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Abstract

Particle image velocimetry (PIV) is currently the dominant technique for measurement
of the instantaneous velocity field in unsteady and turbulent flows relevant for aircraft
aerodynamics. The study of such flows is essential for realisation of improvements to propulsion
systems and the external configuration of aircraft and to allow for reduction of their fuel
consumption, emissions and noise levels. By the advent of solid-state diode-pumped lasers and
fast CMOS imagers, time-resolved PIV presently allows for study of unsteady and turbulent
flows at low to moderate flow velocities (V ∼ 10 m/s). However, at high measurement rates,
laser pulse energy available is strongly limited and consequently, the feasible repetition rates
are insufficient for time-resolved measurement of unsteady flows at speeds relevant for aircraft
aerodynamics (V ∼ 100 m/s). In order to relax the measurement rate requirements currently
limiting the study of unsteady and turbulent flows, the present thesis work investigates a
novel approach combining techniques from computational fluid dynamics with PIV velocity
measurements. A numerical approximation to the Navier-Stokes equations is proposed to
increase the temporal resolution of correlated PIV measurements, done at a measurement rate
below what is historically dictated by the Nyquist criterion for reconstruction of the velocity
fluctuations.

The principle of the time-supersampling method is that the spatial information available by
the measurements can be leveraged to increase the temporal-resolution. Feasible measurement
rates are especially critical for tomographic PIV measurements and therefore the present
work focusses on application to the three-dimensional datasets obtained from tomographic
PIV experiments. The solution of the governing equations is based on the Vortex-in-Cell
(VIC) method (Christiansen, 1973) under the hypothesis of incompressible flow. The unsteady
numerical simulation of the dynamic evolution of the measured flow is applied within the
3D measurement domain and time-integration is performed between pairs of consecutive
measurements. Initial conditions are taken from the first measurement field and time-resolved
boundary conditions are approximated between the two fields by an advection based model.
Temporal continuity of the velocity field is obtained by imposing a weighted-average of forward
and backward time-integrations.

The accuracy of the proposed time-supersampling method is studied with two experimental
datasets obtained from time-resolved tomographic PIV measurements: a turbulent wake, and
a circular jet. The results are compared to linear interpolation, advection-based supersampling,
and measurement data at high sampling rate. The proposed method improves upon the
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viii Abstract

reference advection-based model in both cases, with most significant improvements notable in
the jet case, which is dominated by non-linear effects and includes strong curvature of the
streamlines. In both flow cases the proposed method is demonstrated to reconstruct detailed
temporal dynamics from measurement data sampled at a rate below the Nyquist frequency.

Robustness and sensitivity to outliers and precision errors is studied. Blocks of outliers present
in the data are smoothed by the proposed technique, but remain in the reconstructed velocity
fields and for accurate time-supersampling the measurement data must first be subjected to
outlier detection and removal. On the other hand, a stable reconstruction is demonstrated when
the measurement data is corrupted by both spatially uncorrelated and correlated precision
errors up to levels at which the experiment would normally be discarded. At high precision
error levels, the evaluation of the weighted average of a forwards and backwards integration
allows for a reduction in precision error. For assessment of the reconstruction quality in
real-world situations and in the absence of reference measurements, an a-posteriori error
estimate is proposed.

The present thesis demonstrates the sampling rate requirements for tomographic PIV can
be strongly reduced when the data is time super-sampled using the proposed Vortex-in-Cell
method, thereby extending the range of application of time-resolved 3D-PIV by tomographic
PIV or similar techniques. On the one hand the technique allows for larger measurement
domains and on the other hand it opens doors to time-resolved measurement of high speed
flows (V ∼ 100 m/s) by tomographic PIV. Potential wider applications of the proposed
time-supersampling technique in the fields of noise reduction and evaluation of acceleration
and pressure from an instantaneous PIV measurement are illustrated using data from a
tomographic PIV experiment on a jet and further development and validation of the latter is
recommended as a subject for future work.
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Chapter 1

Introduction

By mere observation Leonardo da Vinci produced accurate drawings of the turbulent structures
in a water flow. Not a trivial task considering the many scales and the temporal variation
present in a turbulent flow. Today, almost five hundred years after Leonardo da Vinci made his
drawings, analysis of turbulent flows has become essential to realise significant improvements
to the propulsion systems and external configuration of modern aircraft. Improvements which
are essential to achieve reductions of greenhouse gasses, fuel consumption and aircraft noise.
However, despite the advent of computers, quantitative study of unsteady and turbulent air
flows at speeds relevant for aircraft aerodynamics remains a challenge for both computational
and experimental fluid dynamics. Considering the limitations of both experimental and
computational fluid dynamics, in the present thesis a novel approach is proposed, combining
both numerical simulations and velocity measurements in order to relax requirements currently
limiting the possibilities for measurement of turbulent and unsteady flows.

Experimental techniques cannot match the very high spatial and temporal resolution of data
provided by numerical simulations. Well established probe based measurement techniques,
using for example hot wire anemometers or pitot tubes, provide only a single data point
and are intrusive. Measurement techniques that allow for non-intrusive measurement of a
velocity field with high spatial resolution are not in abundance and have a limited temporal
resolution (see for example Raffel et al 2007 and Thurow et al 2013). Tomographic Particle
Image Velocimetry (PIV), introduced by Elsinga et al (2006), is at the time of writing the
only established technique that allows for non-intrusive measurement of all three velocity
components in a finite three-dimensional measurement domain.

Particle image velocimetry is based on determination of the velocity field through calculation
of the displacement of tracer particles, which are seeded in the flow, from two time-correlated
images (Raffel et al, 2007). When the particle displacement is known, velocity can be
calculated by division with the time separation between the two particle images. The velocity
measurement is therefore indirect and for accurate measurements small tracer particles (e.g.
1 µm fog droplets) that faithfully follow the flow are required. To achieve sufficient illumination
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g

(a)

v(T1)

h(T1)

(b)

h(t) = h(T1) + t v(T1)

(c)

h(t) = h(T1) + t v(T1)− 1
2gt

2

Figure 1.1: (a) Measurement of a tennis ball thrown up in the air; (b) approximation of the path
of the tennis ball for t > T1 with a linear approximation and (c) a non-linear model.

of the tiny tracer particles a high-power light source is required and for air flows typically lasers
are both required and used. These high power requirements limit the temporal resolution that
can be achieved, as the laser pulse energy drops when increasing the measurement rate. For
tomographic PIV, repetition rates up to 5 kHz have been reported in a recent topical review
by Scarano (2013), which is largely insufficient to temporally resolve aerodynamic problems,
where flow velocities may approach 100 m/s or more (Scarano and Moore, 2011).

Intuitively one easily agrees with the statement that when measurements are performed
with a sampling frequency below the frequency dictated by the Nyquist criterion, accurate
reconstruction of the velocity fluctuations between measurements is only possible in some
special cases. However, is this really true? Consider a tennis player throwing up a tennis ball
for his service at time T0. A photo of this situation at time T1 > T0 is schematically given in
Figure 1.1a. Say the height h and, analogously to a PIV measurement, the velocity v of the
tennis ball at T1 are measured. On inspection of the situation, one can directly imagine what
happens for t > T1; the height of the tennis ball will increase, until the ball is fully decelerated
due to the presence of gravity, after which depending on the skills of the tennis player it will
be served at its highest point. In this case, from only one single velocity measurement, almost
the complete path of the tennis ball is determined.

The location of the tennis ball can be calculated using either a linear approximation (Fig-
ure 1.1b) or a non-linear model (Figure 1.1c), where only the latter allows for estimation of
the highest point of the tennis ball. These approximations are possible because a model for
the movement of the tennis ball is available through Newton’s second law of motion. Consider
now the case of a real tomographic PIV velocity measurement; it is an instantaneous snapshot
of the flow, but analogously to the case of the tennis ball, the flow governing equations are
known, which may allow for calculation of the velocity fluctuations in a short time interval
around the measurement. Ideally, based on simulation of the flow governing equations and
leveraging the available spatial information, the temporal velocity fluctuations in between two
consecutive measurements can be reconstructed.

For air flows relevant for aircraft aerodynamics, the flow governing equations are the Navier-
Stokes equations (Anderson, 2006). Based on the principle of frozen turbulence, an approxim-
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3

ation of these has been applied to PIV measurements by Scarano and Moore (2011) in order
to increase the temporal resolution of the measurements, or as it was appropriately called by
Scarano and Moore (2011), to time-supersample the measurements. This technique, solving the
linear advection equation, is analogous to the linear approach sketched in Figure 1.1b and was
demonstrated to accurately reconstruct velocity fluctuations between correlated measurements
in flows where the assumption of frozen turbulence holds. However, in flows with strong
curvature of streamlines (e.g. in shear layers) the reconstruction quality degrades rapidly.

To improve upon the advection model, in the present thesis a novel time-supersampling
approach is proposed, which is by taking into account non-linear flow physics analogous to the
sketch in Figure 1.1c. It combines both computational and experimental fluid dynamics, not to
validate one or the other, but to yield flow fields with high temporal resolution, that could not
be readily calculated or measured using either computational or experimental fluid dynamics
alone. At the time of writing this thesis, PIV is considered the most appropriate and dominant
technique for velocity measurements with high spatial resolution (Westerweel et al, 2013) and
therefore the present work focusses on application to time-resolved PIV measurements. The
investigation is however essentially applicable to any measurement technique that allows for
measurement of velocity fields with high spatial resolution.

This thesis is divided in three main parts. The first part considers a concise literature review,
with first in chapter 2 an overview current state-of-the-art PIV techniques and literature on
application of CFD to PIV measurement data. From this review, vortex methods are selected
as CFD technique for application to measurement data and therefore these methods are
reviewed in more detail in chapter 3. In the second part of this thesis, the time-supersampling
method is proposed, developed and validated. First, in chapter 4 the method is discussed
in detail, after which in chapter 5 its numerical implementation is presented. The proposed
technique is validated with tomographic PIV experiments in chapter 6 and additionally the
robustness and sensitivity of the method to measurement noise is analysed in chapter 7. In the
final part of this thesis, the scope is broadened and alternative applications of the proposed
technique are discussed in chapter 8. Finally, chapter 9 summarises the conclusions and
recommendations of the thesis work.

M.Sc. Thesis Jan F.G. Schneiders
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Chapter 2

Time-Resolved Particle Image Velocimetry

In the introduction, the requirement for a technique to reconstruct velocity fluctuations in
between time-resolved PIV measurements was highlighted. In this chapter this is elaborated
in more detail by means of a concise literature review. First in section 2.1 state-of-the-art PIV
techniques are reviewed, after which section 2.2 summarises literature on post-processing
procedures for PIV using techniques from the field of computational fluid dynamics. The
results from this literature survey are synthesised in section 2.3.

2.1 State-of-the-Art Particle Image Velocimetry

Particle image velocimetry (PIV) is currently the dominant method for measurement of velocity
fields (Westerweel et al, 2013; Thurow et al, 2013). As discussed in the introduction, it allows
for measurement of velocity through correlation of particle image pairs. For a discussion
on the working principles of the method, the reader is referred to recent review papers by
Westerweel et al (2013) and Scarano (2013), or for a more in-depth discussion to the book by
Raffel et al (2007). For the purpose of the present thesis, in this section the state-of-the-art
techniques are summarised, with particular focus on PIV techniques allowing for time-resolved
measurements.

In contrast to point-wise measurements, PIV captures the velocity field in a finite measurement
domain at many points, typically 103 − 105, with sufficient spatial resolution to permit
calculation of instantaneous vorticity and rate of strain (Westerweel et al, 2013). Where
historically PIV measurements could only be made in a plane, following the introduction of
tomographic PIV by Elsinga et al (2006), measurements of all three velocity components
in a three dimensional measurement volume have become feasible. Notably, measurement
volumes of up to 50 cm3 in air flows and up to 200 cm3 in water tanks have been reported at
limited measurement rates on the order of 1 Hz (c.f. Table 2.1). Furthermore, tomographic
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6 Time-Resolved Particle Image Velocimetry

Table 2.1: Overview of various recent uncorrelated and time-resolved (TR) tomographic PIV
experiments (based on Scarano 2013)

Velocity Domain Pulse Energy Repetition
[m/s] Size [cm3] [mJ] Rate [Hz]

Cylinder wake 10 10 (3.7× 3.6× 0.8) 400 1
(Elsinga et al, 2006)

Turbulent boundary layer 10 13 (4.2× 3.0× 1.0) 400 1
(Elsinga et al, 2007)

Backward facing step 7 52 (7.0× 9.3× 0.8) 400 (double-pass) 1
(Schröder et al, 2011)

Turbulent boundary layer 3 32 (6.0× 6.0× 0.9) 250 (double-pass) 1
(Atkinson et al, 2011)

TR Cylinder wake (in water) 0.2 160 (8.0× 10× 2.0) 200 (double-pass) 7
(Scarano and Poelma, 2009)

TR Trailing edge 14 18 (4.7× 4.7× 0.8) 10 (multi-pass) 2,700
(Ghaemi and Scarano, 2011)

TR Turbulent boundary layer 7 19 (3.4× 3.0× 1.9) 21 (multi-pass) 5,000
(Schröder et al, 2009)

TR Turbulent boundary layer 10 3 (2.0× 4.1× 0.4) at 1 kHz: 25 10,000
(Pröbsting et al, 2013) (multi-pass)

PIV experiments at sufficient spatial resolution for evaluation of spatial derivatives of velocity
in such measurement domains have been reported in literature. For example, Worth and
Nickels (2011) measured by tomographic PIV fine-scale structures in homogeneous isotropic
turbulence and evaluated the velocity gradient tensor for calculation of the fields of enstropy
and dissipation rate, and Schröder et al (2013) evaluated vorticity in the flow following a
backward facing step. It should be remarked in turbulent flows at high Reynolds numbers,
spatial resolution becomes more critical (Tokgoz et al, 2012). Nevertheless, tomographic PIV
is to date the only established experimental technique for measurement of velocity fields in
such flows in a relatively large measurement volume (Westerweel et al, 2013).

The advent of diode-pumped solid state lasers and fast CMOS imagers has allowed for time-
resolved PIV measurements. Laser power available for each pulse however drops significantly
when increasing repetition rate. For uncorrelated measurements at 1 Hz, pulse energies of
400 mJ are reported, which is in stark contrast to pulse energies as low as 10-20 mJ for
time-resolved measurements (Table 2.1). To obtain better illumination of the measurement
domain, dual-pass or even multi-pass systems are used, which essentially redirect laser light
towards the measurement region through an arrangement of mirrors (Scarano, 2013). However,
even using such techniques pulse energy becomes increasingly critical at higher repetition rates.
Additionally, CMOS cameras can presently record 1024× 1024-pixel images at frame rates of
5 kHz (Westerweel et al, 2013), but to allow for higher frame rates the image format needs to
be reduced. It should be remarked the limitation on laser pulse energy is especially critical
for time-resolved tomographic PIV measurements, where a relatively large three-dimensional
volume needs to be illuminated. For this reason, the present thesis work focusses in particular
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2.2 Combining Computational Fluid Dynamics and PIV 7

on methods applicable to 3D datasets obtained from tomographic PIV.

The feasible repetition rates quoted above are mostly sufficient for water flows and low speed
air flows, but largely insufficient for aerodynamic problems with flow velocities of 100 m/s or
more. To overcome the measurement rate limitations, dual-PIV systems have been proposed
by Jakobsen et al (1997) and Liu and Katz (2006). These systems allow for calculation of
the material derivative of velocity at a single time instant without the requirement for time-
resolved system. However, even in the most ideal case these systems only provide information
at uncorrelated time instances, as the limitations on repetition rates are still present.

When the measurements are temporally under-resolved, i.e. at a measurement rate below what
is dictated by the Nyquist criterion, reconstruction of the velocity fluctuations using point-
wise interpolation techniques between consecutive measurements is not possible. Under the
assumption of flow quasi-periodicity, Druault et al (2005) proposed an interpolation technique
based on a proper orthogonal decomposition for time interpolation of PIV measurements.
This approach is however as expected only valid for the large-scale structures of the flow
(Bouhoubeiny and Druault, 2009). Similarly, synthetic temporal derivatives can be obtained
by phase averaging measurements (van Oudheusden et al, 2005). This does not require a
high repetition rate, but does require phase synchronisation and most importantly strong
periodicity in the measured flow field.

From the discussion above follows that no state-of-the-art tomographic PIV measurement
technique allows for time-resolved velocity measurements at repetition rates sufficient for
high-speed flows. Recall now the tennis ball example from the introduction. Where the
aforementioned techniques fail to reconstruct velocity fluctuations from temporally under
resolved measurements in turbulent flows, a physics based interpolation technique is expected
to improve upon them. This is investigated in more detail in the next section, by means of a
literature review on current methods applying CFD to velocity measurements.

2.2 Combining Computational Fluid Dynamics and PIV

Direct application of techniques used in computational fluid dynamics (CFD) to measurements
is not trivial, due to for example the sometimes strong stability requirements of CFD codes
and relatively noisy measurements (detailed in chapter 7). Additionally, as will be shown
in the experimental validation, the physics based interpolation technique proposed in this
thesis relies heavily on the availability of three dimensional measurements of all three velocity
components. The latter only recently became feasible after introduction of tomographic PIV
by Elsinga et al (2006). Possibly because of this, only limited literature is available on the
topic of increasing temporal resolution by simulation of the Navier-Stokes equations.

In the following sections a summary of the relevant state-of-the-art literature available is
presented. First, three existing approaches for increased temporal resolution based on the
combination of numerical simulations and PIV measurements are given in chronological order
in sections 2.2.1 to 2.2.3. Afterwards, the scope of the investigation is broadened to discuss
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8 Time-Resolved Particle Image Velocimetry

three techniques not aimed at increasing temporal resolution of PIV measurements, but which
use CFD techniques respectively for pressure calculation (section 2.2.4), filling spatial gaps
(section 2.2.5) and in the field of computer vision (section 2.2.6). The main conclusions of this
literature survey are summarised in section 2.3.

2.2.1 Measurement-Integrated Simulation

Hayase and Hayashi (1997) proposed to improve numerical simulations of the Navier-Stokes
equations by adding an artificial body force f to the momentum equation,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f , (2.1)

where the body force is proportional to the difference between the numerical simulation and
a velocity measurement multiplied by a gain factor K. This general framework is called
Measurement-Integrated (MI) simulation and allows for improvement of numerical simulations
through measurements even in a small part of the computational domain. However, as discussed
in Yamagata et al (2008), no satisfactory improvement of the temporal resolution is obtained
when the velocity measurements are temporally limited. A similar method was proposed by
Suzuki et al (2009a,b), who present a hybrid algorithm where velocity is computed as the
weighted average of a Large Eddy Simulation (LES) and a particle tracking velocimetry (PTV)
measurement. Similar to the MI simulations by Hayase and Hayashi (1997), this technique
requires simulation of the full flow field and uses measurements in part of the domain to
improve the numerical simulation.

A different approach, which can also be considered a measurement-integrated simulation is
proposed by Ma et al (2003). In their paper it is proposed to extract eigenmodes from PIV
measurements and use those to improve a numerical simulations. Again, the basis of such a
method is the numerical simulation and the measurements are solely used for improvement of
the simulation.

2.2.2 Linear Advection Model

In contrary to the MI simulations, which employ measurements to improve numerical simula-
tions, Scarano and Moore (2011) proposed a technique aimed at improvement of measurements
by reconstruction of velocity fluctuations between correlated measurements. A procedure
the authors appropriately named ‘time-supersampling.’ The technique is based on the as-
sumption of frozen turbulence and calculates velocity at time t in between two PIV velocity
measurements um at times T1 and T2 by solving

u(x, t) =
T2 − t
∆T

um(x1, T1) +
t− T1
∆T

um(x2, T2), (2.2)

Jan F.G. Schneiders M.Sc. Thesis



2.2 Combining Computational Fluid Dynamics and PIV 9

with ∆T = T2−T1 and where the locations x1 and x2 are found by solving the linear advection
equations

x1 = x− uc · (t− T1), (2.3)

x2 = x+ uc · (T2 − t). (2.4)

The convective velocity uc is estimated following an iterative procedure, with an initial
estimate based on the local velocity. In contrast to the MI simulation techniques, which
require simulation of the full flow field, the advection model takes as input only the velocity
measurements and computations are performed on the same computational domain and grid
as the measurements. Also, the linear advection model ensures continuity of the solution by
taking a weighted average a forward and backward projection between two measurements,
which is inexpensive compared to more advanced variational data assimilation techniques
employed by the methods discussed in the next section. Consequently, and also because a
relatively simple linear model is employed, the method is relatively inexpensive and readily
applicable to three-dimensional datasets from tomographic PIV, which has been demonstrated
in Scarano and Moore (2011) and Ghaemi and Scarano (2011).

In flows where the assumption of frozen turbulence holds to a large extent, such as for
example in a turbulent boundary layer where small turbulent fluctuations are transported at
a relatively high convection speed, the method is able to accurately reconstruct the temporal
velocity fluctuations between correlated measurements. Significant reductions of the required
measurement frequencies for accurate reconstruction have been demonstrated by Scarano and
Moore (2011) for such flows. The model however deteriorates rapidly in flows with strong
curvature of stream lines and acceleration, such as for example in a shear layer.

In the next section more advanced iterative adjoint-based methods are discussed. Taking into
account non-linear flow dynamics, these promise to improve upon the linear advection model
in non-linear flow regimes.

2.2.3 Iterative Adjoint-Based Navier-Stokes

Improvement upon the linear advection model is expected when the full Navier-Stokes equations
are simulated on the measurement domain. Lemke and Sesterhenn (2013) consider a such an
approach, where the squared difference between a numerical simulation of the Navier-Stokes
equations and the measurement is minimised by means of an iterative adjoint-based framework.
A similar adjoint based data assimilation technique was proposed by Gronskis et al (2013),
where measurements are used to estimate inflow and initial conditions for a direct numerical
simulation.

The approach proposed by Gronskis et al (2013) focusses mostly on usage of measurements
to improve direct numerical simulations. This is illustrated by Figure 2.1, which Gronskis
et al (2013) show in experimental validation of their method. The PIV measurements used
in the assimilation procedure (green diamonds) already have a sufficiently high temporal
resolution to capture the vortex shedding event, considering it is captured by approximately
five measurements. It is argued however that the result of the numerical simulation and
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10 Time-Resolved Particle Image Velocimetry

Figure 2.1: Temporal evolution of the spatial mean of the vorticity field in the wake behind a
cylinder; diamonds: measurements used in data assimilation; dashed line: initial approximation;
solid line: assimilated solution (figure reproduced from Gronskis et al 2013).

assimilation offers a higher spatial resolution than the PIV measurements. Note this is not the
topic of the present thesis, where focus lies on increasing temporal resolution of measurements
done at repetition rates below those dictated by the Nyquist criterion. The paper by Gronskis
et al (2013) however has a very relevant notion on the outflow boundary condition, which is
both unsteady and unknown in between subsequent measurements. To allow for the numerical
simulation to advance to the next time step, Gronskis et al (2013) estimate the unsteady
outflow boundary conditions using a convection equation,

∂u

∂t
+ uc

∂u

∂x
= 0, (2.5)

where uc is an estimate for mean convection velocity of the main structures in the flow. The
problem of unknown boundary conditions in between measurements also applies to the
time-supersampling approach proposed in the present thesis and is discussed extensively
in chapter 4.

The adjoint-based techniques discussed in this section can be seen as more advanced extensions
of the MI simulations by Hayase and Hayashi (1997) discussed earlier. The procedures are
essentially very generally applicable, however, due to the iterative nature of minimisation
of the cost function, are also significantly more expensive than the techniques discussed
before. Remarkably, Lemke and Sesterhenn (2013) specifically note “that the technique
demands high computational costs.” Gronskis et al (2013) make a similar remark and note
that, wile theoretically possible, extension of the method to three-dimensional datasets is
“computationally much more intensive”. Consequently, to date application of the methods to
3D datasets has not been demonstrated.

It should be remarked Gronskis et al (2013) note an interesting future application of their
study may be to perform the computation of complex external flows, by considering boundary
and initial conditions far downstream of the body, in contrast to the MI simulations discussed
before, which considered the full flow domain. Indeed, measurements can possibly be employed
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2.2 Combining Computational Fluid Dynamics and PIV 11

to only simulate the region of interest, circumventing the requirement for simulation of the
full flow domain.

2.2.4 Momentum Equation for Pressure Field Calculation

While not strictly a time-supersampling technique, CFD techniques have been used for
calculation of pressure fields from PIV measurements. As will be discussed in detail in
section 8.3, the momentum equation allows for calculation of the pressure gradient,

∇p = −ρ
(
∂u

∂t
+ (u · ∇)u

)
+ µ∇2u, (2.6)

when the spatial and temporal derivatives of velocity are known (van Oudheusden, 2013). For
steady flows or calculation of the mean pressure field this approach is frequently used, as in
those cases the temporal derivatives are not required and spatial derivatives are provided by
PIV (see for example Regert et al 2011).

More advanced techniques for pressure calculation using the momentum equation and its
divergence have been proposed by for example Hosokawa et al (2003), Regert et al (2011),
de Kat and van Oudheusden (2012) and de Kat and Ganapathisubramani (2013). These
however all rely on measurements with high temporal resolution or the assumption of steady
flow. This shows however that a general time-supersampling technique also has potential
for application in the field of pressure calculation, as it will be able to calculate temporal
derivatives from the reconstructed velocity fluctuations. This is elaborated in more detail in
chapter 8.

2.2.5 Filling Gaps in PIV Data with Navier-Stokes Simulation

Another approach that does not focus on time-supersampling is the technique proposed by
Sciacchitano et al (2012) to fill spatial gaps in PIV measurements (e.g. shadow regions) using
a finite volume incompressible Navier-Stokes solver. The solver is applied in the gap region,
with only a small buffer layer around it. This gives rise a boundary condition problem, because
the time step required for forward time integration is smaller than the time step between two
subsequent measurements. To make the problem well-posed, Sciacchitano et al (2012) use the
advection model (section 2.2.2) to calculate boundary conditions at integration times between
subsequent measurements.

When the flow measurements are sufficiently well resolved in time, or when the advection model
provides a good reconstruction of the velocity fluctuations to provide boundary conditions
at times between measurements, the approach proposed by Sciacchitano et al (2012) allows
for a significant improvement over standard interpolation techniques in spatial gaps. This is
illustrated in Figure 2.2, which shows the reconstruction of an artificial spatial gap in the PIV
measurement of a circular jet by both linear interpolation (middle) and the numerical simulation
technique (right). Clearly the numerical simulation shows significant improvement over the
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12 Time-Resolved Particle Image Velocimetry

Figure 2.2: Instantaneous velocity field reconstruction using a finite volume incompressible Navier-
Stokes solver in an artificial spatial gap in the PIV measurement of a circular jet; left: experimental
reference, middle: bicubic interpolation and right: numerical simulation (figure reproduced from
Sciacchitano et al 2012).

linear interpolation. However, the finite volume Navier-Stokes solver used by Sciacchitano
et al (2012) suffers from significant numerical dissipation. For example, the the negative peak
in the horizontal velocity component (Figure 2.2) is reduced by 40%. An alternative and more
conservative discretisation of the Navier-Stokes equations based on the vorticity formulation
of the momentum equation is used in the field of computer vision, as discussed in the next
section.

2.2.6 Alternative Approaches in the Field of Computer Vision

In the field of computer vision, physics based methods have been proposed for fluid motion
estimation. The developments have been surveyed in a recent review article by Heitz et al
(2010). Notably, Corpetti et al (2002) improved motion estimation using the continuity
equation and Cuzol and Memin (2005) have employed a vortex particle discretisation of the
momentum equation. Cuzol and Memin (2005) estimate by a very limited set of vortex particles
the vorticity and velocity fields as illustrated in Figure 2.3, which shows a measurement of a
vortex at the tip of an airplane wing (left figure) and the corresponding velocity field (middle
figure) estimated from a limited number of vortex particles (right figure). This reduced-order
model of the flow using a limited number of particles allows for use of an advanced data
assimilation technique, such as the Ensemble Kalman Filter (Evensen, 2003; Papadakis et al,
2010), as simulation is relatively inexpensive compared to full models. Related to this is also
the work of Ross et al (2010), who propose a method for extraction of vortices from velocity
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Figure 2.3: Motion tracking using a vortex particle discretisation; left: vortex at the tip of an
airplane wing, middle: motion field estimated at time t = 0 and right: the corresponding vorticity
distribution and the initial set of vortex particles (figure reproduced from Cuzol and Memin 2005).

measurements in order to define a reduced-order model of the flow field by for example a
limited set of point vortices.

Motion tracking using these reduced-order models has a relevant application for flows where a
small number of large scale structures dominate the flow and when there is limited interest
in smaller structures. In general this is certainly not the case for the flows considered with
PIV and it is desired that the result of time-supersampling has the same spatial resolution
as the original PIV measurement. It is however relevant to note the choice for the vortex
particle discretisation of the Navier-Stokes equations employed in the references given in this
section. As will be discussed extensively in the next chapter, such a Lagrangian discretisation
with vortex particles leads to a very stable and conservative simulation. This makes vortex
methods an interesting alternative to classical grid-based Navier-Stokes solvers, which often
suffer from significant artificial diffusion and strong stability conditions, requiring small time
steps and mesh spacings (see for example Sciacchitano et al, 2012).

2.3 State-of-the-Art Time-Supersampling

Following the literature review presented in the previous section, it can be concluded that
only the linear advection model by Scarano and Moore (2011) has proven, in flows were
assumptions made by the model hold, to be able to reconstruct velocity fluctuations between
measurements done at a rate below that dictated by the Nyquist criterion. Importantly,
application to three-dimensional datasets has also been demonstrated. The model however
deteriorates rapidly in flows where the assumption of frozen turbulence does not hold.

Alternative and more advanced approaches discussed have not been been applied to three-
dimensional datasets and most importantly, at the time of writing no substantial increase of
the temporal resolution of the original measurements is demonstrated by any of the alternative
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14 Time-Resolved Particle Image Velocimetry

methods. Therefore, while limited to flows dominated by a relatively large advection velocity
and limited streamline curvature, the linear advection model is considered the current state-
of-the-art technique for time-supersampling of PIV measurements. This highlights one of the
main motivations for the present work, in which a time-supersampling technique which allows
for accurate reconstruction for flows in general is developed.

Recall the discussion in the introduction, where it was proposed that an improved time-
supersampling technique can possibly be obtained by considering a more complete description
of the flow: the Navier-Stokes equations. Following the literature review in the previous
sections, a vortex particle discretisation of the momentum equation in vorticity-velocity
formulation is considered promising for application to measurement data, considering it is
currently successfully applied in the field of computer vision to measurement data. As noted
in for example Cottet and Koumoutsakos (2000) and references therein, vortex methods have
excellent conservation properties and because of their Lagrangian and mesh-free character
are not limited by conventional stability criteria, which is in stark contrast to the finite
volume Navier-Stokes solver employed by Sciacchitano et al (2012) for reconstruction of the
velocity field in spatial gaps in PIV datasets. Additionally, good accuracy of vortex methods
in under-resolved cases is found by Cottet et al (2002), who compared spectral and vortex
methods in three-dimensional flows. This is especially relevant considering the present work
does not aim for improvement of the spatial resolution of PIV measurements, but only the
temporal resolution.

It should be noted that vortex methods are essentially only applicable to incompressible
flows (Eldredge et al, 2002). However, this assumption is accepted, as there is already a realm
of applications within the field of incompressible flows. Indeed, most of the references in
the present chapter consider incompressible flows only. Also, in the field of computer vision
vortex methods have presently been applied to two-dimensional datasets and as mentioned
before, no extension to three-dimensional datasets is demonstrated. Therefore, in the next
chapter literature on vortex methods is reviewed to determine suitability of different families
of vortex methods for application to three dimensional measurement data and to select the
most suitable implementation for the present thesis work.
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Chapter 3

Overview of Vortex Methods

In the present chapter the advantages and disadvantages of different vortex methods are
discussed, considering the specific application to PIV measurement data. First, in section 3.1
a fundamental introduction into vortex methods is given. From this introduction, it follows a
distinction can be made between mesh-free and hybrid vortex methods, which is discussed
in detail in section 3.2. Subsequently, extending the discussion to three-dimensional flows
allows for a further distinction between vortex particle and filament methods, as detailed in
section 3.3. Finally, in section 3.4, treatment of solid interfaces in the measurement domain is
discussed.

3.1 Introduction to Vortex Methods

Vortex methods can be found in literature dating back to the early 1930s, with most notably
the hand-calculations by Rosenhead (1931), who was the first to compute the evolution of a
vortex sheet by discretising it into elemental vortices. For a complete historical overview of
the development of vortex methods following the work of Rosenhead, the reader is referred
to the book on vortex methods by Cottet and Koumoutsakos (2000). The ‘modern’ vortex
methods discussed in this chapter originate from the late 1970s and first review papers
including discussions on numerical simulation of three-dimensional flows using vortex methods
were written by Leonard (1980), Leonard (1985) and Anderson and Greengard (1985).

Vortex methods are based on discretisation of the vorticity transport equation in a Lagrangian
form. The vorticity transport equation is a vorticity-velocity formulation of the incompressible
Navier-Stokes equations,

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u+ ν∆ω + ∇× f , (3.1)
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with

∇ · u = 0, (3.2)

∇× u = ω. (3.3)

Equation (3.1) follows directly when the curl operator is applied to the incompressible
momentum equation. For completeness, its derivation is given in Appendix A.

Vortex methods are very suitable for calculation of viscous flows, as discussed extensively in
for example Cottet and Koumoutsakos (2000) and Barba et al (2005). The viscous terms are
however neglected in the present work to allow for reverse time integration. The desire for
the latter will become apparent in chapter 4. For the purpose of the present discussion, it
is important to note that neglecting viscosity does not limit the range of application of the
time-supersampling technique to inviscid flows only. The measured flow field itself may and in
most relevant cases will have been affected by viscous processes. It is only for the relatively
short integration time in between two subsequent measurements that the viscous terms are
considered negligible in the measurement domain. This same assumption is typically also also
made in the field of pressure evaluation from PIV measurements (e.g. van Oudheusden et al
2007 and Ghaemi et al 2012), as will be discussed in more detail in section 8.3.

In order to illustrate the Lagrangian character of vortex methods, in the remainder of this
section a two-dimensional flow in the absence of body forces is considered. In the case of
two-dimensional flow, the vorticity vector reduces to ω = [0, 0, ωz]

T and therefore the vorticity
transport equation under the aforementioned assumptions reduces to

Dωz
Dt

=
∂ωz
∂t

+ (u ·∇)ωz = 0. (3.4)

Two-dimensional vortex methods differ from grid-based Navier-Stokes solvers by the discretising
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3.2 Mesh Free and Hybrid Methods 17

vorticity not on a grid, but by a sum over N vortex particles,

ωhz =
N∑
i

αhi δ[x− xi(t)], (3.5)

where δ is the two-dimensional Dirac delta function and αhi the (constant) particle strength.
The latter is an estimate of the circulation around a particle located at xi. For example, when
the particles are initially regularly distributed at distance h in each direction (Figure 3.1),

αhi =

∮
∂Si

u · dli =

∫∫
Si

ω · dSi ≈ h2ω (xi, 0) , (3.6)

with Si = h2. To satisfy equation (3.4), the movement of each vortex particle is governed by
an ordinary differential equation (Leonard, 1980),

dxi
dt

= uh(xi, t). (3.7)

This implies vortex particles are advected with the local flow velocity as illustrated in Figure 3.2.
Velocity and vorticity are related through a Poisson equation,

∆uh = −∇× ωh, (3.8)

which follows from application of the curl operator to equation (3.3),

∇×∇× u = ∇ (∇ · u)−∆u = −∆u = ∇× ω. (3.9)

The solution of equation (3.8) allows, with appropriate boundary conditions, for calculation
of the divergence free flow field. It should be remarked it is not trivial that the solution of
equation (3.8) yields a divergence free velocity field and for a proof thereof the reader is referred
to Daube (1992) and Clercx (1997). Starting from an initial vorticity field ω(x, 0) = ω0 and
vortex particle distribution, the divergence free flow field can be calculated by equation (3.8),
which is used to update the vortex particle locations and accordingly vorticity, after which the
integration procedure is repeated.

A distinction between different classes of vortex methods can be made based on the method
used for solution of equation (3.8). In case the flow field is at rest at infinity, this equation
can be solved using an infinite domain Green’s function as discussed in Leonard (1980).
Alternatively, Christiansen (1973) proposed to solve the Poisson equation on a grid, which
results in a hybrid method where the grid values of velocity are interpolated to the Lagrangian
vortex particles. These different solution methods correspond respectively to ‘mesh-free’
and ‘hybrid’ vortex methods. In the next section the differences between these methods are
explained in more detail.

3.2 Mesh Free and Hybrid Methods

Assuming the flow is at rest at infinity, a truly mesh-free and infinite domain vortex method
can be obtained when calculating velocity using the Biot-Savart integral, which for a 2D flow
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Figure 3.3: left: Velocity field induced by one vortex particle and right: by two vortex particles
with equal but opposite strength.

and in the absence of interior boundaries reads (Leonard, 1980)

u(x, t) = − 1

2π

∫
(x− x′)× ez ωz(x′, t)

|x− x′|2
dx′, (3.10)

where ez = [0, 0, 1]T . It should be noted a similar integral can be derived for 3D flows (see for
example Leonard, 1985). Substitution of equation (3.5) into (3.10) allows for calculation of
the velocity at a location x by a summation of the velocities induced by each vortex particle,

uh(x, t) = − 1

2π

N∑
i=1

(x− xi(t))× ez αhi
|x− xi(t)|2

. (3.11)

To illustrate this equation, the velocity field induced by a single vortex particle and by two
vortex particles is illustrated in Figure 3.3, which shows the expected spinning motion of the
flow around an imaginary axis through the vortex particles. This formulation is especially
useful for infinite domain problems, with a relatively small number of vortex particles. For
example, in He and Zhao (2009) the mesh-free formulation is used to model rotor wake
dynamics. Indeed, particles only need to be initialised in parts of the domain occupied by
vorticity.

To allow for efficient solution of equation (3.11), instead of looping over all vortex particles,
the Fast Multipole Method is employed in modern mesh-free vortex methods (see for example
Cheng et al, 1999 and Cocle et al, 2008). This technique essentially groups vortex particles that
lie close together and treats them as a single source. It should be noted that vortex particles
tend to gather in regions with strong velocity gradients and therefore need to be frequently
reinitialised on regular locations to preserve accuracy for long-time simulations (Cottet and
Koumoutsakos, 2000).

An alternative vortex method is the Vortex-in-Cell (VIC) method proposed by Christiansen
(1973). This method solves equation (3.8) on a computational grid using a Poisson solver
and subsequently interpolates the velocity values from the grid to the Lagrangian vortex
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particles. Note the latter interpolation step does not lead to increased computational cost
compared to the mesh-free methods, considering in modern vortex methods particles are
typically regridded to the grid node locations at each integration time step (Cottet et al, 2002).
Also, despite the development of fast summation techniques for mesh-free vortex methods,
in bounded domains the solution of equation (3.8) on a grid using a Poisson solver based on
the Fast Fourier Transform is in many practical situations at least one order of magnitude
faster (Cottet and Poncet, 2003). Simulations by Cottet and Poncet (2003) show that only
when vortex particles occupy approximately less than 10% of the computational box required
by a grid-based Poisson solver, mesh-free vortex methods become more effective than hybrid
vortex methods. Similar conclusions have been reported in other recent literature by for
example Brown (2000), Chatelain et al (2008) and Ossmani and Poncet (2010).

Considering the relatively small measurement domains of tomographic PIV, the regions
occupied by vorticity generally span large part of the measurement domain, if not the full
domain. The measurement domain often does not reach up to the the free stream flow (see for
example Ghaemi and Scarano, 2011), violating one of the main assumptions in derivation of
equation (3.11). Therefore, hybrid vortex methods which solve Poisson equation (3.8) on a
computational grid are considered most appropriate for application to PIV measurement data.

Before moving to the next section, for completeness it should be remarked Christiansen (1973)
originally related velocity to vorticity through the vector potential ψ,

∆ψ = −ω, (3.12)

u = ∇×ψ. (3.13)

This has in 2D the advantage that only one Poisson equation needs to be solved for the scalar
stream function, where equation (3.8) needs to be solved for both velocity components. In 3D,
both formulations however require solving three Poisson equations. Because formulation of
velocity boundary conditions on the PIV measurement domain boundary is more natural with
equation (3.8), where the velocities can be specified directly, this formulation will be used.

In the next section the extension of vortex methods to 3D flows is discussed. In 3D, the
distinction between mesh-free and hybrid methods and the discussions in this section are still
valid, but also an additional distinction between vortex particle and vortex filament methods
can be made.

3.3 Extension to Three Dimensions

Short after the introduction of two-dimensional vortex methods, the methods were extended
to three-dimensions (see for example Leonard, 1985). Where the vortex stretching term is zero
in the two-dimensional case, it is non-zero in three-dimensional flows and can be identified at
the right hand side of the vorticity transport equation, again in the absence of body forces,

Dω

Dt
= (ω ·∇)u. (3.14)
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Analogously to the two-dimensional situation, vorticity can be discretised by a sum over vortex
particles (Leonard, 1985),

ωh =
N∑
i=1

αhi (t) δ [x− xi(t)] , (3.15)

which in three-dimensional flows carry the particle strength vector αhi (t). Analogously to the
2D situation (Figure 3.1), when the particles are initially located on a regular grid, the initial
particle strength vector is calculated from an initial condition on vorticity ω0 (see for example
Giovannini and Gagnon, 2006),

αhi (t = 0) = h3ω0 (xi) . (3.16)

Because the vortex stretching term can produce local vorticity intensification and reorientation,
the particle strength vector is time dependent and to satisfy the vorticity transport equation
is governed by an ordinary differential equation,

dαhi
dt

= (αhi ·∇)uh(xi, t), (3.17)

It should be remarked various alternative formulations of equation (3.17) can be found in
literature. For example, the observation that

ω · (∇u−∇Tu) = ω ×∇× u = 0, (3.18)

leads the the so-called the mixed scheme (Cottet and Koumoutsakos, 2000),

dαhi
dt

=
1

2
(αhi ·∇T )u(xpi , t) +

1

2
(αhi ·∇)u(xpi , t), (3.19)

which allows for computational savings because of symmetry of the matrix (∇ + ∇T )u, and
the transpose scheme used by for example Winckelmans and Leonard (1993),

dαhi
dt

= (αhi ·∇T )u(xpi , t), (3.20)

which has the advantage of conserving total vorticity. Note the original formulation does not
guarantee conservation of total vorticity as after discretisation, vorticity is not guaranteed to
be divergence free (Winckelmans and Leonard, 1988). A second conservative scheme used by
for example Cottet (1996), Walther and Koumoutsakos (2001) and Cocle et al (2008) is,

dαhi
dt

= ∇ · (u⊗ ω) . (3.21)

Recent numerical results discussed in Cottet and Koumoutsakos (2000) show the transpose
and mixed schemes actually yield less accurate results than the classical scheme (3.17), which
is expected to be caused by the fact that the transpose scheme may amplify initial disturbances
of the divergence free constraint (Speck, 2011). Furthermore, as discussed in Cottet and
Koumoutsakos (2000), it is expected that when particles are regridded frequently, the other
two schemes yield similar accuracy. For the present application to measurement data, the
classical scheme (3.17) is chosen over the formulation of (3.21), as the latter requires evaluation
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of spatial derivatives of both velocity and vorticity, whereas the classical formulation only
requires first order spatial derivatives of velocity, which is preferred to limit measurement
noise amplification, considering the present application to measurement data.

Up this point, the methods discussed discretise vorticity by a sum over Lagrangian vortex
particles. In three dimensions, an alternative discretisation can be made using a finite number
of vortex lines, which can be either closed or extending to infinity (Leonard, 1985). The
strength carried by each vortex filament is a scalar, which remains constant over time, similar
to the 2D scalar particle strengths and therefore such vortex filament methods can be seen as
a more straightforward extension of two-dimensional vortex methods. It was however already
noted by Chorin (1980) that there is no obvious method to generate filaments at a solid
boundary in a consistent manner. This is also discussed by Cottet and Koumoutsakos (2000),
who note the Lagrangian character of the filaments is purely an inviscid property and that
there is no clear-cut way to simulate diffusion with a filament method. In contrast, diffusion
can readily be implemented in vortex particle methods, using for example techniques described
in for example Cottet and Koumoutsakos (2000) and Barba et al (2005). Additionally, note
that the vortex filaments are infinite or closed lines. As mentioned earlier, tomographic
PIV measurements typically consider relatively small measurement volumes, requiring special
treatment for vortex filaments crossing the domain boundary. Because of this, and because the
possibility to include effect viscosity in the future is desirable, the vortex particle discretisation
is selected for the present application.

3.4 Treatment of Solid Interfaces

Obtaining reliable PIV measurements near solid walls is not trivial due to the presence of reflec-
tions and the possible appearance of ghost particles in the case of tomographic PIV (Stanislas
et al, 2003; Theunissen et al, 2008). Time-supersampling of PIV measurements including solid
wall boundaries, either inside the measurement domain or along one of the domain boundaries,
has to deal with increased measurement errors near the solid walls and possibly even with a
spatial gap between the first reliable velocity vector and the interface. The latter is essentially
a problem of gappy PIV (Sciacchitano et al, 2012) and a simulation may be required to fill
the gap region near the interface. Because the present thesis work can be considered as the
first attempt to improve upon the linear advection model by simulation of the Navier-Stokes
equations, the problem of solid wall boundaries is considered outside the scope of the present
thesis. It is however desired that the method can be extended to such problems in the future
and therefore in this section possibilities for extension of the VIC method to include solid
interfaces in the computational domain are briefly summarised.

When the computational domain contains a solid interface, the assumption of inviscid flow
needs to be revisited, considering viscosity is essential for correct implementation of the no-slip
condition. As mentioned earlier, vortex methods are especially suitable for modelling of viscous
flows and the assumption of inviscid flow is made mainly to allow for reverse time integration.
As will be discussed in the next chapter, the backwards time integration is weighted with
the result of a forward time integration to obtain a continuous solution in time. Because the
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vorticity transport equation is not reversible when viscosity is included, an alternative method
for obtaining continuity of the solution is required when viscous flows are simulated.

For inclusion of an interface in the computational domain, a body fitted grid can be used with
appropriate modification to the particle-grid interpolation functions near the boundary (see
for example Poncet, 2002). An interesting alternative is posed by the advent of immersed
boundary methods (Mittal and Iaccarino, 2005). In general, this is a family of methods for
simulation of viscous flows on grids that do not conform to the shape of the immersed and
solid interfaces. More specifically, the idea is incorporated in vortex methods by enforcing the
boundary conditions on interfaces through the addition of body forces (Cottet and Poncet,
2003; Morgenthal and Walther, 2007). The immersed boundary techniques for vortex methods
are especially interesting for the present application, as they do not require generation of
body fitted meshes and allow for relatively easy incorporation of complex boundary conditions.
Their accuracy can not always compete with body-fitted methods (Cottet and Poncet, 2003),
but in view of the present application to PIV data, which often is of lower quality near
interfaces, this may be considered acceptable. Therefore, in case the proposed super-sampling
technique is to be extended for application to measurement data including solid interfaces, it
is recommended that the immersed boundary technique is investigated.

From the discussions in the present chapter it is concluded that a hybrid vortex particle method,
the Vortex-in-Cell (VIC) method, is the most appropriate vortex method for application to PIV
measurements for the purpose of time-supersampling. In next chapter, the time-supersampling
procedure using VIC is outlined.
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In this chapter the outline of the time-supersampling technique using Vortex-in-Cell (VIC)
simulation, selected in the previous chapter, is proposed. First, in section 4.1 the procedure
itself is outlined, after which in section 4.2 estimation of the domain boundary conditions in
between measurements is discussed. Finally, in section 4.3 a method to a-posteriori estimate
the reconstruction accuracy is proposed.

4.1 Time-Supersampling Procedure

Examples of tomographic PIV measurements with sufficient spatial resolution for evaluation
of the velocity gradient tensor were given in chapter 2. Considering such measurements are
possible, a PIV measurement can be used directly as initial condition for VIC simulation on
a computational domain equal to the measurement domain, as the initial vorticity field can
be calculated from the three-dimensional velocity measurement. This is considered a much
more direct and computationally efficient approach to time supersampling than simulation of
the complete flow field as done by Measurement-Integrated simulations (section 2.2.1), but
requires estimation of boundary conditions in between measurements as will be discussed in
section 4.2.

With an initial velocity measurement at time T1 as initial condition for the VIC simulation, the
measured velocity field can be integrated forward in time until the next measurement at time
T2 is reached, as illustrated in Figure 4.1 (top figures). Subsequently integrating from time T2
to a third measurement at T3, using the measurement at time T2 as initial condition leads
to a discontinuity at time T2. To obtain continuity of the solution, a simple approach is to
apply a correction, linearly weighted over time, based on the difference between the solutions
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backward integration

forward integration
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measurement point
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Figure 4.1: The time-supersampling principle. top: increasing time-series resolution by combined
forward-backward integration between snapshots. bottom: temporal data reconstruction around
an isolated velocity field snapshot. right: diagrams representing the velocity temporal evolution
and its reconstruction.

at each measurement time. On the other hand, significantly more complex alternatives are
available from the field of data assimilation. In chapter 2 it was however already discussed
that such techniques come at high computational costs. For example, the Ensemble Kalman
Smoother (Evensen and van Leeuwen, 2000) is a powerful technique allowing for incorporation
of estimates of both measurement errors and errors in the numerical simulation, but requires
a large number of simulations for propagation of the uncertainties on each velocity vector
through the non-linear equations.

An interesting and rather inexpensive alternative is suggested by Scarano and Moore (2011),
who consider the weighted average of both a forward and backward projection of the advection
equation between two subsequent measurements (section 2.2.2). Analogously, when considering
a VIC simulation, the weighted average of a forward and backwards time integration between
two subsequent measurements can be used to obtain continuity of the solution. This only
requires two simulations between consecutive measurements, but is considered a significant
improvement over a single forward integration, as will also be shown in the experimental
validation (chapter 6). Recall from the previous chapter that backward time integration is
possible thanks to the assumption of inviscid flow. Therefore, the weighted average of a
forward time integration uhf and a backward time integration uhb between two measurements
at times T1 and T2 is calculated to obtain continuity,

uhw(x, t) = t∗ uhb (x, t) + (1− t∗) uhf (x, t), (4.1)

for T1 ≤ t ≤ T2 and with

t∗ =
t− T1
∆T

. (4.2)
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Note that the resulting velocity field uhw is divergence free,

∇ · uhw(x, t) = ∇ ·
[
t∗ uhb (x, t) + (1− t∗) uhf (x, t)

]
= t∗∇ · uhb (x, t) + (1− t∗) ∇ · uhf (x, t) = 0 + 0 = 0,

because the divergence operator is linear and both uhf and uhb are divergence free. It should
be remarked that in the remainder of this thesis work the subscripts are dropped and unless
stated otherwise uh refers to the weighted average of both a forward and backward integration.

The time-supersampling procedure proposed above is limited by a maximum integration
time, i.e. a maximum time separation ∆T between two subsequent measurements. A theoretical
maximum integration time can be derived from the simplified case of scalar convection, as the
time it takes for the information contained in the measured flow field to be convected out of
the measurement domain,

∆T <
L

Vc
, (4.3)

where L is the length of the measurement domain in direction of the dominant convective
velocity Vc. The inverse directly yields the requirement on the minimum acquisition frequency,

facq >
Vc
L
. (4.4)

Whether or not the theoretical maximum integration time can be reached depends largely on
the quality of the boundary conditions, which need to be estimated in between consecutive
measurements as discussed in the next section.

It should be remarked that when time-integration cannot be done up to the next measurement
because the time separation is too large (e.g. uncorrelated instantaneous measurements), the
method can still be applied to obtain information about temporal velocity fluctuations in a
short time τ around an instantaneous measurement, as also illustrated in Figure 4.1 (bottom
figures). As will be discussed chapter 8, when validated this may allow for calculation of
pressure fields from instantaneous tomographic PIV measurements.

4.2 Domain Boundary Condition Treatment

The value of velocity is known at the boundary of the domain only at the times measurements
are available. Therefore, the governing equations are ill-posed unless an estimate of the
intermediate boundary conditions is formulated. To investigate this problem in more detail,
consider forward time integration starting from a measurement at time T1. As discussed in the
previous chapter, from the initial measurement, vorticity ωh(x, T1 + ∆t) in the measurement
domain Ω can be calculated without the need for boundary conditions. It is for solution of
Poisson equation (3.8) that velocity at time T1 + ∆t needs to be prescribed on the domain
boundary ∂Ω.
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Because the Poisson equation is linear, it can be split into four separate equations. With

uh(x, T1 + ∆t) = u1 + u2 + u3 + u4, (4.5)

the solution of equation (3.8) at T1 + ∆t equals the sum of the solutions of

∇2u1 = 0, u1 = uh(x, T1) on ∂Ω; (4.6)

∇2u2 = −∇× ωh(x, T1), u2 = 0 on ∂Ω; (4.7)

∇2u3 = −∇×∆ω(x, T1), u3 = 0 on ∂Ω; (4.8)

∇2u4 = 0, u3 = ∆uh(x, T1) ∂Ω, (4.9)

where

∆ω(x, T1) = ωh(x, T1 + ∆t)− ωh(x, T1), (4.10)

∆u(x, T1) = uh(x, T1 + ∆t)− uh(x, T1). (4.11)

The sum of u1 and u2 describes the initial flow field at time T1, and u3 and u4 the change in
velocity in the measurement domain over one integration time step, due to respectively the
change in vorticity in the domain and the change in velocity on the domain boundary. Clearly,
equations (4.6) and (4.7) can be solved directly as both velocity and vorticity at T1 are known.
Furthermore, Poisson equation (4.8) can be solved as ωh(xg, T1 + ∆t) is calculated using the
VIC procedure. On the other hand, equation (4.9) accounting for changes in velocity on the
domain boundary cannot be readily solved, because uh(x, T1 + ∆t) is not measured.

When the velocity at a boundary is known, such as in case of uniform flow (i.e. free stream
condition), it can be applied directly. When the velocity is varying slowly along the boundary
a point-wise linear interpolation between consecutive measurements can be considered an
acceptable approximation of the velocity boundary condition at an intermediate time in
between two measurements. If unsteady conditions involve the boundaries of the domain, a
possibly better approximation can be made using the advection model by Scarano and Moore
(2011), outlined in section 2.2.2. The advection model was used previously for estimation of
unsteady boundary conditions by Sciacchitano et al (2012) for simulation of the Navier-Stokes
equations to fill spatial gaps in PIV measurements (section 2.2.5) and a similar method
was used by Gronskis et al (2013) for estimation of unsteady outflow boundary conditions
(section 2.2.6). Analogously, the advection model is also used in the present project for
estimation of unsteady boundary conditions.

To illustrate an important limitation of the approach outlined above, consider an inviscid
and incompressible flow, accelerated and decelerated by a piston moving right and left in an
infinite tube (Figure 4.2). In this case both a linear interpolation and the advection model are
unable to reconstruct the changes in velocity on the domain boundary (dashed in Figure 4.2),
as they depend entirely on the motion of the piston between the measurements at T1 (left
figure) and T2 (right figure). Also, in this situation, ω = 0 in the entire measurement domain
and hence by equation (4.8) velocity u3 = 0. On the other hand, u4 6= 0, but unknown, which
implies that in this rather extreme case the velocity fluctuations in the measurement domain
cannot be reconstructed.
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up(T1) up(T2)

Figure 4.2: Piston moving with speed up(t) outside of the measurement domain (dashed) in an
infinitely long cylinder measured at times T1 (left) and T2 (right).

The piston case is a rather extreme case, however, a similar situation can occur for example
in case of experiments on a model with moving boundaries, such as the robot dragonfly
DelFly (de Clercq et al, 2009). The problem is an information theoretical one, which can only
be correctly solved when the model is extended with, in the piston case, information about
movement of the piston, or in general, with information about the external flow dynamics.
The proposed time-supersampling technique simulates the interior flow dynamics and exterior
effects at a frequency higher than what can be reconstructed from the measurements are not
included in the reconstructed velocity fields. It should be remarked this can be considered ‘the
best possible’ when only the measurements are taken into account. Indeed, the state-of-the-art
advection model (section 2.2.2) suffers from the same limitation.

Considering there is a degree of uncertainty in assessment of the quality of the estimated
boundary conditions, a method to assess the reconstruction quality in the computational
domain is desired. In the next section such an estimate is proposed, based on the difference
between the forward and backward time integrations.

4.3 Reconstruction Error Estimation

The proposed vortex method for time-supersampling is a physics-based interpolation technique.
The accuracy of the reconstructed velocity field is dependent upon a number of factors: the
measurement accuracy of the initial conditions and of the estimated boundary conditions (see
the previous section); the quality of the flow model (e.g. the validity of neglecting viscosity);
and the numerical error in the model discretization.

The accuracy of the reconstruction is estimated using the Euclidean norm of the difference
between the solutions produced by forward and backward time marching. Such an a-posteriori
error estimate has already been proposed by Scarano and Moore (2011), however, an improved
estimate is proposed by averaging differences at all reconstructed time steps within one
measurement interval, weighted according to proximity to a measurement plane:

εest. =
100

Vref

[
1∑N

n=1wn

N∑
n=1

wn
4

∣∣∣uhf (x, tn)− uhb (x, tn)
∣∣∣2]1/2 , (4.12)

where uhf and uhb are respectively the solutions of forward and backward time integration and
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where the weights wn are calculated from the tent function,

wn =

{
tn − T1 tn − T1 ≤ 1

2∆T

T2 − tn tn − T1 > 1
2∆T

, (4.13)

where tn is an integration time between two consecutive measurements at T1 and T2 and
∆T = T2 − T1.

In the present work this error estimate is evaluated and compared to the actual reconstruction
error calculated using reference measurements, as part of the experimental validation of
the proposed time-supersampling technique in chapter 6. But first, in the next chapter the
numerical implementation of the proposed technique is presented.
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The numerical implementation of the proposed time-supersampling technique using VIC is
presented in this chapter. The time-integration procedure is outlined in section 5.1, after
which the criteria to set the integration time step are given in section 5.2. The numerical
implementation of the VIC method is verified by simulation of an analytical vortex ring in
section 5.3.

5.1 Time-Integration Procedure

The VIC method is explained in detail in literature, see for example Cottet and Koumoutsakos
(2000). In this section the numerical treatment will be explained, focusing on the changes to
the method for application to measurement data.

Starting from a measurement um(xg, T1) at time T1 on a grid with N nodes at locations
xg = {xg1,x

g
2, . . . ,x

g
N}, the time integration procedure consists in summary of the steps given

in Figure 5.1. In the sections below, the steps in this figure are discussed in detail.

Step 1: Initial Condition

The initial condition for the VIC procedure is the vorticity ωh(xg, T1) at the initial measurement
time T1, determined from the initial PIV measurement um(xg, T1). The proposed technique
does not try to increase the spatial resolution of the measurements and the computational
grid used is chosen equal to the measurement grid with nodes at locations xg.

As discussed by for example Foucaut and Stanislas (2002) and Raffel et al (2007), three
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um(xg, t)
Step 1.
Calculate ωh(xg, t)

Step 2a.
Calculate uh(xg, t)

Step 2b.
Particle initialisation, xp(t), αh(t)

Step 3.
Advect particles and update strength, xp(t+ ∆t), αh(t+ ∆t)

Step 4.
Calculate ωh(xg, t+ ∆t) on grid

uh(xg, t+ ∆t)

Figure 5.1: Flow chart of the first integration time step of the Vortex-in-Cell algorithm.

different techniques allow for calculation of vorticity from velocity um(xg, T1) measured by
PIV. The first one is based on finite difference operators applied to neighbouring grid points,
the second one is based on the analytical derivation of an analytic function fitted through the
velocity field (see for example Abrahamson and Lonnes, 1995) and the third one is based on
calculation of the circulation. Alternatively, following the method proposed in Ruan et al
(2001), the vorticity vectors may be calculated directly from digital particle images measured
by PIV. This has the advantage over the aforementioned methods that use adjacent velocity
vectors for gradient evaluation, that uncertainty in the vorticity values originates directly from
the particle image noise, instead of from uncertainty in the velocity vectors. Such a technique
is however not well established and in the present study, the vorticity field will be calculated
from velocity data to keep focus on the proposed time-supersampling technique.

From the study by Foucaut and Stanislas (2002) follows that good accuracy can be obtained
using a second-order central difference scheme, in comparison to the alternative techniques for
calculation of vorticity from velocity vectors. This is linked to the fact that the central difference
scheme presents a cut-off frequency equal to that of the PIV data. Furthermore, higher order
schemes are not desired as their respective noise amplification factor (Foucaut and Stanislas,
2002) increases with increasing order. Therefore, to set the initial condition, the vorticity
vectors ωh(xg, T1) are calculated using second order central differences from um(xg, T1).

Step 2a: Divergence Free Velocity Field

The divergence free velocity field uh(xg, T1) is calculated by solving Poisson equation (3.8)
using the Fast Fourier Transform (FFT). This is in VIC literature a standard and efficient
technique for solution of the Poisson equation on Carthesian grids (Cottet and Koumoutsakos,
2000) and the technique is well documented in for example (Sbalzarini et al, 2006). At the
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initial time T1 boundary conditions are taken from the measured velocity field at time T1. At
subsequent times, boundary conditions are approximated as explained in section 4.2.

It should be noted that the calculation of the divergence free velocity field is intrinsic to the VIC
procedure and that it is not calculated for noise reduction or data pre-conditioning. Several
studies have proposed to impose the divergence free condition for reduction of measurement
noise (see for example Schiavazzi et al 2013 and de Silva et al 2013). There is however
at the time of writing no established approach for minimisation of the divergence error in
PIV measurements. The effect of obtaining the divergence-free reconstruction by the VIC
procedure on the measurement noise is considered outside the scope of the present study and
will not be further discussed here. On the other hand, the effect of measurement errors on the
time-integration procedure is assessed in chapter 7.

Step 2b: Particle Initialisation

The measurement domain is divided into N equal volumes V p
i centred around each grid node,

as illustrated in Figure 5.2 for the 2D case with a Carthesian grid. In case of a uniform
Cartesian 3D measurement grid, V p

i = h3, where h is the distance between grid nodes.

A vortex particle is initialised in each volume V p
i at the location of the grid node, xpi (T1) = xgi ,

with strength

αhi (xpi , T1) = V p
i ω

h(xgi , T1) = h3 ωh(xgi , T1). (5.1)

As mentioned by for example Kudela and Kosior (2011), clustering of particles tends to occur
in regions with high velocity gradients. To prevent that particles gather together, the vortex
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particles are reinitialised on the grid nodes at each integration time step. As discussed in
chapter 3, this also means that grid values do not have to be interpolated to the particles, as
at each integration time step their locations initially coincide with the grid nodes.

Step 3: Particle Advection and Strength Update

The vortex particle location xpi (T1 + ∆t) at the next time step is calculated by solving
equation (3.7) using first-order Euler integration,

xpi (T1 + ∆t) = xpi (T1) + ∆t · uh(xpi , T1), (5.2)

where the integration time step ∆t is set as discussed in section 5.2. After particle advection,
the particles no longer coincide with the grid nodes, as was illustrated in Figure 3.2.

Particle strength is updated to account for vortex stretching. The updated particle strength,
αhi (T1 + ∆t), is calculated by solving equation (3.17) using first-order Euler integration,

αhi (T1 + ∆t) = αhi (T1) + ∆t ·αhi (T1) ·∇uh(xpi (T1), T1), (5.3)

where the spatial velocity derivatives are calculated using a second-order central-difference
scheme.

Step 4: Interpolation from Particles to Grid

Vorticity ωh(xg, T1 + ∆t) is calculated on the grid nodes by

ωh(xgi , t) =
1

h3

N∑
j=1

αhj (t) ϕ

(
xgi − x

p
j (t)

h

)
, (5.4)

where ϕ(x) = ϕ̂(x)ϕ̂(y)ϕ̂(z), with ϕ̂ an interpolation kernel. Originally Christiansen (1973)
used the Cloud-in-Cell interpolation technique (Birdsall and Fuss, 1969), where vorticity is
assigned to the grid points surrounding the particle through a piecewise bilinear interpolation
kernel. It was however noted already by Christiansen (1973) that better results could be
obtained with a smooth interpolation and by taking into account more grid points. Similar
conclusions were found by Ebiana and Bartholomew (1996), who assessed the performance of
various interpolation kernels. Significantly improved results have been reported in the past
decade using the M ′4 interpolation kernel introduced by Monaghan (1985),

ϕ̂(x) =


0 |x| ≥ 2
1
2 (2− |x|)2 (1− |x|) 1 < |x| < 2

1− 5
2x

2 + 3
2 |x|

3 |x| ≤ 1

, (5.5)

which has been used for VIC simulations by, amongst others, Walther and Koumoutsakos
(2001), Ould-Salihi et al (2000), Cottet et al (2002), Giovannini and Gagnon (2006), Morgenthal
and Walther (2007) and Kosior and Kudela (2013). This third order interpolation kernel,
given in Figure 5.3 for completeness, conserves total circulation and both linear and angular
impulse and will also be used for the present VIC implementation.
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Figure 5.4: Particles are sorted such that consecutive particles influence different subsets of the
mesh, as suggested by Walther and Koumoutsakos (2001); for example, the black particles assign
their vorticity to different grid nodes.

The interpolation kernel (5.5) is compact, chosen such that each particle influences 64 sur-
rounding grid points (a 4×4×4 point kernel). Because one particle is initialised at each grid
point, multiple particles will influence the vorticity at each grid point. Solving (5.4) directly
by looping over all particles results in an inefficient loop. As suggested by Walther and
Koumoutsakos (2001), the procedure can be vectorized when particles are ordered such that
consecutive particles are at least 5 grid points apart in each spatial direction (Figure 5.4). In
this order, particles stored consecutively in memory assign their strength to different subsets
of the mesh and the assignment procedure can be vectorized.

To correct for the fact that vortex particles near the domain boundaries redistribute their
vorticity to grid points outside of the computational domain, Cottet and Koumoutsakos (2000)
suggest an iterative method. To allow for a more computationally efficient solution of the
equations, in the present study a vorticity boundary condition is overlayed over grid points on
the domain boundary. The vorticity on the boundary is calculated from the velocity boundary
conditions, which are approximated as explained in section 4.2.

Step 5: Updated Velocity Field Calculation

The velocity uh(xg, T1 + ∆t) is subsequently calculated from ωh(xg, T1 + ∆t) by solving
equation (3.8) as in step 2 above. The integration procedure is repeated to calculate the
velocity field at time T1 + 2∆t from the velocity field at T1 + ∆t and onwards.

The procedure for backwards time-integration between measurements at T1 and T2 is similar
to the procedure outlined in this section, however, it starts from the second measurement at
T2 and integrates backward in time with time step −∆t.
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5.2 Integration Time Step

Inviscid vortex methods are not limited by classical CFL type stability conditions. As noted
by for example Cottet and Poncet (2003) and Chatelain et al (2008), Lagrangian particle
advection is linearly unconditionally stable and for non-linear stability it is sufficient that
particles do not collide. This imposes a limit on the time step related to the rate of strain of
the flow,

∆t1 ≤ ||∇u||−1∞ . (5.6)

This condition does not involve the mesh size and is often less restrictive than a classical CFL
condition.

To allow for vectorisation and to simplify implementation of the assignment procedure, where
vorticity is calculated on the grid from advected vortex particles (step 4), it is assumed that
each particle does not move more than the mesh cell size h in each spatial direction over the
integration time ∆t. This leads to a restriction on the maximum time step, which is identical
to the standard CFL condition,

∆t2 ≤
∣∣∣∣∣∣u
h

∣∣∣∣∣∣−1
∞
. (5.7)

A third pragmatic constraint on the maximum time step follows simply from the desired
sampling frequency:

∆t3 ≤ f−1super−sampled. (5.8)

In view of the stability conditions discussed in this section, it should be remarked that reducing
the mesh spacing h does not result in growth of instabilities when the conditions above are
satisfied. However, when the spatial resolution is insufficient for evaluation of the spatial
derivatives, this generally leads to underestimation of the initial vorticity and consequently
to underestimation of the amplitude of the reconstructed velocity fluctuations. This poses a
requirement on the spatial resolution of the tomographic PIV measurement, which can be
challenging in the turbulent flow regime at high Reynolds numbers (Westerweel et al, 2013).

5.3 Numerical Verification of the VIC Code

The proposed time-supersampling technique is developed for application to experimental
datasets. However, with appropriate initial and boundary conditions, also pure numerical
simulations are possible with the VIC implementation presented in this chapter. In this section,
the implementation of the presented VIC method, in a Matlab program written by the author,
will be verified by numerical simulation of a translating vortex ring. This test case was already
considered for vortex methods in Leonard (1985) and recently VIC simulation results have
been reported on the translational velocity of a vortex ring by Kosior and Kudela (2012, 2013),
which will be employed as independent reference.
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Figure 5.5: Vortex ring visualised by the Q-Criterion (left) and top view with dimensions (right).

The analytical thin-cored vortex ring is described in section 5.3.1 and the results of the
numerical simulations are given in section 5.3.2. Subsequently, in section 5.3.3 the results of a
convergence study are given, in order to verify the method is indeed first order in time and
second order in space.

It should be remarked that this section is solely presented as verification of the correct
implementation of the VIC method presented in this chapter. Complete validation of the full
time-supersampling procedure is done using experimental datasets in chapter 6.

5.3.1 Analytical Vortex Ring

The simulation of a thin-cored inviscid vortex ring in a quiescent fluid has been used recently
as a verification experiment for parallel and GPU based VIC methods by Kosior and Kudela
(2012, 2013). In the present study, this test case has been chosen, as it allows for verification
of the full 3D inviscid code and comparison of the results to both an analytical approximation
and another recent VIC implementation. As discussed in for example Green (1995), when the
initial vorticity distribution of a thin-cored vortex ring is chosen to be uniform with ωφ = K,
the translational velocity of the ring can be approximated by Kelvin’s formula (Kelvin, 1867),

U =
Γ0

4πR0

[
ln

(
8R0

ε0

)
− 1

4
+O

(
ε0
R0

)]
, (5.9)

where Γ0 is the initial circulation of the vortex ring, R0 the ring radius and ε0 the core radius,
with ε0/R0 � 1 (see also Figure 5.5). The constant K is set such that the initial circulation
of the vortex ring equals,

Γ0 = πε20K. (5.10)
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Figure 5.6: Velocity of the vortex ring at t = 6 as a function of initial circulation, in comparison
to results from Kosior and Kudela (2012, 2013) and Kelvin’s formula.

The vortex ring is modelled on the computational grid by setting the initial vorticity to
ωφ = K, at each grid node xgi = [xgi , y

g
i , z

g
i ]T that fulfils

(√
(xgi )

2 + (ygi )2 −R0

)2

+ (zgi )2 < ε20, (5.11)

and to zero elsewhere in the domain. Note that in derivation of equation (5.9), it was assumed
that the vortex ring translates steadily and without change of form (Green, 1995). It is however
expected that during the VIC simulation, the initially uniform vorticity distribution in the
vortex core will change over time, especially considering the discontinuous initial condition
and because the vortex ring is an unstable structure (Green, 1995; Kosior and Kudela, 2013).
Equation (5.9) therefore serves only as an indication of the translational velocity of the ring
and should not be taken as an exact reference.

5.3.2 Simulated Vortex Ring Velocity

The parameters for the VIC simulation are set equal to those used by Kosior and Kudela
(2012, 2013). The computational domain is a 2π × 2π × 2π box with the origin in its centre
at x = [0, 0, 0]T . Furthermore, the ring radius R0 = 1.5 and core radius ε0 = 0.3. The initial
circulation is varied, Γ0 ∈ [0.25, 1.5], and the simulation is run up to T = 6 with ∆t = 0.01.
However, instead of periodic boundary conditions, no through-flow boundary conditions are
used, as the code was developed for use with Dirichlet boundary conditions only. Also, because
of limited computational resources, a grid with 59 nodes, instead of 129, in each direction is
used.
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Figure 5.7: Temporal (left) and spatial (right) convergence.

Equation (5.9) shows the translational velocity of the vortex ring increases with increasing
initial circulation. This is confirmed by the simulation results given in Figure 5.6. However, it
can be seen that the results from the VIC codes are lower than the result from equation (5.9),
especially for higher values of circulation. The same result was found by Kosior and Kudela
(2012, 2013), who explained the higher translational velocities predicted by Kelvin’s formula
by the fact that the formula was derived for constant and uniform vorticity in the core, hence
having a discontinuity in vorticity at the surface of the ring, whereas during the simulation
the vorticity distribution smooths and and changes over time.

The results of the present simulation are within 5% of the results obtained by Kosior and
Kudela (2012, 2013). This is considered acceptable given the differences in especially the
boundary conditions and mesh size. Furthermore, kinetic energy dropped over the duration of
the simulation less than 1%, compared to 2% in Kosior and Kudela (2012).

The results in this section show good correspondence with the reference results, indicating the
VIC code has been implemented correctly. Before turning to a more quantitative validation of
the time-supersampling procedure using experimental datasets, in the following section spatial
and temporal convergence of the VIC code is studied.

5.3.3 Convergence

In this section both temporal and spatial convergence of the method is investigated. Results
with different time steps ∆t and grid node spacings h are compared to a reference solution
ur generated using respectively a small step and a fine mesh. The discretization error is
calculated as the root mean squared error over the domain at the final time T ,

ε =

√√√√ 1

N

N∑
i=1

|uh(xgi , T )− ur(x
g
i , T )|2. (5.12)

All simulations are done using an initial circulation of Γ0 = 0.5 and with the same computational
domain and vortex ring parameters as in the previous section.
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Figure 5.8: Convergence of the VIC method when using fourth order central differences and the
third order M ′

4 interpolation kernel.

For the study of temporal convergence the time step was varied between ∆t = 2 · 10−1 and
10−3 and results were compared to a reference solution computed with ∆t = 10−4. For the
reference solution, the vortex ring was simulated up to T = 0.2 on a computational grid
with 49 nodes in each direction. Time stepping is done using first order Euler integration
and therefore first order convergence is expected. This is confirmed by the results plotted in
Figure 5.7 (left figure), where the slope of the error plot equals 1 on the log-log scale.

Spatial convergence is studied by varying the number of grid nodes in each spatial direction
between 19 and 99. The simulation is run over 100 time steps with ∆t = 0.1 (T = 1). The
reference solution is calculated using 109 nodes in each direction, with fourth order central
differences for all spatial derivatives. The M ′4 kernel used for interpolation is of the third order
(see for example Giovannini and Gagnon, 2006; Morgenthal and Walther, 2007), however,
the proposed VIC method uses second order central differences in the interior domain and
therefore second order convergence is expected. This is directly confirmed by Figure 5.7 (right
figure), where the error in the interior domain is plotted by the solid dots and the slope of a
line through the points on the log-log plot is 2.

In order to verify third order convergence of the interpolation kernel, the simulation was also
done using fourth order central differences. For those simulations, the interpolation kernel is
limiting the order of spatial convergence and therefore third order convergence is expected.
This is confirmed directly by Figure 5.8, where the slope of the line through the points is 3.

This concludes the numerical verification of the implementation of the VIC code presented
in this chapter. It should be stressed that this is only a preliminary verification and full
experimental verification of the time-supersampling technique is presented in the next chapter.
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Chapter 6

Experimental Verification

Preliminary results were presented at the 10 th Int. Symp. on PIV (Schneiders et al, 2013)
Journal paper submitted to Experiments in Fluids currently under review

The proposed time-supersampling technique has been implemented as a Matlab program
and in the present chapter the technique is validated against two datasets from existing
tomographic PIV experiments, following the assessment method explained in section 6.1. The
first validation experiment is that of a turbulent wake behind a NACA airfoil (section 6.2) and
the second is a circular transitional jet (section 6.3). After the method has been validated for
application to tomographic PIV measurements, applicability of the method to two-dimensional
datasets is assessed in section 6.4.

6.1 Assessment Method

In section 4.3, an a-posteriori error estimate was proposed, based on comparison of the
forward and backward integrations. However, for validation of the time-supersampling method,
a comparison of the reconstructed velocity uh with the true velocity is desired. Because
time-supersampling is essentially reconstruction of velocity fluctuations in between PIV
measurements, by definition these are not measured by the PIV system. To allow for validation
despite this, Scarano and Moore (2011) suggested for validation of their linear advection model,
a validation based on super-sampling a sub-sampled dataset of PIV measurements.

Scarano and Moore (2011) consider reference tomographic PIV measurements um as the
‘ground truth.’ The PIV measurement rate fm is subsequently decreased artificially to fs by
sub-sampling the original data set (Figure 6.1) according to a Sub-Sampling Factor (SSF),

SSF =
fm
fs
. (6.1)

M.Sc. Thesis Jan F.G. Schneiders



40 Experimental Verification

t

u(x, t) reference (f = fm)

sub-sampled (f = fs < fm)

super-sampling by linear interpolation

Figure 6.1: Illustration of reference measurements sub-sampled with SSF=6; the dashed line
represents a linear interpolation through the sub-sampled measurements.

Subsequently, time-supersampling is applied to the sub-sampled velocity fields and the resulting
velocity fields are compared to the original time series. This is first done qualitatively by
visual comparison with the measured velocity fields in the spatial and temporal domains.
For a quantitative comparison, the metric used for the reconstruction uncertainty in the
reconstructed velocity is the Euclidean norm of the difference in reconstructed velocity with
the reference measurements and normalised by a reference velocity,

ε(xg) =
100

Vref

[
1

N

N∑
n=1

∣∣∣uh(xg, tn)− um(xg, tn)
∣∣∣2]1/2 , (6.2)

where tn are the times at which reference measurements um are available. Additionally the
method is compared with two other reconstruction techniques: the first is point-wise linear
interpolation; the second makes use of the advection equation (Scarano and Moore, 2011). The
latter is considered the current state-of-the-art time-supersampling technique (see chapter 2)
and is therefore selected as benchmark technique.

6.2 NACA Airfoil Trailing Edge Flow

In this first case a fully developed turbulent boundary layer leaves the trailing edge of a
NACA 0012 airfoil. The setup of the tomographic PIV experiment is illustrated in Figure 6.2.
Measurements are performed on a 40 cm chord airfoil at a free-stream velocity of 14 m/s.
The resulting Reynolds number based on chord length is ReC = 386,000 and based on the
boundary layer momentum thickness is Reθ = 1,300. Full description of the experiment is
given in Ghaemi and Scarano (2011) and salient features of the dataset are given in Table 6.1.

To fulfil the light demand of the tomographic PIV experiment, the laser beam is introduced in
a multi-pass light amplification system to increase illumination intensity in the measurement
domain (Ghaemi and Scarano, 2011). The measurement volume extends for approximately 5
times the boundary layer thickness along the streamwise and spanwise directions. The volume
thickness of 8 mm is slightly less than that of the boundary layer (δ99 = 10 mm) before the
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Camera 3

Camera 4

NACA 0012
U∞

Mirror

Mirror

Laser beam

Light Amplification Systemy
xz

Figure 6.2: The arrangement of the
cameras, airfoil and the multi-pass illu-
mination system in the tomographic
PIV experiment (figure reproduced
from Ghaemi and Scarano, 2011).

Figure 6.3: Organisation of low-
speed (blue/dark grey) and high-speed
(green/light grey) streaks (u′/U∞ =
±0.08) within the wake region behind
the NACA 0012 airfoil.

trailing edge. The tomographic recording system is composed of four Photron Fastcam CMOS
imagers. Despite this advanced setup, the tomographic PIV system could not be used at
a measurement rate beyond 2,700 image pairs/second, which is at the limit to capture the
temporal velocity fluctuations. At this measurement rate, a fluid parcel at the outer edge of
the boundary layer travels approximately 5 mm (0.5δ) between subsequent measurements and
will appear approximately 10 times in the measurement domain before exiting it downstream.
Accordingly, the maximum SSF calculated by equation (4.3) from the minimum frequency of
the sub-sampled dataset equals approximately SSFmax = 10.

The flow in the near wake of the airfoil features the typical pattern of fully developed turbulent
boundary layers with elongated low and high speed streaks (Figure 6.3). Most vortical
structures, cane vortices and hairpin packets, concentrate across the low-speed regions, where
ejections are more pronounced (Tomkins and Adrian, 2003). In the near wake region behind

Table 6.1: Turbulent wake flow measurement conditions.

Free stream velocity 14 m/s
Reynolds number ReC = 386,000 (Reθ = 1,300)
Seeding Fog droplets, 1 µm diameter
Illumination Quantronix Darwin-Duo Nd-YLF laser (2×25 mJ @ 1 kHz)
Recording devices 4×Photron Fastcam SA1 CMOS
Imaging f = 105 mm Nikon objectives
Acquisition frequency 2,700 Hz (pulse separation 42µs)
Measurement field 47× 47× 8 mm
Interrogation volume 32× 32× 32 voxel (1.47× 1.47× 1.47 mm3)
Vectors per field 128 × 128 × 22
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Figure 6.4: Contour plots of the streamwise (left), spanwise (middle) and out-of-plane (right) velo-
city components in the plane y = 0 at t = 0; top: reference measurements and bottom: divergence
free reconstruction.

the airfoil, Taylor’s hypothesis of ‘frozen turbulence’ holds reasonably well and supersampling
by advection has been demonstrated to be an accurate approach for increasing temporal
resolution (Scarano and Moore, 2011). Therefore, this experiment has been chosen to verify
whether the VIC method is able to reconstruct the time-resolved velocity fields in conditions
where the advection-based model can be considered as a reference technique.

6.2.1 Divergence Free Velocity Field

The first two steps in the time-supersampling procedure are respectively calculation of vorticity
ωh(x, T1) and the divergence free velocity field uh(x, T1) from a PIV measurement um(x, T1).
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Figure 6.5: Divergence of the reference measurement in the plane y = 0 at t = 0 (left) and the
divergence free reconstruction (right).
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Figure 6.6: Relative errors of the divergence free reconstruction of the velocity field, normalised
by the free stream velocity.

It should be recalled this is done as an essential part of the VIC time-intergration procedure
and not for pre-conditioning of the data. Because of measurement and model errors, generally
uh(x, T1) 6= um(x, T1). To assess quality of the divergence free reconstruction, contour plots
for all three velocity components in the spanwise plane at time t = T1 = 0 have been plotted
in Figure 6.4, with in the top row the reference measurements and in the bottom row the
divergence free reconstruction. From visual inspection of this figure it can directly be concluded
that the velocity fields are in good correspondence. Note boundary conditions for solution of
Poisson equation (3.8) at time t = 0 are taken directly from the initial measurement. The
latter is not divergence free and therefore it is expected that in a small region near the domain
boundaries, the divergence of velocity in the reconstructed field is non-zero. This is readily
confirmed by Figure 6.5, which shows the velocity divergence in the spanwise plane for both
the measured and reconstructed velocity field. As expected, divergence of velocity in the
interior domain is practically zero in the reconstructed field.

For a more quantitative assessment of the reconstruction quality, Figure 6.6 shows the
reconstruction error, calculated using equation 6.2 from the divergence free reconstruction of
100 reference measurements (right figure). The reconstruction error is also shown for each
separate velocity component and all the reconstruction errors have been normalised with
respect to the free stream velocity (respectively the first three figures). On the boundary,
velocity is taken from the measurements and therefore the error goes to zero on the boundaries
of the domain. Furthermore, typically in tomographic PIV the velocity component in direction
of the laser sheet thickness is least reliable (de Silva et al, 2013). This is confirmed by
Figure 6.6, which shows that the errors in the streamwise and spanwise velocity components
are similar (≈ 0.8%) and that slightly larger errors are present in the w-component (≈ 1%).

The error calculated from all three velocity components is approximately 1.4%. As this is
the difference between the measured velocity field and the divergence free velocity field, and
because the low-speed wake flow is expected to be divergence free, this is considered to be an
estimate for the measurement error. It should be remarked this estimate is only slightly in
excess of the measurement error of 1.3% predicted in Scarano and Moore (2011) for planar PIV
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Figure 6.7: Divergence free reconstruction (solid lines) of the measured streamwise velocity
component (dashed lines) at t = T1, along a spanwise line through the centre of the measurement
domain (y = 0) and for mesh spacings h (black) and 3h (red / grey).

measurements conducted on the same experiment. The slightly larger measurement error is
expected, considering the errors in tomographic PIV are expected to be higher.

In chapter 2 it was noted the spatial resolution of PIV measurements is generally sufficient to
allow for calculation of the spatial derivatives of velocity. When spatial resolution is limited,
vorticity peaks are expected to be underestimated, leading to underestimation of the amplitude
of the velocity fluctuations. This is confirmed by Figure 6.7, which shows the divergence free
reconstruction when the velocity field is spatially sub-sampled such that the mesh spacing
becomes 3h (red / grey lines). With this severely limited spatial resolution, the second order
finite difference scheme is unable to correctly evaluate the velocity spatial derivatives and the
resulting divergence free velocity field is strongly smoothed. On the other hand, Figure 6.7
shows, considering the estimated measurement error, at the original mesh spacing sufficiently
accurate reconstruction (black lines) is possible.

Based on the discussion in this section, steps 1 and 2a of the VIC procedure discussed in the
previous chapter are validated for this first test case, as indeed a divergence free velocity field
is calculated with an acceptable reconstruction error compared to the reference measurements.
The actual time-supersampling procedure is validated in section 6.2.3, but first in the next
section the integration time step is determined.

6.2.2 Integration Time Step

The minimum integration time steps set by the different criteria discussed in section 5.2 have
been calculated from the measurement data and are listed in Table 6.2. The limit on the
maximum vortex particle displacement is most critical, requiring the minimum integration time
step to be ∆tmin = 0.095 ms, which is approximately (20fm)−1. In comparison, Sciacchitano
et al (2012) quote a time step requirement of (2, 500fm)−1 for simulation of the shadow regions
in a flow over the same airfoil, but with a lower chord based Reynolds number of 100,000.

To assess the reconstruction quality at this minimum integration time step, the tomographic
PIV dataset is sub-sampled with a factor 8 (SSF = 8) and subsequently one single forward
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Figure 6.8: Reconstructed velocity time histories in a point in the centre of the measurement
domain, using a forward integration only and with decreasing integration time steps ∆t; left: stream-
wise velocity component, middle: spanwise velocity component and right: velocity component in
direction of laser sheet thickness.

integration between two consecutive measurements from the sub-sampled dataset is done.
The resulting velocity time history is shown in Figure 6.8 for a single point in the centre
of the measurement domain. In this figure, also a linear interpolation between the sub-
sampled measurements is shown. As discussed in section 6.1, for these simulations, only
the measurements at times t · fm = 0 and t · fm = 8 have been used and clearly the linear
interpolation is unable to reconstruct any of the relevant velocity fluctuations. On the contrary,
it can be seen in the time history plots that already using only a forward time integration
and with the minimum integration time step, rather good correspondence with the reference
measurements (solid circles) in between the sub-sampled measurements is obtained.

Full assessment of the reconstruction quality is given in the next section. In the present section,
first the effect of reducing the integration time step is studied. Simulation results with a
reduced integration time step are also plotted in Figure 6.8. Visually the results do not change
substantially when reducing the time step and it is expected that the reconstruction error,
calculated with respect to the reference measurements, for each of the forward integrations is
significantly larger than the differences between the solutions with the different integration
time steps. Indeed, the reconstruction error for all single forward integrations at SSF = 8 is
approximately 3%, relative to the free stream velocity, whereas the difference between the
solutions with ∆t/∆tmin = 1/2 and 1/4 is approximately 0.3%. Because visually the results

Table 6.2: Minimum integration time steps according to the three criteria discussed in section 5.2.

Criterion Equation ∆t [ms]

1 (non-linear stability) (5.6) 0.095
2 (maximum particle displacement) (5.7) 0.019
3 (for super-sampling to fm) (5.8) 0.370

M.Sc. Thesis Jan F.G. Schneiders



46 Experimental Verification

0 2 4 6 8 10 12 14 16 18 20 22 24
7

7.5

8

8.5

9

9.5

10

10.5

11

t [ms]

s
tr

e
a

m
w

is
e

 v
e

lo
c
it
y
 [

m
/s

]

 

 
Reference measurements (2700 Hz)

Divergence free reference (2700 Hz)

Sub−sampled with SSF = 4 (675 Hz)

 

 
Super−sampled to 20 kHz with Linear Interpolation

Super−sampled to 20 kHz with Advection Model

Super−sampled to 20 kHz with Vortex Model

0 2 4 6 8 10 12 14 16 18 20 22 24
7

7.5

8

8.5

9

9.5

10

10.5

11

t [ms]

s
tr

e
a

m
w

is
e

 v
e

lo
c
it
y
 [

m
/s

]

 

 
Reference measurements (2700 Hz)

Divergence free reference (2700 Hz)

Sub−sampled with SSF = 8 (338 Hz)

 

 
Super−sampled to 20 kHz with Linear Interpolation

Super−sampled to 20 kHz with Advection Model

Super−sampled to 20 kHz with Vortex Model

Figure 6.9: Reconstructed time histories of the streamwise velocity component in the centre of
the measurement domain, using a point-wise linear interpolation, the advection model and the
proposed vortex method. top: SSF = 4 and bottom: SSF = 8.

are converged with ∆t/∆tmin = 1/3 and because the reconstruction errors are an order of
magnitude larger than the truncation errors made with time integration, no further reduction
of the integration time step is considered necessary. Furthermore, it should be remarked that
to limit storage requirements, the results are stored with ∆t = 0.05 ms, corresponding to a
super-sampling frequency of 20 kHz.

6.2.3 Results of Time-Supersampling

The time history of the streamwise velocity component at a point in the centre of the
measurement domain is shown in Figure 6.9 for the cases of SSF = 4 and SSF = 8. The
temporal fluctuations of the streamwise velocity component have a typical time scale slightly
less than 1 ms (Ghaemi and Scarano, 2011). In this respect the current measurement rate
of 2.7 kHz is just sufficient to describe these fluctuations and it is therefore expected that
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Figure 6.10: Calculation of the weighted average from a backwards and forwards VIC integration
with SSF = 2 (top) and SSF = 4 (bottom); streamwise (left) and spanwise (right) velocity
components.

even at low SSF the reconstruction by linear interpolation will fail to reconstruct temporal
fluctuations. This is readily verified by inspection of the time series in Figure 6.9, where it is
shown that when the measurements are sub-sampled from 2.7 kHz to 675 Hz (SSF = 4), the
linear interpolation fails to reconstruct the temporal velocity fluctuations. Most fluctuations
of time scales smaller than 2 ms are clipped. In contrast, both the advection and VIC method
appear to be adequate, as they return a temporal evolution of the velocity fluctuations with a
good qualitative agreement with the measured reference data series. It should be noted that
the reconstruction by advection passes exactly through the sub-sampled data. In contrast, the
reconstruction obtained with the VIC method does not, since a divergence free velocity field is
produced from the actual datasets. For reference, the divergence free reconstruction has been
calculated at each time instant and is also plotted in Figure 6.9 (blue crosses). As expected,
the VIC reconstruction a passes through these exactly at each time instant corresponding to a
sub-sampled measurement.

When the sampling frequency is reduced further to 337.5 Hz (SSF = 8), the reconstruction
quality of both the advection and VIC models degrades, which is confirmed by the summary
of reconstruction errors given in Table 6.3. In calculating these relative errors the free stream
velocity is used as reference velocity and a dataset of 100 snapshots is considered. For
comparison to the reconstruction error, the last column shows the a-posteriori error estimate
εVIC,a−post., which is based on the backward and forward integration only and calculated using
equation (4.12).

To illustrate the calculation of the a-posteriori error estimate, both forward and backwards
time-integrations are plotted in Figure 6.10, where the time histories of the streamwise and
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Figure 6.11: Relative reconstruction errors for the advection and vortex models in the plane y = 0
with SSF = 4 and SSF = 8.

spanwise velocity components at a point in the centre of the measurement domain are shown
for the cases of SSF = 2 (top figures) and SSF = 4 (bottom figures). The results show that
as expected, for higher SSF, the difference between the forward and backward integrations
(shaded areas in Figure 6.10) becomes larger. Accordingly the a-posteriori error estimate is
larger for higher SSF, as also confirmed by the results in Table 6.3. Comparison of the error
estimate to the direct error shows the values are in good agreement, which indicates that
the a-posteriori error estimate from equation (4.12) may be taken as an estimator for the
reconstruction quality. For low SSF, the error estimate is smaller than the direct error, which
is for a large part due to the presence of measurement noise.

Even for a potentially exact reconstruction by supersampling, the measurement noise gives
a lower bound on the error. In the present experiment, the measurement uncertainty has
been estimated to be approximately 1.4% of the free-stream velocity based on the analysis of
the velocity divergence (section 6.2.1). It is therefore expected that the reconstruction error
is overestimated by a similar amount. Comparing the reconstruction errors in Table 6.3 to
the estimated measurement error shows the additional error introduced by super-sampling
using a linear interpolation is significantly larger than the measurement error. The situation
is improved substantially by using both the advection and vortex models. For super-sampling
using the linear advection model it remains in the same order up to approximately SSF = 4

Table 6.3: Reconstruction errors in for the turbulent wake case, calculated in the centre of the
measurement domain as a percentage of the free stream velocity.

SSF [-] fs [Hz] εLIN εADV εVIC εVIC,a−post.

2 1350 7.2 2.4 2.0 1.4
4 675 7.8 2.6 2.3 2.0
6 450 8.6 3.8 2.7 2.9
8 337 8.1 3.8 2.8 3.0
10 270 8.8 4.5 3.2 3.8
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and the additional error from super-sampling using the vortex model remains smaller than
the measurement error for SSF < 6.

As expected from the previous discussion, the spatial distribution of the reconstruction error
of VIC and linear advection (Figure 6.11) are comparable for SSF = 4. With a coarser
time resolution (SSF = 8) the direct error estimate calculated for the VIC technique is
slightly lower than that observed for the advection model. The situation near the inflow
and outflow boundaries shows an increase of the error and a more equivalent result between
the two methods, as the boundary conditions used for the VIC reconstruction are equal
to the solution of the advection equation on the boundaries. Inside of the measurement
domain the vortex method improves upon the advection model, indicating that perfect frozen
turbulence conditions cannot be assumed. Especially closer to the trailing edge of the airfoil,
the VIC model improves upon the advection model. This is explained by the velocity deficit
of approximately 30% in the inflow region of the measurement domain, which invalidates the
assumptions made by the advection model.

In summary, the results by Scarano and Moore (2011) have been confirmed and indeed the
advection model yields accurate results for this experiment where the assumption of frozen
turbulence holds to a large extent. The VIC model has been shown to yield approximately
equivalent results up to SSF = 4 and slightly better results for higher SSF. In the next section
a case where the assumption of frozen turbulence does not hold is considered, to verify if also
in such a case the VIC method is able to improve upon the advection model.

6.3 Transitional Circular Jet

The second case is that of a transitional circular jet (Figure 6.12), which flows from a nozzle
with exit diameter D = 10 mm installed at the bottom wall of a water tank. The tomographic
PIV measurements are performed with a jet exit velocity of 0.45 m/s, yielding a Reynolds
number ReD = 5, 000 based on the jet diameter D. The relevant experimental parameters
are listed in Table 6.4 and a full discussion of the experimental parameter setup is available

Table 6.4: Experimental parameters for the transitional jet following Violato and Scarano (2011).

Jet exit velocity 0.45 m/s
Reynolds number ReD = 5,000
Seeding Polyamide particles, 56 µm diameter
Illumination Quantronix Darwin-Duo Nd-YLF laser (2×25 mJ @ 1 kHz)
Recording devices 4×Lavision HighSpeedStar 6 CMOS
Imaging f = 105 mm Nikon objectives
Repetition rate 1,000 Hz
Measurement field (cylindrical) 30 mm (d) × 50 mm (h)
Interrogation vol. 40× 40× 40 vox (2× 2× 2 mm3)
Vectors per field 61× 102× 61
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Figure 6.12: Q-Criterion visualisation of the vortex rings in the transitional jet measured in a
water tank; left: reference measurement and right: divergence free reconstruction.

in Violato and Scarano (2011).

For the jet flow, less accurate results were reported by Scarano and Moore (2011) using the
advection model and therefore it is chosen as a second test case for the VIC method. The
free shear layer is dominated by the Kelvin-Helmholtz instability and strong vortices are
shed at approximately 30 Hz (Strouhal number of 0.67). The hypothesis of frozen turbulence
is not valid in this region, which as discussed in Scarano and Moore (2011) invalidates the
assumptions made by the advection model.

The flow field is visualised in Figure 6.12 (left figure), which shows isosurfaces for the different
velocity components and vortical structures as identified by the Q-Criterion (Hunt et al, 1988).
The tomographic measurements are done with a repetition rate of 1,000 Hz, whereby the
vortex shedding (at 30 Hz) is captured with very high temporal resolution. Based on the jet
exit velocity, the theoretical maximum SSF is estimated by equation (4.3) to be approximately
SSFmax = 90. However, as will be shown, the practical maximum SSF equals 60. This value
still represents quite an extreme as it corresponds to a sampling frequency of only 16.7 Hz,
which is about one quarter of the frequency required by the Nyquist criterion for reconstruction
of the temporal velocity fluctuations.

Following the same outline as in the previous section, first the calculation of the divergence
free flow field is verified (section 6.3.1). Subsequently, the integration time step is chosen (sec-
tion 6.3.2) and the results of time-supersampling are presented and analysed (section 6.3.3).

6.3.1 Divergence Free Velocity Field

The divergence free reconstruction of an instantaneous velocity field is visualised by the
Q-Criterion (Hunt et al, 1988) at time t = 0 in Figure 6.12 (right figure), next to the original
reference measurement (left figure). Visually the results are nearly identical, indicating
sufficient spatial resolution of the reference measurements. To allow for a more quantitative
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comparison, the average reconstruction error relative to the jet exit velocity in the axial plane
has been calculated with equation (6.2) and plotted in Figure 6.13. The errors are largest in
the shear layer, where they are in the order of 1–2.5% of the jet exit velocity, corresponding
to 0.1–0.25 voxels per measurement. Because the difference between the divergence free
reconstruction and the measurements is largest in the shear layer, the divergence in velocity for
the measurements is also expected to be largest in the shear layer. This is readily confirmed
by Figure 6.14, which shows the average divergence of velocity in the axial plane.

To illustrate the relatively larger error levels at x/D = ±0.5, Figure 6.15 shows the divergence
free reconstructions of the radial (left figure) and axial (right figure) velocity components
along the line x/D = −0.5 in the axial plane. This figure shows that when mesh spacing is
reduced to 4h, the velocity field is excessively smoothed (red / grey lines), but that with the
original mesh spacing h only minor differences can be observed (black lines). Especially in the
inflow region, y/D < 1.5, the divergence free reconstruction is a more smooth representation
of the measured flow field. Also, the amplitude of the axial velocity fluctuations is slightly
reduced by the divergence free reconstruction, with a reduction in the axial velocity peak at
y/D ≈ 1.5 of approximately 4%. For the purpose of the present project, this error is accepted,
considering good correspondence between the reference measurement and the divergence free
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Figure 6.16: Reconstructed velocity in the centre of the measurement domain, using a forward
time integration only, with decreasing integration time steps ∆t.

reconstruction in large part of the domain (see also Figure 6.12). Improvement of this first step
in the time-supersampling procedure is however envisaged to lead to improved reconstruction
quality and could possibly be achieved by pre-processing the measurements using techniques
for minimisation of the divergence error proposed in Schiavazzi et al (2013) and de Silva et al
(2013).

6.3.2 Integration Time Step

The minimum integration time steps set by the different criteria discussed in section 5.2
are listed in Table 6.5. As for the previous experimental test case, the limit on particle
displacement is most critical, setting the minimum time step to ∆tmin = 0.75 ms. Analogously
to the investigation for the previous test case, the effect of decreasing the time step further is
investigated. Figure 6.16 shows the result of forward VIC simulations in a point in the shear
layer with SSF = 30. Further reduction of the integration time step below the minimum time
step shows minor improvement and the results are visually converged with ∆t/∆tmin = 1/4. As
argued in the previous section, further reduction of the integration time step is not considered
necessary as the reconstruction error is significantly larger than the temporal discretisation

Table 6.5: Minimum integration time steps according to the three criteria discussed in section 5.2
for the transitional jet experiment.

Criterion Equation ∆t [ms]

1 (non-linear stability) (5.6) 3.1
2 (maximum particle displacement) (5.7) 0.75
3 (for super-sampling to fm) (5.8) 1
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Figure 6.17: Reconstructed time histories of the radial (left) and axial (right) velocity components
at in a point in the shear layer (x/D = −0.5, z/D = 0) using a point-wise linear interpolation, the
advection model and the proposed vortex method; top: SSF = 30, y/D = 2, middle: SSF = 45,
y/D = 2 and bottom: SSF = 45, y/D = 3.5.
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Figure 6.18: Reference measurements (top) compared to reconstructed velocity fields at SSF = 30
using a linear interpolation, the advection model and the vortex method; isosurfaces show
the streamwise velocity component v = 8 vox/ms (yellow), and vortices identified by the Q-
Criterion (green).

error. The integration time step is therefore set to ∆t/∆tmin = 1/4 for all further simulations
presented in this section. To reduce storage requirements, the simulation results are stored
with a time separation of 1 ms, making the sampling frequency of the super-sampled dataset
equal to the measurement frequency.

6.3.3 Results of Time-Supersampling

The time histories of the reconstructed radial and axial velocity components are plotted in
Figure 6.17 at a point within the shear layer (x/D = -0.5, y/D = 2, z/D = 0), for SSF = 30
(top figure) and SSF = 45 (middle figure). This location has been selected as it corresponds to
a maximum in reconstruction error of the divergence free field (Figure 6.13) and because it is
sufficiently far away from the boundary to exclude boundary effects, as discussed later in this
section. The bottom figure additionally shows the velocity time history at the same x and z
coordinates, but closer to the outflow region (y/D = 3.5) with SSF = 45. Considering that
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Figure 6.19: Relative reconstruction errors in the plane z/D = 0 with SSF = 30; left: linear
interpolation, middle: advection model and right: vortex model.

the period of the temporal fluctuations equals approximately 30 ms (corresponding to vortex
shedding) when the data is sub-sampled with SSF = 30, the resulting frequency becomes half
of that dictated by the Nyquist criterion. Not surprisingly, the linear interpolation is unable to
reconstruct the velocity fluctuations as illustrated in Figure 6.17. Furthermore, the advection
model completely fails to reconstruct the fluctuations at this low sampling frequency, as the
assumption of linearized trajectories according to frozen turbulence does not hold in this flow
case.

In contrast, the VIC method is able to accurately reconstruct the velocity fluctuations, even
though the sampling frequency is reduced to the vortex shedding frequency. Because the
divergence free step slightly damped the the axial velocity peak around y/D = 1.5 and
considering the jet exit velocity of approximately 0.5 m/s, a minor reduction in amplitude of
the axial velocity peak is expected at y/D = 2, approximately 10 ms after the first measurement.
This is confirmed by the results in Figure 6.17, which shows a reduction in the axial velocity
peak of approximately 4%. This corresponds to the figure found earlier in the divergence free
reconstruction and indicates numerical dissipation in the time-integration procedure is limited,
especially considering Sciacchitano et al (2012) reported amplitude reductions of 40% with
a finite volume Navier-Stokes solver to fill gaps in PIV measurement. Further reduction of
sampling frequency to 22 Hz (SSF = 45) shows some further reduction in amplitude of the
temporal velocity fluctuations for the VIC method. However, no phase distortion is noticeable.

Table 6.6: Reconstruction errors for the transitional jet case in the shear layer at x/D = −0.5,
y/D = 2 and z/D = 0 as a percentage of the jet exit velocity.

SSF fsub [Hz] εLIN εADV εVIC εVIC,a−post.

5 200 2.1 1.6 2.4 0.7
10 100 5.9 3.7 2.5 1.1
20 50 15.4 9.4 2.5 1.6
30 33 21.2 14.3 3.1 2.3
40 25 19.3 18.3 3.9 2.9
50 20 18.1 18.8 4.6 3.8
60 16 19.7 19.2 5.8 5.1
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Figure 6.20: Relative reconstruction errors in the plane z/D = 0 for increasing SSF; the white
line is plotted at a distance Le (equation 6.3) from the outflow boundary.

To analyse the spatial patterns produced by the different reconstructions, the case of SSF = 30
is taken and the temporal evolution of the jet is depicted in three time instants (Figure 6.18)
by visualisation of the Q-Criterion (green isosurfaces). The top plots show the reference
measurements. The bottom three respectively show a reconstruction using linear interpolation,
the advection model and the VIC method. At t = 0 ms the linear interpolation and advection
model are equal to the reference measurements, whereas the VIC reconstruction shows minor
difference as it returns the divergence free flow field. Already 5 ms later both the linear
interpolation and advection model cannot reconstruct the fluctuations as expected from the
previous discussions. The VIC method however captures the correct phase and location of
the vortex rings. Further at t = 15 ms the reconstruction is at the middle time between two
sub-sampled measurements. At this time instant the error is expected to be largest, because
both forward and backward integrations are used. The advection model breaks apart the
vortex rings and is clearly inadequate to reconstruct this velocity field with strong flow shear
and rotation. In contrast, the VIC method appears to reconstruct the velocity field rather
accurately without any visible distortion.

The reconstruction error, normalised using the jet exit velocity, is given in Table 6.6 at the
position in the free shear layer corresponding to the first two plots in Figure 6.17. From
the analysis on the divergence free velocity field, the largest errors are expected to be found
in the shear layer. This is confirmed by Figure 6.19, which shows the spatial distribution
of the reconstruction error for SSF = 30. From both the table and figure, one can see the
rapid increase of the reconstruction error of the advection model when increasing SSF. The
error reaches a maximum of approximately 20% for SSF > 30 and remains constant after
that. This indicates that the discrepancy between the reconstructed value and the actual
value has reached the same order as the variance of velocity fluctuations. The vortex method
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Figure 6.21: Calculation of the weighted average from a backwards and forwards VIC integration
with SSF = 30 (top) and SSF = 45 (bottom) in the shear layer at x/D = -0.33, y/D = 2.5 and
z/D = 0.

maintains reconstruction errors within 3-4% up to SSF = 40 (fs = 25 Hz), confirming its
suitability for these type of flows. Only for very low SSF ≤ 5, the advection model gives
smaller reconstruction errors than the VIC model. This is expected as the advection model is
forced to the reference measurements and instead of to the divergence free reconstruction.

Because the advection model is employed to provide the unsteady outflow boundary conditions,
the reconstruction errors of the VIC model are larger near the outflow boundary. Considering
the solution is the weighted average of both a forward and backward integration, an estimate
of the region affected by the incorrect boundary conditions can be made by

Le =
1

2

Vc
fs

=
1

2
SSF

Vc
fm

, (6.3)

where Le is the distance from the boundary affected by the boundary condition. This equation
is derived by assumption of convection of turbulent fluctuations on the boundary with a
constant convective velocity Vc. Setting Vc to the jet exit velocity yields for SSF = 30 that
Le/D = 0.7. A line drawn at this distance from the outflow boundary divides the domain in a
region expected to be unaffected and and a region affected by the outflow boundary condition,
as shown in Figure 6.20. In the same figure the results for other SSF have also been plotted.
As can be seen, equation (6.3) is a rather accurate estimate of the regions eroded by the
incorrect boundary conditions. Notably, because equation (6.3) can be solved before actually
performing an experiment, it can be used to obtain an estimate for the required minimum
measurement domain.

The three-dimensional velocity fields were reconstructed from the PIV particle images using
the fluid trajectory correlation (FTC) algorithm as introduced by Lynch and Scarano (2013),
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Figure 6.22: Relative a-posteriori reconstruction error estimates in the plane Z/D = 0 for
increasing SSF; the white line is plotted at a distance Le (equation 6.3) from the outflow boundary.

because the technique yields time accurate measurements with significant error reduction.
The time-supersampling procedure benefits from the relatively low measurement errors, as
illustrated by Figure 6.21, which shows only small differences between the forward and backward
integrations at the mid-times in between measurements. The a-posteriori error estimate
calculated from the differences between the forward and backward time-integrations is listed
in Table 6.6, The estimate underestimates the direct reconstruction error by approximately
one percent point, which is for a large part due to the presence of measurement errors. The
spatial distribution of the a-posteriori error estimate plotted in Figure 6.22 resembles the
actual direct reconstruction error. Notably, the higher reconstruction errors near the outflow
boundary are accurately estimated, indicating the error estimate can be used for a-posteriori
estimation of the eroded region near the boundaries, in addition to the estimate provided by
equation (6.3).

As discussed earlier, the maximum value of SSF that can be theoretically applied to this
experiment is approximately 90. The practical maximum value of SSF however cannot be
increased beyond 60 due to the uncertainty in the boundary conditions, which in this case
cannot be estimated accurately by the advection model. Increasing SSF from 50 to 60 already
increases the reconstruction error substantially (Table 6.6). However, this rather extreme SSF
of 60 corresponds to a measurement rate reduced from 1,000 Hz to only 16.7 Hz, which is
approximately half the frequency at which vortices are shed and one quarter of the required
sampling frequency according to the Nyquist criterion.

Up to this point in this chapter, it has been demonstrated that the proposed method yields
slightly more accurate results than the advection model in flow cases where frozen turbulence
can be assumed and that the proposed method is able to accurately reconstruct velocity
fluctuations in shear layers with strong curvature of streamlines. In such flows the advection
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model deteriorates quickly and significant improvement can be obtained by the proposed VIC
method. Notably, it has been shown that a stable and accurate reconstruction is possible
when reducing the sampling frequency to the vortex shedding frequency (SSF = 30).

The results in the present section already demonstrate a significant improvement of the proposed
model with respect to the state-of-the-art advection model. To complete the validation, a
sensitivity and robustness analysis is presented in the next chapter. First however, in the next
section applicability of the method to two-dimensional datasets is discussed.

6.4 Two-Dimensional Measurements

Planar PIV remains one of the most popular measurement techniques for fluid flows (Westerweel
et al, 2013) and even though laser power requirements are less critical, application of the time-
supersampling technique to planar PIV measurements is considered relevant. In this section
the VIC method is applied to two-dimensional slices extracted from the two tomographic PIV
experiments discussed in the previous sections in order to assess applicability of the method
to two-dimensional datasets. This approach is chosen over validation against planar PIV
experiments, as it allows for direct comparison of the results to the results presented above,
which considered the full three-dimensional datasets. Before the time-supersampling results
for planar data are given, first the required changes to the governing equations are discussed
in section 6.4.1. Subsequently the actual results are presented in section 6.4.2.

6.4.1 Implications for the Governing Equations

Time-supersampling is essentially only relevant for unsteady flows. Turbulence in such flows is
a strongly three-dimensional phenomenon and as discussed extensively in Boffetta and Ecke
(2012), two-dimensional turbulence is strictly speaking never realised in nature. Planar PIV
measurements of flows are therefore in most practical applications never a full description of
the flow field, as they lack the out-of-plane components. In this section the 2D VIC model
is derived from the full 3D equations to show how this can lead to reduced reconstruction
quality.

By definition, in truly two dimensional flows the ‘out-of-plane’ velocity component w is zero,

u =

uv
w

 in 2D
=

uv
0

 , (6.4)

and vorticity reduces to

ω =

ωxωy
ωz

 =

 ∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

∂v
∂x −

∂u
∂y

 in 2D
=

 0
0

∂v
∂x −

∂u
∂y

 = ez

(
∂v

∂x
− ∂u

∂y

)
. (6.5)
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Accordingly, Poisson equation (3.8) for calculation of the divergence free flow field reduces to

∇2

(
u
v

)
= −

(
+∂ωz

∂y

−∂ωz
∂x

)
−

(
−∂ωy

∂z

+∂ωx
∂z

)
in 2D
= −

(
+∂ωz

∂y

−∂ωz
∂x

)
, (6.6)

where it should be remarked that

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
in 2D
=

∂2u

∂x2
+
∂2u

∂y2
. (6.7)

This illustrates that the divergence free flow field can only be calculated from planar data, by
solution of this Poisson equation and under the assumption of two-dimensional flow, if both
|∂ωy

∂z | � |
∂ωz
∂y | and |∂ωx

∂z | � |
∂ωz
∂x | and if the out-of-plane velocity gradients of u and v are small.

It should be noted hence not only the flow itself needs to be sufficiently two-dimensional, but
also the measurement plane needs to be aligned such that the aforementioned inequalities hold.

Modelling the flow with a two-dimensional version of the VIC method has not only implications
for calculation of the divergence free flow field, but also for the time-integration steps. The
inviscid vorticity transport equation for the scalar vorticity ωz becomes

Dωz
Dt

=
∂ωz
∂t

+ (u ·∇)ωz
in 2D
= 0, (6.8)

because the vortex stretching term (ω ·∇)u = 0 in 2D, implying particle strength remains
constant over an integration time step and particles are only advected with the local flow
velocity. The out-of-plane velocity component w = 0 and therefore particles are advected only
in-plane,

dxpi
dt

in 2D
=

(
u(xpi , t)
v(xpi , t)

)
. (6.9)

The discussion in the present section exposes that, obviously, it is not trivial or even possible
to model a three-dimensional flow using a two-dimensional model. With the current approach
the out-of-plane velocity and the out-of-plane derivatives are neglected entirely. Approaches to
improve upon this, possibly using optimisation procedures treating the out-of-plane components
as unknowns, are considered outside the scope of the present thesis. It is therefore not expected
that the proposed technique allows for accurate time-supersampling of 2D measurement data,
considering most practical applications are in unsteady and turbulent flows which are inherently
three-dimensional. To assess this, in the next section the reduction in reconstruction quality is
evaluated when considering only a two-dimensional slice from the tomographic PIV experiments
discussed earlier in this chapter.

6.4.2 Time-Supersampling in 2D

First the case of the turbulent wake described in section 6.2 is considered. The spanwise plane
at y = 0 is extracted from the tomographic PIV dataset and serves as 2D dataset. From the
full 3D dataset, all three components of the vorticity vector have been calculated at time
t = 0 and are given in the histograms shown in Figure 6.23. The histograms show directly
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Figure 6.23: Histograms of the components of the vorticity vector in the turbulent wake flow at
t = 0 in the spanwise plane (y = 0); left: ωx, middle: ωy and right: ωz.
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Figure 6.24: Divergence free reconstructions of the spanwise velocity component at t = 0 in the
spanwise plane (y = 0); left: reference measurement, middle: reconstruction from the full 3D
dataset and right: from the planar data only.

that all three components of the vorticity vector are approximately equally distributed in the
chosen plane, indicating that the turbulent wake flow is, as expected, 3D and that none of the
components may be neglected. Indeed, the divergence free reconstruction calculated using
only ωz with the two-dimensional Poisson equation given in the previous section the lacks
essential velocity peaks as shown in Figure 6.24 (right figure) in comparison to the reference
measurement (left figure). For completeness, the divergence free field calculated using the
full 3D dataset is also given (middle figure), which shows good correspondence as already
discussed in the previous sections.

Calculating the difference between the divergence free reconstruction and the measurements
in the planar case using

ε =
100

Vref

[
1

N

N∑
n=1

(
uh(x, tn)− um(x, tn)

)2
+
(
vh(x, tn)− vm(x, tn)

)2]1/2
, (6.10)

yields an error of approximately 3% in the domain centre. In comparison, the error is only
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Figure 6.25: Results from 2D VIC simulation (SSF = 4) in the centre of the measurement domain.

1% when the plane is reconstructed using the full three-dimensional dataset. Note the latter
is lower than the reconstruction error reported in section 6.2.1, as errors in the out-of-plane
component are not included. The reconstruction quality when time-supersampling is therefore
expected to be reduced by at least a factor three. This reduction in reconstruction quality is
clearly visible in Figure 6.25, which shows the super-sampling results with SSF = 4 using both
the 2D and 3D VIC model in the centre of the measurement domain. As discussed earlier
in this chapter, the 3D VIC code allows for accurate reconstruction of the temporal velocity
fluctuations at this SSF. On the contrary, the 2D code is able to reconstructions some of the
velocity fluctuations, but fails to capture all fluctuations accurately.

The linear advection model has also been implemented in two-dimensions and the time-
supersampling results are also plotted in Figure 6.25. Interestingly, this model is able to yield
rather accurate results for this flow case and the model does not seem to suffer much from
absence of the full 3D velocity data. This is explained by the fact that the flow and plane
considered is one where the assumption of frozen turbulence holds very well, the dominant
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Figure 6.26: Histograms of the components of the vorticity vector in the transitional jet flow at
t = 0 in the spanwise plane (y = 0).
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Figure 6.27: Results from the 2D VIC simulation with SSF = 30 at x/D = -0.5, y/D = 2, z/D
= 0 in the transitional jet flow case; left: radial velocity and right: axial velocity

convection velocity is directed along the plane and the advection model is designed specially
to model such flows.

When time-supersampling slices extracted from the axial plane in the transitional jet experi-
ment, the advection model is expected to fail also in 2D. On the contrary, a more reasonable
VIC reconstruction is expected because in the axial plane of the jet, the in-plane vorticity
components are significantly smaller than the out-of-plane component (see Figure 6.26). This
is readily confirmed by Figure 6.27, which shows the time-supersampling results at a point
in the shear layer with SSF = 30. Note however that the axial velocity fluctuations are
damped substantially, which leads to a significantly higher reconstruction error in the 2D case
(εV IC,2D = 7.6%) than when the full 3D dataset is considered (εV IC,3D = 2.3%).

The results in this section show that the proposed technique can be applied to two-dimensional
datasets, but that quality of the results depends strongly on whether or not the flow case
considered is sufficiently two-dimensional. The reconstruction quality of the two-dimensional
model using planar data deteriorates quickly in three-dimensional flows and application of the
proposed technique to planar data is not recommended, considering most relevant flow cases
are inherently three-dimensional.

In this chapter the proposed time-supersampling technique has been validated using experi-
mental tomographic PIV datasets. When applied to three-dimensional datasets, the method
has shown an improvement over the state-of-the-art advection model in all flow cases. Most
notably, in a shear layer with strong streamline curvature the proposed technique is able to
accurately reconstruct velocity fluctuations, even when the dataset was sub-sampled to below
the frequency dictated by the Nyquist criterion. No stability issues were found, despite real
PIV datasets including measurement noise were used. However, to assess the effect of increased
measurement errors, in the next chapter the robustness of the method to measurement errors
is assessed.
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Chapter 7

Sensitivity and Robustness

The proposed time-supersampling technique was validated in the previous chapter using
real-world tomographic PIV experiments. These, being measurements, included measurement
errors and it was already noted the measurement errors form a minimum to the attainable
reconstruction quality. In this chapter the effect of measurement noise is studied in more
detail to assess robustness of the proposed technique. First, in section 7.1 the assessment
method is outlined. Subsequently, sensitivity to two main types of measurement errors are
studied: firstly outliers (section 7.2), and secondly precision errors (section 7.3).

7.1 Assessment Method

In the recent review paper by Westerweel et al (2013) it is noted that “the study of ghost particles
(Elsinga et al, 2011) is currently the only available theoretical framework for understanding
measurement errors in tomographic PIV.” Because very limited literature is available on errors
in tomographic PIV measurements and a specific error investigation is considered outside
the scope of this thesis, this chapter focusses on the two main types of measurement errors
expected to occur: outliers (section 7.2) and precision errors (section 7.3).

In the previous chapter, reference measurements um were considered as ground truth, but in
reality included measurement errors εm. Hence

um = ut + εm, (7.1)

with ut the true velocity field. To assess the effect of measurement noise, in this chapter
artificial errors εa are added to the transitional jet tomographic PIV measurements,

un = um + εa = ut + εm + εa, (7.2)

with εa the artificial measurement error and un the resulting velocity field, under the as-
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Figure 7.1: Velocity vector plots in the plane z/D = 0.125, with artificial spurious vectors.

sumption that εm � εa, i.e. an artificial error is added, which is substantially larger than
the measurement error. The jet case is selected, because it was shown to have a relatively
small measurement error, as it could be processed with the FTC technique (section 6.3).
Time-supersampling of sub-sampled ‘noisy’ datasets is subsequently done with the proposed
technique and the results are compared to the original reference measurements in order to
assess the effect of the artificial error level on the reconstruction quality.

7.2 Sensitivity to Outliers

Velocity vector fields obtained by PIV can contain outliers, as discussed in for example Raffel
et al (2007). These outliers are spurious velocity vectors, deviating in both amplitude and
direction from nearby velocity vectors (Westerweel, 1994) and can occur in blocks when
interrogation window overlap is used when processing the PIV images. They occur when there
is no dominant correlation peak and consequently the magnitude of a component of a spurious
vector can range anywhere between ±1

2Ws, with Ws the interrogation volume size. Outlier
detection and replacement is listed as one of the first post-processing steps for PIV data in
Raffel et al (2007), and can be done using for instance the techniques discussed in Westerweel
(1994) and Westerweel and Scarano (2005).

As discussed in Raffel et al (2007), in challenging experimental situations spurious vectors
in 5% of the domain can be expected. In this section it will be investigated whether the
VIC technique is able to handle unprocessed velocity fields, still containing such a significant
number of outliers. Figure 7.1 shows part of the jet measurement with 5% spurious vectors
added to the data, both as single vectors and in 3×3×3 blocks. The artificial spurious vectors
are generated by selecting a velocity between ±1

2Ws for each component of the velocity vector
with uniform probability.

The outliers cause, with their random direction and large magnitude, strong discontinuities in
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Figure 7.2: Time super-sampling applied to a dataset containing 5% outliers with SSF = 8; left:
initial measurement, middle: divergence free reconstruction and right: reconstructed velocity field
at t = 5 ms. The range of the colormap has been clipped to show the relevant velocities only,
high amplitude outliers are shown in dark red and blue.

the velocity field. From the results in the previous chapter it is expected that the velocity field
is smoothed in the second step of the VIC procedure, where the divergence free reconstruction
of the initial measurement is calculated from the measurement data. This is confirmed by the
velocity vector fields in Figure 7.1, which shows the VIC reconstructions of the velocity fields
at the initial time step. In the case of single (1× 1× 1) outliers, the velocity vectors are largely
corrected in the high speed flow region, where the difference between the outlier magnitude
and the flow velocity is small. Figure 7.1 shows however the outliers have a noticeable effect in
the region outside of the jet (x/D > 0.75). Furthermore, when the outliers appear in blocks of
3× 3× 3 vectors, the VIC code is unable to reconstruct the reference velocity field starting
from the initial time step. From this analysis, it can be concluded that the method in its
current form should not be used for outlier replacement, as it is unable to remove the blocks of
outliers. Because the VIC method is chosen for its good conservation properties, the vortices
induced by large blocks of outliers are expected to remain in the solution throughout the time
integration procedure. This is confirmed by Figure 7.2, which shows the result is severely
corrupted by the outliers already at t = 0 (middle figures) and continues to degrade when
integrating forward in time (right figures).

The analysis in this section shows that the proposed time-supersampling method is unable
to correctly replace especially blocks of outliers. Therefore, to obtain a correct velocity field
reconstruction, the PIV measurement data must first be subject to outlier detection and
replacement, following techniques proposed by for example Westerweel (1994) and Westerweel
and Scarano (2005). It should be remarked that outlier detection and replacement is, while
not trivial, at the moment a standard first step in post-processing PIV data (see for example
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Raffel et al, 2007). Further investigation in use of the VIC procedure and especially the
divergence free velocity field calculation step for correct replacement of outliers is left as a
topic for further research.

7.3 Sensitivity to Precision Errors

The robustness of the VIC model in cases where the measured flow field contains a large
precision error is investigated in the present section. In contrary to the outliers discussed in
the previous section, which were spurious vectors that could have any amplitude allowed by
the interrogation volume size, precision errors are relatively small random errors affecting the
magnitude of each velocity component. For modelling purposes, in this section, it is assumed
to be normally distributed,

εa ∼ N (0, σ2), (7.3)

and temporally uncorrelated. The assessment is performed by super-sampling velocity fields
with SSF = 30 (fs = 33 Hz) and therefore the latter assumption is justified, as the time
between subsequent measurements considered is sufficiently large.

The analysis in this section considers both spatially uncorrelated and correlated precision
errors. Similar as in the case of outliers, spatially correlated precision errors can occur when
interrogation volume overlap is used in processing of the PIV particle images. Scarano (2013)
shows in an overview of recent tomographic PIV experiments interrogation volume overlap of
75% is used most frequently. With such overlap, the precision errors of seven neighbouring
vectors in one direction are expected to be correlated, with five neighbouring vectors relatively
strongly correlated by sharing at least 50% of the interrogation volume used by the mid-
vector. For the present investigation, spatially correlated precision errors are simulated by
adding uncorrelated noise to a coarse grid and interpolating this to the finer measurement
grid. The resulting autocorrelations in one spatial direction are given in Figure 7.3, showing
as expected the wide correlation peak in the case of spatially correlated noise (right figure).

In Carr et al (2009) it is discussed that spatial correlation of precision errors essentially leads
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Figure 7.3: Normalised autocorrelation peaks for the uncorrelated (left) and spatially correlated
(right) precision errors.
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Figure 7.4: Divergence free reconstructions of measurements corrupted by precision errors (εm =
10%) in the case of uncorrelated errors (left) and spatially correlated errors (right).

to a more smooth and continuous error distribution. This is confirmed by Figure 7.4 which
shows the radial velocity along the line x/D = −0.33, z/D = 0 in case uncorrelated noise
(left figure) and correlated noise (right figure) is added, in both cases such that εm = 10% of
the jet exit velocity. This error εm is defined as the root mean squared difference between
the reference measurements and the measurements including artificial noise, similar to the
reconstruction error defined by equation 6.2. The VIC divergence free reconstruction is also
plotted in Figure 7.4 for both cases of correlated and uncorrelated errors. Remarkably, the
divergence free reconstruction handles the case of uncorrelated noise very well and significantly
reduces the measurement error by 75% to approximately ε = 2.5%. On the other hand, in case
of spatially correlated noise the divergence free reconstruction rather accurately reconstructs
the velocity field with the artificial noise. Consequently, the error compared to the reference
measurements remains rather high, ε ≈ 6.5%, but is still 35% lower than the error in the
original measurements with artificial noise.

From the discussion above it is expected that the proposed method is able to handle uncorrelated
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Figure 7.5: Initial measurement of radial velocity at t = 0 ms including spatially uncorrelated
precision errors (εm = 10%, left), reference measurement at t = 15 ms (middle), VIC reconstruction
at t = 15 ms (right).
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Figure 7.6: Time-histories of the radial (left) and axial (right) velocity components in the axial
plane at x/D = −1/3 and y/D = 5/2 when a normally distributed error with σ = 6% of the jet
exit velocity has been added to each velocity component.

precision errors rather well. This is confirmed by the contour plots in Figure 7.5, which shows
the time-supersampling result for SSF = 30 at t = 15 ms (right figure) when starting from an
initial condition with uncorrelated artificial precision noise (left figure, εm = 10%). Despite
the simulation started from a measurement corrupted by a significant amount of noise, the
VIC procedure is stable and able to relatively accurately reconstruct the reference flow field at
t = 15 ms (middle figure). The time history of radial and axial velocity at a point in the shear
layer plotted in Figure 7.6 confirms these results and shows relatively accurate reconstruction
is still possible when the measurements with a significant noise level are sub-sampled to below
the Nyquist frequency. The acceptable amount of precision noise is not unlimited however.
When the artificial noise level is increased such that εm = 26% of the jet exit velocity, the
simulation is no longer stable as shown in the time history in Figure 7.7. However, with
measurement error levels of a quarter of the jet exit velocity, the measurement would normally
be discarded and not even considered for time-supersampling.

Expectations for accurate and stable reconstruction are lower for the case of spatially correlated
noise following the results in Figure 7.4. The accuracy of the divergence free reconstruction,
obviously, suffers from the smooth correlated noise, which is hard to detect even visually. The
flow field with correlated noise (εm = 10%) used as initial condition for supersampling with
SSF = 30 is given in Figure 7.8 (left figure). Remarkably, even at this rather extreme noise
level and despite significant distortions to the correct flow field (Figure 7.4), the simulation is
stable and yields very reasonable results at the mid-time in between two measurements (right
figure). Especially at the mid-time between two consecutive measurements, reconstruction is
especially good as the reconstruction benefits from evaluation of the weighted average from
the backward and forward time integration.

To investigate this in more detail, the reconstruction errors of both the individual forward
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Figure 7.7: Result of a forward VIC simulation with SSF = 30 in the point x/D = −0.5, z/D = 0,
y/D = 0.8, when artificial precision error in the measurements in increased to εm = 26%.

and backward integrations and the weighted average have been evaluated at each time instant
in between two measurements and plotted Figure 7.9. This figure shows for all artificial noise
levels and for both the forward and backward integrations the expected behaviour of increasing
reconstruction error over integration time. However remarkably, for high artificial error levels
(εm > 6%) the reconstruction error of the individual forward and backward integrations
remains approximately constant over a short time, indicating the proposed time-supersampling
technique can allow for noise reduction as will be explored further in chapter 8. Furthermore,
it was already noted that the weighted average yields significant improvement in reconstruction
quality, which is readily confirmed by the results in Figure 7.9. For relatively low noise levels
(εm < 6%) the error is highest at the mid-time in between two sub-sampled measurements, but
for high noise levels (εm > 6%) the error reaches a minimum in between two measurements.
The VIC reconstruction with such high noise levels benefits strongly from the weighted average
of the two independent forward and backward integrations, as the measurement errors are
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Figure 7.8: Initial measurement of radial velocity at t = 0 ms including correlated precision
errors (εm = 10%, left), reference measurement at t = 15 ms (middle), VIC reconstruction at
t = 15 ms (right).
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Figure 7.9: Reconstruction error over integration time with SSF = 30 in the case of spatially
correlated precision errors; left: forward integration, middle: backward integration and right:
weighted average.

temporally uncorrelated due to their large time-separation (SSF = 30).

Similar to the case of spatially uncorrelated noise, there is a maximum noise level that still
allows for stable simulation. For spatially correlated noise this is found at approximately
εm = 15% of the jet exit velocity. At such a noise level the measurement would normally be
discarded however. Indeed, Figure 7.4 illustrates εm = 10% is already an extreme error level.
Therefore, the simulation proves to be stable also for all realistic levels of correlated precision
errors.

The results in this section show that the proposed method is able to produce a stable solution,
even when the precision error level is increased beyond realistic levels. Indeed, the Lagrangian
vortex particle discretisation used in the time-integration procedure proves to be very stable
with excellent abilities to handle measurement noise. Additionally, for high artificial noise
levels the procedure reduces the error level and benefits greatly from the weighted average of
the forward and backward integration. It should be remarked that from the analysis in the
previous section it follows that the method is not able to correct outliers effectively. Time
integration is still possible, but the outliers remain in the solution, degrading reconstruction
quality. Therefore, outlier detection and replacement procedures should be applied to the
measurements before time-supersampling as discussed in the previous section.

This concludes verification and validation of the proposed time-supersampling technique. In
the previous chapter it was demonstrated that in all three-dimensional test cases the method
yields better results than the, now previous, state-of-the-art advection model. Furthermore, in
this chapter, robustness to handle significant and even unrealistic amounts of precision errors
is demonstrated. In the next chapter, the discussion focusses on alternative applications of
the proposed technique. Possibilities for reduction of measurement noise were already noted
briefly in this chapter and will be discussed in more detail in the next chapter. Furthermore
also application to instantaneous measurements is discussed, which may allow for calculation
of temporal derivatives and pressure from instantaneous velocity measurements.
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Chapter 8

Other Applications

All discussions up to this point focussed on time-supersampling, i.e. reconstruction of temporal
velocity fluctuations in between consecutive measurements. It was however already hinted at
in the previous chapters that other there are also alternative applications for the proposed
technique. This chapter takes a step back from the focus on time-supersampling to allow
for a discussion of these alternative applications. First, section 8.1 focusses on measurement
noise reduction by VIC simulation. Second, application to instantaneous and uncorrelated
measurements is discussed in section 8.2. Third, in section 8.3 possibilities to calculate
unsteady pressure fields from both correlated and uncorrelated measurements using VIC
simulation are discussed.

8.1 Measurement Noise Reduction

In the previous chapter it was concluded that whereas the method in its current form cannot
effectively replace outliers, it has very good capabilities to handle precision errors. Notably,
the reconstruction error remains approximately constant over a short time when integrating
between measurements (recall Figure 7.9). Following up on this, noise reduction by time-
supersampling is envisaged through a sliding technique as illustrated in Figure 8.1. The
top figure illustrates that when the data is sub-sampled and subsequently super-sampled
with SSF = 2, starting from both the first and second measurement three approximations of
the velocity at each time instant can be calculated: the divergence free field at Tn and the
results from respectively a forward and backward integration between Tn−1 and Tn+1. Under
the assumption that the measurement noise is temporally uncorrelated, averaging the three
solutions is expected to lead to a noise reduction of

εVIC−slide =
ε′m√

3
, (8.1)
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SSF = 2: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

SSF = 3: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

Figure 8.1: Noise reduction by time-sliding VIC, with top: SSF = 2 and bottom: SSF = 3.

where ε′m is the error in the divergence free reconstruction calculated in the first two steps of
the VIC procedure (chapter 5). In general this equation becomes

εVIC−slide =
ε′m√

2 · SSF− 1
. (8.2)

The errors ε are here defined as the root mean squared error following equation 6.2. To
illustrate the proposed approach for noise reduction, Gaussian noise is artificially added to the
transitional jet experiment as described in the previous chapter and subsequently the sliding
time-supersampling technique is applied.

The resulting radial velocity field when Gaussian noise with a rather extreme standard deviation
of 15% (εm = 26%) of the jet exit velocity is added to each velocity component is shown
in Figure 8.2 (middle figure). Especially in the region y/D < 2, with this noise level it is
very difficult to even visually identify the shed vortices. The aforementioned noise reduction
procedure has been applied with SSF = 8 to yield the noise reduced velocity field shown in
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Figure 8.2: Noise reduction by time-sliding VIC simulation; contour plot with the radial velocity
component in the axial plane of the reference measurement (left), the measurement including
artificial noise (ε = 26%, middle) and the noise reduced velocity field with SSF = 8 (right).
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Figure 8.3: Noise reduced (SSF = 8) time history of the streamwise velocity component at a
point in the shear layer at (x/D, y/D, z/D) = (−1/3, 5/2, 0); a normally distributed error with
σ = 15% of the jet exit velocity was added to each velocity component (εm = 26%).

Figure 8.2 (right figure). Directly from visual inspection, it can be seen that the noise level
has been reduced significantly and the intersections of all vortex rings with the axial plane
are clearly visible. The substantial noise reduction is also visible in the time history of the
streamwise velocity component plotted in Figure 8.3. This figure shows in blue the weighted
average of the individual forward and backward integrations when the dataset is sub-sampled
with SSF = 8 and in solid red the result of the average of all individual solutions.

To quantify these results, the reconstruction errors are calculated by equation 6.2. When
artificial noise with σ = 15% of the jet exit velocity is added to each velocity component,
the artificial measurement error becomes εm = 26%. Calculation of the divergence free flow
fields already significantly reduces this error to ε′m = 7%. Application of the time-sliding VIC
procedure outlined above is subsequently expected by equation (8.2) to reduce the error, in
case of SSF = 8, by a factor

√
15 ≈ 4 to 1.8%. As given in Table 8.1, the actual error of 1.9%

is slightly in excess of this, indicating the reconstruction error is not exactly constant when
performing the simulations with SSF = 8. This is expected, as in the previous chapter it was
noted that the reconstruction error generally increases over time when integrating over longer

Table 8.1: Predicted and actual noise levels when performing time-sliding VIC simulations for
noise reduction, with an artificial noise level of εm = 26% of the jet exit velocity.

SSF [-] Predicted Error [%] Actual Error [%]

2 4.0 3.5
4 2.6 2.6
6 2.1 2.2
8 1.8 1.9
10 1.6 1.7
12 1.5 1.5
20 1.1 2.5
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time periods, limiting the maximum SSF for noise reduction. Consequently, the envisaged
noise reduction technique relies on the availability of time-resolved measurements.

It should be remarked that the above analysis by no means provides a complete validation
and that the present chapter only proposes alternative areas where it is envisaged that the
proposed VIC technique for time-supersampling can be applied. Also, it should be remarked
the procedure proposed in this section works on the level of velocity fields obtained from
cross-correlation analysis of the PIV particle images. At a lower level considering the particle
images, Lynch and Scarano (2013) and Jeon et al (2013) have demonstrated a significant
extension of the dynamic velocity range (Adrian, 1997) based on fluid trajectory correlation
and its integration with ensemble averaged correlation. Investigation of possible integration
with recent time-resolved PIV algorithms for processing particle images is recommended as a
further research topic, in case noise reduction with VIC is pursued.

This section took a small sidestep and presented a noise reduction technique for time-resolved
datasets with relatively high temporal resolution, by calculation of independent velocity fields
at single time instants, allowing for error reduction by averaging the independent fields. Recall
however the time-supersampling technique proposed in this thesis was developed for application
to correlated measurements with limited temporal resolution. In the next section focus is
back on measurements at low repetition rates. However, instead of considering correlated
measurements, the possibility for application to instantaneous and uncorrelated measurements
is discussed.

8.2 Material Derivative from Instantaneous Measurements

Intuitively, one expects time resolved measurements to be required for calculation of temporal
derivatives. In the present thesis it has however been shown that velocity fluctuations could
be reconstructed even if measurement data was sampled below the frequency dictated by the
Nyquist criterion. In this section it is proposed to go further, by application of the proposed
method to instantaneous and uncorrelated measurements. As already suggested in section 4.1
and illustrated in Figure 4.1, this may allow for reconstruction of the velocity fluctuations in a
small time interval τ around the instantaneous measurement and consequently for calculation
of the temporal velocity derivative. When successfully validated, this may pose a much simpler
alternative to dual and multi-pulse PIV systems proposed by for example Liu and Katz (2006)
and Lynch and Scarano (2013).

The procedure is essentially the same as the one for time-supersampling described in chapter 5.
However, instead of integrating in between two measurements, only one integration time
step is simulated with an instantaneous measurement as initial condition. To make the
problem well-posed, boundary conditions are determined by a single forward time projection
of the advection based model by Scarano (2013), analogously to the full time-supersampling
procedure (section 4.2).

It has been recently shown that for time-resolved PIV measurements, evaluation of the material

Jan F.G. Schneiders M.Sc. Thesis



8.2 Material Derivative from Instantaneous Measurements 77

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
[vox/ms

2
]

y/D [−]

z
/D

 [
−

]

−1

0

1

0 1 2 3 4

y/D [−]
z
/D

 [
−

]

−1

0

1

0 1 2 3 4

y/D [−]

z
/D

 [
−

]

−1

0

1

0 1 2 3 4

y/D [−]

z
/D

 [
−

]

−1

0

1

0 1 2 3 4

y/D [−]

z
/D

 [
−

]

−1

0

1

0 1 2 3 4

y/D [−]

z
/D

 [
−

]

−1

0

1

0 1 2 3 4

Figure 8.4: Radial (top) and axial (bottom) velocity acceleration calculated using VIC from
an instantaneous velocity measurement with constant (middle) and advection (right) boundary
conditions in comparison to the acceleration calculated from reference measurements (left) in the
plane x/D = 0.

derivative from a Lagrangian viewpoint gives important advantages in terms of reduced
truncation errors (Lynch and Scarano, 2013). However, in the present case the integration
time step ∆t can be chosen arbitrarily small. In these conditions the Eulerian evaluation of
the temporal derivative does not suffer from significant truncation errors. Therefore, with
the updated velocity field, after one integration time step from a measurement at Tm, the
acceleration is calculated using a single-sided finite difference scheme,

∂uh

∂t
≈ u

h(x, Tm + ∆t)− uh(x, Tm)

∆t
, (8.3)

which allows for calculation of the material derivative by

Du

Dt
=
∂u

∂t
+ (u · ∇)u. (8.4)

For the present discussion, the code has been applied to an instantaneous tomographic PIV
measurement of the transitional jet discussed in section 6.3. Two types of boundary conditions
have been applied, first constant boundary conditions (i.e. no acceleration on the domain
boundary) and second advection type boundary conditions. Figure 8.4 shows the resulting
temporal derivatives in the plane x/D = 0. For comparison, the temporal derivative has
been evaluated from the full time-resolved dataset (left figures). As expected from the
experimental validation, in the interior domain the VIC simulation can accurately calculate
the temporal derivatives already when constant boundary conditions are assumed (middle
figures). Furthermore, some improvement near the boundary is achieved by the advection
boundary conditions (right figures). This is confirmed by the plots in Figure 8.5, which
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Figure 8.5: Derivative of the axial (left) and radial (right) velocity component along x/D = 0,
z/D = 0.33.

show the axial and radial velocity acceleration along the line x/D = 0, z/D = 0.33. Most
importantly however, with both types of boundary conditions, the results are approximately
equal in the interior domain at a distance of approximately D/2 from the outflow.

The error in velocity acceleration by the VIC simulation near the outflow boundary follows
from the information theoretical problem that the velocity boundary conditions are only known
at the measurement time instant. To illustrate this, recall the discussion on domain boundary
conditions in section 4.2. Laplace equation (4.9) needs to be solved for u4, which accounts for
changes in the velocity in the interior domain due to the change in velocity on the domain
boundary over one integration time step ∆t. Consider now the Taylor’s expansion

u(xg, T1 + ∆t)− u(xg, T1) = ∆t
∂u

∂t
+O

(
∆t2

)
, (8.5)

where the temporal derivative of velocity follows from the momentum equation,

∂u

∂t
= − (u ·∇)u− 1

ρ
∇p. (8.6)

Substitution of equation (8.5), with (8.6), into Laplace equation (4.9) allows for splitting of
u4 into u4 = u4,a + u4,b, where u4,a and u4,b are solutions of

∇2u4,a = 0, u4,a = −∆t
[
uh(x, T1) ·∇

]
uh(x, T1) on ∂Ω. (8.7)

∇2u4,b = 0, u4,b = −∆t

ρ
∇p(x, T1) +O

(
∆t2

)
on ∂Ω. (8.8)

From the PIV measurements, Laplace equation (8.7) can directly be solved. However, the
pressure gradient on the domain boundary is not measured and equation 8.8 cannot be solved,
leading to an error in the reconstructed velocity field. Similar to the case of time-supersampling,
this procedure for evaluation of the material derivative from an instantaneous measurement
therefore simulates only the interior flow dynamics and exterior effects are not taken into
account, as they are not measured. Hence the procedure essentially is valid only when exterior
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effects are negligible in the interior domain. It should be remarked this is an information
theoretical limitation that is applicable also when more advanced optimisation techniques are
employed and it can essentially only be solved by providing the model with information about
the external flow dynamics.

The rather remarkable result that from a single tomographic PIV snapshot (two particle
images), the acceleration of velocity may possibly be approximated is especially relevant for
pressure calculation from PIV velocity measurements. This is discussed in more detail in the
next section.

8.3 Pressure from PIV using VIC

In only a decade, techniques that determine the fluid flow pressure from PIV velocity measure-
ments have emerged (Baur and Konteger, 1999) and come to a degree of maturity that justifies
their application in practical problems. These developments have been surveyed in a recent
review article by van Oudheusden (2013). Obtaining detailed information on the pressure field
in flows is of increasing interest, as surface pressure fluctuations play a major role in aeroelastic
and aeroacoustic phenomena (e.g. Koschatzky et al, 2011). For example, for assessment of
broadband noise emissions, determining the spectrum of pressure fluctuations in boundary
layers or at the trailing edge of an airfoil is recognised as an experimental challenge (Pröbsting
et al, 2013; Morris, 2011).

It is currently well established that pressure can be calculated by solution of the Poisson
equation for pressure (van Oudheusden, 2013),

∇2p = ∇ ·
(
−1

ρ

Du

Dt
+ µ∇2u

)
, (8.9)

employing any standard Poisson solver. Equation (8.9) follows directly from application of
the divergence operator to the momentum equation,

∇p = −1

ρ

Du

Dt
+ µ∇2u, (8.10)

which additionally provides Neumann boundary conditions for the Poisson equation. The
viscous terms are generally considered negligible in turbulent flows at sufficiently high Reynolds
number (Liu and Katz, 2006; van Oudheusden, 2013). Ghaemi et al (2012) have directly
evaluated those terms in a turbulent boundary layer, showing that they typically are two
orders of magnitude smaller than the other terms.

Considering the differential form of the material derivative (equation 8.4) exposes the require-
ment for time resolved measurements through appearance of the temporal velocity derivative.
It should be remarked that under the assumption of incompressible flow, the velocity field is
divergence free and the acceleration term in equation (8.4) drops out of the Poisson equation.
Still, especially considering the relatively small tomographic PIV measurement domains, the
temporal derivative is typically required for determination of Neumann boundary conditions
for pressure by equation (8.10).
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Figure 8.6: Isosurfaces of pressure (blue: p − pref = −14 Pa, red: p − pref = 12 Pa); left:
reference calculation with time-resolved PIV data and right: result from VIC applied to a single
PIV snapshot.

Traditionally, calculation of the temporal derivative of velocity requires time-resolved measure-
ments with high temporal resolution or dual-PIV systems. The time-supersampling procedure
proposed in the present thesis reduces this requirement by allowing for reconstruction of
velocity fluctuations between correlated measurements. In addition, in the previous section,
application of the proposed technique to instantaneous measurements was discussed and the
possibility to calculate the temporal derivative of velocity from an instantaneous measurement
was illustrated. It is envisaged that this may allow for calculation of the instantaneous and
unsteady pressure field from an instantaneous measurement.

To demonstrate this application to instantaneous measurements, the unsteady pressure field is
calculated from the single tomographic PIV snapshot from which in the previous section the
temporal derivative of velocity was calculated (Figure 8.4). Figure 8.6 shows the resulting
isosurfaces for pressure (blue: p− pref = −14 Pa, red: p− pref = 12 Pa) in the transitional jet
flow (right figure) in comparison to the reference pressure calculated from the full time-resolved
dataset (left figure). It should be remarked that the domain is cropped by approximately D/2
on both the inflow and outflow. As expected from the previous section, because acceleration
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Figure 8.7: Pressure variation along the line x/D = 0, z/D = 0.33..
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can be accurately calculated in the interior domain, pressure is also evaluated accurately. Also
the more quantitative plot of pressure along the line x/D = 0, z/D = 0.33 in Figure 8.7 shows
good correspondence of the pressure field calculated from an instantaneous measurement using
VIC to the reference pressure calculated from the time-resolved dataset.

The results in this chapter show promising alternative applications for the time-supersampling
approach proposed in this thesis work. It was noted earlier already that the preliminary
results presented here in this chapter do not provide a full validation, such as presented in
the previous chapters on time-supersampling. The discussions however highlight possibilities
for further research. It is recommended that the latter focusses on both further development
of the proposed techniques and on validation by independent reference measurements (e.g.
pressure transducers). This and other recommendations following from the present work are
detailed in the next chapter, together with the main conclusions from the present thesis work.
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Chapter 9

Conclusions and Recommendations

To reduce challenging measurement rate requirements for time-resolved tomographic PIV
experiments, in the present thesis work the Vortex-in-Cell (VIC) technique for reconstruction of
velocity fluctuations between correlated measurements is proposed, developed and subsequently
validated against datasets obtained from existing tomographic PIV experiments. In the present
chapter, the conclusions from this thesis work are first summarised in section 9.1. Afterwards,
the recommendations for further work regarding improvement of the method and alternative
applications are summarised in section 9.2.

9.1 Conclusions

Feasible measurement rates for time-resolved velocity measurements by tomographic PIV
are strongly limited by available laser pulse energy. Following a literature review into state-
of-the-art PIV techniques, it is concluded that the linear advection model by Scarano and
Moore (2011) is currently the only validated technique for time-supersampling of 3D datasets
obtained from tomographic PIV experiments. By time-supersampling, velocity fluctuations
between measurements are reconstructed, reducing measurement rate requirements. However,
the advection model deteriorates rapidly in flows with strong streamline curvature (e.g. shear
layers). To improve upon this, an interpolation technique based on simulation of the Navier-
Stokes equations is investigated, which leverages the available spatial resolution to increase
the limited temporal resolution.

The Vortex-in-Cell (VIC) technique is proposed for solution of the incompressible and inviscid
Navier-Stokes equations between consecutive measurements. The numerical solution is evalu-
ated on a domain that corresponds to the 3D measurement volume and time-integration is
performed between pairs of consecutive measurements to achieve a temporal resolution not
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available from the original measurements. The measured data serves as initial conditions for
the VIC method simulating dynamical evolution of the measured fluid flow and continuity of
the solution is obtained by the weighted average of a forward and backward time-integration.
In this way the spatial resolution available by the measurements is projected into time.

The proposed VIC method is compared to linear interpolation and the advection model. Two
experimental test cases are selected to evaluate the applicability of the method to real
measurement conditions; the turbulent wake behind a NACA 0012 airfoil and the case of
a transitional jet. In the case of the turbulent wake, where Taylor’s hypothesis of frozen
turbulence holds to a large extent, both the advection model and VIC method are able to
accurately reconstruct temporal velocity fluctuations. Furthermore, for very low sampling
frequencies, 6–10 times smaller than the original sampling frequency of the measurement, the
VIC model improves slightly upon the advection model. Secondly, in the case of a transitional
jet, where the free shear layer is dominated by strong vortices that roll-up under the effect of
the Kelvin-Helmholtz instability, the advection model essentially fails to represent the strongly
non-linear physics caused by the vortices in the shear layer. In contrast, the VIC method
accurately reconstructs the velocity time series, even when the sampling rate is reduced to a
fraction of the Nyquist frequency.

An a-posteriori error estimate is proposed to estimate the reconstruction quality. Good
correspondence of the error estimate with the direct reconstruction error is found for all
test cases. Also, the error estimate is found to give an estimate of the eroded region near
unsteady domain boundaries, which follows from uncertainty in the boundary conditions
between consecutive measurements.

Robustness and sensitivity to two main types of measurement noise is studied; outliers and
precision errors. It is found that the reconstruction quality suffers from data corrupted by
outliers with a strong deviation in both direction and magnitude from the true flow, especially
when the spurious vectors occur in blocks. Consequently, measurement data should first be
subjected to outlier detection and replacement before application of the proposed technique.
On the other hand, excellent robustness to precisions errors was found. Both in the cases of
spatially uncorrelated and correlated errors the simulation was accurate, relative to the noise
level introduced in the measurements, and stable up to extreme and unrealistic error levels.

The study demonstrates that the sampling rate requirements for tomographic PIV can be
strongly reduced when the data is time super-sampled using the Vortex-in-Cell method. This
has two main advantages. First, reduced repetition rate requirements allow for higher laser
pulse energy per measurement, making larger measurement domains feasible. Second, it is
anticipated that in high speed flows (e.g. V ∼ 100 m/s), time-resolved information can still
be obtained by time-supersampling measurements at a limited measurement rate with the
proposed VIC technique, thereby extending the range of applicability of time-resolved 3D-PIV
by tomographic PIV or similar techniques.

The thesis work additionally illustrates the potential for a wider application of the proposed
VIC method. A noise reduction technique is envisaged by sliding time-supersampling, which
calculates multiple approximations of the velocity at a single time instant from a time-resolved
dataset. On the other hand, also application to instantaneous and uncorrelated measurements
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is envisaged, which can allow for evaluation of the temporal derivative of velocity and the
unsteady pressure field from a single snapshot. These alternative applications have been
illustrated by test cases based on the transitional jet experiment and their validation is a
possible extension of the present thesis work, as detailed in the next section.

9.2 Recommendations for Future Work

Throughout the present thesis report, different possibilities for future projects are noted. These
recommendations for future work can be split into two main categories: (i) improvement of the
time-supersampling method and (ii) development and validation of alternative applications
for the proposed technique.

First recommendations for improvement of the proposed technique are discussed. Here, the
most important recommendation for a future project is extension of the method to handle flow
cases including solid walls in or along the boundary of the measurement domain. It should
be remarked that because of reflections, PIV measurements are typically of lower quality in
the near wall region and appropriate adjustments to the procedure to account for this may
be required. Also, viscosity is required for correct implementation of the no-slip boundary
condition and extension of the method to include viscous effects may be necessary. When
extension of the method to incorporate solid wall boundary conditions is pursued, immersed
type boundary conditions are considered very promising in combination with the VIC method,
considering they allow for solution of the equations on a Cartesian grid and can be used
together with efficient Poisson solvers based on the Fast Fourier Transform.

A second recommended procedural improvement to the method is related to improvement
of the initial condition used for the simulation. As noted in the validation, quality of the
initial condition determines to a large extent the reconstruction quality. Presently the initial
divergence-free flow field is calculated by the VIC procedure, but it is envisaged that pre-
processing of the flow field to obtain a better estimate of the divergence free flow field leads
to increased reconstruction quality. Here especially the works of Schiavazzi et al (2013) and
de Silva et al (2013) for estimation of the solenoidal velocity field from PIV measurements are
relevant.

The second category of recommendations for further work considers development and validation
of alternative applications. As discussed extensively in the previous chapter, it is envisaged
that the method can be used for noise reduction of time-resolved datasets and for calculation
of the velocity material derivative and pressure from single tomographic PIV snapshots. The
latter is considered most relevant, noting alternative and promising techniques functioning on
the level of the PIV particle images are being developed for time-resolved datasets. Calculation
of unsteady pressure fields from instantaneous and uncorrelated velocity measurements, when
validated by preferably independent pressure transducers, can allow for radical simplification
of pressure evaluation in comparison to alternative techniques such as time-resolved and
multi-pulse PIV.
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Appendix A

Vorticity Transport Equation Derivation

Vortex methods solve the vorticity transport equation by means of a particle discretisation
and the equation forms therefore the basis for the proposed method. For completeness, its
derivation from the full Navier-Stokes equation is given in this appendix equations to allow
for better understanding of the made assumptions.

As derived by for example Anderson (2006), the Navier-Stokes equations in conservative form
are given by conservation of

mass : 0 =
∂ρ

∂t
+ ∇ · (ρu) ,

momentum : 0 =
∂ρu

∂t
+ ∇ · (ρuu) + ∇p−∇ · τ + ρf ,

energy : 0 =
∂ (ρE)

∂t
+ ∇ · (ρEu) + ∇ · (pu)−∇ · (τ · u) + ∇ · q + ρf · u.

Under the assumption of incompressible flow the energy equation decouples from the mass and
momentum conservation equations. Additionally, under the assumption of constant viscosity
the mass and momentum conservation equations reduce to

0 = ∇ · u,

0 = ρ
∂u

∂t
+ ρ (u ·∇)u+ ∇p− µ∆u+ ρf .

Dividing the momentum equation by the density ρ and application of the curl operator yields

0 = ∇× ∂u

∂t
+ ∇× (u ·∇)u+

1

ρ
∇×∇p− ν∇×∆u+ ∇× f . (A.1)

The right hand side of this equation is treated term by term to rewrite it into the vorticity
transport equation. Starting with the first term, because the curl and temporal derivative
commute

∇× ∂u

∂t
=
∂ (∇× u)

∂t
=
∂ω

∂t
. (A.2)
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In order to rewrite the second term, note the vector relation (it should be remarked all the
following vector relations are taken from Chorin and Marsden 1990 and Speck 2011)

(u ·∇)u =
1

2
∇ (u · u)− u× (∇× u) , (A.3)

and therefore (with ω = ∇× u)

∇× (u ·∇)u =
1

2
∇×∇ (u · u)−∇× (u× ω) . (A.4)

Note that because

∇×∇φ = 0, (A.5)

for any scalar field φ,

∇×∇ (u · u) = 0. (A.6)

Furthermore

∇× (u× ω) = u (∇ · ω)− ω (∇ · u) + (ω ·∇)u− (u ·∇)ω, (A.7)

which, because ∇ · u = 0 and ∇ · ω = ∇ ·∇× u = 0, reduces to

∇× (u× ω) = (ω ·∇)u− (u ·∇)ω (A.8)

And therefore by (A.4), (A.6) and (A.8) the second term on the right hand side of equation (A.1)
becomes:

∇× (u ·∇)u = (u ·∇)ω − (ω ·∇)u (A.9)

The third term of equation (A.1) is zero by (A.5),

∇×∇p = 0. (A.10)

The fourth term on the right hand side of equation (A.1) can be rewritten into

ν∇×∆u = ν∆ (∇× u) = ν∆ω. (A.11)

Inserting (A.2), (A.9), (A.10) and (A.11) into (A.1) gives the vorticity transport equation,

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u+ ν∆ω + ∇× f . (A.12)
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