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In order to investigate the technical feasibility of crystalline porous silicates as hydrogen storage
materials, the self-diffusion of molecular hydrogen in all-silica sodalite is modeled using large-scale
classical molecular-dynamics simulations employing full lattice flexibility. In the temperature range
of 700–1200 K, the diffusion coefficient is found to range from 1.6•10210

to 1.8•1029 m2/s. The energy barrier for hydrogen diffusion is determined from the simulations
allowing the application of transition state theory, which, together with the finding that the
pre-exponential factor in the Arrhenius-type equation for the hopping rate is
temperature-independent, enables extrapolation of our results to lower temperatures. Estimates
based on mass penetration theory calculations indicate a promising hydrogen uptake rate at 573 K.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1737368#

I. INTRODUCTION

Porous, crystalline solids, with frameworks built up from
TO4 ~T5Al,Si,Ge,P! tetrahedra, are attractive materials for
the safe and efficient storage of hydrogen.1–3 Porous solids
for which the largest pore window openings have aperture
dimensions similar to the kinetic diameter of hydrogen are
especially interesting for hydrogen storage by means of en-
capsulation, i.e., trapping small gas molecules inside zeolitic
cavities by changing the effective pore window opening to
these cavities. This controlled encapsulation principle has
previously been demonstrated in zeolites with respect to
varying temperature,4 and by application of an external
force5 to the material. The technical feasibility of such a
storage method for any particular material depends on its
maximum capacity and its maximum hydrogen uptake–
release rate. In this study we concentrate on the latter prop-
erty for the large void volume all-silica sodalite framework,
and investigate, by means of molecular-dynamics~MD!
simulations the diffusion rate of molecular hydrogen therein.

Previous MD studies of noble gases in sodalite have
been performed with the diffusion of helium in all-silica so-
dalite at 300 K calculated to have a diffusion coefficient6 of
3.8•1029 m2/s. With respect to hydrogen, Mitchell7 has per-
formed an MD-analysis on diffusion of hydrogen in zeolite
NaA and in porous Na3ZnO~PO4)3 at 773 K and found dif-
fusion coefficients of around 7.0•1028 and 8.0•1029 m2/s,
respectively. In both these simulations the host–lattice is as-
sumed to be rigid, which, especially in situations where the
diameter of the largest pore is of dimensions similar to the
diffusing molecule, can significantly affect the predicted

magnitudes of the transport barriers.8–11 For H2 in all-silica
sodalite we have explicitly demonstrated that this effect is
significant12 and, thus, in this study, the hopping rate of mo-
lecular hydrogen is calculated by means of molecular-
dynamics calculations with a fully flexible all-silica sodalite
framework. Simulations are performed at a number of tem-
peratures throughout the region from 700 to 1200 K and
from the determined hopping rate the self-diffusion coeffi-
cient is calculated based on transition state theory~TST!. The
large number of events sampled allows for statistical testing,
validating our approach and the associated small estimated
errors in our results. Finally, the diffusion coefficient is used
to estimate the hydrogen uptake rate of all-silica sodalite at
573 K.

II. COMPUTATIONAL METHODOLOGY

All MD calculations have been performed using the
computer codeDLPOLY.13 A full description of the employed
interatomic potentials for the zeolite framework and their
successful application are given in Refs. 14–19. The
~Lennard-Jones! interactions between hydrogen and the oxy-
gen and silicon atoms of the framework are derived and used
in Ref. 20. A confirmation of the applicability of this com-
bined set of potentials for calculating TST diffusion of hy-
drogen confined in flexible zeolitic frameworks is given in
Ref. 12.

The hydrogen molecule is modeled as a centro-
symmetric Lennard-Jones particle, which has proven to be a
valid and accurate approximation with respect to extended
representations in other studies.12,21,22 We note that the
zeolitic framework potentials employed have also been pre-
viously successfully used in a number of zeolitic MD
simulations23,24 further confirming their applicability to the
present system. The cutoff for all interatomic potentials used
was set to 13 Å.
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Sodalite is modelled as a 33333 unit cell system with
periodic boundary conditions, Si324O648, employing no sym-
metry constraints, with one hydrogen molecule inside~cf.
Fig. 1!. The sodalite geometry is taken from the IZA
database25 and first energy-minimized in the computer code
GULP,26 with the Sanders14 force field method at a constant
pressure of 1 bar and with the BFGS optimization
algorithm.27 The optimized super-cell geometry has dimen-
sions:a, b, c526.9 Å anda, b, g590°. The starting position
for the hydrogen molecule was located in the center of an
arbitrary sodalite cage.

For 800–1200 K, each MD simulation run had a dura-
tion of 2 ns, and for simulations at 700 K durations of 7, 8,
and 10 ns were used, all including 0.2 ns of equilibration
time and modeled with the NVT Evans ensemble.28 For each
temperature, enough simulations were performed to obtain at
least 100 hops of the hydrogen molecule from one sodalite
cage to an adjacent cage, resulting in corresponding cumula-
tive simulation times of 7–64 ns. Optimization of the initial
super cell, via energy-minimization usingGULP,26 allowing
for variation in unit cell volume, showed that the volume did
not change due to the introduction of one hydrogen molecule
in the framework, confirming the validity of employing the
constant volume ensemble. MD runs were performed at the
temperatures: 700, 800, 900, 1000, 1100, and 1200 K with a
time step of 0.001 ps.

The MD-output data was analyzed with an in-house hop
counting program that assumed a rigid sphere inside each
sodalite cage. Since the simulation was fully periodic, the
partial cages on the outside of the super cell could be joined
to make complete cages forming, accordingly, a total number
of fifty-four complete cages~cf. Fig. 1!. The program
counted the hops between cages, listed the time of the hops
and showed how the hydrogen moved through the frame-
work. The geometrical state of the system is written every
0.5 ps to an output file, which is analyzed by this program.
This time interval is small enough to keep track of the hy-
drogen molecule and a smaller sampling time would lead to
extremely large memory requirements. All hops that hap-
pened within 1 ps of each other were checked manually.
Immediate recrossing of the barrier was not counted as an
event. If, after a hop, the H2 molecule moved through the
SOD-cage and then hopped through the opposing 6-ring in
one straight line within 1 ps, this second hop was called a
subsequent hop. This hopping behavior is listed in Table I
and represents a form of correlation~vide infra!.

The following equations are employed for the flux~J!
and the self-diffusion coefficient (Dself):

J52Dself•“c, ~1a!

Dself5
l2

6•t
. ~1b!

Equation ~1a! is the general first law of Fick in whichc
stands for concentration. Equation~1b! is the Einstein equa-
tion for the self-diffusion coefficient valid in zeolites limited
by energy barriers~the jump diffusion model!.29 Self-
diffusion is defined as diffusion under conditions of low or
constant concentration. Thel represents the shortest distance
between two energy barriers~the hop length! and thet rep-
resents the time interval between two hops. The hop length
in sodalite is equal to half of the body diagonal of the unit
cell, i.e., the shortest distance between the centers of two
sodalite cages that are connected by a mutual 6 ring~cf. Fig.
1!. For all-silica sodalite this is 0.5•)•8.96557.764 Å.

Since the diffusion of hydrogen in small pore zeolites is
limited by energy barriers that have to be overcome each
time a molecule wants to move one step further, this diffu-
sion can be modeled according to TST29 which gives the
following Arrhenius-type equation for the hopping rate in
zeolites (r @T#):

FIG. 1. ~A!. Schematic representation of a 33333 super cell system of
all-silica sodalite, black is silicon and gray is oxygen, with one hydrogen
molecule inside, represented by a gray sphere in the center. The dashed cube
is added to show how the cubical unit cell is positioned in this representation
of sodalite.~B!. Schematic representation of a 23232 super cell of sodalite
in which the shape of a SOD-cage and the connectivity between the cages
are clearly visible. The vertices are Si-atoms and the O-atoms are not shown
but lie on the middle of an edge between two vertices.

TABLE I. Main results obtained from the MD-simulations.

Temperature
@K#

Total simulation
time @ns#a

Total number
of hopsb @2#

Poisson
error @%#

Total number of
subsequent hops@2#

Hopping rate
@hops/s#

700 63.8 100 10.0 2 1.57•109

800 28.8 102 9.9 5 3.54•109

900 21.6 146 8.3 6 6.76•109

1000 14.4 126 8.9 5 8.75•109

1100 10.8 133 8.7 4 12.3•109

1200 7.2 128 8.8 2 17.8•109

aExcluding equilibration time.
bIncluding the subsequent hops.
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r @T#5
1

t
5A@T#•e2DE/kB•T. ~2!

The exponential factor consists of the energy barrier
(DE) divided by the Boltzmann constant (kB) times the tem-
perature~T!. This is a Boltzmann-type factor indicating the
probability of an event at a certain temperature. In our case,
the event is the crossing of a 6-ring by a hydrogen molecule.
As passage through the 6-ring is almost certainly the
diffusion-limiting barrier for H2 through any particular small
pore zeolite structure, the diffusion rate can be expressed as
the Boltzmann factor times a~possibly temperature depen-
dent! pre-exponential rate factorA@T#.

Since the hopping rate is calculated as a function of tem-
perature in the MD-simulations, the pre-exponential factor
and the energy barrier can be determined by rewriting Eq.~2!
in a linear form@see Eq.~3!# and plotting ln(r@T#) versus 1/T:

ln~r @T# !5 ln~A@T# !2
DE

kB
•

1

T
. ~3!

To obtain an estimate for the mass uptake rate of a sodalite
crystal, the mass penetration theory30,31 was applied. This
theory states that the average hydrogen concentration inside
a sphere (̂CH2

&) can be calculated as a function of time~t!,

saturation concentration (CH2

` ), transport diffusion coeffi-

cient (D trans), and sphere diameter~d! with Eqs. ~4a! and
~4b!:31

^CH2
&

CH2

`
512

6

p2
•(

n51

`
1

n2
•exp~2n2

•z!, ~4a!

z5
4•p2

•D trans•t

d2
. ~4b!

The derivative of Eq.~4a! gives the hydrogen flow~f! into
the crystal as a function of time as shown in Eq.~5!:

f

CH2

`
524•

D trans

d2
•(

n51

`
1

n2
•exp~2n2

•z!. ~5!

Equations~4a! and~5! are only valid if the initial concentra-
tion in the sphere att50 equals to 0 and if the concentration
at the surface of the sphere (CH2

` ) remains constant during

the entire uptake period.31

The symbolD trans stands for diffusion coefficient, how-
ever, it is a transport diffusion coefficient in contrary to the
Dself in Eq. ~1b! which is a self-diffusion coefficient. If the
hydrogen concentration is low~i.e., if the hydrogen mol-
ecules are not interacting with each other! and the body is
not affected by the mass uptake, the values of both diffusion
coefficients are equal.29 In other words, Eq.~4a! can only be
applied with the diffusion coefficient obtained from Fig. 2@in
combination with Eq.~1b!# if the saturation concentration is
low. A typical maximum could be one H2 molecule per ten
SOD cages (4.63102 mol/m3), because it is realistic to ex-
pect that the hydrogen molecules are not interacting with
each other in that case.

The diameter of the all-silica sodalite crystals is set to 30
mm as has been found experimentally.32 The outside area of

a sodalite crystal consists of six square facets and eight hex-
agonal facets having a similar topology to a sodalite cage,33

so it is reasonable to approximate the shape of a SOD crystal
by a single sphere.

By applying Eqs.~4a!, ~4b!, and ~5! for the calculation
of hydrogen uptake, it is assumed that the mass uptake rate at
the surface of the crystal is equal to the diffusion rate inside
the crystal and that surface effects are, thus, not limiting. The
mass uptake rate at the surface depends on the chemical
structure and morphology of the crystal surface, which is
currently unknown. However, even if this surface somewhat
hinders the uptake of hydrogen into the crystal, it may be
possible to use physical or chemical treatments to enhance
the accessibility.

III. RESULTS AND DISCUSSION

Table I shows the main results obtained from the MD-
simulations. As expected, the hopping rate increases with
temperature. The reason that the chosen temperature range
starts at 700 K is that the required computer time for calcu-
lation at lower temperatures becomes too large. The reason
for the upper limit of 1200 K is the fact that sodalite starts
decomposing above that value. Figure 2 gives the relation
between ln(r@T#) and 1/T.

Figure 2 shows that the pre-exponential factor~A! is
not significantly dependent upon temperature, therefore, it
can be calculated by combining Eq.~3! with the equation of
the line in Fig. 2 ~upper right corner, obtained with the
method of least squares!, A5exp(26.894)54.7831011s21.
The error in this value is found to be60.9431011s21.
In the same way the energy barrier for diffusion (DE) is can
be calculated, DE53955.93kB53955.931.38310223

55.5310220J(532.961.5 kJ/mol).
The values of the hopping rate, the pre-exponential fac-

tor and the energy barrier are calculated based upon a limited
number of cage hops. In order to determine the statistical
error in these values, it is first tested if the hopping events
can be approximated by a Poisson distribution, thus, if the
inter-hop time intervals are distributed with a negative expo-
nential function@cf. Eq. ~6!#. The MD-output has shown that

FIG. 2. Arrhenius plot of hydrogen diffusion in all-silica sodalite presented
by the logarithmic value of the hopping rate vs the inverse of the tempera-
ture. The triangular point are the values obtained from the MD-simulations,
the square point is the extrapolated point at 573 K, the line with long dashes
is the extrapolated Arrhenius plot~equation given in the upper right corner
of this figure!, and the two lines with short dashes are the upper and lower
confidence boundaries~68%!.
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there exists a short-range correlation in the form of the so-
called subsequent hops~cf. Table I!. These subsequent hops
form less than 5% of all hops and are, therefore, negligible,
however, it is possible that there exist other correlations be-
tween the hops:

P~ t !51/l•e2t/l, ~6!

Q~ t !512e2t/l. ~7!

The probability@P(t)# for a time interval~t! between two
hops to have a certain value can be calculated with this equa-
tion. The value for the only constant~l! in this equation can
be estimated with the maximum likelihood principle. For a
negative exponential distribution, it is the sum of all time
intervals divided by their total number (nt), ( i 50

i 5nt i /nt . Both
the time intervals at the beginning and the end of an MD-run
are not taken into account because they are not complete.
Therefore, the first hop in the MD-run is taken as the starting
point for data sampling and the final hop as the end point.

To verify the assumption of a negative exponential dis-
tribution for the MD-data, the data from the MD-simulation
at 1200 K is taken as a test case. The maximum likelihood
estimation for thel of the total data set of this simulation is
49.1 ps. If the cumulative distribution function of the MD-
data is fitted to Eq.~7! @the cumulative equivalent of Eq.~6!,
with Q(t) is the cumulative probability# with the Marquardt
nonlinear fitting method~cf. Fig. 3!, l is determined to be
48.960.9 ps. Since the previously mentioned maximum like-
lihood estimation of 49.1 ps falls within this value, this result
indicates that the assumption of a negative exponential dis-
tribution is valid resulting in Poisson statistics for the num-
ber of hops in a given time interval.

Since the number of hops~N! in a certain time interval
as determined with MD can be approximated by a Poisson
distribution, the relative statistical error of this number can
be calculated with 1/AN* 100%. This enables us to calculate
the error in the hopping rate and, consequently, the error in
diffusion coefficient~see Table I!. Since the number of hops
is always higher than 100, the error is always lower than
10%. In order to lower this error even further, a prohibitively
demanding amount of computer time would be required.

The diffusion coefficient as a function of temperature
can easily be obtained from Fig. 2@cf. Eq. ~1b!#. Values

below 700 K are obtained via extrapolation~dotted line!,
which is possible if the pre-exponential factor in Eq.~2! is
also independent of temperature outside the modelled tem-
perature range. Arrhenius plots are generally valid for a large
temperature range unless phenomena like phase changes oc-
cur. Such phenomena are highly unlikely to occur in our
system at the temperatures studied in this paper and, there-
fore, Fig. 2 is also assumed to be linear in the extrapolated
area. The errors in extrapolated values can be calculated with
the method described in Ref. 34. For a 68% confidence in-
terval ~analogous to taking the standard deviation of a nor-
mal distribution as a measure of the error!, the confidence
boundaries for extrapolation are given in Fig. 2.

In order to get an idea of what a diffusion coefficient
means in terms of hydrogen uptake rate, the mass penetration
theory described in Sec. II is applied. For the loading tem-
perature, the reported highest experimental value employed
for storing hydrogen in alumina silica sodalite,2 573 K, is
chosen. The diffusion coefficient at 573 K is 4.8
310211m2/s ~cf. Fig. 2!. The confidence boundaries show
that the statistical error in this value due to extrapolation is
14%.

Figure 4 shows the fractional mass uptake,^CH2
&/CH2

`

@2#, and the accompanying mass flow into the crystal,
f/CH2

` @s21#, both as a function of time. If the saturation

concentration is known, it can be multiplied with these val-
ues to give the absolute mass uptake and mass flow into the
crystal. As said before, this figure is only valid in case of a
low saturation concentration and no limiting surface effects.

Figure 4 shows that the mass uptake after 1.18 s is al-
ready 95% of the total mass uptake it needs to reach its
saturation concentration~i.e., equilibrium with its environ-
ment!. As said before, this value includes a number of as-
sumptions, and should only be used as an indication of the
mass uptake. However, this preliminary result is promising
and make further experimental testing very interesting.

IV. CONCLUSIONS

The TST diffusion rate of hydrogen in all-silica sodalite
is calculated from atomistic MD-simulations at six different
temperatures. These calculations show that the pre-
exponential factor in the Arrhenius equation does not signifi-

FIG. 3. The cumulative distribution of inter hop time intervals both from the
MD-analysis of the self-diffusion of molecular hydrogen in all-silica so-
dalite at 1200 K and from Eq.~7! with l549 ps.

FIG. 4. Fractional mass uptake and mass flow into an all-silica sodalite
crystal of 30mm in diameter at 573 K as a function of time.

10288 J. Chem. Phys., Vol. 120, No. 21, 1 June 2004 Van den Berg et al.

Downloaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



cantly depend on temperature, allowing for linear extrapola-
tion. Furthermore, the energy barrier for hopping has been
found to be 32.9 kJ/mol. Statistical analysis showed that the
hopping events could be approximated by a Poisson distri-
bution and could, therefore, be considered as noncorrelated.
This enabled us to do an error analysis of the results, show-
ing that the error in the calculated diffusion coefficient at
temperatures between 700 and 1200 K always lies below
10%. Calculating the mass uptake as a function of time at
573 K gives a mass uptake of 95% in 1.18 s for low satura-
tion concentrations. This promising outcome makes sodalite
an interesting candidate material for hydrogen storage.
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