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ABSTRACT

The investigation of steady ship motion in calm water is

a classic problem in ship hydrodynamics, where ship waves and wave

resistance are subjects of unquestionable importance. Despite

considerable efforts in the past a satisfactory solution of the

steady ship motion problem has not been achieved so far. The

application of three-dimensional potential flow theory results in

an essentially nonlinear problem formulation due to the unknown

position of the disturbed free surface. In this thesis consistent

linearisation schemes are discarded in favour of the inconsistent

Neumann-Kelvin theory. This approximation implies that nonlinear

free surface effects are neglected entirely, but the three-dimensional

features of the fluid flow and hull geometry are otheiwise fully

retained.

The Kelvin wave source potential, otherwise known as the

wave resistance Green's function, Is analysed in great detail.

Solutions to the disturbance potential of the steady perturbed ship

flow are obtaided by means of a Kelvin wave source distribution

method The exact source strength is the solution of a Fredhoim

integral equation of the second kind. An explicit source strength

approximation, valid for sufficiently slender ships operating at

fairly low speeds, is investigated. Particular emphasis is placed

on computational aspects. Highly accurate and efficient methods

for the evaluation of the Kelvin wave source potential are proposed.

The developed theory is applied to five different ship forms, viz.

a submerged prolate spheroid, Wigley's parabolic ship,, a tanker,

a fast destroyer and a cruiser. Over a wide range of ship speeds

experimental data are compared with theoretical predictions of the

steady flow parameters such as wave resistance, wave profiles,

pressure signatures and lift force distributions.
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1. INTRODUCTION

1.1 SHIP WAVES AND WAVE RESISTANCE

Thé investigation of a ship in steady rectilinear motion

at the free surface of a calm sea is a classic problem in ship

hydrodynamics. The satisfactory solution of this problem is of great

importance to naval architects and engineers. The ship designer has

to ensure that a proposed ship achieves the desired speed with a

minimum of required power, see Saunders (1957). This difficult task

requires an adequate estimate of the resistance to shin motion as

well as a thorough understanding- of the steady flow properties in

order to obtain a good matching between the ship' a hull and the

propeller. Civil and coastal engineers are more interested in the

wave pattern generated by the moving ship, see Sorensen (1973). Ship

waves may have- important effects on other ships moored or manoeuvring

in harboürs and navigation channels and on the erosion of shore lines

and channel and river badks, see Massie (1978). A recent application

of steady ship motion theory concerns the possibility of.identifying

naval ships and submarines by means of the accurate observation of

ship generated waves and water pressures, see Swanson (1984).

The experimental and theoretical investigation of

steady ship motiOn is complicated considerably by the dependence of

the-ship resistance on both the viscosity of the sea water and the
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presence of the gravitational field. The total ship resistance

Consists of two components, the viscous resistance and the wave

resistance R . The viscous resistance is due to the viscous stressesw

acting tangentially to the ship's hull surface and. the formation,

growth and separation (if this occurs) of the ship's boundary layer,

see Todd (1968). The moving ship also generates a charactertettc

pattern of surface waves trailing downstream in its wake. The work

done by the wave resistance equals the energy required for the

formation of ship waves, see Wehausen (1973).

If the sea water is regarded as homogeneous and

incompressible the résistance is dependent on the density p and ki-

nematic visóosity v of the seawater, the acceleration of gravity g,

and the speed V and a characteristic dimension L of the ship. In

nondimensional form the decomposition of the total resistance into

viscous and wave resistance may then be expressed as:

C(E ,F) =C (R ,F) +C (R ,F)
t fin v nfl vu xi

where the resistance coefficient C = R/pV2L2, the -subscripts t, v and

w refer to the total, viscous and wave resistance respectively, the

Reynolds number, R = VL/v and the Froude number F = VIJZ. The

viscous and wave resistance are dependent on both the Reynolds and

Froude number and cannot be clearly separated, see Sharma (1967).

The frictional resistance, that is, the part due to the viscous

tangential stresses, depends on the wave profile along the ship's

hull, whereas the formation of ship waves is influenced by the ship's

boundary layer and wake. The complete solution of the Navier-Stokes
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equations describing the viscous gravitational flow about a moving

ship is beyond the present state of computing art (see Uiyata et al

(1983) for some recent developments).

The difficulties posed by the interaction between

viscous and gravitational effects are overcome effectively if it is

assumed that equation (1.1) may be approximated by:

Ct(R,F) C(R) + C(F) (1.2)

This expression is cosmonly referred to as Froude's. (1868) hypothesis

concerning the separation of viscous and wave resistance. Froude's

method for the experimental determination of ship resistance is

based on the assumption that the Froude number alone Controls the

geometrical Similarity of the wave patterns generated by geometrically

similar ships (i.e. a small scale model and a full scale ship).

In this study the attention is focussed on an idealised

version of the steady ship motion problem. Specifically, the sea

water is regarded as homogeneous, incompressible and inviscid

(i.e. ideal) and irrotational flow is assumed. In other words, it

is supposed that the effects of viscosity on the formation of ship

waves are negligible and the wave resistance is a function of the

Froude number alone, in agreement with Froüde' s hypothesis. The

usefulness of the investigation of this simplified problem may be

seen as follows. For most ships the viscous resistance cannot bi

significantly reduced by chadging the hull form and this leaves
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the ship designer more or less free to choose a suitable ul form

(from a resista Ce point of view). Optimal ship forms are those

which generate the smallest waves and it is therefore highly

desirable to develop a theoretical tool to analyse the relationship

betwCen wave resistance and the geometry ofthe ship's hull.

It should be noticed that the physical interpretation

of the 'inviscid' wave resistance is by no means clear and due care

is therefore required when comparing experimental data with theoretical

predictions. Because of the approximate nature of equation I 2.)
measured wave resistance is always endowed with viscous effects.

Eggers et al (1967) and Wehausen (1973) discuss a variety of

techniqueC employed in the definition and subsecluent measurement

of wave resistance.

1,2 HISTORICAL REMARKS

For many years physicists, mathematicians, engineers

and naval architects have expended considerable effort in developing

an adequate solution of the steady ship motion problem. The

experimental and analytical developments1 are reviewed comprehensively

by Wigley (1949), Lunde (1951), Inui (1962), Weinblum (1983),

Guilloton (1964), Kostyukov (1968), Gadd (1968), Wehausen (1973)

and Newman (1976). Figure 1.1 illustrates the considerable activity

in this field. The histograms refer to the number o publications

on the experimental and/or theoretical study of ship waves and

wave resistance. The data were compiled using the extensive



bibliographies given by Kostyukov (1968), Wehausen (1973, 1976)

and Inui (1978). The following remarks may serve to explain some

of the features of the frequency cUrve shown in Figure 1.1.

Because ships are large structures accurate full-scale

measurements of ship resistance are difficult, time consuming and

expelsive. At a very early stage resort was taken to experinents

with scale models of ships. Leonardo da Vinci (1452-1519) was among

the first to measure model resistance and wave patterns (see Tursini

(1953)). Over the next three centuries scientists such as Newton,

Lagrange, Euler (1749), BernoullI (1757) and naval architects in

Eolland, France, Scandinavia and Great Britain devoted their attention

to the problem and carried out model tests. -

William Froude (1810-1879) is nowadays generally

recognised as the first person to have examined ship resistance in

a systematic manner. Froude (1868) pOinted out the advantages of

model tests and proposed to build a towing tank. The first towing

tank of the type commonly used nowadlys was built in Torquay

in 1871 (see Gawn (1955)); Froude (1876) had also a remarkble

insight into the different roles played by viscosity and gravity

in -the ship resistance problem. The first detailed discussions of

the observed characteristics of ship generated waves were presented

by F. Frauds (1877) and R.E. Froude (1889).
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At about the game time Lard Kelvin (see Thomson (1887,

1904)) established the theoretical mechanism of ship wave generation.

A moving ship generates a 'Kelvin' wave pattern consisting of two

wave systems: a diverging wave system spreading out downstream on

either side o the ship and a transverse wave system contained

within the wedge shaped area between the diverging waves. Kelvin's

theory is generally correct but some theoretical shortcomings and

difficulties were later solved by Ravelock (1908), Hogner (1922),

Peters (1949), Ursell (1960) and others.

J.U., Michell (1863-1940) was the first to establish

an analytical relationship between the wave resistance and the

geometry of the ship's hull. Michell (1898) presented a theory

to describe the steady potential flow about an idealised thin ship

hull and arrived at the wave resistance by integrating the water

pressure distribution Over the ship's hull surface. Theoretical

work in the first half of the twentieth century was largely

dominated by the effbrt of Sir Thomas Havelock (1877-1968) who

published a long series of papers. Ravelock (1925) gave a new

derivation of the thin ship wave resistance formula based upon the

use o a Green's function method rather than the Fourier integral

method originally used by Michell (1898). Later Havelock (1934)

showed that the wave resistance may alternatively be obtained by

evaluating the energy contained in the Kelvin wave pattern behind

a moving ship (see also Eggers et al (1987) and Newman (1977)).

The nature of the, thin ship approximation was clarified by Peters

and Stoker (1957) who established that Michell's formula is the
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first order approximation in a thin ship perturbation expansion.

W.C.S. Wigley (1890-1970) appears to have been the

first to have evaluated Michell 'a formula in a systematic manner

(see Wigley (1949) for a review of his works). Due to interference

effects between the ship's bow and stern wave systems (see Saunders

(1957)) the curve of wave resistance versus ship speed is of a

rather oscillatory nature. The humps (maxima) and hollows (minima)

occur- at Froude numbers where the stern wave system is amplified

or cancelled respectively by the bow wave train. Comparison between

experimental- data and theoretical predictions showS that Michell's

wave resistance formula tends to exaggerate the humps and hollows.

Moreover, the- predicted humps and hollows occur in general at

lower Froude nunbers than the experimental data.

The wave resistance of an idealised flat ship was

investigated by Hogner (1932), who also proposed a remarkable

interpolation formula to interpolate between the flat and thin ship

wave resistance approximations. Encouraged by the success of slender

body theory in aerodynamics and seakeeping theory, Vossers (1962),

Maruo -(1962) and Tuck (1964) develdped a simple approximation

formula for the wave resistance of a slender ship. Unfortunately

the slender ship formula appears to be a natural limit of the thin

and flat ship wave resistance formula5 and this approach has been

unsuccessful, see Ogilvie (1970) and Noblesse (1983). Recently Maruo

(1982) and Teung and Kim. (1984) have proposed new formulations of the

slender Ship theory of wave resistance, but very few numerical results

have been published thusfar, see Maruo and Ikehata (1983)..



Various authors have investigated the wavemaking

of fully submerged. bodies1 see Have].ock (lPSla,b), Kochin (1951),

Beasho (1981), Farell (1973) and Guttmann (1983). Most surface

ships operate at fairly low Froude number end the concept of long,

slow ships is utilised in the low Froude number wave resistance

theories of Guevel Ct al (1974), Newman (1976), Baba (1976, 1977),

Meruo (1977) and Kayo (1978). Chen and Noblesse (1983b) have made

an extensive comparison of experimental data and theOretical wave

resistance predictions for the Wigley bIzll*. They conclude

tentatively that the slow ship predictions are in poor agreement

with the experimental data except possibly at very low Froude

numbers (at which however both the experimental and numerical data

show a considerable variation). Certain questions concerning the

true asymptotic nature of the low speed limit have recently been

investigated by means of the ray theory, see Keller (1974, 1979),

!nui and Kajitani (1977), Tin (1981), Chung (1984) and Thlin (1984).

A ray theory for slow ships is similar to the theory of geometrical

optics and presents two separate relations. One is the dispersion

relation for the local wave phase and the other is the transport

equation for the local wave amplitude. The ray theory tries to

explain the mechanism of ship wave generation but Thlin (1984)

concludes that the present knowledge is still inadequate.

C-Since first introduced by Wigley (1942) this mathematically defined

hulL form has been used extensively for both experimental. and

theoretical studies. This hull form with parabolic frames abd

waterlines has a beam/length ratio of 0.1 and a (constant)

draft/length ratio of 0.0825.



In recent years much attentiOn has been focussed on

the so-called Neumann-Kelvin theory which was originally proposed

by ard (1971). In this three-dimenaional linearised potential

flow theory the nonlinear effects stemming from the presence of the

free' surface are neglected, while the three-dimensional features

of the fluid flow and the hull geometry are fully retained. Prom

a formal mathematical point of view this approach is inconsistent,

but in practice it nay be argued that most surface ships are

somewhat slender and operate at fairly low Froude numbers and

therefore the free surface disturbance is relatively small (except

possibly in the bow regime). The numerical solution of the

Neumann-Kelvin prOblem for the steady disturbance potential of a

moving surface ship is a difficult task and theoretical predictions

of the wave resistance have only recently become available, see

Kusaka (1976), Guevel et al (1977), Tautsumi (1919) and Tai et al

(1983) 7urther aspects of the Neumann-Kelvin theory are discussed

in the next section.

Omitted from the previous discussion are the nonlinear

wave resistance theories which go beyond the first order linear

approximations as used in the consistent thin, flat, slender and

slow ship theories and in the inconsistent Neumann-Kelvin theory.

The major difficulty in the higher-order wave theories stems from

the unknown position of the disturbed free surface and the need

to use Taylor series expansions to obtain the boundaiy conditions

on the mean position of the free surface, see Peters and Stoker

(1957) for an outline of this procedure. Wehausen (1963),
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Maruo (1966) and Eggera (1966) have investigated the second order

thin ship theory. The use of Taylor series expansions has led

to sane criticism with regard to the continuation of the potential

flow solution outside the mean flow domain and the occurrence of

non-uniformities at the ship's bow and stern. These difficulties

can be partially avoided by adopting a Lagrangi. description of

the fluid flow whereby the physical space is napped into a

reference domain where the- disturbed free surface and the hull

surface are Jown coordinate surfaces, see Tim (1968), Wehausen

(1969) and Noblesse and Dagan (1976). A particularly interesting

albeit formally inConsistent variant of this approach- is Guilloton' s

(1964, 1965) method. This procedure starts with the flow velocity

field as predicted by the linear Michell theory and then maps it.

into a better approximation by means of- a kind of inverse streamline

tracing method where the hull surface is however forced to be a

stream surface. The method haa been applied by Emerson (1967, 1971),

Gadd (1973,1979) and Guevel at al (1979). At low to moderate

Froude mbera there is good agreement between Guilloton' a method

and measured data. Finally mention is made of some recent attempts

to solve nerically the exact nonlinear potential flow problem

by means of Rankine source, finite element or finite difference

methods, see Korving and ifermans (1977) Oomen (1979, 1981), Daube

(1980), Daube and Dulisu (1981), ChaC and Chan (1979), Yen and

Chamberlain (1983), Chajflberlain and Yen (1985) and Maruo and

Ogivara (1985).
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13 THE PRESENT INVESTIGATION

The present Study is cOncerned with the investigation

of the steady flow disturbance caused by a moving surface ship.

In this thesià the Neumann-Kelvin theory is adopted, that is, the

flow disturbance is described by means of a three-dtmen8ional

linearised potential flow theory. Specifically, the free surface

condition is linearised about the mean sea plane, but the boundary

condition at- the ship's wetted hull surface is retained in its

exact form. The formal inconsistency of the Neumann-Kelvin theory

warrants some clarification of the rsasófls for its use in this

thesis.

The irrotational flow disturbance caused. by- a ship

in steady rectilinear motion at the free surfice of a calm ideal

sea may be described by means of potential flow theory. The

wave resistance and other flow parameters may be derived from the

knowledge of the velocity potential function, see for example

Wehausen (1973) and Newman (1976). The velocity potential must

satisfy- appropriate conditions in the flow domain and on its

boundaries. The position of the disturbed free surface is of

course not known beforehand and the resulting nonlinearity of

the free surface condition effectively prohibits the development

of the complete solution of the exact potential flow problem.

Systematic perturbation schemes may be used to overcome this

difficulty and the free surface condition i then linearised about
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the undisturbed mean sea plane by meanA of a Taylor series

expansion. However, the conBistent application of such techniques

requires that one is able to designate a small perturbation

parameter connected with the problem in such a manner that the free

surface disturbance gradually vanishes as the magnitude of the

perturbation parameter is decreased. For example, in the thin and

slow ship theories the small perturbation parameter corresponds,

to the ship's thichnesa and the Froude number respectively

(see Newman (1976)). Mathematically such procedures are consistent

and justified,. but they do not necessarily imply any better

correlation between experiment and theory.

In the Neumann-Kelvin theory the perturbation

parameter is not explicitly specified but it is assumed (sic)

that the disturbance of the' free surface caused by the moving

ship is small,. without formally identifyiflg the reasons for its

smallness. Clearly this procedure cannot be justified from a

formal mathematical point of view. However, most surface ships

are somewhat slender (elongated) and operate at fairly low values

of the Froude nber. In practice it may therefore be argued that

the ship generated free surface disturbance is relatively small

*
over a wide portion of the sea surface . Noblesse (1976) shows

that the linear Neumann-Kelvin problem for the disturbance

A possible exception occurs near the ship's bow, where the flow

has a stagnation point and the wave amplitude attains a theoretical

maximum value.
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potential is in fact the consisteit first order approximation in

a regular perturbation scheme, where the perturbatióh parameter is

chosen as some measure of the ship generated wave pattern; he tiso

points out that the transfer of the exact hull surface condition

to the ship's centreplane in the Michell (1898) thin ship theory

may be more restrictive in- practice than the liddarisation- of the

free surface condition. The foregoing observations then suggest

that in a first approximation the linearised free surface condition

is adequate, but the- three-dimensional features of the hull form

should be fully retained. Moreover, the inconsistency of the

Neumann-Kelvin approximation should not prevent the practical

comparison of experimental and theoretical predictions.

The main problem arising in the application of the

Neumann-Kelvin theory is the determination of the solution of the

linear bóuñdary value problem for the disturbance potential.

Numerical methoto achieve this purpose can be classified into

two categories. The first cateéory of so-called boundary integral

methods is based on integral identities for the velocity potential

obtained by applying Green's second formula to the potential and an

appropriate Green's function. The Green's function may be chosen

as either a fundamental Rankine source or the potential of a

translating submerged source (the Kelvin wave source potential).

In the first approach the Rankine sources are distributed over

both the mean sea plane and the wetted hull surface, see for

exampleAdachi and Takeshi (1983). The second approach involves

the distribution of Kelvin wave sources over both the hull surface
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and the water limO contour, see Brard (1972). Earlier calculations

without the water line integral were carried Out by Gadd (1970) and

Kobayashi and Ikehata (1970). Calculations including the water line

integral have been carried out by Chang (1979), Suzuki (1979),

Tsutsumi (1979) and Tsai Ot al (1983). The second cateorv of

numerical methods is that of the finite element methods where the

equivalent variational formulation of the Neumann-Kelvin problem

is solved by subdividing the flow domain into finite elements.

The downstream radiation condition can be satisfied by using

appropriate eigenfunction expansions (Sal (1977, 1979)) or

boundary integral representations (Lendir (1982), Guttmann (1983))

of the potential.

Table 1.1 compares the experimental data and

theoretical wave resistance predictions for the Wigley parabolic

hull at four different Proude numbers. The experimental data were

taken from a-survey of eleven sets of experiments, see Chen and

NOblesse (1983b). All theoreticil predictions were obtained by

numerical solution of the Neumann-Kelvin problem. Bai (1970)

used a finite element method, Adachi and Tákeshi (1983) used a

Rankine source method, while Chang- (1979), Suzuki (1979),

Tsuts (1979) and Tsal et al (1933) all used Kelvin wave source

distribution methods. Although the differences between the

average experimental data and the average theoretical predictions

are fairly small, the large scatter in the theoretical data is

- clearly unacceptable and must be ascribed to the use of inadcurate

numerical procedures. For example, at Froude number- F =0.350
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the variation in the theoretical data is 63%. At the same Froude

number the scatter in the four results obtained by means of a

Kelvin wave source distribution method is 48%. This discrepancy

must be mainly ascribed to the errors occurring in the evaluation

of the Kelvin wave source potential. The Kelvin wave pattern

generated by a moving submerged source is mathematically expressed

as a single integral with a rapidly oscillatory integrand, see

Noblesse (1981). Numerical calculation of such integrals is,

difficult and tine consuming. In this study Kelvin wave source

distribution methods are used to solve the Neumann-Kelvin problem.

A major novelty is the successful development and employment of

both accurate and fast algorithms for the evaluation of the Kelvin

wave source potential.

1.4 OUTLINE OF THESIS.

In chapter 2 the hydrodynamic theory of steady ship

motion is developed. Throughout the present analysis nondimensional

flow variables are used in terms of the fluid density, the ship

speed and the ship length, as discussed in section 2.1. The

exact potential flow problem is formulated.in section 2.2. The

difficulties associated with the nonlinear free surface condition

are discussed in section 2.3, where the linear Neumann-Kelvin

formulation is introduced into the analysis. Expressions relating

the relevant flow parameters to the disturbance potential are

presented in section 2.4. Simplified equations are proposed for

the calculation of the sinkage and trim.
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Chapter 3 is concerned with the theoretical

investigation of the Kelvin wave source potential, that is, the

Green's function associated with. the Neumann-Kelvin problem.

This fundamental function plays an important role in the linear

wave resistance theory. Physically it represents the potential

of a translating, submerged source. The definition, fundamental

properties and physical interpretation of the Kelvin wave source

potetial are discussed in section 3.1. A variety Of alternative

expressions are compared in section 3.2. It appears that the most

convenient expression from both physical, mathematical and

numerical points of view is an expresSion originally due to Peters

(1949). In this formulation the Kelvin wave source potential is

expressed as the sum of three components: (i) the potential of a

fundamental Rankine source; (ii) the potential of a nonoscillatory

nearfield disturbance symmetric upstream and downstream from the

source; and (iii) the potential, of a wavelike disturbance trailing

downstream from the source (and zero upstream). The properties

of the nearfield and wavelike disturbance are investigated in

sections 3.3 and 3.4 respectively.

In chapter 4 it is discussed how the Kelvin wave

source potential can be used to derive integral identities for the

disturbance potential of the steady flow about a moving ship.. A

basic integral identity is obtained in section 4.1 by applying

Green's second formula to the disturbance potential and the Kelvin

wave source potential. Two alternative strategies are proposed
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to obtain the solution of the disturbance potential. 'The first

and classic approach due to Brard (1972) is discussed in section 4.2.

The exact solution of the disturbance potential is obtained by

relating it to an auxiliary distribution of Kelvin wave sources aver

the ship's hull surface and water line. The unknown source strength

must be solved from a Fredholm integral equation of the second

kind obtained by imposing the boundary condition at the hull surface.

An alternative strategy to obtain the disturbance potential proposed

by Noblesse (1983) is discussed in section 4.3. It is based on an

explicit integro-differential equation for the potential itself.

This equation can only be solved iteratively and -it is shown that

the first term in the iterative sequence of potential approximations

provides a useful explicit numerical approximation to the exact

source strength for sufficiently slender ship forms. The concept

of the Kochin (1951') wave amplitude function and the related

Havelock (1934) wave resistance formula is briefly discussed in

section 4.4 and it is used to demonstrate the importance of the

additional water line distribution of, Kelvin wave sOurces.

In chapter 5 the computational procedures are

presented which 'were developed to obtain the solution of the

disturbance potential. A standard 'point-collocation procedure,

similax to the one earlier used by Idglis (1980), is üsèd in

sectidn 5.1 to discretiBe the integral identities. A, simple

Gaussian quadrature method is proposed to evaluate the influence

coefficients. The errOrS associated with the approximation

procedure, as well' as the exploitation of the ship's lateral
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Symmetry plane, are discussed. The application of the proposed

method relies heavily on the use of accurate and efficient

algorithms for the evaluation of the Kelvin wave source potential

and its gradient. The methods used to evaluate the nearfield and

wavelike disturbance are discussed in sections 5.2 and 5.3

respectively. The algorithm for the nearfield disturbance is

based on Chebyshev approximatiOns derived by Newman (1986a).

The algorithm for. the wavelike disturbance Is based on two

complementary Neumann series expansions originally obtained by

Bessbo (1964). Accurate and efficient methods have been developed

to evaluate the two series expressions.

In chapter 6 the developed theory Is applied to

five different hull forms. These are: a submerged prOlate

spheroid, the Wigley parabolic hull form, a. tanker, a cruiser and

a destroyer. Extensive comparisons are made between experimental

data and theoretical predictions of a wide variety of flow

parameters such as wave resistance, sidkage,, trim, pressure

signatures, wave profiles and vertical force distributions.

In most. cases the calculations have been carried out for a large

number of Froude numbers, thus allowing a detailed assessment of

the ability of the Neumann-Kelvin theory to model the steady ship

motion problem. In chapter 7 It is concluded that the developed

computational tools provide an accurate and efficient tool tO

analyse the steady flow disturbance phenomena caused by a

moving surface ship.
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Figure 1.1 Publications on wae resistance and related topics

during 1875-1975.
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2. HYDRODYNAIIIC THEORY OF STEADY SHIP MOTIOP!

2,]. POTENTIAL FLOW DESCRIPTION

The present analysis is concerned with the investigation

of the flow about a rigid ship in steady rectilinear motion at the

free surface of a previously undisturbed sea of infinite depth and

width. The sea water is regarded as ideal, that is, homogeneous,

incompressible and inviscid, and irrotational flow is assumed. The

effects of surface- tension,, wave breaking and spray formation at

the bow are neglected. The external Zorces acting on the ship are

assumed to stem from the presence of a uniform gravitational field.

Nondimensional variables are defined in terms oc

as reference mass, L as reference length and LIV as reference

time, where p, L and V denote the density of the fluid, the water

line length of the ship and the speed of the ship respectively.

Table 2.1 givee the definitions of the thus obtained nondimensional

flow variables. Notice in particular the definition of the

nondimensiónal acceleration of gravity as ,i,2 = , where

g is dimensional and the Froude number F = vi/Y. In. this study

the dimensionless variables in terms of , L and V are ueed

exclusively.

Figure 2.1 illustrates the Cartesian reference frame

Oxyz attached to the moving ship. The fluid flow is independent
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of time-with respect to Ox*z. The origin 0 is located at amidships

and the positive Ox axis points towards the bow (i.e. x>>O and x<<O

correspond to the upstream -and downstream flow regimed. respectively).

The positive Oz axis points vertically upward and the mean free

surface coincides with the-plane z0.-

In potential flow theory the irotational flow of an

ideal fluid is uniquely determined by the velocity potential function,

as explained for example by Lamb (1932) and Milne-Thomson (1968). -

Let 0(x) denote the nondimenstonal potential at position x in the

fluid. The potential has a -Steady state charaâteristic with respect

to the moving axis system Oxyz consisting, of contributions froni

both the uniform free Stream flow and the steady flow disturbance

caused by the moving Ship. That is:

0(f) = -x + , (2.1)

where -x is the potential of the uniform free stream f-low and (x)

denotes the disturbance potential. By definition, the flow

velocity vector 11(x) is given by:

= 78 = - + 7$ = - + (2.2)

where 70 = (0, .0., 0) = (ao/ax, 0/3y, 30/3z) denotes the gradient

of 0, i (1,0,0) denotes the unit vector along the Ox axis, and the

perturbed flow velocity u = 7$. The fluid pressure p(x) is given

by the nondimensional Bernoulli equation as:
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2 2 2 2
(2.3)

where v.1
+ +

is the square of the magnitude

of the flOw velocity vector U = V6 and F denotes the Proude
- - n

nwmber. From this expression it is seen that the total pressure

consists of contributions from the uniform free stream flow, the

Steady perturbed flow Sad the hdrbstattc pressure.

2.2 EXACT PROBLEM FORMULATION

The velocity potential of the steady flow about

a moving ship must satisfy the following conditions (see Wehausen

(1973), Newman (1976) and Noblesse and Dagan (1976)):

(1) The continuity equation (or conservation of fluid mass)

requires that the divergence of the flow velocity is

identical to zero, that is, V.0 = 0, throughout the flow

domain D. Using equation (2.2) this condition may be

written as:

2V=0 mD (2.4)

2
where v 6 = 6 + 6 + 6 denotes the Laplacian of q.

77 zz

(ii) If z = C(x,y) denotes the unknown elevation of the

disturbed free surface S, then the resulting kinematic
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condition may be expressed as:

.VC On S
-. z. V -

This condition ensures that the fluid particles caot

pass through the free surface. Furthermore, the free

surface is a surface of constant -atmospheric pressure and

it f011Ows from theBernoufli equation (23) that:

2 2

*F (1- Fv,I ) on S

Substituting this dynamic Condition into the kinematic

condition given in the previous equation, the free, surface

condition to be Satisfied by becomes:

2 2
-? ve.lv0I on S ., (2.6)

The actual position of the disturbed free surface is not

known beforehand and this implies a major complication

in the implicit forms of equations (2.5-6).

(iii) Since fluid particles cannot permeate the wetted hull

surface H of the ship, it follows that:

=0 onfl,
n

where = /n VLn and a = (n ,n ,n ) is the unit
- n - .. x y z

vector normal to the hull and pointing into the fluid.

(2.5)

(2.7)
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This kinematic condition ensures that the normal components

of the hull velocity and the flow velocity are identical.

In general, the moving ship will sink and trim about its

position at rest and therefore the actual position of the

ship's hull surface is not known beforehand.

(iv) Finally a radiation conditiOn must be imposed to ensure the

existence -and uniqueneas of the potential, see Dern (1977)

for a comprehensive discussion of this topic. This condition

states that the energy flux of the waves radiated by the

moving ship is directed outward at infinity, see Newman (1978).

In the present context it is seen that the waves are

following the ship and there are no upstream waves. This

feature can be expressed bydefining:

(0(1/ixi) 1x>O

as lI--if1
o(1) x<0

where 0(x) and 0(x) denote the Landau order symbols of x

as defined by Erdelyt (1956).

Substitution of equation (2.1) into equations (2.4-8)

results in the following set of conditions to be satisfied by the

disturbance potential

(i continuity:

(2.8)

2
V $ = 0 in D ; (2.9)



free surface conditions:

2- 2

C - M ) on S (2.10)

F2 + $ F2(2V.V$ - *V.VI V ) on 5; (2.11)

hull surface condition:

q, =n on
n x

radiation condition:

r0(1/jxI)

asI-° ift
o(1) x<0

Equations (2.9-13) are exact within the assumptions stated at the

beginning of section 2.1 and together they constitute a nonlinear

elliptic boundary value problem frosi which the disturbance potential

must, be solved.

2,3 LINEAR NEUMANN-KELVIN THEORY

Unfortunately the complicated nonlinear nature of

the free surface conditions given in equations (2.10-11) prohibits

the development of an exact solution, of the disturbance potential,

see however Dawson (1977) and Daubs (1980) for some recent

- 29 -

(2.12)

(2.13)
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developments. Therefore some method of approximation is required

and this may be achieved by means of regular or singular perturbation

expansions, as discussed by Wehausen (1973). Such procedures rely

on one'S ability to choose a small parameter c which is connected

with the prOblem such that as c is decreased the disturbance near

the free surface is gradually reduced. Ultimately this results in

a linear formulation where the free surface elevation is small and

the free surface conditions may be linearised about the mean sea

plane.

Three ideas lie behind the choice of a convenient

perturbation parameter , see Table 2.2. Specifically, may be

related to the assumed smallness of:

the beam/length and/or draft length ratio of the ship (this

choice results in the classic thin, flat and slender ship

approximations);

the Froude number (this choice results in the slow ship

approximation);

the Froude number based on the iersion depth of a deeply

submerged body.

Any of these approaches results in small disturbance of the free

surface as c is made smaller, but they alsO destroy the general

threedimensional character of the present analysis.

An alternative scheme may be based on linearising

only the free surface condition while the other conditions are
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retained in their exact forms. The resulting approximation is

formally inconSistent for surfaãe ships. The free slfrface conditions

valid on the disturbed free surface S may be expanded about the mean

free surface s (i.e. the plane z 0) using a Taylor series

expansion of the form: -

q(x,y,c) x,y,0) + (x,y,0) +

The application of this expansion to the free surface conditions

given in equations (2.10-li) results in:,

22,
- ) + F 4i + 0(F43) , (2.14)w n x 0 xxz

nxx + = Fn2{2x - s.vIvl2
(2.15)

- (,x - - F2} + 0(F43)

valid on 8, where 0(F43) deSotes that the neglected terms are

at least of the fourth order in the Pioude number and of the

third order in derivatives of the disturbance potential, see

Newman (1976).

The nonlinear- term on the right side 02 equation

(2.15) is of order F22 and is assumed to be small in comparison

with the linear term
2__

+ . If terms of 0(F 22)
are

0 . Z fl

üeglected in equation (2.15) it follows that the nonlinear

boundary value prOblem given previously in equations (2.9-13) is-

transformed into the set of linear conditions given by:
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(1) continuity:

o in d ; (2.16)

free surface condition:

2
F + =0 ona;
n Z

hull surface condition:

= n on h ; (2.18)
n x

radiation condition:

r0(1/lxI) x>0
as I- if1

o(l) x0

In equations (2.16-18) the actual flow domain 22, the free surface S

and the hull surface H have been replaced by the mean flow domain

d, the mean free surface B and the mean hull surface h respectively.

The disturbance potential may now be solved from

the linear 'Neumann-Kelvin' problem defined by equations (2.18-19);

the hull surface condition given by-equation (2.18) is of the

Neumann-type, while the linear free surface condition given by

equation (2.17) ñs first investigated by Lord Kelvin, see

Thomson (1881). By definition of the Neumann-Kelvin problem, the

free surface condition is linearised but no restrictions are

(2.17)

(2.19)
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imposed on the shape of the hull surface, see Brard (1971, 1974a,b).

In the remainder of this work the linear Neumann-Kelvin approximation

is used as the theoretical model for the description of the flow

about a moving ship.

Some justification for adopting the linear free

surface condition may be derived from experimental evidence which

suggests that the disturbance of the free surface is relatively

small, except near the bow of surface ships. More precisely, the

dimensionless wave elevation /72
= (l - vf2 given in equation

(2.5) is small for moat slender ship forms (notice however, that

= , i.e. not small, at a stagnation point where the flow

velocity is zero, e.g. near the pointed bow of a surface ship).

Kajitani et al (1983) have measured the wave profiles along the

hull of an Unrestrained Wigley model. Figure 2.2 s,hows a typical

result and clearly illustrates that is small if the bow wave

crest is discarded. The formal inconsistency of the Neumann-Kelvin

approximation seems therefore of little practical importance and

certainly should not invalidate a direct comparison between experimental

and theoretical predictions.

2.4 WAVE RESISTANCEJ SINKAGE AND IRIf

Assuming that the disturbance potential is evaluated

by solving the NeUmann-Kelvin problem, the task is reduced to the

derivation of the relevant flow parameters. These are the flow
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velocity, the fluid pr&ssure, the wave eleation and the

hydrodynafliic forces- which determine the wave resistance -and the

induced sinkage and trim angIe.

The perturbed flow velocity oCx) and the hydrodynamic

pressure p(x) may readily be obtained from equations (2.2) and

(2.3) respectively. Disca±ding terms of 0(P22) in equation (2.14)

it follows that the wave -elevation (x,y) of the disturbed free

surface is given by:

c(x,y) = .

2
(x,y,O)

n x

The hydrodynamic forces can be obtáiñed either by directly integrating

the hydrodynaniic pressure on the h011 surface or by evaluating the

energy contained iii the downstream wave pattern of the ship, see

Webausen (1973). Here the first approach isused, while the latter

is discussed in aectiàn 4.4.

Most ships have a lateral plane of symmetry coinciding

with the plane y0 in fiHure 2.1. For such vessels the only nonzero

components of the hydrodynamic force and moment are the drag force

d the lift force 9. and the trlIm1elg moment n , where d 9. and
w w w w w

m are nondimensional in the manner indicated in Table 2.1. These
w -

components may readily be determined by integrating the hydrodynaziic

pressure over the hull surface and it follows that:

(2.20)
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d
= JfC - IVI)nda (2.21a)

w - IvI)nda (2.21b)

- - (2. 21c-)

where (n ,n ,n) are the components of the outward unit normal.xyz
vector on the hull surface.

Associated with the drag, lift and moment acting

on the moving ship are the wave résistance C, the ainkage s

the triihaing angle e. However, the-bull surface h in equations

(2.21a-c) refers to the unknown position of the hull surface after

the sinkage and trim have been applied. It follows that the

qüántities C , s and S are interrelated and an iterative procedure
- w w w - --

is required in order to determine them. This procedure can be

initialised by considering the hull surface corresponding to the

known hydrostatic equilibrium position of the ship at rest, see

Wehausen (1969), Yeung (1972), Gadd (1973) and Noblesse and Dagan

-(1976). In towing tanks a ship model can be restrained (i.e. sO

and/or O) and the theoretical simulation of this situation is

considerably simplified.

In practical calculations the cumbersome iterative

procedure for the determination-of the wave resistance, jinkage and

trim can easily be avoided by asiuming that the sinkage and trim are

small (this assumption is not tenable at very high ship speeds).
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Figure 2.3tllustrates the static equilibrium of the moving ship

acted upon by the drag force d, the lift force I and the trimming

moment m The wave resistance C is formally defined as negative
- w w

thrust acting along the propeller shaft line; the additional trimming

moment induced by the wave resistance is negligible for most

sufficiently slender ship forms, see Wehausen (1973) and Noblesse

and Dagan (1976). The sinkage s and trim angle 8 are reckoned

positive for increasing draft and a bow-up rotation respectively.

For small a and 0. the static equilibrium of the moving ship is

described by (see Noblesse and Dagan (1976)):

C =d
w w

is -18 +F21 =0Ow lw nw.

2-is +18 +F m1w 2w n w

where F denotes the Froude dumber and the k-tb moment of area

ik of the water line plane is defined by:

i = Ik j

where b(x) is the beam at position x. These moments of area are

dimensionless in the manner indicated in Table 2.2 and relate to

the position of the water line plane of the ship at rest. The sinkage

and trim are coupled and can be obtained by solving the set of linear

algebraic equations (2.22b-c).

(2.22a)

(2.22b)

(2.22c)



variable dimensional nondimensional

density of water p 1 = p/p

length of ship L 1 = LII

speed of Ship V 1 = V/V

acceleration of gravity g gJIV2 =.

beam of ship b = B/I

draft of ship D d = DIE

k-th moment of area
'k"1

coordinates (X,Y,Z) (x,y,z) = (X,Y,Z)/E

velocity potential /VE

flow velocity U U = U/V

water pressure P p = P/PV

wave elevation Z = Z,/L

drag force D d DW/PV212

lift force L = L/rDV2E2

trimming moment M nw

wave resistance C = R /P I
w. V V

sinkage S s S/L
w w w

trim by Stern 0 0
w w

Table 2.1 Definitions of nondimensional flow variables.
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Newman (1976)

Baba (1978,1977)

Maruo (1977)

Kayo (1978)

Noblesse (1983)

submerged bOdy Havelock (1931a,b) 0(1) 0(1) 0(c) *

Xochin (1951)

Besaho (1961) V

FaraU- (1973)

Guttmann (1983)

* Froude number based on ies ion depth

Table 2.2 Comparison of se assiptions resulting in small

disturbance near the free surface..

assumption references d

thin ship Michell (1898) 0(c) 0(1) 0(1)

Wehausen (1973)

Noblesse (1983)

flat ship Hogñer (1932) 0(1) 0(c) 0(1)

Noblesse (1983)

slender ship Vossera. (1962) 0(c) 0(e) 0(1)

Maruo (1962)

Tuck (1964)

Ogilvie (1970)

Noblesse (1983)

slow ship Guevel et al (1974) 0(1) 0(1) 0(c)
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mean' hull

- 39 -

surface h

mean sea surface 8

mean flow. domain d

unit normal vector n

Fiiure 2.1 Sketch of the coordinate system Oxym attached to
the moving shin. The shii, has unit length, beam b
and draft d.
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Figure 2.3 Sketch of the rioving shifl's static equilibxiva

Showing the drag forced., the lift force £,

the trisin moment in. , the wave resistance C
w w

the downward sinkae S and the trim by the

sterne (ship length 5 1). -
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3. THE KELVIN WAVE SOURCE POTENTIAL

3.1 DEFINITION AND FUNDAMENTAL PROPERTIES

The Kelvin wave source potential is defined as the

Green's function associated with the Neumann-Kelvin problem and

physically this function may be identified with the potential of a

translating submerged source. The Kelvin wave source potential

plays a significant role in the linear theory of ship waves and -

wave resistance and this chapter is entirely devoted to its- mathematical

analysis. For many years mathematicians and hydrodynamicists have

expended considerable effort in the development and analysis of the

Kelvin wave source potential and their combined efforts have resulted

in a vast literature which is reviewed by Wehausen and Laitone (1960),

Besaho (1964), Eggers et al (l967) Nakatake (1969), Gamst (1979),

Noblesse (1981) and Euvrard (1983)..

Let F(,rO) and x(x,y,z0) denote two position

vectors referring to the moving axis system Oxyz, as illustrated in

Figure 3.1. By definitiod, the Green's function G(,x;F2) associated

with the Neumann-Kelvin problem given by equations (2.16-19) is the

solution to the following boundary value problem (see Noblesse (1981)):



(i) Continuity:

(ii) free surface condition:

0

F2G_ +G onzif
n z -S(x - )6(y -n)

(iii)- radiation condition:

iO(l/Iz - ci) ( >x
G as Ix - if

o(1) - -

In equation (3.1-2) 6(x) represents the usual Dirac's delta function

of x. The Gréen"s function is the singular or fundamental solution

to the homogeneous 'Kelvin problem obtained by discarding the

nonhomOgeneous Neumann bull surface condition given by equation

(2.18) from the Neumann-Kelvin problem.

Physically the Kelvin wave source potential G(,x;P2)

represents the linearised velocity potential at the field point

(,n,dO) of the unit outflow produced by a source at the source

point x(x,y,z<O) in steady rectilinear motion with unit speed at

at depth -z below the free surface of an otherwise unbounded fluid.

In the limiting case when z=O the source is evidently no longer fully

submerged and it may be shown that the unit outflow produced at

- 43 -

- )6Cy - n)6(z -
in zcO jf

<o.

(3.2)

(3.3)
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(x,y,z=0) now stems from a flux across the mean free surface, see

Ursell (1960), Noblesse (1981) and Euvrard (1q83).

From physical considerations it follows that the

source flow is symmetric with respect to the centre plane y=n.

That is, the Green's function satisfies the symmetry relationship:

onyri. . (3.4)

Furthermore, It can be shown that:

G(,x;F2) = G(XFn)

if and only if the flow direction is reversed, see Brard (1972)

and Noblesse (1981).

Noblesse (1981) demonstrates that the Kelvin wave

source potential can be expressed in the form:

= -l/I - + {N(z) + W(X)}/72 (3.5)

where - xi represents the distance betweón the field and source

points (see figure 3.1) and the dimensionless vector quantity

is defined by:

K (X,Y,Z0) Cx - ,y n, Iz + I)/Fn2 (3.6)
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The vector joins the field point with the free surface

mirror image of the source point x (notice that XO upstream from

the source and X>O downstream from the source).

Equation (3.5) implies that the Kdlvid wave source

potential is decomposed into three characteristic components:

the potential .1/4irk - x of a fundamental Rankine source

in infinite fluid (in the absence of the free surface);

the potential N(X)/4irF
2
of a localised nonoscillatory near-

field disturbance, symmetric upstream and downstream from the

source; and

the potential W(X)/4,rP2 of a wavelike disturbance which

accounts for the waves produced by the source.

The nearfield and wavelike components account for the effects

associated with the presence of the free surface and are functions

only of the vector quantity I defined in equation (3.6).

3.2 SuRVEY OF ALTERNATIVE EXPRESSIONS

Equivalent expressions for the Kelvin wave source

potential may be obtained by solving the boundary value problem

defined by equations (3.l-3) see Noblesse (1981) for a thorough

mathematical treatise. It appears that there are five altérnativS
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representations of the Kelvin wave source potential. These are:

Ci) an expression implicitly contained in Michell's (1898) famous

paper, rediscovered by Eggers et al (1987) and modified by

Noblesse (1981);

an expression originally due toHavelock (1932) and subsequently

modified by among others Lunde (1951), Kostyukov (1968),

Standing. (1975) and Shen and Parell (1977); -

an expression due to Peters (1949) and modified by Noblesse

(1977), see also Eggers et al (1987) andAndersson (1975);

an expression obtained in a remarkable paper by Bessho (1984),

rederived by Ursell (1884) and modified by Simmgen (1968); and

Cv) an expression proposed. by Demanche (1981) and redSrived by

Baar (1984b).

Amongst the foregoing expressions, the second representation due to

Havelock (1932) is no doubt the most popular and is also quoted by

Wehausen and Laitone (1960). The fourth and fifth expressions are

less well known and although they have certain interesting theoretical

features they do not appear to offer any practical advantages; here

these representations will not be considered further. Instead the

ittention is focused on the first three representations due to

Michell (1898), Havelock (1932) and Peters (1949).

Table 3.1 compares. the relevant 'Michell'., 'Havelock'

and 'Peters' representations of the nearfield and wavelike components

as defined by equation (3.5). These equivalent expressions are

modifications of the original representations as obtained by Noblesse
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(1981). It is seen that the nearfield disturbance N(X) is written

as the sum. of two terms: firstly, a Rankine sink potential l/E,

where = and r = F2R represents the distance between the field

point and the free surface mirror image of the source point (see

figure 3.1); and, secondly, a single integral. term with the integrand

expressed in terms of the complex-valued exponential integral function

as defined in Abramowits and Stegun (l972) The integration

limits are either finite (Peters) or infinite (Michell and Raveloek).

It. may be verified that in all three representations the nearfield

disturbance is syetric upstream and dOwnstream from the source (i.e.

the function N is even with respect to both X and. Y).

The differences between the three equivalent expressions

in Table 3.1 are clearly recognisable from the. respective representations

of. the wavelike disturbance W(X). This function is expre8sed as a

single integral with at least one infinite integration limit and a

rapidly oscillatory integrand (the Michell expression contains an

additional integral term with finite integration limits). Both the

Michell and the Peters representations have fixed integration limits,

while the lower integration limit -X/Y of the Havelock expression

.is variable and depends on the relative position of the field and

source points. This feature appears to be a major disadvantage of

the ilavelock representation, as was pointed out by Eggers et al (1967).

The Peters representation of the wavelike disturbance illustrates

clearly that the waves follow the source, that is, the waves are

only present downstream from the source, in agreement with the

radiation condition given by equation (3.3). It is there!ore seen

that the Peters representation is the most convenient from a physical
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point of view; it also appears to be the beet suited expression for

purposes of mathematical and numerical analysis.

The Kelvin ware souroe potential G(.x;F2) is thus

expressed in the form of equation (3.5) in which the nearfield

disturbance 3(X) is given by:.

3(X) = 1/B + (2/ir)JIm{exP(A)E1(A)}dt (3.7)

where a = XI and the complex argument A = '{-z/ + Yt

likewise, the wavelike disturbance W(X) is given by:

W(X) _H(X)4Jsin{(X+Yt)VT}exP{_Z(1+t2)}dt
, (3.8)

where the Reaviside unitstep function 3(X) is defined, by:

'0 1X<O upstream
H(X) = if i.e. from the source.

1.1
. X>0 downstream

The Peters (1949) represéntátion of the Kelvin wave

source potential has been neglected for some time, although it was

used for ilatance by Eggers and Cboi (1975). In recent years,

however, it has been recoénised as the most convenient expression

from both physici.l, mathematical and numerical points of view, see

for example Noblesse (1981), Euvrard'(1983) and Newman (l986a,b).,

In the remainder of this chapter the properties of the nearfield

and wavelike disturbances as defined by equations (3.7) and (3.8)

respectively are further investigated.



.3.3 ANALYSIS OF THE NEARFIELD DISTURBANCE

The nearfield disturbance may be intepreted as the

potential of a localised nonoscillatory disturbance symmetric upstream

and downstream from the source. It is convenient to express the

function N(X) in the form:

N(X) = M(X)/R , (3.9)

where 9 = Xl. AccOrding to Noblesse- (1981) the function 9(X) may

asanne the equivalent forms given by:.

U = 1 + (2/ir)R
J

Im{exp(A)E1(A)}dt (3.1Q)

= 1 + (2/1r)RJRe{exP(B)E1(B)}dt + (3.11)

where T Xl,lYl and the coáplex àigumenta A and B arC defined by:

A={-z/i7+Yt iIXl}/1-t

B = {Z1.tZ + i(IXl lTl}Vi t2

The expression given in equation (3.10) follows immediately from

equations (3.7) and (3.9) whereas equation (3.11) may be obtained

by considering the equivalence of the Peters and Havelock expressions

given in Table 3.1 (i.e. by noting that N NH+WH_W, whene

indices P and H refer to the Peters and Havelock expressions respectively).



- 50 -

The ascending series and the asymptotic expansion of

the exponential integral E1 (a) are given by Abramowitz and Stegun

(1972) as:

E1(z) = -{y+2.n(z) + Z
(i)nn/,}

n=1

-exp(-z) E
(_j)%/5fl

(3.13)
nO

respectively. The ascending series of the nearfield disturbance may

be obtained by substituting equation (3.12) with z'A into the integrand

of the integral term in equation (3.10) and evaluating he remaining

integrals analytically, see Noblesse (-1977, 1978b) and Newman (1985,

l988a). Likewise, the asymptotic expansion of the nearfield

disturbance may be obtained by substituting equation (3.13) with z3

into the integrand of the first integral on the right side of equation

(3.11), see Noblesse (1975, 1981) and Newman (1986a).

The first few terms of the thus obtained ascending and

asymptotic series of the nearfióld disturbance are given in Table 3.2,

where the function U(X) is expressed in the form;.

M(X) = MA(X) + RM1(X) . (3.14)

It is seen that the integral terms N1 in the ascending series
-

expressions in Table 3.2 vanish as R-O, while the integral terms of

the asymptotic expansion vanish as R-+=. The algebraic terms

the ascending series have been derived by Noblesse (1977, l918b).

The first algebraic term (i.e. -1) of the asymptotic expansion

corresponds to a well-known image source term (i.e. N--lIE as R-')

(3.12)
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which was earlier obtained by Güilloton (1960) and Beasho (1964).

Further terms of the ascending and asymptotic series of the nearfield

disturbance may in principle be derived, see Newman (1986a).

From the expressions given in Table 3.2 it nay be

concluded that the function M(X) behaves as:

1+1 + 0(R)

M(X) '4 as (3.15)

-1 + 0(1/R)

and it follows from equation (3.9) that the nearfield disturbance N(X)

may alternatively be interpreted as the potential of an image sink,

of strength U(X), in the infinite fluid (as if there were nO free

surface), as discussed by Noblesse (1977). In particular, the nearfield

disturbance rOduces to a simple image sink as- R40 (or F-, as may be

seen fromequation (3.6)) and an image source as R- (or F-0).

Equation (3.11) clearly illustrates that the nearfield

disturbance is symmetric upstream and downstream from the source. That is-

M(-X,7Z)

M(X,Y,Z) = M(X,-Y,Z) (3.16)

M(--X,-Y,Z)

When Y0 the additional integral term with lower limit of integration

TIxI,IYI in equation (3.11) vanishes. The integrands of equations

(3.10) and (3.11) then become even functions of the integration

variable t, as may be verified by making use of the relationship

where z denotes the complex conjugate of z. The centre
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plane nearfield disturbance is thus given by:

rl
M(X,O,Z) =j + (4/ir)R In1{exp(A)E1(A)}dt

= 1 + (4/w)R I Re{exp(B)E1(B)}dt
0

It is seen that the Havelock and Peters representations in Table 3.1

become identical when 7=0. The centre plane nearfield disturbance

N(X,O,Z)=M(X,O,Z)//X+Z is of great importance in. the thin ship

theory of wave resistance and has been investigated extensively by

Noblesse (1975) and Newman (1985, 1986a) who have derived the

complete ascending and asymptotic series.

A simple picture of the behaviour of the function

M(X) may be obtained by considering the two special. óasés where

Y=O=Z and X0 respectively; Bessho (1964) and Noblesse (1977)

show that: .

M(X,0,O) = -1 - 21X1 vIXI{R1dx1)- Y1(IXI)}

M(O,Y,Z) = 1 2hffF(1) -

where the similarity variable E (DZ), D = /Y+ Z2 and

H1(x), Y1(x) and F(x) denote the Struve, Bessel and Dawson's integral

- 22* Dawson'g integral P(x) = exp(t -x )dt
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junctions of x as defined by Abramowitz and Stegun (1872).

Algorithos for these transcendental functions are readily available,

see Newman (1984, l988b). Figure 3.2 shows the functions M(X,0,0),

M(O,Y,O) and M(O,0,Z) and clearly illustrates the limiting sink

and source behaviour of the nearfield disturbance for small and

large values of H respectively, as indicated in equation (3.15).

3.4 ANALYSIS OF THE WAVELIKE DISTURBANCE

The wavelike disturbance defined by equation (3.8)

represents the potential of a Kelvin wavelike disturbance trailing

downstream from the source (and zero upstream). This fact can be

verified by investigating the asymptotic behaviour of the function

7(X) for large values of p = 1X +Y, using the method of steepest

descents (see Erde].yi (1956)). This classic investigation is

reported in detail by Wehausen and Laitone (1980), Ursell (1980),

Newman (1977), Lighthill (1978) and Euvrard (1983), who show that

the function 7 behaves as:

This expression is a more precise formulation 0f the radiation

condition given in equation (3.3). It is seen that the dominant

waves generated by the moving source are confined to a sector making

0(5 Z.c2/2IYI

W 0(p') as p = ii-= if X=2/2Y . (3.17)

0(o) X>2/2171
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an angle of arncot(2/2)19°28 with the downstream sailing line of

the source, as illustrated in Figure 3.3. According to equation

H 3.11) the energy flux is the smallest near the border lines of this

sector. A more detailed analysis shows that within the sector two

distinct systmns of transverse and diverging waves exist; these two

systems meet near the border lines with a common angle of

arctan(/2)54°44' with the sailing line (see Figure 3.3).

The wavelike disturbance defined in equation (3.8)

may be written in the form:

- H(X)8P(X) (3.18)

where the function PCI) is defined by

P(X) = Jsin{(X+Yt)v'i}exP{_Z(i+t2)}dt (3.19)

for XO. This function is a special case of the P_functions

studied by Havelock (1923, 1925) and Bessho (1964).

Table 3.3 gives seven alternative expressions for the

function P(X). The first expression in thiS table may readily be

obtained by expanding the trigonometric term in the integrand of

equation (3.19). The last expression has been derived by Beasho

(1964) and may also be obtained by noting that the function P

aatisfies the parabolic differential equation PPz in the upper

half-space Z>O; according to Sneddon (1972) the solution of this

beat conduction problem is given by:
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P(X,Y,Z)- (l/Vc) JexP(_s)P(X - 2sV,-Y,0)ds

The renaming expressions in Table 3.3 may be obtained by.

performing the indicated change of integration variable. The

second and third expressions -are Fourier transform representations

and have been used by Teung (1972) and Guttmann (1983) respectively.

The fourth expression is identical to the expression given by

Peters (1949). The fifth expression is -no doubt the- most pou1ar

and similar in form to the expression quoted by Wehausen and -

Laitone (1960)..

A simple upper bound on the magnitude of the wavelike

disturbance can be obtained from. the sixth expression in Table 3.3.

Using this expreesioñ it- may be shOwn that:

Ipi < exp(-Z)vc7

provided that Z>0, and it is seen that the wavelike disturbance

decreases exponentially with. increasing Z. The sixth expression in

Table 33 is also useful-, to obtain an a8ymptotic expansion of. the

function P as Z-o' by means of Laplace's method, see Erdelyi (1956)

and Guttmann (1983).

The wavelike disturbance is symmetric with respect

to the centre plane-Y0-. That is:

P(X,Y,Z) = P(X,-Y,Z)
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as may readily be seen from the expressions given in Table 3.3.

In particular, when Y0, it follows that:

P(X,0,Z) = fsin(X/2)exp{_Z(l+t2)}dt

(-s2)sign(2sV'i_X)Y1(I2s/-X)ds (3.20)

where sign(x)=x/!xI denotes the usual sign-function. The latter

expression may be obtained from the last expression in Table 3.3

and was originally derived by Goodwin (1956) and also given in

slightly modified form by Noblesse (1978a). The centre plane

wavelike disturbance P CX, 0, Z). has, been further analySed' by Noblesse

(19785) and Newman (198Gb) who have derived the complete asymptotic

expansion which is uniformly valid as ii-.

Bessho (1964) has derived two rewarkab].e series

representations of the wsvelke dtGturbance. These series assume

the form of NeUmann expansions (see Watson (1944)) and may be

obtained by expanding terms in the integrand of equation (3.19)

into integer order Bessel functions, see Baar and Price. (1986b).

The series representations are given by:

P = -exp(Z) Z (-1)" nn cos(n9) , (3.21)

n=0

- Tep(Z)Y(X)I(D)cos(nG) (3.22)



a
In a recent coamiunication Newman (l986c) has pointed out that the

asymptotic Neumann expansion given in equation (3.22), as well as the

related seventh integral expression -in Table 3.3, appear to be too

regular to be correct on the free surface Z0, but they are valid

if the source track Y=0=Z is approached along an inclined radius

beneath the free surfuce.
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In theSe expressions the primed sStion sign indicates that the

first term (with n=O) of the series must be halved and. the polar

coordinates (DO,0eir) are defined by D' and O=arctan(IYI/Z).

The functions J(x), Y(x), 1(x) and K(x) denote the usual Bessel

functions of x of integer order n, as defined in Abramowitz and

Stegun (1972); the prime on the functions J2(X) and Y2(X) denotes

the derivative of these functions with respect to X.

The Neumann series repreBentation given in equation

(3.21) is convergent everywhere except on the source track Y0Z

and may be used for both small and moderate values of X2/D. The

complementary series given in equation (3.22) is asymptotic and

2 a
useful for large values of X /D . In chapter 5 it is shown how

the series representations can be used to design a highly effective

algorothm for the evaluation of the wavelike disturbance.

A final point of some academic interest concerns the

singular behaviour of the wavelike disturbance when the origin is

approached, see Ursell (1960), Bessho (1964), Noblesse (l978a),

Euvrard (1983),. Newman (1988b) and Baar and Price (l986b). When
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X=0, it may be seen from equation (3.19) that P0, provided that

Z>0. However, when y0z, it follows from both equations (3.20)

and (3.22) that

P(X,0,0) = (X) = - ,TY1(X)

For small values of X, the Bessel function Y1(X) behaves as

Y1(X)=-2/1TX+0(XLnX) and it is seen that the wavelike disturbance

is singular along the source track in the free surface. This

singular behaviour may be isolated as follows. -

For large values of the integration variable t,

the integrand of the first expression id Table 3.3 behaves as

sin(Xt)cos(Yt2)exp(-Zt2). This behaviour suggests the decomposition

of the function P into components P=PS+PR, where is a regular

function and the singular function P is defined by Baar and Price

(lPS6b) as:

- 1
stn(Xt)cos(Yt2)exp(-Zt2)dt

0

-= Re{F(X/2A)/A} (3.23)

In this expression the complex argument A=1Wexp(iG)

and F denotes the complex-valued Dawson's integral function (see

Abramowltz add Stegun (1972), equation 7.4.7). When Z0 the

integral in equation (3.23) can be expressed in terms of real-

valued Fresnel integral functions (see Gradsbteyn and Ryzhik (1980),

equatiOn 3.691.6).
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When Y=0Z it may be verified that the singular and

regular components become:

Ps(X,O,O) = I/X

PR(X.0.0) = - -Y1(X) - l/X

-respectively, so that the singularity along the source track is now

entirely aucounted for by the singular component function P.

Physically, the latter function represents the potential of a

diverging wave system, as illustrated in Figure 3.4 (an efficient

algoritha for the evaluation of the complex Dawon's integral has

been prepared by Gautschi (1970)).

Similar decompositions of the wavelike disturbance

have been investigated by Bessho (1964) and Euvrard (1983) and,

for 7=0, by Noblesse (1978á) and Newman (1986b). Bessho (1964)

recovers the complex-valued Dawson a integral occurring in equation

(3.23) by considering the behaviour of the Bessel functions in

equation (3.21) as the origin is approached. it is also noticed

that the function P arised in two recent new approacheS to the

slender- ship theory of wavemaking-, see Maruo (1982) and Teung and

Kim (1984). -
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Table 3.3 Alternative expressions for the wavelike disturbance.

(1) P.f sin(X1i) cos(YtIi7) exp{-Z(l+t2)}dt
0

P f (u/17i) sin(Xu) coe(Yu/ii) exp(-Zu2). du

(uIir)

P 1 {w/(2w2-l)} sin(Xw) cosCfv) exp(-Zw2) dv

0
Cv = tJ 2w2 = l+i)

/ cosht sin{(X+YstnhT)coshT} exp(-Zcosh2t) dt

Ct = sinhr)

P 1 sec2e .sin{(Xcoae+Ysine)sec2O} exp(-Zsec28) d
-1T

(ttanO)

P = {exp(-Z)/v"} I exp(-X2-) sin{(X+YX/I)v'l+X/Z} dA

(t A/i/i)

1',T exp{4(D-z)}f p(s2) {(2sv .X) Y1(u)/w} ds.

( Y+iZ = Dexp(i) , 4s2D - 4sVDcos(e) + X2 )
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4. INTEGRAL IDENTITIES FOR THE DISTURBANCE OTENTIAL

4.1 BAsic INTEGRAL IDENTITY

Integral identities for the steady disturbance

potential may be obtained by applying C,reem's second formula to the

disturbance potential and the Kelvin wave source potential. Recall

that the Kelvin wave source potential is defined as the solution

to -the homogeneous Kelvin problem given in equations (3.1-3).

Essentially this Green's function can be identified as the response

at the field point due to a unit impulse excitation applied at the

source point. The solution of the nonhomogeneous Neumann-Kelvin

problem for the disturbance potential (see equations (2.16-2.19))

in terms of an integral distribution of Green's functions (i.e.

fundamental Kelvin wave sources) can then be interpreted as the

result of superimposing the response of the set of impulses

represented by the nonhomogeneous Neumann hull surface condition

given by equation (2.18). (Notice the analogy with the impulse

response technique often used in ship dynamics, see for earnple,

Price and Bishop. (1974) and Bishop and Price (1979)).

Figure 4.1 illustrates the nomenclature used in .the

present chapter. The finite domain d' is bounded by the hull

surface 12, the finite mean free surface .' and some exterior.

surface 12 surrounding the hull surface 12; C and C are the

intersection curves of 12 and 12 respectively with the plane z0.
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Application of Greens second formula (see Kreyszig (1983)) to

the disturbance potential Cx) and the Kelvin wave source potential

GG(x;F2) gives

= fJ(G -$G)da + fJ(G_G+)dxdy

+ fJ(Gn_G$ ) da (4.1)

where G=3G/n = G(,x;F2).n(x) and n is the outward unit normal

vector on h as shown in figure 4.1.

Consider the second integral an the right side of

equation (4.1). By expressing its integrand as:

= $(P2G) - G(P2) +

and by using the Greens identity (see Kreyazig (1983)):.

ffGs_sG)ddY = + J(G$_G)dl

equation (4.1) may be rewritten as:

= if ntn +

h

2J(G)4 + I. 1= (4.2)

where and I are defined, by



where

=111v2
e J))

d

- 69 -

= JJJv2 Jf,(F2G+G)dxdy

ffJvv - JJG(F2++$)dxdy.

= JJ($G -G)da + 2J(G$G)dy

respectively.

By making use of the radiation conditions given in

equations (2.19) and (3.3) it can be shown that, vanishes as the

exterior surface h is expanded towards infinity and subsequently

the finite domain d'and free surface s may be replaced by the

unbounded flow domain d and mean free surface a respectively.

Substituting the continuity and free surface conditions given by

equations (2.16) and (2.17) respectively it follows that IO.

Following a èuggestion due to Noblesse (1983) the potential is

expressed in the form =+($-) where =(x) and and

I becomes

1 = C5 + C (4.3)

fJ(P2G+)cxdy

JJJ(4-) V2Gdv - jf - )(F20+G)dxdy

(4.4a)
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It is seen from equations (3.1-2) that C'O provided the disturbance

potential is continuous everywhere in the fluid and on the - boundaries,

that is, if -$-'O as x1-. This assption is required to apply

Green's second formula (see Kreyszig (1983)).

Substitution of equations (4. 3-4a) into equation

(4.2) results in the basic integral identity:

* = JJ(G4n_$Gn)da + Fn2J(x4Gx2y (4.5)

where Ce is given by equation (4.4a). Inserting equations (3.1-2)

in equation (4.4a) it follows that:

Ce = JJJ (z_)dv + Jf6(x_)5(y_n)dxdy (4.4b)

where d. and 8. are the interior domain and mean free surface
-

respectively inside the hull surface h (see Figure 4.1). Equation

(4.4c) is a well-known result from the theory of generalised

functions and distributions, see Griffel (1981), Kantorovich and

Akilov (1982) and Roach (1982). Usually the integral idenity (4.5)

is obtained in a different manner by applying Green's second formula

to the domain d - e, where e is a small spherical domain surrounding

the field point , See for example Brard, (1972, 1974a,b), Inglis

(1980) and Baar (1984a); the present derivation is due to !óbIeSse

(1983).

{

Eor{::

o in

;:0
d. #a. = h - a

(4.4c)



The value of the constant C defined in equations

(4.4a,b) repmesents the total amount of fluid crested inside the

flow domain d (bounded by the hull surfaceh and the mean free

surface e ) or steaming from a flux- across the mean free surface

8 (bounded by the waterline a). According to equation (4.4c) Cl

if the field point , where the flow is observed, is in- d or on 8,

but strictly outside h and a, while CO if is strictly inside h

or on the mean water line- plane-8. - Also C if-c is exactly on

h or on e, provided that the hull is a smooth orientable surface

(see Kellog (1934)); more precisely, the value of 4e (0r 2e

at a point of h (or a) is equal. to the angle at which d (or 8) is

viewed from (this extends the validity of equation (4.5) to

piecewise smooth orientable surfaces h, e.g. a ship hull with a

transom stern).

In-- the basic integral identity given by equation (4.5)

the disturbance potential is represented as- an integral distribution

of sources (proportional to G) and dipoles (proportional to Gn and

C) over the hull surface h and the mean water line a. The

discontinuity in the value of the constant Ce across -the hull surface

can be shown to stem from the corresponding discontinuity in the

dipole distributions over h and a, see Kellog (1954). The presence

of the additional water line integral distribution in equation (4.5)

was first pointed out by Brard (1972) although earlier the -necessity

of including this term was also recognised- by Peters and Stoker (1957)

Wehausen (1963) and Kotik and Morgan (1969). The importance of the

water- line integral is- investigated in Section 4.4.
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It is convenient to eliminate the discontinuity in

the value of Ce in equation (4.4c). Noblesse and Triantafyllou

(1983) have pointed out that there are two strategies for achieving

this goal. The first and classical approach is discussed in Section

4.2 and employs auxiliary di8tributions of singularities over the

hull surface, see Kellog (1954) and Hess and Smith (1966). The second

approach is discussed in Section 4.3 and employs an integral identity

for the potential itself, Bee Chow et al (1976) and Noblesse (1983).

The latter approach is less well-known, but appears to be very useful

because it provides an explicit approximation to the disturbance

potential of the- flow about a su±ficiently slender ship moving at

fairly low speed. -

4.2 AUXILIARY SINGULARITY DISTRIBUTIONS

The basic integral identity given in equation (4.5)

relates to the problem of the 'exterior' potential flow about the

hull. Recall now that the Kelvin wave source potential is defined

throughout the entire lower half-space, see equations (3.1-3). The

most well-known technique for eliminating the discontinuity in the

value of Ce conaists of defining a corresponding 'interior' potential

in the interior domain inside the hull 12 and below the mean

water line plane 8. (see Figure 4.1). An integral identity for

corresponding to equation (4.5) may readily be obtained in a similar

manner as outlined in the previous section and it follows that



C$ = - JJ(GØ-bG )da - F2j(G_G)dy
C

where, in analogy with equations (4.4a-c), C is given by:

c1 = JJj'v2av JJ (F 2 )dxd

1ffx_(i_n(z_dv+Jfx_)6Y_ndxdY
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The value of C represents the total amount of fluid created within

the interior domain d. (bounded by h and e.) or stemming from a

flux across the water line plane a. (bounded by a).

Addition of equations (4.4a-c) and (4.7a-c) gives:

C = C + C = IIIV2Gdv - 11 (F 2G__+0 )dxdy
e i jj) jj n z

d#d

+ = 1 (4.8)

z<0 z0

fora]J. points outside, inside or on the hull jurface h#c,i.e.

for any point in the lower half space 0. The term C1 in

equation (4.8) represents the amount of outflow produced by the

moving source (for zc0) or stemming from a flux across the free.

surface (for z0). Addition of the corresponding integral identities

(4.8)

(4.7a)

(4. 7b)

(4.7c)=

0

j

1

fore

in

on

in

d # 8 -

h+c
d.- #8.

1

h =

- h - a



- 74 -

given in equations (4.5-8) therefore resu1t in:

JJG(,)( )G}da+F2f{G(_$)_(44i)G}dy (49)

i
where corresponds to $() or $ () for points outside or inside

the hull surface respectively.

It is convenient to modify the form of the water'line

integral in equation (4.9). If n(n,n,n) defines the unit normal

vector on the hull surface h pointing into the flow domain d,

defines the unit tangent vector to the water line C

Oriented as shown in Figure 4.1 and i(1,o,O) is the unit vector

along the Ox-axis, one obtains the relationship

= V$4 = = flx+n+txIttflztyd (4.10)

where and denote the flow velocity components (i.e. derivativeé

of ) in the direction of t and nxt respectively (the unit vector

oxt is tangent to the hull and points downwards). Using a similar

expression for and replacing dy by tdL, equation (4.10) may be

rewritten as:

JJQG+SG)da +
Fn2JC mxtxdyx}tydt (4.11)

where the source strength Q=$_ and the doublet strength
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According to equation (4.11), which was first obtained

byBrard (1972), the potential is generated by four auxiliary

singularity distributions:

Ci) a source distribution over the hull surface h with strength

Q per unit area;

a doublet (i.e. normal dipole) distribution over Ii with

strength S per unit area;

a source distribution along the mean water line a with

strength (QnX_StX+SdnZtY)tY per unit arc Length; and

a longitudinal doublet distribution along C with strength

St. per unit arc length.

All singularities are of the 'Kelvin' type in agreement with the

definition of the Kelvin wave source potential. G, that is to say,

the singularities satisfy the continuity, free surface and radiation

conditions given by equations (3.1-3).

The representation of the potential by means of

and. auxiliary distiibution of singularities over the hull surface

and along the water line is not unique. In fact, $., nay be

generated by ny linear combination of sources and doublets, as

explained for example by Brard (l974a,b), Guevel et al (1974, .1977),

Chang and Pien (1975) and Baàr (l984a). Table 4.1 illustrates four

possibilities. Of particular importance is the representation of

the disturbance potential. by means of a source istrjbution, as

obtained by setting 0=0, that is, $=, in equation (4.11)..
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It follows that:

= fJQ(x)G(.x;P2)da + 2fQr(P2)()d. (4.3.2)

It is seen that this auxiliary source distribution renders the

velocity potential continuous through the hull surface h+a, whereas

the normal flow velocity iS discontinuous. The representation of

the disturbance potential by means of a source distribution is no

doubt the most popular, see Guevel et al (1977), Tsutsumi (1979),

Chang (1979) and Tsaiet al. (1983).

The unhuown source strength Q(x) in equation (4.12)

may be determined by imposing the hull surface condition given in

equation (2.18) andit follows that:

4Qp + JJQ(x)G da + F2JQGd (4.13)

on the hull aàrface o, where G=VG(,x;F2).u(). The algebraic

term 4Q() atoms from the normal differentiation of the Rankine

source term -1/4l-x:I in equation (3.5), see Zellog (1954) and

Baar (l984a). Equation (4.13) is i'ecognieed aS a regular Prodholrn

integral Squatton of the second kind, see Kantorovich and Aki-lov

- (1982).

It ts.notable that the representation of the

disturbance potential by. the auxiliary source distribution in

agreement with equations (4.12-13) is an alternative and equivalent
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formulation of the Neumann-Kelvin problem given by equations

(2.16-19), that ie to say, by solving:.the source strength from

equation (4.13) and representing the potential by equation (4.12)

an exact solUtion of the Neumann-Kelvin problem is obtained.

4.3 EXPLICIT SLENDER SHIP APPROXIMATION

Returning to equation (4.5) ñ alternative strategy

is now presented for eliminating the discontinuity in the value of,

the constant Ce By making use of. Gausa' divergence theorem,

equation (4.7a) may be rewritten as:

C = JJG da
+

- JJn2z

= JJGnda.
F02JJGdxdy

= JJGda + F2JGdy

12 a. h.

Adding the term on both sides of equation (4.5) and using the

identity C1IC 1 given in equation (4.8), one finds that:

= JJ4n - *)G1da+Pfl2J{Gx -
5)G}dy (4.14)

for any point inside, outside or on the hull surface h+c. This

new identity is equivalent to the identity given in equation (4.9)

as may easily be verified (see Noblesse (1983)).
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Making use of equation (4.10) and substituting the

hull surface condition given in equation (2.18), the integral

identity given by equation (4.14) nay be expressed in the form o

the integro-differential equation: -

(9= *(F) - (4.15).

where.'the potéñtial J() is explicitly defined as:

= JJG(,x;Pn2)nx(x)da.
y2ja(x;F2)n2(x)dy

(4.16)

h

and the linear transform L(;) is given by:

= ff($_*)Gda + . (4.17)

The potential ,4,() given in equation (4.16) ts explicitly defined

in terms of the hull geometry, whereas the linear transform L(,)

is not. huown in.advance. Equations (4.15-17) constitute yet another

alternative and equivalent formulation of -. the Neumann-Kelvin

problem. The implicit integral identity. given in equation (4.15)

may be solved iteratively by means of the recurrence relationship:

- for n=O,l where-the initial approximation- is simply defined

as see Noblesse (1983). -

(4.18)
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Associated with the sequence of potential approximations
(0)=, (l)=qj (2) is a sequence of wave resistance

approximations C, nO,. as discussed by Nob1esse (1983). The

zeroth order approximation C<° can be related to the classic thin,

flat and slender ship wave resistance apprximations in the thin,

flat and slender ship limits respectively, whilst the first order

approximation c1 is closely related to the slow- ship wave resistance

approximation in the low Froude number limit (see Table 2.2).

In the zero Froude. number limit the potential

becomes the zero Froudé nunber potentiaL corresponding to the

flow about the hull when the free surface is replaced-by a rigid wall,

as may be seen from equation (2.17). Alternatively, may be

interpreted as the 'double hull' potential of. the waveless flow

about the hull and its mirror image with respect to the plane z0

in infinite fluid. Table 4.2 gives the zero Froude number boundary

conditions and alternative integral identities, corresponding to

equations (2.16-19), (4.12-13) and (4.15-18)- respectively. Noblesse

and Trisntafyllou (1983) show that L0<<i00 for slender bodies

moving in the direction of their major axis. When the bull surface

is the lower half of a slender ellipsoid -the potentials and

become proportional, that is, and the constant k is close

to uñit, see Havelock (193la,b) Figure 4.2 shows the relative

error £(40_$')/$0=(l_k) associated with the nth zero yroude

number potential approximation for a prolate spheroid of aspect

ratio q. It is seen that Dil/3; in particular, t10. if q0
(i.e. a 'needle') and s11/3 if qel. For slender spheroids with low
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aspect ratios between 0.-i and, 0.2 (the usual range for ships) the

relative error associated with the zero Proude number explicit

potential approximation is less than about 5%.

The foregoing riarks suggest that the explicit

potential appràximatton =, where is defined by equation (4.18),

provides a useful approximatidn to the disturbance potential of the

flow about aslender ship hull moving at low Proude number, as is

usually the case in practice. Comparing equations (4.12) and (4.16)

it is seed that the explicit potential approximation is

equivalent to the explicit source strength approximation Q=n. The

-flow velocity Vit' IA continous Averywhere. It can also be shown

that in be thin ship limit the potential ji reduces to the classic

Michell (1898) thin ship potential. Further arguments to support

that (' is an acceptable sledder ship potential approximation are

given in the next section and in Chapter 6.

4.4 Koci.iir.i's FUNCTION AND PAVELOCK'S FORMULA

In section 2.4 it was pointed out that the wave

resistance may also be obtained by evaluating the amount of radiated

energy contained in the free waves far behind the moving ship.

Presently this method is outlined and subsequently used to investigate

the importance of the waterline integral term in equation (4.12), as

well as to further assess the usefulness of the explicit slender

ship approximation given by equation (4.16).
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Consider the Kelvin wave cource potential G(F,x;F2)

defined by equation (3.5). From equations (3.15) and (3.17) it is

seen that far downstream from the moving source, as both the

fundamental Rankine source term -l/4ir
I

-'
I
and the nearfield

disturbance N(X)/41TF2 are negligible in comparison with the wavelike

disturbance W(X)/41rp2. That is

+ i((_x)+(11_y)t)}V'iT/Fn2]dt

as as may readily be obtained from equations (3.6) and (3.8).

Substituting this expression into equation (4.12) and reversing the

order of integration it follows that:

+ i(+nt)/2/F2]dt (4.19)

as where the function K(t) is defined by:

K(t) = Fn_2jJexp{z(1+t2)/7n2}EQda + JEQadY (4.20)

h c

with the function EmE(x,,t;F2) given by:

E exp_i(+yt)r'2/P02} . (4.21)

Substituting equation (4.19) into equation (2.20) it Is found that

the elevation of the free surface far behind the ship is given by:

wh1(11Raf''7 K(t)ex{i(+T1t)1i/F2)dt (4.22)
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Equations (4.19) and -(4.22) relate the potential and

the wave elevation far behind the ship to a aupero8ition of

elementary plane waves, see Newman (1977). The- function K(t) defined

by equation (4.20) is a function of the ehip geometry and the Froude

number and is known as Kochin' a wave amplitude fnction (see Kochin

(1951)); it represents the amplitude of the free wave component at

angle 6=arctan(t) with the negative Ox-axis (i.e. the limits t*O

(9-'O) and t- (e-4ir) correspond -to the transverse and diverging waves

respectively in the spectrum of the free waves following the ship,

see Figure 3.3). -

The wave resistance may now be determined by evaluating

the energy contained in the downstream wave pattern given by equation

(4.22), see Eggeré et al (1967), Wehausen (1973) and Newman (1977).

It follows that C in given by the Havelock (1934) formula:

C = (l/27r)J'i2iK(t)l2dt - (4.23)

For ships with a lateral plane of symmetry the Kochin's function

K(t) becomes an even function of t and.the integrals occurring in

equations (4.19, 22-23) may be expressed as integrals over the semi-

infinite interval (0,). -

-

- A - variety of alternative expressions and approximations

for the Kochin's function may befound in Noblesse (1983). Of

particular interest, because of their simplicity, are the thin

ship and ajar ship approximations. Let the bull surface h be defined

by the equation yb(x,z). In the thin ship limit, equation (4.20)
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becomes identical to the Michell (1898) thin ship approximation

Ct) given by:

K1(t) (4.24)

where h denotes the projection of Ii on the ship's centre plane y0

and the source strength b3b/x The low Fróude number approximation

K(t) of K(t) is obtained by approximating the source strength 9

by the zero Froude number source strength defined in Table 4.2.

That is:

K(t) = 2JJP{z(l+t2),F2}EQda + JEQoxidy . (4.25a)
h a

Guevel et al (1974), Baba (1976, 1977), Maruo (1977) and Kayo (1977)

show that this expressiod is identical to:

K1(t) JJE+dXdY (4.25b)

where a denotes the mean free Surface (excluding the ship's water

line plane a.), E is given by equation (4.21) and the zero Froude

number potential is defined in Table 4.2.

For simple mathematically detined hull forms the slow

ship approximation K(t) may be evaluated analytically using either

equation (4.25a) or (4.25b), see for example Baba (1977). Here only

the cage of a vertical semi-infinite prism with elliptic water line

is considered. Taking the length of the major axis as reference



-, 84 -

length, the water line contour C is defined by the dimensionless

equation x2+y2/q2, where q denotes the aspect (thickeess) ratio.

The zero Froude number potential and source strength Q0 are

given by 0=-qx and Q-(1+q)x/+y/q, see Mime-Thomson (1968).

Brard (1972) has evaluated the corresponding low Froude number

Kochin' a function given by equation (4. 25a)...Phe low Froude number

wave resistaflcO.C' can be computed by means of HavelockY a formula

given by equation (4.23)

Figure 4.3 shows the low:Proude number wave resistance

approximation C as function of the Fronds number F for four

different aspect ratios q (see Guevel st al (1974)). The two curves

shown correspond to the evaluation of equation (4 . 25a) with and

without the water line integral term respectively. It is clearly

seen that the water line integral has an important effect on the wave

resistance, in particular at low Proude number and for high aspect

ratio.. For example, when the water line is circular (q1)

it may be shown that behaves -like

C = (3328/315)F6 + l6F7sin(1/P24-1T/4)

as F-sO. If the water line integral is omitted; c behaves like

C = (64/15)F
2

- 4/F35il/F2+1T/4)
w - - n

as F -sO. When the aspect ratio decreases the effect of the water
n

line integral becomes lesé important but certainly not negligible.

For values of q between 0.1 and 0.2 (the usual, range for ships) the
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relative importance of the water line integral increases as Fn

decreases. In the zero Froude number limit terms in the hull surface

and water line integrals can be shown to partially cancel out each

other, see. Kuaka (1976), Hirata and Levi da Conceicao (1976) and

Beesho (1976).

A Bimple physical. interpretation of the water line

integral may be obtained by slightly imner8ing the hull and closing

it on top by means of a horizontal plane. The water line source

distribution may then be shown to stem from the zero immersion limit

of. the surface source distribution over the top surface of the

slightly Immersed closed hull, see Noblesse (1983). Eggers (1980)

has, pointed out that the flow velocity field associated with the

hull surface source distribution alone is not continuous along the

water line, and that the water line source distributiOn, is needed. to

obtain a continuous flow velocity field.

Associated with the sequence of zero Froude number

potentials (0)=o ,'=W (2)defined, in Table 4.2, is a

sequence of low Froude number wave resistance approximations

'n0, which may be evaluated by subStituting in equation

(4.25b). Noblesse (1984) has proved the convergence of the sequence

nO, for the vertical prism with elliptic water line. Figure

4.4 shows the relative error =(C-C )/CaasoCia4ed' with the
n w w w

nth. approximation as function of the, aspect ratio q. For q0.l5

the relative error C1 is abOut 3.4% and it is seen that the explicit

potential approximation provides an acceptable low Froude

number approximation to the wave resistance of a slender vertical prism.



distribution sources doublets mixed mixed

condition = = = 0 c = 0

sorce strength Q 0 Q 0 Q

doublet strength 9 = 0 S 0 S = S

potential * +

velocity * - +

-86 -

* + continuous through the hull surface

- = discontinuous through the hull surface

Table 4.1 Comparison of singularity distribution methods.



zero Fiouda üumbér boundary conditions:

v2q = 0 in d
Oz

= 0 on

c =n on
On x

zero Froude number Green's function:

4,r G0(E,x) -'i!- + i/n

R2 (-x)2+(fl-y)2+(+z)2

auxiliary source distribution representation:

= If %(x)G0(.x) da

+ ff Q0(x)G da = n() on

explicit integral identity:

87 -

- L0ç;cp0)

p0() If G0(,x)n(x) da

= Jr {co(x)_o()}Gon

= p0() -

= (l) =
'V0 -

,

= 0(1/ lxi) as ll

n = 0,1,...

-Table 4.2 Zero Froude number boundary conditions, Green's

function and integral identities.
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Figure 4.1 Definition sketch for apnlicatioñ of Green's theorem

- (only port half of mean sea surface is drawn).
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5. COMPUTATIONAL ASPECTS

5.1 APPROXIMATION OF INTE(RAL IDENTITIES

The disturbance potential of the flow about a moving

ship is expressed in equation (4.12) in terms of a continuous

distribution of Kelvin wave sources over the mean hull eurface and

water, line of the ship. The.unknown source strength distribution

must be determined by solving the -Fredholm integral equation of

the seãond kind given by equation (4.13).. This may be accomplished

by means of a point-collocation method-as used for instance by Inglis (1980)

and Wu (1984). In the point-collocation procedure the integral

equations (4.12-13) are approximated by matrix, equations.

The mean hull surface h is subdivided into a large

number N of quadrilateral panels. The position vector of the

centroid and the area of the j-th panel (j1.....N) are denoted by

and respectively. The panels are numbered such that the

first M panels are adjacent to the mean water line a and

denotes the arc length of the j-th water line seent (j=l ,..,M).

The integral identities given by equations (4.12-13) are satisfied

at one control point on eacb panel, taken at the panel's centroid.

The source strength is assumed constant over each small panel and

the source strength on a' water line segment is taken equal' to that

of the adjacent hull surface panel. Under these assumptions the
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integral identities may be written in discretised form as matrix

equations given by:

- t dixy

(5.1)

(5.3)

+ JJG(j.x;F 2)da+.I5F 2J G0(1, 2)ntdL (5.4)

for i,j1,...,N, where HMfl if j=l,...M and H.fO if ,jM+l,...N,-

and 6=1 if ij and if

Equation (5.2) represents a system of N linear

algebraic equations in the N unknown source strengths. Having

evaluated the infuence coefficients from equation (5.4),

this system may readily be solved and the values of the potential

j18ijQj = (5.2)

for i=l ,-... ,N, where $jp(xi) and nn(xi) are the values of

the disturbance potential and the normil component of the- hull

velocity at the i-th control point and QfQ(x) is the source

strength on the j-th panel. The influence, coefficients and

represent the contributions on the i-th panel to the Kelvin

wave souice-poteñtial and its normal derivative in the j-th

control point and are given by

ii
= JJG(,x;F2)da

+ BMFI2 f G(i,x;F2)
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at the N cOntrol points follow fromequatioñ (5)l).ánd(53). In

order to compute the influence coefficients it is convenient to

express the Kelvin wave source potential in the form:

G(!,x;Fn2) G1(,x) + G2(,z;-F2) (5.5a)

where the 'infinite Proude number' Green's function G1(,x) is

given by

4irG1(,x) =-l/ -. (5.5b)

with rv(_x)Z+(ii_y)2+(+z) representing the distance between

the field point-i and the free surface mirror image OX the source

point x. The function G2(,x;F02) is given by:

4vP2G2(,x;P2) = CM(X) - l}/R - H(X)8P(X) (5.5c)

in agreement with equations- (3.5-6), (3.9) and (3.18). The infinite

Froude number Green's function G1(,x) and itá normal derivative

vanish when =Oz and this function does not contribute to the

water line integral. Substituting equation (5.5a) into equations

(5.3-4) gives:

(1) (2).

+ oh

(2)

Si.1 = 46ii +



where

(1)
cii

= JJGj(j.x)da
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= JJG1(j.x)da

= JIG2(i,x;P 2)da + HMjP
2

J
G2(,x;F2)ntdL

1h1

ffG2
i,z;?2a + HMIF

2

J G2n,nxty

for i,j=1 N. The integrands of the influence coefficients

end involve fundamental Rankine source terms only and

these terms may be integrated analytically using the Hess and

Smith (1966) formulas. The integrands of the panel surface end

water line segment integrals in the expressions for the influence

coefficients end are dependent on the Froude number

and regular for all values of i,j1 .....N (provided ç+z<O as is

assumed here). Such integrals may be integrated numerically, by

means of Gaussian quadrature, as illustrated in Figure 5.1. The

procedure is based On a linear isopararnetric mapping of the

integration domain to the normalised integration domain where the

integration variable is less than unity in absolute value. This

device is frequently used in the Finite Element Method, see

Zienkiewicz (1977).

Five possible sources of error are associated with

the approximation procedure outlined above. These are:
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Ci) The approximation of the 7v4 surface. Guidelines for obtaining

a suitable subdivision of the hull surface, have been formulated

by Inglis (1980). Whenever possible, panels with low aspect

ratios should be avoided, variations in size between adjacent

panels should be kept sma3i and the panels should be concentrated

in areas of large curvature of the hull surface where the

flow velocity might change rapidly.

The approximate way in which the integraZ. identities ere satisfied.

The point-collocation procedure relies on the assumption that

the source strength is constant on each panel. For water

wave radiation/diffraction problems it has been suggested by

Mci (1978) and Teung (1982) that the individual panel

dimensions should not exceed one eighth of the wave length.

In the present context the dimensionless wavelength i

proportional to F2 and it follows that the number of panels
-4N is proportional to F At low Froude number a very fine

discretisation of the hull surface may therefore be required.

Numerical experience suggests that the present approximation

of the water line integral is reasonable, see for example

Tsutsumi (1979) and Tsai et al (1983).

Quadrature errors in the rwmerical integration of the infiuence

coefficients. There is some discussion of this topic in

Sclavounos and Lee (1985). The integrands of the influence,
(2) (2)and are in general slowly varying functions except

at very low Froude number when the contribution, from the
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wavelike disturbance component of the Kelvin wave source

potential may vary substantialry within a panel. In the

present approach a two-point Gauss- Legendre quadrature is

used with weights wfl and absciSsae aç(_l)3/1 for 3=1,2

(see Figure 5.1); this formula integrates a cubic polynomial

exactly, see Davis and Rabinowitz (1975).

The. evaluation of the Ke7vin wave aOurCe potenti.al. In

sections 5.2-3 algorithms are discussedfor the evaluation

of this function with an absolute accuracy of between five

and six significant digits.. This is considered sufficient

for practical applications

Roundoff-evrors in the solution of the linen' system of

equations in the unknown source strength. (This source of.

error is not relevant when the explicit slender body

approximation discussed in Section 4.3 is used, inwhich

case the source strengths are approEimated by the kdown

normal components of the hull velocity on the panel). The

present state of the art of linear system solvers is such

that this type of error can easily be kept at bay, see

Nonweiler (1984). In thiB study the linear system given by

equation (5.2) is solved by means of Crout's factorisation

method with partial pivoting and iterative refinement.



Most ships have a lateral plane of symmetry and this

feature may be. exploited advantageously to halve the required

number of evaluations of the Kelvin wave source potential and its

gradient, see Inglis (1980) and Wu (1984). This number equals N2+M2

if no use is made of ship symmetry and. the influence coefficients

are evaluated by means of the usual single node centroid integration

(i.e. the mae-point Gaussian quadrature as used for instance by

Inglis (1980)). Use of the two-point Gauss-tegrendre rule raises the

number of evaluations by about a factor four to 4N2+2M2. If the

ship symmetry is efficiently exploited, this number may be reduced

by a factor two to 2N2+M2. This may be achieved as follows. In

matrix notation equation (5.2) may be written as:

BQ N (5.6)

where B is the (NN) matrix of influence coefficients and Q and N

are (Nxl) column vectors of source strengths and normal hull

velocity components respectively. If. a ship has a lateral plane of

symmetry such that the poit side panels 1 to N are the mirror images

with respect to the plane y0 of the starboard side panels N+1

to N then the matrix equation (5.6) may be partitioned as follows:

l 2

3 4
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N
-p
N
-s

where B, 2'3 and B4 are (*NxN) matrices, Q,, Q5. N and N

are (Nxl) column vectors and the indices p and a wader to panels

on the port and starboard side respectively. Due to symmetry
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13' 24' =
and NN. and the unknown sófrce strengths on

the- port half of the ship's hull are found from:

BQ =Npp _p

where B B1+B2 is an (NxN) matrix. In this approach the saving

in computing time and storage -space is about 50%.

The remainder of. this chapter is devoted to the

presentation and discussion of accurate and efficiOnt algorithms

for the eviluation of the nearfield and wavelike components- of the

Kelvin wave source potential. From- the previous considerations it

is evident- that the efficiency of these algorithms is very important

if an unrealistically large amount of computing- -time is -to be avoided.

52 EVALUATION OF- THE NEARF-IELD DISTURBANCE

By choosing a suitable expression from any of the

alternative representations given in. Table .3.2 the problem of -the

numerical evaluation of the nearfield disturbance is reduced to

calculating a single integral with a sloWly -varying integrand which

is expressed in terms of the complex-valued exponential integral

function. The -ascending series representations are best suited for

evaluating- the function M(X) for small values of R=jXj, whereas the

asymptotic- expansion expressions may be used for large values of R,



see Noblesse, (1978b). Direct numerical integration of the nearfield

disturbance is both cumbersome and time-consuming. On the one hand,

the evaluation of the exponential integral tends to be rather tine-

consuming, as discussed by Baar (1985) and Newman (1985); a 'near-

optimal algorithm for the evaluation of this function is presented

in the Appendix. On the other hand, the integrands of the integrals

in- Table 3.2 have discontinuous low order derivatives at the endpoints

of the integration interval; this feature prohibits the immediate use

of an efficient Gaussian quadrature method without taking special

preàauttons, as discussed by-Davis and Rabin vita (1975) and Baar

and Price (198Gb).

Newman (l986a) has developed a highly efficient-

algorithm for. the evaluation of -the nearfield disturbance which

effectively overcomes these problems. The method- is based on four

complementary trivariate Chebyshev expansions which cover the entire

definition domain of the function- M(X)'. Chebyshev approximation

(see Fox and Parker (1968)) has proved to be a very useful tool in

numerical ship hydrodynamics (see Newman (1985)) and is based on

the following- principle. For the function f(x) defined in -1xl

the Chebyshev series is given by:

t(x) = Za 1(x).
n0

where the primed summation sign iddicates that the first term in

the series must be halved and T(x) is the Chebyahev polynomial as

defided in Abramowitz end Stegun (1972). The Chebyshev coefficients
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a are given by:

a = c2/ir)Jf(cose)cos(ne)de

The Chebyehev series nay be shown to converge iff(x) is sufficiently

smooth in -1xI. For some special functions the Chebyshev coefficients

can be evaluated analytically, see for example Luke (1969);

in general, however, they are computed by means of a suitable

quadrature formula, see Pox and Parker (1968). In computational

practice the infinite Chebyshev series expansion is truncated beyond

some suitable value n=N, giving the polynomial approximation

N.
= Z'a T Cx) + 4(x)

n0 n n

The beauty of Chebyshev approximation is that a simple estimate for

the truncation error N(x) is immediately available. The Chebyshev

polynomials oScillate between -1 and and the contribution from

any term in the expansion is bOunded by the magnitude of the

corresponding coefficient. That is:

ISNI < Ia
nN+l

and the summation of the ChebyShev series may be terminated once

the coefficients become less in absolute value than the desired:.

accuracy of the approximation. The evaluation Of the truhcatéd

Chebyshev series is facilitated by converting it into an equivalent

ordinary polynomial of the form:
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N
n

= E px + c(x)
n0

An algorithm for this conversion is givei by Nonweiler (1984);

ordinary polynomials are rapidly evaluated by means of Homer's

nested multiplication method.

The chebyshev approximation procedure may be extended

to functions of more than one variable, ouch as thà nearield

disturbance M(X) defined by equation. (3.10). For this purpose it

is convenient to write equation (3.14) as:

M(X) = MA(X) +

whare the spherical coordinates (R,cz,B) are defined by

(X,Y,Z)=R(sinn,cosnsin8,Cosncos6). Because of the symmetry relations

given by equation (3.16) only the range (X0, Y0, Z0) or

(R0, 0czv, 03ir) has to be considered. Newman (1986a) defines

MA_i if R>1 and

A + A3)n(A)}dt

if 2<1. This expression may be evaluated analytically by means of

simple recurrence relationships, see Newman (1986a). The slowly

varying integral terms M1 are approximated by means of four

complementary Chebyshev expansions of the form:. -
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= Z' Z' Z' a I (R)T (n)T(B)iOJOkO_ui Ic

= E E E p kRaB.i0J0k0

ihere -1R,cx,31, ;2(n/ir)-1, =2(8/1r)2_1 d

2R-1 0REl

(2R-5)/3 lR4

(R-7)/3 4Rl0

1-20/R R10

Zn these four domains the ordinary polynomial representations of

are evaluated rapidly with an accuracy of between five and six

significant digits -if the non zero coefficients are prestored

in four arrays of 187,206, 198 and 165 elements respectively. Tables

of both the Chebyshev coefficients ak and the ordinary polynomial

coefficients
ijk'

as well as a full description of the numerical

methods used to obtain these coefficients, may be found in Newman

(1986a).

A Fortran 77 subroutine has been prepared which

implements Newman's algorithm for the eialuatioñ of the nearfield

disturbance. The gradient is computed by analytical differentiation

of the polynomial representations (this procedure slightly degrades

the accuracy by about. one significant digit). The nested

multiplication algorithm for the evaluation of an ordinary polynomial

is very well suited to vectorisation on a parallel computer, see

Schendel (1984), and the computing time on a Cray-is machine is
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only a few microseconds per evaluation of U and VU. Figure 5.2

shows surface plate of the function M(X,Y,Z) for 7=0 and several

values of Z. Figures 5.2a-b clearly illustrate .the limiting

behaviour of U for small and large values of R as indicated by

equation (3.15) (compare with Figure 3.2).

5.3 EVALUATION OF THE WAVELIKE DISTURBANCE

Numerical integration of equation (3.19) preseOts

no particular difficulties except from the possible accumulation of

roundoff-errors due to the presence of the rapidly oscillatory

integrand (at small values of It may be better to use the

seventh integral expression given in Table 3.3). Baar and Price

(1986a) have presented an efficient numerical integration procedure

based on a sequence of high precision Gaussian quadrature rules

with interlacing abscissae (see Patterson (1973)). Sovever, the

efficiency of direct numerical integration is somewhat limited by

the excessive number of integrand evaluations which is required

when the integrand is rapidly oscillatory, see Davis and Rabinowitz

(1975). Alternatively, any of the equivalent integral expressions

given in Table 3.3 may be used to develop an alternative algorithm

for the evaluation of the wavelike disturbance, see for example

Guttmann (1983) who implemented Weber's (1981) method to evaluate

the third Fourier transform integral expression given in Table 3.3.
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II practice en ideal algorithm for the evaluation of

the wavelike disturbance is a method which avoids numerical integration

altogether. Therefore Baar and Price- (1986b) have investigated the

usefulness of the two series representations given by equations

(3.21-22). Due care is required when evaluating Neumann series of

this type. The Bessel functions satisfy three-term recurrence

relationships with respect to their degree n, as discussed in the

Appendix, equations (A.4-5). Table 5.1 gives values of the Bessel

functions for different n and x. It is seen that only the functions

Y and K are numerically increasing functions of n and these

functions can be evaluated without difficulty by means of. forward

recursion. The functions .7 and I are numerically decreasing0 n

functions of n and are so-called 'minimal' solutions of. their

respective three-term recurrence relationships, see Gautøchi (1967);

recursion is therefore only stable if applied in- the badkward sense.

Table 5.1 also clearly illustrates that the functions Y and K
U n

increase exponentially in magnitude with increasing ñ, whereas the

functions J. and 1n vanish in an exponential manner.. This feature

causes serious cancellation errors and under,ioverf low problems during

the running summation of the Neumann series. Effective algorithms

to overcome these problems have been derived by Baar and Price (198Gb)

who showed that the difficulties associated with the generation of

Bessel functions can be avoided by computing ratios of Bessel

functions rather than the functions themselves, as suggested by

Gaütschi (1967). Details of this method are described in the

Appendix.
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For purposes of numerical evaluation it is convenient

to write both series representatins given by equation (3.21-22)

in the form

pcN(e)+a.

where denotes the truncation error and the finite Fourier cosine

Series N(e) jg: given by:

N

cN(e) =. E'acos(n$)
n0

Series of this type may be evaluated rapidly by means of the

Goertzel-Clenshaw algorithm (see Nonweiler (1984)), which can be

expressed, as CN(e) (b0-b2), where b0 and a obtained

recursively from:

b = a.. ,i..2co's(e)b. - b
U n n+1 n+2

for nmN, N-1.....0', where cos(9)Z/D and the initial values are

given by bN+2bN+1O

The Fourier coefficients a, n=O,l ......N, corresponding

to the series representations given by equations (3. 21-22) are

evaluated in aO efficient manner by means of the follOwing two-step

procedure: -
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Ci) Coepute the sequences of ratios of Bessel functions defined by:

J(X) = J21(X)/J_1(X) (5. 7a)

k(D) = K1(D)/K(D) (5.7b)

for n0,1......N in the series given by equation (3.21); and

y(X) = 12n+l(X)/Y2n_l(X) (5.7c)

i(D) = I1(D)/I(D) (5. 7d)

for n0,l.....,N in the series given by equation (3.22).

Notice that J0=y0=i. Algorithms for obtaining these sequences

are outlined in the Appendix.

(ii) Compute the Fourier coefficients a,n=O,l .....N using the

recursion relationships:

B1 = -akj(i - - (5. 8a)

for n0,l .....Ni in the series given by equation (3.21),

the initial value being a=exp(4Z)J1(X)K0(D); and

a1 = aiy(l - - (5. 8b)

for n0,l.....N-i in the series given by equation (3.22), the

initial value being a0 exp(-Z)Y1(X)I0(D). Equations (5.8a-b)
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may be verified by making use of the derivative relationships

for the Bessel functions given in the Appendix, equations (A.7-8).

Extensive numerical experiments have been performed.

to assess the range and capability of the present algorithms, as

well as to establish the convergence properties of the two series

representations. In these experiments no attempt has been made to

evaluate the wavelike disturbance at the free surface (i.e. only

strictly positive values of Z have been considered). An absolute

error tolerance of erl06 was specified, giving an accuracy of

between five and six significant digits. It appears that the two

series are indeed complementary: the series given by equation (3.22)

is best suited for small values of D/X2 with no more than about 20

terms required to achieve full convergence to within the specified

accuracy, whereas the series given by equation (3.21) may be used

for moderate and large valueS of D/X2 with no more than about 70

terms required.

2
The precise transition value of D/X between the two

regimes of convergence depends in a rather complicated fashion on

both the coordinate X, the distance /Y2+Z2 from the source track,

the angular orientation e=arctan(Y/Z) and the specified tolerance a

(as expected in view of the asymptote nature of the series given by

equation (3.22)). The following device to establish which series

should be used has proved very effective in computational practice,

at little additional cost. Initially the sequences of. Bessel function

ratios given by equations (5.7a-b) are generated for n0,l .....75
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and these sequences are- used, to generate the a's by means of equation

(5.8a).. The convergence of the a's may easily be monitored by

checking if for N<75. If this is not the case the series

given by equation (3.21) i too Slowly convergent and the asymptotic

Series given by equation (3.22) is evaluated us±ng equations (5.7c-d)

with N25 and equation (5.8b) until JaNI<. The wavelike disturbance

is subsequentl7 obtained by evaluating the relevant convergent finite

Fourier cosine series.

A Fortran 77 subroutine has been prepared which

implements the outlined algorithms for the evaluation of the series

representations of the wavelike disturbance. Recurrence relationships

for the evaluation of the gradient VP of P are obtained by analytical

differentiation of the series given by equation (3.21-22). The

derived recursion schemes are very well suited to vectorisation

(see .Schendel (1984)) and the average computing time on a Cray-1S

machine is about 70 micro-seconds par evaluation of P and VP. (This

is about 100 timeS faster than direct- numerical integration of

equation (3.19) to within the same accuracy). Figure 5.3 shows

surface plots of the function P(X,Y',Z) for several values, of Z

(compare with-Figure 3.3).'
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Example : 3io50 = 1)-1.138- - 1.138
10

- .0.1138

Table 5.1 Bessel functions of integer order.

x n J(x) 1(x) 1(X) K(x)

0
1

(- 1) 7.652
C- 1) 4.401

(- 2) 8.826
C- l)-1.-812

( 0) 1.266

( 1) 5.652
(- 1)

C- 1)

4.210
6.019

2 C- 1) 1.149 ( 0)-1.651 (- 1) 1.351 C 0) 1.625

5 (- 4) 2.498 C 2)-2.604 (- 4) 2.715 ( 2) 3.610

10 (10) 2.831 ( 8)-1.216 (-10) 2.753 ( 8) 1.807

20 (-25) 3.874 ( 22)-4.114 (-25) 3.967 ( 22) 6.294

50 (-80) 2.906 ( 77)-2.191 (-80) 2.935 ( 77) 3.407

2 0 (- 1) 2.239 C- 1) 5.104 C 0) 2.280 (- .1) 1.139

1 (- 1) 5.767 C- 1)-l.010 C 0) 1.591 C- 1) 1.399

2 C- 1) 3.528 (- 1)-6.174 C- 1) 6.889 (- 1) 2.538

5 (- 3) 7.040 C 0)-9.936 (- 3) 9.826 ( 0) 9.431

10 (- 7) 2.515 ( 5)-1.292 ( 7) 3.017 ( 5) 1.625

20 (-19) 3919 C 16)-4.082 (-19) 4.311 ( 16) 5.771

50 (-65) 3.224 ( 62)-1.976 (-65) 3.353 C 62) 2.980

5 0 C- 1)-1.776 (- 1)-3.085 C 1) 2.724 C- 3) 3.691

1 C- 1)-3.276 (- 1) 1.479 ( 1) 2.434 -C- 3) 4.045

2 (- 2) 4.657 (- 1) 3.677 C 1) 1.751 (- 3) 5.309

5 (- 1) 2.611 C- 1)-4.537 C 0) 2.158 (- 2) 3.271

10 (- 3) 1.468 ( 1)-2.513 (- 3) 4.580 ( 0) 9.759

20 (-11) 2.770 C 8)-5.934 (-11) 5.024 ( 8) 4.827

50 (-45) 2.294 ( 42)-2.789 (-45) 2.931 C 42) 3.394

10 0 (- 1)-2459 (- 2) 5.567 C 3) 2.816 (- 5) 1.778

1 (- :2) 4.347 (- 1) 2.490 C 3) 2.671 (- 5) 1.865

2 (- 1) 2.546 C- 3)-5.868 C 3) 2.282 (- 5) 2.151

5 C- 1)-2.341 (- 1) 1.354 C 2) .7.772 (- 5) 5.754

10 C- 1) 2.075 C- 1)-3.598 (, 1) 2.189 C- 3) 1.614

20 (- 5) 1.151 ( 3)-1.597 (. 4) 1.251 ( 2) 1.787

50 (-30) 1.785 .
( 27)-3.641 (-30) 4.757 ( 27) 2.061

50 0 C- 2) 5.581 (- 2)-9.806 ( 20) 2933 (-23) 3.410

1 -C- 2)-9.751 C,- 2)-5.880 ( 20)2.903 (-23) 3.444

2 C- .2)-5.971 (- 2) 9.579 (.20) 2.818 (-23) 3.548

5 C- 2)-B. 140 ( 2)-1.855 C .20) 2.279 (-23) 4.361

10 C- 1)-i. 138 (- 3) 5.724 C .20) 1.072 (-23) 9.151

20 (- 1)-1.167 (- 2) 1.644 ( 18) 5.442 (-21) 1.706

50 (- 1) 1.214 (- 1)-2.103 ( 10) 1.785 (-13) 4.006

100 (-21) 1.118 ( 18)-3.294 (-16) 2.728 C 13) 1.639
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isoparametric coordinate tranaorationa:
4

x(rs) = E S (r,$) x
- 1=1

-

a

ii
If f(x) da = I I f(x(r,$)) xx. x dr da
Ah -i-i

1 riI I g(r,$) dr da
-1-1

Z E

Figure 5.1 Illustration of procédifre for evaluating the

influence coefficienta by means of Gaussian

quadrature.

+

-i < ra < +1

- shape functions 31(r,$) (1+rr)(1+sa) (i=I.,2,34)
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6. APPLICATIONS OF THE THEORY

6.1 HULL DATA

The theory developed in the foregoing chapters is

presently used to analyse the steady flow parameters for five

different hull forms. Results are presented over prescribed

ranges of the Froude number and compared with experimental data,

as well as other theoretical predictions. Both the exact

Neumann-Kelvin solution (see section 4.2) and the explicit slender

ship approximation (see section 4.3) are considered. Id order to

gain insight in the performance and limitations àf the linea±lsed

potential flow model a wide variety, of flow parameters is investigated.

These include the wave resistance, lift force, trimaing moment,

sinkánge, trim, wave profile, pressure signatures and vertical

force distributions.

The five hull forms include one mathematically defined

fully submerged ship, one mathematically defined surface ship, and

three realistic surface ships (see Andrew et al (1986)). The main

particulars of the considered hull forms are summarised in Table 8.1

and the schematic body planes of the surface ships are shown in

Figure 6.1. Table 6.l gives for each hull form the beam/length

and draft/length ratio, the block coefficient, the numbers of

panels used to diacretise the port side of the hull surface, and

the range of rroude numbers.
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The submerged prolate spheroid is considered in

section 6.2.1. For this hull form an exact analytical solution-Of

the Neumann-Kelvin wave- resistance i available (see Farell (1973)).

Wigley's parabolic hull form has been the subject of extensive

experimental and theoretical studies. Experimental data and

theoretical predictions of the wave resistance, wave profile and

hull pressure signatures are presented and discussed in sectipn

6.2.2. The HSVA tanker represents an extrume case of a very full

hull form and was selected in order to assesS the posaible

limitations of the linearised potential flow model. Predictions

of the wave resistance and wave profile are presented in section

6.3.1. The 'Friesland' class destroyer represents an other extreme

case of a very fast ship with transom sterm. Andrew (1985) has

measured the vertical force distributions in calm water. These

data, as well as total lift force, trimming moment, sinkage and

trim, are compared with the theoretical predictions in section

6.3.2 Finally, a 1930's Cruiser was selected to illustrate the.

versatility of the developed theory to deal with the prediction of

other flow parameters. For one value of the Froude number

predictions of the pressure field within the fluid surrounding the

hull are presented in section 6.3.3.

All presented flow data- are nondimenional in terms

of the fluid density, the ship speed and the ship length (see

Table 2.1).
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6.2 MATHEMATICALLY DEFINED !ULL FORMS

6.2,1 SUBMERGED PROLATE SPHEROID.

Evidently the water line integral terms (see

chapter 4) are no longer present in the case of a fully submerged

body and this implies a major theoretical simplification. Havelock

(l93la) was among the first to investigate the wave resistance of

a submerged prolate spheroid and derived a simple wave resistance

approximation formula by using the axial source distribution

corresponding to the motion of the spheroid in an infinite fluid

and applying, Lagally's theorem to evaluate the wave resistance.

Of course, the axial source distribution does not produce a -

spheroid in the presence of a free surface, but the accuracy of

Eavelock's approximation increases with tOcreasing immersion depth.

Later Farell (1973) obtained the complete analytical solution of

the Neumann-Eelvin problem by expanding the potential and the

source strength in equations (4.12-13) into series of spheroidal

harmonics. Eavelock's approximation is obtained by retaining only

the first term in Farell's exact expansion. By comparing Farell's

solution with the present theoretical predictions the accuracy of

the computational methods discussed in the previous chapter can be

assessed.
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Figure 6.2 depicts the relationship between the

wave resistance coefficient C (!R/pV2L2) and the Froude number

F (EV/ljY). Havelock's approximation is seen to be in poor

agreement with Farell's exact solution. This discrepancy is due

to the small immersion depth of, the spheroid's ceñtro±d (the

present immersion depth/length ratio equals 0.1242, see Table 6.1).

The Neumann-Kelvin theoretical predictions (i.e. the numerically

exact solutions of equations (4.12-13)) are in excellent agreement

with Farell's exact solution. This result confirms the accuracy

of the developed computer, program. The explicit slander ship

approximation given by equation (4.16) is in. good agreement with

Farell's solution. The small, differences may possibly be ascribed

to the rather large value Of the spheroid's beam/length ratio (this

ratio equals 0.1667, see Table 6.1).

6.2.2 WIGLEY'S PARABOLIC Huu..

Wigley's (1942) parabolic hull form has been the,

subject of. extensive experimental and theoretical studies, see

Chen and Noblesse (1983b) and McCarthy (1985) for a review. The

nondimensional offsets of the Wigley bull are given by the equation

y ±*b(l_4x2)(l_z2/42) for -dzD, where b and d are

constants representing the beam/length and draft/length ratio

respectively (b0.l, d=0.0625). diem and Noblesse (1983b)

investigated eleven sets of experimental wave resistance data and
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concluded that considerable variations occur (for example, the

experiments scatter is 65% at F =0.2). Recently new experiments

have been carried out by Ju (1983) and Kajitani et al (1983) (see

also McCarthy (1985)) and these data are used in the present

section. -

The rejults of Ju's (1983) wave resistance

measurements with a 10 ft restrained model are eummarised in

Figure 6.3. For Froude numbers between 0.16 and 0.34 this figure

shows the measured total resistance C, the calculated frictional

resistance Cf (represented by the Schoenherr flat plate friction

formula), the estimated viscous resistance C =1.1 Cf. the measured

viscous wake resistance C (derived from wake survey measurements),

the residual resistance VrtCf the wavemaking resistance

C. C -C and the wave pattern resistance C cC -C . At loww t V wp t vw

Froude numbers (Fn less than about 0.25) the viscous resistance is

more than 80% of the total resistance and the wave pattern

resistance derived from wake-survey measurements iS expected to

be more reliable than the wave pattern resistance derived from

wave pattern analysis (See MCarthy (1985)).

Figures 6.4(a)-Cc) show comparisons between the

measured wavemaking and wave pattern resistance and theoretical

predictions. The theoretical data shown in figures 6.4(a)-(b)

were obtained by Chen and Noblesse (1983a). Figure 6.4(a) compares

the experimental data with the thin and slow ship theoretical

-predictions calculated using equations (4.24) and (4.25a)

respectively. Both theoretical curves are in poor agreement
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with the experimental data. The theoretical humps 5mg hollows are

exaggerated and, more seriously, they occur at rather lower -values

of the Froude number than in the experimental data. Figure 6.4(b)

8bOws the zeroth and- first order wave resistance approximations

corresponding to the sequence of slender ship approximations

defined by equation (4.18). Chen and Noblesse (1983b) made several

assumptions in order to simplify the caldulattons. Most notably

the nearfield. disturbance component N(X) of the Kelvin wave source

potential was approximated by the zero Froude number Green's

function- (i.e. N(X)=-l/IXI, see the discussion surrounding

equation (3.15)), and the water line integral term was neglected.

The zéroth order wave resistance approximation is essentially a

generalisation of the classic thin ship approximation and the

zeroth order curve in figure 8.4(b) suffers from the same defects

as the theoretical curves in figure 6.4(a). The- first order

wave resistance approximation shOwn in figure 6.4(b) implies a

major qualitative improvement of the theoretical predictions..

Although the humps are still exaggerated, their positions trein

good agreement with the experimental data.

The present results are shown in figure 8.4(c).

Calculations were made at 10 different Frqnde numbers and both the

'exact' Neumann-Kelvin theoretical predictions and the explicit

slender ship approximations are in good agreement with the

experimental data. At values of the Froude number less than about-

0.25 the theoretical predictions overestimate the
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experimental data. Comparison between the first order curve in

figure 6.4(b) and the slender ship approximation curve in figure

6.4(c) Shows that the inclusion of the neartield disturbance

component has an important (decreasing) effect on the magnitude of

the humps of the wave resistance curve. Because of the large

variation in the high Froude number theoretical predictions

obtained by other authors (see Table 1.1) no direct comparison

with these data has been included in figure 6.4(c). The presently

obtained results confirm the usefulness of the Neumann-Kelvin

approximation- for a practical range of Froude numbers.,

Figures 6.5(a)-(d) show a typicil comparison

betweenthe measured and calculated wave profile and hull pressures

at- a fixed value of the Froude number (F =0.316). The wave

profiles /F2 (SgZ/V2) were measured by Kajitani et al (1983)

using restrained models. Figure 65(a) indicates that there is

good agreenent between the measured and calculated wave profiles

except in the bow regime. The theoretical bow wave crest amplitudes

are lower than the experimental values. Figure 6.5(b)-Cd) show

the comparisons of the measured and calculated hull pressure

p (P/pV2) at three different depths (z/d-O.20, -0.52 and. -0.84).

The measurements were obtained using a short 2.5 m restrained -

model (see- Kajitani et al (1983)) and it is difficult to draw a

conclusion from the results shown in these figures. Both the exact

Neumann-Kelvin solution and the slender ship approximation have

the same characteristics as the measured pressure signatures.
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6.3 REALISTIC HULL FORMS

6.31 HSVA TANKER

The RSVA tanker, is a 'limiting case with its high

value of block coefficient and low range of Froude numbers (see

Table 6.1 and figure 6.1). Figure 6.6 shows the measured wave

resistance data which were obtained from the total resistance

measurements carried out by CollatZ (1972). Free-running models

of three different sizes were used (the effects of sinkage and trim

are assumed to be negligible for this hull form). The estimated

wave resistance is given by C C -(C +C .), where C is the total
w t vt vp t

resistance, Ct is the viscous tangential resistance (here assumed

to be given by the ITTC 1957 line) and C is the viscous pressure

(or form) drag. For this hull form C is very large and assumed

-4
to be constant (C =O.895xl0 ). The resistance curve for the

VP

smallest model has a hump at FO. 17 which does not show up in

the curves for the two larger models.

Roltrop and Mennen (1978) have derived estimation

formulas for- the wave resistance by applying statistical regression

to a large number of existing model and full scale ship measurements.

The results obtained by applying these formulas to the HSVA tanker

are shown in figure 6.6 and are in good agreement with the measured

data., Also shown in -figure 6.6 are the slow ship approximation
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prIdictioA of Baba (1979). These data are in excess of the

measurements by a factor three to four (Baba Applied his theory

to a variety of ships but felt that the besI/draft ratio of

the HSVA tanker is too large for his method to apply).

The preèemt calculations shown in figure 6.6 are

in remarkably good qualitative agreement with the experimental

data. Apparently the absence of interference between the bow and

stern wave systems due to the long parallel middle body Is

correctly modelled by the linearised potential' flow-theory.

However, the Neumann-Kelvin theoretical predictions and the explicit

slender ship approximation are in excess of the measurements by

factors of about 1.5 and 2 respectively'. The author has not been

able to explaid these differences. Both theoretical curves predict

a small hump at FO.l7 in agreement with the measurements for-the

smallest model and Holtrop and Mennen's predictions. - -'

In order 'tO ake a full assessment of the performance

of the linearised potential flow model in this case, further

comparisons must be made with other experimental data, such as

wave profiles, observations of wave breAking, and sinkage and trim

measurements (see McCarthy (1985)). 'Unfortunately these datA were

not available to the author, but figure 8.7 shoWs a typical

comparison of cAlculated wave profiles at F=O.lS. Included in this

figure are the theoretical predictions of (add (1979) who used a

modified Rankiné source method (see Gadd (1976)), and-Chan and

Chan (1979) who solved an initial value problem by means of the
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finite difference method. Chan and Chan's prediction of the bow

wave amplitude is close to the maximum theoretical stagnation

point value (ç/F, see equation (2.5)). In both Cadd'S and

Chan and Chan's predictions the bow wave trough is positioned

slightly more forward than in the present calculations. However,

effective conclusions cannot be made without reference to further

measurements.

6.3.2 'FRIESLAND' Ciss DESTROYER

The Dutch 'Friesland' class destroyer is a fast

naval ship with transom stern (see figure 6.1). Andrew (1985) has

measured the steady. lift force distribution in calm water. The

experimental set-up is sketched in figure 6.8. A 3.4 m model was

built-up from 19 separate segments conzectéd by sensitive strain-

gauge dynamometers to a stiff longitudinal beam firmly attached to

the carriage structure. During the experiments the model was

kept restrained (i.e. prevented from sinkage and trim). Figures

6.9(a)-(e) show the measured steady lift force distributions

d. /dx (e(dL /dx)/pVL) at five Froude numbers F =0.15 (0.1) 0.55
w w - - n

(corresponding to full scale ship speeds V=9.88 (6.45) 35.5 knots).

It can be seen that for F up to 0.35 the lift-force is relatively

uniformly distribUted along, the ship length. For F above 0.35

the (downward) sectional force peaks markedly over the -aft body

and increases steeply- witb increasing speed.
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The present theoretical curves obtained by sectionwise

integration of the calcdlated pressures, are also shown in figures

6.9(a)-(e). In this case, where only the steady lift force

distribution of the restrained model is considered, no difficulties

were encountered in the modelling of the transom stern effects

(when the wave resistance of the free running model is calculated

precautions. must be taken to model the effect of the transom stern

on the sinkage and trim, see Salvesen (1979)). At. low 5'roude

numbers the present calculations are seen to be in, good agreement

with the measurements, but at high values of the Froude number

both theoretical curves peak less markedly than the experimental

curves. The slender ship approximation fares lese well than the

Neumann-Kelvin theoretical predictions.

Figures 6.l0(a)-(b) øhow the total lift force

L (L/pV2L2) and trimming moment a (M/pV2L3) as functions

of the Froude number,. The experimental and theoretical curves were

derived from the lengthwise integration of the distributions shown

in figures 6.9(a)-(e). The lift force increases relatively

smoothly with increasing speed and reaches a peak value at F0.45,

whilst the trimming moment is small up to nearly F =0.35 after

which there is a rapid rise with increasing speed. This corresponds

to the peak distributed vertical force moving aft as seen in

figures 6.9 (d)-(e), whilst the total moment increases with speed

above F =0.35 but does not peak. The qualitative agreement between

the experimental data and theoretical predictions is generally good.

At low speed (Fd0.35) the quantitative agreement is also very
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encouraging, but less satisfactory at higher speeds. As might be

expected aster the earlier remarks the slender ship approximation

compares less favourably as the speed increases. -

Figures 6.10(c)-Cd) show the calculated sinkage

(=S/L) and trim by the stern 0 ((Da_Df)/L) derived from the

solution of equations (2.22b-c). Also included ifl this figure are

the results of direct sinkage and trim measurements of the free-

running model (see Andrew (1985)). These data qua tify the

differences in attitude between the restrained and free-running

model. Sinkage is seen to increase steadily up to F045 and

appearC to level of f théreãfter; the trim is small up to FO.35

and then increases markedly. As might be expected from the previous

comparison the sinkage and trim are poorly predicted except for

FCO.35 when the quantities are small anyway. Using the measured

lift force and trimming moment in equations (2.22b-c) does not

significantly improve the predictioná. This serves to illustrate

the invalidity of equations (2.22bc) at high Froude nunbers when

it would appear that the sinkage and trim should be determined

iteratively (see section 2.4).

6,3.3 CRUISER IULL FORM

This 1930's cruiser hull was selected as a final

test caseto illustrate the versatility of the developed theory.
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For the hull form the calm water pressure field below the hull has

been recorded at FO.l26 (see Andrew (1986)). The arrays of

measurement positions below the hull are sketched In figure 6.11.

At two different depths both the keel and transverse pressure

signature have been measured. The measured and calculated data are

compared in figures 6.12(a)-Cd). It Is seen that the experimental

data and theoret'ical predictions are in good agreement, both along

and transverse to the track of the ship. For this slender ship form

(see Tables 6.1 and figure 6.1) travelling at fairly low speed

the slender ship approximation agrees very well with the Neumann-

Kelvin theoretical predictions.
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Figure 6.1 Schematic body plans of four surface ships.
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Figure 6.5 Comparison of measured and calculated wave profiles and

hull pressures for the Wigley hull at F0 0.316.

wave profile

hull pressure for a/d = -0.20



- x b.ri..rtt ta

- 140 -

Figure 6.5 Continued. -

(C) hull pressure for z/d = -0.52
Cd) hull pressure for z/d = -0.84
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Figure 6.8 Schematic of segments and SUpporting and model momting

arrangements during 'Friealand' experiments (from
-

Andrew (1985)).
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Figure 6.9 Comparison of measured and calculated lift force distributions.

F 0.15

F 0.25
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Figure 6.9 Continued. (e) F O55
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Figure 8.10 Comparion.of measured. and calculated

total lift force (a) and trimming

moment (b).
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Figure 6.10 Coiparison ol measured and calculated sinkage (c)

and trim by the stern Cd).
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Figure 6.11 Sketch of the pressure measurement positions

beneath the cruiser travelling at F 0.1257.
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Figure 6.12 Longitudinal keel (c) and transverse amidships (d)

pressure signatures for z/d -3.55.
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7. CONCLUSIONS

As a result of the investigations the following

conclusions can be drawn:

The adopted formulation of te Kelvin wave source potential

is very convenient from both physical, mathematical and

numerical points of view Due care is required when evaluating

this function in order to avoid unacceptable numerical errors.

The nearfield and wavelike disturbance components can be

calculated in an accurate and efficient manner by means of

Chebyahev and Neumann series expansions respectively.

Certain questions regarding the behaviour of the wavelike

disturbance in the vicinity of the free surface require

further investigation.

For an adequate description of the steady ship motion problem

the three-dimensiodal features of the fluid flow and hull

geometry cannot be -neglected. The transfer of the hull,

surface condition to the ship's centreplane in the consistent

Michell thin -ship theory seems particularly inappropriate

from this paint of view and may be more restrictive than

the linearisation of the free surface condition.

The use of the inconsistent Neumann-Kelvin approximation can

be Justified from -a practical point of view when the ship-
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generated free surface disturbance is sufficiently small. This

assumption is usually violated in the vicinity of. the ship's

bow where the quality of the theoretical predictions of the

wave profile and hun pressures deteriorates, but this does

not affect signifiantly the theoretical predictions of the

wave resistance and other global flow parameters for ships

which are sufficiently slender and operate at low to moderate

values of the Froude number..

The solution of the Fredholm integral equation for the sOurce

strength is rendered superfluous by adopting the explicit

slender ship approximation, where the source strength is

approximated by the perturbed normal bull velocity. This

approximation should only be used however for ships with

low block coefficients operating at low Froude number.

The quantitative agrement between the experimental data

and theoretical predictions becomes less satisfactory when

the ship is full-bodied. This is probably due to a combination

of nonlinear free surface effects and viscous interaction

effects. Further detailed comparisons with experimental

data are reqmired in order to assess the capability of the

Neumann-Kelvin theory in this respect.

At high Froude numbers the quality of the theoretical

predictions is less satisfactory and a nonlinear flow description

incorporating the dynamic effects of sinkage and trim might
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be required. In particular,. when calculating the sinkage

and trim at high ship speeds, the application of the hull

surface boundary condition at the mean position of the

hull, ia no longer acceptable and an iterative procedure

is required to determine the sinkage and trim.
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APPENDIX

EVALUATION OF SPECIAL FUNCTIONS

THE EXPONENTIAL INTErRAL

Let E1(z), 51>0, denote the complex-valued exponential

integral function of z, as defined, in AbrsmoWitz and Stegun (1972).

Because of the symmetry' relationship £1(z) = E1(z) only values of

z=x+iy for which O are considered.

For moderate and large values of Izi the exponential

integral nay be evaluated from its continued fraction representation

given by (see Abrmmowitz and Stegun (1972)):

exp(z)E1(z)
1 1. 1. 2 2

This continued fraction converges in a larger domain than the

asymptotic series given by equation (3.13). The successive convergents

w nay be generated recursively as follows (see Gautschi (1967)):

ufl+l = z/(z+a1u)

v' v(u -1).
n+l n n+l

w =w +v
n+1, n n+l



for n1,2 . where a 1=<(n+l)/2> (<x> denotes the integer part

of x) and the initial values are given by u=l, v1w1=l/z. Using

this algorithm an absOlute accuracy of at least six significant

digits can be achieved throughout the domain where

e(x,y) = x2+14x+5.O625y232, see Baar (1985).

For small values of a the exponential integral

may be evaluated from it ascending series representation given

by equation (3.12), which may be written in the form:

E1(z) + tn(z) +

Successive convorgents p are generated by means of:
n

= -nzq/(n+1)2

n =p +a
n+1 n +1

for nl,2,...., the initial values being p1q1=z. This method is

used if e(x,y)<32 and -8x<2.

In the remaining domain near the negative real axis,

where e(x,y)<32 and -l6x<8, the ascending series is slowly converging

and it is more efficient to use the Taylor series about y0 given

by (see Newman (1985)):
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(A.2)

exp(z)E1(z) = Z P(lxI)(i) (A.3)
n0
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where nP(x) P-1(x) + i/zn for n30, x>0, the initial voj.ue

being P0(x)-exp(-x){Ei(X)+iir}. In, the range 8<x<18 the exponential

integral Ei(x) may be computed using the special polynomial

approximation:

xexp(-x)Ei(x) = 1.1029149 - 0.0442424t + 0.0198l95t2

- 0.0089561t3 + 0.0039184t4. - 0.0015478t5

+ 0.0003842t6 - 0.0000052t7 + x)

where tx - 3 and Is 1<4.72-7, see Baar (1985).

THE BESSEL FUNCTIONS

Let J(x), 7(X), 1(x) and K(x),nO, x>0 denote

the usTual Bessel functions of x and integer order n, as defined in

Abramowitz and Stegun (1972). For n=0,1 the Bessel, functIons J(x)

7(X) can be computed by means of the polynomial approxiations

developed by Newman (1984). Similar approximations for the modified

Bessel functions Z(x) and K(x) were derived by Allen (1956) and

these are quoted in Abramowitz and Stegun (1972). From a numerical

point of view It is slightly better to compute eXp(_X)In(x) and

exp(x)K(x) since this roves most of the variation in 1(x) sTud

respectively.



(a ,b ) =fl n

(-2n/x, 1)

(-2n/x, -1)
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When ii2 the following procedures proposed by Baar

and Price (1986b) are very cOnvenient. Following Gautschi (1967)

consider the general three-term recurrence relationship

f +af +bf =0
n+l nn na-1

where ff(x) and nl. For the Bessel functions the coefficients

a(x) and b(x) are given by AbramOwitz and Stegun (1972) as:

(2n/x, -i) if fn

From equation (A.4) it follows that the ratio

satisfies the relationship:

r + a + b /r
n n n n-i

for nl, provided that f 0(tals restriction is not serious from

the practical point of view, as explained by Gautschi (1967)).

The functions Y(x) and K(x) are numerccally increasing functions

of n and the ratios r can simply be computed by means of the

forward recurrence:

r =-(a +b/r )n n U fli

for nl, the initial value being r0f1/f0.

(A.4)

(A.5)

(A.6)
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The functiOns J(x) and 1(x) are numerically

decreasing functions of n (i.e. ainimal'- solutions of equation

(A.4)) and therefore the recurrence relationship given by equation

(A.6) is only stable when applied in the backward direction. That is:

= -b/Ca + r)

for n=N N-i .....1, where it is assumed that the ratio r is known

for soáe value nN. Gautschi (1987) shows that rN -is given by the

continued fraction:

N+i bN2 bN+3
= urn w

rN - aNl - 5N+2 - aN+3
- fl.I.=

where -a and b are given by equation (A. 5). The successive

convergent. values of w Isay be generated recursively as follows:

u1 = 1/U - (bNl/aal)U

v 5v(u -1)
n+l n ni-i

w w +v
ni-i n ni-i

for nrl,2 ......the initial values being u1=1, vl_-wl=_bN i/aN1

The presented algorithms are very well suited to

the computation of the sequences of Bessel function ratios defined

in equations (5.7a-d). In order to verify the relationships gien

by equations (5.8a-b), as well as to derive similar relationships



for the evaluatIon of the gradient of the wavelike disturbance, the

following derivative relations are useful: -

cf' = t + df
-n n-i n+l

where V =df(x)/dx and

(2,-i) Jn,yn

(c,d) = (2,1) if f
=

(-2,1) K

see- Abramowitz and Stegun (1972). In particular:

- 160 --

(A. 7)-

(A.8)

(J, =
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NOMEICLATURE

General conventions

- Nondimensional flow variables in terms of the fluid density,
the ship speed and the ship length are used exclusively.
The coordinate system Oxyz is attached to the moving ship.
The origiñ-O is located amidships in the undisturbed sea surface.
The positive Ox and Ow axes point toward the ship's bow and
vertically upward rCipectively.

- Whenever the independent variables x,y,z ar used as subscripts
partial differentiation with respect to x,y,z is implied.

- The definition and notation of mathematical functions is in
agreement with Abraniowitz and Stegun (1972).

List of symbols

Symbols not included in the list below are only used at a specific
place and are explained where they occur.

b - bean/length ratio of ship
o - mean water line contour
d draft/length ratio of ship
d drag force
d mean flow domain.

d. interior flow domainI
g acceleration of gravity
h - mean hull surface

ik - k-tb moment of area of mean water line plane
2. - lift force

w -

S triing moment
w

n - unit vector normal to hull surface
p - fluid pressure
q - aspect ratio
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a - sinkage
V

8 - undisturbed free surface

8. mean water line plane

t - unit vector tangent to water line contour

u - perturbed flow velocity

x - position vector of source point

C - total resistance coefficient

C - viscous resistance coefficient
V - -

C - wave resistance coefficient
V -

F - - Froude number
n

G - Kelvin wave source potential

- zero Proüde number Green' s function

- infinite Froude number Green's function

K - Kochin's function

L - water line length of ship

N - nearfield disturbance

Q - source strength

a Reynolds number

S - - dipole sti'ength

U - flow velocity

V - ship speed

W -' wavelike disturbance

X - vector joining the field point and the free surface

mirror image of the source point

- influence coefficient

- influence coefficient

- wave elevation

- kinematic viscosity of fluid

- position vector oj field point

p density of fluid

- disturbance potntial
(pi

- interior potential

zero Froude number (double body) potential

explicit potential approximation

- velocity potential
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