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Abstract

Modern times have seen an increasing use of networked control systems, in which plants
and controllers may not necessarily have a direct link but instead be connected through a
network, thereby closing control loops over multiple nodes. The system may also be spread
out spatially over a large area, and thus the associated network delays could greatly hamper
control performance, potentially affecting the closed-loop stability of the system.

In such scenarios, event-triggered control approaches could greatly reduce network congestion
by allowing a means for the controllers to send control loop computation packets over the
network only when required, in an event-driven manner, rather than through periodic trans-
missions. However, in practice, the number of parallel channels is limited compared to the
number of controllers and hence the transmission of packets needs to be scheduled carefully
to avoid network conflicts.

This thesis explores using a network of timed (game) automata composed of models rep-
resenting a networked control system’s control loops and its communication network. This
reduces the scheduling problem of transmission of control loop computations to one of cre-
ating strategies using known algorithms, with the objective being to avoid network conflicts
brought about by simultaneous transmissions. Furthermore, the proposed automata models
also aim to reduce the conservatism of generated scheduling strategies by allowing the control
loops a bounded number of retransmission attempts to send packets over the network in case
it is already occupied. The concept is finally demonstrated in practice using simulated plants
and controllers distributed over multiple machines connected via a physical CAN network.
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�In the future, airplanes will be �own by a dog and a pilot. And the dog's job will
be to make sure that if the pilot tries to touch any of the buttons, the dog bites
him.�

� Scott Adams





Chapter 1

Introduction

The �eld of control engineering has evolved greatly over the past few decades, having seen a
gradual transition from the usage of classical control approaches involving frequency-domain
analyses, towards modern control theory employing state-space methods for system analysis
and control.[10]

Around the same time, a steep increase in computational processing power brought about by
the digital revolution was followed by the concept of a Networked Control System (NCS) being
studied and developed - a system involving a distributed arrangement of sensors, actuators,
and controllers over a network. As illustrated in Figure 1-1, NCSs essentially involve closing
control loops over a communication network between the plants and the controllers; control
actions computed by the controllers are transmitted to actuators via the network.[1]

Figure 1-1: An illustration showing a comparison between a traditional control system (left)
and a networked control system (right) - in the latter, the control loops are closed over the
communication network [1]

Intuitively, having an additional component between a plant and a controller adds to delays
in applying control actions, brought about by the latency of the network. Moreover, in
most applications, it is very expensive to have a dedicated channel between each plant and
controller (which may be distributed over a large area), and thus we resort toa number
of bandwidth-limited common digital communication channels shared by the entire network.
Owing to varying network loads, information transmission between nodes in such a setup is
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2 Introduction

non-deterministic; in a control context, this could even lead to instability [11]. This motivates
the need to

� use a control law that requires a reduced number of computations as compared with
the typical, periodic type of control, and

� schedule transmission of information packets over the network appropriately, to ensure
that control actions are applied to plants without being greatly a�ected by delays due
to network congestion.

In such a case, Event-Triggered Control (ETC) is greatly bene�cial. It is a control approach
in which a triggering criterion (or criteria) based on sensor measurements decides when a
control computation needs to be performed for a certain actuator. Accordingly, the actuator
output gets updated and is maintained in a zero-order hold (ZOH) manner until the next
update. The control loops thus need not be updated periodically as in the traditional case
but based on the occurrence of the triggering events, and hence this scheme saves essential
bandwidth as a result of fewer computations.

Since the number of channels between the components is limited, we need to schedule these
computations based on various criteria - that is to say, we need to have a scheduler that
decides which control loop to update at a certain time instant based on its knowledge of
events received from various sensors. Figure 1-2 shows an NCS scheme with a scheduler
involved in the system.

Figure 1-2: An NCS arrangement involving a scheduler in the network loop. The scheduler needs
to have all the sensor data necessary for scheduling control actions [2]

Several scheduling policies have been developed over time in the context of embedded systems
(such as FP, EDF, RR, etc.) that suit various applications and the interested reader can refer
to the literature for further understanding [12, 13]. In this thesis, we deal with a scheduler that
can be implemented on a distributed control system in which the components are connected
over a single CAN network for communication.

The scheduler is designed by making use ofabstractions (formal logical representations) of
the control loops and the communication network created using the concept of timed au-
tomata [14], as will be introduced in the forthcoming chapters. The scheduling policy needs
to ensure that control actions are transmitted such that network con�icts are avoided and
the stability of the individual control loops is maintained. It is hence very important that the
physical control loops and the network are modelled correctly in this approach.
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1-1 Notation 3

In [2], abstraction models representing the control loops and the network are created and
scheduling strategies are generated accordingly. However, with these models, there is no
possibility of a case in which a control loop attempts to access a busy network and waits
till it becomes free for use - that is to say, a control loop does not attempt toretransmit
its data over the network once it is free. The models treat simultaneous requests to access
the network as undesirable and are henceconservative; a modi�cation of the models can be
made to address this concern. Additionally, [2] also raises a point about the suitability of
such models for an implementation on physical networks.

Based on this understanding, we introduce the two main objectives of this thesis - one theo-
retical and one practical:

� to create timed automata models that incorporate the concept of limitedretransmission
of control actions over the communication channel in case it is already occupied; this is
a theoretical extension of models introduced in [2], and,

� to demonstrate that the scheduler functions as expected in an actual NCS environment
- one involving simulated control loops running on machines connected over a physical
network in the form of a common CAN network.

Through the chapters, we cover how the simple models introduced in [2] are built upon to
have new models that take into consideration retransmission of control actions for generating
scheduling strategies. We also implement these models on separate machines connected over
a common CAN network and perform scheduler synthesis [9], showing results obtained by
applying strategies generated using the new models.

1-1 Notation

Rn refers to the n-dimensional Euclidean space.N denotes the set of all positive integers, and
N0 refers to the set of natural numbers including 0 (i.e. positive integers and 0).R+ denotes
positive reals. jAj refers to the 2-norm of a vectorA 2 Rn . An empty set is represented by; .
The set of all closed intervals overR+ is represented byIR+ . � x : R+

0 ! Rn is the solution
to the initial value problem with � x (0) = x, given an ODE of the form _� (t) = f (� (t)) . The
power set of a set A is the set of all its subsets, denoted by2A . The set of all real-valued
n � p matrices is given byM n� p, and of all n � n real-valued symmetric matrices byM n .

1-2 Organization

There are several concepts involved in achieving the thesis's objectives, and they will be
introduced in a logical sequence over the following chapters:

� Chapter 2 covers the preliminary knowledge necessary for understanding relevent con-
cepts - ETC, abstractions, timed automata, and the Controller Area Network (CAN)
protocol,
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4 Introduction

� Chapter 3 covers modelling of the network and the control loops as Timed Game
Automata (TGA) and their parallel composition as a Network of Timed Game Au-
tomata (NTGA), and how they are used for scheduling,

� Chapter 4 explains the software and hardware involved in the implementation of the
theoretical ideas, and the simulation environment in which the scheduler is tested,

� Chapter 5 shows some results obtained from running the NCS simulations and discusses
them, and also some implications of increasing the number of states involved in the
system, and,

� Chapter 6 provides conclusions and directions for future work based on this thesis.

Figure 1-3 shows an overview of the main parts involved in this thesis. The main contributions,
in line with the objectives, are highlighted in it.

Figure 1-3: A top-level diagram of the �ow of this thesis. The main contributions are represented
by green blocks.
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Chapter 2

Theoretical Preliminaries

This chapter covers the foundational concepts required for understanding the main objective
of this thesis. The preliminaries are broadly categorized into the following topics:

� (Periodic) event-triggered control (ETC),

� Tra�c abstractions,

� Timed automata, and,

� Controller Area Network (CAN) bus.

Each of these topics will be covered in the sections that follow, and the subsequent chapters
will build upon the concepts towards the main thesis objectives.

2-1 Event-Triggered Control

Event-triggered control can generally be applicable to any control system in principle, but in
this thesis we consider only Linear Time-Invariant (LTI) systems. In line with [2] we use the
following state space model for describing a typical LTI system:

_� (t) = A� (t) + Bv(t); � (t) 2 Rn ; v(t) 2 Rm : (2-1)

Here, the A and B matrices have the appropriate dimensions determined by the dimensions
of the state vector � and the input vector v.

We consider a linear state-feedback law:

v(t) = K� (t): (2-2)

The gain, K , is calculated (using familiar methods like the LQR algorithm) to make the
overall closed-loop system asymptotically stable;K 's dimensions are determined as perA's
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6 Theoretical Preliminaries

and B 's. This feedback law is implemented in a zero-order-hold manner, and accordingly, in
terms of discrete time samples, it is given by

v(t) = K� (tk ); t 2 [tk ; tk+1 ); k 2 N0; (2-3)

such that t0; t1; ::: is a divergent sequence of update times. Practically, there may be delays
involved due to various factors (for instance, delays in sensor readout), but we assume no
delays at this point. Interested readers may consult [15] for further reading.

Figure 2-1: An ETC scheme - the held value of the control input u(t) is updated toKx (t) from
K x̂(t) if the event-triggering condition is satis�ed [3]

ETC involves making use of a control law for determining the next update instant (tk+1 )
online, based on the current state of the plant. Knowing that the plant follows the dynamics
represented by Eq. (2-1), taking the current state to be� (t) and the last sampled state to be
� (tk ), we de�ne an auxiliary variable:

e(t) := � (t) � � (tk ); t 2 [tk ; tk+1 ); k 2 N0: (2-4)

Intuitively, this variable represents how the state evolves from its last recorded sample. Based
on the event-triggering approach proposed in [15], it is used to calculate when the next
triggering should occur, as given by the following sampling triggering law:

tk+1 = min f t j t > t k and je(t)j2 � � j� (t)j2g; (2-5)

where � 2 (0; 1) is an appropriately chosentriggering coe�cient used to establish a tradeo�
between convergence rate and the rate of triggering [15].

Based on these equations and assumptions, we can formulate� � (x), the inter-sample time of
a sampled statex as follows:

� � (x) = min f t j je(t)j2 � � j� (t)j2 and � (0) = xg (2-6)

In [15], it is shown that for linear plants with state-feedback controllers, a minimum non-zero
inter-event time is always guaranteed to exist.

Following [16], we take� (t) as the solution of an LTI system in the sampling interval [tk ; tk + � ]
with x as the initial condition (that is, x = � (tk )), and e(t) from Eq. (2-4). Thus, we have
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2-1 Event-Triggered Control 7

� (tk + � ) = �( � )x; (2-7)

e(tk + � ) = [ I � �( � )]x; (2-8)

where

�( � ) := [ I +
Z �

0
eAr dr(A + BK )]: (2-9)

Based on these formulations, we can express the inter-sample time introduced in Eq. (2-6) as:

� � (x) = min f � > 0 j xT �( � )x = 0 g; (2-10)

where
�( � ) := [ I � � T (� )][I � �( � )] � � � T (� )�( � ): (2-11)

We can thus see that given an LTI plant's current state, its inter-event time can be calculated
using a series of matrix operations formulated in Eq. (2-10). This information is essential for
partitioning the state-space of the plant, as will be covered in Section 2-2.

The method presented so far is one of several approaches to introduce the basic mathematical
concepts involved in formulating event-triggered control problems. Interested readers may
refer to [17, 18, 19, 20] for further reading on more ETC approaches in various scenarios, and
to also understand a similar concept called Self-Triggered Control.

In this thesis, we implement a special case of ETC, called PETC; it is introduced brie�y in
the next section.

2-1-1 Periodic Event-Triggered Control

The ETC approach introduced thus far deals with monitoring a condition in continuous time
to determine whether triggering needs to take place, and is also referred to as continuous
ETC (CETC). In [3], a class of ETC called Periodic Event-Triggered Control (PETC) is
introduced - the basic principle being to sample the state measurementsperiodically, that is,
at tk = kh; k 2 N, where h > 0 is a carefully chosen sampling interval.

In LTI systems, the control law represented by Eq. (2-3) is applicable to PETC systems as
well, but with a slightly di�erent representation for the control input,

v̂(t) = K x̂(t); t 2 R+ (2-12)

where x̂ is a left-continuous signal given by

x̂(t) =

(
x(tk ); for C(x(tk ); x̂(tk )) > 0;

x̂(tk ); for C(x(tk ); x̂(tk )) � 0
(2-13)
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8 Theoretical Preliminaries

Here, t 2 (tk ; tk+1 ]; k 2 N, and C(x(tk ); x̂(tk )) is a mathematical expression representing
the triggering condition based on the sampled statex(tk ). Accordingly, Figure 2-1 is also
applicable to PETC systems.

The physical manifestation of a PETC scheme in an NCS can be interpreted as plants trans-
mitting their states over the network at a periodic rate (dictated by the sampling interval,
h), and the controllers updating their input to the plants based on the triggering condition
represented by Eq. (2-13). Thus,a PETC scheme is suitable for demonstration in a practical
implementation of an NCS.

2-2 Tra�c Models

We formally de�ne some basic concepts �rst. These de�nitions are used in the forthcoming
sections to model control systems.

De�nition 2-2.1 (System [21]). A system is a sextuple(X ; X0 ; U ; ! ; Y ; H ) consisting of

� a set of states X;

� a set of initial states X 0 � X ;

� a set of inputs U;

� a transition relation �! � X � U � X ;

� a set of outputs Y;

� an output map H : X �! Y .

De�nition 2-2.2 (Power Quotient System [22]). Let S = ( X ; X0 ; U ; ! ; Y ; H ) be a system
and R be an equivalence relation on X. The power quotient of S by R, denoted byS=R, is the
system(X =R; X =R0; U=R; ��!

=R
; Y=R; H=R) where

� X =R = X=R;

� X =R0 = f x=R 2 X =R j X 0 \ x=R 6= ;g ;

� U=R = U;

� (x=R; u; x0
=R) 2��!

=R
if 9(x; u; x 0) 2! in S with x 2 x=R; x0 2 x0

=R;

� Y=R � 2Y ;

� H=R(x=R) =
S

x2 x=R
H (x).

The interested reader may consult [22] for more mathematical details on the relationship
between a system and its power quotient systems.
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2-2 Tra�c Models 9

2-2-1 State Space Partitioning

We have seen that an ETC loop is mainly characterized by the triggering time (� (x)) for
the next event based on the current state (x) of the plant. This can be represented using a
system [16] from De�nition 2-2.1:

S = ( X; X 0; U; ! ; Y; H) (2-14)

where

� X = Rn ;

� X 0 � Rn ;

� U = ; , since there are no external inputs to the system;

� ! 2 X � U � X such that 8 x; x 0 2 X : (x; x 0) 2! i� � X (� (x)) = x0;

� Y � R+ ;

� H : Rn ! R+ where H (x) = � (x).

Given that there are in�nitely many states in the system S, it is not possible to explicitly
de�ne the inter-event time for each state. Instead, we follow the formulation proposed in [16]
- to construct a power quotient systemS=R (cf. De�nition 2-2.2) of the original system such
that all possible sequences of inter-event timesare captured:

S=R = ( X =R; X =R0; U=R; ��!
=R

; Y=R; H=R) (2-15)

where

� X =R = Rn
=R := f R1; : : : ; Rqg;

� X =R0 = f Ri j X 0 \ Ri 6= ;g ;

� U=R = ; , since there are no external inputs to the system;

� (x=R; x0
=R) 2��!

=R
if 9x 2 x=R; 9x0 2 x0

=R such that � X (H (x)) = x0;

� Y=R � 2Y � IR+ ;

� H=R(x=R) =

"

inf
x2 x=R

H (x); sup
x2 x=R

H (x)

#

:=
h
� x=R

� x=R

i
, where the bounds of the set indi-

cate lower and upper bounds on inter-event times for a given state.
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10 Theoretical Preliminaries

Conceptually, the systemS=R approximates the original systemS by dividing the state-space
into q regions and deriving relations between them, in terms of transitions that could lead
from one region to another; each state of the system is necessarily a member of one region.
Due to approximations (i.e. having a �nite number of regions to represent the entire state
space), each region has its ownrange of inter-event times rather than an exact value, which
is the case for the exact systemS.

Now we brie�y cover a couple of approaches to divide the state-space into a number of regions
and construct power quotient systems with their equivalence relations.

Isotropic Partitioning

In [4], the authors propose a conic covering of the state space using generalized spherical
coordinates of the state inRn : (r; � 1; : : : ; � n� 1), where n is the dimension of the state space.

There are n � 1 angular coordinates based on this covering, and each of these coordinates is
divided into m equal sectors (i.e. there aremn� 1 conic regions). An example of this process
for a two-dimensional state space is shown in Figure 2-2.

Figure 2-2: Partitioning of a 2-D state space [4]

Before proceeding to describe how this concept can be used to make a power quotient system,
an important proposition needs to be introduced.

Proposition 2-2.1 (from [4]). States lying on the same ray crossing the origin have the same
inter-sample time, i.e., � (x) = � (�x ); 8� 6= 0 ; x 6= 0 .

Based on this idea, a union of an in�nite numbers of these rays is represented using convex
polyhedral cones pointed at the origin, and a �nite number of these cones together can
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2-2 Tra�c Models 11

constitute the entire state space; the limits on the angular coordinates of each cone being
determined by the number of cones, using the concept of isotropic covering. Furthermore, the
cones can be represented using a set of matrices [22]:

R s = f x 2 R2 j xT Qsx � 0g; if n = 2

R s = f x 2 Rn j Esx � 0g; if n � 3
(2-16)

for s 2 f 1; : : : ; qg and appropriately designed matricesQs = QT
s 2 M 2(R) or Es 2 M n� p(R)

with p � 2n � 2.

Thus, through this process we get a set of regionsf R1; : : : ; Rqg such that every state of the
system necessarily belongs to one region. More details and mathematical proofs can be found
in [4, 22].

Time-Based Partitioning

In [23], the authors introduce a time-basedpartitioning approach of the state space for PETC
systems, making use of the fact that triggering takes place only at certain instants of time
(i.e. kh, as stated in Section 2-1-1) without any timing uncertainty.

Using the standard formulation of a linear PETC system with quadratic event-triggering
conditions [3], the set of states that will certainly have triggered by time k is given by:

Kk =

(
f x 2 Rn j xT N (k)x > 0g; k < k;

Rn ; k = k
(2-17)

where

N (k) =

"
M (k)

I

#T

Q

"
M (k)

I

#

; M (k) = eAkh +
Z kh

0
eA� d�BK (2-18)

I denotes the identity matrix, and Q (a symmetric matrix) is the triggering matrix . The
reader is referred to [3] for further reading; in short, N (k) represents a triggering condition
corresponding tok time steps, and it can be checked for any state except the origin.

Now, the minimum value of k that causes triggering can be calculated by removing the states
that would have triggered before:

R k =

8
><

>:

Kkn
k� 1S

j =1
R j ; k > 1;

Kk ; k = 1
(2-19)

Thus, using this recursive relation, the setfR 1; R 2; : : :g can be computed, and it also happens
to be a partition of the state spaceRn .
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12 Theoretical Preliminaries

2-2-2 Inter-Event Time Bounds Construction

We have thus seen how the state space can be partitioned into regions based on certain
methods, and how any arbitrary state's membership of a particular region can be computed.

The next step for our approximate system is to construct the output map H=R(x=R) which
provides a set of bounds on the inter-event times for each region.

� In the case of isotropic partitioning, based on Eq. (2-11) for determining state evolution,
a set of LMIs can be formulated [22]. Solving those, a set of bounds[� ; � ] can be
computed for every region of the partitioned state space.

� Likewise, in the case of a PETC system with isotropic partitioning, the discrete analogue
of the regional bounds[k; k] can be computed [24].

� However, in the case of time-based partitioning, the regions are determined by when
triggering needs to necessarily take place for a state, and hence, inherently, the inter-
event times are exact, i.e. the lower and upper bounds are the same. By construction,
H (x) = k; 8x 2 R k (cf. Eq. (2-19)).

For brevity's sake, mathematical details are not covered here, and the interested reader is
referred to [22] for bounds calculation in the isotropic partitioning case ([24] for the PETC
case) and [23] for time-based partitioning. Relevant proofs can be found in the same references.

2-2-3 Transition Relations

Once we have the bounds on inter-event times and the set of regions into which the state
space is divided, we need to compute the transition relations between the regions, i.e., how
triggering in a given region could lead to the state evolving as per its dynamics into another
region; on the abstraction, this may lead to nondeterminism, since the regional partitions
yield just an approximation of the original system.

De�nition 2-2.3 (Flow pipe [25]). The set of reachable states, or �ow pipe, fromX 0 in the
time interval [t1; t2] is de�ned as:

R [t1 ;t 2 ](X 0) =
[

t2 [t1 ;t 2 ]

R t (X 0):

Accordingly, in the case of state space partitioning with inter-event timing bounds, the �ow
pipe that needs to be computed is (from [16]):

X[� s ;� s ](X 0;s) =
[

t2 [� s ;� s ]

f � x0 (t) j x0 2 X 0;sg:

Computing the set of reachable states from any region thus yields transition relations between
regions for the isotropic partitioning case. This can be done �rst by deriving a polytopic outer
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2-3 Timed Automata for Constructing Abstractions 13

approximation to the �ow pipe by dividing the time interval [� s; � s] into l subintervals, so as
to get

X̂[� s ;� s ](X 0;s) =
[

l

X̂[t l ;t l +1 ](X 0;s) 8f 2 f 1; : : : ; l g

with t1 = � s and t l+1 = � s. Following this, by solving feasibility problems for each pair of
conic regions by computing the outer approximation of each �ow pipe segment from aninitial
conic region, the transitions from that region can be derived [22].

When time-based partitioning is involved, such transition relations can be computed by solv-
ing a non-convex quadratic constraint satisfaction problem [23]. Given two regionsR i and
R j , and the state x 2 R i , we have the following problem formulation:

9 x 2 Rnx

s:t: x T N (i )x > 0;

xT N (i 0)x � 0; 8i 0 2 f 1; : : : ; i � 1g;

xT M (j )T N (i )M (j )x > 0;

xT M (j )T N (i 0)M (j )x � 0; 8i 0 2 f 1; : : : ; i � 1g:

(2-20)

The satisfaction of these conditions implies that there exists a transition relation between the
two regions. Furthermore, [23] further proposes a semi-de�nite relaxation on the problem to
�t the semi-de�nite programming formulation, and the interested reader is referred to the
paper for details.

2-3 Timed Automata for Constructing Abstractions

Some concepts from automata theory are employed in the modelling of control loops and the
communication network, and those need to be introduced for a better understanding of this
thesis's objectives.

2-3-1 An Introduction to Timed Automata

The notion of a �nite automaton (state machine) needs to be introduced �rst - it is essentially
a directed graph consisting of �nitely many nodes (states) connected with �nitely many
labelled edges. An example is used to illustrate the concept in Figure 2-3 - a �nite automaton
representing a turnstile whose behaviour is determined by the user's action of inserting a coin
and pushing a button.

On extending a �nite automaton with certain real-valued variables (referred to as clocks), we
get a timed automaton, �rst introduced in [14]. As the name suggests, theseclock variables are
used to model logical clocks, and are initialized to zero at the start of the system, increasing
synchronously at the same rate thereafter. Timed automata are used for capturing a system's
behaviour taking into consideration the passage of time. Figure 2-4 shows a simple example [6]
involving a model in which a lamp changes its brightness depending on the timing of a user's
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14 Theoretical Preliminaries

Figure 2-3: A simple state machine representing the behaviour of aturnstile - governed by the
actions of inserting a coinand pushing to transition between theLocked and Unlocked states.
An initial state needs to be speci�ed in a �nite automaton; in this example, it is theUnlocked
state [5]

Figure 2-4: A timed automaton modelling a lamp (left) and a user (right). Based on the user's
pressaction, the lamp responds synchronously depending on its timing;y represents the clock
variable [6]

button press actions - when the lamp is o�, if the user presses the button, the lamp turns on
and glows dimly. If the user presses the button again within a short time interval, the lamp
glows brightly, but if the interval between the two press actions is long, the lamp turns o�.
Thus, the behaviour of the lamp di�ers because of timing even though the physical actions
performed are the same.

Now, before formally de�ning a timed automaton, we need to introduce the notion of clock
constraints. De�ning C as the set of �nitely many clocks, a clock constraint is a conjunctive
formula of atomic constraints, formed asx ./ n or x � y ./ n where x; y 2 C and ./ 2 f� ; <
; = ; >; �g and n 2 N0. Clock constraints are denoted byB(C).

De�nition 2-3.1 (Timed (Safety) Automaton [2]) . A Timed (Safety) Automaton is a sextu-
ple (L; l0 ; Act ; C; E; Inv ) where

� L is a set of �nitely many locations (also called nodes);

� l0 2 L is an initial location;

� Act is a set of �nitely many actions;

� C is a set of �nitely many real-valued clocks;
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2-3 Timed Automata for Constructing Abstractions 15

� E � L � B (C) � Act � 2C � L is a set of edges;

� Inv : L ! B (C) assigns invariants to locations.

Location invariants here are restricted to downwards-closed constraints of the form:c � n or
c < n where c is a clock andn 2 N0.

Edge transitions may also be represented byl
g;a;r
���! l0 for (l; g; a; r; l 0) 2 E where l; l 0 2 L, g

represents the guards over clocks enabling the transition,a 2 Act, and r � C is the set of
clocks to be reset on the transition. We denote transitions with arbitrary labels asl �! l0.

Remark 2-3.1 (from [2]). When �rst introduced in [14], Büchi and Muller accepting con-
ditions were used to enforce progress properties in timed automata. However, in this thesis,
we focus on a simpli�ed version called Timed Safety Automata (TSA) [26], which uses local
invariant conditions to specify progress properties. Along the lines of [2], we refer to TSA as
simply TA.

Based on De�nition 2-3.1, the following notions can be used to understand behaviour mod-
elling using timed automata:

� Since timed automata capture the dimension of time (through logical clocks, in addition
to the states of �nite automata), they are used in modelling real-time systems, which
involve monitoring the elapsing of time [14].

� Statesand Locations hold di�erent meanings in the context of timed automata - a state
is de�ned by the current node a timed automaton is in, and the current clock values;
nodes (calledstates in �nite automata) are referred to as locations in TA.

� A timed automaton's timing behaviour is restricted by means of clock constraints.

� A timed automaton's edge may be subject toguard conditions on the values of clocks
that determine whether that edge can be taken or not (i.e. if the conditions are satis�ed,
the edge is said to beenabled); an edge transition can be taken only if the edge is enabled.

� Clocks can be individually reset to zero when an edge is taken.

In our TA models, clock constraints are speci�ed in the following manner:

� While in a location, clocks may increase as long as the clock constraints on that location
hold, violating which it must be left via an edge. These constraints are referred to as
invariants.

� Only enablededge transitions can be taken; constraints on edges determining whether
they are enabled or not are calledguards.

The semantics of a TA are de�ned as a transition system where a state has thecurrent
location and current value of clocks. In this system, two types of transitions are possible
between states:
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1. a delay transition, wherein the automaton simply delays for some time, and,

2. a discrete transition, wherein the automaton takes an enabled edge.

To formalize this, we need some more notations. Clock assignments are functions that map
clocks to their current values, i.e. u : C ! R� 0. The notation u � g indicates that the clock
values ofu satisfy the guard g. In order to formally de�ne operational semantics, we use these
notations as follows:

� Given d 2 R� 0, u + d denotes the clock assignment mapping allc 2 C to u(c) + d,

� Given a set of clocksc � C, u[c] denotes the clock assignment mapping all clocks inc
to 0 and agreeing with u for the rest of the clocks, i.e. C n c.

De�nition 2-3.2 (Operational Semantics [2]). The semantics of a timed automaton is a
(timed) transition system wherein states are pairs of location (l) and clock assignment (u),
and transitions are de�ned by the rules:

� Delay transition: (l; u) d�! (l; u + d) if u � Inv (l) and (u + d) � Inv (l) for a non-negative
real number d 2 R� 0

� Discrete transition: (l; u) a�! (l0; u0) if l
g;a;r
���! l0, u � g, u0 = u[r ], and u0 � Inv (l0)

Additionally, a run of a timed automaton is de�ned as a sequence of alternating delay and
discrete transitions in the transition system.

An action (denoted by Act in De�nition 2-3.1) could be a synchronizing action (a pair of input
(act? ) and output ( act! ) actions) or an internal action ("tau" or � ). Sychronizing actions are
used as a means of handshake synchronization between two or more TA, and internal actions
are used for transitions within the same TA. Each transition (edge) may have only one action
associated with it.

2-3-2 Parallel Composition

Several TA representing individual (sub-)systems may be composed in a parallel fashion to
model a system involving all those subsystems running concurrently; in such a scenario,
synchronizing actions are used for modelling synchronous communication between two or
more subsystems. In the example from Figure 2-4, the lamp and the user are two TA, and
their parallel composition (represented using the "||" symbol) is also a TA.

Such a TA, involving a parallel composition of multiple TA, is called a network of timed
automata (NTA) . This concept is particularly important for this thesis because models in
the forthcoming sections involve parallel compositions of TA representing various parts of the
NCS. Interested readers are referred to [27] for a more in-depth understanding of this topic.
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Figure 2-5: A timed game automaton - dashed arrows represent uncontrollable edges and solid
arrows represent controllable edges [7]

2-3-3 Timed Game Automata

In a physical system, a controller may be able to precisely control some variables (say, �ow
rate) but not others (for instance, a temperature range may be known but a desired temper-
ature may not be precisely attainable) - and this uncertainty can be taken into consideration
while modelling TA.

A TA can be further extended by partitioning its set of actions into sets of controllable and
uncontrollable actions, such that the controller (player) can trigger only the former, and the
environment (opponent) can trigger only the latter. Figure 2-5 shows an example of a TGA.

De�nition 2-3.3 (Timed Game Automaton [2]). A Timed Game Automaton is a septuple
(L; l0 ; Actc; Actu ; C ; E; Inv ) where

� (L; l0 ; Actc [ Actu ; C ; E; Inv ) is a timed automaton;

� Actc is the set of controllable actions;

� Actu is the set of uncontrollable actions;

� Actc \ Actu = ; .

As with TA, a parallel composition of TGA is also possible, referred to as a Network of Timed
Game Automata (NTGA).

De�nition 2-3.4 (Network of Timed Game Automata [2]) . Let TGA i = ( L i ; l i
0 ; Act i

c; Act i
u ,

C i ; E i ; Inv i ) be a TGA for i 2 f 1; : : : ; ng. The parallel composition of TGA 1 ; : : : ; TGA n ,
denoted byTGA 1 j : : : jTGA n is a timed game automatonTGA = ( L; l0 ; Actc; Actu ; C ; E; Inv )
where

� L = L1 � : : : � Ln ;
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� l0 = ( l1
0 ; : : : ; ln

0 );

� Actc = f�g [
S n

i = 1 f a 2 Act i
c j a is an internal action g;

� Actu = f ~ g [
S n

i = 1 f a 2 Act i
u j a is an internal action g;

� C = C1 [ : : : [ Cn ;

� E is de�ned as per the following couple of rules:

� a TA makes a move on its own via its internal action: an edge is controllable i�
the internal action is controllable;

� two TAs move simultaneously via a synchronizing action: an edge is controllable
i� both input and output actions are controllable (that is to say, the environment
has priority over the controller);

� Inv (( l1 ; : : : ; ln )) = Inv 1 (l1 ) ^ : : : ^ Inv n (ln ).

This timed game automaton, composed of a parallel composition of multiple timed game au-
tomata, is called a Network of Timed Game Automata (NTGA).

A point to note here is that in a parallel composition of TGA, a pair of input and output
actions is denoted by a single synchronizing action (i.e. semantically speaking, since the input
and output actions should occur simultaneously, it is as though a single action is performed).
In De�nition 2-3.4, � refers to controllable internal actions, and ~ to uncontrollable internal
actions.

2-3-4 Runs and Strategies

Following De�nition 2-3.2, we de�ne Runs(TA) as the set of runs of a TA starting from its
initial state (l0; u0), l0 being the set of initial locations and u0 being a clock assignment
mapping all clocks to 0. last(� ) is the last state of a run � , if the run is �nite.

In general, a strategy is a function that de�nes what action a controller should perform to
win (or avoid losing) a game. Let us denote adelay action by � (which semantically means
that the controller should just wait) and use it to formally de�ne a strategy in the context of
TGA [2].

De�nition 2-3.5 (Strategy [2]). Let TGA = ( L; l0 ; Actc; Actu ; C ; E; Inv ) be a timed game
automaton. We de�ne TA = ( L; l0 ; Actc [ Actu ; C ; E; Inv ) as its derived timed automaton. A
strategy f over TGA is a partial function from Runs(TA ) to Actc [ f � g such that for every

�nite run � , if f (� ) 2 Actc then last (� )
f (� )
��! (l0; u0) for some (l', u').

In this thesis, having a strategy that avoids losing(i.e., avoids having runs ending in a certain
set of states) is particularly important, as will be presented in the forthcoming sections.
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2-4 Controller Area Network (CAN) Bus

The Controller Area Network (CAN) standard is a vehicle busstandard (i.e. for a communi-
cation network used in connecting vehicular components like ECUs) developed by Bosch in
the 1980s. With increased usage, it was later standardized internationally as ISO 11898 [8].

There are several electronic devices involved in automotive applications, and having dedicated
signal lines between each device is expensive and di�cult to maintain. CAN was developed as
a means to reduce the complexity involved in such applications by connecting various devices
over a common serial bus (CAN bus). The connection is such that any device on the CAN
network can communicate with any other device on the same network.

2-4-1 Relevant Terminology

There are several technical terms associated with a CAN bus, but only those relevant to the
scope of this thesis are covered here.

� CAN frame (message) : A chunk of data in a prede�ned format (de�ned in the Bosch
speci�cation1) transmitted by a CAN device is called a CAN frame, or a message.
Depending on the purpose, there are multiple types of frames, but in this thesis we
consider only data frames.

� CAN identi�er : Each device on the common bus has a unique ID (also called the
arbitration ID). When a device transmits a message, all devices on the bus receive it -
the CAN ID precedes the data and is used by the receiving device to determine if the
received data is relevant to it (if not, it is ignored).

� Message priority : If two or more devices transmit messages simultaneously, the CAN
identi�er is used for deciding the priority - lower numerical value implies higher priority,
and the device with the highest priority gets to transmit its message on the network.

� Collision : A situation in which two or more devices attempt to send a message. simul-
taneously is called acollision

� Data bytes : In CAN data frames, the data may be 0 to 8 bytes in length.

2-4-2 CAN Operation

CAN devices on a common network are loaded with a CANdatabasewhich consists of infor-
mation about signals and arbitration IDs. This is used decide if certain frames received by a
particular device are relevant to it, or are to be ignored (for instance, a vehicle's RPM values
bear no meaning for its electronic mirror controller). Since a CAN bus is common across the
network, any outgoing message from a device is received by all devices on it; the receiving
device decides if the message is relevant or not [8].

If two or more devices attempt to use the bus to transmit data simultaneously, it leads to
a collision. In such a case, the device arbitration IDs are used to resolve the collision; the

1Robert Bosch GmbH, "CAN Speci�cation 2.0", 1991.
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device with the highest priority continues transmitting, while the lower priority devices stop.
Figure 2-6 shows an example for two devices.

Figure 2-6: An example of arbitration in two CAN devices [8]

Additionally, the CAN protocol provides error detection and con�nement mechanisms. A
receiving device transmits anerror �ag if it detects an error in the received frame, and the
transmitting device can accordingly retransmit the same frame on the network to correct
the error. Based on the number of errors generated, certain devices may be labelled as
malfunctioning and accordingly they may be madepassiveor completely disabled depending
on the error counter value. This error con�nement mechanism is to handle malfunctioning
devices so as to not cause a disturbance in network tra�c.
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Chapter 3

Modelling through Abstractions and
Scheduling Strategies

The fundamentals of event-triggered control and timed automata theory have been introduced
in Chapter 2; now we link those concepts to makeabstractions of control loops and the
network.

In a nutshell, each component of the system (comprising the control loops and the connecting
network) is modelled as a timed game automaton, and an NTGA of these components is an
abstract representation of the overall system - it is thus used for appropriate scheduling of
actions as required by the physical system.

3-1 Abstraction of Control Systems

The outcome of partitioning the state space of a system into regions based on inter-event
times, and constructing transition relations between them based on a reachability analysis, is
semantically equivalent to a TA - with locations corresponding to regions, and edges corre-
sponding to their transition relations.

Based on this notion, considering a control system given by Eq. (2-1), partitioning its state
space and constructing its power quotient system (cf. Eq. (2-15)), we can represent its control
loop with a TA along the lines of [22] and [2].

TA CL = ( L; l0 ; Act ; C; E; Inv ) where:

� L = X=R = f R1 ; : : : ; Rqg,

� l0 = Rs such that � (0) 2 Rs,

� Act = f�g , a set of internal actions for labelling edge transitions,

� C = f cg, a set containing a single clock,
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� (Rs; � s � c � � s; � ; f cg; Rt ) 2 E such that the �ow pipe, X[� s;� s](Rs) \ Rt 6= ; , and,

� Inv (Rs) = f 0 � c � � sg; 8s 2 f 1; : : : ; qg.

This is a simple representation to link the two concepts of ETC and TA - the main idea is
that all possible states of a control system can beabstractedinto a �nite number of locations;
each location Rs having its inter-event time bounds � s and � s. The clock variable is used
to keep track of time elapsed since the last transition to a location, and thus to check if the
corresponding inter-event time constraints are satis�ed - based on which the next transition
occurs. Invariants on locations guarantee that they are left as soon as the clock value exceeds
the upper bound. The clock is reset on a transition to a new location to track elapsed time
speci�c to that location, and so on and so forth. Figure 3-1 shows an example of a control
loop's TA model.

Figure 3-1: A TA model of a ETC loop with two state space regions [2]

Triggering in this context means that the control input to the plant is updated based on the
state the plant is currently in; in terms of TA, when the plant is in region Rs (correspond-
ing to its state � (t) = x) and the clock value is between� s and � s, the input is updated.
Subsequently, the region the plant enters (Rt ) is determined by the state � (t + � (x)) , where
� (x) 2 [� s; � s] is the time at which triggering occurs. A �ow pipe for Rs is accordingly
constructed to determine the set of all possibletarget regions [2].

3-2 Modelling Using ETC Abstractions

In [28], some examples of using timed automata for scheduling tasks are provided. Following
this concept, we make use of TGA models for scheduling control tasks.

In this thesis, we consider a NCS in which control loops are distributed over a common
communication channel. Each control loop involves a plant with a sensor, a feedback controller
(cf. Eq. (2-2)), and an actuator, distributed over the network, which is physically manifested
in the form of a CAN network connecting the loops, as will be explained in the next chapter.

Following [2], the network is such that it can be used by at most one control loop at a time,
otherwise a con�ict arises - in physical terms,network occupancytranslates the period of time
used for data transmission between a control loop's controller and actuator over the network.
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Given these constraints, we can see that the goal translates to scheduling of triggering actions
in an appropriate manner to avoid network con�icts. Accordingly, we synthesize a scheduler
for this problem with certain objectives in mind.

In this context, scheduling from the scheduler's perspective refers to actions it can perform
- it can (i) force a control loop to trigger by transmitting its control action data before the
control loop enters a state ready for triggering (i.e., the control loop is in a region for less
than � s units of time, � s being the lower IET bound for that region), or (ii) simply wait for a
control loop to enter a state in which it triggers automatically (i.e., wherein the control loop
is in a region for an amount of time within the IET bounds for that region).

Based on this idea of scheduling, the scheduler's objectives can be stated more speci�cally:

� to force the control loops to trigger early or let them trigger automatically, in such a
fashion that only one control loop occupies the network at a given time,

� in line with the thesis's objectives to reduce conservatism, to allow each control loop
a �nite number of retransmission attempts on using the network - that is to say, if a
control loop has to trigger, it needs to request access to the network; if it is already in
use, the control loop has to wait to trigger till it becomes available again, and,

� to prevent the number of retransmission attempts for any loop from exceeding a prede-
�ned, loop-speci�c upper bound - this is to ensure that the reduced conservatism does
not lead to instability of the control loops.

These objectives can be achieved by:

1. modelling TGA abstractions of the control loops and the networks,

2. composing them in parallel to yield an NTGA,

3. de�ning objectives for this NTGA that translate semantically to the aforementioned
scheduling objectives. Though such objectives can generally be of multiple types, based
on our desired goals, we de�ne a safety objective:

� Safety objective: As a minimum objective, none of the control loops should enter a
Bad location as a result of exceeding their limit on retransmission attempts while
in the same region, i.e., triggering must necessarily occur within a certain number
of attempts,

4. generatingstrategies to be followed for achieving the NTGA's objectives.

Based on [2] with some modi�cations suited for use on a CAN network, the generated strate-
gies can use the followingactions to be taken by the scheduler (the game player in a TGA
context):

� while the NTGA is currently in a location corresponding to a region, not doing anything
and letting the control loop trigger by itself,
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� forcing an early trigger (i.e., forcing a control loop to trigger before the clock value
crosses the lower IET bound for that region),

� sending an acknowledgement (ACK) synchronizing action from the network to a control
loop if the latter requests the former for use while free, and,

� sending anegative acknowledgement(NACK) to a control loop if the network is occupied
when the control loop makes a request to it for occupying it.

In this context, controllable edges represent actions that are deterministic from the scheduler's
perspective (i.e. the scheduler can control precisely when to take such edges) and uncontrol-
lable edges represent actions that are taken based onenvironmental conditions that enable
them (such that the scheduler cannot precisely control them).

Considering this information, we proceed with the formal modelling of TGA for the network
and the control loops conforming to our requirements.

Legend: In the following models, the convention used is as follows:

� - - ->: Dashed arrows represent uncontrollable edges;

� ��>: Solid arrows represent controllable edges;

� guards: Text in red is for edge guards;

� resets: Text in blue is for "resets" (clock and other variable assignments on taking the
corresponding edge transitions);

� invariants: Text in magenta is for invariants on locations.

We also de�ne urgent locations as these serve an important purpose in the TA models.

De�nition 3-2.1 (Urgent locations [6]). Urgent locations are locations in which time cannot
elapse, i.e. such locations have to be left via an outgoing edge transition as soon as they are
entered. Semantically speaking, there is an additional clock variablex which gets reset on
every incoming edge with an implicit invariant of x � 0.

In the models that follow, urgent locations are coloured orange, absorbing (Bad) locations are
red, and usual locations are blue.

3-2-1 Network TGA Model

The network's TGA model is modelled such that the network can be used by only one control
loop at a time, and other control loops need to wait until it becomesidle. This re�ects network
protocols in which one common bus connects all devices, such as in the CAN protocol.

Note: The ack and nack actions introduced henceforth do not refer to protocol-speci�c signals
of the same names; the actions have been named such owing to similar roles of acknowledge-
ment in the TGA models.
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