
A frequency dependent drag
coe�cient on the motion re-
sponse model of a hybrid STC
wind-wave energy converter

Master Thesis

L.S. Kohlmann





A frequency dependent drag
coef�cient on the motion

response model of a hybrid
STC wind-wave energy

converter
Master Thesis

by

L.S. Kohlmann

Student number: 4225953
Project duration: March 1, 2019 – December 13, 2019
Thesis committee: Dr. ir. P. Wellens, TU Delft

Ir. P. Xu TU Delft

This thesis is confidential and cannot be made public until December 13, 2019.

An electronic version of this thesis is available at http://repository.tudelft.nl/.





Abstract

The vertical viscous drag force acting on a heaving cylinder with flat and hemispheric bases is investigated
by means of an experiment, a linear and a nonlinear analytic model. Viscous effects create a significant
uncertainty in estimating the motion response of oscillating cylinders in waves of different frequencies.

Forced oscillation tests are compared with a linear analytic model and approximated with a nonlinear
model to quantify the viscous drag force for a range of oscillating frequencies. The results asses the behaviour
of the drag coefficient, CD , to be used for calculating the drag force. The main interest of this study is to
improve the estimation of the motion response of floating hybrid wind-wave energy converters.

The hydrodynamic parameters, added mass and radiation damping, used in the linear model are ob-
tained with the boundary element method (BEM) solver NEMOH. The same parameters are obtained from
the experiment for comparison. Near the natural frequency of the geometries the linear model underestimate
the forces due to the absence of a nonlinear viscous drag term.

The time traces of the force measurement around the natural frequencies show period doubling be-
haviour which can be described by the quadratic velocity term in the drag force calculation. By applying
the least-squares optimization method on the obtained data, optimal variables in the fit-function including
the quadratic drag term are found. The results show the drag coefficient, CD , is changing over the frequency
of oscillation.

The vertical drag force is frequency dependent and therefore important to consider when calculating
the motion response of wave energy converters.

Highlights

• Development of a new approach by examining the vertical, instead of in-line, drag force com-
ponent of floating oscillating bodies.

• Experimental generation of data.

• Assessment of a linear numerical method for obtaining hydrodynamic parameters.

• Clear description of the vertical viscous drag force behaviour over the frequency domain.

• Performance study on analytic models describing the viscous drag force.

• Established relationship of the drag coefficient over the frequency of oscillation.
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�
Introduction

Everyone is aware of the earth’s changing climate. It is generally acknowledged that people have a negative
impact by incessantly consuming non-renewable energy sources. In 2015, the United Nations assembled
a list of 17 sustainable development goals to stimulate action in areas of importance for humanity and the
planet [4]. In the search for cost-efficient clean energy solutions, this master thesis will focus on the dynamic
response of a hybrid wind-wave energy converter. In this way, a contribution can be made in the process of
reaching three of the goals; Clean affordable energy, climate action and conservation of life below water. This
chapter will provide a background to the problem, the research question and an outline of the report.

1.1. Background
Offshore, ground-based, wind farms are becoming economically viable and are already an important con-
tributor in the energy transition striving to a more sustainable world. But despite an incredible 70% total
installation cost reduction between 2013 and 2022, subsidies are still necessary to bring the energy to shore
[15].

A way to decrease the overall costs is to increase the efficiency
of a farm. Wind is a source that creates waves, so where there
is wind consequently there are waves. Therefore, the attention
is drawn to combine wind and wave energy devices in offshore
areas. Wave energy devices are studied since the 1970s but
have proven to be unattractive for commercial use [22]. A large
contributor to the high costs is the electrical grid that needs to be
installed. Hybrid solutions can use the same infrastructure which
increases the overall efficiency of wind farms and contribute to
the viability of wave energy devices. In a feasibility study of van
Riet, different hybrid solutions are evaluated [17]. The Spar-Torus
combination (STC) , figure 1.1, in this research has an estimated
10-15% higher energy production compared to a floating spar
wind turbine without a wave-energy converter (WEC). This extra
yield is caused by a combination of the increase in wind energy
production of 6% due to extra stability of the spar delivered by
the WEC and the addition of energy absorbed by the WEC itself
[14]. These are encouraging indications for further analysis of the
system.

Figure 1.1: Sketch of a wind-wave energy con-
verter [14]

To optimize the energy uptake of the dynamic system, its behaviour in wind and waves has to be known.
In several researches conducted in Norway the dynamic response in operational conditions and in survival
modes are investigated to give an insight in the feasibility of the design [12] [13] [14] [21]. The results, as men-
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2 1. Introduction

tioned earlier, are positive and further research into the operational dynamic response is desirable. Correct
prediction of the motion of the Torus in different sea states is required to optimize the stiffness settings of the
power-take-off (PTO) that translates the kinetic energy of the Torus to electric power. An important factor in
the motion behaviour of the torus is the damping. Next to linear wave-damping, viscous effects contribute
to the total damping in the system. Viscous effects are challenging to model as they behave non-linear, so
often they are estimated using a drag force formulation containing an empirical determined drag coefficient.
Despite the frequency dependent characteristics of the drag coefficient, many researchers investigating the
motion of WECs treat the drag coefficient like a constant [5] [9] [14] [21].

1.2. Problem statement
The dynamic response of a STC is first studied in 2013 by M.J. Muliawan et al [14]. Thereafter, several pa-
pers are written on the subject, focussing primarily on extreme responses in survival mode conditions. A
detailed study into the hydrodynamics of the model in operational sea states can provide new insights in the
behaviour of the torus motion and help optimizing the system for maximum energy uptake.

An assumption that is commonly used for describing the viscous drag of a geometry in an oscillating flow
is the value of the drag coefficient in the drag force formulation. In an early study, the dependency of the drag
coefficient on different parameters is investigated for a fixed cylinder in oscillating flow. Important param-
eters are the Keulegan-Carpenter number (KC ) , Reynolds number (Re), relative roughness (k/D) and the
reduced velocity (Vr ) if current is involved [18]. This research investigated, in particular, the in-line force on
a fixed cylinder in current and waves. The driving force of a point absorber(PA) WEC is the orbital movement
of the incoming wave. The flow around the PA is dependent on the frequency of the wave and the response
of the PA. Because the direction and speed of the flow changes during the motion, the value of the drag coef-
ficient is a considerable uncertainty. Nevertheless, the results of the research of Sarpkaya and Storm [18] are
commonly used as source for the determination of the drag coefficient for wave energy devices.

The focus of this study will be on the frequency dependency of the drag coefficient for heaving rigid bod-
ies in waves to improve motion response calculations. The main research question that is derived from this
challenge is as follows:

Can a frequency dependent drag coefficient improve the accuracy in estimating the damping response
of a STC hybrid wind-wave energy converter?

To support this research question the following sub-questions are formulated which will be investigated
to provide an answer to the main question:

• What is the behaviour of the viscosity on the damping of a buoy oscillating at different frequencies?

• Is there an analytic model, that includes a drag coefficient, that can describe the viscous damping?

• How does the new model compare to existing methods?

1.3. Methodology
To give answers to the sub-questions and therewith to the main research question, an overview of the steps is
given. The thesis started with the creation of a theoretical framework. This framework will function as a basis
of the considered system and flow physics. Due to the complexity of the flow, experimental data is collected
to capture the non-linear viscous damping effects. Experimental tests are conducted in the towing tank of
the TU Delft’s faculty of Maritime Engineering. An analytical model is created based on linear potential flow
theory so in combination with the experimental results the the non-linear part of the damping can be quanti-
fied. The data is analysed to see if a frequency dependent drag coefficient could be found to improve motion
calculations of the WEC.
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WECs aim to respond at their natural frequency in the sea-state they will be deployed in. This is because the
amount of kinetic energy that can be harvested has a maximum around the natural frequency. In this region,
damping has a high influence on the response of the system. To find the response of the heaving buoy, first
the physical phenomena have to be understood. In this chapter the different loads acting on a buoy in waves
are elaborated and a theoretical description is given of the linear and nonlinear analytic system approach.
The chapter will end with the state of the art considering the nonlinear viscous drag determination which
will enlighten the knowledge gap that is tried to narrow with this thesis.

2.1. Environmental loads

In this section the situation of the system is sketched and the loads that are present in the real-life situation
are explained. The point absorber is simplified as a cylindrical buoy.

Axis convention
For this research an earth-bound coordinate system is used
where the x- and y-axis are located on the still water surface, S,
and the z-axis is pointing upwards, see figure 2.1. The rigid body,
the buoy, is constrained in all directions except heave which
corresponds to translations along the z-axis.

Figure 2.1: Axis agreement

Loads
Waves initiate oscillating pressures on the cylinder. Two kinds of forces are caused by waves on a cylinder,
Inertial forces and Drag forces. Inertial forces contain: 1. The Froude-Krylov force; the pressure difference
caused by the undisturbed wave, 2. The diffraction force; the force corresponding to the deflection of fluid
particles due to the presence of a structure, 3. The radiation force; caused by the (heaving) motion of the body.
In figure 2.2 the three forces are schematically visualised where z is the distance to the free surface, p is the
pressure and ∏ the incoming wave. All the inertial forces can be derived from potential flow theory. The drag
forces contain: 1. Form drag; flow separation due to normal stresses, 2. Friction drag; shear stresses creating
boundary layers in the fluid around the body. In figure 2.3 the drag force components are schematically
visualised where u is the flow velocity, ø the shear stress and B.L. stands for boundary layer.

3



4 2. Literature review

Figure 2.2: 1. Froude-Krylov 2. Diffraction 3. Radiation Figure 2.3: 1. Form drag 2. Friction drag

The drag forces are harder to calculate as they behave nonlinear and are dependent on a variety of flow
and geometry parameters. As earlier stated, important, dimensionless, parameters that indicate the be-
haviour of the viscous drag are the Reynolds number (2.1) and the Keulagan-Carpenter number (2.2). The
Reynolds number indicates the flow regime ranging from a laminar (small drag) to a fully turbulent flow
(large drag), see figure 2.4. The KC-number indicates the importance of the drag force related to the inertial
forces. In engineering applications the following rule is followed: When KC < 1, drag forces can be neglected,
when KC >> 1, drag forces are important. For KC -values in between, both drag and inertia forces have to be
considered [11].

Figure 2.4: Flow around a circular cylinder for different Reynolds
numbers [7]

Re = ua ·D
∫

(2.1)

KC = ua ·T!

D
(2.2)

Where:

ua = Flow velocity [m/s]
D = Diameter of cylinder [m]
T! = Period of oscillation [s]
∫ = Kinematic viscosity [mm2/s]

For this study, the drag forces are of interest as they have a significant contribution to the damping of the
system. To capture the drag forces two approaches are considered: an experiment and an analytic model.
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2.2. System approach
To be able to asses the viscous damping, the WEC is simplified as a cylinder.
Still water tests have shown to be an approved way to capture the hydro-
dynamic loads on an oscillating cylinder. This study uses a new advanced
design method by looking only to the characteristics of the drag force in
vertical direction (see figure 2.5) . To capture this force, two experiments
are performed: A forced motion test, to find the excitation force needed
to oscillate the cylinder at different frequencies, and a free decay test, to
capture the time needed for the cylinder to get back to its equilibrium after
an initial displacement is given. To describe the tests with an analytical
model, first, a linear approach is considered.

Figure 2.5: Cylinder oscillating in vertical
direction

2.2.1. Linear model
The free body diagram for a free oscillating cylinder is illustrated in figure 2.6. This sketch shows two positions
of the cylinder, one at its equilibrium and one with a positive offset. A body fixed axis is used with its origin
in point O. If all the hydrodynamic forces are added, Newtons law of motion can be derived. In equation 2.3
this derivation is shown [7].

mz̈ = sum of all forces on the cylinder

=°P +p Aw °bż °az̈

=°P +Ωg (T ° z)Aw °bż °az̈

(2.3)

Where:

m = Mass of the cylinder [kg]
Aw = Waterline area [m2]
T = Draft [m]
P = mg = Mass force [N]
a = Added mass [kg]
b = Damping coefficient [Ns/kg]
z = Vertical displacement [m]

Figure 2.6: Free body diagram of an oscillating cylinder [7]

If the mass force is substituted with Archimede’s law where P = Ωg T Aw , the final motion equation for the
free decay test can be represented by equation 2.4.

(m +a)z̈ +bż + cz = 0 (2.4)

Where:

c = Ωg Aw = Restoring stiffness [kg /s2]

The added mass is described as the mass of the fluid around the cylinder that is set in motion due to
the acceleration of the body. The damping in the equation is the only term that extracts energy from the
system which causes the cylinder to get back to its equilibrium after an initial displacement is given. In the
linear equation of motion only radiation forces contribute to the damping. During a forced motion test the
displacement, velocity and acceleration are imposed and therefore known, see equation 2.5. The required
excitation force that is needed to follow the imposed path is measured to give a time trace of the force am-
plitude. The system can be schematically visualised by a single mass-damper-spring system, figure 2.7. The
linear motion equation for the forced motion test is described by equation 2.6.
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z = za sin!t
ż = za!cos!t
z̈ =°za!

2 sin!t
(2.5)

(m +a)z̈ +bż + cz = Fz (t ) (2.6)

Where:

za = Amplitude of oscillation [m]
! = Oscillation frequency [rad/s]
t = Time array [s]
Fz = Recquired excitation force [N]

Figure 2.7: Mass-spring-damper system

The linear motion equations consist of three terms: the inertia term (m+a) corresponds with the accel-
eration, the damping (b) with the velocity and the restoring stiffness (c) with the displacement. At certain
oscillating frequencies the motion equation is governed by one of the three terms which is caused by the dif-
ferent phases of the displacement (0), velocity (°º/2) and acceleration (°º). At the natural frequency of the
system the restoring stiffness term has the same amplitude as the inertia term so they cancel out and only the
damping term is left. In figures 2.8 and 2.9, the dominant regions and the time traces of the displacement,
velocity and acceleration are illustrated.

Figure 2.8: Region of dominance in motion equation
[7]

Figure 2.9: Time trace of the displacement (z), velocity (ż) and acceleration (z̈)

To study the nonlinear behaviour of the damping term at different frequencies the key is to isolate it. Only
the added mass and linear damping terms are unknowns in the linear motion equation. The added mass and
linear damping coefficient can be calculated with potential flow theory, where it is assumed that the fluid is
inviscid, irrotational and incompressible. In this research a 3D BEM solver is used to find the added mass and
damping coefficients.

Now the linear analytic model is described, the nonlinear viscous drag term can be isolated by comparing
it with the results of the tank test. The difference between the tank test and the linear analytic model is
assumed to be caused by the viscous effects explained in the previous section. Because of the complexity
of this flow due to its nonlinear behaviour, many researches looked into ways to estimate the forces caused
by these effects by means of an empirical determined analytic model. In the next section, 2.2.2, a detailed
elaboration on the established drag force formulation is presented and other, state of the art, methods in
estimating the nonlinear viscous forces are explained.

2.2.2. Nonlinear viscous drag
During the last decades many experiments are conducted with cylinders in flow and have proven that the
viscous drag force is proportional to the flow velocity squared , ż2, and the diameter of the cylinder [7]. In
equation 2.7, the drag force formulation for a cylinder in oscillating flow is stated. The absolute value of
the velocity is considered to correct the sign, as in oscillating flow this changes direction during the cycle.
In the equation the drag coefficient (CD ) is determined empirically. In this section, the focus will be on the
determination and behaviour of the drag coefficient.
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FD (t ) = 1
2
ΩCD Du2

a ·cos(!t ) · |cos(!t )| (2.7)

The drag coefficient is influenced by various parameters like, roughness, shape, flow velocity and viscosity
of the fluid. Many studies examined the drag coefficient by experiments in oscillating flow for geometries of
various shapes, sizes and roughness [8] [18] [20]. As a result of the experiments relations between the drag
coefficient versus the Reynolds number, and versus the Keulegan-Carpenter number are established. In this
research only smooth cylinders are considered.

In figure 2.10 the drag coefficient for a cylinder are related to the Reynolds number and the KC-number.
From this figure an indication of the drag coefficient could be obtained. In this figure Ø= Re/KC .

Figure 2.10: Drag coefficient related with the KC number for flow around a smooth cylinder at different Reynolds numbers[18]

As can be seen, the value of the coefficient ranges from 0.5 - 2.5, depending on the Reynolds number or
KC number. It is important to note most of the researches consider a cylinder in-line with the oscillatory flow
as they were meant to estimate wave forces on cylindrical foundations of offshore structures. One study is
found that did not assume the drag coefficient for a PA WEC.

In a research of A.S. Zurkinden et al. [23]
the drag coefficient is calculated from an
experimental study for a hemispheric point
absorber, the wave-star [2]. This point ab-
sorber considers both pitch and heave so a
horizontal (C h

D ) and vertical (C v
D ) drag coef-

ficient is present. To evaluate the drag coef-
ficient, a forced oscillation test in still water
is performed for different frequencies and
stroke amplitudes. The obtained values of
the drag coefficients are illustrated in fig-
ure 2.11. Assumed is that 10 frequencies are
tested at 4 different amplitudes, starting left
with the largest amplitude.

Figure 2.11: Vertical drag coefficient (red) and horizontal drag coefficient (black)

Despite the unclear description of the test frequencies and amplitude, the results shows a frequency depen-
dency of the drag coefficient. Furthermore, if the values are compared to the values in figure 2.10, no corre-
lation can be found, independently of the KC-number value. To conclude the findings, many uncertainties
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are still present considering the value of the drag coefficient however, many researches use the information
of the established relations.

This thesis takes a step into clarifying the behaviour of the drag coefficient for a heaving point absorber
wave energy-converter in the vertical direction. Especially the influence of the frequency around the natural
frequency of the system is of interest as this is the design operation condition for wave energy converters. To
get a feeling of the viscous drag behaviour, the cylinder in this research is tested with two different bottom
shapes: a flat bottom and a hemispheric bottom. The viscous effects are expected to be larger for the flat bot-
tom cylinder as this geometry has sharp edges where flow separation occurs. The tank test result is compared
with the linear analytic model and the difference is fitted with a least-squares method.

2.3. Concluding remarks
In this chapter, the physics of the problem are explained and methods to analyse the system are elaborated.
Furthermore, literature is reviewed on current approaches towards estimating the drag coefficient for bodies
in oscillating flow. Based on this information, three statements are listed which describe the missing knowl-
edge which is related to this thesis:

• The vertical drag coefficient for oscillating cylinders is still a large uncertainty for estimating the non-
linear viscous drag force.

• Little information is available on time trace characteristics at different frequencies for a heaving cylin-
der.

• A clear view of the frequency dependency of the drag coefficient for oscillating cylinders in the vertical
direction has not been found.
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The goal of the experiment is to capture all the hydrodynamic loads on a heaving cylinder with two different
bottom shapes, including the loads that corresponds to the viscous flow phenomena. Together with the linear
analytical model the nonlinear forces can be separated and quantified. With forced motion tests the force
needed at each heaving frequency can be measured. From this data a first analysis can be made to obtain the
force amplitudes and hydrodynamic coefficients, added mass and damping.

Next to the forced motion tests, a free decay test for the two geometries at three different amplitudes is
performed under the same circumstances. From these results the damping time and natural frequency of
both geometries is captured which can help sorting out the relations between shape and non linear effects
on damping.

Highlights chapter 3

• Explanation of the experimental set-up and overview of test programme.

• Illustration of the raw measurement results and post-process methods to create useful data.

• Determination of the hydrodynamic parameters from the experimental results.

• Influence of the shape of the geometries on the damping time in the free decay test.

3.1. Model Description

For the tank tests two geometries are used: a cylinder
with a flat bottom and a cylinder with a hemispheric
bottom which from now on will be referred to as cylin-
der and hemisphere respectively. In this section the
dimensions of the geometries and the way they are
created is elaborated together with the tank dimen-
sion and set-up for the two tests. In table 3.1 the con-
stant variables are listed. Only slight changes in water
temperature are measured and therefore the changes
in water density and kinematic viscosity are assumed
negligible. A Froude scaling factor of 0.13 is used so the
natural frequency of the test geometries corresponds
to the frequency of the highest energy peak in the Jon-
swap spectrum [6].

Table 3.1: Constants of the experimental model

Constant values of experimental model

Description Symbol Value Unit
Water density Ω 1000 kg /m3

Water temperature Tc 20 ±C
Water kinematic viscosity ∫ 1.004e-6 m2/s
Draft cylinder (no appendage) H 0.41 m
Diameter cylinder D 0.197 m
Restoring stiffness c 299.014 kg /s2

Mass (incl appendage) m 14.05 kg
Scaling factor ∏F 0.13 -

9



10 3. Experimental method

Figure 3.1: Schemetic drawing of appendages

Table 3.2: Dimensions of the appendages

Dimensions [cm]

A B C
Hemisphere 9.85 10 1.726
Cylinder 9.85 6.84 -

3.1.1. Geometries
For both the free decay and forced motion test two existing cylinders are used with identical dimensions.
The hemisphere that needed to be attached on the bottom of the cylinder had a larger radius (10 [cm]) than
the cylinder. To have a smooth transition between the cylinder and the hemisphere it is decided to sand
the sides of the hemisphere. The consequence is a slight change in volume and shape which is taken into
account throughout the rest of the research. To have valuable results the displacement of both the cylinders,
with and without hemisphere, has to be the same. Therefore a cylinder is made with the same volume as the
hemisphere. In table 3.2 the dimensions of the two appendages are listed.

In figure 3.2 the two cylinders with the appendages are illustrated.

Figure 3.2: Pictures of the two test geometries

3.1.2. Tank setup

Figure 3.3: Dimensions of towing tank and top-view of the test set-up

The tests are conducted in the small towing tank at the faculty of Maritime Engineering. The dimensions of
the towing tank are shown in figure 3.3. The location of the two different tests is different due to the fact that
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the free decay test is not positioned in de middle of the width of the towing wagon. The numbers 1-4 indicate
the following: 1 The beach, 2 Forced motion test, 3 Free decay test & 4 The wave maker. The forced motion
tests are all positioned at a distance of 37 meters from the wave maker to maximise the reflection time of the
radiated wave with the wave maker. At low frequencies (0.3 [Hz]) this means a clean run time of 23 seconds
before the reflection is back at the buoy. The reflection of the sides of the tank are also considered in the
simulation and will be discussed in chapter 4. The water depth with the forced motion test is 1.2 [m].

Forced motion test:

Figure 3.4: Schematic drawing of forced motion set-up. Figure 3.5: Pictures of the forced motion set-up.

Figure 3.6: Force (l) and distance (r) sen-
sors

In figure 3.4 a schematic visualisation of the forced motion test set-up
is illustrated. The sensors are indicated with numbers: 1 = displacement
sensor and 2 = force sensor. Next to it, the real situation is shown in figure
3.5. The oscillation is powered by an electric motor which has a transmis-
sion ratio of 1440:1, motor rpm to frequency of oscillation in [Hz]. The
controller of the motor runs on a 50 [V] power supply and is attached to
a PC that tells the controller how much power he needs to deliver to the
motor so the velocity up and down is constant. The amplitude of the os-
cillation can be adjusted from 0 to 6 cm. The force sensor (wheatstoner
bridge) has a sensitivity of 100 [N] and is connected to an analogue condi-
tioner which amplifies the signal between -10 and 10 [V]. Next, the signal
is passed on to a data acquisition station with a 100 [Hz] second order low
pass filter after it continues to the PC which has a sample rate of 1000 [Hz]
so aliasing will not occur. The distance sensor is connected to a pod meter
where the signal is balanced at 0 when the cylinder is located at the correct waterline. Due to mechanical
friction of the oscillator the signal is noisy with large peaks at the moment the direction is changed from up
to down and vice versa. The height of the oscillator is fixed which means that the depth of the tank decides
where the waterline will be. To have a corresponding displacement with the free decay test the water depth is
set to 1.2 [m] and the weight of the cylinder has to be 14.05 [kg]. The maximum speed of the oscillator is fixed
at 1500 [rpm], so a frequency of oscillation of 1.042 [Hz].
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Free decay:

Figure 3.7: Schematic drawing of free decay test set-up. Figure 3.8: Picture of the free decay test set-up.

Figure 3.9: Free decay distance sensor

In figure 3.7 a schematic drawing of the free decay test set-up is shown.
The cylinder is attached to a metal pipe that is running through two air
bearings. These air bearings are connected to pressurised air of 5 [bar].
Above the metal pipe a laser distance sensor, indicated with the number
1, is attached to the wagon and pointed to the top of the metal pipe, see
figure 3.9. The sensor amplified the signal itself so it could be connected
directly to the data acquisition station before it was connected to the PC.
The free decay test position is slightly off the middle of the width of the
tank. In the result this has to be considered as the reflection of the radiated
waves will have another phase. A picture of the set-up can be seen in figure
3.8. The water depth was increased to 1.4 [m] because the length of the
pipe was too short to go through the highest air bearing if the amplitude
of oscillation was 10 [cm]. The buoy that is used for the free decay test is
not the same as used during the forced motion test although the radius is exactly the same, the weight is not.
To overcome this, additional weights are added to the buoy to have the exact same weight during both tests
(14.05 [kg]).

3.2. Method
Now the set-up is defined, the way the tests are performed is elaborated in this section. The test matrix will
be presented and the strategy to obtain the data of most interest is explained.

Forced motion test:
During the forced motion test 3 signals are measured; time [s], distance [cm], force [N]. The goal of the test
is to obtain the data of the force at different frequencies. Especially the natural frequency of the system is of
interest as this is the region where the damping term dominates the motion. The runs are executed with the
help of a test matrix. A standard program is made for the first 8 runs for every geometry. After these runs a first
view of the location of the natural frequency is obtained and further runs can serve as a convergence study
towards the real natural frequency. To be able to see discrepancies in the data, the standard program is set-up
in a way that after a low frequency run a high frequency run will be performed and vice-versa. Before every
run a zero measurement is conducted to see if the water is calm enough to perform a run. The time between
runs differs between 2 - 20 minutes, depending on the frequency, the amplitude and if tests are going on in the
tank aside. For both geometries three amplitudes are tested at 0.28 [cm], 2 [cm] and 5 [cm]. This is because
at smaller amplitudes the physical phenomena behave more linear so a trend can be seen in what degree the
non-linear effects increase over the amplitude. The tests at 5 [cm] have more runs as this is the amplitude
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where the (non-linear) effects are expected to be the largest. All the measurements have a run time of 60 [s]. A
checkrun is performed at the natural frequency to see if the data is reliable. At the tests with amplitude 5 [cm]
a reflection run is done to see what influence this has on the data. Most of the runs are performed with an
amplitude of 5 [cm] with an exception at the natural frequency where the run is performed at three different
amplitudes.

Table 3.3: Program Forced Motion test

Test matrix

Amplitude
[cm]

Frequencies (standard)
[Hz]

Frequencies (convergence study)
[Hz]

Natural Frequency
[Hz]

Cylinder
5.00

0.3 1.0 0.4 0.9 0.5 0.8 0.6 0.7

0.65 0.75 0.675 0.6875 0.6625 0.68125 0.684375 0.678125 0.625 0.725
0.6781252.00 0.678125 0.65 0.75 0.725 0.6625 - - - - -

0.28 0.678125 0.65 0.75 0.675 0.725 0.6625 - - - -

Hemisphere
5.00 0.65 0.75 0.675 0.725 0.6875 0.7125 0.69375 0.70625 0.696875 0.703125

0.72.00 0.65 0.75 0.675 0.725 0.6875 0.7125 - - - -
0.28 0.65 0.75 0.675 0.725 0.6875 0.7125 - - - -

Free decay:
For the free decay test only two signals are measured; time and distance. The goal of this test is to obtain the
time it takes for the buoy to come to the static state after it is displaced a certain distance from it’s equilibrium.
The tests are conducted at three different amplitudes; 10, 7.5 and 5 [cm]. The initial displacement is obtained
by pushing the buoy down until it reached the desired distance set by three wooden sticks that corresponded
to the amplitudes. The test matrix is shown in table 3.4. Before every run a zero measurement is performed
and a minimum of two check runs at the same amplitude are conducted to see discrepancies.

Table 3.4: Program free decay test

Test matrix

Amplitude [cm]
Cylinder 10 7.5 5
Hemisphere 10 7.5 5

3.3. Results
In this section, the results of the test measurement are presented divided in four subsections: Force, added
mass and damping, free decay and finally the uncertainties. The used equation in this section are all obtained
from the book "Offshore Hydrodynamics" by J. Journee and W. Massie [7].

3.3.1. Force
The sample frequency of the force measurements was 1000 [Hz]. In figures 3.10 and 3.11 the raw signal and
filtered signal are plotted for the measurement at an oscillation of 4.26 [rad/s] for the cylinder. A Butterworth
filter design is used with a cut-off frequency at 2º [rad/s]. In section 3.4.1 a sensitivity analysis is conducted
for the measurements at the natural frequency of the geometries to see the influence of the filter on the
different parameters.

Figure 3.10: Unfiltered force signal Figure 3.11: Filtered force signal
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As can be seen, the motor of the oscillator needs time to reach the desired frequency. Therefore, the first
18 seconds of each measurement are not taken into account during the analysis of the results. For the first
analysis, the force amplitude, added mass and damping coefficients from each measurement are acquired by
applying a linear sin fit on the filtered data. This method gives an accurate impression on the force peaks but
does not cover nonlinear viscous effects that are visual in the time traces close to the natural frequency, as can
be seen in figure 3.12. In chapter 5 the nonlinear analysis will be elaborated in detail. In figure 3.13 a graph is
illustrated to indicate the force amplitudes measured at each frequency for the cylinder and hemisphere with
a motion amplitude of 5.04 [cm]. The natural frequencies that correspond to the cylinder and hemisphere
are respectively; !0c yl i =4.26 [rad/s] and !0hemi =4.40 [rad/s].

Figure 3.12: Sin-fit on the force signal 4.26 [rad/s]

Figure 3.13: Force comparison between Cylinder and Hemisphere

When the amplitude of oscillation decreases, less nonlinear effects are expected. To confirm this expec-
tation, three different amplitudes are measured. In figure 3.14 an example is shown for the time traces at the
natural frequency of the cylinder for three amplitudes. Although there is still some nonlinearity present in
the measurement at 0.3 [cm], a decrease is clearly visible.

Figure 3.14: Force comparison between different oscillation amplitudes
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3.3.2. Added mass and damping
Now the parameters of the sin-fit are known, the added mass and damping coefficients could be obtained
by equations 3.1 and 3.2. The phase output of the sin-fit is an important variable for the outcome of the
calculations. As is expected, the cylinder has higher values for both added mass and damping due to the
shape of the geometry. An observation that is less accurate is the non converging value of the added mass.
In theory the added mass becomes a constant with increasing frequency. Unfortunately the oscillator had a
limited range so higher frequencies could not be measured. Another observation which is hard to clarify is the
negative damping for the hemisphere at the highest frequencies. The reason could lie in the linear approach
that is used to find the phase difference between the displacement and force data. In chapter 5 the nonlinear
approach is used to obtain more information on this matter.

a =
c + Fa

za

cos"Fz
cos"za

!2 °m (3.1)

b =
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za

sin"F z
sin"za

!
(3.2)

In the graphs below, in figure 3.15 and 3.16, the obtained added mass and damping coefficients of the two
geometries are visualised.

Figure 3.15: Added mass coefficient Figure 3.16: Damping coefficient

3.3.3. Free decay
For the free decay-test, the logarithmic decrement is of interest. This shows the steepness of the decrease
between the peaks after one period of oscillation. With equation 3.3 the logarithmic decrement can be calcu-
lated. In reality, this calculation gives an indication of the value of the decrement. After the calculations, the
value is adjusted manually until the curve fitted the decrease of the peaks in the best possible way. As earlier
mentioned, the free decay tests are conducted for three initial amplitudes. For each amplitude a slightly dif-
ferent value for the decrement was found and is listed in table 3.5. For the cylinder at an amplitude of 5 [cm],
the decrement could not be fitted. In this case, two values are stated; one to match the first two peaks, and
one to match the first and last peak. In figures 3.17 and 3.18 the motion measurements are shown and the
obtained logarithmic decrements are plotted with the help of equation 3.4. Important to note is the different
time scales of the two measurements. Where the cylinder needs under 20 seconds to get back to its static
equilibrium, the hemisphere needs at least 60 seconds. During the free-decay tests the geometries oscillate
at their natural frequency which are respectively for the cylinder and hemisphere: !0c yl i =4.22 [rad/s] and
!0hemi =4.37 [rad/s].

vT = ln
Ω

z(t )
z (t +T )

æ
(3.3)

z = zae°v t (3.4)
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Table 3.5: Logarithmic decrements tank test

Logarithmic damping (v)

5 [cm] 7.5 [cm] 10 [cm]
Cylinder 0.28 0.11 0.2 0.175
Hemishpere 0.055 0.038 0.049

Figure 3.17: Damping of the cylinder at 10, 7.5 and 5 [cm] Figure 3.18: Damping of the hemisphere at 10, 7.5 and 5 [cm]

3.4. Uncertainties
All experiments are sensitive for uncertainties. Small discrepancies during the measurements could be caused
by: human error during construction of the model, roughness of the geometries, friction of the air-bearing,
the reflection of the tank walls / beach or post-process methods. In all cases it is tried to keep the uncer-
tainties negligibly small by conducting check runs and by working as accurate as possible. One uncertainty
requires extra attention which is the sensitivity of the sin-fit method during post processing.

3.4.1. Sensitivity Analysis
The forced-motion measurements of the cylinder and hemisphere at their natural frequencies, respectively:
!0c yl i = 4.26 [rad/s] and !0hemi = 4.40 [rad/s], are considered during the sensitivity analysis. The influence
the value of the cut-off frequency has on the output parameters of the sin-fit, amplitude and oscillation pe-
riod, are examined by increasing the cut-off frequency four times. The relative change in oscillation frequency
compared with the known frequency of the motion is listed in table 3.6, together with the corresponding force
amplitude. It is clear to see at which cut-off frequency the sin-fit tool creates irrelevant output. The influence
on the force amplitude is max 0.08 [N] for the cylinder and 0.01 [N] for the hemisphere which corresponds to
respectively 10% and 6 %.

Table 3.6: Sensitivity analysis sin-fit tool

Sensitivity analysis

Cut-Off freq [Hz] Amplitude [N] Freq change (!0) [%]

Cylinder

1 0.76911 0
1.5 0.77619 0
3 0.77888 0
9 0.67801 -1300

Hemishpere

0.9 0.18094 0
1.2 0.18165 0
1.4 0.18062 0
1.5 0.41668 -200
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Linear Model

To be able to compare the results of the tank tests, first a linear analytic model is established. For this model,
hydrodynamic parameters are needed that are obtained the open source program NEMOH. This is a bound-
ary element methods (BEM) code based on linear potential flow theory [1]. The input can consist of multiple
body meshes together with a desired loadcase. From the output of NEMOH, the hydrodynamic coefficients;
added mass and damping, in the frequency domain are obtained. The bodies and meshes are generated with
the open source program Salome [10].

Highlights chapter 4

• Construction of geometries and mesh files in Salome.

• Load case information on the numerical simulation to resemble the experimental set-up.

• Linear forced motion calculations.

• Hydrodynamic parameter results and contributions in the linear equation of motion.

4.1. Salome

Salome is an open source software framework that provides a CAD modelling tool and is able to generate
meshes that can be used in various numerical solvers [10]. In this particular case the software is used to
model the two cylinders together with the test tank walls to create an environment that corresponds to the
experimental set-up. Only the underwater part of the geometries is modelled and meshed as NEMOH is not
able to solve parts above the waterline. In the following subsection the geometries are illustrated.

4.1.1. Geometries

In figure 4.1 and 4.2 the two geometries are illustrated in the Salome model building environment.

17
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Figure 4.1: Cylinder geometry. Figure 4.2: Cylinder geometry with hemispheric bottom.

4.1.2. Mesh
In figure 4.3 and 4.4 the two meshes of the geometries are illustrated. The mesh size is set at 0.00985 [cm]. In
section 4.4 a mesh convergence study is performed to justify this value.

Figure 4.3: Cylinder mesh. Figure 4.4: Cylinder mesh with hemispheric bottom.

4.1.3. Tank Walls
The full length of the tank walls is meshed and used as input for the solver. In figure 4.5 the walls are visualised
in the horizontal plane. Again, only the underwater part is meshed which has a length of 80 [m] and a height
of 1.2 [m] which corresponds to the water depth that is used during the forced oscillation tests.

Figure 4.5: Mesh of the tank walls
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4.2. NEMOH
NEMOH is one of the few open source BEM solvers on the market and is often used for estimating the hydro-
dynamic parameters of wave energy converters [16]. The code structure consists of three parts. The prepro-
cessor, where the mesh is prepared and the user inputs for the calculations are read. The solver, calculates
the boundary value problems for the potential and the postprocessor writes the hydrodynamic coefficients
in a file. In this section the theory behind the solver is explained, an example of the user input is given and
the output of the calculations is illustrated.

4.2.1. Theory
NEMOH is a linear BEM code that solves linear boundary value problems (BVP) in the 3-dimensional space.
The code is based on potential flow which includes the assumptions that the fluid is inviscid 4.1, the flow is
irrotational and incompressible 4.2 and the velocity field can be derived from the flow potential 4.3. Further-
more, the pressure can be obtained using the Bernoulli equation 4.4 [1].

v = 0 (4.1)
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~r£ ~U =°!
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(4.2)
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On the surface of the body, a source distribution problem is created from a flow problem using the method
of Green’s functions [16]. The BVP’s are solved in the frequency domain so to compare it with the tank test
results, the hydrodynamic parameters are used in the linear equation of motion including a time vector. In
section 4.3.1 this method is explained.

4.2.2. Load cases
Next to the mesh file, another input file is generated to assign the desired calculations NEMOH has to ex-
ecute. The variables used for this research are: Number of bodies, their degrees of freedom, desired force-
components per body and the frequency range and step-size. The amount of bodies is constant for every
simulation and consists of two walls and the geometry. Both walls are fixed in all degrees of freedom and the
geometry is free to move in the heave direction only. Only the hydrodynamic parameters in the z-direction
are of interest in this research. To have comparable results with the tank test, the frequency range is set from
1.8 to 6.5 [rad/s] with steps of 0.025 [rad/s]. In section 4.4, the determination of the frequency stepsize is
further elaborated.

4.3. Results
In the following subsections, the obtained results from the linear analytic model are elaborated on and a first
analysis is given. First, the method to find the force amplitude and time trace per frequency will be stated to
continue with the hydrodynamic parameters that are obtained. In the last subsection, the linear model of the
free decay test is explained.

4.3.1. Force
With the added-mass and damping coefficients obtained from NEMOH the force per frequency is calculated
with the help of the linear equation of motion 4.5. During the forced motion test, the displacement, velocity
and acceleration are imposed and therefore known, see equation 4.6. A time array with the same duration as
a test run is created with a time step of 0.1 [s]. The restoring force coefficient, c, is calculated with equation
4.7 and is the same in all test cases. An example of a simulation for the cylinder at 4.26 [rad/s] is given in figure
4.6. In figure 4.7, the forces for all frequencies is given for the cylinder with walls. A small discrepancy is visual
at 3.15 [rad/s] which is caused by the value of the added mass and damping coefficient. In next subsection,
this will be elaborated.

(m +a)z̈ +bż + cz = Fz (t ) (4.5)
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z = za cos
°
!t +"z≥

¢
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Figure 4.6: Simulation example for Cylinder at 4.26 [rad/s]
Figure 4.7: Force amplitude at all frequencies for Cylinder with tank
walls

4.3.2. Added mass and damping
The added mass [kg] and damping [Ns/m] coefficients are retrieved from the output file using a generic
python script which is able to locate the coefficients according to the input file. The graphs in figures 4.8
and 4.9 present the hydrodynamic coefficients related to the frequency. Remarkable is the almost exact same
results for the damping coefficients for both the geometries. Because NEMOH only calculates the potential
damping coefficient no friction, vortices and separation phenomena are taken into account. As the shape
of the waterline area is the same it seems logical that the two geometries have the same damping coeffi-
cient. A clear difference between the simulation with and without the tank wall is seen. This difference can
be explained by the fact that reflected waves from the side walls influence the motion of the geometries and
therefore the coefficients. With Bob You’s approximation the wave lengths and velocities are calculated at
all frequencies for a water depth of 1.2 [m][19]. At 3.15 [rad/s] the disturbance is highest which is the point
where the wavelength of the radiated wave is exactly two times the width between the tank walls. In section
5.1.1 of next chapter, the accuracy of the linear approach towards estimating the hydrodynamic parameters
is assessed by comparing the numerical and experimental obtained hydrodynamic parameters.

Figure 4.8: Added mass coefficient for all frequencies Figure 4.9: Damping coefficient for all frequencies

Now the values of the linear hydrodynamic coefficients are known, the influence they have on the results
of the analytic model is studied. In figure 4.10 the absolute force contribution of the added mass and damp-
ing term in the motion equation are plotted. Figure 4.11 illustrates the three different terms in the motion
equation. Important to know is the 180 degree phase difference between the restoring stiffness and the iner-
tia term which means they cancel out at the natural frequency. So in theory, although the damping term is
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small, at the natural frequency it has a 100% contribution in the total force output. The graph emphasizes the
location of dominant terms in the motion equation as earlier stated in section 2.2.

Figure 4.10: Added mass and damping contribution Figure 4.11: Contribution of motion terms

4.3.3. Free decay
For the analytic model of the free decay test, the added mass and damping coefficients at the natural frequen-
cies of the two geometries are used to calculate, with equation 4.8, the damping coefficient of the logarithmic
decrement. The the time trace of the free decay test is established with equation 4.9. In figures 4.12 and 4.13
the results are illustrated. The values of the logarithmic damping coefficients are listed in table 4.2.
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Figure 4.12: Simulation of free decay test cylinder with tank walls Figure 4.13: Simulation of free decay test hemisphere with tank walls

Table 4.1: Logarithmic decrement coefficients

Logarithmic decrement (v)

Walls No walls
Cylinder 0.0154 0.0175
Hemishpere 0.0158 0.0180

4.4. Sensitivity analysis
To ensure the acquired data obtained from NEMOH is correct, the influence of the frequency step-size and
the mesh-size of the geometries are studied. In figures 4.14 to 4.19 first, the frequency step-size is considered
continued by the mesh size influence considering the case with and without tank walls. In cases where the
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tank walls are present, the graphs are zoomed at 3.15 [rad/s] as this was frequency where the influence of
the step-size and mesh-size was largest. The medium size mesh corresponds to a mesh size of 0.00985 [cm]
while the rough mesh has a size of 0.0197 [cm]. The values used in this chapter are d f = 0.025[r ad/s] and
mesh ° si ze = 0.0197[cm].

Figure 4.14: Frequency step-size influence on added mass coeffi-
cient Figure 4.15: Frequency step-size influence on damping coefficient

Figure 4.16: Added mass coefficient for all frequencies Figure 4.17: Damping coefficient for all frequencies

Figure 4.18: Added mass coefficient for all frequencies Figure 4.19: Damping coefficient for all frequencies
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Nonlinear Analysis

With the information obtained from the experiment and the linear anlytic model, the behaviour of the non-
linear viscous damping can be captured and the hypothesis of this thesis can be investigated. In this chapter
the nonlinear behaviour is analysed and approached by a quadratic damping term in the motion equation.
The goal is to establish a relation of the vertical drag coefficient over the frequency of oscillation. The state
of the art in determining the drag coefficient is applied on the data and compared with the performance of
a new nonlinear analytic model. First, the combined results of the previous chapters are analysed to have a
clear view of the viscous drag force behaviour.

Highlights chapter 5

• Assessment of the experimental and linear numerical method for obtaining hydrodynamic pa-
rameters.

• Description of the vertical viscous drag force behaviour over the frequency domain.

• Comparison between three analytic models describing the viscous drag force.

• Established relationship of the vertical drag coefficient over the frequency of oscillation.

5.1. Analysis of obtained results

In this section, the results of the tank test and linear analytic model are combined to quantify the viscous
force influences. First the added mass and damping is discussed as these results have influence on the force
results which are discussed in the second subsection.

5.1.1. Added mass and damping coefficients

In figures 5.1 and 5.2 the obtained added mass and damping coefficients obtained from NEMOH and the tank
tests are plotted in the same graph.

23
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Figure 5.1: Added mass tank test and simulations Figure 5.2: Damping tank test and simulations

A clear difference between the numerical results with and without the tank wall is seen. This difference
can be explained by the fact that reflected waves from the side walls influence the motion of the geometries
and therefore the coefficients. With Bob You’s approximation the wave lengths and velocities are calculated
at all frequencies for a water depth of 1.2 [m][19]. At 3.15 [rad/s] the disturbance is highest which is the point
where the wavelength of the radiated wave is exactly two times the width between the tank walls. This irreg-
ular frequency creates a mathematical problem in the boundary integral equation in the numerical solver.
This is not a physical problem and therefore this disturbance is not seen in the results of the experiment. It
can be stated that the linear approximation with tank walls is not able to correctly estimate the value of the
coefficients.

As expected, the value of the added mass coefficient is larger for the cylinder due to the shape of the ge-
ometry. A same trend can be seen in the numerically obtained values from NEMOH where no wall is present,
except, after the natural frequency this trend changes. Here, it is expected that the values converge as they do
for the solver results. Another observation is the underestimated added mass values before and at the natural
frequencies of the solver results. This difference in mass is exactly the mass that causes the shift in natural
frequency of the linear analytic model compared with that of the tank test. As this study focusses only on
the nonlinear viscous damping, this difference in mass is added in the linear model so the natural frequen-
cies of both methods correspond with each other. The value of this mass difference is for the cylinder and
hemisphere respectively 0.60[kg ] and 0.34[kg ]

The linear damping coefficient is dependent on the waterline area of the geometry and therefore the same
for both the cylinder and hemisphere. When comparing the experimental results, a significant difference
can be noticed. This is expected as more viscous effects are present for the cylinder and therefore a higher
damping coefficient is logical.

In a study of F. Ferri et al. [3], differences between coefficients obtained from a BEM solver and experi-
mental tests were also present. This study explained the error by the small contribution of the coefficients
in the total system of motion. In section 4.3.2 of previous chapter the contributions of the coefficients are
illustrated. With this information, it can be stated that the accuracy of determining the added mass and drag
coefficients from this experiment decreases rapidly when moving away from the natural frequency of the
system.

The results show that the value of the hydrodynamic parameters is hard to estimate with a linear solver
due to the fact no viscous damping is present. Furthermore, determining the parameters from the experiment
is error sensitive when other terms in the motion equation dominate.
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5.1.2. Force
The force deviations between the linear analytic and the experimental results are largest around the natural
frequencies of the geometries. In figures 5.3 and 5.4 the force amplitudes are plotted for the cylinder and
hemisphere. The force amplitudes of the linear model are only 13% and 29% of the measured force amplitude
for respectively the cylinder and hemisphere oscillating at their natural frequency.

Figure 5.3: Viscous drag force influence for cylinder Figure 5.4: Viscous drag force influence for hemisphere

In the force time-traces of the measurements near the natural frequencies, the effect of the viscous damp-
ing is clearly visual. In figures 5.5 and 5.6 the linear analytic result and tank measurement for the cylinder and
hemisphere are plotted in the same graph. It can be noticed that in the force time-trace of the measurements
no symmetry is present in the F = 0 axis. This means, the viscous forces behave different when moving down
than moving up.

Figure 5.5: Tank measurement and linear analytic force time trace of cylinder oscillating at its natural frequency

Figure 5.6: Tank measurement and linear analytic force time trace of hemisphere oscillating at its natural frequency

The significance of the viscous drag force is well presented by the difference in the damping time between
the linear analytic and experimental approach for the free decay test. In figure 5.7 the damping time for all
cases is illustrated.
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Figure 5.7: Logarithmic decrements for all cases (nonlinear part shaded)

5.2. Determination of the drag coefficient
As earlier stated, experiments have shown that the drag force is dependent upon the flow velocity squared [7].
Different methods are used in the past to determine the drag coefficients. In this section the damping term in
the motion equation is isolated containing the linear radiation damping and the nonlinear viscous damping
(equation (5.2)). As formula (2.7) calculates the drag force per unit length, the formula is multiplied by the
diameter of the cylinder to obtain the total drag force over the width of the cylinder. Four methods are pre-
sented for obtaining the drag coefficient starting with a widely accepted design method based on empirical
obtained data from the past. The three other methods are based on a least square fit applied on the experi-
mental data obtained in this research. As the experiments were conducted in still water, the flow velocity is
equal to the vertical velocity of the oscillating cylinder: ż = za ·!cos(!t +≤).

FD (t ) = 1
2
ΩCD Dż|ż| (5.1)

Fz (t ) = Finertia +Fdamping +Fstiffness

Fdamping(t ) = b · ż + 1
2ΩCD D · ż|ż|

(5.2)

5.2.1. Keulegan Carpenter
The KC-number, calculated with equation (5.3), is for all frequencies 1.6. This because the oscillation fre-
quency is cancelled in the equation. If figure 2.10 is recalled, the x-axis starts at KC=2.5. Little information is
found on drag coefficient for low KC number flows as in this area the viscous drag is often neglected.

In a design method proposed by classification bu-
reau Det Norske Veritas, also the drag coefficients
are defined for low KC-numbers, see figure 5.8[7]. If
this figure is followed, considering a smooth cylin-
der, a drag coefficient of 1 should be used in the
estimation of the drag force component. For this
method, the total damping force is calculated us-
ing the linear damping coefficient obtained from the
numerical solver in combination with a drag coeffi-
cient of 1. In the results, this method is referred to as
"KC".

KC = żmax ·T!

D
=

za ·! · 2º
!

D
= za ·2º

D
= 1.6 (5.3) Figure 5.8: KC-number related to the drag coefficient for a cylin-

der [7]
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5.2.2. Least squares fit 1
For this method, the scipy.optimize.curve-fit function is used in Python. This function tries to minimise the
sum of the least squares error between the input data and a given fit function by optimizing the variables in
the fit function. The measured force signal of the experiment is used as input data and the fit function consist
the motion equation including the damping term with the, to be optimized, variables see equation 5.4.

R
°
Fdamping

¢
=

ZT

0

©
F (t )measured °Fz

°
t ,Fdamping

¢™2 d t (5.4)

The variables to optimize in the damping force contain the linear damping coefficient, b, the drag coeffi-
cient, CD , and the phase of the velocity component, ≤. The total fit function is showed in equation 5.5.

Fz (t ,Fdamping) = Finertia(t )+Fdamping(t ,b,CD ,≤)+Fstiffness(t )

Fdamping(t ,b,CD ,≤) = b · za! · cos(!t +≤)+ 1
2ΩCD D · (za! · cos(!t +≤)) · |za! · cos(!t +≤)|

(5.5)

In this function the absolute velocity is used to correct for the sign as the velocity is oscillating. Unfortu-
nately the results of the method where not satisfying so a closer look into the characteristics of the measured
force signal is taken in the next subsection. In the results this method is referred to as "Fit 1".

5.2.3. Least squares fit 2
A Fast Fourier Transform (FFT) is applied on the measured force data to see the dominating frequencies that
are present in the signal. In figures 5.9 and 5.10 the plots of the transforms at the natural frequencies of the
geometries are illustrated. The first peak in the graphs show the linear first order effects that correspond to the
driving frequency of the motion. The second peak is at twice the driving frequency and shows the influence
of the second order nonlinear behaviour in the measured signal that is expected to correspond to the viscous
drag force. As can be noticed, the nonlinear effects have a, relatively, larger contribution for the hemispheric
geometry. The influence of the second order nonlinear effects vanishes when the driving frequency moves
away from the natural frequencies of the geometries.

Figure 5.9: Fourier analysis of force signal cylinder Figure 5.10: Fourier analysis of force signal frequency

With this information the quadratic velocity term is further analysed to find a relation where twice the
driving frequency is present. To establish this, the absolute velocity term in equation 5.5 is replaced by the
normal velocity. Use is made of the trigonometric similarities to link the velocity squared with the period-
doubling bifurcation of the system. The following relation can be derived:

ż · ż = (za! · cos(!t +≤))2 = 1
2

za
2!2 + 1

2
za

2!2 · cos(2!t +2≤) (5.6)
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In this relation, the second driving fre-
quency becomes visual. Because no abso-
lute velocity is present, the time trace will
stay positive. In figure 5.11 an example of
the time traces of both the quadratic veloc-
ities terms is illustrated. To correct for the
positive sign of the quadratic term, an extra
variable is added to the fit function in the
form of an offset. Except for the offset, the
same variables are used as in the previous
subsection. The new fit function is show in
equation 5.7: Figure 5.11: Time traces of the quadratic velocity terms

Fz (t ,Fdamping) = Finertia(t )+Fdamping(t ,o f f set ,b,CD ,≤)+Fstiffness(t )

Fdamping(t ,o f f set ,b,CD ,≤) = o f f set +b · za! · cos(!t +≤)+ 1
2ΩCD D · ( 1

2 za
2!2 + 1

2 za
2!2 · cos(2!t +2≤))

(5.7)

The results are more satisfying and will be discussed in the next section. This method will be referred to
as "Fit 2"

Least square �t 2a
The interest has grown to see how the results of fit 2 would differ if the added mass is added to the set of
variables instead of using the numerical obtained linear added mass values. In equations 5.8 and 5.9 the new
shape of the fit function is stated. The used damping function is the same as in equation 5.9. This method
will be referred to as "Fit 2a"

Fz (t ,Finertia,Fdamping) = Finertia(t , a)+Fdamping(t ,offset,b,CD ,≤)+Fstiffness(t ) (5.8)

Finertia(t , a) = (m +a) · (°za!
2 sin(!t )) (5.9)

5.3. Results nonlinear analysis
In this section, the results obtained from the different methods are discussed. First, the force amplitudes
and time traces are presented and the goodness-of-fit is calculated to define a measure of performance of
the used methods. Secondly, the values of the coefficients, including the drag coefficient is presented to find
the answer to the main question of this research. Because the results of fit 2 and fit 2a are similar, only the
goodness-of-fit values and coefficients of fit 2a are discussed to maintain a clear view of the results.

5.3.1. Force results
In figures 5.12 and 5.13 the force amplitudes obtained from the experiment and the different methods is visu-
alised around the natural frequencies. In case of the cylinder, all the methods show an improvement towards
estimating the experimental values. In case of the hemisphere, "Fit 1" is underestimating the drag forces and
"Fit 2" has some discrepancies around the natural frequency. "KC" does correctly estimate the force ampli-
tude around the natural frequency. The results seem quite favourable for the "KC" method, especially in case
of the hemisphere. But when the time trace is investigated this assumption changes.
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Figure 5.12: Fit result cylinder Figure 5.13: Fit result hemisphere

In figure 5.14 and 5.15 the time traces of the different methods are compared with the measurement re-
sults. In these figures it is clear to see that the conventional method, "KC" and the fit method including the
absolute velocity term do not follow the time trace of the measurement. In appendix A, the time traces at all
the frequencies are given.

Figure 5.14: Goodness of fit of different methods on the measurement of the cylinder oscillating at the natural frequency

Figure 5.15: Goodness of fit of different methods on the measurement of the hemisphere oscillating at the natural frequency

To measure the goodness of the fit (GoF) , equation 5.10 is used. This equation evaluates the different
methods by taking the square root of the sum of the least squares error and divide it by the amplitude of the
measured force at each oscillating frequency. In figure 5.16, the dimensionless values are given.

GoF =

qP30
t=0 (Fmeasured °Fcalculated))2

Fameasured

(5.10)
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ω [rad/s] KC Fit 1 Fit 2 Fit 2a ω [rad/s] KC Fit 1 Fit 2 Fit 2a
1,88 1 1 1 1 1,88 2 1 1 1
2,51 4 2 1 1 2,51 3 2 1 1
3,14 10 6 2 1 3,14 7 5 1 1
3,77 24 14 3 2 3,77 19 12 1 1
3,93 31 18 3 3 4,08 38 25 4 2
4,08 37 24 6 5 4,24 63 40 12 6
4,16 42 30 22 7 4,32 78 54 21 8
4,24 87 58 14 9 4,36 114 66 55 10
4,26 77 61 9 9 4,38 110 76 28 12
4,28 59 50 12 8 4,40 101 75 17 11
4,30 52 44 15 7 4,42 178 64 46 10
4,32 42 37 18 35 4,44 55 41 6 6
4,40 36 31 20 5 4,48 78 56 9 7
4,56 35 26 8 4 4,56 66 44 7 6
4,71 25 19 5 3 4,71 30 22 4 4
5,03 23 13 6 1 5,03 29 15 8 1
5,65 20 7 3 1 5,65 21 7 3 1
6,28 24 5 1 1 6,28 26 4 1 0

Cylinder Hemisphere

Figure 5.16: Goodness of fit values

The values emphasize the improvements of the second fit function compared to the method using KC and
Fit 1. When the added mass is included as a variable, a slight improvement is noticed. In next subsection the
obtained coefficients of fit method 2 and 2a are discussed.

5.3.2. Coefficients
In figures 5.17 and 5.18 the hydrodynamic parameter values obtained from the experiment, numerical sim-
ulation and best performing fit methods are illustrated. Although "Fit 2a" has the best performance, the
hydrodynamic parameters are highly fluctuating. The large amount of variables in the fit function causes this
behaviour. When the added mass is not included ("Fit 2"), the fluctuations decrease and the damping coeffi-
cients only fluctuate near the natural frequencies. The damping coefficients for higher oscillating frequencies
overestimate the experimental and numerical results. This could be caused by the small contribution of the
damping term in the motion equation for higher oscillating frequencies, which will increase the fit uncer-
tainty.

Figure 5.17: Added mass coefficients values obtained from ex-
periment, numerical and "Fit 2a"

Figure 5.18: Damping coefficients obtained from experiment,
numerical and "Fit 2" and "Fit 2a"

In figure 5.19, the obtained drag coefficients from "Fit
2", "Fit 2a" and the KC-method are illustrated. Again
the values of the "Fit 2a" method fluctuate, especially
near the natural frequencies. What is clear to see is
the influence of the oscillation frequency on the value
of the drag coefficient. So unlike the assumption of
the KC-method, even for small KC values, no constant
drag coefficient should be used for estimating the vis-
cous drag force.

Figure 5.19: Drag coefficients obtained from "Fit 2", "Fit 2a"
and "KC" method
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5.4. Concluding remarks
In the nonlinear analysis a better understanding is established of the behaviour of the viscous drag. The
measured signal can be best described by a function without an absolute velocity term. A probable cause is
the non-symmetric time trace of the force signal in the F=0 axis. For this reason, the fit of the conventional
drag force formulation, "Fit 1", is able to correctly estimate the force amplitude but does not cover the force
time-trace. If a constant drag coefficient is used, the "KC" method, the force amplitude around the natural
frequency is well estimated but will be overestimated when the viscous drag is of less importance. This chap-
ter shows that even for low KC-number values, viscous drag is still of importance when looking at oscillating
cylinders. Furthermore, the frequency of oscillation has a influence on the drag coefficient and is therefore
important to consider when the response of a oscillating buoy is estimated.





6
Conclusions

The vertical viscous drag force acting on a heaving cylinder with flat and hemispheric bases is investigated
by means of an experiment and a linear analytic model. The behaviour of the viscous damping is captured
and a linear and nonlinear analytic model is created that describes the measured force signal at different
frequencies. From the results, the following conclusions are drawn:

Experiment

• When the frequency of oscillation is close to the natural frequency of the geometries viscous damping
has a significant contribution in the motion of a WEC.

• The added mass and damping coefficients have a small absolute contribution in the motion equation.
Therefore, only around the natural frequencies the damping term becomes visual. For this reason, the
hydrodynamic parameters obtained further away from the natural frequencies are uncertain.

Linear model

• Due to the width between the tank walls an irregular frequency occurred at 3.15 [rad/s]. Therefore, the
numerical results of the hydrodynamic parameters where the tank walls are present are inaccurate.

• The numerical results without tank walls underestimate the values of the hydrodynamic parameters
when compared with the results obtained from the experiment as no viscosity is considered in the
numerical method.

• The force amplitudes of the linear model are only 13% and 29% of the measured force amplitude for
respectively the cylinder and hemisphere oscillating at their natural frequency.

Nonlinear analysis

• Non-symmetric period doubling characteristics occur in the force measurements near the natural fre-
quency of oscillation.

• Although the flow is oscillating, this characteristic can be captured accurately with a non-absolute ve-
locity squared term in the conventional drag force formulation: FD = 1

2ΩCD D|ż|ż ! FD = 1
2ΩCD Dż2.

• This formulation performs 10 to 20 times better if compared with methods using a constant drag coef-
ficient or using the convention drag force formulation with absolute velocity term.

• Even for small KC-number values, viscous drag influence the damping for an oscillating body. The
established relations relating the KC-number with the drag coefficient do not estimate the drag force
accurately.

• The drag coefficients varies over the frequency of oscillation.

Can a frequency dependent drag coefficient improve the accuracy in estimating the damping response of
a STC hybrid wind-wave energy converter?

The answer is: Yes it can. This research provides a new insight in the way the drag coefficient is treated.
The results show the importance of the frequency when the motion response of floating, semi-submerged,
bodies is considered. Future research is needed to translate the results into an applicable method which is
able to estimate the viscous drag analytically.
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�
Recommendations

This study demonstrated a first step in showing the importance of the frequency of oscillation in determining
the viscous drag forces. To translate the results towards the reality future research is required. In this chapter,
recommendations are provided for future research and possible improvements are given for the methods
used during this thesis.

• Improve accuracy: The oscillator used in the experiments showed high frequency mechanical distur-
bances. By increasing the size of the model the force amplitude will increase so the relative influence
of this disturbance decreases. Another option is to perform time-consuming CFD simulations to have
comparable material to validate the accuracy of the results.

• Perform experiments focussing on the added mass and linear damping only to decrease the amount of
unknown variables in the fit function. This will increase the performance of the fit function used in this
research.

• Translate the results from the frequency domain to a time domain so the nonlinear viscous effects can
be used to describe the free decay damping time.

• Irregular wave tests: In reality the wave energy converter will be excited by irregular waves. Irregular
wave tests can be used to see if the obtained results per wave frequency can be adopted to estimate the
response of the wave energy converter in irregular waves.

• Find the drag coefficients at full scale: To conclude the recommendations, a full scale CFD simulation
can give a good insight in the loads and may predict them with more detail. In this way the response
can be calculated and the PTO-damping of the wave energy converter can be optimized.
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A
Time traces

Time traces at all frequencies
In this appendix, all the time traces of the force measurements and methods are listed per frequency. First
the cylinder results are shown to continue with the hemisphere results.

Cylinder
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Hemisphere
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B
Fit variables

In this appendix the fit variables of methods "Fit 1" and "Fit 2" are illustrated.

Fit 1
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Fit 2

Fit 2a
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