect the targets in the first three images and establish corre-
spondences between them. Also targets that are used as reference,
placed on a static object can be rejected, since they do not need
to be tracked. The targets are detected by image segmentation.
The correspondence between successive targets is established by
the constraints of a circular motion.

• The second step is performed by fitting a LSQ circle to the first
three positions of a target and predicting the location in the next
frame. The center of the predicted target is refined by edge de-
tection and circle fitting.

4.2 Target Detection

The first step of the automatic target tracking is to detect the targets in
the first three images. From the different methods described in Section
3.2.1 image segmentation is used, as described in Section 3.2.1.

(a) Image of retro reflective targets taken
with a high speed camera
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(b) Target detection based on threshold seg-
mentation

Figure 4.2: Target detection based on histogram thresholding

Since there are only two main features in the image, a relatively sim-
ple target detection technique based on histogram thresholding can be
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used. By constructing a histogram, the two main features can directly
be distinguished by the two peaks (Figure 4.2(b)). By using a threshold
value, in this case 100, pixels with values smaller the threshold are as-
signed as background, while pixels with values larger than the threshold
are assigned as targets creating a binary image (Figure 4.3(a)).
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(a) Segmented and labeled binary image (b) Calculated centroids of the labels or tar-
gets

Figure 4.3: The calculated target centers of a binary segmented image

Using a labeling function of MATLAB BwLabel the targets in the bi-
nary image are labeled. More details about this function can be found
in the help documentation of MATLAB and the book of Haralick and
Shapiro (1992).

For the obtained segments or targets, their center is calculated using a
centroid method by calculating the average of the number of pixels in
the row and column directions (Figure 4.3(b)).

4.3 Removing Reference Targets

To monitor the dynamical motions of a wind turbine, retro-reflective
targets are put on the blades. For the relative and absolute orientations
of images made by the two cameras, additional reference targets were
placed on fixed and stable structures.

As the reference targets do not move in the entire sequence of images, it
is not important to track them. In the first step of the automatic target
tracking, all targets in the first three images are detected, including the
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reference targets. Since the reference targets are not needed, they are
removed from the set of detected targets.

The reference targets are removed as follows:

• by calculating the difference in position for every target in the first
image with all targets in the second and third image;

• if for a target in the first image the difference in position with a
target in the second or third image is smaller then a threshold,
that target is considered to be a reference target and is therefore
removed.

Figure 4.4: Reference and blade targets distinguished by a threshold of move-
ment

In Figure 4.4, an example is given where the reference targets are dis-
tinguished from moving targets. The red stars are the reference targets
and have the same position in the three frames, while the blue circles
are the moving targets and their position changes in every frame. In
this example, a moving threshold of one pixel is used to distinguish
both types of targets.

49



Chapter 4. Automated Target Measurement and Tracking

(a) Invalid correspondences created for
targets where the motion between frames
is larger than the targets spacing

(b) An invalid correspondence created
for a target where the position of a neigh-
boring target is the nearest neighbor

Figure 4.5: Sensitivity of using nearest neighbor to establish correspondence

4.4 Establishing Correspondences Between

Targets of Successive Frames

After removing the reference targets, the next step is to establish corre-
spondences between the moving targets. A simple method to establish
correspondence is to find for each target in image one the nearest target
in image two. The limitation of this approach is that it cannot be used
if the motion between the targets is larger then the distance between
the targets. In Figure 4.5(a) an example is given of this situation. The
green dots are the positions in the first frame, the red dots are the
positions in the second frame and the red lines show the established
correspondences. In Figure 4.5(b) another example is given, where the
motion between the targets is smaller then the distance. Even in this
case there is one target for which the nearest neighbor is incorrect.

Since this automated process is intended to detect motions of a wind
turbine, correspondences can be found by applying physical constraints
of the known motion. The blades of a wind turbine make a circular
motion in object space, but in image space this can deform to an el-
lipse. A small segment of the ellipse between a sequence of three target
positions can also be locally approximated with a circle.

To find the right correspondences between the targets of the three im-
ages, the first image is used as a reference. For every target in the
first image, all possible combinations are made with targets from the
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second and third image. To all these possible combinations, a set of
constraints are applied to eliminate incorrect correspondence combi-
nations. The constraints are based on the assumption that the wind
turbine rotates with a constant speed and the images are taken with a
constant time interval. The constraints applied to the combination of
successive targets are as follows:

(a) equal radius
the distance of the targets to the center of motion should be equal.
In Figure 4.6(a), the green lines illustrate a combination with equal
radius. By using an equal radius constraint, incorrect combina-
tions in the radial direction of the turbine are removed.

The threshold used here cannot be set very strict (close to zero),
because the circular motion of the targets further away from the
image center have a larger elliptical distortion than the targets
close to the image center. By using a larger threshold, combina-
tions of targets that are close to each other will be considered as
correct and will be not eliminated. The red line in Figure 4.6(a)
illustrate such an incorrect combination;

(b) equal angular motion
the angular motion with respect to the center of motion should be
equal. In Figure 4.6(b), the green lines illustrate a combination
with equal angular motion. This constraint removes incorrect tar-
get combinations that are close to each other and parallel to the
motion. Also here a threshold is used.

Since the motion is elliptical and not circular, the threshold value
cannot be set very strictly. This causes that incorrect combina-
tions of targets close to each other will have an angular motion
approximately equal to correct one and will therefore not be elim-
inated. The red lines in Figure 4.6(b) illustrate such an incorrect
combination;

(c) angular motion ≈ mean angular motion
the angular motion of a target with respect to the center of motion
should be equal to the mean angular motion of all targets. In Fig-
ure 4.6(c), the green lines illustrate a combination with an angular
motion equal to the mean angular motion of all combinations.

The two previous constraints will have eliminated most of the
incorrect combinations, therefore it can be assumed that the mean
of all combinations will be close to the actual angular motion,
which is equal for all targets. The mean angular motion can also be
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further refined by an outlier filtering technique such as RANSAC
(described in Section 4.6.2). By using this constraint, the incorrect
target combinations that are close to each other and parallel to
the circular motion can be eliminated;

(d) closest target
using the previous constraints, almost all incorrect combinations
of target positions are removed. Theoretically it is still possible
that an incorrect combination is not detected and therefore two
combinations will remain for a target. To choose the most likely
combination from these two, the closest target to path constraint
can be used.

This constraint is based on the fact that a small segment of a circle
can be locally approximated by a straight line. For the remaining
combinations, a line (path) is constructed to the positions in the
first and second frames. The closest target position to the path in
the third frame belongs to the right combination. In Figure 4.6(d)
an example is given where the green line is the closest to the dotted
path going through the first and second target positions.

(a) Equal radius (b) Equal angular motion

(c) Angular motion ≈ mean angular
motion

(d) Targets close

Figure 4.6: Constraints to find corresponding targets in three successive
images
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4.5 Model Based Target Tracking

Once the correspondences between the targets of the first three images
are established, a least squares circle can be fitted and the positions
of the targets in the next frame can be predicted. In Figure 4.7, the
circular targets (in magenta) illustrate the known positions of a target
in the previous three frames and the blue large circle the least squares
fitted circle. The position in the current frame is illustrated by the
green square, and is predicted by the angular motion calculated from
the target positions in the previous frames and the center of the fitted
circle.

Figure 4.7: Predicted target position by a LSQ fitted circle to the three
previous known positions and the angular motion between them

4.6 Target Measurement With SubPixel

Precision

Once the targets in the fourth image are predicted the tracking begins.
Based on the new position and the already known positions of the
previous frames, the position in the next frame can be estimated.

In Figure 4.8(a), a close up view is given of a predicted target. It can
be noticed that the predicted position illustrated by the red star is not
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(a) Predicted target location (b) Unsuccessful target tracking due to
error accumulation

Figure 4.8: Unsuccessful tracking caused by imprecise targets measurement

at the center of the target. If this position is used to predict the target
position in the next frame, this error will accumulate. If the center of
the target is not corrected after a few iterations, the prediction will lie
outside the target for example the circle target in Figure 4.8(b).

In order to track the targets successfully in a sequence of images, it is
important to correct the center of the targets to subpixel precision. This
subpixel precision is also necessary to calculate precise 3D coordinates
in object space of a target, which is directly related to the accuracy by
which the vibrations of the blades of a wind turbine can be measured.

The subpixel target measurement is performed in four steps:

(a) at first, a window is selected around the predicted location to
detect the edges;

(b) within the selected window, the edges are detected;

(c) there might be irrelevant edge pixels not belonging to the target
in the selected window, these need to be filtered out;

(d) a circle is fitted to the filtered edges to calculate the center of the
target with subpixel precision.
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4.6.1 Edge Detection

From the predicted location, a rectangular region containing the target
is selected by a template window. The size of the template window
should be bigger than the target, but small enough that it doesn’t have
any overlap with other targets. In Figure 4.9(a), an example is given of
the template window size. The blue template window is big enough to
contain the whole target, and small enough that it doesn’t overlap with
other targets, while the red template window is so big that it covers
other targets that do not belong to the predicted target.

(a) Size of search window to find edges (b) Detected edges with the Canny edge de-
tector

Figure 4.9: Window size used to detect edges with Canny edge detector

After the search window is selected, the edges are detected using the
Canny edge detection method (Figure 4.9(b)). This method is already
described in Section 3.2.1.

4.6.2 Pin-Pointing Target Center

If the shape of a target in object space is a circle in image space, this
can also be approximated by a circle. In order to pin-point the center
of the target with subpixel precision, a LSQ estimated circle can be
fitted to the detected edges (Figure 4.10). The circle is fitted with the
same procedure as described in Section 3.2.1. The red star in Figure
4.10 illustrate the center of the fitted circle.
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Figure 4.10: LSQ circle fitted to detected edges of a target

4.6.3 Eliminating Outlying Edge Pixels using RANSAC

As previously discussed in Section 3.2.1, only reflective targets illumi-
nated by artificial light will be visible in images taken at high speed.
However, in reality there might be other materials in the viewing range
of the camera, which are able to reflect light with enough intensity to
be captured by the sensor. The dark gray bar in Figure 4.11 is an
example of an undesired feature in the image caused by a light bulb.
Neighboring targets can also cause outlying edges if the size of the
window selected around the target is too large.

If in the tracking process a target location is predicted close to this
undesired feature, its edges will also be detected (Figure 4.12(a)). If
a circle is fitted to these edges, it will result in a wrong target center.
In order to solve this problem, these undesired outlying edges can be
removed using RANSAC.

The outlying edges from a neighboring target can be prevented by mak-
ing the size of the selected window smaller, such that it only contains
the wanted target. In case the template window contains only a part
(below 50%) of the neighboring target, this can also be detected and
removed using RANSAC.

Random Sample Consensus (RANSAC) is an algorithm to robustly fit
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Figure 4.11: Undesired features in a high speed image

(a) Edges detected from an undesired
image feature

(b) Outlying edge pixels removed with
RANSAC

Figure 4.12: Fitting a circle in the presence of noise
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models to experimental data (Fischler and Bolles, 1981). To remove
the outliers and pin-point the target center, a circle is used as model.
This algorithm using a circle as model works as follows:

(a) three edge points, the minimum to fit a circle, are selected ran-
domly;

(b) then the support for this fitted circle is measured by the number
of points that lie within a distance threshold (t) of the circle;

(c) this random selection is repeated a certain number of times (N);

(d) the circle with the most support is considered to be the most
robust fit. The idea is that if one of the randomly selected points
is an outlier the selection will not gain much support;

(e) the outliers of this selection are considered to be noise and are
removed from the original set of edges;

(f) for the left over edge points, a final circle is fitted ( Figure 4.12(b)).

The threshold distance t can be calculated statistically with a proba-
bility of α. This calculation requires a probability distribution function
for the distance from the model to the inliers. However, in practice this
distance is chosen empirically.

The number of samples N is chosen to ensure with a probability p that
at least one of the random samples is free from outliers. In Table 4.1,
an overview is given of the sample size with respect to the ratio of noise
to get a probability of p = 0.99.

Table 4.1: At a sample size of three the number of samples required at a
certain proportion of outliers

Proportion of outliers 5 % 10% 20% 25% 30% 40% 50%

Number of samples 3 4 7 9 11 19 35

4.6.4 Circle and Ellipse Fitting

In Section 4.6.2, an assumption was made that a projection of a circular
target in an image can be approximated by a circle. In reality, these
circles are deformed to ellipses due to the perspective projection and
lens distortion. In Figure 4.13(a), an example is given of a target close
to the image center which therefore has few deformations. The shape
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of this target can sufficiently be approximated by a circle, while the
target in Figure 4.13(b) has been deformed and the shape can only be
approximated with an ellipse.

(a) Proximately Circular target (b) Target deformed to an ellipse

Figure 4.13: Deformed shapes of a circular target

Knowing the deformations of a circular target in image space, it can
be concluded that fitting an ellipse is better then fitting a circle to
model the shape of the target. However, the goal in this study is not
to model the shape, but to pin-point the center of the target with
subpixel precision. To determine if there is a difference between the
target centers calculated by a circle or an ellipse a test is performed.

In the test a LSQ circle and ellipse are fitted to a set of points generated
along an ellipse. By measuring the deviation between the centers pin-
pointed by the circle and ellipse, it can be determined if a circle is
sufficient to pin-point the target center. The set of points along an
elliptical target are generated as follows:

(a) The minimum number of 5 edge points to fit an ellipse are ran-
domly are generated;

(b) 360 evenly distributed edge points are generated;

(c) 20 random edge points are generated;

(d) 20 evenly distributed edge points are generated.

The results and analysis of this test will be given in Section 6.1.6.
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Circle Fitting

There are several methods to define a mathematical function of a circle
e.g. with polar coordinates, trigonometric and Cartesian coordinates.
Cartesian coordinates are commonly used, where the function is defined
by the midpoint (a, b) and the radius r of the circle (Equation 4.1).
These are also the parameters, which need to be estimated in the LSQ
model.

(x2 − a) + (y2 − b) = r2 (4.1)

Since the function of a circle is nonlinear, it is necessary to linearize the
equation for the Least Squares Estimation (LSQ). In literature there
are many methods described to linearize and fit a circle to a set of data
points. In this study a method is used where the set of data points
{(xi, yi)|0 ≤ i < N} are normalized to (u, v) by subtracting it from
the mean (x̄, ȳ) (Bullock, 2006). The unknown parameters are first
estimated in (u, v) coordinates and then transformed back to original
(x, y) coordinates.

ui = xi − x̄
vi = yi − ȳ for 0 ≤ i < N (4.2)

If the center of the circle is defined by (uc, vc) and radius R, then
the function which needs to be minimized is S =

∑
i(g(ui, vi))

2, where
g(u, v) = (u−uc)2+(v−vc)2−α and α = R2. To minimize the function
it is differentiated to S(α, uc, vc).

∂S

∂α
= 2

∑
i

g(ui, vi)
∂g

∂α
(ui, vi)

= −2
∑
i

g(ui, vi)

Thus ∂S/∂α = 0 if ∑
i

g(ui, vi) = 0 (4.3)

∂S

∂uc
= 2

∑
i

g(ui, vi)
∂g

∂uc
(ui, vi)

= 2
∑
i

g(ui, vi)2(ui − vi)(−1)
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= −4
∑
i

(ui − uc)g(ui, vi)

= −4
∑
i

uig(ui, vi) + 4uc
∑
i

g(ui, vi)

In the presence of Equation 4.3, ∂S/∂uc = 0 if∑
i

uig(ui, vi) = 0 (4.4)

Similarly requiring ∂S/∂vc = 0 gives∑
i

vig(ui, vi) = 0 (4.5)

Expanding Equation 4.4 gives∑
i

ui[u
2
i − 2uiuc + u2c + v2i − 2vivc + v2c − α] = 0

and by defining Su =
∑
i ui,

∑
i u

2
i etc., the equation above can be

rewritten as

Suuu − 2ucSuu + u2cSu + Suuu − 2vcSuv + v2cSu − αSu = 0.

Since Su = 0, this simplifies the equation to

ucSuu + vcSuv =
1

2
(Suuu + Suvv) (4.6)

In a similar fashion, expanding Equation 4.5 and using Su = 0 gives

ucSuv + vcSvv =
1

2
(Svvv + Svuu) (4.7)

Solving the two linear Equations 4.6 and 4.7 with LSQ the center
(uc, vc) can be obtained. The center of the circle (xc, yc) in the original
coordinate system is calculated using Equation 4.8.

(xc, yc) = (uc, vc) + (x̄, ȳ) (4.8)

To determine the radius R the Equation 4.3 is expanded∑
i

[u2i − 2uiuc + u2c + v2i − 2vivc + v2c − α] = 0
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Using Su = Sv = 0 again the equation above becomes

N(u2c + v2v − α) + Suu + Svv = 0

From which α can be expressed as

α = u2c + v2c +
Suu + Svv

N
(4.9)

α is transformed to the original coordinate system by

R =
√
α (4.10)

The calculated midpoint (a, b) of the circle can be used to pin-point
the target center in the image, with a subpixel precision.

4.7 Accuracy Assessment of Method

In the previous section a method is described to pin-point the target center
with subpixel precision. Since the accuracy of the target measurement in
image space is directly related to the accuracy of the calculated 3D object
coordinates and the vibration derived, it is necessary to determine the ac-
curacy, by which a target can be measured using the method described in
Section 4.6.

Ideally the accuracy can be estimated by comparing the real target center
with the pin-pointed target center. Since the real target center is unknown
this comparison cannot be done, instead an alternative approach is used.

In this alternative approach an artificial target is made with a known
target center having the same spatial and radiometrical dimension as the
targets in the images of the wind turbine. By pin-pointing the target center
of this artificial target and comparing it with the known target center an
estimate can be made of the accuracy by which a target can be measured.
The artificial target can be composed as follows:

1. an empty high resolution image is created, such that it is about 100
times larger then the final image containing the target;

2. randomly a target center is chosen of an elliptical target;

3. values are assigned to the pixels of the high resolution image. If a
pixel is inside the target a value is assigned to it, which represents the
target. If the pixel is outside the target a value is assigned to it, which
is representative for the background;
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4. the high resolution image is down sampled using an averaging convo-
lution kernel, such that the dimensions of the target are representative
to the target measured of the wind turbine;

5. a point spread function is added to imitate the imperfect focusing of
the camera. The kernel of the point spread function can empirically be
chosen;

6. motion blur is added to imitate the motion of the targets. The amount
of motion blur can be calculated from the shutter speed of the camera
and the rotational speed of the blades;

7. Gaussian noise is added to imitate measurement errors of the sensor.
The standard deviation of the Gaussian noise can be determined from
images taken of the wind turbine;

8. the proposed method in Section 4.6 is used to pin-point a target center
of the artificial target;

9. the known target center is translated from the high resolution image
to the down sampled image;

10. the difference between the measured and the known target centers in-
dicate the accuracy of the target measurement.

To get a representative estimation of the accuracy of the target mea-
surement, the artificial target can be generated several times with a random
target center.
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Chapter 5

Experimental Results

In the introduction (Section 1.1) it was already mentioned that this study
was initiated as a follow up of an experiment to test the aero-elastic stability
limits of a model flexible wind turbine. The aero-elastic stability limits of a
wind turbine can be measured by the vibration which occurs on the blades
at normal operating conditions. In this experiment the vibrations were mea-
sured with a high speed camera. In Section 5.1 the experimental setup is
described. The results of the experiment are given in Section 5.2.

5.1 Experimental Setup

To perform the aero-elastic stability test, a two blade model wind turbine
was used. In Figure 5.1, an illustration is given of the used blade. The
dimensions of the blade are 724 mm for the length, 55 mm for the minimum
chord length and 220 mm for the maximum chord length. The operational
parameters of the blades are:

• a design rotation speed of 420 Rotations Per Minute (rpm) and a max-
imum rotation speed of 840 rpm;

• a design wind speed of 6 meters per second and a maximum wind speed
of 20 meters per second;

• a minimum vibration frequency of 20 Hz and a maximum vibration
frequency of 20 Hz.

The test was carried out in a wind tunnel (see Figure 5.2), which blew
laminar wind with a constant speed. The position of the wind turbine in
the wind tunnel is illustrated in Figure 5.3(a). The wind turbine was put
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Figure 5.1: The wind turbine blade (Meng, 2009)

Figure 5.2: Overall layout of the wind tunnel with the dimensions of the
experiment chamber

66



5.1. Experimental Setup

(a) Position of the wind turbine in the wind
tunnel (Meng, 2009)
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(b) Position of the cameras with respect to
the wind turbine

Figure 5.3: A schematic overview of the experimental setup

approximately 2.5 meters in front of the air outlet in order to catch the
maximum amount of wind coming out of it.

To measure the vibrations of the wind turbine a pair of high speed cameras
were used. The high speed cameras had an acquisition frequency of 500
fps. The lens of the cameras had a focal length of 20 mm and the imaging
sensor had a resolution of 1280 by 1024 pixels. To illuminate the objects
in view a powerful flash was used. The distance between the cameras was
approximately 1.5 meter.

The position of the high speed cameras is illustrated in Figure 5.3(b).
The cameras were put below the air outlet facing the wind turbine. The
distance between the camera and the wind turbine was approximately 2.5
meter. The cameras were fixed to the construction of the wind tunnel to
eliminate any vibrations to the cameras that could be caused by the blowing
wind (see Figure 5.4(a)).

To identify measuring points on the blades of the wind turbine, sixteen
retro-reflective targets per blade were put on it. For the interior and exterior
orientations, reference targets are needed with a fixed and known position.
Thirteen reference targets were placed on a frame constructed around the
wind turbine. To calibrate the cameras and determine the scale of the mea-
surement a cross with coded targets with known positions were used (see
Figure 5.4(b)).
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(a) High speed cameras fixed to the con-
struction of the wind tunnel

(b) Reference targets put around the
wind turbine

Figure 5.4: Experimental setup

The acquisition was done by a contractor company GOM. For this study
the company provided one sequence of measured images. The images of the
calibration cross, as the coordinates of the reference points were not made
available for this study.

The provided sequence of image of the wind turbine were acquired at a
rotational speed of 260 rpm and imaging frequency of 500 Hz for a period
of 1.6 seconds. In total 800 frames per camera were captured. In Figure 5.5
the first images made with both cameras are illustrated.

Since no reference targets were made available an alternative approach
had to be used to measure reference targets. The software PhotoCore was
used to measure coordinates of the targets placed on the blades. Since the
two blades of the wind turbine were already unmounted of the rotor, these
could not be measured together. One individual blade was used to calculate
the object coordinates of the targets in a local reference frame.

The software PhotoCore is able to calculate the object coordinates of
circular targets, using twelve coded targets and at least five images taken
from different viewing angles. More details about this software the website
of PhotoCore (2010) is referred. In Figure 5.6 one of the images is illustrated,
which was used to calculate the object coordinates.

5.2 Results

In this section an overview is given of the results obtained from the measured
images. In Section 5.2.1 the results are given of the targets measured in
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(a) Image made with the left camera (b) Image made with the right camera

Figure 5.5: Pair of images acquired with two high speed cameras. For better
visualization the color scale of the images are inverted from dark to white to
white to dark

Figure 5.6: Acquisition setup of blade with reference targets to calculate its
object coordinates using the software PhotoCore
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image space. The results of the calculated object coordinates are provided
in Section 5.2.2. The derived vibrations are described in Section 5.2.3 .

5.2.1 Results of Automatic Target Measurement and
Tracking

To measure and track the targets automatically the method developed in
Chapter 4 is used. The parameters used in the different steps are as follows:

1. for the automatic target detection a histogram threshold value of 50
was used;

2. to remove the reference targets a moving threshold of one pixel was
used;

3. to establish the correspondence between the first three frames a thresh-
old of fifteen pixel was used for the equal radius constraint, a threshold
of one pixel was used for the constraints equal angular motion and the
angular motion ≈ mean angular motion;

4. for the target tracking no parameters were needed, since this process is
only based on circle fitting;

5. for the edge detection the default parameters of the Canny edge detec-
tion of MATLAB was used;

6. to remove outlaying edge pixels RANSAC is used with a distance
threshold (t) of two pixels to measure support of a randomly fitted
circle. A number of 35 samples were taken, which are needed at a
proportion of 50% of outlaying edges.

In Figure 5.7 the measured position of two targets in the sequence of 115
frames (a complete rotation) are plotted in the first frame. The blue dots
illustrate the track of the target with the largest rotational radius, the green
dots illustrate the track of the target with the smallest rotational radius and
the red dots show the position of the two targets in the first frame. The
track of the x and y coordinates of these two targets in the whole sequence
of images are respectively given in Figure 5.8(a) and 5.8(b).

From the tracked positions in Figure 5.7 it can be noticed that the circular
rotation of the targets in object space is deformed to an ellipse in image
space. This distortion is caused by the perspective projection and possible
lens distortions.
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Figure 5.7: Tracked and measured position of two targets in the sequence of
115 images are plotted in the first image of the sequence
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(a) The x coordinate of two tracked targets in the sequence of images
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(b) The y coordinate of two tracked targets in the sequence of image

Figure 5.8: The x and y coordinates of the two tracked targets
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In Figure 5.8 the x and y coordinates are plotted of the two tracked
targets. Since targets describe an elliptical motion in image space, the x and
y coordinates should describe a perfect sine or a cosine function. In case the
target was not tracked correctly there would be sudden change or jump in the
tracked function. Since the functions in the figure are perfectly smooth and
there are no changes in the amplitude, it can be concluded that the targets
were tracked and measured correctly.

5.2.2 Calculated Object Coordinates

In Section 3.3.6 it was described how object coordinates can be calculated
using intersection with DLT. Unfortunately the reference points needed to
calculate the DLT parameters were not made available for this study and
therefore an alternative approach is used to calculate the object coordinates.

Using the first stereo pair of image of the two sequences a relative orien-
tation is performed using the software PhotoModeler to calculate a relative
model. This relative model is then used to calculate DLT parameters. Using
the DLT parameters the model coordinates are calculated of all stereo pairs
in the sequence. The absolute orientation is performed by an affine trans-
formation, which is calculated from the model coordinates in the first frame
and the object coordinates measured using the software PhotoCore. In the
next subsections the results of the orientation step will be given.

Relative orientation

Using the software PhotoModeler a relative orientation was performed be-
tween the first frames of the left and right camera. PhotoModeler is a pho-
tometric software, which provides image based modeling for accurate mea-
surement and 3D models. It provides possibilities to work with or without
camera calibration and modeling in absolute or relative coordinates (Pho-
toModeler, 2010). The model coordinates obtained from PhotoModeler, by
applying a relative orientation, are illustrated in Figure 5.9.

Using the obtained model coordinates from PhotoModeler, DLT param-
eters were calculated using the equations described in Section 3.3.5. The
values of the 11 DLT parameters in the left and right image are given in
Table 5.1.

Since the camera’s position and orientation do not change during the
whole image acquisition process, the obtained DLT parameters can be used
for all 800 pairs of images. Using these fixed parameters and the measured
model coordinates in a pair of images, the model coordinates of targets can
be calculated in the whole sequence. In Figure 5.10 the blue targets are
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Figure 5.9: Object coordinates calculated with PhotoModeler by applying
relative and absolute orientation

Table 5.1: Calculated DLT parameters

DLT parameters image1 image2

L1 0.9176 1.0286

L2 0.0508 0.0182

L3 -0.2147 0.1608

L4 0.1359 0.7223

L5 0.0298 0.1426

L6 -0.8946 -0.9749

L7 -0.2513 -0.2701

L8 -0.0000 0.0133

L9 0.0000 0.0002

L10 0.0000 0.0000

L11 -0.0004 -0.0005
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the calculated object coordinates and the red targets are the targets used to
calculate the DLT parameters.
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Figure 5.10: Model coordinates calculated of the sequence of images using
the DLT parameters

Measuring reference targets

Using five images of the blade with the coded targets, the software PhotoCore
calculated the camera calibration parameters, object coordinates of the coded
targets and other detected circular targets. In Figure 5.11 the calculated
targets are shown, the dots in red are the twelve coded targets, the dots in
green are the sixteen targets from the blade and the dots in blue are circular
artifact detected in the background of the image.

Absolute orientation

The absolute orientation was performed by calculating an affine transforma-
tion between the model coordinates and the reference points. This obtained
affine transformation was applied to all model coordinates to calculate the
object coordinates. The blue dots in Figure 5.12 illustrate the calculated
object coordinates of the targets of the wind turbine in several frames and
the red dots are the calculated object coordinates from PhotoCore.
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Figure 5.11: Automatically calculated object coordinates of coded and cir-
cular targets using the software PhotoCore
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Figure 5.12: Absolutely oriented object coordinates of the targets
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5.2.3 Results of Vibration Measurement

Using the PCA described in Section 3.4 the vibrations are derived from the
calculated object coordinates of the tracked targets.

In Figure 5.13 the third principal component containing the vibrations of
two targets are shown. The magenta line is the vibration of the target with
the largest rotational radius and the blue line is the vibration of the target
with the smallest rotational radius.
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Figure 5.13: The third principal component or derived vibration from the
calculated object coordinated of two tracked targets
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Figure 5.14: Signal vibration transferred from time domain to frequency
domain using Fast Fourier transformation

The signal in Figure 5.13 includes besides vibrations also noise of target
measurements. To distinguish the vibrations and the noise, the vibration
signal can be transformed from time domain to frequency domain using a
Fast Fourier transformation. In Figure 5.14 the imaginary component of the
signal in frequency domain is given of the magenta vibration signal of Figure
5.13. The low frequencies (high amplitude) are the real vibration of the
blades, while the high frequencies (low amplitude) are the measurement noise.
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The noise and the vibration of the signal in Figure 5.14 are distinguished by
an absolute amplitude threshold of 120. From the frequencies outside the
noise threshold, it can clearly be seen that there are three different peak or
vibrations frequencies. The further processing of these different vibrations
are out of the scope of this study. The signal filtered from noise is illustrated
in Figure 5.15, were the magenta line is the original signal in time domain
and the black line the filtered signal.
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Figure 5.15: Vibration signal filtered with threshold frequency value

The tracks of the two targets in the rotational plane of the first and second
principle components are plotted in Figure 5.16. The magenta and the blue
lines are the circles fitted to the track of the targets which is plotted in black.
The distance between the fitted circle and the track position is illustrated in
Figure 5.17.

5.2.4 Discussion on Measured Vibration

The track of the two targets would be expected to be a circle in the rotational
plane. From the Figures 5.16 and 5.17 it can be noticed that the tracked
position of the two targets deviate with respect to the fitted circle. From
the deviations it can be concluded that the tracked target with the smallest
radius has smaller deviations, while the target with the larger radius has
larger deviations. To explain these deviations the following hypothesis are
discussed:

• the vibrations of a target will also cause deviations to the x and y
coordinates with respect to the ideal rotational circle. This type of
deviation is radius dependent, the longer the radius the larger the de-
viation in the x and y coordinates. This radial dependency can clearly
be seen in both fitted circles. The smallest circle has small deviations
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Figure 5.16: Circle fitted to the tracked coordinates of two targets in the
rotational plane of the first and second principal component
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Figure 5.17: Distance between the calculated object coordinates of the two
tracked targets and the fitted circle
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while the larger has larger deviations. But the magnitude of the de-
viations (35 mm) cannot be explained by the relative small vibration
(maximum of 6 mm), and therefore this hypothesis is rejected.

• since no corrections for lens distortions were applied, this could also
cause errors in the measured image coordinates of the targets. These
errors will cause a false parallax to the target position in the stereo
pair images. The calculation of the Z coordinate is directly dependent
on the parallax of a target in the stereo pair. Parallax differences
are the most sensitive along the baseline of the cameras and the least
perpendicular to the base line. Not applying lens distortion will lead to
errors in the calculated object coordinates, which probably has caused
the deviation to some extend.

• the reference targets used for the absolute orientation were not evenly
disturbed along the measurement space, which could have caused an
improper scaling of the relative model. This improper scaling is prob-
ably the most important factor causing the deviation.
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Chapter 6

Performance Analysis of The
Methods

In this chapter a performance analysis will be performed of the methods
used to calculate the vibration of the model wind turbine used in the experi-
ment. In Section 6.1 a robustness analysis will be performed of the developed
method to automatically measure and track targets in a sequence of images.
An accuracy assessment will be done of the calculated object coordinates in
Section 6.2 .

6.1 Robustness of Automated Target mea-

surement

In Section 5.2.1 the results are described of the automatically measured tar-
gets by using the method developed in Chapter 4. To analyze the perfor-
mance of this proposed method a robustness analysis is performed in this
section. The developed method consists of several steps, each of these steps
are analyzed individually using the images obtained in the experiment.

6.1.1 Target detection

The first step of the automated target measurement in a sequence of images
is target detection. To automatically detect the target a histogram image
segmentation technique is used. This technique works well as long as the
different features in the histogram of the image are clearly distinguishable.
In Figure 6.1(a) is an example of one of the images acquired in the experi-
ment and its corresponding histogram is given in Figure 6.1(b). Using the
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histogram of the image, the two main features namely the targets and the
background are clearly distinguishable by a histogram threshold of 100.
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(b) Histogram of image without noise
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(d) Histogram of image with noise

Figure 6.1: Robustness analysis of threshold value for image segmentation

It might also happen that other features will be visible in an image such
as the dark strip in Figure 6.1(c), which was created by a light bulb. In the
histogram (Figure 6.1(d)) of this image this third feature can be seen, but
still using the threshold of 100 the targets can be detected unambiguously.

Since images made with high speed cameras use short exposure times,
only retro-reflective targets illuminated with artificial light will be clearly
visible in the image. In case other features such as the light bulb are visible
in the image it is a matter of adjusting the threshold to successfully detect
the targets. The segmentation is not sensitive to threshold, because there is
a large distance between the targets and the background or other unwanted
features in the histogram.
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6.1. Robustness of Automated Target measurement

6.1.2 Removing Reference Targets

After the targets are successfully detected, the next step is to remove the
reference targets which do not need to be tracked in the whole sequence of
images. The reference targets are detected by finding targets in the first
three frames, which have a difference in position below a threshold.

This threshold value can be chosen empirically and is relatively small
compared to the motion of the targets. To determine if it is possible that
the motion of a target in successive images will be smaller then the thresh-
old, this was calculated for a range of rotation speeds and image acquisition
frequencies (see Figure 6.2). For this calculation the target with the smallest
radius was used with respect to the center of the motion in the image.
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Figure 6.2: The motion of a target calculated for a range of rotation speeds
and image acquisition frequencies

Using the images of the experiment, a maximum deviation of 0.3 pixels
was measured between positions of the reference target. If this value is
compared with the simulated distances of Figure 6.2, it can be concluded
that a reference target will be distinguishable from motion targets for all
practical combinations of rotation speed and acquisition frequency.

6.1.3 Establishing Correspondence

Once the reference targets are removed, the next step is to establish corre-
spondence between the targets of the first three frames. The correspondence
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is established using the four constraints (Section 4.4) equal radius, equal
angle, angle ≈ mean all angles and closest target to line.

To test the robustness of the constraints these were applied to all three
successive frames in the two sequence of images acquired in the experiment.
The obtained results were then compared with the tracked results shown in
Section 5.2.1. To measure the performance of each constraint this test was
repeated again, but every time one constraint was excluded.

In Table 6.1 the results of this test are given. From these results it
can be concluded that the first and second constraint contributed for 99.66
% for the establishing correspondences. This can be explained by the fact
that these two constraints define the basic parameters of a circular motion
namely radius and rotational angle. The third constraint is used to eliminate
ambiguous cases of equal angular motion and is used very few times (0.33 %).
The last constraint is not used at all, but this constraint was primarily added
to ensure that one combination is chosen in case if an incorrect combination
was not rejected by the previous constraints.

Table 6.1: Performance of the correspondence constraints, where 1 = equal
radius; 2 = equal angle, 3 = angle ≈ mean all angles and 4 = closest target
to line

Constraints used Correct (%)

1- 2 - 3 - 4 100

1 - 2 - 3 100

1 - 2 - 4 99.66

1 - 3 - 4 92.33

2 - 3 - 4 73.92

As second test of robustness, the minimum acquisition frequency is de-
termined for which this method to establish correspondence would still have
a success rate of 100 %. To perform this test the range of acquisition fre-
quencies was simulated by increasing the interval between successive frames.
Then using all the constraints the correspondence was established for all
three successive frames in the whole sequence of images for every acquisition
frequency. To determine the number of incorrect corresponding targets, the
obtained results were compared with the tracked results from Section 5.2.1.
The number of incorrect corresponding targets of the range of acquisition
frequencies is illustrated in Figure 6.3. From Figure 6.3(a) it can be seen
that for an interval larger than two, the constraints cannot detect all incor-
rect correspondences. This interval of two images is equal to an acquisition
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frequency of 125 Hz, which is relatively low for a high speed camera.
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(a) Error rate at various intervals between
successive image
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Figure 6.3: Robustness analysis of creating correspondence to determine ac-
quisition frequency with acceptable error rate

Since for higher acquisition frequencies the data could not be simulated
no test was performed for those frequencies. By using higher acquisition
frequencies the motion between frames will become smaller and therefore
easier to establish correspondence. In this test the rotational speed of the
wind turbine was not varied, but the performed test is equivalent to increasing
the rotational speed and keeping the acquisition frequency constant.

6.1.4 Model Based Target Tracking

If the position of a target is known in at least three frames, its position in the
next frame can be predicted. The robustness of this prediction is analyzed
by calculating the difference between the predicted locations and the actual
location of the target. This difference is calculated for targets in the whole
sequence of images of the experiment and the mean values of it are given in
Figure 6.4(a), while the maximum is illustrated in Figure 6.4(b). The largest
deviation between the predicted and actual location is 4.3 pixels, which is
still smaller than the radius of the target. This means that the predicted
position is within the target.

To correct the predicted position a template window is selected to find the
target edges. To the detected edges a circle is fitted to precisely determine
the target’s center. In this experiment a window size of 20 pixels is used,
which is twice the size of the target ensuring that the whole target is covered
by the window.
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Figure 6.4: The mean and maximum deviations of the predicted location per
target

To analyze the performance of the predicted location at a range of ac-
quisition frequencies, the test is repeated whereby the interval between the
successive images is increased. Since target 31 (see Figure 6.4(a)) had the
largest mean deviation, it is used for this test. The maximum deviation of
this target is calculated for a range of intervals and is illustrated in Figure
6.5(a). From this figure it can be concluded that for an interval of 9 images
the predicted location is still on the target. For an interval from 9 to 11
images the target will be within the selected window. For intervals larger
than 11 images, which is equivalent of 45 Hz, the target will not be in the
selected window and therefore will not be detected.

6.1.5 Precise Target Measurement

After the target positions are predicted, a window is selected around it to
detect the edges of the target. A circle is fitted to these edges to precisely
pin-point the center of the target. Since the edges are detected within the
selected window, it is important that the window is large enough to cover
the whole target and small enough that it does not contain other targets.

To analyze the optimum size of the template window a test is performed
where the size of the window is varied and the number of incorrect target
centers are measured. The results of this test are illustrated in Figure 6.6(a),
where for the blue line no outlier filtering was done while for the dotted
magenta line RANSAC was used.

From this figure it can be concluded that the window size should be at
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Figure 6.5: Robustness analysis of target prediction to determine acquisition
frequency with acceptable predictions
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(a) Uncorrected edges detected at a range
of window sizes
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Figure 6.6: Robustness analysis to determine the range of acceptable tem-
plate window sizes
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least larger than 10 pixels, which is the same as the target size. The maximum
window size without any outlier filtering is 25 pixels, which corresponds with
the distance between the two closest targets (see Figure 6.7). If RANSAC
is used the largest window size is 38 pixels, which corresponds with the
performance of RANSAC which can remove outliers up to 50 %.

Figure 6.7: The two closest targets identified to analyze the template window
size

6.1.6 Comparison of Circle Versus Ellipse Fitting

To measure the target center with subpixel precision a test was proposed
in Section 4.6.4 to determine the difference between fitting a LSQ circle or
ellipse to pin-point the target center. In the test four sets of edge points were
generated along an ellipse and a LSQ circle and an ellipse were fitted (see
Figure 6.8). The difference between the centers of both fitted models is given
in Table 6.2.

Table 6.2: Results of difference between centers of a LSQ fitted circle and
ellipse

Number of points Difference in x Difference in y

5 random 1.25 1.33

360 0 0

20 random 0.31 1.22

20 evenly distributed -1.7e−14 -1.4e−14
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From the result in Table 6.2 the following can be concluded of using an
circle or ellipse to pin-point a target center:

1. if there are many edge points (Figure 6.8(b)) there is no difference;

2. if there are less points as in Figure 6.8(a) and 6.8(d) there is some
difference;

3. but as the number of points increases the difference decreases;

4. and if there are less points, but evenly distributed (Figure 6.8(d)) the
difference is almost zero.

Since the edge points of a target are always evenly distributed, a circle
is sufficient to pin-point the target center. A practical advantage of using a
circle over an ellipse is, that the mathematically function of a circle is simpler.
For a circle three parameter are needed to be estimated, while for an ellipse
5 parameter are needed to be estimated.

6.1.7 Performance Target Tracking

The final step of the robustness analysis is to determine if the tracked po-
sitions of a target are correct. Here the knowledge is used that a target in
object space describes a circular motion. In image space this circular motion
is deformed to an ellipse due to perspective distortions. So by fitting an
ellipse to the tracked positions, it can be determined if a target was tracked
correctly. In Figure 6.9(a) an example is given of two tracked targets for
which an ellipse is fitted.

By measuring the deviations between the tracked position and the fit-
ted ellipse, it is possible to detect if a target is tracked correctly or a single
position is measured incorrectly. If the deviation between the measured posi-
tions and the fitted ellipse is too large, it can be concluded that the measured
positions are incorrect.

In Figure 6.9(b) a histogram is given of the measured deviation between
the tracked positions of all targets and the fitted ellipses. The maximum
deviation between the measured position and the fitted ellipse is below one
pixel. This value is relatively small and therefore it can be concluded that
all targets were tracked correctly.

6.2 Accuracy Assessment of the Results

In this section an accuracy assessment is done of the target measurement in
the images and the three steps undertaken to calculate the object coordinates
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Figure 6.8: Fitting an ellipse and a circle to a set of points to analyze the
difference between the measured target centers
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(a) Ellipse fitted to the track of a target
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Figure 6.9: Analyzing the correctness of the tracked target by fitting an
ellipse

of the targets placed on the wind turbine. The accuracy of the target mea-
surement will be described in Section 6.2.1. In Section 6.2.2 the residuals of
the relative orientation are described. The accuracy of the reference targets
measured with PhotoCore will be given in Section 6.2.3. In Section 6.2.4 the
residuals of the absolute orientation are given.

6.2.1 Accuracy of Target Measurement

In Section 4.7 a test was described to determine the accuracy by which the
center of a target can be pin-pointed using an artificial target. The artificial
target was created in a high resolution image of 1000 by 1000 pixels. The
value of 100 Pixels were assigned to pixels inside the targets and for pixels
outside the target the value of 14 was assigned, which is approximately the
mean pixel value of the background in the images acquired in the experiment.
The high resolution image was down sampled to a size of 100 by 100, so that
the artificial target had a dimension of 8 by 12 pixels, which is comparable
with the size of targets in the images of the experiment. Gaussian noise was
added with a mean of zero and standard deviation of three pixels. A point
spread function was added with a radius of 2 pixels and motion blur was
added with a motion of 3 pixels. In Figure 6.10(a) an example is given of
the artificial image. The down sampled image with random Gaussian noise,
motion blur and point spread function is illustrated in Figure 6.10(b).

The green dot in Figure 6.10(b) is the actual known position of the target
center. The red dots are the detected edges and the blue dot is the center
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(a) Artificial target created with an
image resolution of 1000 by 1000
pixels

(b) Image resized to a resolution
of 100 by 100 with added random
Gaussian noise, motion blur and
point spread function

Figure 6.10: Artificial target created to estimate the accuracy by which the
center of a target can be pin-pointed

of the fitted target. To get a representative estimation of the accuracy of
the pin-pointed target center the artificial target is generated 1000 times.
The mean and standard deviation of the differences between the pin-pointed
and actual target center are given in Table 6.3. From these values it can be
concluded that the center of a target can be pin-pointed with an accuracy of
0.25 pixels.

Table 6.3: Mean and standard deviation of the differences between the mea-
sured and actual position of an artificial target

Mean (pixel) Std(pixel)

Dif x -0.2348 -0.0634

Dif y 0.0574 0.0905

To determine the size of the measured error in object space the scale of
the image is determined using the measured reference point. From the scale
the size of one pixel is determined in object space, which is 2 mm. This mean
that the measurement in image space has an accuracy of 0.5 mm in object
space.
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6.2.2 Accuracy of Relative Orientation

By means of a relative orientation model coordinates were calculated of the
targets. The relative orientation is obtained by applying the co-planarity
constraint. This constraint implies that the position of a target in object
space and it’s position projected in two or more images lie on a plane or
are co-planer (Hartley and Zisserman, 2004). Due to measurement errors
the positions of the targets measured in image space have to be adjusted to
satisfy the co-planarity condition. The difference between the measured and
adjusted positions are the residuals per measurement in image space and are
illustrated in Figure 6.11. In Table 6.4 the mean and standard deviation of
the residuals in the left and right image are given.
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(a) Residual vectors left image
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Figure 6.11: Residuals in image space after relative orientation

Table 6.4: Residual vectors in image space obtained by relative orientation

Mean (pixel) Std (pixel)

Res x left image 0.0000 0.0001

Res y left image 0.0049 0.1456

Res x right image 0.0000 -0.0001

Res y right image 0.0049 0.1348

If the residuals are examined, it can be noticed that the x components of
the residuals are close to zero, while the y components are relatively large.
This can be explained by the fact that in the adjustment process four mea-
surements are available (two per image), while three unknown (X, Y, Z co-
ordinates) need to be solved resulting in one degree of freedom. This one
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degree of freedom is perpendicular to the epipolar line 1 resulting in mea-
sured coordinates which can only be adjusted in one direction. Since there
was no rotation between the two camera’s positions, the epipolar line be-
tween the two images is parallel with the x coordinates of the images and no
corrections are applied to x coordinates.

The overall quality of the relative orientation can be analyzed by the size
of the residuals. From Figure 6.11 it can be seen that the targets closer to
the image center have smaller residuals than the targets further away. This
can be explained by lens distortions which create larger errors away from
the image center. From Table 6.4 it can be noticed that the residuals are
relatively small and are in the order of one tenth of a pixel. It can therefore
be concluded that the relative orientation was performed correctly.

From the obtained model coordinates, DLT parameters were calculated
for the left and right image. The DLT parameters are calculated in a LSQ
adjustment and therefore residual values are obtained for every image. The
vectors of the residuals in the left and right image are illustrated in Figure
6.12 and the mean and standard deviation are given in Table 6.5.

The model coordinates from the relative orientation were also used as
observations to estimate the DLT parameters. Therefore the model coordi-
nates were also adjusted. The residual vectors in the model coordinates are
illustrated in Figure 6.13. The mean and standard deviation are given in
Table 6.6.
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Figure 6.12: Residuals in image space for the calculated DLT parameters

1The epipolar line is the intersection between the epipolar plane and the image plane
going through the projected position of a target in the image plane (Hartley and Zisserman,
2004)
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Table 6.5: Statistics of residuals in image space for the calculated DLT pa-
rameters

Mean (pixel) Std (pixel)

Res x left image 0.0002 0.0002

Res y left image 0.3085 0.3092

Res x right image 0. 0000 -0.0001

Res y right image 0.0947 0.1576

From the Figure 6.12 and 6.13 it can be seen that the error vectors point
to different directions. This indicates that there are no systematic errors
in the estimated model. The error increases away from the image center,
which can be explained by the error propagation of the lens distortions. The
residual values in image space (Table 6.5) are still relatively small and are
in the order of one tenth, but compared to values obtained in the relative
orientation these are larger. This increase in error is caused by the error
propagation. The residual values in model space (Table 6.6) have no scale
and therefore the magnitude can not be analyzed. The mean of the residuals
are close to zero indicating that on average the errors are low.

Since these residuals are relatively small and the error vectors are not
systematic, it can be concluded that the calculated DLT parameters have an
acceptable accuracy.

Table 6.6: Statistics of residuals in model space for the calculated of DLT
parameters

Mean (Arbitrary scale) Std (Arbitrary scale)

Res X 0.0023 0.1450

Res Y -0.0002 0.1224

Res Z 0. 0026 0.5275

6.2.3 Accuracy of Measured Reference Points

To measure the reference targets the software PhotoCore was used. This
software uses coded targets with a known dimension as reference. For every
calculated object coordinate this software gives an error value. In Figure
6.14(a) the error vectors of the coded targets are illustrated. The error vectors
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Figure 6.13: Residuals in model space for the calculated DLT parameters

of the targets measured on the blade are given in Figure 6.14(b). The mean
and standard deviation of the errors of the measured coordinates are given
in Table 6.7.

Table 6.7: Statistics of residuals in image space using PhotoCore

Mean (mm) Std (mm)

Res x coded 0.0228 0.0095

Res y coded 0.0196 0.0053

Res z coded 0.0198 0.0028

Res x detected 0.0194 0.0084

Res y detected 0.0163 0.0036

Res z detected 0.0187 0.0012

From the mean and standard deviations in Table 6.7 it can be noticed that
these are very small and are in the order of one hundredth of a millimeter.
Since the goal in this study is to measure the vibration with millimeter
precision, it can be concluded that these errors are relatively small and can
be practically neglected.
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Figure 6.14: Residual vectors of the reconstructed targets using PhotoCore

6.2.4 Accuracy of 3D Reconstructed Target Coordi-
nates

The absolute orientation was performed by calculating an affine transforma-
tion between the model coordinates and the measured reference targets. To
measure the quality of the affine transformation the model coordinates, used
as observation to estimate the model, were transformed to object space and
compared to the reference targets. The deviation (residuals) between these
two sets of coordinates is illustrated in Figure 6.15. The mean and standard
deviation of the residuals are given in Table 6.8.

Table 6.8: Statistics of residuals in object space using affine transformation

Mean (mm) Std (mm)

Deviation in X 0.0000 1.0189

Deviation in Y 0.0000 0.4715

Deviation in Z 0.0000 0.6988

It can be noticed that the majority of the residual vectors in Figure 6.15
are pointing in one direction. This can be explained by the improper scaling
of the model coordinates. The mean values in Table 6.8 are zero. This
indicates that the estimated model used for the affine transformation has
a good fit between both coordinate systems. The accuracy can be derived
from the standard deviation, which indicates the difference between the fitted
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Figure 6.15: Residuals of absolute orientation

model and the used observation.
Since too many steps are involved to calculate the final object coordinates,

it is difficult to calculate an accuracy. Instead by calculating the residuals
at each step it can be analyzed if the results are acceptable and no errors
were made in the estimation model. As final measure of accuracy the sum
of the vectors of standard deviation can be calculated, which is 1.32 mm for
the calculated object coordinates.

6.3 Accuracy of derived Vibrations

To calculate the accuracy in the vibration direction the obtained residual
from the calculated object coordinates can be transformed to the principal
components as described in Section 3.4. The mean and standard deviation
of the residuals transformed to the three principal components are given in
Table 6.9.

From this table it can be concluded that the vibration measured in this
experiment has an accuracy of 0.58 mm. It should be kept in mind that
this accuracy is calculated using reference points which were not measured
in the original experiment setup. The reference point were also not evenly
distributed over the measurement area which also degrades the accuracy. No
correction for lens distortion were applied for the target measured in the
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Table 6.9: Statistics of transformed residuals to the three principal compo-
nents

Mean (mm) Std (mm)

Principal component 1 0.0008 0.1963

Principal component 2 -0.0008 0.8465

Principal component 3 0.0000 0.5774

images, which also reduced the final accuracy.
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Chapter 7

Conclusions and
Recommendations

In this chapter the conclusions for this study will be presented in Section 7.1
and the recommendations for future work will be given in Section 7.2.

7.1 Conclusions

In this study it has been shown that it is possible to automate the process of
the vibration measurement of a wind turbine using high speed photogram-
metry. To achieve this goal four research question were formulated. The
conclusions for each research question are given as follows:

1. The targets in the images can be measured by detecting the edges of
the targets and fitting a circle to these edges. From the experiments
it has been shown that a target can be measured with an accuracy of
0.25 pixels.

2. The position of a target can be tracked in a sequence of images. Using
the knowledge of the circular motion of the wind turbine the targets
could be tracked successfully using a circle as model. From a robustness
analysis for of the target tracking it could be concluded, that the target
tracking is reliable for acquisition frequencies larger then 125 Hz.

3. The automated target detection and tracking is influenced by thresh-
old values used for the histogram threshold image segmentation and
creating correspondence. The precise target measurement is influenced
by the size of the window to detect edges of a target. To pin-point the
target center, a circle can be fitted to evenly distribute target edges.

101



Chapter 7. Conclusions and Recommendations

4. The target in the images acquired in the experiment can be measured
with an accuracy of 0.5 mm in object space. The accuracy of the
calculated object coordinates are 1.32 mm and the accuracy of the
derived vibration is 0.58 mm.

From the performed experiment with the model wind turbine, it can
be concluded that the blade vibrations can be measured using high speed
photogrammetry.

7.2 Recommendations

Based on this study the following recommendations can be made for future
work:

• In the developed method for target tracking correspondence was cre-
ated between the targets of the first three frames using four physical
constrains of a circular motion. Instead of these physical constraints
also mathematical constraints of a circular motion can be used. The
track of the x and y coordinates of a target describes a goniometri-
cal function in image space. Constraints of this goniometrical function
could be used to create correspondence between the targets of the first
three frames instead of the four constraints.

• To improve the accuracy of the calculated object coordinates, correc-
tions for lens distortion should be applied. Since it has been concluded
that DLT is suitable for this application, a self calibration DLT is rec-
ommended. The self calibrating DLT contains five extra parameters
from which three are for optical distortion and two are for centering dis-
tortion. To solve this model at least eight reference points are needed,
which is still not too much for such an application.

• To measure the target precisely in the images an edge detection was
performed and a circle was fitted to the detected edges. Since the
sensitivity of the edge detector is directly related to the accuracy of
the target measurement it is necessary to explore other edge detection
methods e.g. Sobel or Previt edge detector to determine if the accuracy
can be improved.

• Because the lack of reference points an improper error estimation was
done of the measured vibration. To determine the actual capabilities of
photogrammetry to measure vibrations a detailed error analysis should
be carried out using proper reference points.
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• In this study one type of vibration was derived from the tracked target
positions. In further studies it should be investigated how the currently
used method to derive the flapwise vibrations could be improved and
how other types of vibration can be derived from the tracked target
positions.

• The developed method for measuring the vibration of a wind turbine
was tested on a model wind turbine placed in a wind tunnel. It should
be investigated if this method can be extended to measure vibrations
of a full scale wind turbine in open air.
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