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Abstract 

The subject of this report is the upending of a floating monopile for an offshore wind turbine 

foundation. This is an assignment of Van Oord Dredging and Marine Contractors BV. An analytical 

model has been developed to simulate the upending of a monopile in MapleTM, based on the general 

theoretical principles and the experience of Van Oord. An experiment was then done to validate the 

analytical model. The MapleTM script can be used to calculate the forces of the crane for future projects. 

The monopile, sealed with two end-caps, is towed by a tugboat from the storage site to the installation 

site and is then upended by the jack-up vessel of Van Oord, the Aeolus. The end-caps guarantee 

buoyancy during transport and upending. After upending the end-caps are removed, either internally 

or externally. A conceptual design has been developed for both removal methods. 

With upending the vertical position of the monopile can be reached with a nett weight of the pile 

greater than the safe working load of the crane using the buoyant force. The minimum draught needed 

for the buoyant force to remain within the safe working load of the crane, determines the minimum 

hydrostatic pressure needed for the external removal of the bottom-cap. The top-cap can only be 

removed once the pile has been placed on the seabed, since the buoyant force is the auxiliary of the 

crane. 

   

Figure 1: Upending of the monopile Figure 2: Result experiment and MapleTM Figure 3: Experimental set-up 

As shown in figure 1, the upending of the monopile is performed, by vertically displacing the 

connection point between the pile and the crane. Because the crane hook is attached to the pile with 

a hinge, the monopile can rotate freely around this point. For the analytical model in MapleTM it is 

assumed that the upending process is quasi-static because the influence of the inertia is negligible. 

The experiment has confirmed that the inertia may indeed be neglected by showing the similarity 

between two scaled upending tests at different continuous hoisting velocities and the corresponding 

quasi-static simulation. Therefore the scaled upending correlates to the quasi-static model. It is found 

that, only when the lifting starts and stops, and respectively the acceleration and deceleration are 

relatively large, the inertia influences the upending process. 

Further research to refine the upending process, as well as the design of the end-caps is recommended. 

The hoisting speed of the crane can be optimized if the expectations of the experiment and the 

analytical model are confirmed in practice. The design depends on the airflow when releasing the end-

cap and the internal pressure when lowering the pile towards the seabed. The internal pressure can 

be controlled using a pressure valve. These recommendations will lead to the optimized upending 

process of monopiles for offshore wind turbine foundations that are transported by towage using end-

caps. 
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Preface 

This document has been written as graduation thesis for my Master Offshore and Dredging 

Engineering at Delft University of Technology. Van Oord Dredging and Marine Contractors BV in 

Rotterdam offered me an assignment with the opportunity to combine the theory of my Master with 

projects of the company. 

The subject of this assignment is:  

“The conceptual design of closing end-caps for an offshore wind turbine foundation monopile 

facilitating towed transport and upending.” 

In order to develop a conceptual design of closing end-caps the monopile wind turbine foundation 

must be understood. The end-cap has to guarantee buoyancy during the towed transport and 

upending. Van Oord will use their own installation vessel, the Aeolus, to upend the monopile. The 

maximum capacity of the Aeolus is the safe working load (FSWL) and this load should not be exceeded. 

The goal of this thesis is to make a conceptual design for the top and bottom end-caps, facilitating the 

towed transport to the site, the upending and installation of the monopiles. The following aspects will 

be covered in the design process of the end-caps: 

1. Understanding and possibly detailing and/or adjusting the intended monopole towing and 

upending procedure. 

2. Analysing the buoyancy requirements needed to bring the monopile weight within the capacity 

of the crane. 

3. In addition care should be taken of conditions resulting from necessary testing requirements. 
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1 Introduction 

In Europe, the offshore wind energy industry is rapidly expanding. In the first six months of 2014 the 

European grid connected 16 wind farms with 224 offshore wind turbines.i The largest investment was 

the 600 MW Gemini project in the Netherlands. The independent power producer Northland Power 

acquired the majority of the project, along with the contractors Siemens and Van Oord. 

In 2015, Van Oord started the installation of the Gemini wind farm, which consists of wind turbines 

on a monopile foundation. A monopile foundation is a single tube support structure. The steel 

cylindrical tube is designed to support the total loads of the above-surface structure, to resist the 

environmental loads imposed on the substructure and the loads induced by the installation method. 

There are several ways to transport the pile to its final location. This thesis focusses on towed 

transport, as a monopile pulled by a tugboat which are connected with a towing arrangement as in 

figure 4, and upending of monopiles by the “Aeolus”, the installation vessel of Van Oord. 

 

 
Figure 4: Towed monopile by a tugboat 

 

 Scope 
This thesis considers the aspects of a conceptual design of closing end-caps for offshore monopile 

wind turbine foundation, facilitating towed transport and upending. The subject of this thesis was 

assigned by Van Oord. 

The monopile must be equipped with end-caps to provide buoyancy during the operations of towage 

and upending. The monopile equipped with the two end-caps during towage is shown in figure 4. 

The mass of the anticipated monopile is 1.100 tonnes and the safe working load (FSWL) of the crane 

vessel is 900t, given in Appendix A. Therefore at least 200t of buoyancy is required to be able to upend 

the monopile. The end-caps are removed after upending. Removal of the bottom-cap depends on the 

draft of the monopile needed for buoyancy. The draft causes the hydrostatic pressure on the bottom-

cap. The net pressure on the bottom-cap leads to the displacement of the bottom-cap after 

disconnecting the seal. 
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 Objectives 
The objectives have been formulated in the assignment for this thesis to lead to an optimized 

conceptual design. First, the procedure of towing and upending the intended monopile must be 

understood. The transport and the upending determine the maximum loads on the installed end-caps. 

The end-caps must withstand these loads to guarantee buoyancy of the monopile. The delivery of the 

monopile by a tug is shown in figure 5. 

 
Figure 5: Arrival of the monopile at the installation site 

Secondly, the buoyancy requirements to bring the weight of the monopile within the capacity of the 

crane will result in the initial conditions for disconnecting the end-caps. The draft of the pile and the 

resulting hydrostatic pressure on the submerged end-cap determine the external load during 

disconnection. The removal of the submerged end-cap is shown in figure 6. 

 
Figure 6: Removal of the bottom-cap 

The removal of the bottom-cap depends on the pressure balance on the end-cap and the safe working 

load of the crane. An internal overpressure is needed to push the bottom-cap out of the monopile. 

The bottom-cap is connected to the tugboat to control the response of the pile and to pick up the cap. 
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 Outline 
The objectives result the structure of the report. In the next chapter the general theory of the 

monopile for an offshore wind turbine foundation is explained. The installation of a monopile depends 

on transport, upending and the removal of the end-caps and is described in chapter 3. 

The topic of chapter 4 is the design of the end-caps which is based on the theory of chapter 3. The 

installation of the monopile, as explained in chapter 3, provides the requirements for the conceptual 

design of the closing end-caps. 

The dominant forces on the pile during the upending are described in chapter 5 to chapter 7. In the 

chapter 5 the analytical upending is defined. The experimental upending is the topic of chapter 6. The 

analytical model and the experiment are compared in chapter 7. 

 
Figure 7: Flowchart of the Installation of a monopile for an offshore wind turbine foundation 

Based on the previous chapters the verification and discussion take place in chapter 8. The last chapter 

with conclusions and recommendations, gives an overview of the steps to refine the installation of a 

monopile for an offshore wind turbine foundation while using end-caps in the future. 

Figure 8: Installed offshore monopile wind turbine foundations with transition pieceii 
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2 Monopile foundation design 

The design of the end-caps is determined by their goal. The end-caps are used to cover both ends of 

the monopile during transport and upending. The dimensions of the end-caps depend on the 

dimension of the monopile. The theory and design of a monopile wind turbine foundation is described 

in the first three sections. 

Experience with former projects of Van Oord is taken into account as well. After completion of a 

project a “Lessons Learned” report is written. This is explained in section 2.4. 

 General theory of a support structure 
The monopile is a type of support structure that is often used for wind turbines. An overview is given 

of the most important aspects that have to be taken into account for the foundation design and 

installation of the monopile. The monopile is a steel hollow cylindrical tube that carries the transition 

piece, the platform and the wind turbine which exists of the tower, nacelle, rotor and blades, as shown 

in figure 9. A monopile is a highly efficient type of foundation, which is very popular as shown in figure 

10. The monopile is suitable for water depths up to 40 meter. 

Figure 9: Wind turbine Figure 10: Used foundations of wind farms, end 2012

The design and dimensions of a monopile result from calculations based on the dimensions of the 

turbine and blades, site-specific data as the environmental conditions (wind, waves and current), 

seabed topography and the soil conditions. The design of the monopile is explained in the next section. 
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 General design of a Monopile 
The monopile is designed to sustain loads that can occur during installation and operational life of the 

wind turbine. The requirements for the monopile result from the ultimate (ULS), fatigue (FLS) and 

serviceability limit state (SLS), which are determined by the static and dynamic forces. The ULS is the 

maximum load-carrying resistance. The FLS is the possibility of failure due to the cumulative damage 

effect of cyclic loading. The SLS is the tolerance criteria applicable to normal use without exceeding 

the load-carrying capacity. 

Increase of water depth leads to an increase of bending moment and shear force at seabed level, 

requiring an increased pile diameter and penetration depth. Increasing the weight of the structure 

increases the installation loads. The site-specific data for the monopile design have to be known to 

calculate the right dimensions. The data are briefly described in the next three subsections. 

 Site-specific conditions 

Every location has its site-specific conditions, which influences the design of the wind turbine. The 

conditions that have to be taken into account are listed below. The normal and extreme climate 

conditions are used to calculate the SLS, FLS and ULS. 

 Water depth 

 Wind 

 Waves 

 Currents 

 Morphology 

 Soil types 

 Earthquakes 

 Ice, sea ice and solid ice

 
Figure 11: Orbital motion in deep, intermediate-depth and very shallow wateriii 

On the expected locations there are no earthquakes or exceptional natural circumstances and is no 

ice, therefore the conditions morphology, earthquakes, ice, sea ice and solid ice are not considered. 

The waves in the ocean are generated by the wind. They can break and interact with currents and the 

sea bottom. Wave induced water particles in the ocean move as shown in figure 11. The type of orbital 

motion depends on the ratio of water depth (d) divided through the wave length (λ). The waves in 

shallow water, / 0.05d    or equation 2.1, are long and have a large influence on the seabed. The 

waves in deep water, / 0.5d   , do not affect the seabed. 

The bottom orbital velocity of the water particles can be expressed with the simple linear wave theory. 

The orbital path is elliptical becoming flatter towards the bottomiv. The horizontal orbital velocity is 

defined in equation 2.2 and the bottom orbital velocity in equation 2.3, when |cos(𝑘𝑥 − 𝜔𝑡)| = 1 

or 𝑧 = −𝑑. 
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k Wave number (= 2𝜋 𝜆⁄ ) 1/m 
d Water depth m 

xw Coordinate of Cartesian reference horizontal in the direction of the wave m 

ω Wave frequency rad/s 

t Time s 
ub Bottom orbital velocity m/s 

a Amplitude of the surface fluctuation m 

   

The significant wave height is defined in equation 2.4. This height can be calculated as the mean of 

the highest one-third of waves in the wave record. The maximum wave height is needed for the design 

of the monopile and is defined in equation 2.5. According D. Faulkner this value is the most probable 

maximum wave height to be expected.v 

/3
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H H
N 

    2.4 

max ln( ) 2 1.86s sH H N H      2.5 

0.374.27 sT H   2.6 

s T g d      2.7 

N Number of waves in the wave record - 
j Rank number of the wave height, j=1 for highest, j=2 for second highest, etc. - 

Hmax Maximum wave height m 
λs Shallow water wave length m 

   

A wave going into shallow water is influenced by the bottom friction, white capping and depth-induced 

breaking. The wave becomes steeper and will finally break. The wave height divided by the wave 

length results in a breaking wave if the value is equal to one-seventh. 

The equations are based on a simple linear wave theory, which gives an estimation of the wave 

characteristics and their effects. The wave period for very shallow water is estimated with equation 

2.7. This assumption is rarely needed since the significant wave height and period are very often 

known at the final location of installation. 
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 Seabed topography 

The seabed topography depends on the changing water depth. The continental shelf is from the coast 

line to the shelf break. At the shelf break the seabed changes from the continental shelf to the 

continental slope. An angle of the seabed slope larger than one degree results in the shelf break. The 

continental shelf break can take place at a water depth from 20 to 550 meters with an average of 133 

meters.vi 

The surface of the seabed for a monopile does not need to be levelled before installation. Before 

designing a wind farm a site survey has to be done to get an overview of the bathymetry of the seabed. 

By using this data the total wind farm could need different designs. Besides the depth of the seabed, 

the type of soil must be known. The soil conditions are explained in the next subsection. 

 Soil conditions 

The soil conditions partially depend on the size of the sediment particles. The particle sizes in 

millimetre are defined in Table 1vii. The fine, coarse and very coarse soil is split in clay, silt, sand, gravel, 

cobbles, boulders and large boulders. The difference between the fine and coarse soil comes from the 

internal resistance, cohesion. Cohesive soil sticks together and non-cohesive soil not. Cohesive soil 

with undrained shear strength and plasticity, as for example clayey silt, inorganic silt and highly organic 

soils, is held together by the compressibility, cohesion and adhesion. 

 
Table 1: Soil classification after BS EN ISO 14688-1:2002 

The pore water pressure influences the shear strength, either drained or undrained. The undrained 

condition occurs if the internal resistance of the soil particles influences the behaviour of the soil. 

Coarse and very coarse soil are not influenced by the connectivity and internal resistance. Only if 

negative pore water pressure results from capillary forces, the water forms bridges between the sand 

grains.viii 

Soil can also be solid, i.e. chalk, which leads to a combination of drilling and pilling. A detailed soil 

investigation needs to be performed, with at least a borehole taken at every pile location with a 

laboratory test performed at encountered soil layers. Also seismic survey over the complete field to 

get an impression of the stratigraphy of the encountered layers. 

The soil conditions leads to the dimensions of the monopile which has to be a stable foundation for 

the wind turbine. The design of a monopile wind turbine foundation is explained in the next section.  

Particle sizes [mm] 37 >630

Soil fraction

0.002 0.0063 0.02 0.063

Fine soil

Clay
Silt

Fine Medium Coarse Fine Medium

0.2 0.63 2.0

Fine
Sub-fraction

Coarse

200 630

Very coarse soil

Cobble Boulder
Large 

boulderMedium Coarse

Sand

6.3 20

Gravel

63

Coarse soil
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 Design of a Monopile Wind Turbine Foundation 
The design of a monopile depends on the type of loads that affect the structure and the type of soil at 

the final location. A flow diagram for the design process is shown in figure 12. The external conditions 

are the site-specific conditions, as mentioned in subsection 2.2.1. 

Figure 12: Design process for Offshore wind turbineix 

When the final location and the external conditions are known, the capacity of the turbine must be 

defined. The turbine capacity results in a rotor size, which needs a certain height above the water level. 

The selected support structure is the monopile. The design load is location dependent as described in 

the previous section. 

The depth of the monopile into the seabed is indicated by the support structure and the foundation 

analysis. The last step, “structural integrity, fatigue check and check for performance”, must conclude 

that the monopile wind turbine functions properly during its expected lifetime. The process concludes 

on the design of the wind turbine as described in the next subsection. 

 Design of the wind turbine 

The wind turbine consists of different parts as shown in figure 9, figure 13 and in Appendix B. The 

connection of the monopile to the wind turbine tower is with the transition piece grouted to the 

monopile. The monopile is the foundation and penetrates into the seabed. The analytical model is in 

figure 14 as a mass-dashpot system. 

 
Figure 13: Foundation and 

substructure of a wind turbine 

 
Figure 14: Loads on the wind turbine 
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The air, water and soil are the different surroundings of the wind turbine which cause the difference 

between the springs and dampers. The theoretical mass (m), damper (c) and spring (k) system for the 

forces is given. This defines the nacelle as m1, the tower response by k1 and c1, the intermediate 

platform as m2, the transition part response as k2 and c2, the grouted part as m3 and the monopile 

response as k3 and c3. 

The turbine is in operation at a certain range of wind velocity. Today’s wind turbines convert only a 

fraction of the wind power to electricity and are set to start power regulation for certain wind velocity. 

Wind turbines are set to start at a 10-min average wind velocity of about 9 to 10 m/s. Full regulation 

starts at about 14 to 15 m/s and shut-down or idle mode at 25 m/s. Shut-down or idle mode is to 

prevent structural limitations and resulting wear and tear of the turbine. Idle mode is rotation of the 

wind turbine 60 to 90 degrees compared to the wind direction or rotating the blades in vane position. 

The normal wave conditions in combination with the extreme conditions are used to set the FLS of the 

foundation. The ULS can be defined with a long-term probability distribution approach. Long-term 

means at least dozens of years. The peak-over-threshold approach only considers the maximum value 

of one measurement above the threshold value. The threshold value is depending on the expected 

local weather conditions. 

The wind velocity is height depended and is the most important issue for the durability of the wind 

turbine. The wind velocity is defined by the local wind conditions. 

Figure 15: Various components of a monopile foundation (Iuga)x 

The additional layer around the monopile, shown in figure 15, is scour protection. Due to the presence 

of the monopile foundation vortices in the current may be created. These vortices locally increase the 

current velocity which might be responsible for erosion of seabed material around the foundation. As 

the erosion around the foundation in fact decrease the penetration depth and increases the bending 

moment in the monopile, a longer and stronger pile might be required.  

As an alternative a scour protection can be installed to prevent scour. It depends on the foundation 

type and local circumstances which option is the most economical one.  
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 Projects of Van Oord 
Experience with the monopile and the use of end-caps have been gathered during these projects: 

 Belwind at the coast of Belgium, completed in December 2010. 

 Luchterduinen at the coast of Holland near Noordwijk, completed in May 2015. 

 Gemini at the coast of Holland north of Groningen, started in August 2015. 

Only the project Belwind has been completed therefore the experience from Belwind is of additional 

value for this thesis. These three projects are described individually in the next three subsections. 

 Belwind 

Belwind is a project in the Zeebrugge region of the North Sea, about 46 km west off the coast of 

Oostende. The project consists of 56 wind turbines which provides 165 MW. The wind farm has been 

completed in 2010 and the “Lessons Learned” report has been written.xi 

Learned lessons of the Belwind project are mainly related to two incidents during this project. 

Monopile A04 and C05 sank because of end-cap failure during towage. In addition to the installation 

conditions IHC Merwede, the supplier of the end-caps, provided a manual with operating instructions 

for the Belwind project. Despite the fact that the conditions were met two monopiles have sunk during 

their transportation. The two monopiles are shown in figure 16 and figure 17. For pile A03 there was 

a near miss. 

The control of the installed end-caps lead to a checklist with preliminary conditions which have to be 

met before departure of the monopile from the storage site. These conditions are: 

 A final check on site and approval of London Offshore Consultancy before tow out. 

 24hrs a day presence on the site of the end-cap engineers of the supplier. 

 Full time presence of a site supervisor during preparation and installation of the end-caps. 

 All information must be communicated to one single point of contact responsibility for tow-

out planning. 

 

 
Figure 16: Salvage monopile A04 

 
Figure 17: Monopile C05 
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All monopiles had been checked before departure. The accidents of the two monopiles are very similar. 

Both accidents were caused by breaking or getting loose of the bolts, which connect the extra 

protection plate. If the bolts on one side break or get loose, the bolts at the other side will break 

shortly thereafter. This is caused by the stress of the disconnection at one side. 

2.4.1.1 Lessons learned 

The accidents were caused by: 

 Hydraulic system failure by pressure loss. 

 Mechanical system failure by shifting of one complete end-cap of the monopile. 

 Leaking seal caused by minor damages to the seal by a hit from an object with sharp corners. 

Based on these accidents the learned lessons for hydraulic end-caps during the Belwind project are: 

 Every end-cap needs to be equipped with a digital pressure monitoring system with a wireless 

link so the pressure can be checked on board the tug during towing. 

 All monopiles should be checked on the inside diameter. In this case the offshore high voltage 

system (OHVS) monopile appeared to have a smaller inside diameter due to a large wall 

thickness of the last steel can. End-caps can more easily adapt to a bigger diameter than to a 

smaller diameter. 

 A counter weight on the bottom end-cap worked well to keep the monopile aligned during 

towing and it is anticipated to work much better than a rudder. 

 The application of foam in the bottom-caps resulted in failure. Due to high pressure under 

water the foam bubbles started to burst and water could enter the foam. This endangered the 

floatability of the end-cap and made the end-cap heavier. Also frost damaged the foam. 

 The towing arrangement was connected to the end-cap, thus the monopile was towed by the 

cap. Reason for this was that according the design it was not allowed to weld/attach towing 

pad eyes or bollards on the monopile. The peak loads acting on the end-cap induced by tide 

and waves acting on the tug and the monopile can be very high. Therefore they form a risk of 

movement of the cap. It is preferable to find a design solution with an attached tow 

arrangement directly to the monopile and not to the cap. This was done on the Walney wind 

farm in the East Irish Sea in 2012, as shown in figure 18. 

Figure 18: Towing monopile on the monopile and not the end-cap 

The loose control panel moves around in the waves. Surely it slammed and damaged the hydraulic 

circuit and the MINIMESS®xii hose, which is the most vulnerable part. Finally both hoses broke loose 

and the end-cap lost both of its hydraulic circuits. After both hydraulic circuits were leaking monopile 

C05 sank. After the sinking of C05 an additional protection plate was installed on the end-caps. This 

has led to the following additional accidents: 
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 Heavy damaging impact on the control panel. 

 Protection plate connected by bolts with insufficient strength.  

The additional installed protection should have prevented the accidents. Nevertheless the protection 

plate resulted in damage of the control panel, caused by the bolts with insufficient strength. 

Calculations with the safety factor must be used to prevent accidents. This happened for monopile 

A04. For A03 leakage did only take place in one of the hydraulic circuits, since it lost one protection 

plate. 

The expectation is that most accidents can be prevented during future projects. The end-caps must 

be designed to have durability and water tightness from the moment of installation at the storage site 

until the disconnection after upending. The lessons learned from these accidents have defined the 

conceptual design of the end-caps, which is described in the chapter 4. 

 Conditions for the design of a Monopile foundation 
Based on the theory for the design of a monopile and previous projects of Van Oord conditions are 

set. These are used to prevent accidents in future projects. The “lessons learned” give the conditions 

for the conceptual design in the chapter 4. The conditions are the following: 

 The design of the monopile is location dependant. One windfarm can consist of a range of 

different monopiles when the local conditions vary. 

 The end-caps are designed to have a high durability and water tightness from the moment of 

installation until disconnection after upending. Durability and water tightness are the cause 

of most accidents. 

The general theory of the monopile foundation design and the experience of Van Oord have been 

explained in this chapter. The combination of these two aspects gives the criteria for the end-caps. 

The installation of the monopile is described in the next chapter.
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3 Installation of a Monopile Wind Turbine Foundation 

The installation of a monopile takes place at the wind farm. The monopile is fabricated and 

transported to the storage site, where the pile is prepared for towage to its final location. At the 

storage site the end-caps are placed to guarantee water tightness until removal during the installation. 

After arrival at the installation site the pile is upended and the end-caps are removed. The loads on 

the monopile during transport, upending and removal provide the requirements of the end-caps. 

In this chapter the theory of the installation of a monopile is explained. Transport provides the initial 

conditions for upending and is explained in the first section. Upending is the last step before the 

removal of the end-caps and this theory is the topic of the second section. In the third section the 

removal of the end-caps, the last step before installation of the monopile, is described. The theory is 

discussed in third section of this chapter. 

 Transport of a Monopile for an Offshore Wind Turbine Foundation 
The monopiles are transported to the storage site where these are prepared for towage. 

Transportation from the storage site to the location of the wind farm is shown in figure 19. Before a 

monopile can float, end-caps or plugs are installed. The towing arrangement makes the connection of 

the monopile with the tug. 

 
Figure 19: Towage of a monopile 

At the storage site the end-caps and the towing arrangement is installed and tests are done. Besides 

testing the monopiles a weather window to operate is needed. The weather window depends on the 

requirements for the Aeolus, shown in figure 20, to operate. The requirements of the environmental 

conditions are given in Appendix E, for jacking, operational, survival and transit. The workable weather 

window is defined as the period during which the significant wave height, the current and the wind 

velocity are below the acceptable threshold values. The downtime period is the opposite. 

 
Figure 20: The Aeolus 
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By using local statistical weather measurements and the threshold values, the expected weather 

windows are estimated. In case of a tender the period of installation is based on the history of the 

weather conditions, along the towage route and the installation site. The period of installation is 

defined before the installation starts. 

The weight of a floating monopile causes a submerged part. The submerged part leads to drag and lift 

forces. The drag force along the submerged monopile are the counter force to the tug. The lift force 

results from waves and the towage velocity. The lift force acts perpendicular to the undisturbed water 

flow velocity and the drag force. The lift force causes a decreased submerged volume. Since 

transportation and upending only take place with gently wave conditions these forces are neglected. 

At the installation site the monopile is connected to the local tug, as shown in figure 21. The local tug 

escorts the monopile to help the jack-up. The needed capacity of the tug is less than the capacity 

needed to transport the monopile, since the local tug only has to position the monopile which takes 

place at low velocity. 

 
Figure 21: Connection to local tug close to the installation vessel 

The rigging arrangement, in Appendix C, makes the connection with the jack-up, shown in figure 22. 

Positioning the monopile is done after connecting the control lines with the jack-up. The compressors, 

which seal the end-caps, are controlled from the jack-up during upending. The tug removes the towing 

gear and returns to the storage site for the next monopile. 

Figure 22: Handover from tug to jack-up 

Delay during transport is prevented if the end-caps are tested on the storage site and if the threshold 

value for the Aeolus to operate is not exceeded. The conditions for the transport of a monopile for an 

offshore wind turbine foundation are the following. First of all the weather window for the period of 

transport and upending is calculated in advance. The drag and lift force during transport are neglected 

since this takes place with gently wave conditions. Transport provides the initial conditions for 

upending. 

The next step for the installation of the monopile at the installation site is upending the monopile, 

topic of the next section. 
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 Theory of Upending 
The tug hands the monopile over to the crane, which installs the pile. The installation starts with 

upending of the monopile, which is restricted by the safe working load of the crane. Based on the 

initial conditions shown in figure 23, the crane starts lifting or actually upending the pile, shown in 

Appendix D. 

 
Figure 23: Initial forces on the monopile 

The pile starts rotating when the lifting starts, since the trunnions are not aligned with the centre of 

gravity (CoG). Upending of the monopile depends on multiple independent load factors, which lead 

to the net force on the pile. Upending is done by hoisting, defined by the hoisting speed and the 

capacity of the crane, and is determined by the sum of all the forces. The forces results from the 

hydrostatic and atmospheric pressure, the inertia, the gravity, the viscosity, the elasticity and the 

surface tension. 

During upending of the pile the surroundings of the monopile partial changes. The hydrostatic 

pressure decreases because the crane puts an upward load on the monopile. This decreases the 

buoyancy of the pile, equation 3.1. The submerged volume must remain sufficient to keep the load of 

the crane less than or equivalent to the safe working load, equation 3.2. 

sw sw i MP h sF g g A L p A           xiii 3.1 

c SWLF F F F    3.2 

  
F∇ Buoyant force N 
ρsw Volumetric mass density of seawater kg/m3 
∇ Submerged volume m3 
As Submerged cross-sectional area m2 

LMP Length of the monopile (≈70) m 
Fc Load lifted by the crane N 
F Net force N 

FSWL Safe working load of the crane N 

   

The inertia of the monopile prevents rotation of the pile. The resistance is based on the changing 

velocity. The stationary floating monopile resists lifting and the continuous hoisting speed maintains 

when the lifting stops. The inertia force influences the net force during the changing velocity at the 

beginning and end of hoisting. 

The gravity force on the monopile is unidirectional and constant, unless the mass of the pile changes. 

During upending the monopile is repositioned and the gravity force remains constant. The removal of 

the rigging arrangement before upending and the removal of the end-caps after upending reduce the 
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weight of the pile. The reduction of the weight of the pile decreases the needed buoyant force to 

remain within the capacity of the crane. 

Viscosity is the internal resistance of a fluid to flow.xiv The dynamic viscosity of seawater is in the range 

of 0.8 until 2 mNs/m. The elasticity is the property of returning to an original form or state following 

deformation. The elasticity of steel is a constant in the range of 180GPa until 240GPa. Surface tension 

is the appearance of a film across the surface of a liquid caused by the attraction between its molecules. 

The surface tension is in the range of 0.18 until 0.37 mN/mxv. 

The scalar magnitudes of the forces affects the flow field.xvi The net force on the monopile is defined 

in equation 3.3 and the forces are defined individually in equation 3.4 to 3.9. The standard seawater 

properties are shown in Appendix F. 

P I G v E TF F F F F F F       3.3 

     0 0P hF p A p p A p g h A            3.4 

2 2( ')IF m a m m a V l         3.5 

GF m g   3.6 

   ( , , )
dV

v d x y z
F A A V l               3.7 

EF E A   3.8 

TF l    3.9 

  
FP Pressure force N 
FI Inertia force N 
FG Gravity force N 

Fv Viscous force N 
FE Elasticity force N 
FT Surface tension force N 
p Pressure N/m2 
A Cross-sectional area m2 
p0 Atmospheric pressure (≈101325 N/m2) N/m2 
ph Hydrostatic pressure N/m2 
h Distance below seawater level m 
m Mass kg 
a Acceleration m/s2 

m' Hydrodynamic mass kg 
V Velocity vector (u, v, w) m/s 
l Length m 
τ Shear stress N/m2 
μ Dynamic viscosity N s/m2 
ε Eddy viscosity N s/m2 

dV/d(x, y, z) Velocity gradient s-1 
E Elasticity N/m2 
σ Surface tension N/m 
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The importance of every force depends on the influence on and percentage of the net force. After 

upending and before installation of the monopile, the end-caps are removed, the topic of the next 

section.  

 Removal of the End-caps 
The last step before placing the monopile on the seabed is removal of the end-caps. The conditions 

related to the removal of the end-caps are defined in this section. The removal of the end-caps 

depends on the needed buoyant force to keep the lifting load within the capacity of the Aeolus. The 

removal of the bottom-cap is the topic of the first subsection and the removal of the top-cap the topic 

of the second subsection. 

 Removal bottom-cap 

The removal of the bottom-cap depends on the external loads, the hydromechanics. These loads 

consist of hydrostatic and hydrodynamic forces and the hydrokinetic motion. Hydrostatic force is the 

force of fluid at rest, hydrodynamic force is the force of fluid in motion and hydrokinetic motion is the 

behaviour of fluid in motion. This is shown in Appendix D. 

The draft for the buoyant force causes the hydrostatic pressure on the bottom-cap, as defined in 

equation 3.4. During the removal the least draft of the bottom-cap is preferred since this results in the 

least hydrostatic pressure. In case of a lower hydrostatic pressure on the bottom-cap less air is needed 

to be pumped into the monopile to obtain a small overpressure. The pressure leads to hydrostatic and 

hydrodynamic pressure and kinematic motion, explained in this section. Finally the process of 

removing the bottom-cap is described. 

3.3.1.1 Hydrostatic pressure 

The hydrostatic pressure is a pressure caused by a fluid due to gravity. This pressure increases linear 

with depth measured from the surface relative to the weight of the fluid that exerts a downward force. 

A floating stationary monopile has a net resultant force of zero since gravity and the hydrostatic 

pressure are equal. 

The monopile floats if the relative density of the submerged volume is equal to the density of seawater. 

The monopile without the bottom-cap remains floating if this condition remains. The maximum 

expected draft of the monopile is used to calculate the maximum hydrostatic pressure. The internal 

pressure results from air pumped into the monopile. The internal pressure must be the maximum 

expected hydrostatic pressure and lead to an overpressure inside the monopile. 

The relative density of the bottom-cap defines the net resultant pressure balance. If the relative 

density is smaller than 1 the monopile floats and bigger than 1 it sinks. The relative density is defined 

in equation 3.10. 

r

sw





  3.10 

  
ρr Relative density - 

   

An internal overpressure pushes air and the bottom-cap out of the monopile until there is a pressure 

balance. The flow needed for equilibrium leads not to a static but a dynamic pressure. 
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3.3.1.2 Hydrodynamic pressure 

Hydrodynamic pressure is the resulting force by a fluid or gas in motion. External loads do not only 

depend on gravity, density and the water depth, but also on the flow velocity. The relation of the 

motion leads to the kinetics, which can be calculated by using the Bernoulli equation, equation 3.11xvii. 

The simplified equation, equation 3.12, is valid for an irrotational flow (Λ*V=0) and a perfect fluid 

(μw=0) with a steady flow (δΦ/δt=0). 
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Φ Velocity potential m/s 
Λ Operator (of 3D Cartesian system) m 

μw Dynamic viscosity of the wave N s/m2 
TMP,max Maximum draft of the monopile m 

n Amount of substance of air mol 
R Gas constant (≈8.314472) J K-1 mol-1 

Tmp Temperature inside the monopile K 
Va Volume of air m3 

ρa Volumetric mass density of air (≈1.25) kg/m3 

   

The flow causes dynamic pressure and kinetics, the motion of the air. The overpressure inside the 

monopile is needed for the flow of air out of the pile. The flow of air in motion is the hydrokinetics. 

3.3.1.3 Hydrokinetics 

The hydrokinetics are the behaviour of fluid in motion. This behaviour leads to the dynamic pressure, 

as explained in the previous subsection. This results from the flow of air out of the monopile. The flow 

of air causes an additional pressure decrease. The flow velocity of air can be calculated with equation 

3.13.  
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ν Kinematic viscosity m2/s 

  
The air, which flows out of the monopile, causes friction along the wall of the bottom-cap and the 

monopile. The friction decreases the amount of air that escapes. The resulting shear stress is defined 

in equation 3.14. The velocity vector is a three-dimensional flow velocity. The u-, v-, w-axes are related 

to the x-, y-, z-axes.  
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The outflow of air relative to the displacement of the bottom-cap must be calculated. This is used to 

define the total internal overpressure to fully disconnect the bottom-cap. The relation of the kinematic 

viscosity and the dynamic viscosity is shown in equation 3.15. This depends on the density of the fluid 

or gas. 

The hydromechanics explain the reason why the internal overpressure is preferred for the removal of 

the bottom-cap. The process of removal is based on the static, dynamic and kinetic hydromechanics. 

3.3.1.4 Process of removal 

The process of removal of the bottom-cap is done with internal overpressure. The overpressure 

pushes the bottom-cap out of the monopile. The initial conditions are shown in figure 24. The 

hydrostatic (P(h)) and internal (P(i)) pressure are shown in figure 25.  

Figure 24: Initial pressure on the bottom-cap 
 

Figure 25: Pressure on the bottom-cap 

During the disconnection of the seal the bottom-cap starts moving when the friction of the seal with 

the monopile is less than the pressure difference. Friction can damage the seal, so the seals must be 

checked when returned at the installation site. Hydrostatic response of the bottom-cap takes place 

until the seal is (partially) disconnected from the monopile. 

The hydrodynamic response starts when either the seawater, the case with an internal under pressure, 

or the air, the case with an internal overpressure, can flow. The size of the gap and the pressure 

difference influence the hydrodynamic response. The flow velocity, the hydrokinetic response, is part 

of this response. The flow velocity, in equation 3.16, the needed internal pressure, in equation 3.17, 

and the needed volume of air, in equation 3.18, can be calculated. 
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Δp Pressure difference N/m2 
pi Internal pressure N/m2 
cν Fluid viscosity Pa s 
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The flow of air out of the monopile decreases the internal pressure, which leads to the displacement 

of the bottom-cap. The total load on the bottom-cap pushes the cap out of the pile. The displacement, 

velocity and acceleration of the bottom-cap decreases the internal pressure. The pressure inside the 

pile must be sufficient before disconnecting the seals and lead to a fully removed bottom-cap. 

There are two types of bottom-caps either a cap which floats or one which sinks. A floating cap needs 

a calculated internal overpressure to fully remove the bottom-cap. A sinking cap needs a small 

overpressure to guarantee the initial displacement of the bottom-cap. 

Based on previous experience, end-caps do not have to float. A floating bottom-cap increases the risk 

of damage during removal from the monopile. A connection point for a cable to the winch at the 

tugboat or the jack-up is needed. The internal overpressure gives the initial acceleration of the 

bottom-cap out of the monopile. 

The total load is calculated with equation 3.19. This equation result the total load by the mass, the 

hydrodynamic mass and the fluid which sticks to the mass, the combination of the previous three 

subsections. The next step after removal of the bottom cap is the removal of the top-cap. This is 

explained in the next section. 

 Removal top-cap 

After removal of the bottom-cap, the top-cap is removed. The goal of the top-cap is to retain air inside 

the monopile for buoyancy. The top-cap is removed when the crane does not need the buoyant force 

to lift the monopile. The FSWL of the crane must not be exceeded. 

3.3.2.1 Buoyancy restrictions 

The buoyancy restrictions depend on the safe working load of the crane. The relative density of the 

submerged steel based on the density of seawater leads to the minimal submerged volume of the 

monopile to remove the top-cap. The relative density is used to calculate the load lifted by the crane, 

using equation 3.21. 

   MP b s sw MP MP b s c SWLA T A L T F F            3.20 
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AMP Cross-sectional area of the monopile m2 
Tb Draft of the bottom-cap m 
ρs Volumetric mass density of steel (≈7850 kg/m3) kg/m3 

FMP Weight of the monopile N 

   

The relative density for a monopile of 1100t is calculated with equation 3.21. The total load of the fully 

submerged monopile is more than the FSWL. The top-cap can only be removed when the monopile is 

placed on the seabed. Lowering the monopile increases the hydrostatic pressure and the buoyant 

force of the monopile. The increasing internal pressure leads to the maximum load on the top-cap. 

The top-cap must be designed to withstand this force. 
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Figure 26: Spring controlled pressure valve 

A pressure valve must be installed on the top-cap to define the maximum internal pressure. By 

opening the valve, air is released and the internal pressure of the monopile will decrease. The buoyant 

force must remain sufficient for the crane. An example of a controlled pressure valve is shown in figure 

26. 

The screw of the valve defines the pressure needed to open the valve. The spring stiffness with the 

initial displacement sets the needed pressure. If the pressure exceeds the spring force, as defined in 

equation 3.22, the valve will open. With an open valve the pressure is reduced until the defined 

maximum pressure. 

 ,0k k kF k x x    3.22 

  
Fk Spring force N 
k Spring stiffness N/m 
xk Displacement of the spring m 

xk,0 Initial displacement of the spring m 

   

The needed internal pressure must be calculated and adjusted on the valve before the monopile 

leaves the storage site. This is based on the dimensions of the monopile and the final installed location. 

 Conditions for the Installation of a Monopile 
The conditions that influence the installation of a monopile offshore from the storage site until the 

final installation are mentioned in this chapter. Based on the theory the recommendations and 

assumptions for the installation of a monopile for an offshore wind turbine foundation are combined 

to define the conditions to install a monopile offshore. The conditions are: 

 A weather window for the installation of a monopile has to be calculated in advance. 

 Drag and lift force during towage can be neglected since this takes place with gently wave 

conditions. 

 Transport provides the initial conditions for upending. 

 Removal of the bottom-caps is a dynamic process. 

 The top-cap are removed when the pile is placed on the seabed. 

 The crane only lifts the vertical load when the vertical pile is clamped by the gripper. 

The monopile is analysed theoretically until installation. The dominant forces must be determined to 

simplify upending of a monopile. Based on the theory the recommendations and assumptions are 

either confirmed or rejected in the next chapters.
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4 Conceptual design of the End-caps 

The conditions based on the theory and the “Lessons learned” from projects of Van Oord together 

form the requirements for an optimized conceptual design of the end-caps. Since the monopile is 

designed for loads much bigger than possible during transport or installation, the end-caps are the 

weakest points. The loads which the end-caps have to encounter determine the prerequisites. 

With the theory in chapter 3 these loads are calculated. The maximum loads are horizontal, vertical 

or a combination of both from the storage site until disconnection at the installation site. The 

prerequisites for the design of the end-caps are the following: 

 End-caps have to be designed with a high durability. The end-caps should always be checked 

at the storage site. 

 End-caps have to be equipped with manometers. 

 End-caps used as a top-cap must have a pressure valve which is set after installation on the 

monopile for the installation conditions of that specific pile. 

 End-caps have to be equipped with a digital pressure monitoring system. 

 The rigging arrangement must be installed on the pile and not on the end-caps. 

 Two installed end-caps need to have a weight balance for safe transport of the monopile. 

 The control panel of the end-cap must be well protected. 

The most important aspects to optimize the concept are discussed in the next section. In the second 

section these aspects lead to two designs of the end-caps. Finally the best conceptual design is defined 

in the last section of this chapter. 

 Requirements of End-caps 
The requirements of the end-caps have been mentioned above. Important aspects are the dimensions 

of the pile, the conditions of the end-caps and the force balance. These issues will be described in the 

next three subsections. 

 Dimensions of the Monopile 

The dimensions of the monopile, as explained in chapter 2, depend on the dimensions of the wind 

turbine, the soil properties and the weather conditions at the final location. The dimensions of the 

monopile are defined and given by the client. The end-caps must fit inside the ends of the monopile. 

Generally the internal diameter and wall thickness varies both within a single project and also relative 

to other projects, as shown in table 2 on the next page. 

The difference between the inner diameter of the monopile and the outer diameter of the end-cap is 

filled with a piston seal. The piston seal must guarantee water tightness when it is clamped. When the 

seal is released, or unclamped, the end-cap has to move freely. Using two individual seals on each 

end-cap increases the safety. 

Two parallel independent seals for every single end-cap result the highest probability of water 

tightness. The distance between the seals must be sufficient to prevent interaction, but not too big to 

prevent counterforces between the seals. The distance between the installed seals must be at least 

the wall thickness of the monopile. This leads to the penetration depth of the end-cap into the 

monopile.  
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Details 
Project 

Outer diameter [mm] Wall thickness [mm] Inner diameter [mm] 

Belwind 

5000 70 4860 

5000 60 4880 

4072 60 3952 

4072 55 3962 

Gemini 

6000 70 5860 

5800 70 5660 

5600 65 5470 

4522/4243 75 4372/4093 

Luchterduinen 
5000 60 4880 

4500 70 4360 
Table 2: Properties of monopiles of projects of Van Oord 

The pressure of the seals should be monitored continuously to check the water tightness. The seals 

must satisfy the buoyancy requirements, described in the next subsection. 

 Conditions of the End-caps 

The end-caps are used repeatedly and must not fail. The conditions for the end-caps to be used 

properly depends on the type of sealing system. The types of sealing system are described in the next 

subsubsection. In the second subsubsection the dimensions of the end-cap are described. Finally the 

position of the sealing system is mentioned in the last subsubsection. 

4.1.2.1 Type of the sealing system 

The type of sealing system depends on the specific details of such a system. The three types of systems 

that can be used are: mechanical, hydraulic and pneumatic. Every type has its own advantages. 

A mechanical system consists of elements that interact on mechanical principles. The mechanical 

system has the advantage that it can be used more often, but this depends on the sealing material. 

The hydraulic system can be applied as the sealing material for a mechanical system. 

The hydraulic system consists of a non-metallic material captured in a groove such as rubber, 

polytetrafluoroethylene (PTFE) or thermoplastic elastomers. The system seals after deformation by a 

controllable external force. The material is incompressible and can withstand high forces.  

The pneumatic system is also based on deformation, but by a gaseous medium. Gas is compressible 

and absorbs excessive forces. Such compressible substance is less controllable than the material of a 

hydraulic system. 

The mechanical and hydraulic system are combined for the seal of the conceptual design. The 

dimensions needed for the sealing system influence the dimensions of the end-cap. This is described 

in the next subsubsection. 

4.1.2.2 Dimensions of the End-cap 

The difference between the inner diameter of the monopile and the outer diameter of the end-cap is 

filled with the piston seal. The piston seal must guarantee water tightness when it is clamped. When 

the seal releases, or unclamps, the end-cap has to be able to move freely. Using two individual seals 

on each end-cap increases the safety. 
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The seal must fill the space between the inner diameter of the monopile and the outer diameter of 

the end-cap. The increasing size of the outer diameter of the seal, to fill the increasing difference 

between the internal diameter of the pile and the outer diameter of the cap, will lead to an increasing 

penetration depth of the end-cap into the monopile. The penetration depth is needed to keep a gap 

between the two seals and prevent interaction. The pressure on the seals must be monitored. 

The minimum width of the end-cap is directly related to the size of the seal. The seal is positioned in 

a groove. The groove for the seal must have a depth equal to or larger than the diameter of the seal 

without pressure. The seal is protected during removal and transport back to the storage site. 

The shape of the end-caps influences the transport of the monopile. During transportation of the 

monopile the friction depends on the drag coefficient (Cd). The shape of the end-cap influences the 

drag coefficient, as shown in figure 27. The shape of the top-cap is best to be spherical and the shape 

of the bottom-cap is best to be flat.  

 
Figure 27: Some common shapes and their drag coefficients 

After the type and dimensions of the sealing system, the position of the hydraulic pressure system is 

described in the next subsubsection. 

4.1.2.3 Position of the pressure system 

The hydraulic pressure system is positioned close to the seal. The system must withstand the harsh 

offshore environment and has to be protected against collision with the monopile. Combining the 

mechanical and hydraulic system leads to the following advantages: 

 Solid and long lasting end-caps 

 The controllable hydrostatic pressure system can (dis-) connect the end-cap to the monopile. 

 The system controls the hydraulic pressure of both seals individually. 

The seal is the most important element of the end-caps. When the seal fails there will be a delay in 

the installation of the wind farm. Testing the seal before departure at the storage site can prevent 

failure of the seal. Replacement of the seal should be an easy and quick process. Disconnection of the 

end-cap is related to the force balance. This is explained in the next subsection. 
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 Force balance 

The end-cap have to maintain a monopile floating during transport. Water can only flow into the 

monopile when the end-caps are disconnected. For disconnection of the end-caps the forces resulting 

from upending have to be known, section 3.2. The forces depend on the hydrostatic pressure, wind 

and waves. Hydrostatic pressure is the dominant force. 

Pressure difference on the end-cap leads to suction or pumping when the seals are released from the 

monopile. With a pressure balance neither suction nor pumping will take place. The pressure balance 

and the dynamic pressure are described in the next two subsubsections. 

4.1.3.1 Hydrostatic pressure 

The last important aspect of the end-caps is the pressure balance, as described in chapter 2 and 3. A 

slight overpressure inside the monopile is preferred, to guarantee the flow of air out of the monopile. 

The air pushes the end-cap out of the monopile, based on the simplified Bernoulli equation in section 

3.3. With an external overpressure the bottom-cap must be designed to be lifted into the pile. To 

control the internal pressure a valve must be installed on the end-cap. 

The hydrostatic pressure on a monopile is on the immerged part of the pile. The pressure depends on 

the water depth, as defined in equation 4.1. The hydrostatic pressure is fluctuating caused by waves. 

Monopiles are installed at water depths up to 35 meters, with a pressure up to 4.5bar, 453kN/m2. 

22 3 20 101315 1025 9.81 35 1 3.5 453
kgN m kN

sw mm m s
p p g h m bar bar             4.1 

  
Monopiles with internal overpressure and connected end-cap are risky and can endanger the crew 

and the environment. The pressure increase is at the installation site to prevent these risks. The 

capacity of the compressor is restricted and this leads to additional time at the installation site. A good 

example of a compressor is the Rotary Screw Compressor HSD 831 SFCxviii of KAESER Kompressoren 

GmbH. The compressor is used for the further calculations. To increase or decrease the internal 

pressure a compressor must be available on the Aeolus. 

Manometers have to be installed before the end-cap is disconnected to observe the expected 

behaviour of the end-caps after disconnecting the seals. The manometers must be placed at a 

protected location to prevent damage during installation and disconnection of the end-caps. A digital 

pressure monitoring system in combination with the wireless connection gives the best control for the 

removal of the end-caps. 

Increasing the pressure will depend on the flow rate of the compressor, a screw blowerxix, and the 

needed pressure increase. To combine all conditions, two conceptual designs will be explained in the 

next section. The properties of the end-caps have to be used to create an optimized conceptual design. 

A pressure difference will lead to either a flow of air or seawater. This is the dynamic pressure as 

mentioned in section 3.3. The influence on the design is described in the next subsubsection. 
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4.1.3.2 Dynamic pressure 

The pressure difference will lead to a dynamic response of the end-cap. The flow of air or seawater 

will be the response after disconnection of the seals. The pressure difference and the density of the 

flowing substance result the expected flow velocity. Rewriting equation 3.12 results equation 4.2. 

2 21 1
0 02 2

constantsw sw a ap g h V p g h V                 4.2 

2 21 1
2 2sw MP sw a ag T V g h V             4.3 

2

2 2

sw sw a a
e i

v v
p p

  
    4.4 

ext sw int aA v A v     4.5 

  
TMP

 
Draft of the monopile

 
m 

va Flow velocity of air
 

m/s 
vsw Flow velocity of seawater

 
m/s 

pe External pressure against the end-cap (hydrostatic pressure)
 

N/m2 
Aint Internal cross-sectional area

 
m2 

Aext External cross-sectional area
 

m2 
   

As mentioned before the dimensions of the bottom-cap can lead to either a needed internal 

overpressure to push the end-cap out of or external overpressure to push the end-cap into the pile. 

In both cases the end-cap is repositioned until there is a pressure balance. Internal overpressure takes 

additional installation time because of the needed increase of the pressure. External overpressure can 

result projection of the bottom-cap into the pile. 

The gripper of the Aeolus, which holds the monopile, is assumed to be inelastic. The position of the 

end-cap is directly related to the pile. The velocity vector of the pressure difference gives the 

conditions for the end-cap. The displacement of the end-cap and the air that flows out of the monopile 

will decrease the pressure difference.  

With the dimensions, conditions and force balance all requirements for the conceptual designs are 

mentioned. The conceptual designs combine these and are defined in the next section. 
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 Conceptual designs 
The conceptual designs of the end-cap based on the theory are developed. Every design depends on 

the dimensions, the sealing system and the pressure balance as mentioned in the previous section. 

These are combined with the use of the end-caps as described in chapter 3. The most important 

aspects are: 

 End-caps must result in a waterproof monopile. 

 End-caps must have a valve to control the internal and external pressure. 

 End-caps need to cause the least friction during towage. 

 End-caps must be able to be used at both ends of the monopile for transport and upending. 

All recently used end-caps have the same concept of disconnection: the bottom-cap is pushed out of 

the monopile and the top-cap is lifted by the crane when the monopile is placed on the seabed. The 

advantage of the bottom-cap with a protection plate is that the plate can be used as an additional 

contact point with the monopile, as protection of penetration of the end-cap into the pile. The 

protection plate increases the safety of instruments inside the cap. As a part of this study an 

alternative concept the bottom-cap, which floats and is lifted through the pile has been investigated. 

Both concepts are described in this section. 

The first concept is similar to the commonly used end-caps. For this concept the mechanical and 

hydraulic sealing system will be combined for the seal of the end-caps. There will be several contact 

points between the monopile and the end-cap to position the cap. The bottom- and top-cap of the 

first conceptual design are shown below. The protection plate protects the pressure system. For the 

right overlay of the end-caps with the pile, the diameter of the protection plate (D(op)) must be 

smaller than the outer diameter (D(o)) and greater than the inner diameter (D(i)) of the monopile. 

Preferred is exact the same as the outer diameter of the pile minus the standard deviation of the outer 

diameter. This results a floating pile without a changing outer diameter. 

 
Figure 28: Conceptual design 1, bottom-cap 

 
Figure 29: Conceptual design 1, top-cap 
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The second concept of the end-cap has a smaller diameter than the inner diameter at the top of the 

monopile, D(i,t). A bottom-cap that floats meets this condition can be lifted up through the monopile 

at the installation site. 

 
Figure 30: Conceptual design 2, bottom-cap 

 
Figure 31: Conceptual design 2, top-cap 

 

The top-cap of the second conceptual design has a spherical top, which decreases the drag coefficient 

c.q. the friction coefficient during towage. The additional space in the top-cap can be used for a winch 

to lift the bottom-cap. Both concepts of the top-cap can be combined with one of the other two 

bottom-caps. For a combination with the bottom-cap of the second design it must be possible to lift 

the cap through the monopile. For such a case the top-cap of the first conceptual design can be 

adjusted. This concept is shown in figure 32. The additional space with the spherical top is used for 

the winch. 

 
Figure 32: Conceptual design 1, top-cap with spherical protection plate 

The two concepts use cylinders which deforms the sealing material. The difference between the 

concepts is the restricted outer diameter of the cap, D(oc). In the two conceptual designs the 

installation of the seal, the minimum width and the possible position of the hydraulic pressure system 

of the seals at the end-caps are different. The two types of seal are a rubber tube deformed from a 

different direction. All combinations of the sealing system and the different shapes of the protection 

plate are possible. 

The outer diameter of the seal without pressure will lead to the maximum possible extension under 

pressure. The difference is shown in the two top-views in figure 33 and figure 34. The outer diameter 
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of the seal and the outer diameter of the protection plate is shown in the figures. Only the visible part 

of the seal is yellow. 

 
Figure 33: Dimensions monopile and end-cap 

 
Figure 34: Dimensions sealed (yellow) end-cap 

 
Either by pushing the end-cap out of or pulling-up the end-cap through the monopile. In the next two 
subsections the two concepts are described individually. 

 First conceptual design 

In case of the first conceptual design external disconnection is the only way to remove the cap. The 

plate on the end-cap, which protects the hydraulic pressure system and prevents the end-cap to 

penetrate into the monopile, must be pulled or pushed out of the monopile because the diameter of 

the protection plate is larger than the inner diameter of the monopile. This design is shown in figure 

35. 

 
Figure 35: Conceptual design 1 

The needed pressure balance for the removal of the bottom-cap depends on the hydrostatic and 

dynamic pressure as explained in subsubsection 4.1.3.2. Equation 4.2 give the value for the pressure 

balance. 
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A pressure difference results a flow velocity. The velocity vector is three dimensional and can go in 

any direction. An estimation of the flow velocity can be made with equations 4.6 or 4.7. The velocity 

depends on the difference in pressure and the size of the gap between the monopile and the cap. 

    2

int2 / 1 /a e i a extv p p A A      4.6 

    2
2 / 1 /sw i e sw ext intv p p A A     4.7 

   
The flow velocity depends also on the density of the flowing substance either air or seawater. The 

density difference between these substances is a factor thousand. The density of seawater is given in 

Appendix F and the density of air can be calculated with equation 4.8 or result from Appendix G. 

i
a

mp

p

R T
 


  4.8 

  
The pressure or the temperature inside the monopile must be measured to know the internal pressure. 

The pressure difference can be used to estimate the flow velocity. The external pressure is not 

constant, because of the changing water level caused by waves. The maximum and minimum external 

pressures are caused by the crest and the trough of the waves.  

Since the bottom-cap must be pushed out of the monopile, the internal pressure must be higher than 

the external pressure. The internal pressure can be increased by a pumonopilethrough a valve in the 

end-cap. The flow rate of the pumonopileand the draft needed for the acquired buoyant force results 

in the additional time of installation. 

The free air delivery (FAD) of the HSD 831 SFC, named in subsubsection 4.1.3.1, is 5160m3/hour. This 

compressor is used to calculate the time to increase the pressure inside the monopile. This is shown 

in equation 4.9 to 4.12. 
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Vad Added volume of air m3 
Q Flow rate (≈5160m3/h) m3/s 
   

For Boyle’s law, the amount of mole of air must be known. The internal pressure of the monopile is 

assumed to be atmospheric. The mole of air is used in equation 4.12 to calculate the added volume of 

air. The time needed to increase the volume of air for an internal overpressure is related to the flow 

rate. 
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 Second conceptual design 

The second conceptual design has no protection plate because it must be possible to pull the end-cap 

up to the top-cap. The internal diameter of the monopile gives the maximum diameter of the end-cap 

if it cannot split. The second conceptual design cannot split and is shown in figure 36.  

The disadvantage of lifting the bottom-cap through the pile is launching the cap. The external 

overpressure gives the initial acceleration of the bottom-cap when the seal is disconnected. A 

controlled internal pressure in the monopile leads to a gently moving bottom-cap. The cap moves up 

when lowering the monopile into the water after disconnecting the seal. Finally the top- and bottom-

cap can be lifted out of the monopile when the pile is positioned on the seabed. 

 
Figure 36: Conceptual design 2, sealed and unsealed 

The conditions to prevent a launched bottom-cap can be calculated with the equations mentioned in 

the previous subsection. The controlled internal pressure of the monopile gives controlled behaviour 

of the bottom-cap. Lowering the pile into the water must be with a controlled internal pressure. The 

controlled pressure valve must be installed on every top-cap for controlled behaviour of the caps. 

 Recommendations for the Conceptual design of the End-caps 
The recommendations for the design of an end-cap depend on the properties as the dimensions of 

the pile, the quality of the cap, the sealing system of the end-caps and the pressure balance. The 

recommendations are: 

 Two parallel independent seals for every single end-cap which are continuously monitored to 

obtain a high quality. 

 The seals have to be tested and replaced if necessary at the storage site. 

 The pressure balance has to be calculated or measured before disconnecting the seals. 

 The end-caps need to have a valve to control the internal pressure. 

 The end-caps can be used at both ends of the monopile for transport and upending. 

With the two conceptual designs the final design of the end-caps must be consider with the quality 

based on the financial perspective. For every project a new design of the end-caps is used. 
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5 Analysis of the Process of Upending of a Monopile 

In this chapter, the analytical model for upending of a monopile for an offshore wind turbine 

foundation is explained using the theory from chapter 3. The theory is used for a quasi-static model. 

Assumptions needed for the quasi-static model are made in the first section. In the second section the 

analytical model is explained. The result of the model is the topic of the third section. In the last section 

conclusions based on the analytical upending of a monopile are drawn. 

 Assumptions 
To make an analytical model the reality is simplified by applying assumptions. The forces defined in 

section 3.2 are applied. The six forces result from the pressure, the inertia, the gravity, the viscosity, 

the elasticity and the surface tension, are compared and assumptions are made. 

The inertia force depends on the acceleration of the pile. The acceleration is only dominant at the 

beginning and the end of a realistic model. The velocity is constant during the analytical model and 

the inertia is neglected. The influence of inertia becomes clear in the comparison of the analytical and 

experimental results in chapter 7. 

The external forces do not deform the monopile because of the elasticity of steel. The elastic force is 

neglected. The viscosity and surface tension are neglected since the pressure and the gravity are 

dominant. The analytical and experimental results are compared for confirmation. The assumptions 

for the analytical model of upending are: 

 Lifting is purely the vertical force since the crane is connected to the pile with a hinge. 

 The steel pile is assumed to be rigid because the elasticity of steel is high. 

 The viscosity and the surface tension are neglected because the pressure and gravity force are 

dominant. 

 The inertia may be neglected and therefor the process can be considered to be quasi-static. 

Based on the assumptions of the elasticity, the inertia, the viscosity and the surface tension the model 

is assumed to be quasi-static. The net force on the pile during upending depends only on the pressure 

and gravity forces, equation 5.1. 

P GF F F   5.1 

  
The quasi-static model is applied as a model for upending of an offshore wind turbine monopile, topic 

of the next section. 
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 Analysis of the Process of Upending of a Monopile 
In this section the analytical model for upending of a monopile for an offshore wind turbine foundation 

is explained. The analytical model is written in MapleTM, a math software that combines the world’s 

most powerful math engine with an interface to analyse, explore, visualise and solve mathematical 

problemsxx. 

In the analytical model the local axis are aligned with the pile and the initial reference point is where 

the crane lifts the pile. Lifting the pile is the vertical displacement perpendicular to the seawater level. 

The vertical displacement of the crane hook is the numerical input of the analytical model with step 

size (d_z). 

The initial reference point is the centre of rotation (CoR) since the crane applies the force on the 

system with a hinge. The other forces are the gravity and the buoyance force. Based on the three 

forces the angle of the pile is calculated. The calculation is done with an iteration in MapleTM, explained 

in the next subsection. 

 Applied Iteration in the Model for Upending of the Monopile 

The analytical model for upending is using an iteration in MapleTM to calculate the angle of the 

monopile. The iteration is done after each step of vertical displacement by the crane hook. The angle 

causes a resulting moment at the centre of rotation. The moment at the centre of rotation should be 

zero. 

The iteration depends on the resulting moment in the centre of rotation with the defined angle. 

Whether the resulting moment is positive or negative the angle increases or decreases. If the sign 

changes between two consecutive points the step size of the angle (d_α) is halved. The iteration is 

stopped when the resulting moment is almost zero (1E-10) Newton metre, the predefined tolerance. 

The iteration gives the angle of the pile which leads to the submerged volume of the monopile. The 

equation of the submerged volume depends on the phase which is related to that position. The phases 

are explained in the next subsection. 

 Phases during Upending of the Monopile 

Upending of the monopile for the offshore wind turbine foundation depends on the different phases. 

The model has an initial and final situation. To get from the initial to the final situation there are four 

phases related to αi, the angle of the monopile with the horizon, shown in figure 37. 

 
Figure 37: Phases during Upending of the Monopile 
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For every phase the equations needed for the iteration change. The phases are defined as: 

1. Hoisting until the top-cap emerges, phase 1 is when αi is: 0< αi≤ α1. The angle α1 is when the 

top-cap emerges. The angle depends on the dimensions of the monopile. 

2. Hoisting until the bottom-cap submerges, phase 2 is when αi is: α1< αi≤ α2. The angle α2 is 

when the bottom-cap submerges and depends on the dimensions of the monopile. 

3. Hoisting until the monopile is vertical, phase 3 is till αi is a half Pi: α2< αi< π/2. The angle α3 

is till the monopile reaches the absoluter vertical position. 

4. Hoisting until the crane force is equal to the safe working load: FSWL= 8.829E6 N. With αi = 

α4 = π/2. 

The initial conditions, the four phases and the final conditions are described separately in the 

subsequent sub-subsections. 

5.2.2.1 Initial conditions 

The initial situation is the vertical force balance between buoyancy and gravity. The monopile is at 

rest, αi = α0 and the forces result a submerged volume, defined in equation 5.2. The monopile is with 

the dimensions as a length of 70 meters and an outer diameter of 7 meter and with a mass of 1100t 

and a weight of 10791kN. The initial conditions of the monopile are shown in figure 38. 

 
Figure 38: Initial conditions of the monopile 
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h0 Initial draft m 
Do Outer diameter of the monopile m 

   

The initial draft for the initial conditions is calculated with equation 5.3.The initial draft of the 

monopile is h0, about 2.98 meter. In figure 38 this is indicated as the draft of the monopile with T(MP). 

The dimensions of the monopile related to the centre of the crane (CoC), also the CoR, are given. The 

top-cap is at MPx L S   and the bottom-cap is at  x S  . When the crane starts lifting the first 

phase starts. 
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5.2.2.2 Phase 1 

Phase 1 starts when the pile is hoisted by the crane. The first phase is until the top-cap emerges with 

αi = α1, shown in figure 39. During phase 1 the submerged length is the total length of the monopile. 

The crane changes the vertical load balance. The load lifted decreases the total submerged volume of 

the pile. 

 
Figure 39: End of Phase 1  

The submerged volume is calculated with equation 5.4. Rewriting and simplifying with equation 5.5 

leads to equation 5.6. The angle α is changed until the resulting moment, equation 5.7, is less than the 

predefined tolerance. Changing the angle influences the draft along the pile, the submerged volume 

and the coordinates of the centre of buoyance (CoB), defined on the x-axis in equation 5.8 and on the 

z-axis in equation 5.9. 
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TMP(x) Draft of the monopile at coordinate x m 

z Vertical displacement by the crane m 
α Angle of the monopile with the horizon rad 
L Submerged length of the monopile m 
S Distance between bottom-cap and trunnions (≈59.8) m 

ATt Submerged cross-sectional area at the top-cap, ATt= As(LMP-S) m2 
ATb Submerged cross-sectional area at the bottom-cap, ATb= As(-S) m2 
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CoB Centre of buoyancy at Cartesian coordinates (x, y, z) m 
ro Outer radius of the monopile m 

MCoR Moment at the centre of the rotation Nm 
xMP Coordinate of the centre of gravity along the monopile (≈-24.8) m 
x∇ Coordinate of the centre of buoyance along the monopile (CoBx) m 
Tt Draft of the top-cap, Tt= TMP(LMP-S) m 

  
When the top-cap emerges the submerged length decreases. This is the beginning of phase 2. 

5.2.2.3 Phase 2 

Phase 2 starts when the top-cap emerges. The phase is until the bottom-cap is submerged with αi = 

α2, shown in figure 40. The figure shows that the submerged length of the monopile decreases. The 

submerged length is calculated with equation 5.10. The equations for the submerged volume and the 

coordinates of CoB change and are given in equations 5.11 to 5.13. 

 
Figure 40: End of phase 2 
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After submerging of the bottom-cap the submerged volume of the monopile exist of a fully submerged, 

a partially submerged and an emerged part. To define these volumes other equations have to be used 

and phase 3 starts. 
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5.2.2.4 Phase 3 

Phase 3 starts when the bottom-cap is fully submerged and is till the pile is absolutely vertical, till αi is 

a half Pi radians as αi = α3 < π/2. In phase 3 equation 5.14 defines the emerged, partially submerged 

(∇2) and the fully submerged (∇1) parts of the monopile. The submerged length is split into a 

completely submerged length (λi) and a partially submerged length (L-λi). The symbols of the different 

parts are shown in figure 41. 

 
Figure 41: Position of the monopile during phase 3 
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∇1 Fully submerged volume of the monopile m3 
∇2 Partially submerged volume of the monopile m3 
λi Partially submerged length of the pile, 0< T(x)< Do m 

   

The submerged volume in phase 3 depends on the angle of the pile. This defines the total submerged 

length, defined in the previous phase, and the partially submerged length in equation 5.15. The CoB 

coordinates are redefined with these two lengths.  

The centre of buoyance on the z-axis of the fully submerged volume is aligned with the initial reference 

point and the centre of rotation. This simplifies equation 5.17. When the pile is in the absolute vertical 

position, as in figure 42, phase 4 starts. 
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5.2.2.5 Phase 4 

In phase 4 the pile is absolutely vertical. The lifted height and the rotation of the monopile are likely 

to be less than the safe working load of the crane. This can be confirmed with the result of the 

experiment in chapter 6. Further lifting increases the crane load linear and the decreases the draft 

linear. The equations are the same as used in phase 3 since L= λi= Tb. 

The submerged volume is directly related to the vertical displacement by the crane. The centre of the 

submerged volume is the centre of buoyance. The coordinates are related to the initial reference point 

and the calculated angle of the pile. The final position is in figure 43 and is the end of phase 4. 

 
Figure 42: End of phase 3 

 
Figure 43: End of phase 4

c SWLF F F F    5.18 

  
The final position is reached when the crane reaches the safe working load, equation 5.18. The 

minimum submerged length related to the dimensions of the monopile, d_z and the safe working load 

results in the boundary condition. The used code in MapleTM, the condition when hoisting stops, is: 

> if VSub <= 200 then phase:=2 end if; 

The verification and the results of the analytical model is the topic of the next two sections.  
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 Verification of the analytical model 
To use the result of the analytical model, the results must be verified. The input is the lifted height 

which results the forces, the angle of the pile and the resulting moment at the centre of rotation. The 

coordinates of the centre of rotation is known at [0, 0, 0], the centre of the crane. 

The first point which is checked is when the pile is lifted 2.43 meter, when the top-cap emerges. The 

angle is calculated and checked if the resulting draft, submerged length and volume are correct. 

 

 
0 sin
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 / sin 69.97927899MP bL T    5.21 

1
2

743.2090155Tb MPA L      5.22 

   

The result in the table is compared with the result according MapleTM. 

Data Manual MapleTM 

Tb 3.780300948 3.7803009469 

Tt -0.0011193548 -0.0011193547 

LMP 69.97927899 69.9792789953 

𝞩 743.2090155 743.2090155757 

   
The differences are only compared at one point, to confirm the MapleTM result this must also be 

checked at another point. The second point which is checked is when the pile is lifted 11.63 meter, 

the point the bottom-cap submerges. 

 2.979887604 11.63 59.8 sin 0.2648266175 7.002055261     5.23 

 2.979887604 11.63 10.2 sin 0.2648266175 11.31988012      5.24 

 / sin 26.75175182MP bL T    5.25 

   / sin / tan 0.9402008275i b oT D      5.26 

 1
2

532.8556144MP MP iA L        5.27 

   

The result in the table is compared with the result according MapleTM.  

Data Manual MapleTM 

Tb 7.002055261 7.0020552608 

Tt -11.31988012 -11.3198801239 

LMP 26.75175182 26.7517518190 

λi 0.9402008275 0.9402008268 

𝞩 532.8556144 532.8556143490 

   
The difference between the Maple and the manual calculated values are less than 1E-7. The MapleTM 

script is validated and the results can be used for a comparison with the experiment. 
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 Results of the analytical model 
The results of the analytical model are based on the given equations in section 5.2. The hoisting of the 

pile is calculated with the MapleTM script in Appendix H. An overview of the whole process of a 

monopile is shown in figure 44. The graph gives a clear overview of the ratio between the load and 

the vertical displacement. The individual result of every single phase is in figure 45 to figure 47. 

 
Figure 44: Upending according MapleTM 

The initial load lifted by the crane, FC, is the hook and the cables of the rigging arrangement. During 

the experiment the equipment is a higher percentage of the total load than during upending a 

monopile offshore. For the calculations in MapleTM the initial load is set on the weight of the crane 

hook. The weight of the crane hook is an initial conditions for upending of a monopile.

 
Figure 45: Upending monopile phase 1 according 

MapleTM 

 
Figure 46: Upending monopile phase 2 according 

MapleTM

During phase 1 the load increases almost linear due to the displacement by the crane, figure 45. The 

graph is not linear, the gradient of the line decreases during phase 1. Phase 2 starts when the top-cap 

is emerged, figure 46. Phase 2 indicates that the pile rotates and the crane load approaches a constant 

value. 
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There is a discontinuity between phase 1 and phase 2. This is expected at every phase change based 

on the assumptions and the changing equations. The gradient change from phase 1 to 2 is visible in 

figure 44. The phase-gradient is also the result of the changing equations. The data in table 3 are from 

the last two steps in phase 1 and the first two steps in phase 2 to explain the phase change. 

Phase Z [m] VSub alpha [rad]  L [m] 

1 2.41 743.6156596632 0.0536971779 70.0000000000 

1 2.42 743.4370036594 0.0538709384 70.0000000000 

2 2.43 743.2090155757 0.0540465982 69.9792789953 

2 2.44 741.6717324786 0.0542731819 69.7524797019 
Table 3: Phase change from phase 1 to 2 

After submerging of the bottom-cap, the submerged length and the submerged volume of the pile 

slowly decrease. As a result the load lifted by the crane increases gently. Phase 3 is shown in figure 47. 

 
Figure 47: Upending monopile phase 3 according 

MapleTM 

 
Figure 48: Angle α during upending according MapleTM

The submerged volume in phase 3 exists of two individual submerged volumes, 1  and 2  as in 

equation 5.14. In phase 3 the volume remains gently decreasing until the angle reaches a half Pi. The 

gradient becomes linear with d_z when the pile is vertical. There is no phase change since the same 

equations are used as explained in section 5.2.2.5. 

The vertical position is reached with a rotational acceleration, shown in figure 48. The angle increases 

ten degrees with a vertical displacement of one meter. The boundary conditions in MapleTM is the 

absolute vertical position. The equations do not have a limitation at the angle of half a Pi. The 

boundary is set as: 

if alpha>=evalf(Pi/2) then alpha:=evalf(Pi/2) end if; 

The analytical model of the monopile was adjusted to calculate the behaviour of the piles used during 

the experiment. The results for the scaled monopiles used during the experiment in the next chapter 

are calculated with the analytical model. The scaling factor, δ, used to calculate the dimensions of the 

different experimental model is explained in the next chapter. 

The three models used during the experiment are the on mass scaled and the on the outer-diameter 

scaled aluminium monopiles, in figure 49 and figure 50, and the on the mass scaled steel monopile in 

figure 51. 
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Figure 49: Analytical results of the mass scaled aluminium monopile 

 
Figure 50: Analytical results of the with the outer-diameter scaled aluminium monopile 

The analytical results of the both scaled aluminium piles are similar to the results of the monopile. 
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Figure 51: Analytical results of the mass scaled steel monopile 

 

 Assumptions based on the Analytical model 
The assumptions based on the analytical model for the behavior of upending of the monopile for an 

offshore wind turbine foundation are: 

 Lifting is purely the vertical force since the crane is connected to the pile with a hinge. 

 Dynamic loads are not dominant and can be neglected. 

 All variable external loads, as the wind, the waves and the currents, can be neglected. 

 With the help of the gripper only vertical loads are lifted after upending and clamping the pile. 

The gripper will not decrease the load lifted by the crane. 

In chapter 6 an experiment to validate the theory, the assumptions and the analytical model is 

described. The analytical model is compared with the results of the experiment in chapter 7.
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6 Experimental Upending of a Monopile Wind Turbine Foundation 

The experiment has been executed to define the accuracy of the analytical model. The experiment 

evaluates the response of the monopile with the crane. The experimental model is scaled and is 

described in the first section. In the second section the different used models are defined. The result 

of the experiment is the topic of the third section. In the last section of this chapter the experimental 

results are discussed. 

  Theory of Experimental Upending of Monopile OWTF 
The experiment at model scale is easier, faster and cheaper than testing a monopile. The dimensions 

of the models are derived from the scale factor as defined in equation 6.1. 

monopile model   6.1 

  
δ Scaling factor - 

   

Some properties cannot be scaled. The gravity, the density, the fluid kinematics and the dynamic 

viscosity scaling factors are close to one. The model is based on a pile with a weight of 1100t, an outer 

diameter of 7000mm and a length of 70 meter. 

The results of the experiment depend on the weight, the material, the pressure, the response of the 

water and of the pile. The six forces as defined in equation 3.3 are compared to scale the models. 

The six forces are either static or dynamic. Dynamic forces are the inertia and the viscosity, since the 

forces depend on the acceleration. The acceleration is only dominant at the beginning and the end of 

the run. At least two runs at a different velocities with the same pile have been executed. The influence 

of inertia is shown in chapter 7 by comparing the analytical and experimental results. 

The experimental model depends on the scaling factor, topic of the next subsection. Based on the 

scaling factor the models are defined in the second subsection. 

 Scaling factor of the Experimental Model 

The scaling factor influences the dimensions and the response of the pile. The scaling factor depends 

on the dimensions of the installed monopile and the dimensions of the model (m) used during the 

experiment. The density of the fluid and the hoisting speed influence the experiment. The scaling 

factors are given in equation 6.2 to 6.7. 

/D MP m lD D    6.2 
3/V MP m lV V    6.3 

/MP m    6.4 

/m MP m Vm m       6.5 

v MP mv v   6.6 

2 2

I v l p         6.7 

  
δD Diameter scale - 

DMP Diameter of the monopile m3 
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Dm Diameter of the model m3 
δl Length scale - 
δV Volume scale - 

VMP Volume of the monopile m3 
Vm Volume of the model m3 
δρ Density scale - 

ρMP Density of the monopile kg/m3 
ρm Density of the model kg/m3 
δm Mass scale - 

mMP Mass of the monopile kg 
mm Mass of the model kg 
δv Velocity scale - 

vMP Velocity of the monopile m/s 
vm Velocity of the model m/s 
δI Inertia scale - 
δp Scale factor of the pressure - 

   

All given scaling factors depend on either the dimensions, the density or the velocity. A three-

dimensional scaled model of the monopile is not available in steel, since the wall should be too thin. 

The models are of a different material, aluminium and PVC, to observe the properties of a monopile 

during upending. The properly scaled models of steel, aluminium and PVC are given in table 4. 

  Steel Aluminium PVC 

δ(Do) 100.000 150.000 150.000 

δ(V) 17.946 99.854 87.845 

δ(ρ) 1.000 2.907 5.709 

L (V) [mm] 67.763 125.747 105.998 

L (m) [mm] 67.763 365.597 605.152 

L (Do) [mm] 700.000 466.667 466.667 
Table 4: Scaling factors and calculated length for the models 

The calculated lengths for the models are based on the scaling factor of either volume (V), mass (m) 

or outer diameter (Do) of that material. The calculated models are evaluated in the next subsection. 

 Experimental Models of the Monopile Wind Turbine Foundation 

The scaling factor is used to calculate the different models, given in Table 4. The calculated lengths of 

the three materials lead to incorrect conclusions if differently scaled models are compared. The 

models with a length to width ratio and the length to mass ratio have been used. The calculated steel 

models will either behave as a floating cube or as a pile with a deep draught. 

The dimensions of the steel pile are determined by the outer diameter of 52mm and a wall thickness 

of 1.8mm. The long steel model is used to check the assumption about the viscosity and the surface 

tension. The behaviour of the long steel pile can be compared with the aluminium pile of 467mm. 

The aluminium piles scaled with both the mass and the diameter are used. The models are more 

comparable with a real monopile. Aluminium has a natural oxide coating which is similar to the coating 
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used on a monopile. The draft of the aluminium model is about 40% of the total diameter, close to 

the initial draft of the monopile. 

A PVC pile is longer according to the scale based on the low density. The response of PVC with water 

is different than the response of steel. Because the lack of compatibility there is no PVC model used. 

The model of the piles are scaled and compared individually. The results is the topic of the next section. 

 Results of the Experimental Upending of the Monopile OWTF 
The experimental upending of a monopile for an offshore wind turbine foundation has been done 

using a digital measurement system and with a video observation. The digital measurement system 

has received the measurement data. The video observation are used to analyse unexpected results. 

The experiment consists of at least three individual runs with every model. The first type of run has 

been done stepwise, the second type has been done at a low velocity and the third type has been 

done at a high velocity. The result of the stepwise run has been compared with the stepwise 

calculations in MapleTM. After each step the data have been measured when the pile is in equilibrium. 

This run has been done twice with an equivalent step size. 

The runs at a continuous velocity have been executed three times with the same velocity to compare 

the results of the individual runs. The two different velocities are compared to check the assumed 

quasi-static behaviour of the monopile. The rotation of the axis has been measured with a tachometer 

to obtain data of the runs from the different models with the same velocity.

 
Figure 52: Overview of the experimental setup 

 
Figure 53: Experimental setup

The experimental setup is shown in figure 52 and figure 53. The used equipment is an S-Type load cell, 

the NI data acquisition USB-6002, MP3, a DC geared motor, the tachometer and a HP DC power supply. 

The crane loads have been measured with an S-Type load cell, which gives an analogue signal. The 

signal is converted with the data acquisition USB converter to give input for the MP3 measurement 

program. MP3 is a measurement program to measure, display and store the digitized analogue voltage 

device signals. The DC geared motor is powered with the HP DC power supply. The HP DC power supply 

is stable, regulated and insensitive to ambient temperature variations. 

In every experiment there are inaccuracies due to the setup which is not completely comparable with 

an offshore installation site.  
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The expected inaccuracies are: 

 The rotation of the rigging axis and the measurement of the rotation. 

o Caused by the lack of accuracy of the distance between the reflection points and the 

circle with the drilled centre hole. 

 Measured loads on the pile. 

o Caused by the elasticity of the line and the additional weight on the crane hook. 

 Natural frequency of the line. 

The data of the mentioned runs are listed below in table 5. Three runs have been executed at every 

velocity. Run 10 and 13 are neglected due to inaccuracies and mistakes during the runs. 

Run Material Length [mm] Hoisting speed [rpm] 

1 Aluminium 366 Step-wise 

2 Aluminium 366 Step-wise 

3 Aluminium 366 12 

4 Aluminium 366 12 

5 Aluminium 366 12 

6 Aluminium 366 20 

7 Aluminium 366 20 

8 Aluminium 366 20 

9 Aluminium 366 4 

10 Aluminium 467 21 

11 Aluminium 467 21 

12 Aluminium 467 21 

13 Aluminium 366 4 

14 Aluminium 366 4 

15 Steel 700 18 

16 Steel 700 18 

17 Steel 700 18 
Table 5: List of all experimental runs 

The natural frequency, equation 6.8, of the pile did not influence the behaviour of the pile during the 

experiment. The frequencies of external loads do not have the same frequency. 

   3 4 4 3 1/ 3 / L ; I / 64 5.8 10n o i nk m k E I D D s                  6.8 

ωn Natural frequency rad/s 
I Mass moment of inertia m4 

Di Inner diameter of the monopile m 

   

The experimental runs are described in the next subsections. The first subsection is about the stepwise 

experimental runs. The runs with a continuous velocity are topic of the second subsection. 
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 Stepwise run of Experimental Upending a Monopile OWTF 

The stepwise experimental upending has been done with the aluminium pile of 366mm. Run 1 to 9, 

13 and 14, have been executed with this pile. The first two runs are stepwise and quasi-static, since 

the velocity cannot influence the loads. The results of the stepwise runs are shown in figure 54. 

 
Figure 54: Displacement versus load, quasi-static runs 

The difference between the two runs, run 1 shown in blue and run 2 in black, is caused by the 

experiment runs. Run 1 represents upending the pile out of the water and run 2 was lowering the pile 

into the water. The difference is caused by the behaviour and response of the water and the accuracy 

of the equipment. 

The range of the measurements confirms the multiple runs with the same pile at the same velocity to 

get a general behaviour of the run. The runs with a continuous velocity are topic of the next subsection. 

 Continuous Experimental Upending of a Monopile OWTF 

The experimental runs 3 to 17 have been executed with a continuous velocity with the three different 

models. The results of the three models have been compared. The aluminium pile of 366mm has been 

lifted with three different velocities to check the assumptions. The aluminium pile of 467mm and the 

steel pile have been lifted at a high velocity to check the influence of the scaling factor and the type 

of material.

Run 3, 4 and 5 have been done with a velocity of 12 revolutions per minute (rpm), run 6, 7 and 8 have 

been done at 20rpm and run 9 and 14 have been done at 4rpm. Only hoisting speeds faster than 

10rpm can be measured by the tachometer. The velocity of the runs at 4 rpm has been measured 

manually. The results of all three different velocities are relevant because the pile is scaled with the 

mass scale of a real monopile. The graphs with the displacement versus the load are in Appendix I. 

The graphs in figure 75 and figure 76 look different because the line was tensioned before the run 

started. The response of the pile is similar for all three different velocities. Run 3 to 8 have been 

compared with the step-wise runs to check the inaccuracies and the resulting data. The data are 

shown in figure 55 to figure 60 on the next page. In the graphs the step-wise run is shown in blue, the 

run at 12rpm is shown in red and the run at 20rpm is shown in black.
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Figure 55: Run 1, 3, 6 

 
Figure 56: Run 1, 4, 7

 
Figure 57: Run 1, 5, 8 

 
Figure 58: Run 2, 3, 6

 
Figure 59: Run 2, 4, 7 

 
Figure 60: Run 2, 5, 8

The graphs of the quasi-static run with two runs at a different continuous hoisting velocity shows 

similarities and differences. The range of all eight runs with the steep gradient both at the beginning 

of the run and in the vertical position of the pile are the same. The differences of the gradient are 

either in the beginning of the run or in the vertical position.  

In figure 56 the results indicate a different initial gradient and end up in the same vertical position. In 

figure 59 the three lines are aligned until the pile is vertical, when the results become independent. 

The differences are caused since at the beginning the pile is floating with a variable tension in the line. 

Also the dynamic forces could have an influence on the behaviour of the pile since these are velocity 

dependent. 
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The difference between the step-wise and continuous run is the response of the pile. The response is 

not caused by the natural frequencies of the piles, but by the waves created by lifting and the 

rotational velocity of the pile. The waves are reflected by the wall of the tank and cause the response 

of the pile. The hoisting speed of the pile causes the frequency of the waves and the time to reflect.

 
Figure 61: 3 runs at different hoisting speed 

 
Figure 62: 3 runs at different hoisting speed

The three different velocities are compared in figure 61 and figure 62. The phase velocity of longer 

waves is faster than the velocity of shorter waves. This confirms the waves in the run at 12rpm shown 

in red and 20rpm shown in black. The run at 4rpm, shown in green, causes waves which are too long 

to be observed. 

The initial difference in the run at 4rpm takes place because the line was pre-tensioned. The run shows 

that the external forces have less influence on the behaviour of the lifted pile. The difference between 

the initial steep gradient and the second steep gradient changes. The difference can be caused by the 

hydrodynamic mass of the moment of inertia. The difference should also be the case between the 

other two runs, but these are aligned with the numerical outcome of the experimental run. 

The response of the aluminium pile of 366mm, based on the scaling factor of the mass, has been 

compared with the response of the longer aluminium and the steel pile, both based on the scaling 

factor of the outer diameter. The aluminium pile of 467mm was used in run 11 and 12. The runs with 

a hoisting speed of 21rpm are shown in figure 63. The steel pile of 700mm was used in run 15 to 17. 

The runs with a hoisting speed of 18rpm are shown in figure 64. The difference between the first 9 

runs is caused by the total load lifted. 

 
Figure 63: Displacement versus load of a long pile 

 
Figure 64: Displacement versus load of a steel pile
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The results are similar to the result of the mass scaled aluminium pile. The different positions of the 

pile in the tank shows the different waves which are caused by the pile and reflected by the walls of 

the tank. The line was pre-tensioned before the crane started lifting the pile. 

The runs with the long aluminium pile were aligned based on the numerical outcome of the runs. The 

runs with the steel pile show that the moment the run in monopile3 was started was not synchronized 

with starting the DC geared motor. This causes the spread of the initial value in figure 64. 

During the experiment the pile was photographed. The phase changes of the analytical model in 

MapleTM during the experiment are shown in figure 65 to figure 68 and Appendix I. The gradient of the 

load decreases continuously and the rotation and the submerged volume during the phase changes 

clarifies the gradient. The different results of the experiment are discussed in the next section. 

 
Figure 65: Initial conditions 

 
Figure 66: End of phase 1 

 
Figure 67: End of phase 2 

 
Figure 68: Vertical 

 Discussion regarding the Experimental Upending 
The results of the experiment are used to discuss the general behaviour of a monopile during upending. 

Upending of the monopiles of different materials with varying velocities showed the same response. 

Initially, when lifting the pile, the crane load increased rapidly. The gradient decreased until the pile 

was vertical for all different piles with the different velocities. The crane force almost remains constant 

when the bottom-cap is submerged, in phase 3. The similarity is shown in figure 55 to figure 62. 

Only the waves caused by the lifted pile and reflected by the walls of the tank are different in these 

figures. The reflected waves influence the behaviour of the pile and the load on the crane during 

experimental upending. The waves are different since the length, the mass and the velocity of the 

piles are different. The response depends on the influence of inertia of the pile during upending. 

Upending of the monopile can be considered as a quasi-static process since a comparison of the 

experimental tests, executed with different hoisting velocities and therefore with different 

accelerations, shows that the influence of inertia of the pile is negligible. 

In the scale model tests the monopile reaches a vertical position without exceeding the safe working 

load of the crane. This shows that a monopile with a weight larger than the crane capacity may be 

upended completely using its buoyance to the crane its advantage. 

The inaccuracies during the experimental upending are negligible. The result of the experiment, with 

the different scaled monopiles of different materials, shows the general response of a model scaled 

monopile during upending. The response must be confirmed with full-scale upending of a monopile. 

The analytical model of the previous chapter and the experimental results in this chapter are 

compared in chapter 7. 
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7 Comparison of the Analytical model and the Experiment 

In this chapter the analytical model is compared with the results of the experiment. The theory has 

been simplified with the assumptions of the analytical model in chapter 5. The experiment has 

confirmed the analytical model. 

First, in section 7.1, the analytical model and the experimental results are compared. In the second 

section the comparison and the assumptions from the previous chapters are combined to draw 

conclusions. 

 Comparing the Analytical model and the Experiment 
In this section the analytical model and the experiment are compared. The model depends on the 

theory and the assumption of the net force. The experiment gives the gradient of the crane load. The 

runs with the aluminium pile of 366mm are shown in figure 69 and with the pile of 467mm in figure 

70. The results of the analytical model are marked in black and of the experiment in blue.

 
Figure 69: Aluminium pile of 366mm 

 
Figure 70: Aluminium pile of 467mm 

The similarity of the models is the rapid increasing load, the gradient of the crane load. The gradient 

decreases during lifting until the pile is vertical. Since the rigging arrangement has already been lifted, 

both models do not begin at zero. The analytical model has an initial lifted load to end up with the 

same result as the experimental run. 

The differences of the models take place at the beginning of phase 1, and from the end of phase 2 to 

phase 4, topic of next two subsections. 

 Initial difference of Upending of a Monopile for an OWTF 

The initial difference during upending is caused by an assumption in the analytical model. The inertia 

is neglected since it is only dominant at the beginning and at the end of upending. When the crane 

starts lifting the pile is accelerated until it reaches the hoisting speed of the crane. 

The results of the aluminium pile of 366mm are more similar to the analytical model than the results 

of the aluminium pile of 467mm. The pile of 366mm is scaled with the mass scale and the pile of 

467mm with the diameter scale. The numerical input is based on the pile used in the experiment. 

The initial difference for upending is caused by the inertia of the monopile. The influence decreases 

when the velocity, or actually the acceleration of the monopile, is minimized. 
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 Difference from phase 2 to 4 of Upending a Monopile for an OWTF 

The force difference from the end of phase 2 to phase 4 can be explained with the hydrostatic pressure. 

The pile is pushed out of the water, which decreases the submerged volume and increases the crane 

load. The length difference of the two piles shows the influence of the hydrostatic pressure. 

In the analytical model the pile rotates and determines the new centre of buoyance and the resulting 

moment at the centre of rotation. The buoyant force is calculated with the hydrostatic pressure and 

the position of the pile is independent of the velocity of the pile. 

The water molecules are individually attracted and cause the continuously decreasing of the 

submerged volume. The hydrodynamic mass leads to an additional mass of the pile. The equations of 

the analytical model change based on the boundary conditions. The analytical model is not a 

continuous process and the hydrodynamic mass is neglected. 

The sea surface tension can be confirmed with a full-scale experiment. The phase change in the 

analytical model is overestimated. These two aspects explain the difference between the analytical 

model and the experiment. 

 Conclusions based on the Analytical model and the Experiment 
The comparison of the results of the analytical model and the results of the experiment is described 

in this section. The assumptions made for the external forces and the operation of the Aeolus have to 

be confirmed with a full-scale experiment. The remaining conclusions and assumptions are: 

 The upending of a monopile is quasi-static since experimental runs with different velocities 

and piles of different materials give similar results. The inertia is not dominant and may 

therefore be neglected. 

 The analytical model confirms that the monopile with a larger weight than the crane capacity 

can be lifted and reaches the vertical position by using the buoyant force of the monopile.  

The dynamic loads are dominant when the crane starts lifting and when the pile is vertical. The 

differences between the mass-scaled and the real operation can be neglected. Scaling the operation 

partially confirms the conclusion based on the quasi-static behaviour. This assumption is based on the 

hoisting speed. 

The natural frequency of the pile has been neglected. Confirmation with a full-scale experiment is 

necessary. The gradient of the crane load is based on the tension in the hoisting line. The Aeolus is 

equipped to operate with a controlled tensioned hoisting line which will operate similar. 

The inaccuracy of the measurements is caused by the experimental setup. An experiment with an 

improved setup should be done to verify this assumption. The experiment is done on scale since a full-

scale experiment is more expensive and with a high risk. 

The comparison in this chapter is used for the discussion, the conclusions and the recommendations 

in chapter 8.



UPENDING OF A MONOPILE FOR AN OFFSHORE WIND TURBINE FOUNDATION 02-12-2015 

 

J.B. Crol | Discussion, Conclusions and Recommendations 57 

 

8 Discussion, Conclusions and Recommendations 

This report analyses the transport and upending of the offshore monopile wind turbine foundations. 

In this chapter the research, the assumptions and the assignment are discussed, the conclusions are 

drawn and the recommendations are mentioned. In the first section the two processes of installation, 

the end-caps and the objectives of Van Oord are discussed. The most relevant conclusions are given 

in the second section and in the third section the recommendations for further research are given. 

 Discussion 
The discussion of this report is split into four sections because each process has its own impact on the 

design of the end-caps. The first two subsections are about the process of the transport and the 

upending of the monopile. In the third subsection the design of the end-caps is discussed. In the last 

subsection the covered objectives of Van Oord are mentioned with the results in this report. 

 Transport 

The transport of the monopile from the storage site to the Aeolus is done with a tugboat. The 

assumptions for the transport are mentioned in section 2.2.1 and 3.1. The first assumption is about 

the weather conditions and the second assumption is about the initial conditions for upending. 

The weather conditions can restrict the Aeolus to operate. The period between the connection and 

the removal of the end-cap is variable and therefore this is an additional requirement for the quality 

of the end-cap. The test at the storage site is needed to check the quality of the end-caps. The weather 

conditions do not affect the load of the pile during transport. 

The initial conditions for upending of the pile are based on the floating pile. The centre of gravity and 

the centre of rotation depend on the design of the pile, the design of the end-caps and the position of 

the rigging arrangement. The centre of rotation is the position where the rigging arrangement is 

placed on the monopile since the crane hook is attached to the pile with a hinge. 

The first assumption can be confirmed with a full-scale experiment. The second assumption has been 

confirmed by the similarity of the analytical model and the experiment. The loads on the end-caps 

during transport are less dominant than during upending. The assumptions for upending are described 

in the next subsection. 

 Upending 

The initial conditions for upending at the installation site are determined by the transported monopile. 

The initial conditions can be optimized by refining the design of the monopile. The assumptions during 

upending of the monopile are based on the loads on the pile. 

The forces on the pile are caused by the pressure, the inertia, the gravity, the viscosity, the elasticity 

and the sea surface tension as given in section 3.2. In section 5.1 it is assumed that the behaviour of 

the pile is quasi-static and only depends on the pressure and the gravity, as confirmed in section 7.2. 

The inertia is not dominant and may therefore be neglected. 

The rotation of the pile and the waves caused by the pile and reflected by the walls of the tank has 

influenced the results of the experiment. The assumptions for the external forces have not been 

confirmed. 
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 End-caps 

The design of the end-caps affects the transport, the upending and the removal of the end-caps. The 

conceptual designs of the end-caps must be optimized after further research. The design and the 

influence on the installation of the monopile wind turbine foundation are described. Two important 

design details are: 

 The shape of the end-cap influences the transport of the pile. This has been assumed for the 

conceptual designs but it has not been confirmed by the experiment.  

 Either internal or external removal of the end-caps gives the minimum draft of the pile after 

upending. The internal pressure and the maximum expected wave height influence the draft 

needed for removal of the bottom-cap. 

Further research on the design and the way of removal of the end-caps should be done. The 

conclusions and recommendations are given later in this chapter. 

 Discussion of the Objectives of Van Oord 

The objectives mentioned in the assignment of Van Oord, shown in section 1.2, are mentioned in this 

section. 

1. Understanding and possibly detailing and/or adjusting the intended monopole towing and 

upending procedure. 

The transport and upending procedure is discussed in detail in this report. Both processes are 

described and upending is the dominant procedure. The upending has been confirmed by the theory, 

calculations and the experiment. A future installation can be calculated with the MapleTM script. The 

experiment has confirmed the calculations. 

2. Analysing the buoyancy requirements needed to bring the monopile weight within the capacity 

of the crane. 

During the experiment the lifted load did not exceed the capacity of the crane. The scaled monopile 

reaches the vertical position by upending without exceeding the safe working load. The buoyancy 

requirements lead to the hydrostatic pressure on the submerged volume. The required internal 

pressure increases when the bottom-cap is removed externally. This leads to an increase of the total 

mass of the pile and the additional draft needed for buoyance. 

3. In addition care should be taken of conditions resulting from necessary testing requirements. 

The equipment used for the experiment has influenced the results. The dissimilarity of the analytical 

model and the experiment has confirmed this partially. A full-scale experiment is needed to verify this 

in practice. 

The last step of this research is defining the conclusions and recommendations for further research of 

the end-caps of a monopile for an offshore wind turbine foundation. The conclusions and 

recommendations are the topic of the next two sections. 
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 Conclusions of this research 
The final conclusions are drawn as a combination of all validated assumptions and the conclusions, 

mentioned individually in the previous chapters. The conclusions for the upending of a monopile for 

an offshore wind turbine foundation are: 

 The upending of a monopile is quasi-static since experimental runs with different velocities 

give similar results, therefore upending only depends on the buoyance and gravity forces. The 

inertia is not dominant and may therefore be neglected. 

 The inertia influences the response of the pile due to the acceleration when lifting starts and 

when the pile reaches the vertical position, since the hydrodynamic mass causes a rotational 

acceleration when the monopile is almost vertical.  

 The analytical model confirms that the monopile with a larger weight than the crane capacity 

can be lifted and reaches the vertical position by using the buoyant force of the monopile. 

 The MapleTM script can be used to calculate the forces of the crane on the monopile during 

upending for future projects. 

The conclusions lead to recommendations for further research. The recommendations are named in 

the next subsection. 

 Recommendations for further work 
Based on this report recommendations for further research are given in this section. During the 

research assumptions have been made and these are partially validated in this chapter. The 

recommendations for upending of a monopile for an offshore wind turbine foundation are: 

 Testing at the storage site is recommended to maintain high-quality end-caps. 

 A weather window for the period of installation should be calculated in advance. 

 The theoretical, analytical and experimental research should be verified in practice. 

 The forces that influence transport and upending of the monopile have to be confirmed. 

 The scaling factor used for the experiment must be validated in practice. 

 Analysing the pressure which determines the boundary conditions for the conceptual design 

of the end-caps. A pressure valve in the top-cap should be used to set the maximum internal 

pressure. 

 The dimensions of the end-cap related to the pile influence the force on the bottom-cap and 

the air gap for the airflow for external removal of the end-cap. Further research to analyse the 

airflow when releasing the bottom-cap and the consequences on the design is recommended. 

The assumptions based on the external forces and the operation of the Aeolus must be verified in 

practice. An experiment should be done either full-scale or in a towing tank with a wave generator. 

Further research and experiments will lead to optimized upending of a monopile for an offshore wind 

turbine foundation.
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Appendix A Aeolus datasheet 

Name  Aeolus 

Type  Offshore wind farm transport and installation vessel 

Classification Det Norske Veritas: X 1A1 - Self-elevating Wind Turbine Unit, 
CD-Crane DYNPOS AUT-R-EO-OPP-F-NAUT-OSV(A) 

Trading area  Unrestricted 

Year of construction  2014 

Dimensions  Length overall 139.40 m 

Breadth overall  38.06 m 

Depth (to main deck)  9.12 m 

Draft (design)  5.70 m 

Tonnage  14,800 GT - 4,440 NT 

Deadweight  6,500 tons 

Velocity (at 5.40 m draught)  12.00 kn 

NMF offshore installation crane 

SWL main hoist: 900 tons / 18.00 - 30.00 m 

SWL auxiliary hoist:  100 tons / 19.50 - 86.00 m 

Auxiliary cranes  2 x 20 tons / 24.00 m 

Main engines  4 x 4,320 kW 

Propulsion  10,000 kW 

Bow thrusters  2 x 2,500 kW 

Stern thrusters  2 x 2,500 kW 

Total power installed  17,715 kW 

Accommodation  74 persons 

Bunkers  Fuel oil 1,000 m3, Fresh water 900 m3 

Jack-up system  4 legs - length 81.00 m - diameter 4.50 m 

Clear deck area  3,300 m2 

Dynamic Positioning System DP Class 2 

 

The weight of the rigging and the hook increases the load and is used in equation 3.5 and 3.6. From 

the safe working load of 900tons only 850tons is used for upending of the monopile by the additional 

weight of the hook and rigging arrangement. 

Outreach [m] Safe working load [t] Hoisting speed [m/min], [m/s] 

< 18 0 0 0 

18 ≤ 30 900 5.0 0.0833 

30 ≤ 40 650 6.9 0.115 

40 ≤ 54 500 7.5 0.125 

54 ≤ 60 450 9.6 0.16 

60 ≤ 80 300 12.3 0.205 

< 80 0 0 0 

Appendix B General Arrangement Belwind by RAMBOLL 

Appendix C Rigging arrangement for monopile by DHLC 
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Appendix D FLOW steps for upending monopile 

 
Figure 71: FLOW upending monopile 

 
Figure 72: FLOW Controlled pressurize and released bottom cap 
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Appendix E Requirements to environmental conditions of Aeolus 

The requirements to environmental conditions of the Aeolus are defined by J.J.Sietas KG, Schiffswerf 

GmbH u.Co. The conditions are for several conditions for jacking, operational, survival and transit. 

These conditions are mentioned below. 

Operational mode conditions 
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Local conditions  
 

Significant wave height [m] 1.80 3.60 8.50 8.50 

Maximum wave height [m] 3.35 6.65 15.70  

Wave period [s] 3.0-15.00 5.0-15.00 15.00 3.0-18.00 

Wind velocity (1 min mean) [m/s] 15.00 20.00 40.00 53.00 

Current [m/s] 1.03 1.54 1.03  

Leg penetration [m]  5.00 5.00  

Airgaps [m]  7.00 14.00  

Crane operations no yes no  
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Appendix F Standard seawater properties at 1°C incrementxxi 
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04 22 1024.265

6 
-0.2805 0.00102

7 
-2.396E-

05 
1.0027E-

06 
-2.312E-

08 
2.5912E-

03 
1.581E-

04 23 1023.980
8 

-0.2890 0.00100
4 

-2.307E-
05 

9.8002E-
07 

-2.226E-
08 

2.7535E-
03 

1.667E-
04 24 1023.688

1 
-0.2970 0.00098

1 
-2.223E-

05 
9.5818E-

07 
-2.144E-

08 
2.9247E-

03 
1.757E-

04 25 1023.387
3 

-0.3050 0.00095
9 

-2.143E-
05 

9.3713E-
07 

-2.066E-
08 

3.1050E-
03 

1.851E-
04 26 1023.078

8 
-0.3125 0.00093

8 
-2.067E-

05 
9.1683E-

07 
-1.993E-

08 
3.2950E-

03 
1.949E-

04 27 1022.762
6 

-0.3200 0.00091
8 

-1.995E-
05 

8.9726E-
07 

-1.922E-
08 

3.4950E-
03 

2.052E-
04 28 1022.438

9 
-0.3275 0.00089

8 
-1.926E-

05 
8.7837E-

07 
-1.856E-

08 
3.7056E-

03 
2.159E-

04 29 1022.107
8 

-0.3345 0.00087
9 

-1.860E-
05 

8.6014E-
07 

-1.792E-
08 

3.9271E-
03 

2.271E-
04 30 1021.769

4 
-0.3420 0.00086

1 
-1.798E-

05 
8.4253E-

07 
-1.731E-

08 
4.1600E-

03 
2.388E-

04   
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Appendix G Properties of Airxxii 
Te
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(°C) (kg/m3) (Pa⋅s) (m2/s) (m2/s⋅°C) 

1 1.2885 1.7280E-5 1.3411E-5 1.8638E-5 

2 1.2838 1.7330E-5 1.3499E-5 1.8766E-5 

3 1.2792 1.7379E-5 1.3586E-5 1.8894E-5 

4 1.2745 1.7428E-5 1.3674E-5 1.9022E-5 

5 1.2699 1.7478E-5 1.3763E-5 1.9151E-5 

6 1.2654 1.7527E-5 1.3851E-5 1.9279E-5 

7 1.2608 1.7576E-5 1.3940E-5 1.9409E-5 

8 1.2563 1.7625E-5 1.4029E-5 1.9538E-5 

9 1.2519 1.7673E-5 1.4118E-5 1.9668E-5 

10 1.2474 1.7722E-5 1.4207E-5 1.9798E-5 

11 1.2430 1.7771E-5 1.4297E-5 1.9929E-5 

12 1.2386 1.7819E-5 1.4386E-5 2.0059E-5 

13 1.2343 1.7868E-5 1.4476E-5 2.0191E-5 

14 1.2300 1.7916E-5 1.4566E-5 2.0322E-5 

15 1.2257 1.7965E-5 1.4657E-5 2.0454E-5 

16 1.2215 1.8013E-5 1.4747E-5 2.0586E-5 

17 1.2172 1.8061E-5 1.4838E-5 2.0718E-5 

18 1.2130 1.8109E-5 1.4929E-5 2.0851E-5 

19 1.2089 1.8157E-5 1.5020E-5 2.0984E-5 

20 1.2047 1.8205E-5 1.5111E-5 2.1117E-5 
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Appendix H MapleTM script 

> restart; 

> with(LinearAlgebra): 

Student(LinearAlgebra): 

with(Student[NumericalAnalysis]): 

with(ExcelTools): 

Quasi-static approach 
> Digits:=30: 

Define workspace 
> currentdir("D:\\SkyDrive\\Thesis\\Maple"): 
> fremove("D:\\SkyDrive\\Thesis\\Maple\\MCor Upending.xlsx"); 

fremove("D:\\SkyDrive\\Thesis\\Maple\\MCoR Upending-1.xlsx"); 

DEFINE EQUATIONS 

> T := h0-z-l*sin(alpha): 

Tb:= h0-z-(-S)*sin(alpha); 

Tt:= h0-z-(LMP-S)*sin(alpha); 
> A_d   := Do^2/4*arccos((Do-2*d)/Do)-(Do/2-d)*sqrt((Do-d)*d): 

A_Tt  := subs(d=(TT/cos(alpha)),A_d): 

A_Tb  := subs(d=(TB/cos(alpha)),A_d): 

A_D   := Do^2/4*arccos((Do-2*T)/Do)-(Do/2-T)*sqrt((T*(Do-T))): 

A_Do  := Pi/4*Do^2: 

dA    := 2*sqrt(h*(Do-h)): 
> Lim   := TB/sin(alpha): 

lim   := (TB-Do*cos(alpha))/sin(alpha): 

lim1  := (TB-Do*cos(alpha))/sin(alpha): 
> Vsub  := A_Tt*L+(A_Tb-A_Tt)*L/2: 

Vsub1 := A_Tb*L/2: 

Vsub2 := A_Do*(L+li)/2: 

Vsub3 := A_Do*L: 
> Dalpha:= (d_z/LMP): 

Alpha := arcsin(z/S): 
> Gx    := -S+LMP/2: Gz    := 0: > Cx    := 0: Cz    := 0: 
> Bx    := (A_Tt*L*(-S+L/2)+(A_Tb-A_Tt)*L/2*(-S+L/3))/(A_Tt*L+(A_Tb-A_Tt)*L/2): 

Bx1   := (A_Tb*L/2*(-S+L/3))/(A_Tb*L/2): 

Bx2   := (A_Do*li*(-S+li/2)+A_Do*(L-li)/2*(-S+li*2/3+L/3))/(A_Do*(L+li)/2): 

Bx3   := (-S+L/2): 

Bz    := (A_Tt*L*(ro-TT/2)+(A_Tb-A_Tt)*L/2*(ro-(TT+(TB-TT)/3)))/(A_Tt*L+(A_Tb-

A_Tt)*L/2): 

Bz1   := (A_Tb*L/2*(ro-TB/3))/(A_Tb*L/2): 

Bz2   := (A_Do*(L-li)/2*(ro-Do/3))/(A_Do*(L+li)/2): 

Bz3   := 0: 
> m     := FB*(sin(alpha)*BX)+FG*(sin(alpha)*GX): 

m1    := FB+FG+FC: 

DEFINE VARIABLES 

> g     := 9.81:            # gravitational constant 

rho_sw:= 1025:            # mass density seawater 

rho_s := 7850:            # mass density steel 

LMP   := 70:              # length of the pile 
> FMP   := 1100000*g:       # weight of the pile 

XMP  := -LMP/2+S:        # X-coordinate CoG of the monopile 

ZMP  := 0: # Do/2:       # Z-coordinate CoG of the monopile 

Ftc   := 9000*g:          # weight of the top-cap 

Xtc   := LMP-S-0.5:       # X-coordinate CoG of top-cap 

Ztc   := Do/2:            # Z-coordinate CoG of top-cap 

Fbc   := 4500*g:          # weight of the bottom-cap 

Xbc   := 0.5-S:           # X-coordinate CoG of bottom-cap 

Zbc   := 0: # Do/2:       # Z-coordinate CoG of bottom-cap 

Frig  := 6870*g:          # weight of the rigging arrangement 

Xrig  := 0:               # X-coordinate CoG of the rigging arrangement 

Zrig  := 0: # Do/2:       # Z-coordinate CoG of the rigging arrangement 

Fhook := 40000*g:         # weight of the hook 

FG    := -FMP-Frig-Ftc-Fbc:# total weight 
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Fc    := Fhook;           # initial load lifted by the crane 

FB    := -FG:             # initial buoyant force 
> Do    := 7:               # outer diameter of the pile 

ro    := 3.5:             # outer radius of the pile 

tw    := 0.092244:        # wall thickness of the pile 

Di    := Do-2*tw:         # inner diameter of the pile 
> S     := LMP-10.2:        # distance between bottom-cap and rigging arrangement 
> z_0   := 0:               # initial lifted height 

d_z   := 0.1:             # stepsize 

z     := z_0+i*d_z:       # heigth the trunnions are lifted 

INITIAL CONDITIONS 

> i     := 0: 
> VSub0 := FB/(rho_sw*g):   # Initially submerged volume 

h0    := fsolve(VSub0 = A_d*LMP, d); 

TT    := h0: 

TB    := h0: 

L     := LMP: 

FC    := Fc: 
> z0  := ro-((2*ro)/3)*((sqrt(1-(((ro-h0)/ro)^2))^3)/(arccos(((ro-h0)/ro))-((ro-

h0)/ro)*sqrt(1-((ro-h0)/ro)^2))): 

GX  := evalf(Gx): 

GZ  := evalf(Gz): 

CX  := evalf(Cx): 

CZ  := evalf(Cz): 

BX  := evalf(Bx): 

BX0 := evalf(Bx): 

BZ  := evalf(Bz): 

BZ0 := evalf(Bz): 
> phase  := 1: 

t      := 0: 

MCOR   := 0: 

li     := 0: 

n_steps:= 0: 

alpha  := evalf(Alpha);   # angle of the pile 

dalpha := evalf(Dalpha): 

beta   := 0: 
> MCOR  := evalf(m); 

Matrix([[BX,BZ,L,TT,TB,MCOR,lambda]]): 

MCor := 

Matrix([["BX","BZ","MX","MZ","MCOR"],[BX0,BZ0,MXi,MZi,MCORi],[BX0,BZ0,MXi,MZi,MCORi

],[BX0,BZ0,MXi,MZi,MCORi,lambda],[BX,BZ,MX,MZ,MCOR]]): 

MCoR := 

Matrix([["BX","BZ","L","TT","TB","MCOR"],[BX0,BZ0,L,TT,TB,MCOR],[BX0,BZ0,L,TT,TB,MC

OR],[BX0,BZ0,L,TT,TB,MCOR],[BX,BZ,L,TT,TB,MCOR]]): 

ALPHA:= 

Matrix([["BX","BZ","alpha","MCOR"],[BX0,BZ0,alpha,MCOR],[BX,BZ,alpha,MCOR]]): 

ALPHa:= Matrix([["z","alpha"]]): 

UPENDING 

> fd :=fopen("Phases 2D Upending.txt",WRITE,TEXT): 
> 

fprintf(fd,"%a %+06.10f %+06.10f %+06.10f %+06.10f %+06.10f %+06.10f %+06.10f %+06.

10f %+06.10f %+06.10f %a",z,FC,VSub0,BX,BZ,TT,TB,alpha,L,li,MCOR,t): 

for i from 1 by 1 while phase=1 do 

z     := evalf(z_0+i*d_z); 

check := 1; 

t     := 0; 

dalpha:= evalf(Dalpha); 

alpha := evalf(beta+dalpha); 

salpha:= sin(alpha); 

if alpha>=evalf(Pi/2) then alpha:=evalf(Pi/2) end if; 

TT    := evalf(Tt); 

TB    := evalf(Tb); 

if TT >= 0 then L:=LMP 
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elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then L:=evalf(Lim); 

li:=evalf(lim) 

elif (TT<0 and (TB/cos(alpha))>=Do and alpha<evalf(Pi/2)) then L:=evalf(Lim); 

li:=evalf(lim1) 

elif alpha>=evalf(Pi/2) then L:=evalf(Tb); li:=0 end if; 

if L > LMP then L:=LMP end if; 

if TT >= 0 then VSub := evalf(Vsub) 

elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then VSub := evalf(Vsub1) 

elif (TT<0 and (TB/cos(alpha))>=Do and alpha<evalf(Pi/2)) then VSub:= evalf(Vsub2) 

elif alpha>=evalf(Pi/2) then VSub:=evalf(Vsub3) end if; 

FB    := evalf(VSub*rho_sw*g); 

if TT >= 0 then BX:=evalf(Bx) 

elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then BX:=evalf(Bx1) 

elif (TT<0 and (TB/cos(alpha))>=Do and alpha<evalf(Pi/2)) then BX:=evalf(Bx2) 

elif alpha>=evalf(Pi/2) then BX:=evalf(Bx3) end if; 

if TT >= 0 then BZ:=evalf(Bz) 

elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then BZ:=evalf(Bz1) 

elif (TT<0 and (TB/cos(alpha))>=Do and alpha<evalf(Pi/2)) then BZ:=evalf(Bz2) 

elif alpha>=evalf(Pi/2) then BZ:=evalf(Bz3) end if; 

if alpha<evalf(Pi/2) then MCOR := evalf(m) 

else MCOR:=0 end if; 

ALPHA(RowDimension(ALPHA)+1,..):=Matrix([[Re(BX),Re(BZ),Re(alpha),Re(MCOR)]]); 

 for t from 1 by 1 while check=1 do 

  TT   := evalf(Tt); 

  TB   := evalf(Tb); 

  if TT >= 0 then L:=LMP 

  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then L:=evalf(Lim); 

li:=evalf(lim) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then L:=evalf(Lim); 

li:=evalf(lim1) end if; 

  if L > LMP then L:=LMP end if; 

  if TT >= 0 then VSub := evalf(Vsub) 

  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then VSub:= evalf(Vsub1) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then VSub:= 

evalf(Vsub2) end if; 

  if TT >= 0 then BX:=evalf(Bx) 

  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then BX:=evalf(Bx1) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then BX:=evalf(Bx2) 

end if; 

  if TT >= 0 then BZ:=evalf(Bz) 

  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then BZ:=evalf(Bz1) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then BZ:=evalf(Bz2) 

end if; 

  FB   := evalf(VSub*rho_sw*g); 

  if alpha<evalf(Pi/2) then MCOR := evalf(m) 

  else MCOR:=evalf(m1) end if; 

  mcor := Matrix([[MCOR]]); 

  if MCOR > 0 then  

   alpha := alpha+dalpha; 

  elif MCOR < 0 then 

   alpha := alpha-dalpha; 

  end if; 

  if alpha>=evalf(Pi/2) then alpha:=evalf(Pi/2) end if; 

  salpha:= sin(alpha); 

  TT   := evalf(Tt); 

  TB   := evalf(Tb); 

  if TT >= 0 then L:=LMP 

  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then L:=evalf(Lim); 

li:=evalf(lim) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then L:=evalf(Lim); 

li:=evalf(lim1) end if; 

  if L > LMP then L:=LMP end if; 

  if TT >= 0 then VSub := evalf(Vsub) 

  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then VSub:= evalf(Vsub1) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then VSub:= 

evalf(Vsub2) end if; 

  if TT >= 0 then BX:=evalf(Bx) 
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  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then BX:=evalf(Bx1) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then BX:=evalf(Bx2) 

end if; 

  if TT >= 0 then BZ:=evalf(Bz) 

  elif (TT<0 and (TB/cos(alpha))<Do and alpha<evalf(Pi/2)) then BZ:=evalf(Bz1) 

  elif (TT<0 and (TB/cos(alpha))>=Do and alpha<=evalf(Pi/2)) then BZ:=evalf(Bz2) 

end if; 

  FB   := evalf(VSub*rho_sw*g); 

  if alpha<evalf(Pi/2) then MCOR := evalf(m) 

  else MCOR:=0 end if; 

  mcor(RowDimension(mcor)+1,..):=MCOR; 

  if (mcor(1)<0 and mcor(2)>0) then dalpha:=dalpha/2 

  elif (mcor(1)>0 and mcor(2)<0) then dalpha:=dalpha/2 end if; 

  if abs(MCOR) <= 1E-10 then check:=2 end if; 

  MCoR(RowDimension(MCoR)+1,..):=Matrix([[BX,BZ,L,TT,TB,MCOR]]); 

 end do: 

FC   := evalf(-FG-FB+Fc); 

FS   := evalf(FG+FB+FC); 

TT   := evalf(Tt); 

TB   := evalf(Tb); 

beta := alpha; 

salpha:= sin(alpha); 

ALPHA(RowDimension(ALPHA)+1,..):=Matrix([[Re(BX),Re(BZ),Re(alpha),Re(MCOR)]]); 

ALPHa(RowDimension(ALPHa)+1,..):=Matrix([[z,alpha]]); 

fprintf(fd,"\n%a %+06.10f %+06.10f %+06.10f %+06.10f  %+06.10f %+06.10f %+06.10f %+

06.10f %+06.10f %+06.10f %a",z,FC,VSub,BX,BZ,TT,TB,alpha,L,li,MCOR,t); 

if VSub <= 200 then phase:=2 end if; 

end do: 

fclose(fd); 

n_steps := i; 
> FC1:=readdata("Phases 2D Upending 0.01.txt",2): 
> Export(ALPHA,"MCor Upending.xlsx"): 
> Export(MCoR,"MCoR Upending-1.xlsx"): 

time[real]()/3600; 

PLOT PHASES 

> with(plots): 
> Phase1 := FC1[1..242]:    # Splitted with Phases 2D.txt for dz=0.01 

[1..242],[242..1162],[1162..RowDimension(FC1)] 

Phase2 := FC1[242..1162]: 

Phase3 := FC1[1162..RowDimension(FC1)]: 

#Phase4 := FC1[495..RowDimension(FC1)]: 
> plot([Phase1,Phase2,Phase3],color=["Red","Blue","Green"],legend=["Phase 1","Phase 

2","Phase 3"],title="Upending 1.100t monopile",titlefont=["Roman",20],labels=["dz 

[m]","FC [N]"],labelfont=["Roman",20]); # x=49..50.5,y=5.8E6..6.5E6, 

#plot([Phase1,Phase2],color=["Red","Blue"],legend=["Phase 1","Phase 

2"],title="Upending 1.100t monopile",titlefont=["Roman",20],labels=["dz [m]","FC 

[N]"],labelfont=["Roman",20]); 
> plot([ALPHa],legend=["Alpha"],title="Upending 1.100t 

monopile",titlefont=["Roman",20],labels=["dz [m]","alpha 

[rad]"],labelfont=["Roman",20]);; 
> plot([Phase1],color=["Red"],legend=["Phase 1"],title="Upending 1.100t 

monopile",titlefont=["Roman",20],labels=["dz [m]","FC 

[N]"],labelfont=["Roman",20]); 
> plot([Phase2],color=["Blue"],legend=["Phase 2"],title="Upending 1.100t 

monopile",titlefont=["Roman",20],labels=["dz [m]","FC 

[N]"],labelfont=["Roman",20]); 
> plot([Phase3],color=["Green"],legend=["Phase 3"],title="Upending 1.100t 

monopile",titlefont=["Roman",20],labels=["dz [m]","FC 

[N]"],labelfont=["Roman",20]); # y=49.4..49.9,x=6E6..6.5E6, 
> #plot([Phase4],color=["Black"],legend=["Phase 4"],title="Upending 1.100t 

monopile",titlefont=["Roman",20],labels=["dz [m]","FC 

[N]"],labelfont=["Roman",20]); 
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Appendix I Experimental results 

 
Figure 73: Run 3, 4 and 5 

 
Figure 74: Runs 6, 7 and 8 
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Figure 75: Run 11 and 12 

 
Figure 76: Run 15, 16 and 17 
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Appendix J Experiment 

 
Figure 77: Initial conditions 

 

 
Figure 78: Emerging of the top-cap 

 
Figure 79: Submerging of the bottom-cap 

 
Figure 80: Decreasing gradient of the crane load 

 
Figure 81: Rotational acceleration of the pile Figure 82: Static emerging 

 
Figure 83: Final position 
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A List of symbols and abbreviations  

Symbol Description § Units 
a Amplitude of the surface elevation 2.2 m 
a Acceleration 3.2 m/s2 
A Cross-sectional area 3.2 m2 

Aext External cross-sectional area 4.1 m2 
Aint Internal cross-sectional area 4.1 m2 
AMP Cross-sectional area of the monopile 3.3 m2 
As Submerged cross-sectional area 3.2 m2 

ATb Submerged cross-sectional area at the bottom-cap, ATb= As(-S) 5.2 m2 
ATt Submerged cross-sectional area at the top-cap, ATt= As(LMP-S) 5.2 m2 
cv Fluid viscosity 3.3 Pa s 

CoB Centre of buoyancy at Cartesian coordinates (x,y,z) 5.2 m 
CoG Centre of gravity at Cartesian coordinates (x,y,z) 3.2 m 
CoR Centre of rotation at Cartesian coordinates (x,y,z) 5.2 m 

d Water depth 2.2 m 
Di Inner diameter of the monopile 6.3 m 
Dm Diameter of the model 6.1 m 
DMP Diameter of the monopile (≈7000mm) 6.1 m 
Do Outer diameter of the monopile 5.2 m 
E Elasticity 3.2 N/m2 
F Net force 3.2 N 
Fc Load lifted by the crane 3.2 N 
FE Elasticity force 3.2 N 
FG Gravity force 3.2 N 
FI Inertia force 3.2 N 
Fk Spring force 3.3 N 

FMP Weight of the monopile 3.3 N 
FP Pressure force 3.2 N 

FSWL Safe working load of the crane 3.2 N 
FT Surface tension force 3.2 N 
Fv Viscous force 3.2 N 
F∇ Buoyant force 3.2 N 
g Gravitational acceleration (≈9.81) 2.2 m/s2 
h Distance below seawater level 3.2 m 
h0 Initial draft 5.2 m 

Hmax Maximum wave height 2.2 m 
Hs Significant wave height 2.2 m 
I Mass moment of inertia 6.3 m4 
j Rank number of the wave height, j=1 for highest etc. 2.2 - 
k Wave number (=2π / λ) 2.2 1/m 
k Spring stiffness 3.3 N/m 
l Length 3.2 m 
L Submerged length of the monopile 5.2 m 

LMP Length of the monopile (≈70) 3.2 m 
m Mass 3.2 kg 
m' Hydrodynamic mass 3.2 kg 
mm Mass of the model 6.1 kg 
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mMP Mass of the monopile 6.1 kg 
MCoR Moment at the centre of rotation 5.2 Nm 

n Amount of substance of air 3.3 mol 
N Number of waves in the wave record 2.2 - 
p Pressure 3.2 N/m2 
p0 Atmospheric pressure (≈101325 N/m2) 3.2 N/m2 
pe External pressure against the end-cap (hydrostatic pressure) 4.1 N/m2 
ph Hydrostatic pressure 3.2 N/m2 
pi Internal pressure 3.3 N/m2 
Q Flow rate (≈5160m3/h) 4.2 m3/s 
ro Outer radius of the monopile 5.2 m 
R Gas constant (8.314472) 3.3 J/K mol 
S Distance between bottom-cap and trunnions (≈59.8) 5.2 m 
t time 2.2 s 
T Wave period 2.2 s 
Tb Draft of the bottom-cap 3.3 m 

Tmp Temperature inside the monopile 3.3 K 
TMP Draft of the monopile 4.1 m 

TMP(x) Draft of the monopile at coordinate x 5.2 m 
TMP,max Maximum draft of the monopile 3.3 m 

Tt Draft of the top-cap, Tt= TMP(LMP-S) 5.2 m 
u0 Horizontal component of orbital velocity 2.2 m/s 
ub Bottom orbital velocity 2.2 m/s 
va Flow velocity of air 4.1 m/s 
vm Velocity of the model 6.1 m/s 
vMP Velocity of the monopile 6.1 m/s 
vsw Flow velocity of seawater 4.1 m/s 
V Velocity vector (u, v, w) 3.2 m/s 
Va Volume of air 3.3 m3 
Vad Added volume of air 4.2 m3 
Vm Volume of the model 6.1 m3 
VMP Volume of the monopile 6.1 m3 

dV/d(x, y, z) Velocity gradient 3.2 s-1 
x Coordinate of Cartesian reference point horizontal  m 
xk Displacement of the spring 3.3 m 

xk,0 Initial displacement of the spring 3.3 m 
xMP Coordinate of centre of gravity along the x-axis (-24.8) 5.2 m 
xw x in the direction of the wave 2.2 m 
x𝞩 Coordinate of centre of buoyancy along the monopile (CoBx) 5.2 m 
y Coordinate of Cartesian reference point in depth  m 
z Coordinate of Cartesian reference point vertical  m 
z Vertical displacement by the crane 5.2 m 
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Greek symbols 

Symbol Description § Units 
α Angle of the monopile with the horizon 5.2 rad 
Δ Difference 3.3 - 
δ Scaling factor 6.1 - 
δD Diameter scale 6.1 - 
δI Inertia scale 6.1 - 
δl Length scale 6.1 - 
δm Mass scale 6.1 - 
δp Pressure scale 6.1 - 
δv Velocity scale 6.1 - 
δV Volume scale 6.1 - 
δρ Density scale 6.1 - 
ε Eddy viscosity 3.2 N s/m2 
λ Wave length 2.2 m 
λi Partially submerged length of the monopile, 0< T(x)< Do 5.2 m 
λs Shallow water wave length 2.2 m 
Λ Operator (of 3D Cartesian system) 3.3 m 
μ Dynamic viscosity 3.2 N s/m2 

μw Dynamic viscosity of the wave 3.3 N s/m2 
ν Kinematic viscosity 3.3 m2/s 
ρ Volumetric mass density  kg/m3 
ρa Volumetric mass density of air 3.3 kg/m3 
ρm Volumetric mass density of the model 6.1 kg/m3 
ρMP Volumetric mass density of monopile 6.1 kg/m3 
ρr Relative density 3.3 - 
ρs Volumetric mass density of steel (≈7850) 3.3 kg/m3 

ρsw Volumetric mass density of seawater (≈1025) 3.2 kg/m3 
σ Surface tension 3.2 N/m 
τ Shear stress 3.2 N/m2 
Φ Velocity potential 3.3 m/s 
ϕ Coordinate around the y-axis  rad 
ω Wave frequency 2.2 rad/s 
ωn Natural frequency 6.3 rad/s 
∇ Submerged volume 3.2 m3 

∇1 Fully submerged volume 5.2 m3 

∇2 Partially submerged volume 5.2 m3 
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Subscript 

Symbol Description Symbol Description 
0 Atmospheric / initial k Kinematic / spring 
a Absolute / air l Lower half 

ad Added air MP Monopile 
b Bottom / bottom-cap / bottom half o Outer 
bf Ultimate base p Pressure 
c Constant s Shaft / significant / shallow / steel 

/ submerged 
e Emerged sf Ultimate shaft 
E Elasticity sw Seawater 
G Gravity t Top / Top-cap / top half 
h Hydrostatic tip Skirt tip 
i Inner / internal /immersed u Undrained / upper half 
I Inertia w wall / water plane / wave 
j Rank number of wave height ∇ Buoyant / submerged 

Top script 

Symbol Description 

‘ Effective 

 Average 

˜ Fluctuating 

˙ Derivative in time 

¨ Second derivative in time 

 

Unit factor 

Symbol Description 

m milli- (1E-3) 

c centi- (1E-2) 

d deci- (1E-1) 

h hecto- (1E2) 

k kilo- (1E3) 

M mega- (1E6) 

G giga- (1E9) 

Enclosing symbol 

(   ) Parentheses for clarification or personal comment 

[   ] Brackets to define the unit of the variable 

{   } Braces for the boundaries of the equation with additional subscript 

|   | Braces to define the absolute value of that result 
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Abbreviations 

BS British Standard 
CoB Centre of Buoyancy 
CoC Centre of the Crane 
CoG Centre of Gravity 
CoR Centre of Rotation 
EN European Standard 

EWEA European Wind Energy Association 
FAD Free Air Delivery 
FLS Fatigue Limit State 
ISO International Organisation for Standardization 
MP Monopile 

NMF Neuenfelder Maschinenfabrik GmbHxxiii 
OHVS Offshore High Voltage Station 
OWTF Offshore Wind Turbine Foundation 
PTFE Polytetrafluoroethylene 
RPM Rotation per minute 
SLS Serviceability Limit State 
SWL Safe Working Load / Seawater Level 
ULS Ultimate Limit State 
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