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Abstract. This paper gives a survey on kernel-based scattered data interpolation meth-
ods in the context of static aeroelastic computations. We describe the general procedure,
address problems and solutions for large-scale data sets, for flat data sets, and for rota-
tional information. Finally, we demonstrate the versatility of the method by showing two
examples.

1 INTRODUCTION

In computational aeroelasticity, one major goal is to describe the influence of an elastic
structural behavior on the aerodynamic load distribution and the impact of aerodynamic
forces on structural deformations. Deformations of an aircraft during flight may have se-
vere consequences on the aerodynamic performance, maneuverability, and handling qual-
ities.10 For this reason, the elasticity of an aircraft has already to be taken into account
during the early stages of design and simulation.

A main task in the treatment of coupled aeroelastic systems is the simulation of fluid-
structure interaction (FSI). Research on FSI in the field of numerical aeroelastic simulation
has recently strongly increased.2,4, 7–9, 11 An FSI method derives an adequate numerical
distribution of aerodynamic loads at the structural nodes of the FE-model - using the
aerodynamic pressures given in finite volumes, volume elements, or panels of the dis-
cretized flow-field or surface - as well as an adequate deformation of the aerodynamic
shape - using the displacements and rotations given at the nodes of the FE-model.

In the literature, there exist two main formulations to describe the aeroelastic problem:
the monolithic and the coupled field formulation.9,14 In the first case, and especially for
simple and small-scale structural problems, the fluid and the structural state equations are
combined and treated as a single monolithic system of equations. However, for complex
aeroelastic problems, the fluid and the structural domains show different mathematical
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and numerical properties and require distinct numerical solvers. For the monolithic ap-
proach, a rewriting of the structural and fluid computer programs is necessary and the
extension to other disciplines is difficult to realize. Consequently, the simultaneous so-
lution by a monolithic scheme is in general computationally challenging, mathematically
and economically suboptimal, and software-wise unmanageable.9

In the non-monolithic approach, existing well-established numerical solvers can be used.
The interaction between the fluid and structural codes is limited to the exchange of surface
loads and surface deformation information using partitioned or staggered procedures.9

This approach allows an easier extension to multidisciplinary problems as they appear,
for example, in aerothermoelasticity or aeroservoelasticity.

Usually, the solution of dynamic aeroelastic problems needs a coupling in space and
time, whereas in static problems only coupling in space is necessary. For coupling in
time partitioned or staggered solution procedures9 are widely used. For coupling in space
recently both, purely mathematically and physically motivated approaches6,12, 13, 15 were
presented.

Because both, the aerodynamic and structural models are discretized in a physically
different manner, they do not match at the boundary. This means, that the models do
not share the same grid points at their common boundary. Even more, in many cases
both models do not even have a common boundary but only an approximate common
boundary. There might be substantial overlap and intersection between both models, or,
the structural model is entirely contained within the aerodynamical model of the aircraft.

Consequently, the structural discretization is not useful to model the aerodynamic
shape since there are, in general, not enough elements or nodes to represent a sufficiently
smooth surface. Hence, the structural model is often smaller than the aerodynamic model
by orders of magnitude.

In this paper, we will discuss recent developments using partitioned or staggered al-
gorithms based upon meshless, kernel-based methods, particularly upon interpolation by
positive definite and radial basis functions.1–3

This paper is organized as follows. In the next section we will shortly outline the
FSI problem more precisely. The third section will discuss the coupling procedure and
typical physical requirements such as the conservation of discrete work and forces, as
well as problems that arise, when rotations have to be recovered or the structural model
is actually only two dimensional. The last section gives some results from numerical
computations.

2 THREE FIELD FORMULATION

Fluid-structure-interaction problems are generally described in a so called three field
formulation, referring to the fluid domain, the structural domain and the interface between
both of them.

To be more precise, let Ω(t) be a time dependent domain of R
3. We will assume that

Ω(t) = ΩF (t)∪ΩS(t) for all time and ΩF (t)∩ΩS(t) = ∅. Here, ΩF (t) denotes the domain
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occupied by the fluid at time t, while ΩS(t) denotes the structural domain. Finally, let
Γ(t) = ΩF (t) ∩ ΩS(t) be the fluid-structure interface.

On ΩF (t) the governing equations that describe the flow are given by the Navier-Stokes
or Euler equations. These equations are based on the conservation of mass, momentum,
and energy. In our application, we will restrict ourselves to the Euler equations for
compressible flow,

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

∂u

∂t
+ u · ∇u +

1

ρ
∇p = 0 (2)

∂E

∂t
+ ∇ · ((E + p)u) = 0 (3)

coming from the conservation of mass (1), momentum (2), and energy (3).
Here, u denotes the velocity field, p the pressure, ρ the density, and E = ρ(e+ ‖x‖2

2/2)
the energy (where e is the internal energy and x ∈ R

3 the position vector). Density,
pressure, temperature, and internal energy are often functions from each other. Their
connection is described by laws from thermodynamics. Details can be found in.5

The solution of the Euler equations produces a pressure distribution on the aerodynam-
ical surface of the aircraft, which results into forces. These forces are responsible for the
lift of the aircraft. However, for elastic structures these forces lead also to a deformation
of (parts) of the structure, which, in realistic computations, cannot be neglected.

These deformations are typically described by the Lamé or Navier-Cauchy equations

ρs̈ = µ∆s + (µ + λ)∇(∇ · s) + b, (4)

where λ and µ are the Lamé constants and represent the elastic properties of the structure,
s is the displacement field, b are the body and external forces, and ρ is the density of the
body.

In particular in aeroelastic computations, an eigen mode formulation of (4) is used.
Suppose the displacements s are expressed as

s(x, t) =

∞∑

n=1

qn(t)ψn(x),

where the functions ψn(x) are the natural eigen modes of vibration of the structure and
qn(t) are the Lagrange variables. Then, using only a finite number of Lagrange variables,
(4) can be expressed as

N∑

p=1

Mnpq̈p(t) +
N∑

p=1

Knpqp(t) = en, 1 ≤ n ≤ N, (5)
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where M = (Mnp) is the mass and K = (Knp) the stiffness matrix, and en results from
the body and external forces.

The aerodynamical and the structural mechanical problem both have to be completed
by appropriate boundary and initial conditions. In the context of FSI problems (some of)
these boundary conditions are given by the other problem. To be more precise, on Γ(t)
we have to transfer

• forces from the fluid problem, which are integrated pressures, to the structural
domain,

• displacements, resulting from the structural solver, to the fluid domain.

Classical partitioned procedures for an FSI problem use classical solvers for the aerody-
namical and structural problem. In the first case, a Finite Volume method in an Eulerian
description is usually used. In the latter case, Finite Elements in a Lagrangian formulation
are the standard method.

3 COUPLING PROCEDURE

Several different coupling procedures have been studied. Amongst them, the most
promising are those based on interpolation methods used for transferring displacements
from the structural to the aerodynamical mesh. For transferring forces, interpolation
should not be used, since it does not reflect the correct physical behavior.

Interpolation by (conditionally) positive definite kernels is one of the most flexible
methods allowing to couple arbitrary geometries by reducing them to pure nodal infor-
mation.

To describe it more precisely, let us introduce the following notation.

• Structural side:

– X = {x1, . . . ,xN} is the set of nodes,

– f = (f(x1), . . . , f(xN)) are the forces that have to be computed during the
coupling process,

– g = (g(x1), . . . , g(xN)) are the displacements that are given by the structural
solver.

• Aerodynamical side:

– Y = {y1, . . . ,yM} is the set of nodes,

– F = (F(y1), . . . ,F(yM)) are the forces that are computed by the fluid solver,

– G = (G(y1), . . . ,G(yM)) are the displacements that have to be computed
during the coupling process.
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Note that the involved forces and displacements f(xj), g(xj),F(yj), and G(yj) are 3D
vectors. Hence, from now on fi = (fi(x1), . . . , fi(xN ))T ∈ R

N denotes the ith component
of the Matrix f , and so on.

3.1 Using Interpolation to Exchange Displacements

3.1.1 The General Procedure

A radial basis function interpolant is a function of the form

s(x) =

N∑

j=1

αjΦ(x − xj) + p(x). (6)

Here, Φ : R
3 → R is a (conditionally) positive definite function of a certain order m and

p ∈ πm−1(R
3) is a 3-variate polynomial of degree at most m − 1. The coefficient vector

α ∈ R
N as well as the polynomial p are determined by the interpolation conditions

s(xj) = vj, 1 ≤ j ≤ N,

where vj = gi(xj) are the given deformation for the ith coordinate (i between 1 and 3 is
from now on considered fixed) together with the additional conditions

N∑

j=1

αjq(xj) = 0, for all q ∈ πm−1(R
3).

In general, linear polynomials are included even for those basis functions, where this
would not be necessary by theory, i.e. if basis functions are employed which are condi-
tionally positive definite of order 0 or 1. The reason for this is, that this guarantees that
rigid body motions are exactly recovered. Hence, a typical interpolation matrix has the
form

A =




Φ(x1 − x1) Φ(x1 − x2) · · · Φ(x1 − xN) 1 x1 y1 z1

Φ(x2 − x1) Φ(x2 − x2) · · · Φ(x2 − xN) 1 x2 y2 z2
...

...
...

Φ(xN − x1) Φ(xN − x2) · · · Φ(xN − xN) 1 xN yN zN

1 1 · · · 1 0 0 0 0
x1 x2 · · · xN 0 0 0 0
y1 y2 · · · yN 0 0 0 0
z1 z2 · · · zN 0 0 0 0




,

where we have used the notation xj = (xj , yj, zj). The matrix has a typical block structure
and can obviously be represented in the form

A =

(
AΦ,X PX

P T
X 0

)
. (7)
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This matrix is, for an appropriate choice of basis function Φ, always invertible if the
structural points X are not located on a two dimensional plane.18

Introducing in the same way the matrices AΦ,X,Y = (Φ(yi−xj)) and PY = (pj(yi)), it is
easy to see that evaluating the interpolant at the aerodynamical nodes defines a coupling
matrix H : R

N → R
M via

s|Y =
(

AΦ,X,Y PY

) (
AΦ,X PX

P T
X 0

)−1 (
v

0

)
=:

(
H H̃

)(
v

0

)
. (8)

This coupling matrix maps the x, y, z-components of the displacement vectors on the
structural side to the x, y, z-components of the displacement vectors on the aerodynamical
side, i.e.

Gi = Hgi, 1 ≤ i ≤ 3.

3.1.2 Speed-up Methods for Large-Scale Data Sets

If the set of structural nodes and/or the set of aerodynamical nodes contains too many
points a direct set up of the coupling matrix H is either too time consuming or not even
possible. The overall computational cost is given by O(N3 + MN2) for computing the
coupling matrix and O(MN) for each coupling step, the storage requirement is O(MN).
For high resolution, large-scale models, where the structure can consist of several tenth
thousand points and the aerodynamical aircraft model of several million points, this is
beyond the capacity of standard computers. Hence, fast evaluation methods have to be
employed. For interpolation by radial basis functions such fast evaluation methods are
well-known and well investigated. They are either based upon a compactly supported
RBF, or a far or near field expansion of the kernel, or a partition of unity approach. More
details can be found in18 and the literature given therein.

The method of our choice is the partition of unity method, where the computational
domain is subdivided into several smaller regions. On each such region the interpolation
problem is solved locally and the local interpolants are glued together by a partition of
unity family. Details can be found in.3,17

In any case, such methods allow us to reduce the complexity to linear O(N) complexity
for computing the interpolant and constant complexity for each evaluation, i.e. O(M)
complexity for each coupling step. Such a reduced complexity is crucial when it comes to
coupling also in time.

3.1.3 Dealing with Rotations

In contrast to high-resolution models, one also often finds very reduced structural
models. The best known case is the structural grid of the AMP test wing, which is
sometimes reduced to a simple rod, see Figure 1.

For such reduced models, often not only displacement vectors at the nodes are known
but also rotational information is given. In our terminology, this means that for each xj
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Figure 1: Two structural models (left and middle) and the aerodynamical model (right) of the AMP wing

we are given not only the displacements g(xj) but also angles θj ∈ R
3. Since (small)

angles can be related to derivatives of the displacement field via




θx

θy

θz



 =
1

2




0 − ∂

∂z
∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0








g1

g2

g3



 =:
1

2
∇× g,

we are now looking for an interpolant s : R
3 → R

3 satisfying

s(xi) = g(xi), ∇× s(xi) = 2θ(xi), 1 ≤ i ≤ N.

Recently,1 a modification of (6) has been proposed to meet these generalized inter-
polation conditions. Note that this time the three components of the displacement field
cannot be recovered independently. The suggested modification consists of replacing the
kernel Φ : R

3 → R by a matrix-valued function Φ : R
3 → R

3×3 and the coefficients αj ∈ R

by vectors αj ∈ R
3. Moreover, to achieve a symmetric interpolation matrix again, the

data giving functionals have to be incorporated into the interpolant. To be more precise
(6) has to be replaced by

s(x) :=
N∑

j=1

Φ(x − xj)αj +
N∑

j=1

(δxj
◦ (curl))yΦ(x − y)αN+j , (9)

which can also be enriched by (vector-valued) polynomials. Here, the superscript y de-
notes the fact that the functional acts with respect to the second variable of the kernel
and δxj

denotes point evaluation at xj. More details on this approach can be found in.1

3.1.4 Dealing with Flat Structural Points

The AMP test wing is also an example for a a structural model, which is actually only
two dimensional, while the aerodynamical model is three dimensional. This means that
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we have deformations only on a two dimensional subset but need to transfer them to a
three dimensional model. Such an extrapolation problem is always problematic concerning
reliability. Moreover, the classical coupling matrix (7) will be singular in such a situation.
Nonetheless, the problem of finding the coefficient vectors of the interpolant (6) is still
solvable, since the right hand side of

A

(
α

β

)
=

(
v

0

)

belongs to the image of the matrix A. Hence, a solution to this linear problem exists,
though it is not unique. It can, for example, be computed using a singular value decompo-
sition or a QR decomposition of the coefficient matrix A. Another possibility of avoiding
the singularity of the matrix A is to use only two dimensional polynomials. This can be
justified as follows. Suppose the structural points are located on a plane, which is given
by two orthogonal unit vectors r and t and an additional vector a, such that each point
x on the plane has a representation

x = a + µr + νt

with two parameters µ, ν ∈ R. Denoting the parameters for xj by µj = (µj, νj), we see
that

‖xi − xj‖2 = ‖µi − µj‖2.

Moreover, the polynomial part of the interpolant (6), given by

p(x) = β0 + β1x + β2y + β3z

has the representation

p(x) = β0 + βTa + (βT r)µj + (βT t)νj =: γ0 + γ1µj + γ2νj ,

where we have set β = (β1, β2, β3). Hence, the interpolant (6) can entirely be written as
a function of the two dimensional points µj . Since the µj have to be pairwise distinct
themselves, and are hopefully not located on a line (otherwise we have actually to repeat
the procedure just described to derive a one dimensional problem), we are now in the
situation of an invertible matrix.

3.2 Exchanging Forces

Whenever the exchanging of displacements is reduced to nodal information, the ex-
change process can be described by a coupling matrix H : R

N → R
M if the components

are handled independently or by a coupling matrix H : R
3N → R

3M otherwise.
In both cases, the coupling matrix can be used to transfer forces from the aerodynamical

to the structural grid via
fi = HTFi, 1 ≤ i ≤ 3.
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ht

Figure 2: Structural and aerodynamic model of Alenia’s SMJ Model

(or f = HTF in the non-independent case, which we will not address further on). It is im-
portant to see that this definition of exchanging forces already guarantees the conservation
of discrete work, since

N∑

j=1

fi(xj)gi(xj) = fT
i gi = (HTFi)

Tgi = FT
i Hgi = FT

i Gi =
M∑

j=1

Fi(yj)Gi(yj)

for 1 ≤ i ≤ 3.
To conserve also the sum of forces, the coupling matrix needs to be conservative in the

following sense. If ek denotes the vector ek = (1, . . . , 1)T ∈ R
k, then H has to satisfy

HeN = eM .
If H is conservative in this sense, it immediately follows that

N∑

j=1

fi(xj) = fT
i eN = (HTFi)

TeN = FT
i HeN = FT

i eM =

M∑

j=1

Fi(yj)

for 1 ≤ i ≤ 3. The coupling matrix built by radial basis function interpolation using at
least constant polynomials is conservative.

4 EXAMPLES

4.1 Alenia’s SMJ Model

Interpolation by radial basis functions as the coupling procedure in Aeroelasticity has
intensively been studied. Here, we present some details of a test computation performed
on Alenia’s SMJ aircraft, see Figure 2. A more thorough presentation of the results can
be found in.3

Table 1 shows the differences between an aeroelastic and a rigid computation.
The deformation of the structure (see Figure 3, left) leads to a decrease of the total

lift as shown in Figure 3. Beside this decreased lift, a different behavior of the span-wise
Cp distribution at the wing tip is given.
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elastic rigid ∆%
Lift Cl 0.431 0.508 -15

Drag Cd 0.0299 0.0368 -18

Table 1: Influence of elasticity

Figure 3: Deflection and Pressure Distribution

This phenomenon can be explained by a vortex at the trailing edge of the wing tip.
In this region, the fluid particles undergo a rapid acceleration when passing the tip and
produce a local vortex that increases the Mach number to a maximum value of 1.4. Table 1
summarizes the differences between the elastic and rigid computations in terms of lift and
drag. Clearly, the influence of the elasticity cannot be neglected.

4.2 Recovery of Rotations

Our second example deals with the reconstruction of rotations for the AMP test wing,
shown in Figure 1. For testing purposes, we applied the following simple, analytic dis-
placements to the structural grid:

g(x) =
(
0, 0, 0.1y2 + 0.1x

)T
.

Then, the displacements were carried over to the fluid grid by standard interpolation (6)
and by the vector-valued interpolant (9) incorporating also the fact that this displacement
field induces a rotation of the form

2θ = ∇× g(x) = (0.2y,−0.1, 0)T .

In both cases, we used the same radial basis function, the compactly supported C2 Wend-
land function16 Φ(x) = Φδ(x) = φ(‖x‖2/δ) with φ(r) = (1−r)4

+(4r+1) and with support

10



Holger Wendland

radius δ = 1.051603, which corresponds to the longest side of the bounding box of the
structural model. Furthermore, we included linear polynomials.

Figure 4: Results for the AMP test wing with (left) and without (right) the reconstruction of rotations

Figure 4 shows the error for both methods on the aerodynamic side. Clearly, in both
cases the error is the largest close to the root of the wing, where structural and aerody-
namic meshes differ most. But it is also apparent that the generalized interpolant (9) is
much more capable of recovering the deformations caused by rotation at the leading and
trailing edge of the aerodynamic model.
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