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ABSTRACT

The investigation of steady ship motion in calm water is
a classic problem in ship hydrodynamics, where ship waves and wave
resistance are subjects of unquestionable importance. Despite.
considerable efforts in the past a satisfactory solution of the
steady ship motion problém has not been achieved so far. The
application of three-dimensional potential flow theory results in
an essentially nonlinear prdblqm formulation due fo the unknown
position of the disturbed free surface. In this thesis consistent
linearisation schemes are discarded in favour of the inconsistent
Neumann-Kelvin theory. This approximation implies that nonlinear
free surface effects are neglected entirely, buf';he three-dimensional
featires of the f£luid flow and hullvgeometry are otherwise fully
retained.

The Kelvin wave source potential; otherwise known as the
wave resistance Green's function, 'is analysed in great detail.
Solutions to the disturbance potential of the steady perturbed ship
flow are obtained bf means of a Kelvin wave source distribution
method. The exact source strength is the solution of a Fredholm
integral equation of the second kind. An explicit source strength
approximation, valid for sufficiently slender ships operating-at
fairly low speeds, is_investigated. Particular emphﬁsis is placed
on computational aspects. Highly.accurate and efficient méthods
for the evaluation of the Kelvin wave source potential are proposed.
The developed theory is applied to tiye different shig forms, viz.
a submerged prolate spheroid, Wigley's parabolic ship; a. tanker,

a fast destroyer and a cruiser. Over a wide range of Ship speéds
experimental data are compared with theoretical predictions of the
steady flow parameters such as wave resistance, wave profiles,

pressure signatures and 1ift force distributions.
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1. INTRODUCTION

1.1 SHIP WAvES AND YWAVE RESISTANCE

The: investigation of a ship in steaay rectilinear motion
at the free surface of a calm sea 18 a classic problem in ship
hydrodynamics. The satisfactory solution of this problem is of great
importance to naval architects and emgineers. The ship designer has
to ensure that a proposed ship achieves the desired speed with.a
minimum of required power;.see Saunders' (1957). This difficult task
requires an adequate estimate of the.resistance to shivp motion as
well as a thorough understanding of the steady flow properties in
order to obtain a good matching between the ship's hull and the
propeller. Civii and coastal engineers are more interested in the
wave pattern. generated by the moving ship, see Soremsen (19%3). Ship
waves may have. important effects on other ships moored or manoeuvring
in harbours and navigation channels aﬁd on the erosion of shore lines

and channel and river banks, see Massie (1978). A recent application

of steady ship motion theory concerns the possibility of identifying

naval ships and submarines by means of the accurate observation of

ship generated waves and water pressures, see Swanson (1984).

The experimental and theoretical investigation of

'steady ship motion 1s complicated comnsiderably by the dependence of

the- ship resistance on both the viscosity of the sea water and the



presence of the gravitational iield. The total ship resistsnce.!!t
consists of two components, the viscous resistance R and the wave
resistance R The viscous resistance is due to. the viscous stresses
acting tsngentially to the ship's hull surface and. the formation,
growth and separation (if this-occurs) of the ship's boundary layer,
see Todd (1966). The moving ship also generates a characteristic
pattern oi.suriace waves trailing downstream_in its wake. Tne work
done by the wave resistance equals the energy required for the
formation of ship waves, see Wehausen (1973).

If the sea water is regarded as homogeneous and
incompressible the resistance is dependent on the density p and ki-
nematic viscosity Vv of the seawater, the acceleration of grnvity £,
and the speed V and a charncteristic dimension L of the ship. In
nondimensional form the decomposition of the total resistance into

viscous and wave resistance may then be expressed as:
Ct(an.Fn) = Cv(ﬂn,Fn) + Cw(Rn,Fn) e , . (1.1)

where the resistance coefficient C = R/szpz,_the-subscripts t, v and
w refer to the total, viscous and wave resistance respectively, the
Reynolds number Rn_= VL/v and the Froude number Fn = VVJEE, The
viscous sns vnva resistance are dependent on both the Reynolds and
.Froude nunber and cannot be clearly separated, see Sharma (1965).

The irictionnl resistance, that 1is,the part due to the viscous
tangential stresses, depends on the wave proiile along the ship 8
hull, wherens the formation of ship waves is influenced by the ship's

boundary layer and wake. The complete solution of the Navier-Stokes




equations describing the viscous grnvitntiénal flow about a moving
ship 1s beyond the present state of computing art (see Miyata et al

(1983) for some recent developments).

The difficulties posed by the interaction Setween
viscous and grnéitntioial‘ettects are overcome effectively if it is
assumed that equation (1.1) may be approximated by:

C;L ;:=<:3\)

C,BLF) =C (R) +C(F) . (1.2)

This expression is commonly referred to as Froude's: (1868) hypothesis
concerning the separation of viscous and wave resistance. Froude's
method for the experimental determination of ship resistance 1is

based on the assuhption that the Froude number alome controls the

‘geometrical similarity of the wave patterns generated by geometrically

similar ships (i.e. a small scale model and a full scale ship).

;n this study the attention is focussed on an idealised
version of the steady ship motion problem. Specifically, the sea
water 18 regarded as hamogeneéus, 1ncom§reséible and inviscid
(i.e. ideal) and irrotational flow is assumed. In other words, it
1s supposed that the effects of viscosity on the formation of ship
waves are negligible and the wave resistance is a function of the
Froude numbei alone, in agreement wifh Froude's hypothesis. The
usefulness of the investigation of this simplified problem may be
seen as toliows. For most ships the viscous resistance cannot be

significantly reduced by changing the hull form and this leaves




the ghip_designer more or less free to choose a quitnyle hull form
(from a resistance point of view). Optimal ship forms are those
which generate the smallest waves and 1t is therefqre highly
desirable to develop a tﬁeoreticnl tool to analyse the relationship

between wave resistance and the geometry of:the ship's hull.
. ~

It should be noticed that the physical interpretation
of the 'inviscid' wave resistance is by no means clear and due care
is therefore required when comparing experimental data with theoreyicnl
predictions. Because of the approximate nature of equntion‘jfofz( ,. ZL)
measured wave resistance i1s always endowed ﬁith viscous.effeéts.
Egge:é et al (1967) and Wehausen (1973) discuss a variety of

techniques employed in the definition and subsequent measurement

- of wave resistance.

1.2 HIsTORICAL REMARKS

For many years physicists, mathematicilans, engineers
and naval architects have expended comsiderable effort in &eveloping
an adequate solution of the steady ship motion problem. The

experimental and analytical developments‘are reviewed comprehensively

-

by Wigley (1949), Lunde (1951), Inui (1962), Weinblum (1963),
Guilloton (19645, Kostyukov (1968), Gadd (1968), Wehausen (1973)

and Newman (1976). Figure 1,1 illustrnies the considerable activity
in this field. The histograms refer to the number of publications
on the experimental and/or theoretical study of ship waves and

wave resistance. The data were compiled using the extensive




bibliographies given by Kostyukov (1968), Weﬁausen (1973, 1978)
and Ingi'(1§76). ‘The following remarks ﬂiy serve to explain some
of the fqatd?és of the freﬁuency cﬁivé shown in Figure 1.1.

Because ships afé large structures accurate fﬁll-scale
measurements of ship resistance are difficult, time consuming §nd
expensive. At a véry early siage resort was taken to experiments
with scale models of ships. Leonardo'da Vinci (1452-1319) was among
the first to measure model resi;tance and:wave patterns (see Tursini
(1953)). Over the next three centuries scientists such as Newton,
Lagrange, Euléer (1749), Bernoulli (1757)_and ﬁaval architecfs in
Holland, France, Scandinavia And Great Britain devoted their attention

to the problem and carried out model tests.

William Froude (1810-1879) is nowadays generally
recognised as the.first person to have examined ship resistance in
a systematic manner. Froude (1868) pointed out.thé'advantages of
model tests and proposed to build a towing tank. The first towing
fank of the type commonly used nowadays was built in Torquay
in 1871 (see Gawn (1955)). Froude. (1876) had also a remarkable
insight into the different roles played by viscosity and gravity
in the ship.resistance problem. The first detailed discussions of
the observed characterist;és of ship geﬁe?ated waves were presented

by W. Froude (1877) ahd R.E. Froude (1889).




At about the same time Lord Kelvin (see Thomson (1887,
1904)) established the theoretical mechanism of ship wave ggne;ntion.
A moving ship generates a 'Kelvin' wave pattern consisting of ‘two
wave sysﬁqms: a diverging wave system sprqnding,pgt downstream on
either side of the ship and a transverse wave system contained
within the wedge shaped area between the giverging waves, Kelvin's
theory 1s generally correct but sohe theoretical shortcomings and
difficulties were later solved by Havelock (1908), Hognmer (1922),

Peters (1949), Ursell (1960) and others.

J.H. Michell (1863-1840) was the first to estnbli.sh
an nnalytiégi relationship betéeen the wave resistance and the
geometry of the ship's hull. Micheli (1898) presented a theory
to describe the steady potential flow about an idealised thin ship
hull and arrived at the wave resistancé by integrating the water
pressure distribution over the ship's hull surface. Theoretical
work in the.first-half of the twentieth century was largely

_dominated by the efforts of Sir Thomas Havelock (1877-1968) who
published a long seriés 9! papers. Havelock (1925) gave a new
‘derivhtio; of the thin ship wave resistance formula based upon the
‘use of a Green's function method erher than the Fourier integral
method originally used by Michell (1898). Later Havelock (1934)
showed that the wave resistance may alternatively be obtained by
evaluating the ;nergy contained in the Kelvin wave pattern behind
'k moving'éhi; (see also Eggers et al (i967) and Newman (1977)).
The nature ;t the thin ship npprgximntion was clarified Sy Peters

and Stoker (1957) who established that Michell's formula is the
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first order approximatibn ih a thin ship perturbation expansion.

W.C.S. Wigley (1890-1970) appears to have been the
first. to have evaluated.uicheil'ﬁ formula in a systematic manner
(see ﬁiéley (1949) for a review of his works)i Due to iﬁterference
effects between the shfp's bow snd‘stern wave systems (see Saunders
(L957)) the curve of wave rqsistanée versus ship speed 1s of a
rather oscillatory nature. The humﬁs (maxima) ;nd hollows (minima)
occur at Froude pumbers where the stérn wave system is amplified
or cancelled respectively by the bow wave train. Comparison between
experimental data and theoretical 5iedictione shows that Michell's
wave resistance formula tends to ekaggerate the bumps and hollows.
Moreover, thévpredic;edf humps and h;llows occur in general at

lower Froude numbers. than the experimental data.

The wave resistance of an idealised flat ship was
investigated by Hogner (1932), who also proposed a remarkable .
interpolation formula to interpolate'betweeﬁ the flat and thin ship
wave resistance approximations. Encouraged by the success 6f slender
body theory in aerodynamics and seakeeping theory, Vossers (1962),
Maruo (1862) and Tuck (1964) developed a simple approximation
formula for the wive resistance of a Slender ship. Unfortunately
fhe slender ship formula appears to be a natural 1limit of the thin
and flat ship wave resistance formulas and Ehis approach has béen
unsuccessful, see Ogilvie (1970) and Noblesse (1983). -Recently Maruo
(1982) and Yeung and Kim. (1984) have proposed new formulations of the

slender ship theory of wave resistance, but very few numerical results

have been published thusfar, see Maruo and Ikehata (1983)..
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. Various authors have investigated the wavemaking
of tully subnerged,bodies, see Havelock (1931a,b), Kochin (1951),
Bessho (1861), Parell (1873) and Guttmann (1983). Most surisce
ships operate at tsirly low rroude nunher and the concept ot long,
slow ships is utilised in the low Froude number wave resistance
theories of Guevel et al (1974) Newman (1876), Bahs (19786, 1971),
Maruo (1877) end Ksyo (1978).. Chen and Noblesse (1983b) have made
lsn extensive campnrison of experimentsl dsts and theoretical wave
resistance predictions'tor‘ghe Wigley hull . They conclude
tentatively'ths€ the slow ship‘eredictions sge in poor sgreement
with the experimentsl data except possibly at very low . Froude
nunbers (at which howeyer both the experimental and numerichIQsts-
show a considersbie variation). Certain questions concerning the
true asyMptotic nsture of the low speed 1imit have recently been
investigated by means of the ray theory, see Keiler (1974, 1979),
Inui and Eajitani (1977), Yim (1581), Chung (1984) an‘fulin (1984).
A ray theory for slow ships is similar to the theory of goometrical
opties .and presents two separate reldations. One is the dispersion
relation for the local. wave phase and the other is the transport
equation for the local wave amplitude. The ray theory tries to
eﬂplsin the mechanism of ship wave generstion but Tulin (1984)

concludes that the present kne-ledge is still inedequate.

‘Since firat introduced by Wigley (1942) this mathematically defined
hull. form has been used extensively for both experimental. and
theoretical studies. This hull form with psrssolic frames and
waterlines has a besm/lengthvratio of 0.1 and a (constant)

draft/length ratio of 0,0825,




In;recent years-mucﬁ'nttentidn has been focussed on
the so-called Noumann-Kelvin theory which was ériganauy proposed
by Brard (1971). In this three-dimensional linearised potential
flow theory the nonlinear eftects stemming from the presence of the
xree‘surtnce are neglected, while ‘the thrae—dimqnsional features
of the fluid flow and the bull gecmetry are fully retained. From
8 formal mathematical point of view this approach is inconsistent,
but in practice it may be argued that mosf surface sﬁips are
somewhat slemder and operate at fairly low Froude numbers and
therefore the tree surtnce disturbance 15 relntively small (except
possibly in the bow regime). The numerical ‘solution of the
Neumann-Eelvin problem for the steady distuibance potential of a
roving surface ship is a difficult task and theoretical predictions
of the wave resistance hdvetonly recently became available, see
Eusaka (1876), Guevel et al (1977), Tsutsumi (1979) and Tsai et al
(1983). Further nspecta of the Neumann-Kelvin theory are discussed

in the next section.

Omitted from the.previous discussion are the nonlinear
wave resistance theorie; which go‘beyond the first order linear
npproximations as used in the consistent thin, flat, slender and
slow ship theories and in the inconsistent Neumnnn—xelvtn theory.

The hajor dit!tcﬂlty in the higher-order wave theories stems from
the unknown position of the disturbed free surface and the need
to use Taylor series expansions to obtain the boundary conditions

on the mean position of the free surface, see Peters and Stoker

. (1957) for an outline of this procedure. Vehausen (1963),
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Maruo' (1966) and Eggers (1968) have investigated the second oﬁer
thin ship .theqry.. The #se ot 'l‘nyior series expansions has led h

to seme criticism with regard to the continuation of the potential
flow solution outside the mean f1ov domain and the occurrence of
non-uniformities at the ship’s bow and stern. These difficulties
can be partially avoided by adopting a Lagrangian- description of
the fluid flow wi:ereby the physical space is mapped into a
reference d;m:,in where the t;;sturbed free surface and the hull
gurface are known coordinate surfaces, see Yim (1968), Wehausen
(1969) and Noblesse and Dngl.l.n (1976), A pnrt'!;culg.r;y interesting
nll;eit formally inconsistent variant ?t this approach is Guilloton's
(1964, 1985) metﬁod. This prpcedu;'e starts with the flow -vlelocity
field as predicted by the linear Michell tl;eory and then nmaps it.
into a better approximation by means of a kind of inverse .streamline
tracing r.j;ethod where the hull surface is however forced to be 8
stream surface. The method hasg been applied by Emerson (1967, _1971),
Gadd (1973,1919) and Guevel et al (1979). At low ;9 moderate
Froude numbers there is good ng;-ement .be'l;ween Gu_uloton's method
and measured data. Finally mention is made of some recent nttempts
to solve numerically the exact nonlinear potential flow problem

by means of Rankine source, finite elemer_l.t or f..inite difference
methods, see Eorving and Hermans (1977), Ocmen (1878, 1981), Daube
(1980) , Daube and Dulieu (1981), Chah and Chan (1879), Yen and
Chamberlain (1983), Chamberlain and Yen (1985) and Maruo and

Ogiwara (1985).
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1.3  THE PRESENT INVESTIGATION

The present &Study is concerned with the 1nvestig§tion
of the steady flow disturbance caused by a moving surface ship.
In this thesis the Neumann-Kelvin theory is adopted, that is, the
flow disturbance is described by means.ot n'three-dimensionnl
lingariseé potential flow theory. Specitiénliy, the free surface
condifion is iineariéed about the mﬁan sea plane, but the boundary
condition n;‘th;‘ship's wetted hull surface is retained in its
exact form. The formal inconsistency ot‘tie Neumann-Kelvin theory
warrants some clarification of thQ reasons for its use in this

thesis.

The irrotational flow dtstu;bance cauaed.ﬁy-n ship
in steady rectilinear motion at the tre; surface of a calm ideal
asea may be described by means of potential fiow theory. The
wave resistance and other flow parameters may be derived from the

knowledge of the velocity potential function, see for example

Wehausen (1973) and Newman (1976). The velocity potential must

satisfy appropriate conditions in the flow domain and on its
boundaries. The position of the disturbed free surface- 15 of
course not known beforehand amnd the resulting nonlinenrity of
the free surface condition'ettectively prohibits the developneni
of the complete solution of the exact potential flow problem.
ﬁystehatiq perturbktign schemes may be used to overcome this

difficulty and the free surface condition is then linearised about
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the ul;di,s;tg_rbgd mean sea p].l_me‘ by means of a Tay_l.or se‘ri"es

. expansion. Howevgr_, the consistent application of such tecp.niques
requires that one 1is _ab].e_‘ to designate a small perturbation
parameter connected witi: the problem in such a manner that the free
surface disturbgnce gr.aduauy vanishes as the magnitude of the
perturbation pgggmeter is decrease,:l. For example, in the thin and
slow ghip theories the small perturbation parameter corresponds

to the ship’s thickness and the Froude number respectively

) (see Newman (1976)). M_a,,thematicql‘]:y such procedures t#_e consistent
-and justified, but they do not necessarily imply any better

correlation between experiment and theory.

In the Neumann-l{elvin. theory the perturbation
parameter 1s not explicitly specified but it is assumed (sic)
that the &;qtu;bappq of the free surface caused by the moving
ship is small,. witho'ug formally identifying the reasons for its
s_m#_l].ness. Clearly this procedire cannot be justified from a
formal mafhematica]. point of view. However, most surface ships
are somewhat slender (elongated) and operate at fairly low values
of the Froude number. In practice it may therefore be argued that
the ship gegerated free surface disturbance is» relatively small
over a wide portion of the sea surface'. Noblesse (1976) shows

that the linear Neumann-Kelvin problem for the disturbance

®
A possible exception occurs near the ship's bow, where the flow
has: a stagnation point and the wave amplitude attains a theoretical

maximum value.
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-potentialjis in fact the consistent first order approximation in

a tqgﬁlar pertuibation scheme, where the perturbation parém@ter is
chosen as some measure of the ship generated wave pattern; he zlso
points out that the transfer of the exact hull surface condition

to the ship's centreplane in the Michell (1898) thin ship théory
may be more festrictive.in‘praptice than the linearisation of the .
free surface condition. The foregoing observations then suggest
that in k.fi:st approzimation the linearised free surface condition
is adequate, but the three-dimensional features of the hull form
should be fully retained. Moréover, the inconsistency of the
Neumann-Kelvin approximation should not prevent. the Ppractical
comparison of experimental and. theoretical predictions.

The main proble; arising in the.apflicntion of the
Neunann-Kelvin theory is the determination of the solution of the
linear boundary value problem for the disturbance potential,
Numérical methods to achieve this purpose can be'classified into
two categoriys; The first category of so-called boundary lﬁtegfal
mgihbds is based on integral identities for ;he>velocity potential
obtained by apﬁlyiﬂg Green's second formula to the potential and an
apéropriate Green's function. The Green's function may be chosen
as either a fundamental Rankine source or the potential of a
translating submerged source (the Kelvin wave épurce poten?ial),

In the first approach the Rankine sources are distributed over
both the mean sea plane and the wetted hull surface, see for
example Adachi and Takeshi (1983). The second approach involves

the distribution of Kelvin wave sources over both the hull surface
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and the water line contour, see Brard (1972), Earlier calculations
without ?he water line integral were carried out by Gadd‘(1970) and
Kobayashl and Ikehata (1970). Calculations including the wﬁter 1ine
inteéral have been carried oﬁt’bf Chang (1979), Suzuki (1879),
Tsutsumi (1979) and Tsai ét al (1983). The second category of
numerical methods is that of the finite element métho&s where‘the
equivalent variational formulation of the Neumann-EKelvin problem

is solved by subdividing the fiow domain into finite elements.

The downstrean radi;tion condition can be satisfied Ey using
appfopriaie eigenfunction expansions (Bai (1977, 1979)) or

boundary integral repfeéentations (Lenoir (1982), Guttmann (1963))

of the potential.

) Table 1,1 compares the experimental data Qnd
theoretical wave resistance prediction; for the Wigley parabolic
hull at four different Froude»numbérs. The experimental data were
taken from a.survey of eleven sets of experiments, see Chen and
Noblesse (1983b): All theoretical predictions were obtained by
numerical solution of the Neumann-Kelvin problem. Bai (1979)
used a finite element method, Adachi qnd.Takeshi (1983) used a
Bankine source method, while Chang (1879), Suzuki (1979),

Tgutsﬁmi (1979) and Tsal et al (19335 all used Eélvi; wave source
distribution methods, Although the differences beiwgen the

average'éxperimental dataland the average tﬁéoretical predictions
arerfairly smdli, theilarge scatter-i; the tﬁeoreticai-data is

. clearly unacceptable and must be ascribed to the use of inaccurate

hqmqrihal prodbdures.- For example, at Froude number‘Fn=0.350
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the ;arintion in the theoretical data is 63%. At ;he same F;oude
number the scatter 1nvthe four results obtained by means of a
Kelvin wave sour;e distribution method is 48%. This discrepancy
must be ;ninly ascribed to the errors occurring in the evaluation
of the'xelviﬁ wave source potential. The Kelvin wave pattern
generated by a moving submerged source is mathematically expresséd
as a single integral with a rapidly oscillnto:y inte;rahd, see
Noblesse (1981). Numerical cnlcuintion of such integrals 1is
difficult and time consuming. In this stﬁd§ Kelvin wave source
distribution methods are used to solve the Neumann-xelvin problem.
A major novelty is the successful dev?lopment and employment of
both accurate and fast algorithms gor tﬁe evaluation of.the Kelvin

wave source potential.

1.4 QuTLINE OF THESIS,

Inlchapter 2 the hydrodynamic theory of steady ship
motion is developed. Throughout the present analysis nondimensional
flow vdginﬁles are used in terms of the fluid density, the ship
speed and the ship lengtk, as discussed in sect}on 2.1. The
exact potential flow problem is fprmulnted,in section 2.2. Thé
difficulties asso;inted with the nonlinear free‘sgrfnce con&ition
are discussed in section 2.3, where the ;}near-Neumnnn-Kéivin
;ormulntiqnviq introduced into the analysis. - Expressions reinting
ihe relevant flow parameters to the disturban;e potential are .

presented in section 2.4. Simplified equations are proposed for

- the calculation of the sinkage and trim.
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Chapter 3 is cthgrned with the theoretical
investigntioh of the Kelvin wgvejsourqe gotentinl, that 1is, th?
Green's function associated with the Neumann-EKelvin problem.

This fundamental function plays an important role in the lineag
wave resistance theory. Physically ig represents the potqntinl
of a translating, submerged source. The definition, fundamental
properties and physical interpretation of the Kelvin wave source
potential are discussed in section 3.1. 4 variety of alternative
e;pressions are compared in section 3.2. It appears that the most
convenient expression from both physical, mathematical and .
numerical points of view ;s an expression origin@lly dug to Peters
(19@9). In this formulation the Kelvin wave source potential is
expressed as the sum of three componénts: (1) the potential of a
fundamental Rankine source; (ii) the potential of a nogoscillatpry
nearfield disturbance symmetric upstream and downstream from the
source; and (i11) the potential of a wavelike disturbance trailing
downatream from the source {(and zpro‘upstream). The properties

of the nearfield and wavelike disturbance are investigated in

‘8ections 3.3 and 3.4 respectively.

In chapter 4 it ;s discussed‘how the Kelvin wave
bource,potgntinl can be used to derive integral identities for the
disturbance potential of the steady flow about a moving ship. A
basic integral identity is obtained in section 4.1 by npplying
Green's second formula to the disturbance pofential and the Kelvin

wave source potential, Two alternative strategies are proposed
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to obtain the solution of the disturbance potential. ‘The first

and classic. approach due to Brard (1972) is discussed in segtion 4.2,
The exact solution of the disturbance potential is obtained by
relating it to an auxiliary distribution of Kelvin wave sources over
the ship's hull surface and water line. The unknown source stfength
must be solved from a Fredholm integral equation of the second

‘kind obtained by imposing the boundary condition at the hull surface.
An altermative strategy to obtain the disturbance potential proposed
by Noblesse (1983) is discussed in section 4.3. It is based on an
explicit integro-differential equation gor the potential itself.

This equation can only be solved iteratively and -it is shown that
the first term in the iterative sequénce of potential approximations
provides a useful explicit nunerical'approximation to the exact
source strength for sufficiently slender ship forms. The concept

of the Kochin (1951) ;ave amplitude function and the related
Havelock (1934) wave resistance formula 1s biiefly discussed 1in
section 4.4 and it is used to demonstrate the importance of tpe

additional water line distribution of Kelvin wave sources.

In chapter S5 the computational procedures are
presented which were developed to obtain the solution of the
disturbance potential. A étandafd'point-collocation procedure,
similar to the ome earliér used by Inglis (1980), is dsed in
section 5.1 to discretise the iniegral idéntities. A sinple
Gaussian guadrature method 1svproposed to evaluate the influence
coefficients. The errors associated Qith thé approximation

procedure, as well as the exploitation of the ship's lateral
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Symmetry plane, are discussed., The application of the proposed
method relies heavily on the use of accurate and efficient
algorithms for the evaluation of the Kelvin wave source potential
and its gradient. The methods used to evaluate the nearfield and
wavelike disturbance are discussed in sections 5,2 and 5.3
respectively. The algoritbm for the nearfield disturbance is
based on Chebyshev approximations derived by Newman (1986a).

The algorithm for the wavelike disturbance is based on two
complementary Neumann series expansions originally obtained by
Bessho (1964). Accurate and efficieﬁt methods have been developed

to eialuafe the two series expressions.

'In»chapterls‘the deéeioped theory is applied to
five different hull forms. These are: a submerged prolate
spheroid, t#e Wigley parabolic hull form, a tanker, a cruiser and
a destroyer. _Extensi;e comparisonq are made between experimental
data and theqreticgl predictions of a wide variety of flow -
‘parameters auéh as wave resistance, sipkage, trim, pressure
signatures, ;ave profiles and vertical force distributions.

In m;si‘casés‘the calculations have.been carried out for a large
number of Froude numbers, thus allowing a detailed assessment of
the ability of the Neumann~Kelvin theory to model thelsteady ship
motion problem. In chapter 7 it is concluded that the developgd
computational tools provide an accurate and efficient tool to
analyse the steady flow disturbance phe;omena caused by a

moving surface ship.,
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2. HYDRODYNAMIC THECRY OF STEADY SHIP MOTION
2.1 PoTENTIAL FLow DESCRIPTION

j. The presen? analysis is concerned with the investigation
of the flow about a rigid ship,in>steady rectilinear motion ai the
free surfacg»bf'a previously ﬁnd;sturbed sea of infinite depth and’
width. fhe sea wgfé; is rega;ded_as ideal, that is, homogeneous,
incompressib;e‘and_{nviscid:rand irrotational flow is assumed. The
effects ol'su;face;t;nsion, wave breaking and -spray formation at
the bow a;eineéleéted. Th; external fofées acting on the ship are

assumed to stem from the presence of a uniform gravitational field.

Nondimengipnal variabies are defined in terms of pL3
as reference mass, [ as reference length and L/V as reference
timé, where o, L and V denote the depsity of the fluid, the water
1line length of the ship and the speéd 61 the ship respectively.
Table 2.1 gives the definitions of the thus obtained non&imensiqnal
flow variables. Notice in particular the definition of the
nondimensional acceleration of gravity as gL/V2 = L/Fnz, where
g 1s dimensional and the Froude number Fn s V//gl. In.this study
the dimensiqnlebs_vﬁriables in terms of p, L and v are used

exclusively.

/ : .  Figure 2.1 illustrates the Cartesian reference frame

Oxyz attached to the moving ship. The fluid flow is independent
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of time-withlrespGCt to Oxyz. The origin O is located at amidships
and the positive Ox axis pointg towards the bow (i.e. x>>0 and x<<0
correspond to the upstream and downstream flow regimeh‘résﬁQCt;veiy).
The positive 0z axis points vextigglly upward and the mean free
surface coincides with the .plane z=0. '

In potential flow tﬁeory the iiroiattpnal-flqy of an
ideal fluid is uniquely §etermined by the velocity pofential function,
as explained for example by Lamb (1932) and Milme-Thomson (1968).

* Let ¢(x) dqnoté the nondimensional potential at position f in the
fluid. The poteﬁtial has a ‘steady state chnraéteristic'wifﬁ.tésbect
to the mpving axig system Oxyz comsisting of contributions from
both the uniform free stream flow and the steady flow disturbance

caused by the moving ship. That is:
o(x) = -x + ¢(x) , (2.1)

where -x is the potential of the uniform free stream flow and ¢(x)
denotes the disturbance potential. By definition, the flow’

velocity vector U(Z) 1s given by:
U=V =-4+V=-1+u , (2.2)

where Vd = (ox,.oi. Oz) = (3¢/9x, 38/3y, 39/9z) denotes the gradient
of ¢, i =(1,0,0) denotes the unit vector along the Ox axis, and. the
perturbed flow velocity u = V¢. The fluid pressure p(x) is given

by the nondimensional Bernoulli equation as:
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(2.3)

L2 C 2 2 2
p=3-3|ve| -z/p =9 -3}Vl -zE

where ]V@]z £ V8.V0 = fxz + 0;2A+ @zz 15 the square of tﬁe-magnitude
of the flow velocity vector U = V% and P; denotes the Froude

number. From this expressioﬁ it is seen that the total pressure
consists of contributions from the uniform free stream flow, the

" dteady perturbed flow and the hydrostatic pressure. N
2.2 EXACT PROBLEM FORMULATION

The velocity potential & of the steady flow about
a moving ship must satisfy the following conditions (see Wehausen

(1973), Newman (1978) and Noblesse and Dagan (1976)):

1) The continuity equatién (or conservation of fluid masgs)
requires that the divergence 91 the flow velocity ié
identical to zero, that 1is, V.g = 0, thrpughnqt the flow
domain D). Using equation'(z.z) this condition ﬁay be

written as:
ve¢=20 in D , (2.4)

2
where V ¢ = ¢ + 9 + ¢ denotes the Laplacian of ¢.
xx vy ZZ

(11) If z = Cw(x.y) denotes the unknown elevation of the

disturbed free surface S, then the resulting kinematic



(111)
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condition may be expressed as:
¢ =Ve.Vr on S .
B w -
This condition emsures that the fluid particles camnot
pass through the free surface. Furthermore, the free
surface is a surface of constantrntmosphpric pressure and
it follows from thg‘Bernoulli_equqtion (2:3) that:
2 onl3y ' 2
g, = irn (-[ve]) on 5. (2.5)
Substituting this dynamic condition into the kinematic
condition given in the previous equation, the free. surface
condition to be satisfied by ¢ becomes:
2 2
¢ = -4F_° v0.v|ve| omn S5 . (2.6)
‘Z n. :
The actual position of the disturbed free surface is: not
known beforehand and this implies a major complication

in the implicit forms of equations (2.5-6).

Since fluid particles cannot’ permeate the wetted hull

surface Z of the ship, it follows that:
9 =0 oniZ, ' . 2.1

where ¢ = 3¢/3n = Vd.n and n = (n_,n_,n ) 18 the unit
n - - x'"y'z

vector normal to the hull and pointing into the fluid.
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bThis kinematic condition ensures that: the normal components
of thé hull velocity amd the flow velocity are identical.

. - ' In general, the moving ship will sihk and trim about-its
position at rest and therefore the actual position of the

ship's hull surface is not known beforehand.

“v) Finally a radiation condition must Be'imposed to ensure the

existence -and uniqueness of the potential, see Dern (1977)

for a. compreh ive di ion of this topic. This condition
dfntes that the energy flux ot.tﬁe waves rkdiﬁted by the
moving ship 15 directed outward at infinity, see Newman (1978).
In the present context it is seen that the waves are

following the ship and there are o uﬁstreém waves. This

feature can be éxpréssed by defining:

' aslzsh x>0
¢=-x a8 |x|+= 1f {x (2.8)
1) N x<0

o

where 0(x) and o(x) denote the Landau order symbols of x

as defined by Erdelyi. (1956).

Substitution of equation (2.1) into equations (2.4-8)
results in the following set of conditions to be satisfied by thg

disturbance potemtial ¢:

ay continuity:




(11) free surface conditions:

I T - T
e = Fy 4, =37l o» 5, . (2.10)

g .,
F, ,¢ﬂ - ¢¥ =F_ (2”"”: - 394.9|V¢| ) on 5; (2.1

(111) hull surface condition:
$_=n on H (2.12)
’(iv) radiation condition:

oq/|x)y - x>0
={ _ as |x|+w u{
o(1)

x<0 . (2.13)
Equations (2.9-13) are exact within the assumptions stated at the
heginning of section 2.1 and together they constitute a nonlinear
elliptic houndary value prohlem frop which the disturhance potential

must he solved.

2.3 LineaR NEUMANN-KELVIN THEORY

-

Unfortunately the complicated nonlinear nature of
the free surface conditions given in equations (2.10-11) prohihits
the development of an exact solution of the disturhance potential,

see however Dawson (1977) and Dadhe (1980) for some recent




developments. Therefore some method of approximation is required
and this may be achieved by means of regular or singular perturbation
expansions, as discussed by Wehausen (1973). Such procedurés rely
ononé's ability to choose a small parameter £ whichk is connected
with ‘the problem such that as € 1s decreased the disturbance near

the free surface is gradually reduced. Ultimately this results in

a linear formulation wheée the free surfkce elevation is smail and
the free surface conditions may be linearised about the mean sea

plane,
Three ideas lie behind the choice of a convenient
perturbation parameter €, see Table 2.2. Specifically, € may be

related to the assumed smallness of:

(1) the beam/lengtk and/or draft lemgth ratio of the ship (this
7 choice results in the classic thin, flat and slender sﬁip
approximatioﬁs); .
(ti) the Frou&e nunber-(éhis choice results in the slow ship
approximation);
(111) the Froude number based on the immersion depth of a deeply

submerged body.

Any of these approaches results in small disturbance of the free
surface ag £ is made smaller, but the§ algso destroy the general

three-dimensional character of the present analysis.

An alternative scheme may be based on linearising .

only the free surface condition while the other conditions are
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retained :in their exact forms. The resulting approximation is
formally inconsistent for surfaée ships. The free sﬂrfaée conditions
_ valid on the disturbed free surface S5 may be expanded about-the mean
free surface s (i.e. the plane z = 6) using a Taylor series

expansion of the form:
¢(x’Yva)v>= ¢(x,y,0) + Cw¢z(x.$’.0) + ...

The application of this'expansionAto the free surface conditions

given in equations (2.10-11) results in:

2 12 4 1.3
B0, - 3[V0] ) + F Te 0 v 0 6D, 210

2l
1]

L]

©
+

©
1]

2 : 2
F {zv¢;v¢x - 49¢.7v|ve]
(2.15)

e |2 2 4.3

- Gy - B[V e, - Fy ¢x§xxz} + OCF_¢)

valid on s, where O(Pn4¢3) denotes that the neglected terms are
at least of the fourtk order in the Froude number apd of the

third order in derivatives of the disturbance potential, see

Newman (1976).

The nonlinear'term>on the right side of equation. -
(2.15) 1s of order Fn2¢z and is assumed to be small in comparison
with the linear term F 2¢ + o . If terms of o(F 2¢2) are
n xx z n
neglected in equation (2.15) it follows that the nonlinear
boundary value problem given previousaly in equations (2.9-13) is

transformed into the set of ‘linear conditions given by:
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1) confi?uity:

2 =0 1; d.;  2ae)
(11) free surface condifion:
Fn 9 _+¢ =0 on s-; (2.17)
éiii) hull surface condition:

¢ = F. on h - , (2.18)
(fv) rndintion‘condition:

x>0
as |x|+= 12 { . (2.19)
x<0

{0(1/|:_z|)

o(l)

In equations (2.16-18) the actual flow domain D, the free surface S
and the hull surface Z have been replaced by the mean flow domain

d, the mean free surface g and the mean ‘hull surface h respectively.

The disturbance potential may now be solved from.
thellinear"Eeumann-Kerin' problem defined by equations (2.16-19);
the hull sugfnce condition given by equation (2;1#) i3 of the
Neumann-type, while the linear free sqrféce condition given by
equation (2.17) ﬁAQ’first investigated by Lord Kélvin, see
Thomson (1887). By definition of the Neumann-Kelvin problgm,‘the

free surface condition is linearised but no restrictions are



.imposed on the shape of the hull surface, see Brard (1971, 1974a,b).
In the remainder of this work the linear Neumann-Kelvin approximation
1s used as the theoretical model for the description of the flow

about a moving ship.

Some justigjcntion for adopting the linear free
su;chg condition may be derived from experimental evidence which
suggea;s_thnt the disturbance of tpe_frée.surfnce is relatively
small, except near the bow of surface ships. More precisely, the
dimensionless wave elevation ;W/Pnz = 3Q -»]volz) given in equation
(2.5) 1s small for most slender ship forms (motice however that
;w/fiz = %, i.e. not small, at a stagnation point where the flow
velocity is zero, e.g. ngar the pointed bow of a surface ship).
Eajitani et al (1983)khave measured the wave profiles along the
bull of an unrestrained Wigley model. Figure 2.2 shows a typical
result and clearly 111,us_t1j9tes that ;w/rnz is small if the bow wave
crest 1s discarded. The formal incongistency of the Neumann-Kelvin
nﬁprokimatiog seems thgrefore of 1little practical importance and
certainly should not.invnlidnge a direct compngison between experimental

and theoretical predictions.

2.4 Wave RESISTANCE, SINKAGE AND TRIM

Assuming that the disturbance potential is evaluated

by solving the Neimann-Kelvin problem, the task is reduced to the

derivation of the relevant flow parameters. These. are the flow




velocity, the fluid pressure, the wave elevation and the
hydrodynamic forces. which determine the wave resistance .and the

induced sinkage and trim angle.

The perturbed flow velocity u(x) and the hydrodynamic
pressure p(x) may readily be obtained from equations (2.2) and
(2.3) respectively. Discaiding tefms of 0(r %% 1n equation (2.14)
it follows that the wave‘élevation cﬁ(i,y) of the distnrbé& free

surface is Bi'ven by:
Cw 134 n'x ¥, . ) .

The hydrodynamic forceés can be obtained either by direcély integrating
the hydrodynamic pressure on the hull surface or by evaluating the
energy contained in the downstream wave pattern of the ship, see
Wehausen (1973). Here the first apprbach-is‘used, while the lgtéer
is discussed in section 4.4. '

Most sﬁips have a lateral plane of symﬁefry coinciding
with the plane y=0 in figure 2.1. For such vessels the only nonzero
components of the hydrodynamic force and moment are the drag force
dw, the 1ift force lw and the trimmingvmnment m;, where dw' lw and
m_ are nondimensional in the manner 1ﬁdiénted in Table 2.1. fhese
components may readily be determined by integrating the hydrodynamic

pressure over the hull surface and it follows that:
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2
4= JJ(¢x - 3|v¢| Hn da (2.21a)
h
: ,
) %, = ”‘% - 36| dmda - (2.21b)
h
2
- 1y = JIWX E Hvﬂ ) (znx‘ - n:l'z)da - (2.210)
h

where (nx,ny,nz) are the componentd'bf the outward unit normal
vector on the hull surface. H

Associated with the drag, 1ift and moment acting
on the moving ship are the wave résigtance-cw, the sinkage sw and

the trimming angle Qw. However, the hill surface » in equations

(2.21a-c) refers to the unknown position of the hull surface after

the sinkage and trim have been .applied. It follows that ‘the

ngntities cw’ 8, and ew are interrelated and an iterative procedure
is required in order to determine them. This procedure can be
initialigsed by considering the hull surface corresponding to the
known hydrostgtic equilibrium positi;n of the ship at rest, see
Wehausen (1969), Yeung (i97z), Gadd (1973) and Noblesse and Dagan
(1976). In towing>tnnks a ship model can be restrained (i.e. swso
and/or ew=0) and the theoretical simulation of this situation is

considerably simplified.

In practical calculations the cumbersome iterative

procedure for the determination of thé wgvé resistance, sinkage and'

trim can easily be avoided by assuming that the sinkage and trim are

small (this assumption is not tenable at very high ship speeds).
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Figure 2.3 illustrates the static equilibrium of the moving ship
acted upon by the drag force dw’ the 1ift force lw and the ;rimming
moment mw. The wave resistance C' is formally defined as negative
thrust acting along the propeller shaft line; the additional trimming
moment induced by the wave resigtance 1is negligibie for most
sufficiently slender ship‘forms, sae Wehausen (1973) and Noblesse

and Dagan (1573). The sinkage s, and trim angle e"' are reckoned
positive for increasing draft and a bow-up‘rqtation respectively.

For small 8y and Ei’the static equilibrium of the moving ship 1is

described by (see Noblesse and Dagan (1976)):

c, =d, . (2.22a)
. ' 2 '
18, - 1,8 +F "2 =0 , (2.22b)
2 .
- ilsw + izQW + Fn m, = o , (2.22¢)

where Fn denotes the Froude humber and the k-th moment of area

ikrof the water line plane 1s defined by:

i N
ik = J gkb(x)dx ,

wvhere b(x) is the beam at position x. These moments of area are
dimensionless in the manner indicated in Table 2.2 and relate to
the position of the water line plane of the ship at rest. The 8inkage

and trim are coupled and can be obtained by solving the set of linear

algebraic equations (2.22b=-c).
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. variable . dimensional nondimensional
.dex;,sity of water ) P . 1=p/p
length of ship U A 1=7L/L
speed of ship v 1= V/V
acceleration of gravity s . gL/V2 1/F
beam of ship B b = B/L
draft of ship i : D d =p/L
) i ' _ k+2
k-th ‘moment of area Ik ik = Ik/L
coordinates - (X,Y,2) (x,y,z) = (X,Y,Z)/L
velocity potential 4 ¢ = &/VL
flow velocity 1 2 u =Uu/v
water pressure P . p = P/pV*
wave elevation Zw ‘ cw = Zv/L
- ~ 2
drag force _ Dw dw = Dw/DVzL
= _ 2
11 £t force Lw 1?’ = Lﬁ/DVzL
trimming moment M . m =M DV2L3
W w w/
wave resistance R C =R /prz
w. w w
sinkage . Sw 8, = Sw/L *
trim by stern 5} ¢}

Table 2.1 Definitions of nondin_len’siona]. flow variables.




assumption references ‘b d S

thin ship . Michell (1898) o(e) o) | oq)
Wehausen (1973)
Noblesse (1983)

£lat ship Hogner (1932) 0(1) o(e) o)
Noblesse (1983) Co

slender ship Vossers-. (1962) } o(e) o(e) 0(1)
Maruo (1962) .
Tuck (1964)
Ogilvie (1970)
Noblesse (1983)

slow ship Guevel et al (1974) o1y o o
- Newian (18786) :
Baba (1976,1977)
Maruo (1877)
Kayo (1978)
Noblesse (1983)

submerged body Haveloék (19313,b) . " 0Q1) » 0(1) 0(e) *
) Eochin (1951) '
Bessho (1961)
Farell (1973)
Guttmann (1983)

* Froude number based on immersion depth

Table 2.2 Comparison of some assumptions resulting in small

disturbance near the free surface..
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|
- o - z
mean’ hull{ surface A’ ’
-d - . o
mean flow domain d
v |

. mean sea surface 8

‘unit normal vectoer n

Fipure 2.1 Sketch of the coordinate system Oxyz attached to

—_— =

the moving shin. The ship has unit length, beam b
and draft d.
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Figure 2.3 Sketch of the moving shin's static: equilibrium

showing the drag tor'cerdi, the 1lift force L
the .trimming moment ™, the wave resistance c‘j’,
the dowvnward sinkage s and the trim by the

.

nm 4

stern 6, (ship length




3. THE KELVIN WAVE SOURCE POTENTIAL
3.1 DEFINITION AND FUNDAMENTAL PROPERTIES

The Kelvin wave source potential is defined as the
Green's function associated with the Neumann-Eelvin problem and
physically this function may be identified with tye potential of a
translating submerged source. The xelviﬁ wave source potential
plays a significant role 1n'the'11pegx theory of ship waves and
wave resistance and this chaptef is entirely devated to its. mathematical
analysis. For many years matyeyﬁticians and‘hydrodyﬁgmicists have
expended considerable effort in the development and analysis of the
Kelvin wave source potential and their cogbined efforts have resulted
in a vast literature which is reviewed by Wehausen and Laitone (1960),
Bessho (1964), Eggers et al (1967), Nakatake (1969), Gamst (1979),

Noblesse (1981) and Euvrard (1983). .

Let E(E,n,ch) and x(x,y,2<0) denote two gosgtion
vectors referring to tha moving axis system Oxyz, as 1llustrated in
Figure 3.1. By definition, the Green's function G(S,E;Enz) associated
with the Neumann-Kelvin problem given by equations (2.16-19)-15 the

solution to the following boundary value problem (see Noblesse (1981)):



- 43 -

(1) continuity:

‘2‘ §(x - £)8(y - n)é(z = ) £<0
v'G = { in z<0 1f { (3.1)
R =0
(11) free surface conditiom: '
2 [} . <0 .
Fn Gxx + Gi = { on z=0 if (3.2)
-6(x - E)§(y -n) =0
(111)- radiation condition:
ooz - gh ex
G = { as |x - E|ow if { . (3.3)
o(l) ST T A opex

In equg;ion (3.1-2) 6(x) repregentq the usual Dirac's delta function
of x. The Gréen's- function 1s the sihgular or fundamental solution
to the homogeneous 'Kelvin' problem obtained by discarding -the
nonhomogeneous Neumann hull surface condition given by equation

(2.18) from the Neumann-Eelvin problem.

Physically the Eelvin wave source potential d(g;E;Fnz)
represents the linearised velocity potential at the field point
E(E,Nn,%50) of the unit outflow prodﬁced by a source at the sgource
point E(x,y,z<0) in steady rectilinear motion with unit speed at
at depth -z below the free surface of an otherwise unbounded fluid,
In the limiting case when z=0 the source is evidently no lomger fully

.submerged and it may be shown that the unit outflow produced at
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(x,y,z=0) now stems from a flux across the mean free surface, see -

Ursell (1960), Noblesse (1981) and Euvrard (1983).

From physical considerations it follows that the
source flow is symmetric with respect; to the centre plame y=n.

That 1is, the Green's function satisfies the symmetry relationship:
G =0 ony=n. - (3.4)

Furthermore, it can Be shown that:

1£ and only if the flow direction 1s reversed, see Brard (1972)
and Noblesse (1881).

o Noblesse (1981) demonstrates that the Kelvin wave
source potential can be expressed in the form:

2 ' ' 2
a6 (5, %F ) = -1/]5 - x| + (NG + WOIE ", 3.5)
where |E - x| represents the distance betweén the field and source
points (see figure 3.1) and the dimensionléss vector quantity

X(E,x;th) is defined by:

s &0 = G-6y-nlz+hE?. @6
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The vector Fnzg' joins the field point g with the free surface
mirror image of the source point x (notice that X<0 upstream from

‘the source and X>0 downstream from the source).

Equation (3.5) implies that tllz-e Keélvin wave source

potential is decomposed into three characteristic. components:

(1)  the potential -1/4r[¢ - x| of a fundamental Rankine source
in infinite fluid (in the absence of the free surface) ;

(11) the potential N(E)/;ﬂFnz of a localised nonoscillatory near-
field disturbance, symmetric upstream and downstream from the
source; and 7

(111) the potential wo_r)/uf'nz' of a ngelike disturbance which

‘accounts for the waves produced by the source.

The nearfield and wavelike components account for the effects
" associated with the presence of the free surface and are functions

only of the vector quantity X defined in equation (3.6).

3.2 SURVEY OF ALTERNATIVE EXPRESSIONS

Equivalent expressions for the Kelvin wave source
’ potential- may be obtained by solving the boundary value problem
defined by equations (3.1-3), see Noblesse (1981) for a thorough

mathematical treatise. It appears that -there are five alternative
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representations of the Kelvin wave source potential. These are:

(1) .an expression implicitly contained. in Michell's (1898) famous
papér, rediscovered by Eggers et al (1967) and modified by
Noblesse (1981);

(11) an expression originally due to Havelock (1832) and subsequently
modified by among others Lunde (1951), Kostyukov (1968),
Standing: (1975) and Shep and Farell (1977); .

(111) an expression due to Peters (1849) and modified by Noblesse
(1977), see also Eggers et al (1967) and. Andersson (1975);

(iv) an expression obtained in a remarkable paper by Bessho (1964),
rederived by Ursell (1984) and modified by Simmgen (1968); and

(v) an expression proposed.by pemaﬁche (1981) and redeérived by

Baar (1984b).

Amongst the £o;ego;ng e;pressions,-the second representation due to
Havelock (1932) is no doubt the most popular and is also quoted by
Wehausen and Laitone (1960). The fourth and fifth expressions are
less well known and although they have certain interesting theoretical
features they do not aﬁpear to offer any practical advantages; here
these representations will not be considered further. Instead the
attention is focused on the first three representations due to

Michell (1898), Havelock (1932) and Peters (1849).

Table 3.1 compares the relevant 'Michell’, 'Havelock'
and 'Peters’ representations of the nearfield and wavelike components
as defined by equation (3.5). These equivalent expressions are

modifications of the origindi representations as obtained by Noblesse
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(1981). It is seen that the ngarfiqid disturbance N(X) is written

as the sum of two terms: firstly, a Rankine sink potential _1/12,

where R = |§| and r = Fnzn represents the distance between the field
point and the free surface mirror image of the source point (see
figure 3.1); and, secondly, a single.integrql.terh with the integrand
expressed in terms of the complex-valued exponential integral function
EI(A), as defined in Abramowitz and Stegun (1972):. The integration
1imits are either finite (Peters) or infinite (Michell and Havelock).
It. may be verified that in al; three representations the nearfie;d
disturbance is symmetric upstreﬁm and downstream from the sou;ce (i.e.

the function N is. even with respect to both X and. Y).

The differences between tﬁe three equivélent expressions
in Table 3.1 are clearly recognisable from the.respective representations
of the wavelike disturbance W(X). This function is expressed as a
single integral with at least one infinite 1ntegrat1§n 1imit and a
rapidly oscillatory integrand (the Michell expréssion contains an
additional integral term with finite integration 1imits). Both the
Michell and the Peters representations have fixed 1ntegration‘11m1ts,
while the lower integration limit -x/IY[ of the Havelock expression
.18 variable and depends on the relative position of the field and
sourée points. This feature appears to be a major disadvgptage of
the Havelock representation, as was pointed out by Eggers et al (1967).
The Peters representation of the wavelike disturbgnce i1llustrates
clearly that the waves follow the source, that is, the_waves are
only present downstream from the source, in agreement with the
radiation condition given by equation (3.3). It is thereg&re seen

that the Peters representation is the most convenient from a physical
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point of view; it also appears to be the best suited expressiom for

purposes of mathematical and niimerical analysis.

The Kelvin wave source potential G(g,x;Pnz) 18 thus
expressed ip the form of equation (3.5) in which the nearfield
disturbance N(X) is given by: '

1 .
NX) = 1/R + (2/«)J Ini{exp(A)E'l(A)}dt. ) 3.7

vhere R = [X| and the complex argument A = {-zvI-t% + Tt +1|X| /1=t
likewise, the wavelike disturbance W(X) 1s given by:

w(x) = bk(X)4J sin{(x+¥t)|/1-}-t3}exp{-2(1+t2)}dt , (3.8)

where the Heaviside unit-step function H(X) is defined. by:

0 T X<0 - upstream
{ i.e { from the source.

x(i)={ 1f .
1

X>0 downstream

The Peters k1949) répreséntétion of the Kelvin wave
source‘potential has been'neglected for some time, although it was
used for instance by Eggers and Choi (1975). In recent years,
however, it has been recognised as the most convenient expression
frombpoth physicgl, mathematical and numerical points of view, see
for example Noblesse (1981), Euvrard (1983) and Newman (1986a,b).
In the r:maindef of this chapter the ﬁroperxies of the nearfield

and wavelike disturbances as defined by equations (3.7) and (3.8)

respectively are further investigated.




3,3 . AnaLYsis ofF THE NeArRrIELD DISTURBANCE

-
The nearfield disturbance may be intepreted as the
potential of a localised nonoscillatory disturbance symmetric upstream
and downstream from the source. It 1s convenient. to express the

function N(X) in the form:

N(X) = M(X)/R . S (3.9
. where R = |X|. Accordiig to Noblessé- (1981) the function M(X) may
assume’ the equivaienf forms given by:.
; .
=1 + (2/m)R J Im{exp(A)E; (AY}dt (3.10)
-1" .

1 + (2/TR IR'O{exp(B)El(B)}dt + 4R rm{exp'(s)}dt (3.11)
: - T
whefe T = |X|/|¥| 2nd the complex arguments A and B aré defined by:

{- 2/T-t2: + vt + 1|x|W1 - 2

>
1]

B=(-z/T+tZ + 1(|x| - [T[IWT + 2

The expression given in equation (3.10) foliows immediately from
equations (3.7) and (3.9), whereas equation (3.11) may be obtained
by considering the equivalence of the Peters and Havelock expressions

giveh in Table 3.1 (i.e. by noting that N=NP=NE+WH¢ ., where

indicés P and H refer to the Peters and Havelock expressions respectively).
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The ascending series and the asymptotic expansion of
the exponential integral El(z) are given by Abramowitz and Stegun
(1972) as:

B (2) = ~{y+ fa(®) + I (-1)%%/nn!} (3.12)
n=1

~exp(-z) £ (-1)"at/z" (3.13)
nx0Q

respectively. The asgendihg series of the nearfield disturbance may
be obtained by substituting equation (3.123) with z=A into the integrand
of the integral term in equation (3.16) and evaluating the remaining
integrals analytically, see Noblesse (1977, 1978b) and Newman (1985,
198632. Likewise, the asymptotic expansion of the nearfield
disturbance may be obtained 5y substituting equation (3.13) with z=B
into the integrand of thenfirst integral on the right side of equation

(3.11), see Noblesse (1975, 1981) and Newman (1986a).

The first few terms of the thus obtained ascending and .
asymptotic series of the nearfield disturbance are givem in Table 3.2,

where the function M(X) i1s expressed in .the form;.
H(f) = MA(S) + nml(g) . . (3.14)

It is seen that the integral terms M. in thé ascending series

I
' expressions in Table 3.2 vanish. as BE+0, while the integral terms of
the asymptotic expansion vanish as R+=. The algebraic terms MA of
the ascending series have been derived by Noblesse (1977, 1978b).

The first algebraic term (i.e. -1) of the asyiiptotic expansion

corresponds to a welléknown image source term (i.e. N--1/R as R+»)
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which was earlier obtaine& by Gailloton (1960) and Bessho (1964).
Further terms of the ascending and asymptotic sSeries of the nearfield

disturbance may in 'principle be derived, see Newman (1986a) .

From the expressions given in Table 3.2 it may be

concluded that the function M(X) behaves .as:

41+ 0@®) B0 : '
as { , (3.15)

MEx) = . o
=~ =1 + 0(1/R) R

and it foilows from equation (3.9) that the nearfield disturbance N(X)

may‘alternativély be interpreted as.the poéential of an image sink,

of strength M(X), in the infinite fliid (as if there were no free

surface), as discussed by Noblesse (1917). In particular, the nearfield

disturbance réduces .to a simple image sink as.R+0 (or Fn+w, ags may be

seen from.equation (3.6)) and éﬁ image source as B+ (or.Fn*d).

Equation (3.11) clearly illustrates that the nearfield

disturbance is symmetric upstream and dgwnstreah from the source. That is.

{M(-X,¥,2Z)
M(X,Y,Z) = {M(X,-Y,Z) . (3.16)

M(-X,-¥,Z)

" When Y=0 the additiomal integral term with lower 1imit of integration
T=|x|/‘¥| in equation (3.11) vsn;shes. The integrands of equations
(3.10) and (3.11) then become even functiqns of the integration
variable t, as may be verified by making use of the relationship

El(;)éfi(z), where z denotes ‘the complex conjugate of z. The centre
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plane nearfield disturbance is thus given by:

L ) 1 . .
M(X,0,Z) =1 + (4/m)R J In{exp(A)E, (A }at .
0

1+ (fl/w)Borne{iex'p(B)Ei(B)}dt
It 1s seen that the Havelock and Peters representations in Table 3.1
become identical when ¥é0. The centre plane nearfield disturbance
N(X,0,Z)=M(X,0,Z)/¥X2+Z%Z is of great importance in the thin ship
theory of wave resistance :and hag been investigated extensively by
Noblesse (1975) and Newman (1985, 1986a) who have derived‘the

complete ascending and asymptotic series.

A simple picture of the behaviour of the function
M(X) may be obtained by considering the two special. cases where

Y=0=Z and X=0 respectively:: “Bessho‘(1964) and Noblesse (1977)

* show that: . R ‘

‘M(X,0,0) = -1 - 2|x| + v|X[{B (|X])~ ¥, (|X])}

M(0,¥,2) = 1 = 2/EF(/B)

where the similarity variable E = %(D+2), D = v¥Z + Z2 and

. ' - : *
Hl(x), Yl(x) and F(x) denote the Struve, Bessel and Dawson's integral

. - ] . i .
* Dawson's integral F(x) = J exp(tz-xz)dt
- 0
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functions of x as defined by Abramowitz and sg@ (1972).

Algorithms for yﬁese transcendental functions are readily available,
_'see Newman (1984, 1986b). Figure 3.2 shows the functions HkX,0,0),

M(0,Y,0) and M(0,0,Z) and clearly illustrates tﬁe 1imiting sink

and source behaviour of the nearfield disturbance for small and

large values of R respectively, as indicated in equation (3.15).

3.4 ~ ANALYSIS OF THE WAVELIKE DISTURBANCE

The wavelike disturbance defined by equation (3.8)
répresents the potential of a Kelvin wavelike disturbance trailing
downstream ficm the source (and zero upstream). This fact can be
verified by 1nvest1§at1ng the asymptotic b;haviour-pf the function
W(X) for large values of ¢ = YX° + Y-, using the method of steepest:
descents (see Erdelyl (19586)). This clnsgic investigation is
reported in detail by Wehausen and Laitone (1960), Ursell (1960),
Newman. (1977), Lighthill (1978) and Euvrard (1983), who bhow'that

the function W behaves as:

1

00k ' ' X<2/2|¥|
¥~ {067 as p = AT 12 { xa2/2]¥] . 31D
oe~h x>2/2|¥|

. This expression is a more precise formulation qf the radiation
condition given in equation (3.3). It 1s seen that the dominant

waves generated by the moving source are confined to a sector making




an angle of arccot(2v3)=198°28' with the do;nstrgnn sailing line of
the source, as illustrated in Figure 3.3. According to equation
(3.17) the energy flux is the smallest near ‘the bdrdei iipeé of this
sector. A ho}e detailed analysis.ahbws that within the sector two
distinct systems of transverse and diverging waves exist; these two
systems meet near the border lines with a common angle of

arctan(/2)=34°44" with the sailing line (see Figure 3.3).

The wavelike disturbance defined in equation (3.8)

may be written in the form:
W(E) = - HD8PE) ' © (3.18)

where the function P(X) 18 defined by

P(X) = % J sin{v(x;vt)hnz‘}exp{-z‘(in%)}dt (3.19)

for X30. This function is a special case of the‘ﬁn-functions

gtudied by Havelock (1923, 1925) and Bessho (1964).

Table 3.3 gives seven alternative expressions for the
function P(X). The first e;prgssiop-in this table may readily be
obtained byfexpgnding'the trigonomet;ic term in the 1ntegra§d of
equation (3.19). The last expression has been derived by Bessho
(1964) and may also be obtained by noting»thatlthe gunntion P
satiafies the parabolic differential equation prp.z i the ubper
half-space Z>0; ;ccording to Sneddon (1972) the solution §£ this

heat conduction problem is given by:
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P(X,Y,2) = (/71 J exp(-s2)P(X - 28YZ,%,0)ds

The remaining expressions in Table 3.3-may be obtained by,
performing the indicated change of integration variable. The

" second and third éxpressionS'-are Fourier transform representationmns
and have beén used by Yeung (19723) and Guttﬁm (1983) respectively.
The fourth expression is identical to the expression given by
Peters (1949). Z'J_.'he £ifth expression 1is ‘no doubt the most popular
and similar in form to the expression quoted by Wehausen and

Laitone (1960).. e '

A simple upper bound on the magnitude of the wavelike
disturbance can be obtained from. the sixth expression in Table 3.3.

Using this expression it may be shown. that:
[Pl < 3exp-2)/7/z

provided that Z>0, and it is seen that the wavelike disturbance -
decreases exponentially with. increasing Z. The sixth expressioi: in
Table 3:3 1s dlso useful to obtain an asymptotic expansion of. the
tunct;l.on P as Z+» by means of Laplace's method, seevErdelyi (1958)

and Guttmann (1983).

The wavelike disturbance is symmetric with respect

to the centre plane -Y=0. That is:

P(X,;¥,2) = P(X,<Y¥,2) ,
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as may readily be seen from the expressions given in Table 3.3.
In particular, when Y=0, it follows that:

P(X,0,2) = rsm(xh&z)exp{-z(utz)'}dt
0

T J exp(-‘sz)sign(2s/Z—-X)Y1( |28/Z-%|)ds (3.20)

where sisq(x)=x/|x|‘dgnptesrthe usual sign-function. The latter
expressioh may be obtained from the last expression in Table 3.3
and was originally derived by Goodwin (1956) and aiso given in
slightly modified form by Nbblesge (1978a). The centre plane
wavelike disturbamce P(X,0,Z). has. been further analysed by Noblesse
(1978a) and Newman (1886b) who have derived the complete asymptotic

éxpansion which 1is uniformly valid as vVXZ+Z2+=,

Bessho (1964) has dérived two remarkable series
fepreéentations of the wavelike disturbance. These series assume
the. form of Neamann expansions (see Watson (1944)) and may be
obtained by expanding terms in the integrand of equation (3.19)
into integer ordér'Bessel functions, see Baar and Price- (1986b).

The series representations are giVén by:

P = -exp(32) I'(-1)7 I, (DK (D)cos(zé) ,  (3.21)
n=0 )

. wexb(QZ)ngé'Yén(x) I (3D)cos (a0) . (3.22)
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In these expressions the primed summﬁtion sign indicates that the
firpt term (with n=0) of the series must be halved and. the Polar
coordinates (D30,050<ir) are defined by D=vYZ+Z2 and @=arctan(|¥|/2).
The functions Jn(x), Yn(xi, Ih(x) and Kn(x) denote the usual Bessel
funcfions of x of integer qrder n, as defined in Abramowitz and
Stegun (1972); the prime on the fugctions Jzn(X) and an(X) denotes

the derivative of these functions with respect to X.

The Neumann series representation givenm in equation
(3.21) 1s convergent eve;ywhere except on the source track Y=0=Z
and may be used for both small and moderate values of Xz/D. The
complementary series given in equation (3.22) 1s asymptotic and
useful for large values of xz/n *. in ch;pter 8 it i1s .shown bhow
the series representations can be used to design a highly effective

algorothm for the eigluation of the wavelike disturbance.

A findl point of some academic interest concerns the
singular behaviour of the wavelike disturbance when the origin is
approached, see Ursell (1960), Bessho (1964), Noblesse (1978a),

Euvrard (1983), Newman (1986b) and Baar and Price (1986b). When

‘In a re;eht communication Newman (1986c) has pointed out that the
asymptotic Neumann expansion given in equation (3.22), as well as the
related seventh integral expression-in.Table 3.3, appear to be too
regular to be correct on the free surface Z=0, but they are valid

i1f the source track Y=0=Z is approached along an inclined radius

beneath -the free surface.
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¥=0, it may be seen from equation (3.18) that P=0, provided that
Z>0. However, when v=d=z. it follows from both equatioms (3.20)
and (3.22) that
’ - ' g
P(X,0,0) = iﬂYo X) = = iﬂYl(X)
For small values of X, the Bessel functidnm YI(X) behaves as
YI(X)=-2/1rx+O(x!.nX) and it is seen that the wavelike disturbance

is singular along the source track in the freé gsurface. ‘This:

singular behaviour may be 1solated as follows.

For llé.rge values of the ‘;nfégration variable t,
the' utegwénd of the first expressiom in Table 3.3 behaves as
'sin('Xt)cos(Ytz,)exp(-th). This behaviour suggests the decomposition

of the function P into components P=P is a regular

] R
function and the singular function 'Ps 1s defined by Baar and Price

+PR, where P

glessb) as:
L - X ',” . . z L . z
Ps = J sin(Xt)cos(¥Yt )exp(-Zt )dt
0 . . .
-= Re{F(X/20A)/A} T (3.23)

In this -expr’éssion the complex argument l\'=v/z—;i._Y=/ﬁex‘p(§1(—))

and F denotes the complex;valued Dawson's integral function (see
Abramowitz and Stegun (1872); equ'ation 7.4.'}). When Z=0 the
integral in equation (3.23) can be expressed in terms of real-
valued Fresnel integral functions (see Gradshteyn and Ryzhik (1980) ,

equation 3.691.6).
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When Y=0=Z it may be verified that the singular and

regular components become:

PS(X,O,O) 1/X "y

Pp(%,0,0) = - i“Yl(x) -x ,

»respectiiel;, so- that the singularity along the source track is now
entirely accounted for by the singular component function Ps.
Physically, the latté; function. represents the potential of a

diverging wave éystem; as 11195trated 1n'figﬁ;e 3.4 (sn'efficient

algoritﬁm for the eVaiuation of the complex Dawson's integral has

been prepared by Gautschi (1670)).

Similar decompositions of the wavelike disturbance
have been investigated by Bessho (1964) and Euvrard k1983) and,
for Y=0, by Noblegse (1978a) and Newman (1986b). Bessho (1964)
recoverg_the compiex—valued Dawson's integral occﬁrring 15 equation
(3.23) b& considering the behaviour of the Bessel functions in
equation (3.21) as the origin is approached. It is also noticed
_that ‘the function Pg arised in two recent new approaches tp.the

slender ship theory of wavemaking, see Maruo. (1982) and Yeung and

Kin (1984).
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expression

1) ' P = [ sin(X/1+t%) éo_s(Yt./ht’) exp{-Z(1+t?) }dt
0 "

) .. -
(11) P = [ (u//u’-1) sin(Xu) cos(Yuru’-1) exp(Zu®) du
: 1
. : (u = Jl&tz)

. . @ . .
‘ (111) P = [ {w/(2w?-1)} sin(Xw) cos(¥v) exp(-Zw?) dv

0 .
(v.= t/e%+1 , 2w? = 1+/1+av7)

. -]
\ ) (1v) P =3[ cosbrt sin{ (X+¥s1nbT)cosbT} exp(-Zcosb?T) dt

i . (t = sinhT)

o L . . ) -
) P=3/ secze.sid{(Xcose+Ysine)seclel exp(-Zsec?8) do
-4 -

(t = tanf) ~

(v1) P = & {exp(-2)/VZ} [ exp(-12?) sin{(X+¥A/VZ)/1+X7/Z} dA

(t = AN

I exp(—s’); { (2%3/1) -X) yl(w)/w}_ ds.

- -~

( T+iZ = Dexp(10) , w? = 4s‘='n - 48v/Dcos(19) + X? )

(vi1) P = /7 expl-3(0-2)}

Table 3.3 Alternative expressions for tbe wavelike disturbance.
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Figure 3.3 Sketch of the Kelvin ship wave patternm.
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4, . INTEGRAL IDFNTITIES FOR THE DISTUPBANCE POTENTIAL
4.1 Basic INTEGRAL IDENTITY

Integral identities for the steady disturbance
potqnti;l may be obtained by applying fireen's second formula to the
dig;urban;e‘potential and the Kelvin wave source potential, Recall
that the Kelvin wave source potential 1s defined as the solution
) to -the homogeneous Kelvin problem given in equatioms (3.1-3).
Essentially this Green's function”can be identified as the response
at the field point due to a untt.iﬁpﬁlse excitgtidn.appiied at the
source point. The solution of the nonhomogeneous Neumann-Kelvin
problem for the disturbance potential (see equations (2.16-2.19))
in terms of an integral distribution of Green's functions (i.e.
fundamental Kelvin wave sources) can then be interpreted as the
re§u1£ of superimposing the response of the set of impulses
represented by the nonhomogeneous Neumann hull surface condition
given by equation (2.18). (Notice the analogy with the impulse
response technique often used in ship dynam{gs, seebfor exanmple,

.Price and Bishop (1974) and Bishop and Price (1979)).

Figure 4.1 illustrates the nomenclature used in the
present chapter. The finite dqma;q d' 1s bounded_by the hull
surface /#, the finite mean free surface .s' and some eiteriorn
surface hw surrounding the hull surface h; ¢ and e, are the

intersection curves of % and hm respectively with the plane z=0.




Application of Green's 'second formula (see Kreyszig (1983)) to
the disturbance potential ¢=¢(§) and the Kelvin wave source potential

G=G(§.§;Fnz) gives

m«wza-cvz@)dv = H(w -06_)da +

d : h

1«6 5 ~0¢ ) dxdy.

+

\—‘mhﬁ

I(@G -G¢ )da , 4.1)

3‘

where Gh:&d/an = Vd(g,g;rnz).g(g) and n is the outward unit normal

vector on 4 as shown in figure 4.1.

Consider the second integral om the right side of

equation (4.1). By expressing its integrandas:
86 < Go_'= ¢(F_26_+G) - G(F 2% +¢)‘+F2(G¢ 66
z z n xx z° n 'xx 'z n x x'x’

and by using the Green's identity (see Kreyszig (1983)):

”(Gox-mx),dxdy = J-(G«ax—bcx)dy * J(c«ax-wx)d_y :

8’ : e - - Co
equation (4.1) may bg revrittén as: -
I, = JJ(G¢ =46 )ds + F I(G¢ -6 )dy + AR 4.2)
&

where T, ?é_agd'rw are defined by



IG = III¢V Gdv ~ IJ¢(F G, _+G )dxdy ,
dar s’
2
I¢ IIIGV ¢dv - IIG(Fn ¢xx+¢x)dxdy. )
dr s’
I, = ”(¢G -G¢_)da + F. I(G¢x-¢6‘x)dy ,
h -]

respectively.

By making use of the radiation conditions given in
equations (2.19) and (3.3) it can be shown that I  vanishes as the
exterior surface #_ 1s expanded towards infinity and subsequqntlf
the finite domain d'and free surface s' may be replaced by the
unbounded flow domainrd and mean freé surface g respectively.
Substituting the continuity and free surface conditions given by
equations (2.16) and (2.17) respectively it follows that I¢=O.
Following a suggestion due to Noblesse (1983) the potential is
expfessed in the form ¢=¢*+(p-¢.) where»¢=¢(§) and ¢,=¢(§), anﬁ
.

G becomes

=C.0, +C

where

ey~ [P - [[er e poses

d 8

[¢]
L]

. z ' ._
J I(¢-¢ yPoav - H@@,)(Fn 6,6, daxdy
d s




i
i
¢
3

4
t
¢
H

- 70 -

It. i3 seen from equations (3.1-2) that C'=0 provided the disturbance
potential is continuous everywhere in the fluid and on the-boundaries,
that 18, 1!,¢-¢‘+9 as x+£. This assumption is required to apply

Green's second formula (see Kreyszig (1983)).

Substitution pf>equations (4.3-4a) into equation

(4.2) results in the basic integral idemtity:

N i 2( ' ,
b, = II(G¢n-¢Gn)da +F I(G¢:-¢Gx)dy, 4.5
’ (<]

where C, 1s given by equation (4.4a). Inserting equations. (3.1-2)

in equation (4.4a) it follows that:

IIIG(x—E)G(y-n)G(h-c)dv + IIG(:-E)S(?-niéxdy (4.4b)

CcC =
e
1 in d+s-h-c
=43 for 3 {on B+e s ; (4.4c)
(1] in d.+sg.~h-c¢
. T 1

" where di and 5. are the interior domain dand mean free surface

respectively inside the hull surface % (see Figure 4.1). Equation
(4.4c) 1is a well-knowvn result from the theory of generalised

functions and distributions, see Griffel (198;), Kantorovich and

Akflov (1982) and Roach (1882). Usually the integral identity (4.5)

is obtained in a different mamner by appi}in; Green's second formula
to the domein d - ¢, wiebe e is a small ;pﬁerical domain surrounding
the field point §, see for example Brard (1972, 19743;5), Inglis
(1980; and Baar (1984a); the present derivation is due to Ndeeése

(1983) .



| : The vgigé of the cpnstéh; Ce defined 1g‘equayions
(4.43!5) repnesents the total amount of fluid cgeated inside the
flow domain d (bounded by the hull surface A anq the mean free
surface S) or stémming from a flux across the mean free surface_
s (bounded by ;he waterline ¢). Acgqrding.to equation (4.4c) Céfl
if the field poi;t £, where the flow 1is ossetved, is in d or on. g,
but strictly outside % and: ¢, while ce=o if 5 is strictly 1n_side>h
_or on the ﬁenn water'line,piane-éi. " Also Cé=i 1!:5 is gxactiy on -
h.or on ¢, provided tpat the hull is a gmooth orientable surface
(see Kgllog (1954)); more pregigely, the value of 4rce (or 2#09)
at a point E of B (or ¢) 1s equal. to the angle at which d (or s)vis
viewed from £ (this extends the vali&ity of equation (4.5) to
plecewise smooth orientable surfaces %, e.g. a ship hull with a

transom stern).

In-the basic integral identity given by equation. (4.5)
the disturbance potential is represented as an integral distribution
'og sources (proportional tp G) and dipoles (proportional to Gn gnd
Gx) over the hull surface # and the mean water line ¢. The
discontinuity\;n the value of the éonstant Ce across‘thé hullisurface
can_be shown to stem from the correspondigg discontinuity in the
dipole distributions over % and ¢, see Kellog (1954). The preéence
of th additiona} water line 1gtegral distributiog in equation (4.5)
was first pointed out by Br#rd (1972) although earlier the necessity

of including this term was also recognised by Peters and Stoker (1957)'
Wehausen (1963) and Kotik and Morgan (1969). The importance of the

water line integral is investigated in Sectiom 4.4.
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It is convenient to eliminate the discontinuity in
the value of Ce in equation (4.4c). Noblaﬁsp‘qnd Triastafyllou
(iéQS)Ihaﬁe pbinted aut.that there are two strategies for achieving
this goal. The first and classical apprbéch'is discussed in Section
4.2 agd employs auxiliary diétrihutions of singularities over fﬁe
hull surface; see Kellog (19543 and Begs'and;Smith (1966). The second
approach is discussed in Section 4.3 and empio}s a& integral identity
for the potential itself, see Chow et al (1976) and Noblesse (1983).
The latter approﬁch i8 less well;knowﬁ, bh:xap®g§£s<to be very useful .
because it brovides an explicit-appréximation.to thé disturbance
potential of tﬁe'éléw about a sufficiently siendem ship moving at

fairly low speed.

4,2 AUXILIARY SINGULARITY DISTRIBUTIONS

The Basi; 1ﬁtegral‘1dent1ty given in equation (4.5)
relates to the problén of th; 'eiterior' potential flow about the
hull. Recall now that the Kelvin wave_soufce potential 1s defined
throﬁghout the entire lower half—space,Jsée equations (3.1-3). The
most well-known technique for eliminating the discontinuity in the
value of Ce consisis of defininé a corresponding 'interior’ potential
¢! in the interior domain d; inside the hull % and below thé mean
water line plane.8£ (see Figuré 4.1). An integral identity for ¢1
corresponding to équation (4.55 may readily be obtained in a similar

manner as outlined in the prev;ous‘section and 1t follows that
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1 i .1 -2 1 .1
o, = - ”“‘%7"’ G )da - F_ [«mx 976 )dy (4.8)
h - e

where, in analogy with equations (4.4a-c), C1 is given by:

_ 2 {,.2. -
,Ci = IIIV Gdv - II(Fﬁ Gx;+Gz)dXdy - (4.7a)
d. 8.
z 7
= IIG(x-E)G(7-n)5(z-C)dV+IJ5(x7€)6(7-n)dxd7 (4.7b)
d 8.
z z
0 rdn d+s-h-=c
={ 4% forf{jon h+e Co . (4.7¢)
1 \dn di+si-h-c

The value of C1 represents the total amount of fluid created within
the interior domain di (bounded by % and ai) or stemming from a

flux across the water line plane g (bounded by ¢).

Addition of equations (4.4a-c) and (4.7a-c) gives:

2.
c=c +c, = IIIV?de - II (¢ "6_+c,)axdy
) d+d . g+s . .
7 [ ] )
= IIIG(x-E)G(?—n)G(z-c)dxdydz + Ifd(x-s)d(yen)dxdy_= 1 (4.8)

z<0 ) z=0
for all points £ outside, inside or on the hull surface h+c,:1.e,
for any point £ in the lower half space ;50. The term C=1 in
equation (4.8) represents the amount of ocutflow produced by the

moving Qource (for z<0) or stemming froﬁ a flux across the free.

surface (for z=0). Addition of the corresponding integral identities
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given in equations (4.5-6) therefore results in:

- 1 1., 2 S

by = II{G(¢n-¢n)-(¢-¢ )Gn}¢4+Fn I{G(¢x-¢x)-(¢-¢ )Gx}dy (4.9)
h c

vhere ¢, corregponds to ¢(£) or ¢1(E) for points £ outside or inside

the hull surface respectively.

It 1§ convenient to modify the form of the water!lime
integral in equation -(4.9). If g;(nx,ny,Qz) defines the unit normal
vector on the hull surface % pointing into the flow domain d,
E=(tx,ty,0) defines the unit tangent vector to the water line ¢
oriented as shown in Figure 4:1 and j§=(1,0;0) is the unit vecfgr
along the'0x-axis; one obtains the rélationship

0 = T8.1 = (B0 bto +(@xtI8 ).t =m0 st 0t 4, (4.10)
where ¢£ and ¢d-dénote the flow velocity components (i.e. derivatives
of ¢) in the direction of t and gxf respectively (tﬁe.unit’vegtor
'pxt is tangent to the hull and points downwards). Using a similar
;xpression for ¢: and replacing dy by tydl;.equation (4.10) may be

rewritten as:

- (f .. 2] o
¢, = LJ(QG+BGn)da +F, I{(an-sztx+$dnity)G+SGx}tydE (4.11)
. f'e] L .

where the source strength Q=¢n-¢: and the doublet stremngth S=¢1-¢.
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According to equation (4.11), which was first ohtained
hy Brard (1872), the potential is generated hy four auxiliary

singularity distributions:

‘) a source distrihution over the huli surface 7% with strength
Q per unit area;
(11) a douhlet (i.e. normal dipole) distrihution over % with
. Btrength S per unit area; . . ,
(111) a soufce distrihution along the mean water line ¢ with
strength (an-sltx+sd§zty)ty,per unit arc length; and
(iv) a. longitudinal douklet distrihution along ¢ with strength

51:‘y per unit arc length.

All singularities are of the 'Eelvin' type in agreément withk the
definition of the Kelvin wave source potential. G, that is to say,
the singularities satisfy the continuity,_free.surface and radiation

conditions given hy equations (3.1-3).

The representatign.of the potential'¢* hy means of
and. auxiliary distrihution of ‘singularities over the hull surface
_ and along the water line 1s not unique. In fact, ¢, may he 7
generated hy any linear comhination of sources and douhlets, as
explained for example hy Brard (1874a,h), Guevel et al (1974, .1977),
Chang and Pien (1975) and Baar (1984a). Table 4.1 illustrates fou?
possihilities. Of particular importance is the representation of
the disturhance potential. hy means of a source distribution, as

ohtained hy setting D=0, that 1is, ¢=¢1, in equation (4.11).
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It follows that:

¢(§) = IIQ({)G(E.f;Fnz)da + FnzIQ(E)G(E.f;Fnz)nx(f)dy. ' (4.12)
h e '
It is seen that this auxiliary source distribution renders the
vélocity potential continuous through the hull surface h+c, whezl'eas
the nomal flow velocity is discontinuous. The representation of
the disturbance potential by means of a source distribution is no
doubt the mdst popular, see Guevel et al (1977), Tsutsumi (1979,

Chang (1979) and Tsai-et al. (1883)..

The unknown. source strength Q(X) in equation (4.12)
may be determined by imposing the hull surface condition given in

equation (2.18) and ‘it follows that:

’ '-iQ(E) + ”Q(f)ﬁnda + ?nzIQ(fiGnnx.(z_:)dy = nx(g) , (4.13)
h .Le.
on the hull surface /+c, Where Gn=VG(§.§;Fnz).x_;(§).. The algebraic
term -iQ(?) stems from the normal differentiation of the Rankine
source t;rﬁ -1/4n[§;§1 in equation (3.5), see Kellog (1954) and
Baar (1984a). Equation (4.13) is iecog-;zibed as a regular Fredholm
integral equation of the second kind, see Kantorovich and Akilov

"(1982).

It is.notable that the representation of the
disturbance potential by, the suxiliary source distribution in

agreement. with equations (4.12-13) is an alternative and equivalent
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formulation of the Neumann-Eelvin problem givem by equations
(2.16—19),‘that is. to say, by solving: the source strength from
equation (4.13) and representing the potential by eguation (4.12)

an exact golution of the Neumann-Kelvin problem;is.obtginedf'

4,3 ExpLICIT SLENDER SHIP APPROXIMATION

Returning to equation (4.5) an alternative strategy
is now presented for eliminatiig the discontinuity in the value of
the constant Ce. By making ‘use-of Gauss' divergence theorem;

equation (4.7a) may be rewritten as:

‘IG da + I[ngxdy - Iffrnzcxxfcz)dxdy

C1=I n
ho 8. 8.
1 1
= IIG:da.—‘F zIIG _dxdy = IIG,da + F 2IG'dy
1 n x=x 1 njx
h 8 h. c.

Adding the term C,¢, on both sides of equation (4.5) and using the

1dent1§y Ci+Ce=1 given in equation (4.8), one finds that:

. -2 .
¢, = ff{6¢n - (9-9,0G }da + F) I{G¢x - (4-6,)6 My (4.19)
h c
for hni point & inside, ocutside or on the hull surface h#c. This
new identity is equivalent to the identity given in equation (4.9)

as may easily be verified‘(see Noblesse (1983)). .




Making use of ‘equation (4.10) and -substituting the
mull surface condition given in equation (2.18);, the integral
identity given by eqflation (4.14) may be expressed in the form of

the 1ntegio-d1££eréntial,equntiqn:
$(E) = W(E) ~ L(E;4) ' (4.15).
where.'the poténtial () is explicitly defined as:

_ a2 3, 3 2
weE) = ”G(E,J_!,En )n_(x)da + B [G(E,,:_:,Rn )n_(x)dy (4.16)
h o [-

and the linear transform L(E;¢) 1is given by: .

L(§;¢) = I[(¢e¢.)6nda + Fn?f((¢-¢,)Gx-G(tx¢z-nzty¢d)}&y . (4.17)
h e

The potential ﬁ(f) gived in equation (4.16) is explicitly defined

in terms of the hmll gecmetry, whereas the linear transform‘nf5,¢)

is not known in.advance. _Equﬁtions (4.15;17) consgtitute yet another
alternative and equivalent formulation of -thé Neumann-Eelvin
problem. The implicit 1ntegr§1;1dent1tyu31ven 1; equation (4.15)
mngy be solved iteratively by means bf the recurrence relationship:

(n+l)

oD ey = pee) - L™y (4.18)

Nl

- for n=0,1,..., where the initial approximation is simply defined

(0)

as ¢ =0, gee Noblesse (1983).



- Associated with the sequence of potential approximations

¢(o)=0.-¢FI)=¢w ¢(2), ... 18 a sequence of wave resistance
' (@ '

approximations Cw , 020, as discussed by Noblgqsp.(lgas).' The

(0)

v can be related to the classic thin,

zeroth order approximation C

flat and slendeQJEhip wave resistance approximations in. the thin,

_flat and slender ship limits: respectively, whilst the firat order

1)

» 18 closely related to the slow ship wave resistance

approximation C

approximation in the low Froude number 1limit (see Table 2.2).

In the zero Froude. number 1imit the potential
becoimes the zero Froude number potential,¢o corresponding to the
flow~a§out the hull when the free surface is replaced by a rigid wall,
as may be seen from equation (2.17).‘ Alternatively, ¢o may be
interpreted és the 'double hull’ potentia; of the waveless flow
about the hull and its mirror image with respect to.the plame 2=0
in infinite flﬁid. Table 4.2 gives the zero Froude number bpgndary
conditions and alternative integral 1dentities, corresponding to
equ;tions (2.16-19), (4.12-13) and (4.15-18). respectively. Noblesse
and Triantafyllou (1983) show that Lo<<wo=¢o for slender bodies

moving in the direction of their major axis. When the hull surface

18 the lower half of a slender ellipsoid the potentials ¢o and>wo

become proportional, that is, wo=k¢o, and the constant k is close

to unity, see Havelogkr(lssla,b); Figure 4.2 shows the relative

error en=(¢o-¢;n))/¢o§(1-k)n associated with the ath zero Froude

number potential approximation for a prolate spheroid of aspect
ratio q. It is Seen that 055151/3; in particular, el=0.1£ q=0

(i.e. a 'needle’) and el=1/3 if g=1. For slender spheroids with low




aspect ratios between 0.1 and 0.2 (the usual range for ships) the
relative error €, associated with the zero Froude number explicit

potential approximation is less than about 5%.

The fore§61ng’remnrks suggest that the explicit
potential approximation ¢=¢, where ¥ is dgfiné& by equation (4.16),
provides a useful approximation to the disturbance potemtial of the
flow about a slender ship hull moving at low Froude number, as is
usually the case in practice. Comparing equations (4.12) and (4.16)
it 1is seeﬁFthat the explicit potential approximation ¢=y is
equivalent to thée explicit source strength approximation q=nx. The
flow velocity V§ 18 continuous everywhere. It can also be shown
that in the thin ship limit the potexiual ¥ reduces to the classic
Michell (1898) thin ship potential. ?uxther‘argume;ts to support
that  1s an  acceptable slender ship potential approximation are

given in the next section and in Chapter 6.

4.4 KocHIN's FuncTioN AND HAVELOCK’S FoRMuLA

In section 2.4 it was pointed out that the wave
resistance may also be 5btn1ned by evaluating the amount of radiated
energy contained in the free waves far behind the moving ship.
Presently this method i3 outlined and subsequently used to 1nvesfignte
the importance of the water line integral term in equation (4.12), as
well as to further asgess the usefulness of the explicit slender

ship approximation given by equation (4.16).




Consider the Kelvin wave cource potential G(& ,x;Enz)

defined by equation (3.3). From equations (3.13) and (3.17) it 1is

‘seen that far downstream from the movimg source, as £-—«, both the

fundamental Rankine source term -1/411'|E'-x| and the nearfield

disturbance H('x)/4‘l1'1?‘ﬂ2 are negligible in comparison with “the wavelike

disturbance W(X) /411Fn2. That 1is

‘Gi-(l/wznz)lm exp[{ (z+c) V17 + 1((E-x)+(n—y)t)}/1+'t2/1?n2]dr
as £+, ag may readily be obtained from equations (3.6) and (3.8).
Substituting this expression into equation (4.13) and reversing the
order of integration it follows that:

: ¢(E)~(I/W)Imujx(t)éxp[{;/1+gz + 1(E+nt)/1+tz/Fh2]dt (4.19)
as E+-», where the function K(t) is defined by:

-2 2 2
K(t) = Fn IIexp{Z(l‘*t )/Fn }1EQda + IEandy ’ (4.20)
h e

with the function E-’EE(_x,-i,.t’,Fnz) given by:

E = exp{-i(x#yt)/1+t2/Fn2} . co : (4.21)

Substituting equation (4.19) iiito equation (2.20) it 18 fouzid tﬁat

the elevation of the free surface far behind the ship is given by:"

Tg(Eim)=(1/mRe Jw/i+t2 x(t)exp{1(5+nt)/TI?’?Fnz}dt ' (4.22)

-t

ag £+=o,



Equations (4.19) and -(4.22) relate the potential and
the wave elevation far behind.the'sﬁip to a superposition of
elementary plane waves, see Newman (1877). The function E(t) defined
by equation (4.20) is a function of the ship geometfy and the Froude
number .and 1s .known as Kochin’s vave amplitude function (see Kochin
(1851)); it represents the dmplitude of the free wave component at
angle e=qrctan(t) with the negafivé Ox-axigs (i.e. the limits t+0
(6+0) -and t+= (8+%1) correspond to the trsn;verse and diverging waves
respectively in the spectrum of the free waves following the ship,

see Figure 3.3)..

.The wave :dsistance may now be determined by evaluating
the enérgy contained in the downstreim wave pattern given by eguation
(4.22), see Eggers et al. (1967), Wehausen (1973) and Newman (1977).

It follows that Cw is giéen by the Havelock (1934) formula:
c, = (1/zn)f¢1+tz[x(t)l.zdt - ’ (4.23)

For ships with a lateral plane of symmetry thé Kochin's function
E(t) becomes an even function of t and.'the integrals occurring in
equations (4.19, 22-23) may be expressed as integrals over the semi-

infinite interval (0,»).

A variety of alternative expressions and approximations
for the EKochin's function may be_ found in Noblesse (1983). 0f
particular interest, because of their simplicity, are the thin
ship and slow ship approximations. Let the hull surface h be defined

by the equation y=b(x,2). Imn the thin ship limit, équation (4.20)



becomes identical to the Michell (1898) thin ship approximation

Ey(t) given hy:

K“(t)ve zIIexp{fz/E:?211i)VT:?77pnz}hx(x,z)dxdz , (4.24)
.whefe hy denotes the projection of # on the ship's centre plane y=0
and the source strength hx=8h/ax; Therlow Froude nﬁmher approx%mation
KZF(t) of,K(t)-is ohtained hy approximating the source .strength Q
by the :Zero Froude number source strength Qo defined in Tahle 4.2.

That 15;
K _(t) =F -2 exp{z(1+t2)/F 2}36 da + |EQ.n dy‘> v(4 25a)
2P n AR S 0x. ° :
. h e
Guevel et al (1974), Baba (1976, 1977), Maruo (1977) and Kayo (1977)

show that this expression i1s identical to:

Epp(®) = II$¢0xxd;dy ) o (4.25h)

8

where ¢ denotes the mean free surface (excluding the ship’s water
line plane ai), E 1s given hy equation (4.21) 'and the zero Froude

numher potential ¢° is defined in Tahle 4.2.

For simple mathematically gefined hull forms the slow
ship approximation Klr(t) may he evaluated analytically using either
equation (4.25a) or (4.25h), see for example B;ha (1977). Here only
the case of a vertical sami-infinitg prism with elliptic water line

is considered. Taking the length of the major axis as reference
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length, the water line contour ¢ is defined by the dimensionless
equation xz;n-yz/qzé-i, where q denotes the aspect (thickness) ratio..
The zero Prougé number ‘potent;al ¢° and so@ge .strength Qo are
given by ¢ =-qx and Q°=-(1+q)x//§2:§273‘, see Milne-Thomson (1968).
Brard (1972) has evaluated the corresponding low Froude number
Kochin's function given by equattdn'(étzsai;;~3ha lov Ffoude oumber
wave: i'esistanlee.ciy can be computed by means of navelo'cl;.'s formula

given by equation (4.23)..

Figure 4.3 shows the .low;Proude'mmbe.r wvave resistance
approximation C:F as function of the Froude ﬁmﬁ.l-:er Fn for four
different aspect ratios q (see Guevel et al (1974)). thg two curves
shown correspond to the evaluation olf equation 4 .25a) with and

without the water line integral term resi:ect:l,vely. It is clearly

.8een that the water lins integral ha_q an mpértant effect on the wave

resisttu_lce,' in particular at low P;oude number and for high aspect
ratio. For example, when the water line 16 &ircular (q=1)
LF

it may be shown that C' behaves like

LF _ . - 6. 7 2
¢, = (3328/3}5)Fn‘ + 16/;fn‘sin(1/Fn +1/4)

as Fn+0. If the water line integral is omitted, C:F behaves like

. 2 )
c*F - (84/15)F - 477 sin(1/F_2+n/a)
w B n n n R
as Fn+0. When the aspect ratio decreases the effect of the water

line integral becomes less important but certainiy not negligible.

For values of q between 0.1 and 0.2 (the ususl range for ships) the



sequence of low Froude number wave resistance approximations cw

relativelimportance of the water line integral increases as Fn
decreases. In the zero Froude number limit terms in the hull surface
and water line integrals can be shown to partially cancel out each
other, see Kusaka (1876), Hirata and Levi da Conceicao (1976) and

Bessho (1976).

A simple pﬁysical,1nterpretationlo£ the yater line
integral may be- obtained by slightly immersing the hull and closing
it on top by means of a horizontal plane. The water line source
distribution may then be shown to stem from the zero immersion limit
of. the surface source distrlbﬁtion;ovex‘the top surface of the
slightly immersed closed hull, see Noblesse (1983). Eggers (1980)
has. pointed out that the flow velocity field assoclated with the
hull surface source distribution alone is not continuogs along the
wdater line, and that the water line gource distribution. is needed. to

obtain a continuous flow velocity field.

Associated with the sequence of zero Froude number

potentials ¢(°)=0 Q(l)-wo, Q(z),..., defined in Table 4.2, is a
(n)

‘020, which may be evaluated by substituting ¢ _¢(n) in eguation
0 .

(4.25b). Noblesse (1984) has proved the convergence of the sequence

C:n), n30, for the vertical prism with elliptic water line. Figure
4.4 shows the relative error ¢ '(C -c(n))/c “associated with the
nth. approximation as function of the aspect ratio q. For q=0.15

the relative error el is about 3.4% and it is seen that the explicit

potential approximation ¢°=¢él)=w° provides an acceptable 15w Froude

number approximation to the wave resistance of a slender vertical prism.




distribution . sources ?ouﬁlets' ﬁi:éd- mixed
condition ¢t = ? ¢; = ¢n . $r=0 ¢; =0
source stremgth Q#0 Q=20 Q#0 Q=6
doublet strength . S = o .-S # 0 : s=¢ _7 S f o
potent;a; * + .- '; - -
volocity * .- + . - -
* +'= continuous through the hull surface

discontinuous through the hull surface

Table 4.1 Comparison of singularity distribution methods.
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zero Froude numbér boundafy conditions:

Vz¢o =0 1in d o ¢Oz =0 on %

g =B, om A - 0o = 0/lx> as x| >

zero Froude number Green's function:

4 G (E,1) = -1/[E-x[ + /R

R? = (E-x) 2+(n-7) 2+(C+2) ?

auxiliary source distribution representation:

b8 = ff Q, (06, (E.x) da.
-3Q,(®) +fo(x)G da = n_(5) on n

explicit integral identity:

by (§)=w(£) Lo (5.9, . mn=0,1,...
@0 L 0O,

$9(8) = Yy (8) - Ly(E:d)
w ©) = ff G, ¢, x)n_(x) da
LyCE, ¢ ) = ff {¢ x)-9, (E)}c

‘(n+1) (n)

-Table 4.2 Zero Froude number boundary conditions, Green's

function and integral identities.




Figure 4.1 Definition

(only port

sketch'for’a§plica§ibﬁ of Green's theorem

half of mean sea surface 13 drawn) .
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5. COMPUTATIONAL ASPECTS

5.1 APPROXIMATION OF INTEGRAL IDENTITIES

The disturbance potential of the flow about a moving
ship is expressed in equation (4.12) in terms of a continuous
distribution of Kelvin wave sources over the .mean hull surface and
water. 1ine of the ship. The.unknown soufce strength distribution
must be determined by solving the Fredholm integral equation of
the seéoﬁq kind given by equation (4.13). This may be accomplished
by means of a point-collocation methéd;as used for- instance Byzlﬁglis (1980)
and Wu (1984). In the point-collocation procedure- the intesral

equations (4.12-13) are qpproximated by matrix. equations.

The mean hull surfg;e h is subdivided into a large
number N of guadrilateral panels. The position vector of the
centroid and the area of the j-th panel (j=1,...,N) are denoted by
x, and A%

o J
first M panels are adjacent to the mean water line ¢ and ch

respectively. The panels are numbered such that the

denotes the arc léngth of éhé j=th water line segment (j=1;..,,M).
The integral identities given by equations (4.12-13) are satisfied
atvone control point on each panel, taken a; the panel's centroid.
The source strength is assumed constant over‘each small panel and
the source strength on a water 11ng~segment is taken equal to thﬁt

of the adjacent hull surface panel. Under these assumptions the
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integral identities may be written in discretised form as mgtfix

eqiations given by:

N
4, = Lo Q , (s.1)
1 13 : '
N
LB,,Q =n ’ (5.2)
A R R

for i=1,...,N, where ¢1=¢(x1) and-nx1=n(x1) are the values of

the disturbance potential and the normal component of the hull

velocity at the i-th control pdiﬁt and Q_.=Q(x ) is the source

J )
strength on the j-th panel. The influence coefficients oy and
.Bij'represent the contributions on the i-th panel to the Eelvin

wave soufce-potenitial and its normal derivative in the j-th:

' control point and are given by

iR Zyam . 22| g a3 |
a4 = ”G(gi_.l_r,rn )da + ﬂujzn I G(E, X3 F )nxtydl (5.3)
3 . bey
B,,=-%68, . + c (3 -x'F %aa+m, 7 2l ¢ (6,57 Dot aL (5.4
1) 1j n1''n 'gMJ‘n n'21'.""'n TTxy :
3 85
for 1,3=1,...,N, where By =1 1f §=1,...M and ‘Hy =0 12 J=M+l,...N,

and 8 =1 17 1=j and §, =0 1f 1%y,

J J

Equation (5.2) represents a system of N linear
algebraic equations in the N unknown soﬁrcg strengths. Having
evaluated the infuence coefficients Bij from equation (5.4),
this system may readily be solved and the values of the potential
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at the N control points follov‘from:equatiqﬁgl(5)1)uénd‘(543).'wln
order- to compute the influence coefficients it .is convenient to
express the Kelvin wave source potential in the form:

2

. ) o 2 =
G(E.x,!‘rl ) = 61(5,1_:) + Gz(g,:_:,rn ) , (5.5a)

{

where the 'infinite Froude number' Green's function Gi(s,;) is

given by

4G, (£,%) = -1/|g-x| + 1/r e (5.5b)

with r=/k£h§)z;(n—y)z+(;+z)z representing the distance between
the field point-f and the free surface mirrpf image of the source

point x. The function Gz(E,X;Fnz) is given by:
2. . 2 -
4ﬂFn Gz(E,x;Fn ) = {M(g) - 1}/R -‘S(X)S?(z) (5.5¢)

in agreement with equatioms (3.5-6), (3.9) and (3.18), The infinite
prpﬁue aumber Green's fanction G, (£,x) 4nd iés normil derivative
vanish when Z=0=z and this function does not contribute to the
water line 1ntegral.' Substituting equation (5.5a) .into equations

(5.3-4) gives:

Sa@ L L.

1) (2)
13 uij + 13 , -35. + B

@ 13 1§ 13’

13 °
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' where
(1) 1) ;
HG (Ei.x)da ’ 81.1 = Hcin(gi.f)da ,
AR, - s,
(2) ., 2 ; 2 i.n 2
lj I GZ(El'f’Pn yda + HM:jgn I Gz(fz'f?En )nxtydl
. A : I . .
hJ : ch
@ _ | g 2 2 g 2
Byy = I Gon 6y %iFy )da + Hy F) I Gon 8y XiFy )t dl
AhJ _ M_J
forbi,Jél,...,N. The integrands of the 1ﬁ£lucnce coefficients
a:;) and 8(;) involve fundamental Rankine source terms only and

these terms may be integrated analytically using the Hess and
Smith (1966) formulas. The integrands of the panel surface and

water line segment integrals in the expressions for the influence

cbefflcleqfs a:j) and B:j) are dependent on the Froude aumber P
and fegular>for all values of 1, J=l cee,N (provided ;1+z<0 as is.

ﬂaséumed here)‘ Such 1ntegrals may be 1ntegruted numerically by
means of Gaussian quadrature, as 1llustrated in Figure 5. 1. The
procedure is based on a llnear 1soparametr1c mapplng of the
integration dcmaln-to the normalised integration domain where the
integration variable is leés‘thap ﬁnlty in absolute value. This
device is frequently used in the Finite Element Method, see

Zienkiewicz (1977).

Five possible sources of error are associated with

the approximatlon procedure outlined above. These are:
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(1) The approzimation of the Will surface. Guidelines for obtaining
a suitable subdivision of the hull sur!ace‘haée been formulated
by Inglis (1980). Whenever possible, panmels with low aspect
ratios should be avoided, variations in size between adjkceﬁt
panels should be kept small and the panels should be concentrated
in areas of IQrge curvature of the hull sﬁrfaﬁe where the

flow velocity might'change rapidly.

(11) The approxvimate way in which the integral identities are sdtisfied.
The poiptfcollocation p;ocedure relies on the assumption that
the source ;tienéth is cbnstan? on each panel. fpr water
wave fadiation/difﬂraction problems it has been suggested by
Mei (1978) and Yeung }1982) thﬁt the 1£d1v1dual panel .
dimensions should not exceed ome eighth of the wave length.
In the present context the dimensionless_wnvelength.15

proportional to Fnz and it follows that the number of panels

N is proportional to Fn-4. At low Froude number a very fine
discretisation of the hull surface may therefore be required.
Numerical experience suggests that the present approximation

of the water line integral i1s reasonable, éee for example

Tsutsumi (1979) and Tsai et al (1983).

(111) Quadrature errors in -the numerical integration of the influence
cbefficients. There 1g some. discussion of this topic in

Sclavoinos and Lee (1985). The integrands of the influence,

() na B(2)

aij 13 are in general slowly varying functions except

at very low Froude number when the contribution from the
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)

wavelike disturbance component of the Kelvin wave source
potential may vary substantially within a panel. In-the
present approach a two-point Gauss- Legendre quadrature is

J
(see Figure $.1); this formula integrates a cubic polynomial

-used with weights w =1 and abscissae aJ=(—1)J//§ for J=1,2

exactly, sSee Davis and Rabinowitz (1975).

The. evaluation of the Kelvin wave source potentigl. In.
sections 5.23-3 algorithms are discussed for the evaluation
of this function with an absolute accuracy of between five

and six significant digits. This is considered sufficient

“for practical applicationms.

RbﬁndaffLerrors in the solution of the linear system of

équations in the unknown source strength. (This source of

"error is not relevant when the explicit slender body

‘approximation discussed in Section 4.3 is used, in -which

case the source strengths are approi1mated by the known
normal components of the hull vélocity on the panel). The
present state of the art of linear system solvers is such

that this type of error can easily be kept at bay, see

Nonweiler (1984). In this study the linear system given by

equation (5.2) is solved by means of Crout's factorisation

method with partial pivoting and iterative refinement.




Most ships have a lateral plane of symmetry and this
feature m#y be exploited advantageously to halve the requirgd
' number of eyaluntions of the Kelvin wave source potential and its
: gradient, see Inglis (1980) and Wu (1984). This number equals N2+M2
12 no use is made of ship symmetry and. the 1n11uence-cbeffiéients
are evaliuated by means of the usual single ﬁode centroid integration
(1.e. the one-point Gaussian quadrature as used for 1nstancerby
 1:¢115 (1880)). Use of the two-point Gauss-Legrendre rule raises the
number of evaluations by about a factor four to 4N2+2M2. If the
ship symmetry is efficiently exploitéd; this number may be reduced
by a factor two to 2N2+M2. This may be achieved as follows. 1In

matrix notation equation (5.2) may be written as:
hQ =N . (5.8)

where B is thev(NtN) matrix of influence coefficients and Q and N
are (Ngl) coluﬁn vectors of éou;ce strenéths“and normal hull
velocity'cémponents respectively. If.a ship has a lateral plane of
symmetry -such that the port side panels 1 to 3N are the mirror images
with respect to the plane y=0 of the starboard side panels AN+l

to N then the matrix equation (5.6) may be partitioned as follows:

:' B B%l T 1%
?3 ?4 ?s -8

where 51' B,, By and B, are (#Nx3N) matrices, gp. Q. r_{p and N

are (3Nxzl) column vectors and the indices p and s refer to panels

on the port and starboard side respectively. Due to symmetry
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§1=§3, §2=§4, 9p=95 and !p=§§,and the unknown source strengths on

the. port half of the ship’s hull are fourd from:

where Bp=31*32 is an (iinN) matrix. ' In this approach the saving

in computing time and storage ‘space is about 50%.

The remainder of this chapter is devoted to the
presentation and discu;sion of accurate and efficient algoritgms
for the evaluation of the nearfield and wavelike components of the
Eelvin wave source potential. From the previous considerations it
. 18 evident  that the éf!iciency of these algorithms is very important

if an unrealistically large amount of computing time is to be avoided.

5.2 EVALUATION OF THE NEARFIELD DISTURBANCE

By choosing a suitable expression from any of the
altergntive representations given in Table 3.2 the problem of the
numerical evaluation of the nearfield disturbance is reduced to
calculating a single integral with a slowly varyihg integrand which
is expressed in terms of the complex-valued exponential integral
function. The ascending series reprgSentations are best suited for
evaluating- the function M(X) for small values of R=[XI, whereas the

asymptotic expansion expressions may be used for large yaldes of R,
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see Noblesse (1878b). Direct numerical integration of the nearfield
P disturbance is both cumbersome and-time-conshming. On the one hand,
the evaluation of the exponential integral tends to be rather time-

consuming, as discussed by Baar (1985) and Newman (1985); a 'near-

optimal’ algorithm for the evaluation of this function is presented

= in the Appendix. On the'other hand, the integrands of the integrals
in Table 3.2 have discontinuous low order derivatives at the endpoints
of the integration interval; this feature prbhibits the immediate use
of an efficient Gaussian quadrature method without taking special
precautions, as discussed by-Davis and Rabinowitz (1875) and Baar

and Price (1986bh).

Newman (1986a) has deQeloped a highly efficient.
algorithm for the eValuafion of ‘the nearfield disturbance which
effectively overcomes these problems. The method. is based on four
complementary trivariate Chebyshev expansions which cover the entire

definition domain of the function. M(X). Cﬂebyshev approximation
(see Fox and Parker (1968)) has. proved to be a very useful .tool in
numerical ship hydrodynamics (see Newman (1985)) and is based én
the following principle. For the function £(x) defined in -1sxgl
) the Chebyshe; series is given by:
w,
£(x) f ni;anTn(x), R
. where the primed Aummntion sign indicates that the first term in
the series must be halved and Tn(x) is the Chebyshev polynomial as

defined in Abramowitz and Stegun (1973). The Chebyshev coefficients
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an are given by:

.
a = (z/f)ff(cose)cps(ne)de .

_0
The Chebyshev geries may be shbwn to.conyerge_if‘f(x) i3 sufficiently
smooth in =1lg£xgl. For gome spécial functions the Chebyshev coefficients
én can be evaluated analytically, see for example Luke (1969);
in general, however, they are computgd by means of a suitable '*_ -
quadrature formula, seé Fox and Pa;ker (1968) . In computational
practice the infinite Chebyshev series expansipn 18 truncated beyond
some suitable value n=N, giving'the-polynomiallapprdximation

:N(:) = .Z'anTn(x) +'eﬂ(t) .

n=0
The beauty of Chebyshev'approgiﬁation is that a simple estimate for,
Fhe truncation error eN(x) is immediately available: The Chebyshev
polynomials oscillate beyweeg -1 and +1 and the contribution from
any term in_the expansion is bounded by the magnitude of the

corresponding coefficient. That is:

and the gummation of the Chebyshev series may be terminated once
the coefficients become less in absdlﬁtg value than the desired:.
accuracy of the approximation. The evaluation of the truncated
Chebyshev series is facilitated by converting it into an equivalent

ordinary polynomial of the form:
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N a .
z PX + en(x)
n=0

fex) =

An algorithm for this conversion is giveh ﬁy Nonweiler (1984);
ordinary polynomials are rapidly evaluated by means of Horner's

nested multiplication method.

The Chebyshev approximation procedure may be extended
to functions of more than one vériable,'such'as the nearfield
disturbance M(X) defined by equation,(S.lO).‘ For this purpose it

is convenient to write equation. (3.14) as:
M(f) = HA(g) + RMI(Rtu{B) ,

where the spherical coordinates (B,u{B) are defined by
(x,Y;ZiéR(sinu.cosufinB,cosucosBS; Because of the symmetry relations
given by équation (3.16)‘on1y the range (xaoﬂ Y%O. Z30) or

(R20, Ogagdn, OgBsim) has to be considered. Newman (1986a) defines

M,=1 12 R>1 and

,uA&1-(2/w)n Irm{(1 + A+ %Az +»%A3)1n(A)}dt
- -1

1f R<l. This expression may be evaluated apglytically by means of
' simple recurrence relationships, see Newman (1988a). The slowly

varying integral terms M_ are approximated by means of four

I

complementary Chebyshev expansions of the form:
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Moo= ' 5t oa,,.T, T, (0T, (E)
, 120 jo0 Koo T13x t T

riadg®

4]
™
[T
™

o

shere -15R,a,8¢1, a=2(a/dm)-1, B=2(8/1)-1 and -

2R-1 0s<R<1
- (2B-5)/3 1sRsd
o (-7)/3 4<Rg10

1-20/R ’8:10

In,theae-fodr domains the ;rdinary polynomial representations of
'MI-are evaluated rhpidl& with an acéﬁracy of between five and six
gign;ficant digits';f the non zg:o'cqefgicienté pijk‘gre p;estoged

in four arrays of 187, 206, 198 and 165 elements respectively. Tables

of both the Chebyshev coefficients 2 ik and the ordinary polynomial

J
coefficients pijk' as well as a full description of the numerical
methods used to obtain these coefficients, may be found in Newman

(1986a) .

A Fortr;n 77 subroutine has beeg prepared which
implements Newman's algorithm for the eialuaéioﬁ of the Qearfield
disturbance. The gradient is gomputed by analytical differentiation
of the polynomigi rqpfesentations (this procedure slightly degrades
the accuracy by about one significant digit). The nested 7
multiplicatioﬁ algorithm for the evaluation of an ordinary polynomial
1is very well suited to vectorisation on a ﬁ;rallel computer, see

Schendel (1984), and the computing time on a Cray-1S machine is
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only a few microseéonds‘per evaluation of M';nd VM. Figure 5.2
shows surface plots of the function M(X,Y,2) 16: ¥=0 and several
values of . Figures 5.2a-b clea;ly illustrate the'limiting
behaviour of M for small and large vaiues of R as indicated by

equation (3.15) (compare with Figure 3.2).

5.3 EVALUATION OF THE WAVELIKE DISTURBANCE

Numerical integration.of equation (3.19) preseits
no particular d}ificulties except‘ffom the poséible accumulation of
roundoff-errors due to the presSence of‘the rapidly oscillaéory
integrand (gt'smali vg;;es of D=J;2:27j;t mﬁy-be bettef to use the
seventh integral eipression given in ?able 3.3). Baar and Price
(19864) have pre;ented an efficient ;umggicai integration précedure
based on a Sequence ofvhigh precision Gaussiﬁn quadrature :ﬁles
with interlacing abscissae (see Patterson (1973)). However, the
efficiency of direct numericel integration is somewhat limited by
the excessive number of integrand evaluations which is required
when the integrand is rapidly oscillatory, see Davis and Rabinowitz
(1975). Alternatively, any of the equivalent integral expressions
given in Table 3.3 may Se u;ed to develop an alternative algorithm
for the evaluation of the wavelike disturbance, see for example
Guttmann (1983) who implemented Weber's (1981) method to evaluate

the third Fourier transform integral expression given in Table 3.3.
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In practice an 1deaj algorithm for the evaluation of
the wavelike disturbance is-a method which avoids numerical integration
altogether. Therefore Baar and Price: (1986b) have investigated the
uge;uine;s of the two series representations given by equations
(3.21-22). Due care is required when evaluating Neumann series of
this type. The Bessel functions satisfy three-term recurrence
relationships with respect to their degree n, as discusseqvin the
Appendix, eqhafions (A.4-3). Table 5.1 gives values of the Bessel
functions for different n and x. It is seen that only the functions
Yn and Kn are numerically increasing functions of n and these
functions can be evaluated without difficulty by means of forward
recursion. 'The functions Jn and Ih are numerically.decreasing
functions of n and are so-called. 'minimal® solufions of. their
respectiveée three-term recurrence relationships, See Gautschi (1967);
recursion is therefore only astable if applied in- the backward sense.
Table 5.1 also clearly illustrates that the functions Yn and Kn
increase exponentially in magnitude with increasing n, whereas the
functions Jﬁ and In vanish 1§ an exponential manner. This feature
causes serious cancellation errors and. under/overflow problems during
the running summation of the Neumann series. Effective élgorithms
to overcome these proSlems have been derived by Baar and Pr;c; (1986b)
who showed that the difficulties associated with the generation of .
.Bessel functions can be avoided by computing ratios of Bessel
functions rather than the functions themselves, as suggested by
Gautschi (1967). Details of this method are described in the

Appendix..
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For purposes of numerical evaluation it is convenient

to write both geries representations given by equation (3.21-22)

)
i
:
i

in the form

P= CN(G) + eﬁ ,

i where €y denotes the truncation error and the finite Fourier cosine

geries CN(O) ig: given by:

N
CN(G) =, z'ancos(ne)
n=0

Series of this type may be evaluated rapidly by means of the

Goertzel-Clenshaw algorithm (see Nonﬁeiler (1984)), which can be

expressed. as cN(e) = }(bosz), where'bo and.b2 are obtained

fecursively fioﬁ;

b = a, +.2cob(Q)bh+1 -b

n n+2

for n=N, N-1,...,0, where cos(8)=Z/D and the initial values: are
givf’” by by ,"0g.3=0
. The: Fourier coefficients-an,‘n=0;1,,..,ﬂ, corresponding

-

to the series representations given by equations..(3.21-22) are
evaluated in an efficient manner by means of the following two-step

. procedure:
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(1) Compute the :sequences of ratios of Bessel functions defined by:

jn(x) = J2n+1(x)/J2n_1(x) (5.7a)

kh(in) = KQ+;(1D)/Kn(iD) ‘ (5.7p)
for n=0,1,...,N in the series given by équation (3.21); and

@ =Y @ @ S (5.7¢)

t D) = Ia (in)/In(in) . , (5.7d)
for n=0,1,...,N in the series given by equation (3.22).

Notice that J°=y°?—1. Algorithms for obtaining these Sequences

are outlined in the Appendix.

(11) Compute the Fourier coefficients an,n=0,1,...,N using the
.rqcu:sion.re;ationships:

8 Y/ = Jn) . . (5.8a)

n+l

= ek dn (-3

for n=0,1,...,N-1 in the series given bi equation (3.21),
the initisl value being a°=exp(-}ZSJ1(x)ﬁo(§D); and
n+l

a . = aniwyn(l - T/ - 3) (5.8b)

for n=0,1,...,N-1 in the sertes given by eduafion (3.22), the

initial value being_ad=—Wexp(-}z)Y1(x)Io(}D). Equations (5.8a-b)
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may be verified by making use of the derivative relationships

for the Bessel functions given in the Appendix, equations (A.7h8).-

Exfensive numerical experimenés have been performed
to assess the range and capability of the present algorithms, as
well as to establish the convergence proﬁqtties of the two series
representations. In these experiments no attempt has beén made to
evaluate fhe wavelike disturbance at the free surface (i.e. only
strictly positive values of Z have been considered). An absolute
error tolerance of t-:=10-6 was specified, giving an accuracy of
between five and six significant digits. It appears that the two
series are indeed complementary: the series given by equation (3.22)
is best suited for small values of D)xé with no more than about 20
terms reqﬁired to achieve full con;érgénce to within the specified
accurac;, Qherens the geries given by equation (3.21) may be used
for moderate and large valueéjof D/x2 with no more than about 70

terms required.

The precise transition value of D/k2 between the two
regimes of convergence depends in a rather complicated fashion on
both the coordinate x,‘the‘distahce D=J§2:ET ?rom the source track,
the angular orientation ©=arctan(Y/Z) and the spécified tolerance ¢
(as expected in view of the asymptote nature of the series given by
equation (3.22)). The following device to establish which series
should be used has proved very effective in cdmputntiongl practice,
at little additional cost. Initially the sequences of Bessel function

ratios given by equations (5.7a-b) are generated for.n=0,1,...,75




- 109 -

and these sequences are—use;‘tb generate the a;s by means of equation
(5.8a).. ?he.gonjergence of the anfs may easily be monitore§ by
checking if |aN|<e.£or N<75. 1If this is hot the case the geries
given by eqﬂa{ion (3.21) is toolslowly convergent and the agymptotic
seriés given by equation (3.32) is evaluated using equations (5.7c-d)
with N=25 and equation (5.8b) unmtil [aN[<e. The wavelike disturbance
is subsequently obtained by evaluating the relevant convergent finite
Fourier coqiné series.

A.Fortran 7% subroutine has been prepared which
implements the outlined algbrithma for the evaluation of the series .
representations of the wavelike disturbance. Recurrence relationships
for the evaluation of the gradient Vﬁ of P are obtained by analytical
dif!erentigtion of the ser;es given by equation (3.21-22). The
dériyed recursion schemes are very-well suited to vectorisation
(see.Schendell(1984)) and ‘the avé¥age computing timé on a Cray-18
machine is about 70 micro-seconds per evaluation of P and VP. (This
is about 100 times faster';han'direct,numegical integration of
equation (3;19)‘to within the same accuracy). Figure 5.5 shows

surface plots of the function P(X,Y,Z) for several values.BI Z

(compare w;th-Figure 3.3).
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x n . Jn(x) Yn(x) In(x) Kn(x)
1 0 (- 1) 7.652 (- 2) 8.826 ( 0) 1.266 (- I) 4.210
1 (- 1) 4.401 (- 1)-7.812 (- 1) 5.652 (- 1) 6.019
2 (- 1) 1.149 ( 0)-1.651 (- 1) 1.357 ( 0) 1.625
5 (= 4) 2.498 ( 2)-2.604 (= 4) 2.715 ( 2) 3.610
10 (-10) 2.631 ( 8)-1.216 (=10) 2.753 ( 8) 1.807
20 - (-25) 3.874: ( 22)-4.114 (-25) 3.967 ( 22) 6.294
50 (-80) 2.906 ( 77)-2.191 (-80) 2.935 ( 77) 3.407
2 0 (- 1) 2.239 (- 1) 5.104 ( 0) 2.280 (- 1) 1.139
1 (- 1) 5.767 (- 1)-1.070 ~ ( 0) 1.591 (- 1) 1.399
2 (- 1) 3.528 (- 1)-6.174 (- 1) 6.889 (- 1) 2.538
5 (- 3) 7.040 ( 0)-9.936 (- 3) 9.826 ( 0) 9.431
10 (- 7) 2.515 ( 5)-1.292 (= 7) 3.017 ( 5) 1.625
20 (-19) 3:919 ( 16)-4.082 (-19) 4.311 ( 16) 5.771
50 (-65) 3.224 ( 62)-1.976 (-65) 3.353 ( 62) 2.980
5 0 (- 1)-1.776 (- 1)-3.085 ( 1) 2.724 (- 3) 3.691
1 (- 1)-3.276 (- 1) 1.479 ¢ 1) 2.434 (- 3) 4.045
2 (- 2) 4.657 (- 1) 3.877 ( 1) 1.751 (- 3) 5.309
5 (- 1) 2.611 (= 1)-4.337 ( 0) 2.158 (- 2) 3.271
10 (- 3) 1.468 ( 1)-2.513 (¢ 3) 4.580 ( 0) 9.759
20 (~11) 2.770 ( . 8)-5.934 (-11) 5.024 ( 8) 4.827
50 (-45) 2.294 ( 42)-2.789 (~45) 2.931 ( 42) 3.394
10 0 (- 1)-2.459 (- 2) 5.567 ( 3) 2.818 (< 5) 1.778
1 (-2) 4.347 - (- 1) 2.490 ( 3) 2.67L (- 5) 1.865
2 (< 1) 2.546 (- 3)-5.868 (¢ 3) 2.282 (- 5) 2.151
5 (- 1)-2.341 (- 1) 1.354 ( 2).7.772 (- 5) 5.754
10 (- 1) 2.075 (- 1)-3.598 (' 1) 2.189 (- 3) 1.614
20 (- 5) 1.151 ( 3)-1.597 (= 4) 1.251 ( 2) 1.787
50 (-30) 1.785 . ( 27)-3.641 (<30) 4.757 ( 27) 2.061
50 0 (- 2) 5.581 (- 2)-9.806 ( 20) 2.933 (-23) 3.410
. 1 (- 2)-9.751 (= 2)-5.680 ( 20) .2.903 (-23) 3.444
2 (- .2)-5.971 (- 2) 9.579 ( 20) 2.816 (-23) 3.548
5 (- 2)-8.140 (< 2)-7.855 ° (.20) 2.279 .. (-23) 4.367
10 (- 1)-1.138 (- 3) 5.724 (.20) 1.072 (-23) 9.151
20 (- 1)=1.167 (- 2) 1.644 ( 18) 5.442 (-21) 1.706
50 (- 1) 1.214 (- 1)-2.103 ( 10) 1.765 (-13) 4.006
100 (-21) 1.116 ( '18)-3.294 (=16) 2.728 ( 13) 1.639
Example : ,,(50) = (- 1)-1.138 = - 1.138 107 = - 0.1138 .
Table 5.1 Bessel functions of integer order.
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* Figure 5.1 Illustration of procédire for evaluating the
influence coefficients by means of Gaussian

quadrature.
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6. APPLICATIONS OF THE THEORY
6;1 HuLL DaTa

The theory developed 1g the forggoing chapte;s 1§
pregsently used to analyse the steﬁdy flow parameters ¥or fivé'
different huli forms. Results are presentedvéyer prgscribed
ranges of the Froude number and compared with experimengal data,
as well as other theoretical predictions. Both the exact
Neumann-EKelvin sglution (see ;ecgion 4;2) and the explicit slender
ship approximation (see section 4.3)-gre cons idered. In orde;‘to
gain insight in the performance and limitations of the linearised
potential flow model a wide variety of flow parameters is investigated.
These include the wave resistance, 1ift force, trimming moment{
sinkange, trim, wave profile, pressure signatures and verticgl

force distributions,

The five hull forms include one mathematically defined
fully submerged ship, one mathematically defined surface ship, and
three realistic surface ships (see Andrew et a; (1986)). The main
particulars of the considered hull forms aée summarised in Table 6.1
and the schematic body planes of the sgrface ships are shown in
Figure 6.1. Table 6.1 gives for each hull form the beqm/length
and draft/length ratio, the block coefficient, the numbers of
panels used to digcretise the port side of the hull surface, and

the range of Troude numbers.
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The submerged prolate spﬁeroid 18 co;éiaered in
section 6.2.1. For this hill form an exact analytical solution_of
vtﬁe Neumann-Kelvin wave-resistance is available (see Farell (1973)).

‘ﬁlgley's parabolic hull form has been the subject of extensive
experimental and theoretical studies. Experimental data gnd
theoretical predictions of the wave resistance, wave profile and
hull pregsure signatures are presented and discussed in section
6.2.2;. The HSVA tanker represents an extreme case of a very £u11>
hiull fofm.ﬁnd wag selected iR order to aésesé«fhp poséib;e
limitatiéns of the linbariseékpotential flow model. Predictions
of the wnvé resistance and wave profile are presented in section
6;3.1. The 'Friesland' class déstroyer represents an o;her extreme
casq‘of a very fast ship‘with trangom sterm. Andrew (1985) has
méaéured the vertical-foree distfibutions in calm water. These
‘data, as well as total 1lift forcé, trimming moment, sinkage and
trim, are compared with the theoretical pre&ictions in section
6.3.2., Finally, a 1930's Cruiser was Selected to illustrate the
‘vergatility of the developed theory to deal with the prediction of
other flow parameters. For one value of the Froude number
predictions of the pressure field within the fiuid surrounding the
hull are presented in sectio£'6.3.3.

All presented flow data.are nondimenional in terms
of thé fluid density, the ship speed and the ship length (see

Table 2.1).
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6.2 MaTHEmaTICALLY DEFINED HuLL Forms

6.2.1 SUBMERGED PROLATE SPHEROID.

) Evidently the water line integral terms (eee
chapter 4) are no longer present in the case of a £u11y submerged
body and this implies a major theoretical simplification, Havelock
(1931a).wae among_the firetrto 1nveetigate the wave resistance ef

a eubmeréeq prolate spheroid and derived a eimple-wave reeiatance
appreximationrformnla by using the axtal source distribution
corresponding to the motion of the epheroid in an infinite fluid
and applying Lagally s theorem to evaluate the wave resistance.

0f course, the axial source distribution dpee not produce a

. spheroid in the presence of a free surface, but the accuracy of
Havelock's approximation increases with incfeasing immersion depth.
Later Fareli (1973) obtained the complete-analytiqal solution of
the Neumann-Kelvin problem by expanding the potential and the
source strength in equations (4.12-13) into series of spheroidal
narmonree; Havelock's approximation is obtained by retaining only
thevfiret term. in Farell's exact expaneion; By eonparinngareli'e
.eolution with tne present theoretical predictions the accuracy of
the conputatienal metnods discussed in the previous chapter can be

assessed.
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Figure 6.2 depicts the relafi@nship between the
wave resistance coefficlent Cw (Enw/szLz) and the Froude number
Fo (EVV/EES. Havelock's approximation is sgen'to be in poor
agreement with Farell's exact solution. This discrepancy i3 due
to the small immersion depth of the spheroid's centroid (the
present immersion depth/length ratio equals 6 ,1242, see Table 6.1).
The Neumann-Kelvin theoretical predictions (i.e. the numerically
exact solutions of equations (4.12-13)) are in excelleﬁt agrééhent
with Farell's exact solution. THis result confirms the accura?y
of the developed computer program. Th; explicit slender ship
approximation given by equation 4. 16) is in. good agreement with
Farell's solution. The small. dif!erences may possibly be ascribed
to the rather large value of the spheroid's beam/length ratio (this

ratio equals 0.1667, see Table 6.1).

6.2.2 WisLEY’'S ParaBoLIC HurL

Wiéléy's (1942) parabolic hull form has &éen the
subject of.extensive experimental and theoretical studies, see-
Chen and Noblesse (1983b) and McCarthy (1985) for a review. The
nondimensional offsets of the Wigley hu11 are given by the equation
y= tib(1-4x Y(l-2 /d ) for -$¢x<h, -d<z<0 where b and d are
constants representing the beam/length and draft/length rat;p
respectively (b=0.1, d=0.0623). Chen and Noblesse (1983b)

investigated eleven sets of experimental wave resistance data and
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concluded that cogsidérable variations occur (for example, the
experiments scatter is 65% at Fn=0;2). Recently new experiments
have been carried out by Ju (1983) and Kajitani et al (1983) (see
also McCarthy (1985)) and these data are used in the present

section,

The results of Ju's (1983) wave resistance
measurements with a 10 ft restrained model are summarised in
Figure 6.3. For Froude numbers between 0.16 and 0.34 this figure
shows the measured total resistance Cé, the calculated frictional
resistance Cf.(represented byithe Schoenherr flat plate fr{ction
formula), the estimated viscous resistance Cv=i.1 C,, the measured
viscous wake resistance va (derived from wake survey measurements),
the regidu;l resistance Cr=CtrC£, the wavemaking resistance
Cw=ct—cv and the wave pattern resistance pr=Ct-Cvﬁ. At low ‘
Froude numbers (Fn less than about 0.25) the viscous resistance is
more than 80% of the total resistance and the wave patteran
resistance derived from wake-survey measurements is expected to

be more reliable than the wave pattern resistance derived from

wave pattern analysis (sSee McCarthy (1985)).

Figures 6.4(a)-(c) show comparisons between the
measured wavemaking and wave pattern resistagce anq theoretical
predictions. The theoretical data shown in figures 6.4(a)-(b)
were obtained by Chen and Noblesse (1983a). Eigure_6;4(a) compares
the experimental data with the thin and slow ship theoretical
‘predictions calculated using equations (4.24) and (4.25a)

respectively. Both theoretical curves are in poor agreement
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with the experimental data. The“theoreticai humps and hollows are
exaggerated and, more seriously, they occur at Tather lower -values
of the Froude number than in the experimental data. Figure 6.4(b)
shows the zeroth and first order wave resistance approximations
corresponding to the seqﬁence of slender ship approximations
defined by equation (4.18). Chen and Noblesse (1983b) made séverai
assumptions in order to simplify the caleulations. Most Rotably
the nearfield disturbance component N(g) of the Kelvin wave source
potentigl was approximated by the zero Froude.number Green's
function (i.e. N(X)=-1/|X|, see the discussion surrounding
eqﬁatton (3.15)), and the watef line integral term was neglected.
The zéroth order wave resistance approximation is essentially a
geﬁeraiisation of the classic thin ship approximation and the
zeroth order curve in figure 6.4(b) suffers ffoﬁ the same defects
as the theoretical curves in figure 6.4(a). The first order

wave resistance approximation shéwn in figure 6.4(b) implies a
major qualitative improvement of the theoretical predictioms..
Although the humps are still exaggerated, their positions are in.

good agreement with the experimental data.

The present results are shown in figure 6.4(c).
Calculations were made at 19 different Fronde numbers and both the
'exact' Neumann-Kelvin theoretical predictions and the explicit
slender ship approximations are in good agreement with the
experimental data. At values of the Froude number less than about

0.25 the theoretical predictions overestimate the
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experimental data. Comparison between the first Arder'curve in
‘figure 6.4(b) and the slepden ship approximation curve in figure
6.4(c) shows that the inclusion of the nearfield disturbance
component has an important (decreasing) effect on the»mggnitude of
the humps of the wave resistance curve. Because of the large
variation in the high froude number theoretical predictions
ob¥nined by other authors (see Table 1.1) no direct conpnr;son
with these data has been included in figure 6.4(c). The presenfly
obtained results cénfirm tﬁe-ﬁsqfulneas‘of the Neumann-Ke161n

npproxination-for a practical range of Froude numbers.

Figurés G;?(B’—(di shqw.n tyﬁicél cdmpaiison
between . the measured and ca;quiated wave profile and hull pressures
at' a fixed value of the Froude number (Fn=0.316). The wave
profiles cw/P:.(Egzw/Vz) were measﬁred by Kajitani et al (1983f
using restrained models. Figure 6.5(a) indicates that there is.
good agreement between the measured and calculated wave profiles
except in the bow regime. The theoretical bow wave érest amplitudes
are lower than the eipérihénfal'vnlues. Figure 6.5(b)-(d) show
the comﬁnrisons of the measured and calculated hull pressure
P (EP/sz) at three different depths (z/d=-0.20, -0.52 and -0.84).
?he meésurements were obtained usiﬁg a short 2.5 m restrained
model (see Kajitani et al (1983)) and it is difficult to dr.nw a
conclusion from the results shown in these figures. Both the exact

Neumann-Kelvin solution and. the slender ship approximation have

the same characteristics as the measured pressure signatures,
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6.3 REALIST,I_C ng_ Forms
6.3.1 HSVA TANKER

The HSVA tanker is al!limiting case with its high
Vvalue of bloék coefficient ﬁnd low range of Froude numbers (see
Table 6.1 and fig;re 6.1). Figure 6.6-shows the measuredlwave
resistance data which were obtained from the total resistance
measurements carried out bf CollatZ (1972). Free-running models
of three different sizes were used'(fhe effects of sinkage and trim
are assumed to be negligible for thié bull form). The estimated
wave rgsiétance is given by wact-(évtfcvﬁ), where Ctvis the total

resistance, C is the viscous tangential resistance (here assumed

vt
to be given by the ITTC 1957 lime) a#d Cv_p is the viscous pressure
(or form) drag. Tor this hpll form Cvp is very large and assumed
to be constant (Cvp=0.895x10’4). The resistance curve for the
smallest model has a hump at E£=0317 whicg does not show up in

the curves for the two larger merls.

Holtrop and Mennen (197@) have derived estimétion
formu}as for the wave resistancé by applying statistical regresﬁion
to a large number of existing model and full Scale ship measurements,
The ;esults obtained by applying these formulas to the HSVA tanker
are shpwn in figure 6.6 and are in good agreement with the measured

data. Also shown in figure 6.6 are the slow ship approximation
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prédictions of Baba (1979). These data are in excéss of the . °
measurements by a factor three to four (Baba applied his thgory ’
to a variety of ships but: felt that the beﬁg/draft.ratio of

the HSVA tanker 1s too laFge for his method to appiy).

- " The present calculations shown in figure 6.6 are

in remarkably good qualitative agreement with the experimental

data. Apparently the absence of interference between the bow and

8tern wave systems due to the long pardllel middle body is

correctly modelled by the 1inearised potential flow- theory.

However, the ﬁeumnnn-xelvin theoretical predictions and the'explicit

8lender ship approximation are in excess of the measurements by

factors of about 1.5 and 2 respectively. The author has not been
able to explain these differences. Both theoretical curves predict
a small hump at Fn=0.17 in agreement with the measurements for "the

smallest model and Holtrop and Mennen's predictions.,

In ordeér to make & full assessment of the performance
of the linearised potential flo; model in this case, ;urthgr
comparisons must be made with other experimental data, such as
wave profiles, observations of wave breaking, and sinkage and trim
measurements (see McCarthy (1985)). -Unfortunately these datd were
not available to the author, but figure 6.7 shows a typical
comparison of calculated wave profiles at Fn=0.15} Included in thig
figure are the theoretical pfédictions of fiadd (1979) who used a

modified Rankine Source method (see Gadd (1976)), and Chan and

Chan. (1979) who solved an initial value problem by means of the
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finite difference method. Chan and Chan's prediction of the how

‘wave amplitude is close to the maximum theoretical stagnation

point value (;w/F:;i,.see equation (2.5)). In hoth Gadd's and
Chan and Chan's predictions the how wave_trouéh is positioned
'slightly more forward than in the present calculations. Eqwever,
effective conclusions cannot he made without reference to further

measurements. .

6.3.2 ‘FrIESLAND’ CLAss DESTROYER

The Dutch “Friesland'-claSs destroyer is a fast
naval ship with transom stern (see figure 6.1). Andrew (1985) has
measured the steady lift force distrihution in calm water. The ‘
exﬁérimeﬁtal set-up is sketched in figure 6.8. A .3.4 m model was
huilt-up from 19 separate.segments conuected hy sensitive strain-
gauge dynamometers to a stiff longitudinal heam firmly attached to
the carriage structure. During the experiments the model was
gept restrained (i.e. prevented from sinkage‘and trim). Figures
6.9(a)-(e) show the measured steady lift force distrihutions
dlb/di (;(de/dx)/psz) at five Froude numhers Fn=0.15 (0.1) 0,55
(corresponding to full scale ship speeds V=9.68 (6.45) 35.5 knots).
It can he seen thét for Fn up to 0.35 the lift force is relatively
uniformly distrihuted along the ship length. . For Fn ahove 0.35
the (downward) sectional force peaks markedly over the -aft hody

and increases steeply with increasing speed.




- 129 -

The present theoretical curves obtained by'sectipnwige
integration of the calculated pressures, are also shown in ;1gures
6,9(a)-(e). In this case, where only the steady lift force
distribution of the restrained model is: considered, no difficulties
were encountered in the modelling of the transom stern effects
(when the wave resistance of the free running model is calculated
precautions- must be taken to model the effect of the transom sterm
on the sinkage and trim, see Salvesen (1979)). At low Froyde
numbers the present calculations are seen to be in good agreement
with the measurements, but at high values of the Froude number
both theoretical curves peak less markedl& than the experimental
curves, The slender ship approximation fareés less well than the

Neumann-Kelvin theoretical predictions.

Figures 6.10(a)-(b) show the total lift force

= V2‘2 = V2 3 .

3 (—Lw/o L") and trimming moment m (-nw/o L~) as functiomns
w ‘ : w

of the Froude number. The experimental and theoretical curves were
derived from the lengthwise integration of the distributions shown
in figures 6.9(a)-(e). The 1ift force increases relatively
smoothly with increasing speed and reaches a peak value at En=0.4§,
whilst the trimming moment is small up to nearly Fn=0.35 after
which there i3 a rapid rise with increasing speed. This corfesponds
to the peak distributed vertical force moving aft as seen in
figures 6.9 (d)-(e), whilst the total moment incfeases with speed
above Fn=0.35 but does not peak. The qualitative agreement between
the experimental data and theoretical predictions is generally good.

At low speed (Fn50.35) the quantitative agreement is also very



‘encouraging, but .less satisfactory at higher speeds. As might be
expected after the earlier remarks the slender ship approzimation

compares less favourably as the speed increases.

Figures 6.10(c)-(d) show the calculated sinkage
s; (=8_/L) and trim by the stern 8 (=(pa¢n£j/tb derived from the
solution of eqﬁgfiong (2.22b-¢). Also included in this figure are
the results of direct. sinkage and trim measurements of the free-
rinning model (see Andrew (1985)). These data quantify the
differences in attitude betweén the restrained and ffee-running
model. Sinkage is seen to increase stqadily‘up to Fﬁ=0;45 and
appears to level off théfeiiter; the.trim is small up to Fn=0.§5
and then increaseé markedly. As might Sévekﬁected from the previous
comparison the sinkage and trim are poorly predicted except for
Fn<°'35 when the qﬁantitieS'are-small anyway. Using the measured
11ft force and trimming moment in equations (2.22b-¢) does not -
significantly improve thérpfedictioné. Tiis aerve§ to illustrate
the invalidity of equatioms. (2.22b-c) at high Froude nui_nbers when
1t would appear that the sinkage and trim should be détermined

iteratively (see section 2.4).

6.3.3 Cruiser HuLL Form

This 1930's cruiser hull was selected as a final

test casé'to illustrate the versatility of the devéloped theory.
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Fbr'thevhu11~£prm the calm water pressure field below the hull has
been recorded at Fh=0;126 (see Andrew (1986)). The-arrayS‘qf
measurement pos{tionb below the hull are sketched in figu;g's.ll.

At two different depths both the keel and transverse pressure
signature have been measured. K The measured End céléulated‘data are
coméared in figéres»ﬁ;lz(a)f(d). It 1s seen that the expérimental
data and theoretical predictions are in good agreemenf; both along
and transverse fo the track of the ship. ?or-this slender ship form
(see Tables 6.1 and figure 6,1) travelling at fairly low speed

the slender ship approximation agrees very well with the Neumann-

Kelvin theoretical predictions,
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'WigIey“s
parabolic
hiill

HSVA
tanker

'Friesland’
class
destroyer

Cruiser

Figure 6.1 Schematic body nlans of four surface ships.




- 134 -

‘proasyds ejvfoid pefiouqne FO SOWEIEBTEOX GABM g9 OInIT4

w'
e

L0

0

UOTINN08. 4ODX3

PWxoUddD n_:u Jopua2\g§

fuoayy) S>._$T:§§oz

uojjeurxouddo .xuo._o>
8,71




- 135 -

*(e86T) nr Aq vw.—:mﬂoa. s8 1rnj Le1Jfh Jo sjuouodwoo eouwis[sey g 9 SINBLL

: ui :

= T ) S0 g gz e \bFﬂ» "o
2% »»n»»»ﬂoe
««-» +¢¢++++ e
v«««uuuu ¢+++++

¥ % . '

. + , _ Y

¥¥ngaan L . j

4 - N

RA R X N

) oucsuﬁum.. uuayqod OAOp
' asupqsysau Buppuaaoy
| 9JuUDSESed 1ONPISey
O3UMSIS3U BHOA SNODSTA
ADUDYSTSIUA SNODSTA
BIUDYS1SaJ JBUOTIITS
20UDYSISad 1DY0L

:zs-.'.z.g{.‘ﬂ.z

" IB+e0¢ox
L]

L K R O

tHrdt ety
) LR I SR
50000000y s

R R I NS
L %] [}
38380e00000900220 ve0900009999 P
aaaaaaaaaaaamaﬂﬂ
BBBB.BEEE .g
. . JEB . - . :
aalazaﬁaa-

o




= 136 -

‘guopgewxoddde dyys aoys pue uiyl ()

-1Ini £0f3im eyl JI0F 6OUBIETSe- SAEA POIBINOIEO PUY PaINSBaAlm FO uwostaeduoy T°p andid .

UoTYVV X

8U 8]

uojqpuIxouddD diys usul

BIUDYSTEBU BUIHDUBADR - == m oo mmim
aw.._ foa.wun o>.un.|l.|.||.

AT DquUBE uedx]




- 137 -

suoyyumyxoadde dyys Jeprueys I8pIo IBIYF unu_ Y0103 .An.v ‘PenuUTILOY v° O eandya

50 T T _ﬁ.

. .laqaue.xo&au_&%_son:ﬁn

= .
JADJIO YousZ ®
BIUDYSISaU L0 T —— -

" ‘adupy815ad uJaynd ..nPumI.'., .
$1D30p JPusuTJedxy - ;



- 138 -

‘guoglENOILd juesexd (o)

‘penuyjuo) Y9 OANITI

UG TADaTX02ddD djus Japuels
fiuoaly uwndov_liue:oz




Figure 6.5 Comparison of measured and calculated wave profiles and
‘hull pressures for the Wigley hull at F = 0.316.
ka) wave prpf;le '

(b) hull pressure for :z/d = ~0.20
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0.t

b i Figure 6.5 Continued.
: ’ (¢) bull pressure for z/d = =0.52
-0.84

(d) hull pressure for 2/&
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i j'riggrexs.é‘ Comparison of measured and calculated wave resistance for the HSVA tanker.
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. B
CROIB-BEANS CONMECTED TO CARRIAGE GTRUCTURE (152 mm x 152 mn x 6.4 mm 'I° SECTION)
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Figure 6.8 Sch

tic of segments and supporting and model mounting
arrangements during 'Friesland’ experiments (from
Andrew (1985)).
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Figure 6.9 Comparison of measured and calculated 1ift force distributions.

(a) F
(b) F

0.15
0.25
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Figure 6.9 Continued.

0.35
0.45

(c) Fh
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. Figure 6.9 Cohtinued. (e) rn = 0.55
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Figure 6.10 Compafison.of measured. and calculated
.S

total 11ft force (a) and trimming
moment (d).
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Figure 6.10 Comparison of measured and calculated sinkage (c)
’ and trim by the stern (d).
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Figure 6.11 Sketch'of the pressure measurement positions
beneath tle cruiser travelling at F =0.1257.
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Figure 6.12 angitgdingl keel (a) and transverse amidships (b)

pressure signatures for z/d = -2.37.
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Figure 6.12- Longitudinal keel (c) and transverse amidships (d)

pressure signatures for z/d = -3.55.
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CONCLUSIONS

As a result of the investigations the following

conclusions can be drawn:

1)

(i1)

(iit)

The adopted foimulation of the Kelvin wave source potential

is very convenient from both physical,,@gthﬂm&tical and
nuge?ical pbintﬁ of view. Due care‘is'required when evaluating.
this function in order to avoid unacceptable numerical errors.
The nearfield and wavelike disturbance .components can be
calculated in ;n accﬁratb and_efficient‘manner by means of

Chebyshev and Neumann series  expansions respectively.

éeitain qﬁésfions regardiﬂg the behaviour of the wavelike

disturbance in the vicinity of the free surface require

further investigation.

For an adequate description of the steady ship motion problem

the three-dimensional features of the fluid flow and hull

geometry cannot be>negle§téd. The transfer of the hull
surface condition to the ship's centreplane in the consistegt
Michell thin ship theory seems particularly inappropriate
from this point of view and may be more restrict1§e than

the }1nearisafion of the free surface condition.

The use of the inconsistent Neumann-Kelvin approximation can

be justified from -a practical point of view when the ship-




iv)

(v)

(vi)

generated free surface disturbance is sufficiently small. This
assumption is usually violated in the vicinity of the ship's

bow where the quality of the theoretical predictions of the

" wave profile .and hull pressures deteriorates, but this does

not affect significantly the theoretical predictions of the
wave resistance and other global flow parametersﬁfor ships
which are sufficiently slender and operate at low to moderate

values of the Froude number.

‘The solution of the Predholm integral equation for the source

strengtﬁ is rendered superfluous by adopting the explicit
slender ship approximation, whgre_the.source strength is
approximated by the pbitutbed normal ﬁull velocity. This
approximation shAuld only be ufSed however for ships with

low block cpeffiéients operating at low Froude number.

The quantitative agréément between the experimental data
and theoretical predictions beéomes less satisfactory whem

the ship is full-bodied. This is probably due to a combination

-0of nonlinear free surface effects and viscous interaction

effects. Further detalled comparisons with experimental
data are required in order to assess the capability of the

Neumann-Eelvin theory in this regpect.

At high Froude numbers the quality of the theoretical

predictions 1s less satisfactory and a nonlinear flow description

vincorporatiﬁg the dynamic effects of sinkage and trim might
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be required: In particular, when calculating the sinkage

and trim at‘high_shipvspeeds, the apﬁl;catipn of the hull
i

-gurface boundary condition at the medn position of the

hull is no longer -acceptable and an .iterative procedure

is required to determine the sinkage and trim.
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APPENDIX
EVALUATION OF SPECIAL FUNCTIONS

THE EXPONENTIAL INTEGRAL

Let'El(z), |z|>0; denote the complex-valued exponential
integral function of z, as defined in Abramowitz and Stegun (1972).
- Because of the symmetry relationship El(;) = E;(z) only values of

z=x+1iy for which y30 are considered. -

For moderate and large values of Izl the exponential
integral may be evaluated from its continued fraction Tepresentation

given by (see Abramowitz ahd Stegun (1972)):

: 11 1 2 2 )
Bxp(z)El(z) =731 7 T +Tsas " " 1im wn(z)‘ . (A.1)
This continued fraction converges in a larger domain.than the

asymptotic series givem by equation (3.13). The successive convergents

' wn may be generated recursively as follows (see Gautschi (1967)):

Yn+l1 =‘z/(z+ah+1uk) !
Yo+l © vn(un+1 -,
w =W +vV ,
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for n=1,2,..., where an+1=<(n+1)/2> (<x> denotes the integer pnft
of x) and the initial values are given by u1=1, v1=w1=1/z. .Uaing
this algorithm an absolute gccuracy of at least six significant
digits cah be achieved throughout the domain whefe . .

e(x,y) = x2+14x+5.0625y2332, see Baar (1988).

For small values of |z| the exponential integral
may be evaluated from its ascending series representation given

by equation (3;12), which may be written in the form:

E,(z) + fn(2) + Y = lim p (=) 7 (A.2)
e B

Successive convergents pn are generated by means Of:
2

Tey T TBE/ @Y

Prel =Py M L] '

for n=1,2,..., the initial values being p1=qléz. This method. is

used 1f e(x,y)<32 and -8<x<2.

In the remaining domain near the negative real axis,
where e(x,y)<32 and -16<x<8, the ascending series is slowly converging
and it is more efficient to use the Taylor series about y=0 given

By (see Newman (1985)):

exp(2)E, (2) = I P_(Ixham® . (a.3)
n=0
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where oP (x) = P_-, (x) + 1/x° ' for n30, x>0, the initial value
being Po(x);-exp(—x){Ei(x)+i1f}; In the range 8<x<16 the e:_:ponént:lal
integrai Ei(x) may be computed using the special polynomial
approximation: .

3

xexp(-x)E1(x) = 1.1029749 - 0.0442424t + 0.0198195t%

- 0.0089561t> + 0.0039184t% - 0.0015478¢>

+ 0.0003842¢t - 0.00000521:7 + e(x)

where t=3xz - 3 and |c|<4.7E-7, see Baar (1985).

THE BesseL FuncTiONS

Let: Jn(x), Y_n(x), In(x) ax.:d Kn(x'), 020, x>0 denote
the usual Bessel functions of x and integer order n, asr defined in
Abr#.ﬁow:ltz_ and Stegun (1972). For n=0,1 the Bessel functions Jn(x) ‘
al.;d Yn(x) can be computed by means of the polynomial approximations
dev?e_l'opgd by Newman (],98_4). -Similar approximations for the modified
Bessel fungt:lon.s In(x) and Kn(x) were derived by Allen (1956) and
thesé are quoted in Abramowitz and Stegun (1972). From a numerical
point of view it is slightly better to‘-compute exp(-x)I_(x) and
exp‘(x)Kh(x) since this removes most of the variation in I (x) and

Kn(x) rTespectively.



When n>2 the following procedures proposed by Baar
and Price (1986b) are very convenienmt. Following Gautschi (1967)
consider the general  three-term recurrenée»relatiogahip:
£n+1 + anfn + bnfn-l =0 o (A.4)

where.£n=£n(x) and n31. For the Bessel functions the coefficients

an(x) and bn(x) are given by Abramowitz and Stegun (1872) as:

(-2n/x, 1) P S 4
n’'n
(an?bn) = 4{(2n/x, -1)’ if fn = -In. (A.5)
(=2n/x,-1) . B Kn

From equation (A.4) it follows that the ratio rn(x)=£n+1/£n
satisfies the relationship: ’

vrg +a + bn/rn_1 =0 . v C (A.6)

for n>1, provided that fn#O'(tEia restriction is not serious f?om
the practical point of view, as explained by Gautschi (1967)).

The functions Yn(x) and xﬁ(x) are numerically increasing functions
of n and the ratios r_ can simply be computed by méans of the
forward recurrence:

f

rp =--(an + bn/rnel)

for n2l, the initial value being r°=£1/£°.
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The functions Ji(x) and In(x) are numerically
decreasing functions of n (i.e. 'minimal’ solutions of equation
(A.4)) and therefore the recurrence relationship given by equation

(A.6) 13 only stable when applied in the backward direction. That 1is:

Tpe1 = Pp/(ay 1))
for n=N,N-1,...,1, where it is assumed that the ratio T is known
for some value n=N. Gautachi (1967) shows that rN-is given by the

continued fraction:

-b L. X
el T .= Mmw

T, == -
A R T T n®

whei‘e-an and bn are given by equation (A.5). The successive

cohvergent4valués of LA may be generated recursively as follows:

Yne1 T i1 - (bN+n+1/ah+ﬁaN+n+1)ﬁn} ’

Vel = vn(“n+1 -1) ’
¥nel = 0 * vg+l '
for n=1,2,..., the 1niti§1 values being u1=1, v1=w1=-b“+1/aN+1v.

The presented algorithms are very well suited to
the computation of the sequences of Bessel function ratios defined '
in equations (5.7a-d). In order to verify the relationships given

by equationa (5.8a-b), as well as to derive similar relationships
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for the evaluation of the gradient of the wavelike disturbance, the

following derivative relations are useful: .

' = .
of =2, +df , @a.7n

H ‘where ‘n =§£n(x)/dx -and

. (2,-1) NN
: (c,) = {@n 122 = {1 5 , (A.8)
(-2,1)

. see Abramowitz and Stegun (1972). In particular:

@95 15.Eg) = (-13,-¥,, 1y, -K))
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NOMEMCLATURE

General conventioris

Nondimensional flow variahles in terms of the fluid density,

the ship sbeed and the ship length are u;ed exclusively.
" The coordinate system Oxyz is attached to the‘m0ving ship.

The origiﬁ-p is located amidships in fhe undisturhed sea surface.
The positive Ox: and Oz axes point toward the ship's how and
vertically .upward respectively. C

Whenever the independent vnriahles x,y,z are used as subscripts
partial differentiation with respect to x,y,z is implied.

The definitién and notation of mathematicél functions is in
agreement. with Abramowitz and Stegun (1972).

List of symbols

Symhols not included in the 1ist helow are only used at a specific

place and are explained ‘where they occur.
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beam/length. ratio of ship

mean water line contour

" draft/léngth ratio of ship

drag force

mean flow domain.

interior flow domain

acceleration of gravity

mean bull surface

k-th moment of area of mean water line plane
1ift force

t:imminé moment

unit vector normal to bull surface

fluid pressure

aspect ratio
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‘ position vector of field point
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sinkage
undisturbed free surface

mean water line plane

‘unit éectpr tangent to water line contour

perturbed flow velocity
position vector of source point
total resistance coefficient

viscous resistance coefficient

wave resistance bqegg;cieng

‘Froude number

Kelvin wave source potential

zero Froude number Green's function
infinite Froude number Green's function
Kochin's_fumctioﬁ

ﬁater line length of shiﬁ
nearfield disturbance
source strength

Reynolds number

dipole strength

flow velocity

ship speed

wavelike disturbance

'Vector joining the field point and the free surface

mirror image of the source point
influeﬁge coefficient .
influence coefficient

wave elevation.

kinematic viscosity of fluid

density of fluid

disturbance potential

interior potential

zero Froude number (double body) potential
explicit potential approximation

velocity potential
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