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Management Summary

In this project the prediction of traffic signal timings of vehicle-actuated controllers for self-driving
vehicle technology is investigated. The vehicle-actuated controller is able to adjust the duration of
the green and the red signal based on incoming vehicles. The control installation detects the
incoming vehicles by using detector loops. The controller is able to change its output signal with
short lead times to react on fluctuations in the current traffic state. The controller does not know its
future input signal (vehicles to be detected) and therefore is not able to predict its own future state.
The future state is described as the moment of switching between the green and red phase and vice
versa. Information about the future switching timings of the red and the green signal supports the
decision-making layer of the autonomous vehicle. As a result, the information about switching
timings prevents the vehicle of a stop-and-go driving pattern and reduces computation power
drastically by avoiding stopping and starting several systems in the vehicle. The research question in
this project is formulated as following:

How to predict the traffic signal timings of a vehicle-actuated controlled intersection as accurately
as possible for in-vehicle usage, utilizing data retrieved from the traffic light controller?

A literature study results into the formulation of conditions and requirements for the prediction
algorithm. The following major requirements are taken into account while designing the prediction
algorithm: the prediction algorithm should be capable of predicting the switching timings of both the
red and green signal. Predicting the switching timings refers to predicting the duration of the green
and the red signal. The target variable in the prediction model is the absolute second in the signal
phase on which the signal changes and therefore predicts the total time left in the phase of the
green and the red signal for every second in the current phase. The permissible prediction error in
terms of absolute deviance for both the predicted green and red switching timings is 4 seconds
(predefined by Nissan). The prediction algorithm is primarily designed for the prediction of vehicle-
actuated controllers that serve a single modality. The prediction algorithm makes use of data
retrieved from the same controller for which it tries to predict the switching timings. Data
transmission is needed between the controller and the vehicle by using an intermediate hub, such as
a cloud structure. The data transmission that is needed for the algorithm follows a single directed
path from the controller to the vehicle. No communication back to the controller and also no
communication between other vehicles is necessary for predicting the switching timings. The
prediction algorithm could be deployed and computed in either the vehicle or the cloud structure
that is used for data transmission.

Furthermore, the literature study includes an overview of current prediction approaches. A
benchmark of several mathematical approaches, which were used in previous studies, show that the
Support Vector Regression (SVR) approach has the biggest potential in predicting the switching
timings of the vehicle-actuated controller. The SVR is a statistical learning approach that needs
historical data for training patterns in order to predict a given target variable. As part of the
literature study a mathematical and computational understanding of the SVR approach is given.

The data and modeling part of this project describes the retrieval and preprocessing of data, model
fitting and model selection of the prediction models. The prediction models are trained and tested
within a case study. The case study contains an intersection that is located in the Netherlands in the

province of North-Holland. The intersection serves a single modality and has a regular cross
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geometry including 10 signal groups. Data retrieved from the controller for prediction purposes is
called V-log data. The use of V-log data plays a key role in both the development process of the
prediction algorithm and the eventual use of the algorithm. V-log data needs to be preprocessed
before it can be used for training and predicting the SVR algorithm.

The preprocessing of raw V-log data into training and test data follows a fixed sequential
order of steps. Preprocessing of the raw V-log include the actions: manual feature extraction,
dataset construction, quality assessment of the data, feature selection, scaling and subsetting into
train- and test datasets. The final output of the data preprocessing is useable training and test data
for which the amount of corrupted data is reduced significantly. Special attention should be paid to
the quality assessment of V-log data. Empirical results show that poor loop detector health is a huge
threat for an accurate prediction model. Corruption in the V-log data can be detected by using
standard statistical metrics that reveal unexpected control patterns such as jittering loop detectors.

The modelling part consist of an extensive model selection procedure that covers the
assessment of trained SVR models in which different settings and data usage of the SVR are tested.
The design of the prediction algorithm has led to two prediction models for each signal group
individually: one prediction model for the switching timings of the green signal and a second model
for the red signal. The major difference between the two prediction models is the selection of data
from an initial dataset for training and predictions. We demonstrate that the green prediction model
only uses data selected from the signal group for which it also predicts the switching timings of the
green signal. The red prediction model uses data selected from all signal groups to predict the
switching timings of the red signal. For both the green and red prediction model we showed that
data retrieved from the first and third detector loops are successfully used for predicting the
switching timings. Besides the loop detector data also data describing the internal states of the
signal cycle is highly relevant for predicting the switching timings.

The intersection from the case study consists of 10 signal groups for which each 2 models
(red and green prediction model) were trained, accounting for a total of 20 models needed to
predict the entire intersection.

Model results from the case study show that the developed prediction algorithm is capable of
accurately predicting the switching timings of a (fully) vehicle-actuated controlled intersection
serving a single modality. The best performing green prediction model reports a mean absolute error
of 0.85 seconds and a hit rate of 99%. The mean absolute error indicates the difference between the
true switching time and the predicted switching time, while the hit rate gives the percentage of
predicted switching timings within a 4 seconds permissible error. The best performing red prediction
model shows a mean absolute error of 2.42 seconds and a hit rate of 81%. Improvements in the
prediction performance can be gained by numerical optimization of the trained models. Due to time
constraints in this project the optimization is not performed and is recommended for further
research.

Besides the reported validation metrics, the model results show that the SVR is able to
predict expected control behavior. The SVR models predict for every second in the cycle the number
of seconds left until the moment of switching. The expected control behavior is that the number of
predicted seconds until the moment of switching follows a countdown behavior. Model results show
that the prediction algorithm is able to predict such countdown behavior.
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Recommendations for Nissan primarily concern the optimization of the current prediction algorithm
and the implementation of the prediction algorithm as operational technology. It is recommended
to test the prediction algorithm as operational technology in a real time setting such as the
simulation environment that is present at the Nissan Research Center Silicon Valley.

Recommendations for further use of V-log data for prediction purposes are primarily related
to the logging of the V-log and the use of statistical procedures to asses the quality of V-log.
Recommended changes in the logging of V-log include the use of a different data format/extension
such as .CSV instead of the initial V-log extension and a lower frequency of logging. Modeling results
show that a logging of 1 second time interval of V-log is needed compared to the initial 1/10th of a
second time interval. By using a 1 second time interval the amount of processed data is reduced by a
factor 10.

Recommendations for further research are related to the research approach and
methodology, as well as the development of the prediction algorithm in this project. The results of
this project show that statistical learning techniques such as the SVR approach and the use of V-log
produce added value for both self-driving vehicle technology and traffic light control. An example of
further research is the detection of faulty detector loops or detecting whether parameter settings of
a controller need to be updated by analyzing V-log data. Secondly, it is recommended to upgrade
the current prediction algorithm by including additional sources of information to create a more
robust prediction algorithm. An example is the use of queue estimators when loop detector data is
missing or the queue of vehicles exceeds the detection range of the detector loops. Additional, the
arriving pattern of vehicles play an important role in the behavior of the controller. Catching the
dynamics of the arrival pattern in a variable would be an upgrade for the developed algorithm and
could be considered as further research. Finally, the interfacing of a prediction application that
utilizes the prediction algorithm is recommended for further research. Examples of topics are data
transmission and data latency of V-log, the installation of the prediction algorithm in the traffic light
controller or the vehicle and the frequency of retraining the prediction model respecting the chosen
prediction application.
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1 Introduction

Nissan Motor Co., Ltd., Japan's second-largest automotive company, is headquartered in Yokohama
Japan, and is part of the Renault-Nissan Alliance. Operating with more than 244,500 employees
globally, Nissan sold almost 5.2 million vehicles and generated revenue of 10.5 trillion yen (USD 105
billion) in fiscal 2013. Nissan delivers a comprehensive range of more than 60 models under the
Nissan, Infiniti and Datsun brands (NISSAN, 2015a). In 2013 the Renault-Nissan alliance opened a
new research facility in Sunnyvale, the heart of Silicon Valley, to become its hub for research on
autonomous vehicles, connected vehicles and human Interface to enhance the experience of
autonomous and connected vehicles. In addition, planning and advanced development of connected
vehicle services and the design of user interface systems are assigned as a complementary field to
the above disciplines (NISSAN, 2013). That same year Nissan published to have plans to have
commercially viable autonomous driving vehicles on the road by 2020 (NISSAN, 2014a).

1.1 Advances of self-driving vehicle technology

Recent developments in self-driving vehicle technology are moving in a rapid pace. Similair to
Nissan, other automotive manufacturers such as Mercedes, Ford, BMW and Audi have opened
research facilities that are dedicated to self-driving vehicle technology (KPMG, 2014). Besides the
automotive manufacturers also tech companies such as Google, Baidu and Apple started research
programs to develop self-driving vehicle technology.

The advancements in self-driving vehicle are classified according a 5-level structure that
indicate the level of automation of a system. The levels of automation follow the international
standard of J3016 that describes the taxonomy and definitions for vehicle automated driving
systems (SAE, 2015). The lowest level, level 0, indicates a level of autonomy in which the driver is
continously in control of the speed and direction of the vehicle. The level of autonomy increases
during each level, until full automation of the vehicle is achieved. The final level (fifth level) contains
systems that perform the lateral and longitudinal driving tasks in all situations during the entire
journey. In level 5 no driver is required. Current systems that are researched and brought into
production are located in the first and second level of automation. Level 1 assumes that the driver
continuously performs the longitudinal or lateral dynamic driving task. Examples of such systems are
park assistance, lane keep assistance and adaptive cruise control. Level two assumes that the vehicle
is able to perform manouvres automatically, but the driver must monitor the dynamic driving task
and the driving environment at all times. An example of such a system is traffic jam assistance.

KPMG released halfway 2015 an industry report in which the main automotive manufactueres
were interviewed and asked what level of automation will cause the biggest stepping stone to fully
autonomous driving. All interviewed automotive manufacturers indicated that systems in level 3 will
be a crucial point during the transition phase from partly autnomous driving to fully autnomous
driving due to the required complexity of the systems (KPMG, 2015). Level 3 systems perform
longitudinal and lateral driving tasks. The vehicle recognises its performance limits and requests the
driver to resume the dynamic driving task with sufficient time margin. The difference between level
2 and level 3 is the frequency of monitoring the systems by the driver. In level 3 the driver does not
need to monitor the dynamic driving task nor the driving environment at all times, but the driver

must always be in a position to resume control. level 2 asks the driver to always monitor the driving



task and driving environment at all times. An example of a level 3 system is the intersection pilot that
enables the vehicles to negotiate city cross-roads without driver intervention. Carlos Ghosn, CEO of
Nissan, announced that intersection-autonomy will be introduced to Nissan’s models at the end of
this decade (NISSAN, 2014b). As part of the intersection pilot the vehicle communicates with traffic
light systems to retrieve information about the current state of the traffic lights and (future)
switching timings (NISSAN 2015b). Focus of current Nissan’s self-driving vehicle technology is mainly
targeted towards the stand-alone autonomous vehicle technology in which the vehicle drives itself
without communicating with other vehicles or infrastructure systems. To transition to level 3
systems, the Nissan vehicles need to adapt connectivity services such as connectivity with traffic
lights. Maarten Sierhuis, Research Director of the Nissan Research Center Silicon Valley, stated in a
presentation in early 2015 that connected systems such as vehicle-to-infrastructure systems like the
intersection pilot are the highest level in complexity, but are of utmost importance for getting the
autonomous vehicle to the market.

1.2 A joint project with the province of North-Holland

In early 2014 Nissan Research Center Silicon Valley and the Province of North-Holland partnered up
for a joint project called ‘Traffic Signal Timings Prediction’. This project is part of the connected
vehicles research team of Nissan. The connected vehicles research team is currently doing research
on intelligent systems that uses the advances in wireless communications and in particular vehicular
communications with infrastructure side systems or ITS (Intelligent Transport Systems). This type of
communication is also called vehicle-to-infrastructure or V2I. North-Holland contributes to the joint
project by supplying rich data coming from traffic light systems of North-Holland as well as giving
access to the settings and information about the used control logic. Nissan contributes to the joint
project by developing a prediction algorithm for the prediction of traffic signal timings.

1.3 Motivation for developing a prediction algorithm

A prediction algorithm for predicting the traffic signal timings serves several purposes. Firstly, the
output of the developed prediction algorithm supports the decision-making layer of the autonomous
vehicle (NISSAN, 2015b). The prediction algorithm could be part of in-vehicle control agents that
have access to sensors and actuators in the vehicle. A model prediction control (MPC) framework
could be applied to control agents in the vehicle, for which the prediction algorithm supplies
information about signal timings. As a result, the control agent can take into account all available
information and therefore is able to anticipate on undesirable behavior of the vehicle in the future
at an early stage (Negenborn, 2010). The information about switching timings could prevent the
vehicle of a stop-and-go driving pattern and reduce computation power drastically by avoiding
stopping and starting several systems in the vehicle (NISSAN, 2015b).

Secondly, the prediction algorithm could be used to optimize the control structure of the
vehicle-actuated controller. The optimization could lead to a more efficient controller. Similar to in-
vehicle control agents, a model predictive control framework could be applied to the vehicle-
actuated controller for which the prediction algorithm supplies the controller about expected
durations of the traffic signal (Asadi et al., 2011). As result, the controller is able to find optimal
control measures for the next control cycle (green and red signals) that causes the controller to
achieve optimal behavior of the traffic flows. The design of a model predictive controller is not the
topic of this project, however the developed prediction algorithm could serve as prediction



component within a MPC structure. The focal point in this project is to research the most effective
prediction approach that supplies in-vehicle systems with information about traffic signal timings.

1.4 Problem background

In this section the problem and challenges behind the prediction of traffic signal timings is further
elaborated upon. The section results in a problem statement which defines the topic of this
research. To understand the research challenges, background information is given about traffic light
control and traffic light signal timings data.

1.4.1 Brief background information: Traffic light control

The basic mechanism of a traffic light controller can be described by approaches, phases, cycles,
conflicts and signal groups. An approach is a lane or multiple lanes that lead to an intersection. A
signal group is a set of approaches that are controlled by the same traffic light and therefore share
the same traffic light signal (Highway Capacity Manual, 2010). A signal group is often referred as
movement group, but in this project the term signal group is being used. The signal groups have
fixed numeric labels at an intersection. Labels of signal groups will play a major part in retrieval of
the correct data for prediction purposes. More information will be given in Chapter 6 about labeling
of the signal groups.

The controller distinguishes several phases or blocks that determine (vehicular or
pedestrian) signal groups running the green signal at the same time (Wilson & De Groot, 2006).
Blocks are separated from other blocks by avoiding conflicts between signal groups. In Figure 1 a
conflict, denoted with its conflict area, is shown. A rule of thumb is that the two signal groups
sharing a conflict area should not get a green signal from the controller during the same phase.

) i\

W ‘ \ ﬁconflict area

Figure 1 Conflict area (van Katwijk, 2008)

Although creating conflict areas should be avoided, some movements are allowed to proceed during
a phase even though they cause conflicts. Pedestrians are commonly allowed to proceed across
intersections even though right-turn movements are occurring. These movements are called
permitted, while protected movements are those without any conflicts (Highway Capacity Manual,
2010). Protected conflicts are all conflicts that are controlled. The signal groups that cause together
the largest conflict group is usually called decisive conflict group. The decisive conflict group
determines the maximum cycle time of the traffic light. The cycle time is the time during which all
signal groups had the right to turn green. In other words, all phases had the possibility to get a green
signal. A second type of cycle exists; a signal group has its own cycle time that is called the signal



cycle and represents the time from the beginning of a certain phase to its re-occurrence after all
other means of traffic have been serviced in their respective phases (Protschky et al., 2014a).

1.4.2 Control Schemes

Predicting the signal timings is the central subject in this study. The signal timing elements within
each signal cycle for a signal group include the green, yellow and red phases. In order to guarantee a
safe operation at an intersection the traffic light controller must always respect certain
requirements regarding the minimum length and green-yellow-red sequence (Highway Capacity
Manual, 2010). No immediate switch from green to red is possible; a green signal is always followed
by a yellow signal. How the controller assigns phase lengths and order of the phases of different
signal groups is determined by the control scheme. The area of traffic light control is dominated by
three different control schemes. Control schemes are also denoted as ‘controllers’. The three main
control schemes are:

1) Pre-timed control: signal timings follow a fixed schedule from a set of predetermined plans,
which were developed off-line on the basis of historical traffic data. The controller usually
contains a few schedules based on the time of the day and day of the week. A pre-timed or
also called fixed-time controller operates without detectors installed at the intersection. The
duration and order of all green phases remain fixed and are not adapted to current traffic
demand (Highway Capacity Manual, 2010).

2) Vehicle-actuated control: the controller operates according to fluctuations in the traffic
state by using detector loops. This detection is performed by using real-time control based
on detection loop signals. Signals are triggered by the presence of vehicles. There is a variety
in types of vehicle-actuated controllers. They all adjust the length of the current phase in
response to fluctuations in the presence of vehicles (Wilson & De Groot, 2006).

3) Adaptive control: the adaptive controller monitors the state of the entire intersection.
Based on current state and/or traffic upstream the intersection the controller decides to
either continue the current green phase or to switch to a different phase. In contrast the
vehicle-actuated controller decides to either extend the active green phase or to switch to
the next phase based on whether vehicles are still present on the approaches of the active
green phase. A vehicle-actuated controller can be considered to suffer from tunnel vision as
it does not consider traffic on the other approaches when determining the duration of a
green signal (van Katwijk, 2008). Traffic-adaptive control differs from vehicle-actuated
control because it can evaluate a set of feasible control decisions and choose a decision that
is optimal with respect to its current objectives.

Literature on the topic of traffic signal timings shows a lot of misusage and confusion about the
definition of adaptive and vehicle-actuated control. In many cases ‘adaptive’ control is being used in
cases where the control logic of a vehicle-actuated controller is explained.

1.4.3 Traffic light signal timings data: V-log & SPaT

The main data sources for predicting the traffic signal state are considered to be V-log
(verkeerskundige log) and SPaT data (Signal Phase and Timing data). SPaT is an internationally
standardized message format for traffic light signals. The SPaT data format is standardized, but the
content in the SPaT message is not standardized. V-log is an unstandardized data format (Vialis,
2012), but recognized by Dutch road authorities as most efficient way to log traffic signal data. The



province of North-Holland stored V-log data for the past 3 years of every intersection in the region
of North-Holland.

The current state of the traffic signals is trivial when the road authority makes its signal
phase and timing data available. The messages that contain the current traffic signal states will be
described according the SPaT protocol. However, predicting the future state of the traffic lights is
not always an easy task even under the condition that SPaT messages are available for the vehicle
(Bodenheimer, 2014). For this project we will look at raw data retrieved from the controller. V-log
data is raw data coming from the controller capturing all the information that is presented in the
SPaT data.

V-log is logged in a Discrete Event Simulation analogy and is compressed to secure
transmission efficiencies without losing performance and complexity of the data (Vialis, 2012). V-log
is transmitted at a fixed five-minute interval to a central database. Additionally, a logging is
transmitted at a frequency of 1/10 of a second. This results in a logging that is approaching a real-
time state updating. V-log data contains signals regarding: detector loops, internal signals, external
signals and speed detection (Vialis, 2012). As a rule of thumb, the SPaT message only contains
output data of the external signal parameters (green, yellow and red). Internal parameters describe
transitions between different control schemes within the controller. More information about
internal parameters can be found in section 3.2.3. The detector loop data is logged binary and
internal/external parameters are logged with predefined coding. All data is logged in a temporal
database. Raw V-log data needs to be preprocessed before it can be useful for prediction purposes.
In Chapter 7 more information is given about the applied preprocessing techniques in this project.
Below a graphical representation is given of the raw V-log data. To understand the data better, one
should think in terms of input and output data for the controller. Input and output data is shown for
one signal group in Figure 2. The input data is marked as blue bars at row 021 until 0212. The raw
data is logged in binary coding; O indicates no vehicle detected and 1 indicates a detection of at least
one vehicle. Output data of the controller are the traffic signals at rows 02.
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Figure 2 Graphical representation of V-log data of one signal group



1.5 Problem statement

Previous section describes three major control schemes: pre-timed, vehicle-actuated and adaptive
control. Predicting the traffic signal timings for pre-timed controllers is a trivial execution since it
assumes a pre-defined static control scheme. This means that the traffic control scheme follows a
relatively simple scheme in an endless loop. The prediction of vehicle-actuated and adaptive
controllers is considered to be far more complex due to their flexible assignment of green phases
and cycle lengths. Nowadays almost 85% of the traffic light controllers in the Netherlands are
vehicle-actuated controlled (van Katwijk, 2008). Exact numbers of other countries are unknown.
Bodenheimer et al. report that of 95% all the traffic light controllers in Hamburg Germany are

vehicle-actuated controlled (Bodenheimer et al., 2014).

1.5.1 Flexibility of the vehicle-actuated controller as main prediction obstacle

The vehicle-actuated controller is considered to be a flexible control scheme. This flexibility causes
the controller to be difficult to predict. The flexibility is partly caused by the short lead times of 1
second at which the signal can change (Bodenheimer et al., 2014). The controller does change its
signal fast because it operates according to fluctuations in the traffic state by using detector loops.
Detector loops send out signals that are triggered by the presence of vehicles. Detection is
performed by using real-time control based on detection loop signals (Wilson & De Groot, 2006).
The controller does not know its future input (traffic) and therefore is not able to predict its own
future state (Weisheit & Hoyer, 2014). Even if the controller would have information about the
number of approaching vehicles, pedestrians, busses or cyclists, it still would have difficulties with
predicting its future state. The reason is twofold:

1) The assignment or extension of a green signal for a signal group is not always directly linked to
traffic dedicated for that particular signal group. The control feature of the vehicle-actuated
controller is called inducing green (meerealiseren) and continue parallel green (meeverlengen)
(Wilson & De Groot, 2006).

2) Speeding behavior of a vehicle determines the extension of the green phase and therefore
influences the cycle length. Situations occur that vehicles are detected by the detector loops, but
do not pass a threshold of required gap times. Therefore, not only the presence of a vehicle is
important, but also the speeding behavior of that particular vehicle is important.

As a result of the flexibility, the controller shows variability in the following output: 1) the sequence
of signal groups getting assigned a green phase by the controller, 2) the cycle length of a signal
group (signal cycle) and 3) the duration of the green and red signal during signal cycle (Wilson & De
Groot, 2006). In conclusion, the flexibility of the vehicle-actuated controller makes is a challenging
task to predict the traffic signal timings.



1.6 Research objective and questions

In this section the research objective, research questions and sub-questions are presented. The

research objective is to develop an algorithm for traffic signal timings prediction of vehicle-actuated

controlled intersections. The research question has been formulated as following:

How to predict the traffic signal timings of a vehicle-actuated controlled intersection as accurately

as possible for in-vehicle usage, utilizing data retrieved from the traffic light controller?

During the process of designing the algorithm several decisions need to be made. The following sub-

guestions are formulated to support decision-making during the development of the prediction

algorithm:

1)

2)

3)

4)

5)

6)

What functional and non-functional requirements need to be taken into account for the

development of a prediction algorithm that is able to predict the switching timings of a

vehicle-actuated controller?

e What is the prediction target of the prediction algorithm?

e What is the level of integration and interaction of the desired prediction algorithm?

e What is the level of permissible error on the prediction target?

What information regarding the control logic of the vehicle-actuated controller is necessary

to take into account for retrieving V-log data that is used for predicting the switching

timings?

e How does the vehicle-actuated controller controls its output signals based on detector
loop data?

What type of prediction approach complies to the functional and non-functional

requirements for a prediction algorithm to predict the switching timings of a vehicle-

actuated controller?

e What prediction approaches are mentioned in the literature in the field of traffic signal
timings prediction?

e What approach is currently used by Nissan for the prediction of traffic signal timings and
why would a different approach be preferred?

What preprocessing steps need to be performed to transform V-log data to data that can

directly be injected into the prediction algorithm?

e What data in the V-log need to be retrieved that catches the dynamics of the vehicle-
actuated controller?

e How can quality assessment be performed on V-log to determine data corruption?

Under what circumstances does the prediction model perform satisfying and under what

circumstances does the prediction model fail?

How applicable is the prediction algorithm on different scenario’s such as different

intersections, multiple modalities and times of the day?



1.7 Research approach and methodology

In this section the research approach and methodology is introduced that is applied to answer the
research question and sub-questions. The research predominantly requires information about: 1)
functional and non-functional requirements of the prediction model, 2) the control logic of the
vehicle-actuated controller, 3) current algorithms/predictions models for prediction of traffic signal
timings, 4) V-log data and its usage for predictions. Information concerning the four stated topics are
gathered by a literature study and interviews with researchers from Nissan and experts from the
province of North-Holland. To construct the prediction algorithm, the following key activities are
performed: 1) an intersection must be chosen for which V-log data is retrieved, 2) retrieval and
preprocessing of the raw V-log data, 3) computation of the algorithm and 4) validation of the
constructed prediction model(s).

1.7.1 A case study: vehicle-actuated controlled intersection in North Holland

In this project a case study is performed in which the developed prediction algorithm is tested and
validated. The case study consists of a single vehicle-actuated controlled intersection that is located
in the region of North-Holland. From this intersection data is retrieved that will be used for both the
development and testing of the prediction algorithm. Prior to the case study an explanation will be
given about the control logic of the vehicle-actuated controller which is deployed in North-Holland.
By knowing and defining the control logic valuable information can be used for the design of the
prediction model. Information about the control settings of the controller is gathered by interviews
with experts from North-Holland and gathered from supplied documentation by those experts. As
part of the case study an intersection is selected in North-Holland.

1.7.2 Algorithm selection and design strategy

Algorithm selection and design is the most comprehensive part of this project. Firstly, an extensive
research study is conducted on current prediction models in the field of traffic light signal timings
prediction. It shows that some models already do exist but operate on simplified scenarios and
follow different mathematical concepts. Examples are the Kalman Filter (Protschky et al., 2014b),
Markov chains (Bodenheimer et al., 2014), Support Vector Machine (Weisheit & Hoyer, 2014) and
Probability theory (Mahler & Vahidi, 2012). Each mathematical concept deals with the prediction
challenge in its own way and was selected due to the availability of data and application purposes.
The goal is to give an overview of current used algorithms after which the most promising
mathematical approach is selected. Where needed, background information about the chosen
mathematical approach is given. The documentation about the chosen mathematical framework is
not an attempt to give a comprehensive understanding of the mathematics behind the approach.
The documentation will cover sufficient information to understand preceding chapters regarding the
development of the algorithm. The algorithm will be selected according the prediction
requirements. To scope the project a design strategy is formulated. As part of this the design
strategy the approach is respected to start simple and add complexity. In this project the focus is on
intersections that serve a single modality. The algorithm is trained and validated for the morning
peak only. Intersections that serve modalities such as bicycles, pedestrians and public transport are
not part of the case study. Once the model is developed it could be tested and used for other times
of the day and additional modalities.



1.7.3 Computation

In this study numerous activities are performed that need the use of a programming language. For
this project the statistical software R is used as programming language for performing data analysis,
preprocessing of the raw data and the development of the algorithm. R is an open source
programming language for statistical computing and graphics (RStudio, 2016). The source code of R
is written in C and Fortran. The capabilities of R are extended by the use of user-created packages
(Matloff, 2011). R-studio will be used as a graphical interface on top of the R core software. The
Google R Style guide is used in this project to develop standardize code for readability and
reproducibility (Ledolter, 2013). Although the developed scripts respect the Google R Style guide,
the final script cannot be considered as operational software. The development of a faster version of
the algorithm as a fully operating software plugin is considered to be a topic of future research.

1.7.4 Dataretrieval and preprocessing of V-log data

As mentioned in the problem background, North-Holland is providing this joint project with all
existing V-log data of traffic signal systems in North-Holland of the past 3 years. Several executions
need to be performed in order to run a prediction model properly on the V-log data. Firstly, the right
data needs to be retrieved from the controller. Insights about the control logic will support the
decision-making process of selecting the correct data from the V-log data. Secondly, the data needs
to be preprocessed and stored in a useable data format. This task should not be underestimated
since the raw V-log data is coded in a binary and categorical fashion and is logged in a temporal
database. Most prediction algorithms need numerical data and run into trouble when binary data is
used (Mitra & Acharya, 2003). Preprocessing of the V-log data includes the transformation of binary
V-log to numerical data and create variance in the data. Other preprocessing techniques such as
scaling will need to be executed before the data can be injected into a prediction model (Hastie et
al., 2009). Thirdly, the data needs to be inspected for data corruption and missing values. The
inspection of the data is performed by univariate and bivariate statistical analysis. A univariate
analysis gives descriptive statistics of one single variable. Univariate analysis include statistical
summaries of the metrics: mean, mode, variance, min value, max value, and the standard deviation.
Bivariate statistics involve the analysis of two variables to determine the empirical relationship
between them. In order to see if the variables are related to one another, it is common to measure
the dependence in terms of correlation.

1.7.5 Validation of the prediction model

The generalization performance of a prediction model relates to its prediction capability on
independent test data. Assessment of this performance is extremely important in practice, since it
gives us a measure of the quality of the chosen model (Mitra & Acharya, 2003). Validation is
understood to be “the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model’ (Los Alamos,
2004). The validation procedure relies on the chosen mathematical framework that is used as
prediction approach. A method for estimating prediction error is cross validation. This method
directly estimates the expected extra-sample error, which is the average generalization error when
the developed prediction model is applied to an independent test sample (Hastie et al., 2009). To
execute an efficient cross-validation procedure, which utilizes the amount of available data as much
as possible, K-fold cross validation is used. In K-fold cross validation the dataset is split into a number
of K-folds. The model is trained on K-1 fold data, where after the model predicts the data of the
remaining 1 fold of data. This process is repeated K times (every time with a different fold as
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prediction data), after which the parameter estimates of each fold are averaged to determine the
performance of the classifier (Hastie et al., 2009). It is likely to get reliable validation statistics that
approaches the expected prediction error on a test set when a large number of observations
(samples) are used.

1.8 Research relevance

1.8.1 Relevance for the automotive industry

Several automotive manufacturers publicly stated to bring semi-and fully autonomous vehicles to
the road within 10 years (KPMG, 2014). Focus of the self-driving vehicle technology is currently
focused on the stand-alone autonomous vehicle technology in which the vehicle is executing driving
tasks without communicating with other vehicles or infrastructure systems (KPMG, 2015). To
transition current level of automation from partial autonomous driving towards fully autonomous
driving, the in-vehicle systems need connectivity with infrastructure systems such as traffic lights.
This project gives understanding what value traffic light data has for the vehicle and what obstacles
need to be taken into account while developing self-driving vehicle technology that deals with
intersections. Regardless of the level of intelligence of the vehicle, intersections remain a highly
complex area for the self-driving vehicle. Any system that gives predictive power to the vehicle
regarding the future of such an area contributes to the safety and acceptance of self-driving vehicle
technology. This project and forthcoming insights support developments of the self-driving vehicle

technology.

1.8.2 Relevance for road authorities

To our knowledge no project has been performed in which V-log data was used for predictive
purposes for self-driving vehicle technology. This research shows the relevance of V-log data for
autonomous vehicles and how the structure and content could be changed in order to be
compatible with self-driving vehicle technology. Additional, this project could serve as a use case in
which V-log data is used in combination with statistical learning approaches. Furthermore, road
authorities could gain insights form this project in how self-driving vehicle technology embeds traffic
light control logic for predictive purposes and what information is needed to do so. As turns out
sufficient loop detector health is important to support signal timings prediction models. Currently
the SPaT protocol is being designed and agreed on by governmental institutes. The format of the
SPaT message is already being agreed on, but the content is not fixed yet. Results and insights
gained from the research as described in this thesis could open up new directions of the content of
the SPaT message. It could prevent the SPaT message from containing non-informative data for the
vehicle and inclusion of data that is highly relevance for prediction purposes.

1.8.3 Relevance for the TIL domain

As mentioned before, this project stresses the importance of high quality data retrieved from the
traffic light controller for prediction purposes. In-car systems that include connectivity of the vehicle
with infrastructure systems benefit from knowledge of the TIL (Transport, Infrastructure and
Logistics) domain. Developing new TIL infrastructure systems on the other side also benefits from
knowledge about self-driving vehicle technology that interfaces the vehicle with the infrastructure.
This project adds value to the TIL domain in giving insights how traffic data produces added value to
self-driving vehicle technology and what intermediate steps are required at the infrastructure side to
produce that added value. More important, this project serves as an example that the design of
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future TIL projects should take interfacing with self-driving vehicle technology into account. At last,
this project shows that not only technical research on the prediction of switching timings is
necessary to achieve a successful implementation of a prediction algorithm, but also alignment of
the road authorities, regulatory institutes (responsible for protocols) and the automotive industry is
needed to achieve a successful implementation.

1.8.4 Societal relevance

In this project the province of North-Holland and Nissan Research Center Silicon Valley are engaging
in order to benefit from knowledge of the use of V-log for self-driving vehicle technology. As a result,
a better understanding of used technologies for both North-Holland and Nissan is gained.
Understanding technologies on both sides of the infrastructure and the vehicle opens up doors to
coordination and alignment of used technologies by the government and the automotive industry.
The coordination between infrastructure systems and the newly developed self-driving vehicles
technology could prevent unsafe situations around intersections. Eventually road users such as
drivers, pedestrians and cyclists benefit from safe intersections.

1.9 Thesis overview

The thesis is divided into three parts that are set up in the following way:

e Part I: contains the literature study described in chapters 2 to 5. Chapter 2 describes the
functional and non-functional requirements that set guidelines for the development of the
prediction model. The requirements are used in Chapter 5 to select a suitable prediction
approach. Chapter 3 contains valuable information about the vehicle-actuated controller
that is needed to understand what information is logged in the V-log data. Chapter 4
summarizes the current algorithms and mathematical frameworks that are used for traffic
signal timings prediction. Chapter 4 finishes with the most optimal type of mathematical
approach suited for this research. Chapter 5 gives a deeper understanding of the chosen
mathematical framework and the computation of the mathematical approach. The goal of
Chapter 5 is not to give a fully comprehensive overview of the mathematics behind the
algorithm. The Chapter will provide the reader with sufficient information to understand
preceding chapters regarding the development of the algorithm.

e Part II: contains the data and modeling part described in chapters 6 to 8. Chapter 6
describes which intersection is used as a case study and how this intersection was selected.
From the selected intersection data is retrieved that serves as input for Chapter 7. Chapter 7
describes the preprocessing of V-log data into usable data for prediction. Chapter 8 explains
the development of the prediction model and all decisions that were made during the model
selection.

e PartIII: contains the results and final remarks described in chapters 9 to 11. Chapter 9 gives
the validation results and deeper insights concerning the prediction behavior on given test
data. Chapter 10 discusses all the relevant decisions during the research and discusses the
implementation and future perspective of the prediction algorithm. Chapter 11 contains the
conclusion of the research and reaches back to the initial goal and research questions of this
project. Furthermore, Chapter 11 gives recommendations for Nissan and the further use of
V-log data and the developed prediction algorithm. Additional recommendation for further
research are given.
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Figure 3 gives an overview of the key activities in this thesis.
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Figure 3 Key activities described in this thesis
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2 Conditions and requirements for the prediction model

The research objective is to develop an algorithm for traffic signal timings prediction of vehicle-
actuated controlled intersections. To develop an effective algorithm, it should be clear what
requirements should be met. This Chapter introduces conditions and requirements that scope and
bring focus to the development of the prediction model.

2.1 Previous prediction applications

The prediction of traffic light controllers in previous research is usually related to Green Light
Optimal Speed Advisory (GLOSA) applications. A GLOSA system contains a prediction component for
pre-timed or semi vehicle-actuated control schemes (Seredynski et al., 2013b). The prediction
component usually consists of an algorithm. The level of complexity of the control schemes in
previous research is considerably lower compared to the control scheme used in this project.
Previous studies explicitly stated the application for which the prediction component is needed. An
example of such a study is the Traffic Light Assistant application by Audi (Zweck & Schuch, 2013).
The focus of these studies is angled more towards the integration of the prediction application
instead of the theory behind the prediction algorithm. In this project the focal point is placed on a
proof of concept of an algorithm to predict the controller and therefore has the ambition to
formulate a prediction algorithm instead of a full application.

An example of a conducted GLOSA research is the Audi Travolution project. The project
describes an on-board system that receives real-time traffic signal data from individual traffic signals
via dynamic short-range communication (DSRC) and provides speed recommendations to the driver
(Brain et al,. 2009). The system also provides time-to-green and time-to-red information to the
driver. However, the system does not make predictions for the traffic signals and therefore can only
provide recommendations that account for traffic lights within the short DSRC range. In addition,
Green Driver provides a mobile telephone application that predicts the states of traffic signals based
on real-time traffic signal information from a traffic center (Apple et al., 2011). The application
calculates the speed required to pass through a traffic light before it turns red, and provides
suggested routes to avoid red lights. However, Green Driver makes predictions for only pre-timed
control schemes and is not able to produce predictions for vehicle-actuated controlled intersections.

The prediction application that shows similarities with to the prediction task of this project
has the name SignalGuru (Koukoumidis et al., 2014). SignalGuru uses crowdsourced data to detect
and predict the traffic signal schedule. Initially SignalGuru uses windshield-mounted mobile
telephones to acquire real-time images of traffic signals and determine the color of the traffic signal.
The system analyzes data acquired from other vehicles to recommend when drivers should reduce
their speed to avoid idling at a red light. In Chapter 4 more information and examples are given
regarding previous prediction algorithms for the prediction of traffic signal timings.
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2.2 Prediction target variable

Research shows different prediction targets when the future traffic signal state is predicted. On
abstract level two prediction targets are being used: either making a probability statements about
every second in a cycle (Mahler & Vahidi, 2012) or making statements of the switching time in terms
of classification or regression (Weisheit & Hoyer, 2014). In previous research probability statements
were always focused on the probability of having green time at a certain second in a cycle.

The red signal is treated as an inverse probability as counterpart of the estimated probability
function of the green signal. Having probability estimations is from a statistical point of view
pleasant, since it shows a direct measurement of accuracy, but lead to compulsory decisions. The
obstacle is how the threshold of a probability of green is set to indicate a true green. Barthauer and
Friedrich state in their research a probability threshold of 0.7 to indicate green time (Barthauer &
Friedrich, 2014). Setting this threshold seems arbitrary and several researches making probability
statement about traffic signal states do not clearly indicate their threshold. The second and more
useful target variable for the prediction model is estimating the transition time or switching time of

the signal. The output of the prediction should describe the absolute second of the cycle at which the

phase signal of the traffic light changes. By doing so, estimations of phase lengths and cycle lengths
can be made.

2.3 Functional requirements for the prediction model

The functional requirements describe what the prediction model should be capable of doing. The
functional requirements are determined partly by requirements that were stated in comparable
studies and partly by design statements of Nissan. The prediction model has the following functional
requirements:

1) Prediction target: the prediction model should be capable of predicting the switching time
of both the green and red signal (see section 2.2).

2) Prediction target: the prediction model should be capable of predicting the end of the
current phase. The moment of the end of the current phase and entering the next phase is
called the switching moment. The switching time is the exact time in seconds at which the
switching moment takes place. The switching time is related to the prediction target (see
section 2.2).

3) Prediction horizon: the prediction model is primarily focused on predicting switching timings
during the morning peak. However, the prediction model should respect generalization and
scalability of the prediction model towards the afternoon, evening peak and night.

4) Prediction horizon: from the perspective of a GLOSA systems, the prediction model only
predicts switching timings of the first upcoming intersection. Literature about GLOSA
systems often mentions lower and upper bounds of the prediction horizon. Although
developing a GLOSA system is not the subject of this research we did include information
about the lower and upper bound of the prediction horizon. See section 2.5 for more
information.

5) Data usage: the prediction model should utilize V-log data that is retrieved directly from the
controller for which the model tries to predict its switching timings.

6) System integration: the assumption is made that the prediction model is located and
computed in a cloud structure or in the vehicle. Nevertheless, it is always assumed that the
cloud structure is retrieving data from the controller. The cloud structure sends either raw
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V-log data to the vehicle or the predicted switching timings (only in case when the prediction
model is deployed in that same cloud structure). In other words: the vehicle-to-
infrastructure connection does include direct communication between the controller and
the vehicle.

7) Scalability: the prediction model should be capable of predicting the switching timings for
each individual signal group of the intersection. See section 3.1 for more information about
signal groups.

8) Scalability: the prediction model is primarily designed to predict switching timings of the
vehicle-actuated controller. It is likely to assume that the prediction model can also be used
for predicting switching timings of semi-vehicle-actuated controllers. However, semi-vehicle-
actuated controllers are not the focus of this research and are outside the scope of this
project.

9) Scalability: the prediction model should be scalable to more than one intersection serving a
single modality that may have various types of intersection layouts/geometries. The
prediction model should be independent of intersection layout and controller design that is
within the boundaries of a vehicle-actuated controller.

10) Scalability: the prediction model is primarily focused on intersections serving a single
modality. However, the prediction model should respect generalization and scalability
towards intersections serving multiple modalities such as busses, vehicles, pedestrians and
bicycles.

To scope the prediction goal, the following functional requirements indicate what the prediction
model should not be capable of:

11) Data usage: the prediction model for predicting the switching timings will not use any data
coming from the vehicle. The prediction model will only use data from the controller.

12) Prediction horizon: the switching time of both the green and red signal only applies on the
current phase onto the next phase. The prediction model will not be designed to predict
multiple switching moments ahead in time. Previous research indicate that the stochastic
nature of traffic makes it to impossible to accurately predict multiple switching moments
ahead in time for vehicle-actuated controllers.

13) System integration: the prediction model does not take into account multiple intersections
such that the prediction output could be directly used for routing purposes. The prediction
model could be used for routing purposes if multiple prediction models would predict
switching timings for intersections in a given area. This would be the topic of a different
research.

14) System integration: the prediction could be used for a GLOSA (Green Light Optimal Speed
Advisory) system. The GLOSA system itself is not the goal of this research and is outside the
scope of this project. In the context of a GLOSA system the functional requirements
described in this section would match the predictions needs of a GLOSA system. See section
4.1 for more information about GLOSA.

15) System integration: the prediction model does not utilize a vehicle-to-vehicle component.
Nor does the prediction model take into account the driving behavior of surrounding
vehicles that in reality might influence the prediction model at the moment of predicting the
switching time. No data is accessible for this project of such driving behavior.
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16) System integration: the prediction model does not contain a component in which the
vehicle transmits information back to the controller. The data stream is a one-way direction
from the controller to the vehicle in which the data streams through a cloud structure.

2.4 Non-functional requirements for the prediction model

The non-functional requirements are determined in consultation with Nissan. Previous performed
studies hardly mention non-functional requirements. The following non-functional requirements
describe how the prediction model should behave:

1) Prediction accuracy: the accuracy of the prediction model should be as high as possible. A
level of permissible error of 4 seconds around the predicted switching is allowed. The error
of 4 seconds was given by researchers of the Nissan Research Center Silicon Valley. The 4
seconds permissible error describes a switching timing that is incorrectly predicted for
approximately two passing vehicles. No previous studies indicate how a permissible error
was constructed and only mentioned the final accuracies after prediction. In addition, no
empirical justified reasoning is present why a 4 seconds boundary is preferable compared to
a 3 or 5 seconds error boundary. An increase of the error boundary will lead to a higher hit
rate of correctly predicted switching timings. A decrease of the error boundary will lead to a
lower hit rate of correctly predicted switching timings.

2) Computation time: the computation time should be relatively low. The prediction algorithm
will most likely be deployed in the vehicle. The vehicle has limited amount of available
computation power to predict the switching timings. Ideally we would like to quantify this
non-functional requirement. However, such statements are closely related to the application
for which the prediction is used. In case of a GLOSA system, the computation time of the
prediction should be in ranges of seconds. General taken we accept prediction models that
show computation time in ranges of seconds and minutes. Models that need hours and even
days to compute should be avoided.

3) Flexibility of data usage: the prediction algorithm should be capable of using V-log data and
therefore should be able to deal with the non-linearity characteristics of the V-log data.

2.5 Prediction horizon in case of a GLOSA system

The design of a GLOSA system is not the subject of this research. Because it is likely that the
technology described in this document is suited for a GLOSA system we describe what prediction
horizon is needed for a GLOSA system. Looking at the current research on the evaluation of traffic
light signal predictors, a variety of prediction horizons are shown. Some of these systems take strong
assumption of the dynamics of the traffic controller into account, leading to ambitious prediction
horizons of several minutes ahead. However once the control logic becomes more complex and
uncertainty is added to the data, the prediction horizons decrease significantly. The prediction
horizon will be denoted by an upper bound and lower bound.

2.5.1 Lower bound of the prediction horizon in case of a GLOSA system

Figure 4 is a visualization of the prediction horizon needed for a GLOSA system. The lower bound of
the prediction time horizon is given by the time for sending a message to a vehicle, its reaction time
and a possible brake to standstill. Barthauer and Friedrich state that 6 seconds would be sufficient
enough for passengers cars (Barthauer & Friedrich, 2014). When taking an average approaching
speed of 50 km/h into account, 6 seconds leads to approximately 83 meters. The lower bound
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should be seen as the last 6 seconds before the vehicle reaches the intersection. During these 6
seconds a real time state updating by direct communication between the controller and vehicle

would be preferable instead of a prediction.
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Figure 4 Visualization of prediction horizon

2.5.2 Upper bound of the prediction horizon in case of a GLOSA system

The upper bound of the time horizon can be described in terms of cycle lengths or distance of the
vehicle towards the intersection. The problem is that the vehicle-actuated controller unlike other
controllers does not have a fixed phase and cycle length. Research shows that phase and cycle
lengths for the vehicle/actuated controller can vary quite drastically (Krijger, 2013). Therefore,
making generic statements beforehand about the prediction horizon using cycle length is difficult,
since this could be in the range of tens of seconds or minutes. Especially in the validation process
the prediction will probably show artificially underperformance or overperformance since two cycles
are hard to benchmark due to their variety in length. Another factor is how useful the prediction
becomes when the prediction horizon is to large and therefore is amplifying noise in the prediction.
Research shows a huge variety on the decision of the upper bound of the prediction horizon. Tielert
et al. describe that for speed advisory type systems the benefit of fuel reduction becomes negligible
for information distances greater than 600 meters (Tielert, et al., 2010). Tielert et al. did supply the
system with predictions of the traffic signal state up to 87 seconds. The average speed of vehicles
was considered to be 50km/h, resulting in a prediction horizon of 1200 meters. Barthauer and
Frierich argue that the distance between two subsequent stop lines rarely exceeds 500 meters
(Barthauer & Friedrich, 2014). In their opinion predicting beyond 26 seconds (500 meters at average
speed of 50 km/h) is not useful for a GLOSA system. It was also recommended not to exceed the 600
meter limit due to negligible fuel economy benefits. The upper bound for a GLOSA system is
therefore set at 600 meters, taking an average speed of 50km/h into account leading to an upper
bound of 44 seconds.
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2.6 Summary Chapter 2

In this Chapter the following sub-question is answered: What functional and non-functional
requirements need to be taken into account for the development of a prediction algorithm that is
able to predict the switching timings of a vehicle-actuated controller? To answer the sub-question,
the following three sub-sub-questions are answered in this chapter:

o What is the prediction target of the prediction algorithm?

The prediction algorithm should be capable of predicting the switching timings of both the red and
green signal. The target variable in the prediction model is the absolute second in the signal phase
on which the signal changes.

o What is the level of integration and interaction of the desired prediction algorithm?

The prediction algorithm is primarily designed for the prediction of vehicle-actuated controllers and
could be used as part of a GLOSA system. The algorithm is designed to be scalable towards
intersections that serve a single modality. The prediction algorithm makes use of data retrieved from
the same controller that it tries to predict. Data transmission is needed between the controller and
the vehicle by using an intermediate hub such as a cloud structure. The data transmission, which is
needed for the algorithm, follows a single directed path from the controller to the vehicle. No
communication back to the controller and also no communication between other vehicles is
necessary. The prediction algorithm could be deployed and computed in either the vehicle or the
cloud structure that is used for the data transmission.

o What is the level of permissible error on the prediction target?

The permissible prediction error for both the predicted switching timings of the red and green signal
is 4 seconds. The permissible error is predefined by Nissan. Prior studies regarding the prediction of
traffic switching timings did not report permissible error boundaries on the prediction.
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3 The vehicle-actuated controller

In this Chapter the vehicle-actuated controller is further elaborated on. In Chapter 1 three different
control schemes are mentioned of which the vehicle-actuated controller is one of them. The vehicle-
actuated controller is the most common deployed traffic light controller in the Netherlands and is
optimized to the needs of an efficient traffic throughput (van Katwijk, 2008). As described in Chapter
1, the optimization and flexibility of the controller scheme makes it difficult to predict its switching
timings. Unlike the pre-timed controller, the vehicle-actuated controller produces different lengths
of green phases, cycle lengths and also can deviate from the predefined sequences to a certain
degree in which the signal groups can have a green signal (Wilson & De Groot, 2006). Additional the
vehicle-actuated controller can adapt its control scheme to incidental situations such as the arrival
of busses or trams. To describe the vehicle-actuated controller a case study is being used. The case
study is limited to the area of North Holland in the Netherlands and an intersection that is controlled
by a vehicle-actuated control scheme. The goal of this Chapter is to give an explanation about the
control logic of the vehicle-actuated controller. Additionally, insights are given into what

components of the controller are useful for prediction purposes.

3.1 Geometry and labeling of signal groups

An intersection consists of multiple signal groups. Usually each signal group has its own label, that is
often a number. The unique labelling of signal groups is convenient while retrieving data of an
intersection and improves the use of the prediction algorithm. The V-log data logs the data of signal
groups according its a label number. Figure 5 shows how the signal groups of a standard intersection

are labeled.
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Figure 5 Labeling of signal groups (van Katwijk, 2008)
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Signal groups are sorted in modalities in which each modality has its own label (Wilson & De Groot,
2006). In the table below the allocated labels for each modality is given.

Modality Standard labels
Vehicles 1-12

Bicycles 21- 28
Pedestrians 31-18

Public transport 41-52

Table 1 signal group labels

Technically the labeling in Figure 5 is not the same as the labeling of the signal groups. For example,
approaches 11 do not have the same signal group number ‘11’, but have the number 11.1 and 11.2.
Since the signal groups share the same signal state as the labels of the approaches/lanes this label is
considered as one single label for the two signal groups. The labeling of the signal groups reveals a
variety in possible geometries of an intersection. As the complexity of an intersection’s geometry
increases so does the control structure (i.e., the composition and the sequence of the green phases).

(a) Cars (b) Cars and pedestrians

(c) Cars, bicycles and pedestrians (d) Cars, bicycles, pedestrians and public trans-
port

Figure 6 Common intersection geometries (Muller & de Leeuw, 2006).

In many European countries such as the Netherlands, in contrast to the U.S.A., controlled
intersections often have separate infrastructure for bicycle and public transport movements (van
Katwijk, 2008). The main reason for this is to improve traffic safety by separating the weaker from
the stronger road users in time and space, and to realize priority treatment of certain categories of
road users. As a result, the geometry of an intersection can be rather complex as shown in Figure 6.
The structure of the vehicle-actuated controller and its control cycle is commonly based on the
decisive conflict group. The decisive conflict group is a group of movements that have the biggest
conflict in terms of time of all possible combination of signal groups (Wilson & De Groot, 2006). The
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decisive conflict group grows in size when the intersection facilitates more approaches and
modalities. The object of the controller is to sequence the decisive conflict group as efficient as
possible, but despite being sequenced efficiently the decisive conflict demands the longest cycle
time. The selection of optimal sequence of realization of green phase is determined my minimization
of internal lost times by avoiding long clearance times.

3.2 Control logic of vehicle actuated controller in North-Holland

In North Holland the control approach that is being used show huge similarities with the defined
control approach by Rijkswaterstaat (the executive agency of the Dutch Ministry of Infrastructure
and the Environment). The method is called the RWSC-approach (Wilson & De Groot, 2006). The
control approach can be understood by dividing the method into two levels: 1) block procedure and
2) signal group completion. Figure 7 gives a simplified overview of the two levels within the vehicle-
actuated controller. Loop detector data serves as input for both levels of the controller. Within the
block procedure the sequence of the realized signal groups is determined. The block procedure is
considered to be at a higher level in the control logic. In the signal group completion level is
determined how much realization time each phase gets assigned. The signal group completion is
considered to be at a lower level in the control logic. A block is defined by this method as a
collection of signal groups that can be green simultaneously.

Assignment of green
“ Can | have green?”

10 11

[aki

— B

Block

/Y procedure —
E BLOCK | BLOCK Il BLOCK Il
Detector data r{ R St I
“For how long?”’ R & e
J—— [ ,

group
completion

Figure 7 Simplified overview of the levels of control within the vehicle-actuated controller

3.2.1 Block procedure

An important feature of the block procedure is the assignment of signal groups to blocks. A block is
defined as a collection of signal groups that can be green simultaneously (Wilson & De Groot, 2006).
The sequence in which signal groups get green is specified in the so-called block structure. To
determine which signal groups belong to which block the decisive conflict group is being used. Each
signal group of the decisive conflict group represents one block. More signal groups that are not in
the decisive conflict group are added to the blocks. Figure 8 shows a block structure. The selection of
signal groups belonging to a block is based on mutual conflicts. The sequence of the blocks,
consisting of multiple signal groups each sharing the same mutual conflicts is determined by
minimizing a loss function (van Katwijk, 2008). The loss function minimizes the switching time
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between the decisive signal groups defined in each block. We describe three realization methods:
the primary realization, the primary ahead realization and the alternative realization. To cover every
detail of the realization types we would need much more documentation and is unnecessary for this
study. The following description of the realization methods should give a clear and concise
understanding of the philosophy behind the realization type.

The standard realization procedure of the block, the primary realization, is as follows: if a block is in
an active state, the signal groups of the block are allowed to become green. It is necessary to
remember that in a primary realization a signal group that is allowed to become green has the
formal right on having green. If all signal groups of a block in a primary realization became green or if
the decision has been taken to skip the green phase for the signal group the next block becomes
active (van Katwijk, 2008). The signal groups of an active block get “the turn to become green” as
soon as all conflicting signal groups of the preceding block are in the state yellow, red, or parallel
green. From this moment on, the signal group completion takes over the further realization of the
signal group. As soon as each signal groups of the block had its moment to become green, the next
block becomes active. Input for this procedure is information from detectors and from the status of
the signal groups.
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Figure 8 RWS controller configuration: intersection geometry and block structure (van Katwijk, 2008)

The controller can also use the realization strategy primary ahead realization. Within this realization
a signal group of only the next block in the sequence can have the ability to turn green. For example:
all signal groups of the intersection are red and block | is active (see Figure 8). Assume that there is
no request for green for signal group 8 and that there is demand for signal groups 2 and 3. Signal
group 2 and 8 are both allowed to turn green. As there is no demand for signal group 8, this signal
group waives the right to turn green. Then Block Il becomes active, and signal group 8 loses its right
to become green. Because all conflicting signal groups of signal group 3 are red, this signal group can
become green simultaneously with signal group 2 (even though they belong to different blocks). This
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shows that the block procedure offers the possibility for signal groups of different blocks to become
green simultaneously.
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Figure 9 Alternative realization (van Katwijk, 2008)

The realization method within the vehicle-actuated controller that is being used in North Holland is
called the alternative realization method. The name is referred to an additional alternative
realization that the control can execute (van Katwijk, 2008). The main idea of this realization
method is to fill up time gaps in which other signal groups can turn green that do not cause conflicts
of signal groups operating in a primary realization (the primary right to have a green signal). In the
case of Figure 9 signal group 10 can have the right to turn to the green signal while Block 1 has
assigned to turn green. Initially signal group 10 is located in Block 3. The idea behind the alternative
realization method is to fill up unnecessary greentime during the realization of a block that has no
conflict with signal groups from other blocks.

3.2.2 Hierarchy in realization methods

The controller assigns green signals to blocks and signal groups in a hierarchical way. The hierarchy
for a single modality intersection is summarized in chronological realization order: 1) primary
realization, 2) primary ahead and 3) alternative realization. A signal group can be realized one cycle
as primary realization and during another cycle as alternative realization depending on the control
decisions. Briefly, a signal group that has the realization primary realization has overruling power
compared to a signal group that has an alternative realization. The priority realization that is
assigned to incoming buses at an intersection overrules every other type of realization. The priority
realization will stop any other realization, where after the controller will proceed in the primary
realization with the first next upcoming block at which the scheme was overruled by the priority
realization. The method of realization for a green phase is logged into the V-log data. This could be
valuable information for predicting the switching time of a green and red phase. When a signal
group is being assigned a green phase under an alternative realization, the duration of the green
phase is likely to be small.

3.2.3 Signal group completion

On a lower level of the controller the signal group completion is being executed. At this level the
duration of the red and green time is assigned to signal groups (Wilson & De Groot, 2006). To
determine the duration of the green phase the controller uses detector loop data. Detector loop
data will be further explained in the next section. Figure 10 shows the fixed sequences of phases
during a cycle of a particular signal group. The controller can skip phases by setting the lead time of a
phase at almost 0 seconds. Theoretically it does not skip a phase but reduces the lead time to such a
small interval that it is not noticeable.
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Figure 10 Sequence of signal group completion

In total there are 7 sub-phases. V-log data contains data concerning each of the 7 phases from Figure
10. We expect that data regarding the 7 sub-phases that is logged within the V-log data will give
predictive power and/or explanatory power for the prediction model. This assumption seems
relevant, since the 7 sub-phases explain internal state changes within the signal group completion
level which determines the duration of the red and green phase. Below a brief description is given
for each sub-phase.

RV - Red before request (rood voor aanvraag). In this phase the controller is switched from a yellow
phase to a red phase. The condition for the controller to have the state red before request is if
controller at the level of block procedure did not assign the signal group to have the right to turn
green. The control state will be red before request at the moment there is no traffic demand for a

particular signal group.

RA - Red after request (rood na aanvraag). When the controller detects a signal from the detector
loops, due to one or more incoming vehicles, the block procedure assigns the right to turn green to
the requested signal group. There is a time delay in the assignment of the RA state from the
controller to the signal group because it needs to calculate if the signal group indeed has right to
turn green. Once the signal group reach the RA state it has a high probability to turn green. The
right to turn green can be overruled by an incoming buss on another signal group. This signal group
will get the assignment of a priority realization, meaning that it overrules any RA state. The duration
of the RA state is determined by clearance times of conflicting signal groups running green. The
duration of RA is not fixed, but shows some variability because a signal group can have multiple
conflicts.

FG - Fixed green (vast groen). The FG state is fixed at usually a 4 seconds interval. This 4 seconds is
the minimal green time that the signal group completion gives before extension of green time is
deduced from detector loop data. This means that a green phase length prediction can never be
lower than 4 seconds.

WG - Waiting green (wachtgroen). Waiting green starts when fixed green phase ends. Waiting
green is theoretically only used after the extension of the green phase has expired and no conflicting
signal groups have traffic demand. The controller decides that it is not necessary to change the
green signal since there is no conflict present at the intersection. During the morning peak the
waiting green phase rarely occurs since there is usually traffic demand on other signal groups. Once
an intersection is synchronized with an intersection, the waiting green phase can be used to
artificially extend the green phase such that incoming vehicles hit a green light.

VG - extending green (verlenggroen). At the same time that waiting green starts, the extending
green phase also starts. The extending green phase is the most crucial part of the green phase that
causes the variability in green phases based on detector loop information. The extending green
phase has two functions: 1) the current queue of vehicles gets time to enter the intersection, 2)
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incoming vehicles get the chance to hit the green light and enter the intersection. The extending of
the green phase is determined by so called ‘gap times’ that are measured by the detector loops. In
the next section the detector loop configuration is explained. It is important to mention that ‘gap
times’ are reached when a vehicles reaches certain time thresholds between detector loops. The
thresholds of the ‘gap times’ are fixed parameters within the controller.

MG - prolonging green (meeverlenggroen). The prolonging green phase usually gets realized for a
signal group when other signal groups in the same block still have traffic demand that is served by
the green light. In such a case it would be useless to change the green signal to a red signal because
conflicting signal groups still need to wait for the other signal groups in that same block to be

finished realizing the green signal.

GL — yellow (geel). The duration of the yellow phase has commonly a fixed interval. The intersection
that is selected for the case study have a fixed yellow time of 5 seconds.

3.3 Use of detector loops

The vehicle-actuated controller is able to react in the traffic demand because it has detector loops
located in the the ground at several locations at the intersection. The detector loop configuration
typically consists of three or four detector loops located in the ground for each lane (Wilson & De
Groot, 2006). Figure 11 illustrates the location of loop detectors for the southern four lanes. The
loop detectors give a high binary signal once a vehicle passes the loop detector. Otherwise the loop
detector gives a low binary signal. The data that is produced by the detector loop data indicate
events: the passing of a vehicle. A vehicle that approaches the intersection would first be detected
by the third detector loop data, followed by the second and last by the first detector loop.
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Figure 11 Location of detector loops
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On average, the first detector loop is usually located 5 meters before the stop line. The second loop
detector, that consists of a larger detector, is located at 20 meters before the stop line. For turning
movements, the second detector loop is located at 10 meters before the stop line. The third
detector loop is located at 60 meters before the stop line. In some cases, a fourth detector loop is
present at 80 meters. Since the fourth detector loop is not always present we do not take this loop
detector into consideration for the development of the algorithm.

3.3.1 Gap times of detector loops

The detector loops work with a mechanism called gap times. The gap time is the elapsed time
between two high binary signals due to a passing vehicle (Wilson & De Groot, 2006). Once a vehicle
passes a detector loop within the interval of the gap time, the green signal is extended. Each
detector loop (first, second and third) has its own predefined gap time. These gap times are fixed
parameters for each intersection and could be adjusted due to the located of the intersection or the
expected traffic demand to ensure a more efficient throughput. The first and second detector loop
have the primary goal to make sure that the green duration is sufficient to serve the queue of
vehicles that was present during the previous red phase. The third detector loop is used to extend
the maximum green duration to a longer green duration due to incoming vehicles. The gap time for
the third detector loop is approximately 3 seconds for intersections in North-Holland. For the second
loop detector this is approximately 0.5 seconds and the first detector loop also has a gap time of
approximately 3 seconds for intersections in North-Holland. Theoretically the third detector loop
should give the most predictive power, since it is located at a larger distant in space and time to the
stop line compared to the first and second loop detector. But the third detector loop is tricky and
not always directly linked to an extension of the green signal. The reason is that the third detector
could give a high binary signal once an incoming vehicle is detected, but at the same time the signal
exceeded the gap time. In such a case the vehicle is indeed detected but does not influence the
extension of the green duration. We also could state that not only the presence of a vehicle at a
particular lane will trigger a possible extension of the green signal, but also the speed of the vehicle
is important. The speed of the vehicle relates to exceeding the gap times on the detector loops. If
the vehicle has a rather low speed during the extending green phase it is likely that the controller
will switch off the green signal due to exceeding gap times.

3.3.2 Requestsignal

A relevant data stream within the controller that might be useful for prediction purposes is the
request signal. The request signal gives a high binary value when a vehicle is detected by the
detector loops during a red phase (Vialis, 2012). This particular signal triggers the controller to
arrange the signal group that request a green signal to get a green phase. Within the V-log data the
request signal is logged with binary coding, such that a high binary signal indicates that a vehicle is
detected and that the signal groups asks for a green phase. The request signal occurs during the red
phase: red before request. After the request is send to the controller, the red phase changes from
red before request to red after request. Once the signal group reaches the red after request state it
has a high probability to turn green. Bottom-line is that the binary signal regarding the request signal
has some predictive power, since it occurs previously before a green light. In theory this should give
predictive power for the red duration prediction model.
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3.4 Summary Chapter 3

In this Chapter the following sub-question is answered: what information regarding the control logic
of the vehicle-actuated controller is necessary to take into account for retrieving V-log data that is
used for predicting the switching timings? To answer this sub-question the following sub-sub-
guestion is answered in this Chapter: How does the vehicle-actuated controller controls its output
based on detector loop data?

Theoretically the vehicle-actuated controller controls its output signal for sets of signal groups at the

same time. However, the controller has a high level of flexibility. Due to the flexibility the controller
controls each signal group individually. The labelling of the signal groups is important for retrieving
the correct V-log data from the controller.

The vehicle-actuated controller consists of two main control levels that are called the block
procedure level and signal group completion level. Both levels describe how the controller regulates
its output signals based on input signals. Loop detector data serves as input for both levels of the
controller and therefore is important data for the prediction model. Within the block procedure
level, the sequence of the realized signal groups is determined. The block procedure level is
considered to be at a higher level in the control logic. Data that describes the block procedure level
is considered to be important for the prediction model. In the signal group completion level is
determined how much realization time each phase gets assigned. The signal group completion is
considered to be at a lower level in the control logic. The signal group completion level describes 7
internal states that are logged in V-log. Data regarding the 7 internal states is considered to be
valuable for the prediction model.

The detector loops are located at several locations in the ground. The controller decides to
extend the green phase by measuring gap times between detected vehicles. The relation between
detected vehicles and reached gap times is not logged in V-log. The detector loops submit a request
signal when an incoming vehicle is detected. The possibility to extend until a certain amount of time
is also determined by the block procedure control level within the controller.
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4 Selection of a prediction approach

The goal of this Chapter is to give insights in the used algorithms in the field of traffic light signal
prediction. An overview of the different algorithms and details of their application, usage of data
and performance are given. Not every algorithm tries to predict the same phenomenon. For
example, the Support Vector Regression predicts the switching time of a traffic signal state whereas
the Kalman Filter makes a probability statement for every second within a cycle. This Chapter results
into the selection of a prediction approach that matches the requirements from Chapter 2. The
selection is supported by a benchmark of several prediction approaches that are described in this
Chapter.

4.1 GLOSA (Green Light Optimal Speed Advisory)

In general, the prediction problem could be used for Green Light Optimal Speed Advisory (GLOSA)
system. GLOSA is seen as the dominant system that uses a prediction component that predicts
traffic light states. The GLOSA system date back to 1983 and was introduced by Volkswagen (Eckhoff
et al., 2013). Because of the hardware limitation at that time the GLOSA system was cancelled for
further development. In 2009 Audi continued a similar GLOSA system as a concept under the
Travolution project, currently little is published about this project (Bodenheimer et al., 2014). The
goal of GLOSA is to use accurate current information and future predictions about traffic signal
states in order to guide drivers with optimal speed advice towards an intersection. The GLOSA
application minimizes acceleration, braking and improves fuel economy (Seredynski et al.,, 2013b).
In a simulated environment the GLOSA system showed a performance of 7% reduction in average
fuel consumption and 89% in average stop times (Katsaror et al., 2011). A GLOSA system usually
consists of two predictors: distance-travelling predictor and a traffic signal state predictor. The basic
principle is to calculate a speed recommendation based on the distance to the traffic light and the
time to the next signal change. For this the GLOSA system predicts the future traffic signal state.
GLOSA implementations show that traffic signal timings messages are wirelessly transmitted from
roadside systems to the vehicle using IEEE802.11p (dedicated short-range communication) or other
network technology such as UMTS. Till so far only GLOSA systems are implemented that take into
account pre-timed controllers, however research does show attempts being made of GLOSA systems
predicting vehicle-actuated controllers. In the section below relevant algorithms are presented that
are found during a literature study.
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4.2 Statistical approaches versus non-statistical approaches

Prediction approaches can be categorized into three groups:

1) Prediction methods without the use of statistical procedures, that approach the prediction
with a complete replication and simulation of an intersection. This approach depends on
complete knowledge of the mechanism and programming of the particular traffic light and
real time-time availability of switching time data with a latency of not more than a few
seconds (Protschky et al.,, 2014b). Predicting a reasonable horizon of state changes requires
prediction on both traffic demand and its behavior in terms of velocity. When doing so
uncertainty increases drastically since there will always be an offset of simulated driving
behavior and real driving behavior. Predicting the driving behavior of one vehicle directly
affects the driving behavior of other vehicles. As was shown in Chapter 3, the extension of
green time is influenced by the velocity of the vehicle approaching an intersection.
Replication of an intersection in a simulation environment lead to a computational intense
task when one wants to simulate every intersection.

2) Statistical procedures. In contrast to simulation approaches, statistical models are more
scalable and could operate faster once a fitted and calibrated model is updated with real
time data (Koukoumidis et al.,, 2012). The downside is that statistical models need data to
be trained and calibrated. Problems arise when too much noisy data is injected in the model.
If not executed properly, the model could be fitted too much to the noise instead of the real
dynamics of the controller. Predicting dynamical models such as the vehicle-actuated
controller with statistical approaches wusually requires complicated models and
preprocessing of the data.

3) Hybrid approaches. The term hybrid is being used to label models that use control logic
incorporated in a statistical framework (Protschky et al., 2014b). Usually the control logic
would be used as input for replication and simulation of the controller. Examples are
detector loop information or public transport arrival schemes.

All approaches struggle with the same issue. Once more data is made available, the less generic the
model becomes. The loss in generality is due to the diversity of traffic light management of road
authorities and local authorities (Protschky et al., 2014b). Because of the requirements to design a
scalable, generic and fast prediction as possible a statistical procedure will be selected. In the
following section an overview is given of possible statistical procedures for predicting the traffic
signal timings.

4.3 Overview of prediction approaches in the field of traffic signal timings

prediction
In this part of the study six types of predictions approaches/methods are being described. The first
five approaches: Support Vector Machine, Support Vector Regression, Kalman Filter, Probability
Theory and Markov-Chains are found during a literature study on the prediction of traffic signal
timings. The sixth method is the previous approach of Nissan that makes use of an Artificial Neural
Network.

4.3.1 Support Vector Machines
Weisheit and Hoyer developed a Support Vector Machine (SVM) predictor, that predicts the
switching timings of traffic signals for vehicle actuated controllers (Weisheit & Hoyer, 2014). The
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SVM model was primarily designed for a GLOSA system. The SVM is statistical learning approach that
is used for classification purposes (Hastie et al., 2009). It feels counterintuitive to use a classification
model to predict the switching timings. The desired output of a switching timings prediction model is
the exact second of the cycle for which the traffic signal switches from green to red. The switching
timing should be considered as a numerical output instead of a class. This problem was solved by
treating each second in the cycle as a class. The yellow phase is considered to be part of the green
phase and no information in the article was given how the end time of red and start time of green
for the next cycles were being calculated. The SVM classifier learns from historical signal timings and
induction loop data. The induction loop data is being used by the classifier to derive a state of traffic
volume. This state of traffic volume is mapped by the classifier to the behavior of signal timings
(switching moment of a state). No detailed information was given how an intermediate classification
was used to map detector loop data to traffic volumes. The underlying data model that is decisive
for the classification consists of detector data of all detectors of an intersection as input and the
resulting switching timings are treated as target variables. Since the detector loop data is non-linear
a kernel function is used to transform the data into a higher dimensional feature space to make it
possible to perform the linear separation in the induction loop data.

Weisheit and Hoyer used variables for training and predicting the SVM that indicate traffic volume
and signal timings from the past three cycles and an additional variable describing detector loop
data of its current cycle. Information of the current cycle is perceived as real time updating of the
prediction. The model reaches an accuracy of 97% of predicted end of green timings of the current
phase. The accuracy was calculated by using a contingency table of predicted frequencies and
observed frequencies. The SVM is designed to be easily extendable for extra input data and easy
adaptable to other intersections with multiple modalities. The SVM as shown in the published paper
of Weisheit and Hoyer is limited to one modality, ignoring pedestrians, public transport and cyclists.
A drawback of this research is that they used fixed cycle lengths. An important detail since in our
case we do not have fixed cycle lengths that makes the SVM as a classifier difficult to use.

4.3.2 Support Vector Regression

Koukoumidis et al. presented in 2012 the prototype SignalGuru that uses windshield-mounted
smartphones and their camera’s to collaboratively detect and predict the schedule of the traffic
signals (Koukoumidis et al., 2012). The application can predict traffic signal switching timings for
vehicle-actuated traffic controllers. Koukoumidis et al. refer to predicting the switching timing as the
future transition of the light and the length of the current or next phases. The predictions are
injected to a GLOSA application informing the driver about a desired speed. The prediction is based
on a Support Vector Regression (SVR) model. The SVR is a special class of the SVM. The SVR uses the
same principles as the SVM, but the output is a real number instead of a class. The SVR is more
complex than the SVM, but the main idea is always the same: to minimize error, individualizing the
hyperplane which maximizes the margin, keeping in mind that part of the error is tolerated (Smola &
Scholkopf, 2003). The SVR uses only data from the traffic signal timings of the last five cycles.
Koukoumidis et al. found that using a longer history of data does not significantly improve the traffic
signal prediction accuracy. The input data are: 1) the past five lengths of the specific phase that is
being predicted, 2) the lengths of the past phases in the same cycle, 3) total length of the past 5
cycles, 4) loop detection saturation information for the past 5 cycles. Koukoumidis et al. are unclear
about what loop detection saturation information is.
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The SVR was trained on a week of history data, which was sufficient enough to obtain results. The
computation time for predicting (not training) the SVR output was measured on 21 ms (Koukoumidis
et al.,, 2012). Furthermore, the research shows that the SVR does not need to get continuously
retrained. Koukoumidis et al. state that once every four to eight months the model should be
retrained. The accuracy is defined in term of the mean absolute error. The accuracy is therefore
defined as an averaged absolute deviation in seconds from the true switching time. For a vehicle-
actuated controlled intersection in Singapore an error was reached if 2.45 seconds in predicting the
length of the current phase with the SVR. No information was given about the complexity of the
tested intersection likewise the amount of different modalities. Statements about its adaptability to
other intersections and modalities are not being made. The SVR can easily be extended for more
data sources.

4.3.3 Kalman Filter

Protschky et al. show that a Kalman Filter technique is being used for predicting the traffic signal
state for vehicle-actuated controllers (Protschky, 2014b). This research was executed together with
BMW. Unlike the SVM and SVR the Kalman Filter makes a probability statement for every second
within a cycle for a phase. By doing so an overview of probability distributions of green signals are
given for every consecutive phases in a total cycle of the intersection. Protschky et al. tried to satisfy
the trade-off between data availability and applicability by establishing a prediction model relying on
minimal information. A restrictive assumption that was made in this research is that the cycle time is
fixed. This indicates that the adaptive controller that they investigated is not as flexible as the
vehicle-actuated controller. The input data for the Kalman Filter are frequency distributions of green
signals for every second in the cycle, that show variation over different amounts of considered
cycles. Law of large numbers dictates that by averaging over a large number of data (in this case
cycles) true parameters can be approached. The input data is only limited to historical switching
data. In the research the use a number of considered cycles (NCC) of 20 cycles. Each cycle has a
length of 90 seconds. The main principle of the Kalman Filter is a state updating mechanism by
correcting its predicted probability states. In the figure below a visualization of the applied Kalman
Filter on signal timings is given. The red curves describe the actual frequency distributions of green
signaling, the blue ones describe the predicted probability distributions.
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Figure 12 lllustration of the Kalman Filter process (Protschky, Wiesner, & Feit, 2014)

Protschky et al. use an evaluation metric consisting of two parameters: a posteriori accuracy
indicating the number of correct predictions in percentage of total predictions and availability in
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percent of number of potentially possible predictions. The parameters correlate negatively, so a
trade-off should be made. Increasing the availability leads to a decrease in the a posteriori accuracy.
The BMW-requirement for using the Kalman Filter for GLOSA purposes is a 95% (a posteriori)
accuracy-requirement. An availability of 71% with an accuracy of 95% was achieved. An advantage
of the Kalman Filter is that it easily can deal with data dropouts. In case data is not available the
Kalman Filter switches to a prediction mode. The Kalman filter is computational intense compared to
the SVM and SVR method. The model however saw public transportation as seldom events so were
being treated as outliers. An additional model should be made to take public transportation also into
account. No information was given about the degree of complexity of the intersections such as
modalities and traffic conditions that were taken into account by the Kalman Filter.

4.3.4 Probability Theory

Several research studies are done on using probability theory for traffic light signal prediction.
TomTom performed a research to optimize routing based on probabilistic statements of traffic signal
timings (Krijger, 2013). The prediction system based on probability theory of Mahler and Vahidi uses
Signal Phase and Timing (SPaT) information to make probabilistic statements of upcoming phases of
a cycle (Mahler & Vahidi, 2012).

Probability of Green

Py

Position

Figure 13 Schematic of velocity planning based on probability of green for two consecutive lights (Mahler & Vahidi,
2012)

Mahler and Vahidi designed the application for adaptive controlled intersections, but no explicit
statements are made whether a variable cycle length is taken into account. From the denotation of
the probability model can be derived that the cycle length is indeed fixed, meaning that the degree
of adaptiveness for which this model was designed is low. Assumption for their prediction model
are: 1) the current phase (color) and 2) the average red and green lengths for a signal are known.
They use this information to predict the probability of green over the planning horizon. No

performance measurements of the actual traffic signal state predictions were given.

Krijger describes probabilistic models that use red and green time distributions for intersections over
different segments of the day (Krijger, 2013). He defines a model for pre-timed controllers and a
model for vehicle-actuated controllers. No multiple modalities were taken into account and no
comments on expected performance of the model including multiple modalities are given. His
results show that during rush hours the variations in green and red timings is low for straight on
traffic signal groups. Therefore, it seems to be valuable for making predictive probability statements.
However, for intersections that handle low traffic volumes, distribution functions are not
informative and show low probabilities. Additional a lot of signal groups controlling turning
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movement show weak distribution patterns. The figure below shows such a weak pattern for two
time segments of the day for turning traffic.

Histogram of greentimes. Histogeam of grocatises

1|
L

Froquency
requnoy
100

(a) 7:30 AM - 8:30 AM (b) 9:30 AM - 14:30 PM

Figure 14 Green timings signals for a turning traffic at an intersection in the city of Helmond in the Netherlands (Krijger,
2013)

The conclusion from the research executed by TomTom is that only signal groups at a vehicle-
actuated controlled intersection that show normal distribution functions are useful to use for
probabilistic models. Due to the high variance of the phase and cycle length, strong probability
statements of traffic signal timings cannot be made. This is shown by the behavior of the probability
function as output of his model. The function convergences fast towards a probability of 0.50 of
signal timings, leading to non-informative predictions.

4.3.5 Markov-chain

Barthauer and Friedrich show the usage of a Markov-chain based approach to predict traffic signal
timings of vehicle-actuated controllers in a microscopic traffic simulation software package
(Barthauer & Friedrich, 2014). The Markov-Chain was tested on a vehicle-actuated controller with
fixed cycle length. The intersection that was simulated does include different modalities such as
pedestrians, bicycles and trams. The Markov-chain is a mathematical approach that represents the
dynamics of the traffic light system as a controller graph. Such a graph consists of nodes that
represent a state of signal combinations and edges for possible transitions between them. This
controller graph needs to be provided by the operator or can be statistically derived from historical
data. One state represents an entire state of the signals for all lanes. The controller graph is
transformed to a transition graph to reliably predict the order and the time offset of the transition
(Bodenheimer et al., 2014). To forecast a traffic light signal the probability of the transition has to be
predicted. Therefore, the correct order of the transitions and their lengths have to be determined.
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Figure 15 Controller graph on the left and transition graph on the right (Barthauer & Friedrich, 2014)
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By using historical data these probabilities, referred as possible transitions between states, are being
calculated. The signal states have to comply with the Markov property. This means that their
occurrence depends only on a directly preceding signal state. All signals must be indicated in a
correct order and need to take into account sufficient blocking times for the intersection to be
cleared. A sample of 75 min for a comparable day and time window is indicated to be sufficient to
make a prediction model (Bodenheimer et al., 2014). A problem arises with the Markov model when
detector loop data is incorporated for vehicle-actuated controllers. The detector loop data amplifies
the amount of edges towards different states (nodes) enormously to cover all possible combinations
of detector occupations. The amount of nodes and edges in the graph explode when the intersection
contains a lot of lanes, multiple modalities and control settings for different segments of the day.
Eventually this causes computational inefficiencies leading to latencies on data transmission.
Additional in complex situations the Markov-chain needs relatively a large amount of data to
retrieve it transition graph and transition probabilities.

4.3.6 Previous prediction approach of Nissan: Artificial Neural Network

Nissan experimented with Artificial Neural Networks (ANN) to provide the vehicle with predictions of
future traffic signal timings. The ANN was fitted to a vehicle-actuated controlled intersection in
North-Holland. The intersection did not include other modalities besides passenger’s cars or trucks.
The fitted ANN model by Nissan showed promising prediction accuracies, but it should be taken into
account that the ANN model was fitted to an oversimplified traffic scenario holding strong
assumptions about the dynamics at an intersection. For example, the model was constructed and
validated on only one signal group and with a small amount of data in terms of size and number of
features. The principle of neural networks is to extract linear combinations of the input as derived
features, and then model the output as a nonlinear function of these features (Hastie et al., 2009).
Tasks that neural networks can perform include pattern classification, clustering or categorization,
function approximation and predictions. ANN’s is a statistical learning model that tries to copy the
behavior of biological nervous systems by providing a mathematical model of numerous neurons
connected in a network. No rules or programmed information about the dynamics of the system
need to be specified beforehand (Mitra & Acharya, 2003). ANN has been applied successfully in the
prediction of traffic information such as speed, flow and travel time (Murphey et al., 2013).

The ANN fitted by Nissan was trained to predict the end time of the green phase. By predicting the
end of the green phase the switching time is calculated. It is assumed that the current phase is a
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green signal, such that is does not need to predict the start of the green signal. The ANN is therefore
able to predict the duration of the green time and only the switching moment from green to red. The
most time consuming part of the ANN is the feature/variables selection. Once too many features are
selected curse of dimensionality can become a problem. The curse of dimensionality ties into the
fact that non-parametric approaches such as the ANN often performs poorly when the amount of
features is large (James et al., 2014). One might think that as the number of features used to fit a
model increases, the quality of the fitted model will increase as well. In general, adding additional
features that are truly associated with the response will improve the fitted model. Theoretically this
could lead to a reduction in test set error. However, adding noise features that are not truly
associated with the response will lead to deterioration in the fitted model. As a result, an increase in
the test set error. This is because noise features increase the dimensionality of the problem that
increases the risk of over fitting.

The ANN developed by Nissan was able to predict the green time duration by using detector
loop data extracted from the V-log data. The total accuracy of an error of 5 seconds of deviation of
the true green duration gave an accuracy of 97%. In a high traffic volume the performance was an
overall accuracy of 98% with the same 5 seconds error. It was not tested how well the ANN performs
when taking other modalities such as busses, pedestrians and bicycles into account.

4.4 Benchmark and selection of prediction framework
Appendix A contains a benchmark table of the previous six approaches. The six prediction

approaches are compared according the following functional requirements from Chapter 2:

Prediction target: Switching time versus probability statement
Prediction horizon: Ability to predict the prediction horizon
Data Usage: Dealing with non-linearity of the controller
Scalability: Max degree of control flexibility

Data Usage: Utilization of V-log data

o vk wnN e

Scalability: Scalability to other intersections and modalities

The Support Vector Regression and Support Vector Machine are merged into one approach since the
mathematical methodologies show a lot of comparisons. The table in appendix A shows that the
methods that include probability theory and the Kalman Filter are not suited for the prediction of
vehicle-actuated controllers. The prediction application needs an absolute second within the cycle
time that the traffic light signal changes. Both the Kalman Filter and Probability theory cannot
directly provide this information. The Markov-Chain approach also makes probability statements,
however the probability in the Markov-Chain approach indicates a probability of transition to
another state instead of a switching time. The transition graph of the Markov-chain approach is able
to predict the order and the time offset of the transitions and therefore is able to predict the
switching time. The biggest pitfall of the Markov-chain and therefore not useful for the prediction
application is: “as edges in the transition graph have to cover all possible combinations of detector
occupations, this may cause a problem in computational efficiency possibly introducing latencies.
Furthermore, this can become a difficult requirement for the database storage and the amount of
sample needed to run a proper diagnosis’’ (Bodenheimer et al., 2014).
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4.4.1 Support Vector Machine versus Support Vector Regression

The Support Vector Regression (SVR) is a version of the Support Vector theory that fits the nature of
the prediction application better compared to the Support Vector Machine (SVM). The SVM uses as
classification approach while the SVR uses a regression approach. By using a classification trick to
define every second in the cycle as a class, the switching time can be determined at the exact second
by the SVM. However the study that was conducted by predicting the switching time by using SVM,
used strong assumptions about a fixed signal cycle lengths within the vehicle-actuated controller.
This means that the expectation of the switching time of phases always was within a range of a
limited amount of seconds. Each second is treated as a class, leading to relatively few classes for
which the SVM made a distinction. As described in Chapter 3, the vehicle-actuated controller shows
variability in both phase lengths and signal cycle lengths. Because of this dual variability the SVM will
end up with a big set of classes (seconds in a cycle). The problem that the SVM might have at that
moment is that it cannot make a clear distinction between two classes. In contrast the SVR uses the
mathematically approach of the SVM but is able to give a numerical output instead of a class
prediction.

4.4.2 Support Vector Regression versus Artificial Neural Network

A significant advantage of SVR over ANN is that the solution to an SVR is global and unique, while
ANNs can suffer from multiple local minima. Some say that the SVR is easier to use compared to the
ANN (Hsu et al., 2003). Others argue that the non-linear kernel trick within the SVR results into a lack
of transparency when results are interpreted (van Belle & Lisboa, 2013). At the same time
interpretation of results is one of the main drawbacks of the ANN due to its mathematical
complexity (James et al., 2014). Unlike ANNs, the computational complexity of SVRs does not
directly depend on the dimensionality of the input space. The reason that SVRs often outperform
ANNs in practice is that they deal with the biggest problem with ANNs: SVRs are less prone to over
fitting (Hastie et al., 2009). The development of ANNs follow a heuristic path; extensive
experimentation preceding theory. The development of SVRs involves theory first then
implementation and experiments. As is shown in chapter 3, theory about the dynamics of the
controller can provide predictive power. For example, the mechanism of requesting the green signal
and assignment of the phases by the block structure is logged in the V-log. If no knowledge about
the dynamics of the system was present, ANN would make more sense to be used. An important
part of the process of training an ANN is the feature selection. Unlike the ANN the SVM approach
does not attempt to control model complexity by keeping the number of features small.
Theoretically this makes the ANN less useable for extending the model with new data sources. The
SVR approach is at this point more suited as a core algorithm in the prediction framework. The
reason is that the SVR is mathematically a slightly lower risk to this project and is more likely to
utilize knowledge that is gained from knowing the control logic.

4.5 Summary of Chapter 4

In this Chapter the following sub-question is answered: What type of prediction approach complies
to the functional and non-functional requirements for a prediction algorithm to predict the switching
timings of a vehicle-actuated controller?

A benchmark of several mathematical approaches, that were used in previous studies, show that the

Support Vector Regression (SVR) approach has the biggest potential in predicting the switching
timings of the vehicle-actuated controller. The benchmark includes criteria that are related to the
functional requirements from Chapter 2. The biggest advantage of the SVR approach is its fast
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computation time, scalability towards other intersections and the use of non-linear input data. The
SVR technique matches the condition to produce a numerical output that equals the switching time
in absolute seconds. The SVR enables the model developer to choice a kernel that is unique to the
structure of V-log data. By doing so the SVR deals with the non-linear characteristics of the data.
Furthermore, the Support Vector Regression approach isn’t influenced directly by the
dimensionality of the input space and is therefore less prone to overfitting. We easily can propose a
relative large dimension of input space without harming instantly the prediction performance. As a
results, the SVR approach can be extended with additional sources of data that might be needed to
predict the switching timings.
To answer the sub-question, the following two sub-sub-questions are answered:
e What prediction approaches are mentioned in the literature in the field of traffic signal
timings prediction?
A literature review resulted in five prediction approaches that were used in previous research to
predict traffic signal timings. The five prediction approaches are: Support Vector Machine, Support
Vector Regression, Kalman Filter, Probability theory and Markov-chains. The prediction approaches
used in previous studies predicted the switching timings under different conditions such as different
prediction targets, degree of controller flexibility and data usage.

e What approach is currently used by Nissan for the prediction of traffic signal timings and why
would a different approach be preferred?
The current prediction approach by Nissan includes the use of Artificial Neural Networks. Empirical

model results of Nissan show that the ANN approach is capable of predicting the switching timings
of a vehicle-actuated controller. However, the ANN is less useable for extending the model with new
data sources and features. V-log contains a relative high amount of features, but the ANN wants to
keep the amount of used features as small as possible due to overfitting. The SVR approach is
mathematically a slightly lower risk to this project and is more likely to utilize knowledge that is
gained from knowing the control logic.
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5 The Support Vector Regression approach

In this Chapter is further elaborated on the Support Vector Regression. A mathematical description
will be provided and also the computational side of the Support Vector Regression approach is
explained. This Chapter concerning the SVR approach supplies the reader with sufficient information
to understand preceding modeling Chapters. For a more profound understanding of the SVR is
referred to the publications A Tutorial on Support Vector Regression by Smola and Schélkopf and
Support Vector Machines in R by Karatzoglou and Meyer. For a more general understanding of the
Support Vector theory approach is referred to The Elements of Statistical Learning by Hastie,
Tibshirani and Friedman.

5.1 Historic background

The Support Vector algorithm is a statistical learning theory, which has been developed over the last
three decades by Vapnik and Chervonenkis (Smola & Schélkopf, 2003). In a nutshell, the Support
Vector theory enables the model to generalize trained or learned behavior to unseen data. The
Support Vector Machine, the most well-known variant of the Support Vector theory, was developed
at AT&T Bell Laboratories by Vapnik and his co-workers. Its initial use was focused on OCR (optical
character recognition) and object recognition tasks. Today the Support Vector Machine is
considered to be one of the standard tools within the statistical learning paradigm (Hastie et al.,
2009). The Support Vector Machine is from nature a classification model that predicts data points to
a predefined class. The SVM is not suited for the prediction task in this project because a numerical
output is needed. In contrast to the SVM, the SVR does provide a numerical output. In the following
sections is explained how Support Vector theory can be applied for the prediction problem as
described in this study.

5.2 Mathematical formulation
The basic idea of the Support Vector Regression (SVR) is derived from the classification method
Support Vector Machine (SVM). Although the mathematics behind the SVR is different and
considered to be more complicated compared to the SVM, the basic idea of the SVR is similar to the
SVM. The goal of the SVR is to produce a model (based on the training data) which predicts the
target values of the test data given a selected set of features from the test data (Smola & Scholkopf,
2003). The selected features need to catch as much prediction power as possible. In its simplified
form the SV theory applies a simple linear method to the data but in a high-dimensional feature
space. By performing a linear method in a high-dimensional feature space, the linear model is non-
linearly related to the input space (Karatzoglou & Meyer, 2006). Although the theory considers a
high-dimensional space, it does not involve any computations in that high-dimensional space.

The SVR model has two classes; the € - Support Vector Regression (e-SVR) and » - Support
Vector Regression (0 -SVR) . The difference between the two SVR classes is how regularization on
the features is performed. v-SVR controls the number of support vectors and training errors by one
single parameter v. &-SVR uses two parameters to control the number of support vectors and
training errors (Chang & Lin, 2002). Although some argue that the parameters in the e-SVR are too
arbitrary and difficult to explain most of the successful SVR models are &-SVR models. In this
research the & - Support Vector Regression class is used as SVR model. In &-SV regression our goal is
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to find a function f(x) that has at most € deviation from the actually obtained targets y;. In this
research y; represents the length of the green phase (green time prediction model) or length of the
red phase (red time prediction model). In other words, the SVR does not care about errors as long as
they are less than g, but it will not accept any deviation larger than this and estimates a regression
function that is at the same time is flat as possible. (Karatzoglou & Meyer, 2006). To explain the SVR,
it is preferable to describe the case of a simple linear function:

f(x) =(w,x)+b withwe y,b € R (1)

Where {.,) denotes the dot productin }.Where } denotes the space of the input patterns that is

described by the vector w and the data features x. w is often referred to as the margin (Hastie et
al., 2009). The variable b corresponds to the intercept. The property of maintaining flatness is

2
achieved by minimizing towards a smallw. To do so the norm of w is minimized i.e. ”w” :<w, w}.

This gives the optimization problem:

minimize % [lw]|? (2)

yi—(w,x)—b <e¢

subject to { wx)+b—y; <e¢

Where y; denotes the target variable and x; denotes a set of predictors. In this project the target
variable is the switching time that is described as how many seconds are left before the current
signal switches from red to green or from green to red. The set of predictors are for example
features retrieved from loop detector data. The function in (2) assumes that all pairs of (x;,y;) can
be approximated with & precision. In other words the convex optimization problem is feasible,
however this is usually not the case because data points are not always scattered symmetrical or
evenly distributed in the feature space. In such a case it is hard to meet the requirement to minimize

%Ilwll2 with € precision (Hastie et al., 2009). To achieve feasibility the SVR adopts the so-called soft

margin principle in which slack variables f , f* are introduced (Smola & Schélkopf, 2003). The slack
l l

variables cope with infeasible constraints of the optimization problem as described in (2). By doing
so the minimization function has the form:

minimize %”W”Z +CYL (& + f*) (3)
13 L
yi—{w,x))—b <&+ gi
subjectto { (W, x)) +b—y; <e+ gi

E, & =20
1 1

The constant C > 0 is a regularization parameter and describes the trade-off between the flatness
of f and the amount of deviations larger than ¢ is tolerated. The optimal value for C can be

estimated by cross-validation. Generally taken, a small C allows many data points to be close to the

(Smola &
&

margin w (Hastie et al., 2009). This process is the so called - insensitive loss function | f

Scholkopf, 2003) described by:
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0 if |&|<e

€ |§| — & otherwise

(4)

|

Figure 16 illustrates the mechanism of the insensitive loss function. The figure shows that only the
points outside the grey region contribute to the cost. The insensitive loss function ignores errors of
size less than & (Hastie et al., 2009). Figure 16 illustrates that the deviations described by the slack
variable are penalized in a linear fashion. For more information about the insensitive loss function
and loss functions in general see Chapter 12 of the book The Elements of Statistical Learning (Hastie
et al., 2009).

—£ +£

Y

Figure 16 The soft margin loss for a SVR (Smola & Schélkopf, 2003)

5.2.1 Dual programming

In most cases the optimization problem (3) can be solved more easily optimized in its dual
formulation (Smola & Scholkopf, 2003). The key idea is to construct a Lagrange function from the
optimization problem (3) by introducing a dual set of variables. For details see (Van der Bei, 1994).

The Lagrangian formulation of the optimization function (3) is:

L:= %||W||2+CZ§=1(§1.+ é:j)_ %=1(77i§i+ ”fgj) Gl

!
—Z o,(+ fi—yi+(w,xi)+b)

i=1
!

—Z o, (e + fi +y; — (w,x;) — b)
i=1

In (5) L denotes the Lagrangian and 77 , nf,ai, 0(: are the Lagrange multipliers. The Lagrange
L l

multipliers from (5) have to satisfy non negativity constraints, if not data points will vanish. For
details see the book Practical Methods of Optimization (Fletcher, 2013). Data points that vanish do
no longer influence the minimization of the margin. As a result, the SVR approach relies only on a
subset of data points that are outside the tube space. Figure 16 illustrates that data points that
influence the margin are either at the boundary of the tube or just outside the tube due to the slack
variables. The data points at the boundary of the tube or just outside the tube and influenced by the

slack variables are called the Support Vectors.
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Substituting the partial derivatives of the Lagrangian with respect to the variables (w, b, f . f*)
L l

yields the following dual optimization problem (Smola & Schélkopf, 2003):

1 l * *
J2ij=(a, = a)(o; — o )(x,x)

—e Yiea(e,— o)) +Eivi(e, - a;)

(6)

maximize §

l
subject to Z(Oti - Otf) =0and &, Otz € [0,C]

i=1

In (6) the notation (xi,x]-) represents the kernel transformation of the input space. See section 5.3
for more information about the kernel transformation. The final solution function of the SVR can be
rewritten as (Smola & Scholkopf, 2003):

fx) = Zici(ear, — ) (xix) + b (7)

The function in (7) is the so-called Support Vector expansion (Smola & Schélkopf, 2003) and can be
completely described as a linear combination of the trainings patterns in x;.

5.2.2 Support Vectors

In the previous section is explained that the Lagrange multipliers from have to satisfy non negativity
constraints. If the multipliers fail to do so the data points will vanish and will not contribute to the
regression line. The data points that do no vanish are called Support Vectors. The Support Vectors
are data points that lie at the boundary of the tube space. By introducing slack the SV can deviate
from that boundary such that the SV is just outside the tube. The conclusion is that the complexity is
independent of the dimensionality of the input space of the dataset and only depends on the
number of SV’s. By constructing the Support Vectors the Karush-Kuhn-Tucker (KKT) conditions are
used (Smola & Schoélkopf, 2003). Once a feasible solution is met the product between the dual
variables and constraints will vanish and become zero. This is represented by:

ai(s+§i—yi+(w,xi)+b)=0 anda:(s+§:+yi—(w,xi)—b)=0 (8)
(c-a)¢ =oand(c-a))E =0 (9)

Smola and Schélkopf draw the following conclusions from (8) and (9): firstly only samples (x;, y;)
Q)]

with corresponding a; * = C are located outside the e-insenstive tube. Secondly the Lagrange
multipliers always satisfyai * a: = 0, meaning that there can never be a set of a, Ot: that are
both nonzero. From (8) it follows that only the Lagrange multipliers are allowed to become nonzero
for |f(x;) —y;| > € (Smola & Schélkopf, 2003). How dominant the Lagrange multipliers are
(Otl., 0{:) in (8) is controlled by C (regularization parameter). For data points within the tube no
regularization is needed and a., 0{;.k will vanish. Eventually data points within the tube will not add
any value to function (7) since the make sure the data points are multiplied by zero. The

examples/data points that come with no vanishing coefficients are called Support Vectors.
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5.3 Kernels

The Support Vector theory is well-known because of its ‘kernel trick’. The kernel trick makes it
possible for the SVR to deal with data that includes non-linear patterns. In Figure 17 a simplified
illustration of the transformation of the data from input space to feature space due to a kernel is
shown.

Input Space Feature Space

Figure 17 Mechanism of a kernel

The SVR is be able to deal with non-linear data by mapping the data x; by a map ®: y — Flinto a

feature space [F after which the standard linear SV algorithm is applied in that feature space.
However, the computation time of the SVR becomes easily infeasible when the amount of features
increases (Smola & Schélkopf, 2003). To obtain a computation feasible transformation the ‘kernel
trick’ is applied. The ‘kernel trick’ is that only the dot product in the feature space are calculated
instead of the explicit mapping of @ . It is sufficient to know k(x,x") = (P (x), ® (x)) (Smola &
Scholkopf, 2003). The dot products are injected into the SV optimization problem as described in the
function of (6). In Figure 18 is illustrated how the kernel transforms the input space from a non-
linear pattern to a linear pattern.

X P(x)

Figure 18 Kernel trick in combination with the SVR
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The kernel k(x;, x;) in the SVR optimization function is shown in the function of (12) below:

1 l * *
—=diimi(a. —a)(o.— o )k(x;,x;)
maximize § 2 ll'] B N { J l J* (12)
—€ Zi:l(ai - ai) + Zizlyi(ai - Oll.)
l
subject to Z(Oti - Otf) =0and &, Otz € [0,C]
i=1
As addition the expansion of (7) can be written as:
w= Yi,(a,—a])kx,x)+b (13)

The difference with the linear case is that w is not calculated explicitly and that finding a flat w is
determined in the feature space and not in the input space. This makes the decision of a suited
kernel of high importance since it directly determines the flatness of the SVR. A kernel can be
constructed manually, but usually a kernel is selected from a predefined set of kernels. The reason is
that the SVR practitioner needs to be skilled to understand what a possible relation could be
between the input space and the computational gain in a high dimensional space feature space.
Since it is unlikely to make a visual representation of this feature space defining a custom made
kernel is complex. Below eight different kernels are given that are well known in combination with
the SVR approach (Karatzoglou & Meyer, 2006):

1) The Linear kernel: the simplest of all kernel functions.
k(x,x") = (x,x') (14)

2) The Gaussian Radial Basis Function (RBF) kernel.

k(x,x") = exp (—ollx — x'l|%) (15)
3) The polynominal kernel.
k(x,x") = (scale * {x,x') + of fset)4eIree (16)
4) The Hyperbolic tangent kernel
k(x,x") = tanh (scale - (x,x") + of fset) (17)

5) The Bessel function kernel v

Bessel?ﬂ_l)(a”x—x'”)

kG x') = =y (18}
6) The Laplace Radial Basis Function.
k(x,x') = exp (—ollx — x"[}) (19)
7) The ANOVA radial basis kernel, this kernel is often used in a regression problem
k(x,x) = (ERey exp (—o(x¥ —x")2)) (20)

8) Linear splines kernel, similar to the ANOVA kernel this kernel is used for regression problem.
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_ (min xx"H®)

k(x,x") =1+ xx' min(xx')? .

(21)
In Chapter 8 a kernel will be selected by performing model selection. In the next section is explained
what software is necessary to compute the SVR algorithm including the above mentioned kernels.

5.4 Computation

Karatzoglou et al. reviewed several software packages for the statistical programming language R
that could be used for the computation of a SVR algorithm. They benchmarked 4 main R packages
for using Support Vector (SV) functions:

- The e1071 package is based on the award winning libsvm package that is coded in C++ which
makes the package relatively fast compared to other SV related packages in R (Karatzoglou
& Meyer, 2006). This package has a limited amount of predefined kernels that can be used
but offers a build in optimization framework performing a grid search over specified
parameter ranges.

- The kernlab package is designed to have more flexibility with kernel functionalities. It offers
a broader range of kernels and enables the user to switch between kernels on an existing
algorithm and even create a custom kernel. Kernlab is mainly programmed in R, but uses the
optimizers found in the python package libsvm which provides an efficient optimization in
C++ (Karatzoglou & Meyer, 2006). An additional advantage is that the kernlab package gives
access to almost any output statistics of the SVR. As a drawback it uses the non-conventional
S4 class mechanism to store data.

- The klaR package is a simplified support vector package that is available for non-commercial
use. This package is limited in kernel selection and output statistics. The klaR package was
initially built for classification problems instead of regression problems.

- The svmpath package approaches the optimization of the regularization problem according
a path method. The package contains the functionality to optimize SV problem for all values
of the regularization parameter with a small fraction of the computational cost of fitting a
single model. The model however contains a small limited number of kernels.

Karatzoglou et al. show that the packages e1071 and kernlab outperform the packages klaR and
svmpath both in performance and computation time. The computation time of the packages klaR
and svmpatch is almost double the computation time of e1071 and kernlab. Since the optimizer of
e1071 and kernlab are both from the same source they show almost the same computation time
and performance. For this study two criteria are important: 1) flexibility in kernel selection and 2)
low computation time. Both criteria are related to the non-functional requirements from Chapter 2.
The flexibility of a chosen kernel is connected to the non-linear characteristics of the V-log data
(non-functional requirement). Not every kernel will perform similar and needs to be validated by
model selection. The kernlab package offers the widest range of possible kernels. The criterion of a
low computation by the selected SVR software is related to the non-functional requirement of
maintaining a low computation time in Chapter 2. The conclusion is that the kernlab package favors
both factors and therefore is used for the computation of the SVR model.
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5.5 Summary Chapter 5

In this Chapter a deeper understanding is given about the SVR approach. First the mathematical
formulation of the SVR is described. The output of the SVR is a real number and represents the
switching timing of the current signal (red or green). The SVR consists of an optimization function
that can be solved in its dual formulation. The SVR is able to deal with the non-linear characteristics
of V-log by using a kernel transformation. The kernel expands the input space to a feature space in
which a linear combination of the features is calculated. The ‘kernel trick’ involves the calculation of
only the dot products in the feature space instead of the explicit mapping. The explicit mapping of
the initial input space becomes infeasible once the amount of features grows. The kernel trick
speeds up the computation time of the SVR. Therefore, the SVR approach and its kernel trick meets
the non-functional requirement of maintaining a low computation time (see Chapter 2). The kernel
should be selected according the characteristics of the V-log data. The selection of a kernel is
performed by model selection. Model selection will be described in Chapter 8. In the final SVR model
the best performing kernel is selected for predicting the traffic switching timings. Finally, in this
Chapter the decision on the used SVR software is explained. The software package kernlab is
considered to be the best fit for this project due to its flexibility of kernel selection and its relative

high computational speed.
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PART II

Data and Modeling
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6 Selection of a vehicle-actuated intersection

As part of the case study an intersection in the region of North-Holland is selected. From this
intersection V-log data is retrieved that is used in preceding chapters for the development of the
prediction algorithm. In this Chapter an intersection is selected that matches the following
functional requirements from Chapter 2:

1) Scalability: the prediction model is primarily designed to predict switching timings of the
vehicle-actuated controller. It is likely to assume that the prediction model can also be used
for predicting switching timings of semi-vehicle-actuated controllers. However, semi-vehicle-
actuated controllers are not the focus of this research and are outside the scope of this
project.

2) Scalability: the prediction model is primarily focused on intersections serving a single
modality.

6.1 Selection criteria

The selection criteria for a particular intersection for this research are as following:

e The controller of the intersection has to follow the vehicle-actuated control logic as
described in Chapter 3.

e The controller controls one modality (vehicles, no busses).

e Simple geometry; a typical cross geometry is preferred (see section 1.7).

e The intersection serves a traffic volume that shows variability during the day. Meaning that
at least a morning peak should be visible according queue lengths and amount of reached
maximum green times during the morning peak.

e Availability of V-log data for at least one month. In this study the experimental design is
based on a minimum of at least one month.

e No major hardware defects concerning detector loops, since this will artificially influence the
relationship between traffic and control output.

An extra criterion should have been selected (see Chapter 9 for more information). The extra
criterion is related to the degree of isolation of the selected intersection. The extra criterion should
have prevented the selection of an intersection that has a coordination with nearby intersections.
The structure of the vehicle actuated controller is not important for the intersection selection. It is
only of importance that the control scheme of the controller is vehicle actuated controller.

6.2 Location of the intersection

In consultation with the province of North-Holland the intersection marked in Figure 19 has been
selected. This intersection does not violate any of the given selection criteria in the previous section.
The intersection is called Laan van Darmstadt and is located between Alkmaar and Heerhugowaard.
The intersection is located above Alkmaar and Amsterdam. It is expected that signal groups serving
vehicles driving south on the intersection are considered to have more traffic volume in the morning
peak due to traffic commute. The expected morning commute of the intersection satisfies the
criteria for having variability in traffic volume during the day. Figure 19 shows the location of the
intersection on Google maps.
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Figure 19 Location of the selected intersection

6.3 Inspection of the geometry of the intersection

Figure 20 shows the map of the intersection from which the geometry of the intersection is visible.
Figure 20 shows that signal groups 1 and 3 might share double count issues with signal group 2 and
signal groups 7 and 9 might have the same problem with signal group 8. The third detector loop of 2
is located more upstream and drivers may decide to switch lane just after they passed the third
detector loop from lane 2 towards 1 or 3. At this point this particular vehicle is counted again by the
third detector loop of 1 and 3. Experts from North Holland stated that this is an unlikely event but
could happen. This would be considered as adding noise to the prediction model.
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Kruispunt nr.: 245208
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Tekening nr.: 9452-2005abed
HMP: 20,80

Figure 20 Map of the intersection Laan van Darmstadt
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6.4 Labeling of the detector loops

In this research the prediction algorithm will target particular signal groups. These signal groups
have a particular number as a label. Figure 21 shows the labeling of the signal groups for the
intersection at Laan van Darmstadt. Figure 21 indicates how the detector loops are numbered
according their dedicated approach. This information is important for the feature selection that will
be described in Chapter 7.

9452 ML1 O f{OCH o)
N245 ML2 O [|AVO o}
Laan van Darmstacit ML3 ©

ML4 OIKOOP  ©
DVMOC ©
DVMAY O

Koput 02 ©
Koput 08 ©

KOPD2/03 O
KOPO3 [u]

Peloton 02 ©
Peloton 03 ©
Peloton 08 ©

FILE O

Figure 21 Labelling of the detector loops

6.5 Summary of Chapter 6
In this Chapter the intersection Laan van Darmstadt is selected for which V-log data is retrieved from
the morning peak. The intersection is located between Alkmaar and Heerhugowaard in the province
of North-Holland in the Netherlands.
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7 Preprocessing of the data and feature selection

In this Chapter the preprocessing of the V-log data is described. The raw V-log data needs to be
preprocessed in order to be used for a statistical model such as the Support Vector Regression (SVR)
algorithm. As will be described in this Chapter, the process of transforming V-log data is intense and
time consuming but is of utmost importance to achieve satisfying prediction results. Special
attention is paid to troubleshooting of corrupted V-log data.

7.1 Data pipeline

The data pipeline is a virtual trajectory that the raw V-log data follows before it can be injected into
the SVR model. The figure below gives an overview of the data pipeline that is custom made for the
prediction of traffic signal timings and is therefore unique to this project. The data pipeline is
considered to be part of the prediction algorithm. The SVR will not be able to predict the signal
timings without following the steps described in the data pipeline.

I
NEIG

e

O 1 1 1 |
G | 1100 | .CSV | |
' 1010 ' ' !
1 1 1
1 0101 1 1 |
1 1 1 |
1 1 1 |
1 1 1 |
1 1 1 |
1 1 1 |
1 1 1 |
Data format V-log V-log to .CSV .CSV to .RDS/.R .RDS/.R
Main activity Raw data retrieval Manual feature extraction ~ 1)Dataset construction 1) Feature selection

2) Data analysis/assessment 2) Scaling
3) Statistical inference
4) Subsetting

Figure 22 Data pipeline for preprocessing raw V-log to training data

Within the data pipeline the data changes three times from data format. The first data format: V-log
contains mainly binary data and is transformed to a readable data format for the statistical software
program R. The binary data describes the controller according a DEV’s (discrete event simulation)
analogy and needs to be transformed into meaningful features that show variance in their feature
vector. Statistical learning methods are likely to train and predict poor on binary data and need
variance in the data to discriminate learning patterns (Hastie et al., 2009). Examples of created
features are countdowns, timers and cumulative vehicle counts. The process of formulating features
is called manual feature extraction and is explained in the next section.
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The second change in data format is from .CSV to .RDS/.R data format. The reason for this is twofold:

1) .RDS is a serialization data format that lets the programmer translate data structures or object
states into a format that can be stored (for example in a file or memory buffer) and reconstructed
later in the same computer environment (Wikipedia, 2015). In this case the environment is the
global environment in the statistical software program R. When the resulting series of bits is reread
according to the serialization format, it can be used to create a semantically identical clone of the
original object. Serialization a convenient property of the .RDS data format, since this leads to a
reduction in preprocessing time.

2) .RDS files have the property to load faster compared to .CSV documents (Matloff, 2011). The total
dataset consists of at least 300 .CSV files adding up to over 50 gigabyte of data. Using .RDS data
format instead of .CSV files will lead to a significant lower time to preprocess the data.

The end product at the right side of the data pipeline is data that is ready to enter the SVR model. At
this point the data has the property that it does not create logical errors in the SVR model and
reduces computation time as much as possible. The activities within the red demarcation in Figure
22 represent preprocessing of the data. Preprocessing in data mining/ data science prevents the
principle of ‘garbage in, garbage out’. Garbage in, garbage out means that the prediction model will
unqguestioningly process unintended input data (‘garbage in’) and produce undesired output
(‘garbage out’).

7.2 Preprocessing

Preprocessing of the raw V-log predominantly covers the following actions in sequential order:

e manual feature extraction (section 7.3),

e dataset construction (section 7.4),

e quality assessment of the data (section 7.5),
o feature selection (section 7.6),

e scaling (section 7.7),

e subsetting into train- and test datasets (section 7.8).

Each preprocessing action is necessary to make the knowledge discovery and prediction power in
the training phase of the model as big as possible. The final output of the data preprocessing is
useable training and test data. In the sections below is described how the preprocessing is executed.
Throughout the preprocessing procedure a lot of mistakes, confusing and undesired results can
occur. This project had setbacks that mainly have their origin in preprocessing the data. Possible
pitfalls and problems are highlighted in the sections below.

7.3 Manual feature extraction

Feature extraction starts from an initial set of measured data and builds derived features from this
initial dataset (James et al., 2014). The reason for this is that the total initial dataset might contain
redundant and non-informative data. In this project the raw data and initial data is V-log data. To
make an efficient and effective model we would like to extract data that is intended to be
informative and facilitates the learning and generalization steps within the algorithm. Feature
extraction is related to dimensionality reduction because we try to reduce the dimensionality of the
initial dataset to a smaller dataset without losing important information. The feature extraction
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process should not be confused with the feature selection process. In this study feature selection is
related to model selection. In order to select the best performing features, the features need to be
designed. The formulation and designing of features is called feature extraction. Feature extraction
is traditionally done by using techniques such as principal component analysis, factor analysis or
singular value decomposition. The reasons why these techniques were not used are:

e (Classical feature extraction techniques are not directly useable on data following a discrete
event analogy,

e |If we were able to use classical feature extraction techniques, we would neglect the
knowledge that we gained from knowing how the vehicle-actuated controller works. Since
we know how the controllers work, we are likely to understand what features should be
extracted in order to construct an informative dataset.

e If we would be able to use classical feature extraction techniques, we possibly would end up
with features that have no form of interpretation. In that case troubleshooting relies only on
pure statistical procedures.

The feature extraction is called ‘manual’ since it is coordinated by manually looking at what
information the controller logs into the V-log and how this could be transformed into features. It
is important to define features that capture the discrete event data as much as possible without
losing information. We would like to maintain information in the data regarding how the
controller reacts on the initial V-log data. It would not be beneficial to exclude detector loop
data from the extraction process since this is important input data for the controller. It should
be clear that the manual feature extraction procedure for V-log data is not a straightforward

process that can be copied from a textbook. The feature extraction procedure depends highly

on the type of data. The process of extracting features from V-log is not described in any prior
research. Once the method of extraction is determined, it can be applied to V-log data from
other intersections and does not necessarily depend on the parameter settings of the vehicle-
actuated controller. The manual feature extraction relies on the knowledge that is gained from
Chapter 3 and knowing what type of data works the best for a SVR algorithm, but this is not
trivial. To illustrate this problem, we have to recall how V-log data is logged by North Holland:

The V-log data shows event-based activities of the controller that are represented by binary
data in the V-log. The V-log contains messages regarding detector loops, internal signal
parameters, external signal parameters and speed detection. The V-log needs to be
translated to a data layout in which every row indicates a time instant and every column
represents data that serves as input or output of the controller for that particular time
instant. The aggregation level of a time instant is 1/10™ of a second. This is because the V-
log logs its data at this frequency. As a result, every logged time instant looks almost
identical to preceding time instants given the data in the columns. When we look at a much
bigger period of time, for example an hour of V-log data, we see that the overall differences
between time instants are low. We would see more differences between time instants when
more features are added to the feature space. But this ‘difference’ is numerically limited
since it can only reveal its difference by either showing a zero or a one. At this point
statistical learning algorithms such as the SVR will run into trouble. Statistical learning
requires computing distances between data points or similarities between data points.
Therefore it is beneficial to have a dataset that shows numerical variance in the data. If we
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would use the raw V-log data directly we would end up with ones and zeros showing

relatively low variation in similarities and distances between data points. For example: the

initial V-log at a given time instant shows either a zero or a one on detected vehicles by a

detector loop. By cumulating events, in this case incoming vehicles, more information for

each time instance is created. The cumulative count shows a higher variance for the

detector loop feature compared to the binary data in the V-log.

The manual feature extraction results into 112 features that describe the behavior of one signal

group. Appendix B contains the full list of manual extracted features given for one signal group. In

the table below a summarized version of the full list of extracted features is given.

Information Feature General description of features Example of a feature

type count

Indexing 3* Non-informative features, but necessary for filtering Date: Date of the logged time

features instance

Loop detector 37 Information about incoming vehicles. This includes AtTdet3_MaxVol: Cumulative

data features about current moment, vehicles during the vehicle count at the third
current phase and previous phases up to 5 red and detector loop at current time
green phases back in time.

Controller 19 Information about the red and green phases. This R_Lengthl: Absolute length in

output states category of features includes timers, countdowns and  time of one red phase before
absolute lengths of red and green phases. current red phase

Internal signal 55 Features that reveal information about the behavior SCycle_Time: Timer of the start

states of the two control levels within the vehicle-actuated to end of cycle of that particular
controller: group completion and signal group signal group
completion.

Table 2 Overview categories manual feature extraction

*the indexing features are only applied once to a dataset, these are not unique features to a signal group.

Besides the indexing features, that are non-informative for the SVR algorithm, three main feature
categories can be distinguished. In Table 2 these categories are briefly described. Below each feature
category is further elaborated:

Loop detector data: loop detector data is extracted from the first and the third detector loop. The
third detector loop is considered to be of high importance. The reason for this is that the controller
extends it green for a big part based on detected vehicles on the third detector loop. Extension of
the green signal is not only determined by the presence of a vehicle at the third detector loop, but
also its measured gap time plays an active role in the extension of the green signal. Gap times
indicate to a large extend the arrival pattern of vehicles. Gap times are currently not logged in V-log
data. Besides the third detector, also the first detector loop data is of important. The first detector
loop is a better indicator compared to the third detector loop for historical green and red phases.
The first detector loop indicates the amount of vehicles that pass the actual green light. Historical
loop detector data is extracted from the previous 5 cycles for a particular signal group. The
assumption is that 5 consecutive cycles before the current cycle might contain valuable information
about the upcoming green duration. In the research by Koukoumidis et al. it is shown that more than

the 5 previous cycles do not significantly improve the prediction power (Koukoumidis et al., 2012).
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Controller output signal states. This category of features describes information about the signal
output of the controller. The control output for a signal group is either the assigned red or green
duration in seconds. Data regarding the yellow signal is also retrieved, but not used for prediction
purposes. Likewise, the detector loop features, the controller output is extracted from the current
phase and the 5 previous cycles of that particular signal group. The current phase can be a red signal
or a green signal. The features include timers, countdowns and absolute lengths of the phases. The
timer gives the expired time at the current time instant for the running phase (green or red). The
countdown is the inverse of the timer. The countdown features can only be extracted from historical
data but will serve as prediction target within the SVR. Additional to the timers and countdown of
the current signal output, the absolute duration or lengths of the previous 5 green and red phases
are extracted. The absolute length of the previous 5 green and red phases is not a timer but a
constant value.

Internal signal states. The internal signal state features are designed to describe as closely as
possible the behavior of the two control levels within the vehicle-actuated controller. The two
control levels are the group completion and signal group completion. Briefly stated, the group
completion level assigns a green light to a signal group and the signal group completion level
determines the duration of the green light. An example of a feature is the timer of the signal cycle.
This timer is the elapsed time of the start until the end of the cycle of that particular signal group.
Another example is what realization method is being used when the green light is running: primary
or alternative realization. For each realization method a timer, countdown and absolute length is
extracted that is applicable for the given time instant.

7.4 Construction of the dataset

In the previous section is explained that for each signal group 112 different features are extracted.
The selected intersection Laan van Darmstadt (see Chapter 6) contains 10 signal groups. The dataset
that results from the feature extraction contains 1120 features. An efficient construction of the
datasets is required to avoid infeasible computation time and chaotic dataset structures. As will turn
out, the size of the dataset reaches into millions of data points. Data of one day coming from one
signal group is logged in one single .CSV file. The matrix below gives a representation of the layout of
such a single CSV file:

T,_Feature, T,_Feature 1,
T72000_Featu7"91 cee T72000_FeatuT6112

The time step between each row is 1/10th of a second. The original data contains a 24 hour span.
Within this study we only investigate the morning peak. The morning peak indicates the hours
between 7:00 AM and 9:00 AM. In total the dataset of a morning peak consists of 72000 rows. Each
row indicating a time instant of 1/10th of a second. For each day all the independent signal group
.CSV-files of one intersection were binded columnwise. After all the signal groups are column-binded
together of that particular day, all available days are row-binded. The matrix below gives an abstract
representation of the final raw dataset after which all preprocessing techniques are executed.

[Dayl_Feature; 411, _SignalGroupl] - [Dayl_Feature; 1,,_SignalGroupii]

[Day27_Feature; 11, _SignalGroupl] --- [Day27_Feature; 112_SignalGroup11]
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The reason for the chosen data layout is to safe computation time while preprocessing the data. The
statistical software program R suffers from high computation time when for loops or look up
functions are used. Since the size of the data is big, an efficient approach is desired. It is preferable
to use vectorized functions as much as possible (Matloff, 2011). By maintaining the described
dataset layout, filter functions can be vectorized. Vectorizing functions significantly speeds up the
computation time. The next step in the preprocessing part is to assess the quality of the dataset and
filter out segments of the dataset that guarantee a desired data quality.

Specifications of the constructed dataset:

e The dimension of the initial dataset is 216030 by 1122 accounting for over 240 million data
points.

e The datais retrieved from intersection with id number: 245208, Laan van Darmstadt

e The data covers the month April 2014 (30 days). No data failures were reported in the V-log.

e The filtered dataset covers the morning peak from 7:00 AM until 9:00 AM

7.5 Quality assessment of the retrieved data

In this section is described how quality of the data V-log data can be checked and what implications
it can have when the data is not clean. Securing a high quality of data is especially important for data
that is used for training the SVR models. It turns out that assessing the quality of V-log is not an easy
task and, if not performed properly, can lead to serious consequences for the prediction accuracy.
Assessing data directly means that baseline data exists from which (statistical) properties can be
qguantified as ‘good’ or ‘satisfying’. The definition and assessment of having ‘good’ V-log data
becomes challenging when such baseline data is not available and can only be derived from that
same available dataset that we would like to assess. This is the exact circumstance in which the
quality assessment is performed in this study. Additional standard statistical procedures such as
outlier detection fail when they are used directly on the dataset. The reason why this happens will

be explained in this section.

7.5.1 Encountered issues: detector loops causing corrupted data

Throughout this study a major setback was encountered due to corruption in the dataset. This
resulted into trained models that were giving a dissatisfying output. Predominantly the output
showed a high prediction error. But alarming was that the trained models showed unexpected
behavior according the theory of how the controller works. Being more precise, in some regions of
the dataset low correlations were found between counted vehicles by the first detector loop and the
amount of assigned green time. Accidentally we found out that the third detector loop was jittering
and therefore artificially was extending the green time, while the cumulative vehicle count on the
first detector loop was relatively low. This pattern also was detected by looking at deviant patterns
between the correlation of both the cumulative count of the two detector loops and the correlation
between either the cumulative vehicle count of the first or third detector loop and the given green
time. Both the correlations should be relatively high in order not to raise suspicion. With help of the
province of North-Holland it was discovered that one of the third detector loops showed hardware
problems by giving frequently a high signal without detecting a vehicle (jittering loop detector). As a
result, the cycle time of the entire intersection was artificially extended by this single detector loop
affecting output signals of other signal groups. The threshold setting of ‘sufficient’ correlation is
arbitrary. For the assessment of the final version of the dataset we used the correlation between the

59



first detector loop and the given green time. The minimum correlation threshold was set to be 0.80.
No hard facts support the 0.80 threshold. Important to mention is that hardware or software
failures do not necessarily always lead to missing data. In the case of missing values, the hardware
failure is easy to detect. In the case that a hardware or software failure leads to inconsistency of the
data a quality assessment framework is needed.

7.5.2 Four step procedure to assess V-log quality

Identifying low correlations in the previous example, that address a weak relationship between
traffic and given green time, was step one in determining a low data quality. The hardest part is
defining metrics and clear boundaries on how to classify poor quality in the data. In other words,
how should poorness of relationships be quantified between features and the prediction target? A
second important question is how representative and consistent is the dataset to make statements
about generalization of the prediction model? Since the dataset has a huge dimensionality it is not
feasible to check the data entry by entry and line by line, so we have to rely on statistical metrics
that summarize the data to a certain degree. To our knowledge, these questions were not answered
by any previous research study in the field of traffic signal timing prediction. However, the
encountered setbacks due to data corruption showed that assessment of the dataset is of utmost
importance. To assure a desired quality standard of the data the following 4 step approach was
used:

- Definition of key features as quality indicators.

- Segmentation of the dataset to avoid non-informative variability.

- Definition of ‘standard’ patterns in the data that can be considered to be normal behavior.
- Perform outlier detection on segmented dataset respecting patterns from 3.

Below each step is further elaborated on.

Performance metrics on key features were defined that served as indicators of the quality of the
data. The knowledge that is gained from Chapter 3 (vehicle-actuated controller) serves as input for
defining key features. The used statistical metrics on the particular features are:

Statistical metric Performed on features Indexing feature names

Correlation Cumulative count of vehicles on the first detector loop and GDetl_MaxVol,
the duration of the green light and between the cumulative  G_Length,
count for the first and third detector loop. GDet3_MaxVol

Arithmetic Mean  Cumulative vehicle count on the first detector loop GDetl_MaxVol

Maximum Cumulative vehicle count on the first detector loop GDetl_MaxVol

Standard Cumulative vehicle count on the first detector loop GDetl_MaxVol

Deviation

Arithmetic Mean  The realized green time G_CD

Maximum The realized green time G_CD

Standard The realized green time G_CD

Deviation

Maximum Number of green phases -

Number

Arithmetic Mean  time from start of a random block until the next start of that  Block2Block_Length
same block for a dominant signal group
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Segmentation of the dataset is performed to detect unusual patterns in the dataset. The problem is
that the initial extracted variance of the data is pooled over the whole dataset. This means for
example that weekdays and weekend days are pooled together in the same assessment metrics such
as correlation, arithmetic mean and standard deviation. But by theory we know that weekdays and
weekend days have different control settings. So by definition the controller output that is shown in
the extracted data shows different statistical properties. The pulled variance over the whole dataset
without segments will mask deviant behavior since it will be averaged over different segments. The
chosen segments will be used as a basis for the next step in the assessment procedure: defining
standard patterns. The following decisions regarding segmentation were made:

1) A distinction is made between morning, afternoon, evening and night. In this study only the
morning peak (7AM — 9AM) is investigated. Other time periods of the days will have
different standard patterns. This probably is traced back to different traffic demands and
therefore different controller input/output. Similar behavior can possibly be detected on
holidays versus normal weekdays.

2) An aggregation level of one day (one morning peak) is taken as data segment. If the
segmentation is to loose and the segments are too big, such as complete weeks, unusual
behavior might not be detected. If we would detect strange behavior, we should delete or
correct data for the whole week. This is not efficient since we would like to exclude only the
days that caused deviant behavior.

3) The controller settings are different for weekdays versus weekend days, so we are likely to
find different standard patterns between weekdays versus weekend days.

Defining standard patterns. To specify standard patterns, we investigate the key features within
their segmentation. We pull statistics for each of those key features for individual days of the week,
describing only the morning peak with special notification for weekdays versus weekend days. We
end up with a table as shown in appendix C. At this stage we need threshold that state what is
considered to be ‘normal’ or ‘standard’ control behavior and what is considered to be ‘deviant’
control behavior. This is challenging because every intersection and it accompanying traffic demand
is different. As a result it is difficult to set general hard thresholds to classify normal and abnormal
behavior. For example what is considered to be a sufficient correlation between traffic volume and
realized green time? Or what is a normal/standard number of realized green phases in a morning
peak? It seems that hard threshold can become arbitrary and open for discussion. To keep it simple
and straightforward a four threshold were used:

1) A correlation of at least 0.80 on weekdays is needed between traffic demand and the
amount of given green in seconds. The correlation is averaged over all cycles during the
morning for weekdays.

2) Negative min and max values of traffic volume indicate corrupted data. The min and max
value are pooled from a single cycle and is not averaged over the whole morning peak.

3) The mean traffic volume should be at least 8 vehicles. The mean traffic is averaged over all
cycles during the morning peak for weekdays.

4) Average block to block time should be at least 90 seconds. This average is pooled over every
cycle during the morning peak for weekdays.
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We only used 4 metrics while we defined 9 metrics. The remainder 5 metrics were used in case the
above 4 metrics showed strange behavior to get more explanatory insights into the data corruption.

Deleting outliers. At this point we defined every element that is needed to assess whether a
complete day should be deleted from the dataset. As the table shows in appendix C two days are
excluded from the dataset: Monday 7 April 2014 and Thursday 17 April 2014 (day before Easter
holiday). These two days show correlation below 0.80 between traffic volume and realized green
time. The relatively low correlation does not necessarily indicate corruption in the data, but could
indicate that the control behavior does not show normal or standard behavior. The weekend days
were excluded by default since different control settings are used and also deviant traffic volume is
expected. The difference between weekdays and weekend days is clearly visible while investigating
the results on the performance metrics in appendix C.

Point of Discussion:

To test the quality of the V-log data, data coming from the dominant signal group was analyzed. For
the selected intersection; the Laan van Darmstadt the dominant signal group is signal group 8 (see
Chapter 3). Signal group 8 is expected to have the highest traffic volume during the morning peak
and therefore will influence the controller input/output the most. Deviating behavior in this signal
group probably leads to deviating behavior for the total intersection. The most preferred situation
would be to have metrics that could assess the total intersection for each segment. This however is
quite a time consuming task and should be included for further research.

7.6 Feature selection

Feature selection is an important requirement for a regression-type model when the amount of
features is large. The Support Vector Regression model does not perform feature selection
automatically, because it uses quadratic regularization (Smola & Scholkopf, 2003). The Support
Vector theory has rather a remarkable effect on feature selection; it is sometimes not efficient to
reduce the number of features. Research shows that accuracy on a test set (not training data) starts
to degrade when the amount of features is reduced. Until today there is no hard explanation for this
behavior (Hastie et al., 2009). Different approaches can be used to select the optimal set of features.
An example of such an approach is a greedy search algorithm that adds features to the model
according their explanatory variance. The risk of such a greedy algorithm is that the optimal model is
likely to be missed. The strategy in this study is to predefine several sets of features with a different
rationale and test these sets of features on their performance. This method can be considered as a
Best-Subset Selection method (Hastie et al., 2009). Initially such a method will try to fit all possible
combinations of features. This leads to high computation times and should be avoided. In this case
the feature selection is part of the model selection. Model selection is described in the next Chapter
in more detail. A more statistical complex feature selection procedure could be used, but we would
like to use our knowledge about the traffic light controller as much as possible. Also a more
statistical feature selection procedure does not give any guarantee for a better performance. We are
likely to risk a lot of computation time by using complex feature selection procedures. Six different
rationales were used for the design of featuresets. Eventually the six rationales lead to six
featuresets for each signal group. During the model selection in the next Chapter the best
performing featureset is chosen. The design of a featureset has a significant amount of impact on
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the prediction accuracy and is therefore at the center of the model selection procedure. The next
section describe each featureset and rationale in more detail.

7.6.1 Six different featuresets

Each featureset is labelled with a number starting from 1 up to 6. The major difference between the
first three featuresets and the last three featuresets is the number of signal groups that are involved
from which features are selected for each set. Figure 23 illustrates the major difference between the
first three featuresets and the last three featuresets. Featuresets 1, 2 and 3 are narrow-minded since
these featuresets only contain features/data that are extracted from the same signal group for
which we would like to predict the switching timings. In contrast, featureset 3, 4, and 6 have a more
holistic featureset approach. These featuresets include features/data that are extracted from
multiple signal groups and therefore should be able to catch more information about the dynamics
of the controller. After the manual feature extraction we ended up with 112 features for each signal
group. Appendix A shows the complete list of extracted features for one signal group. At an abstract
level the 112 features for one signal group can be categorized into four categories: indexing
features, loop detector features, controller output states features and internal signal states features.
The indexing features are non-informative, but are added to every featureset for filtering purposes.

Figure 23 Difference between a narrow minded featureset and a more holistic featureset

Featureset 1 contains the basic controller output features such as green and red durations of the
previous 5 cycles. Additionally, loop detector data is included in featureset 1. Featureset 2 is the
same set of features as featureset 1 but adds internal signal state features. From Chapter 3 we
derive that the internal signal states are determined at the second control level: the signal
completion level. Featureset 3 takes all features from featureset 2, but performs a selection on this
subset of features by looking at the strength of the relationship between the target variable and
each feature. The strength of the relationship is measured with the Pearson’s correlation metric. The
reasoning behind featureset 3 is to create a parsimonious model that includes the most relevant
features. Ideally we would also check for confounding factors, but this is rather a complex
mechanism in data such as retrieved from a controller. By definition features are confounding since
they should depend on each other. We set a threshold of 9 features that featureset 3 can select
from the features in featureset 2. If we would allow a higher number of features the model loses its
level of parsimony and approaches featureset 2 in content of features. Additionally, we often saw
empirically that correlations for featureset 3 started to deteriorate after the ninth feature.
Featureset 4 follows the same rationale as featureset 1, but includes the basic controller output
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features and loop detector features from all signal groups into one set. For the investigated
intersection this means that we are taking 10 signal groups into account in featureset 4 and only 1 in
feature 1. Featureset 5 follows the same rationale as featureset 2, but similar to featureset 4 takes
all signal groups into account. Featureset 5 contains basic controller output features, loop detector
features and internal signal state features from all signal groups. Featureset 6 shows similarities with
featureset 3. Featureset 6 takes features from features 5 as initial set and performs a feature
selection based on Pearson’s correlation. Unlike featureset 3 we set a limit of 20 selected features. If
we would select more than 20 features the featureset set loses it level of parsimony. Similar to
featureset 3 we saw that correlations began to deteriorate after the twentieth feature.

7.7 Scaling of the data

Scaling the data before applying the SVR is important and should be done carefully. Scaling in
statistical learning is important to avoid features in greater numeric ranges to dominate features in
smaller numeric ranges. Especially in regression problems, features in greater numeric ranges will
artificially add weights to their features when scaling is not applied for these features (Hsu et al.,
2010). Another advantage of scaling is to avoid numerical complexity. The kernel trick as explained
in Chapter 5 uses the dot products (inner products) of feature vectors. For some kernels such as the
linear and polynomial kernel, in which a relative large feature space is created, scaling reduces the
computation time drastically. It is preferable to scale the data to a zero-one numerical scale.
Standard feature scaling is usually executed by unity-based normalization. This is described as X' =
_X=Xmin_ e found out by using different scaling approaches on the V-log data that unity-based

Xmax— Xmin
normalization produces problems. Large green and red, that account for a small percentage of the
dataset, pull the large part of the dataset close to zero after scaling is applied. This makes the data
non-informative. To account for this problem the standard score of the feature vector is used for

. X— _ . .
scaling: X' = Tﬂ The standard score uses the mean and standard deviation of a population. This

sets a restriction on how scaling is applied on the total dataset versus a small subset. In this study is
decided to scale the total dataset based on the mean and standard deviation of the feature vector of
the total dataset. In this way the feature vector of the total dataset is referred to as the population.
After scaling is applied the dataset is subsetted to smaller datasets. The reason for this order of
scaling and subsetting is to maintain the same averaged behavior as reference point within each
subsetted dataset (train and test data). If scaling is applied on every subset of data, extreme
behavior can possibly be smoothed away by the scaling procedure.

7.8 Subsetting data into train data and test data

During the formulation of the prediction model in the next Chapter we have two separate goals:

1) Model selection: estimating the performance of different models in order to choose the
best one.

2) Model assessment/validation: having chosen a final model, estimating its prediction error
(generalization error) on new data.

If we are in a data-rich situation, the best approach for both problems is to randomly divide the
dataset into three parts: a training set, a validation set and a test set. The training set is used to fit
the models, the validation set is used to estimate prediction error for model selection and the test

set is used for assessment of the generalization error of the final chosen model. Ideally, the test set
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should be kept aside and be used only at the end of the analysis. For this study we do have access to
a lot of V-log data. But it turned out we need a time consuming quality assessment procedure on the
V-log data. We end up with only one month of clean V-log data. We do not have such a data-rich
situation and we need to use the k-fold cross validation method for a big part of the model selection.
The test set consisted of the ‘most regular day’ from the dataset that we have. We are interested in
being capable of predicting the normal behavior of the controller. Once we are capable of producing
satisfying accuracies for the ‘most regular day’ we can state that we are able to predict the control
behavior. This ‘most regular day’ is kept in a ‘vault’ and is excluded from any training set. By doing
so, this test data is completely unseen for the trained models. The test set consisted of all weekdays
from April 2014 minus the ‘most regular day’.

7.9 Summary of Chapter 7

In this Chapter the following sub-question is answered: What preprocessing steps need to be
performed to transform V-log data to data that can directly be injected into the prediction
algorithm?

Preprocessing of the raw V-log predominantly covers the following actions: manual feature

extraction, dataset construction, quality assessment of the data, feature selection, scaling and
subsetting into train- and test datasets. The final output of the data preprocessing is useable training
and test data for which the amount of corrupted data is reduced significantly. The manual feature
extraction results into 112 features for each signal group extracted from the raw V-log data. The
features are categorized in three categories: loop detector features, controller output state features
and internal signal state features. The key philosophy during the feature extraction is to create
features that show numerical variance that is needed to discriminate learning patterns in the data.
Raw V-log data is logged in a binary fashion that is not suited for training the SVR.

The SVR algorithm relies heavily on clean training data. Multiple experiments show that poor
loop detector health cause corruption in the retrieved dataset and is therefore a huge threat for
effectively predicting the switching timings. To secure a clean and representative dataset we
developed a quality assessment procedure. The assessment was performed by using standard
statistical metrics on stratified segments of the preprocessed V-log data. By following the proposed
guality assessment procedure deviant behavior such as extremely extended green phases or jittering
loop detectors can be detected prior to training the SVR model.

Feature selection was performed in the context of model selection. We demonstrate that the
green prediction model only uses features selected from the signal group for which it also predicts
the switching timing of the green signal. The red prediction model uses features selected from all
signal groups to predict the switching timing of the red signal. During the development of the
prediction algorithm we saw a significant impact of different scaling techniques on the data. We
propose scaling as shown in standard score values or Z-values. We want to emphasize that stratified
scaling might lead to severe problems in finding discriminative learning patterns in the transformed
V-log data by the SVR. As a solution, the population parameters from the total dataset should be
used to transform the training data to standard score values.
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8 The prediction model

In this Chapter the development of both the green and red prediction models are described. The SVR

method does not have a fixed approach for designing an effective prediction model (Hsu et al.,
2010). The SVR method has several facets that can be adjusted and optimized during the fitting of

the model. First the facets for model selection are determined after which the experimental design

and modeling strategy is explained. The major part of this Chapter is devoted to model selection of

the best performing SVR model for predicting the switching timings of the red and green signals.

8.1 Facets for model selection

The SVR method has several facets that can be optimized, adjusted or estimated. One of the major

pitfalls of the SVR model is that preliminary optimization of fitted models can lead to short-sighted

decision making during the model selection. The following facets of the SVR need attention:

a)

b)

c)

d)

Type of kernel; the type of kernel directly depends on the input feature space (Hsu et
al., 2010). The kernel strongly influences the estimated margin and support vectors and
is unique to the V-log data. In section 5.3 Kernels, several standard kernels were stated.
Six kernels are incorporated in the Kernlab R package that is used in this study. All six
kernels will be tested during the model selection.

Set of features; the rationale behind feature selection in this study is described in the
previous Chapter (section 7.6). Briefly, we would like to test predefined sets of features
and select the most optimal feature set.

Hyperparameters; based on the type of kernel, zero or multiple hyperparameters need
to be tuned. For example the most basic kernel the linear kernel: k(x,x") = (x,x') has
zero hyperparameters. The RBF kernel k(x,x') = exp (—cl||x — x'||?), that is labeled as
‘a first reasonable choice’, has one hyperparameter (Karatzoglou & Meyer, 2006).
Similar to the kernel, the hyperparameters depend directly on the input space. In
contrast to the kernel type, the tuning of the hyperparameters are not fixed to the type
of data. This means that optimization is needed for every single fitted prediction model.
Whereas the kernel type is more fixed to the type of data.

Regularization parameter; specific regularization parameters of the SVR are the epsilon
€ and cost C parameters (Smola & Schélkopf, 2003). The epsilon and cost parameter are
referred to as regularization parameters. Unfortunately, there are no fixed rules that can
be applied to determine the most suitable combination of parameter settings.

Four different facets are described that can be adjusted. Preliminary optimization or biased model

selection decisions can be made because of the absence of an experimental design or modelling

strategy. For example:

The type of kernel and its hyperparameters directly depends on the input space. If we select a

different featureset, automatically the input space changes. As an effect the optimal kernel

and hyperparameters are totally different. Additionally, hyperparameter and regularization

parameter optimization could lead to different degrees in accuracy gains for different

kernels. The linear kernel does not have room for optimization of hyperparameters, because

the linear kernel has zero hyperparameters. While other kernels do have one or more
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hyperparameters. Preliminary optimization might lead to misguided model selection choices
due to over-optimistic model results (Fox, 2009).

Questions that arise are: in what order do we try to fix facets of the model selection? When do we
consider to optimize the hyperparameters and regularization parameters? Both questions relate to
the amount of available computation time and amount of available and reliable data for this project.
The next section explains a strategy to efficiently find the best performing SVR models.

8.2 Experimental design and modelling strategy

In this Chapter two the development of two prediction models is described. The first prediction
model is capable of predicting the switching timings of the green signal. The second prediction
model is capable of predicting the switching timings of the red signal. To efficiently develop both
prediction models the following modelling strategy is used:

1. Construct the green prediction model and apply a reduced experimental design on the red
prediction model. By doing so, we take the winning elements of the model selection from
the green prediction model and apply those decisions directly on the red prediction model.
Focus the model selection procedure on the signal group with most traffic demand.

Use featureset 1 as initial input space. Featureset 1 contains only data regarding detector
loop data and controller output signals. This data should contain sufficient explanatory
variance for the prediction of a vehicle actuated controller.

Find the best performing kernel.

Find the best performing feature set.

Speed up the computation time over the full factorial design by determining the optimal
amount of training data.

7. Deploy the algorithm on all signal groups.

Figure 24 illustrates the experimental design for the model selection of the green prediction model.
It follows a fractional factorial design for the selection of a kernel type and a full factorial design for
the selection of a feature set. A full factorial design for both kernel type and the feature sets is
desired, but leads to extensive higher computation time. The fractional factorial design only uses a
fraction of the full factorial design by limiting the amount of runs. The fractional factorial design for
the kernel type includes only featureset 1. See the previous Chapter for more information about the
six different featuresets. Featureset 1 consists of the biggest share of relevant V-log data and

therefor will determine the input space for a large part.
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Figure 24 Experimental design for model selection

8.3 Model selection and preliminary results
This section describes the model selection and its forthcoming preliminary output results. The model
selection is considered to be the major part of the development of the prediction model.

8.3.1 Output metrics

In the following sections and in the next Chapter output tables are presented. The tables contain
output values for several metrics that are used for model selection and model validation. The
validation process is described in more detail in section 8.5. The validation metrics that are
mentioned in the output tables are: Root Mean Square Error [RMSE], Mean Square Error [MSE], 10-
fold cross validation error [Cross_error] and the training error [Train_error]. Next to the validation
metrics 4 other metrics are often mentioned in the output tables. These metrics are: the training
time of the models [Systimes], number of selected support vectors [SVs], the minimum green
countdown value [Min_pred] and the accuracy in terms of hit rate [Hitrate]. The metric Systimes is
arbitrary, since the measured Systimes will be different when other computers are used. However,
the Systimes is relevant for comparison between models. The relative difference in Systimes
between the models gives information about which model should be preferred over another. The
number of Support Vectors gives explanatory insights when Systimes are high. Additionally, the
number of support vectors could give information about how discriminative a kernel is. The
Min_pred metrics indicates the minimum value that is being predicted by the prediction model. It
should be obvious that a negative number of predicted green values is not tolerated. Negative

68



prediction outputs are wrong by default, since negative green values would indicate that the
switching time of the current signal is located in the past. The Hitrate is based on a permissible error
in terms of absolute deviance of 4 seconds around the predicted switching timing. The 4 seconds is
based on the duration of being 2 vehicles off from the true switching timing. Once the predicted
switching moment is within the 4 seconds permissible error range, the prediction is labelled as a hit.
If it is not within the 4 seconds permissible error, it is not treated as a hit. If the permissible error
would be smaller than 4 seconds, the predicted output has a smaller chance of being labeled as a
‘hit’. In contrast, if the permissible error would be larger than 4 seconds, the predicted output has a
higher chance of being labeled as a ‘hit’. The level of permissible error was set by researchers of
Nissan. The metrics Systimes, Min_pred, RMSE, MAE, Cross_error and Train_error are measured in
seconds. The Hitrate is measured in percentage and the number of support vectors is measured in
the amount of estimated support vectors.

8.3.2 Best performing kernel

The high dimensional feature space in which the initial feature space is transformed by a selected
kernel is difficult to visualize. Therefore, selecting the optimal kernel can only be determined by
testing the kernel on real train and test data (Hsu et al., 2010). The R-software package kernlab
contains six standard kernels. The six standard kernels that are mentioned in Table 3 are: the linear
kernel (lineardot), the Gaussian radial basis function kernel (rbfdot), the polynomial kernel
(polydot), the hyperbolic tangent kernel (tahndot), the Laplace radial Basis function (laplacedot)
and the ANOVA radial basis kernel (anovadot). See section 5.3 for the mathematical description of
the kernels. The six kernels are benchmarked to select the best performing kernel(s) for further
model development. Three days of data were selected from the training set for benchmarking the
kernels. Two days were used for training and one day was used for prediction. The data that was
used for prediction was not used for training. As described in section 8.2 the kernels are tested by
using the featureset 1 as input space. Featurset 1 contains only loop detector data and data of the
output states of the controller. The most important metrics for the kernel selection are the Systimes,
Min_pred and Mean Absolute Error (MAE).

Systimes SVs Min_pred Hitrate RMSE MAE Cross_error  Train_error
rbfdot 16.04 4955 19.08 0.19 13.71 11.43 7.50 41.87
anovadot  162.60 2341 -49.62 0.29 61.76 15.21 1573.74 0.12
tahndot 20.11 5384 -12994.74  0.19 4924.43  3989.59 5563.85 203116.95
polydot 42.07 4504 -15.13 0.33 10.56 8.12 9.39 0.46
lineardot 45.99 5277 -15.89 0.31 10.67 8.20 9.45 0.46
laplacedot 7.91 1844 4.18 0.27 10.90 8.79 1.49 0.01

Table 3 Model Selection: comparison of Kernels

Table 3 shows that the kernel anovadot shows relatively high computation time and should be
rejected. High computation times should be avoided, since this could make it difficult to complete
the study. The tahndot kernel shows a low prediction accuracy and should not be taken into
consideration for further model development. The rbfdot does not score well on the MAE and
MIN_pred metrics and therefore is rejected for further model development. Three kernels are left:
polydot, lineardot and laplacedot. These three kernels scored the best on the MAE metric. The
laplacedot shows the biggest prediction potential, since the minimum prediction value is above zero.
Negative prediction values would indicate an unreliable prediction model. The computation time of
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the Laplace kernel is the lowest of all kernels (simultaneously selects the smallest amount of support
vectors). Initially the model selection was continued with the three kernels: polydot, lineardot and
laplacedot. But preliminary results showed that the polydot and lineardot have almost similar
prediction results. The similarity in output results is not strange, because mathematically they are
almost identical. Due to the fact that the polydot kernel is slightly faster and has a better
performance compared to the lineardot kernel, the model selection includes only the Laplace kernel
(laplacedot) and the polynomial kernel (polydot). Conclusion: the best performing kernels are the
Laplace and polynomial kernel. These kernels are fixed for the V-log data and are recommended to
be used in studies involving Support Vector theory and V-log data.

8.3.3 Best performing featureset

Table 4 gives the output of the fractional factorial design between the six feature sets and the two
best performing kernels. The six feature sets are described in section 7.6. At this point more focused
is placed on the accuracy of the prediction models. The overall objective of model selection is to
select the best performing model therefore the metrics Hitrate and MAE become central for the
model selection procedure. As will be described in section 8.5, the Hitrate and MAE metrics are the
most important validation metrics in this project.

Kernel Systimes SVs Min_pred Hitrate RMSE MAE Cross_error Train_error
Featureset 1 polydot 41.72 4504  -15.13 0.33 10.56 8.12 9.39 0.46
Featureset 1 laplacedot 7.59 1844 4.18 0.27 10.90 8.79 1.52 0.01
Featureset2 polydot 75.60 4461 -11.84 0.36 11.04 8.30 8.82 0.40
Featureset2 laplacedot 47.47 3275 7.04 0.25 11.76  9.29 2.25 0.01
Featureset3 polydot 18.79 4577 -10.73 0.40 10.16 7.55 10.00 0.52
Featureset3 laplacedot 13.75 4332 0.35 0.40 10.58 7.79 9.52 0.34
Featureset4 polydot 531.6 150 -50.00 0.17 18.65 14.72 0.93 0.00
Featureset4 laplacedot 244.8 1972  20.48 0.19 14.07 11.55 4.77 0.01
Featureset5 polydot 669.00 303 -58.38 0.10 20.89 16.85 0.67 0.05
Featureset5 laplacedot 148.20 2671 19.33 0.19 14.16 11.51 12.36 130.34
Featureset 6 polydot 18.79 4600 -9.28 0.35 10.09 7.68 9.47 0.47
Featureset 6 laplacedot 13.75 4295 0.51 0.32 10.72 8.31 6.56 0.07

Table 4 Model selection: comparison of featursets

The featureset with the highest hitrates and lowest mean absolute errors are the correlation based
featuresets. These featuresets have the numbers 3 and 6. For the green prediction model the model
selection proceeds with featureset 3, since this featurset scores the best on the metrics: Hitrate,
MAE and Systimes. Featureset 3 selects its features based on correlation between historical
switching timings of the green signal and data retrieved only from the same signal group that we
also want to predict. The difference between featureset 3 and 6 is that featureset 6 retrieves
features from the entire intersection and therefor incorporates data from all signal groups into one
prediction model. Featureset 3 ignores data coming from other signal groups. Conclusion: featureset
3 is the best performing feature set for the green prediction model.
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8.3.4 Optimal amount of training data

As turns out, there is not ‘one’ green prediction model and ‘one’ red prediction model for an
intersection. Every signal group has its own green and red prediction model. This can be seen in the
full factorial design in Figure 24. The intersection as part of the case study has 10 signal groups. In
total 20 prediction models need to be trained and validated for the intersection. Until now the
prediction models were trained on 2 days of training data and predicted 1 day of training data. The
definition of ‘trainingday’ might be confusing, to clarify: one trainingday means data coming from
one morning peak. Statistical learning models such as the SVR algorithm are likely to learn and
predict better once the model is trained on a larger dataset. Training the prediction model on a large
dataset comes at a high cost such that a larger dataset increases the computation time. To speed up
computation time it is relevant to know how much training data is sufficient to train the models. In
the figure below the computation time (in seconds) as a function of increased training data for both

kernels is shown.
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Figure 25 Computation time as a function of the amount of training data

Figure 25 reveals why the amount of training data should be chosen carefully. The computation time
increases exponentially with the amount of used training data. To see what level of accuracies can
be reached with the amount of used training data, the test error should be taken into account. In
Figure 26 preliminary prediction results of the green prediction model (test error) as the function of
the amount of used training data is shown. The upper limit of training days is given by the amount of
available training days (weekdays only). Ideally the models are tested with a maximum of 50 to 100
training days. Unfortunately, this amount of data is not available in this project. Also the
computation time would increase drastically (see Figure 25) if a relatively huge amount of training
data is used. To give an impression of the data size for the experiments used in Figure 25 and Figure
26; the full dataset consists of 15 morning peaks and accounts for 1.8 million data points. Each data
point covers data in 10 dimensions adding up to a total of 18 million data entries. The 10 dimensions
of feature set 1 are advantageous compared to featureset 6. Featureset 6 consists of 25 dimensions
and has 2.5 times the data entries of featureset 3. Both the learning curves for the two kernels in
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Figure 26 show decreasing behavior and show an approximation of their asymptotic error. Both the
curves tend to stabilize from a minimum of 5 training days on.
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Figure 26 Test error/learning curve as the function of the amount of number of training days

Conclusion: 5 trainingdays is an optimal number of trainingdays. Both the approximation of the
asymptotic test error as the computation time seems to be optimal at this level of trainingdays.

8.4 Overfitting and the curse of dimensionality

Overfitting occurs when the model complexity is increased and the model is trying to fit the training
data to closely. During overfitting, the model is not trying to learn the underlying mechanism of the
data, but is fitting the model to the noise in the data (Hastie et al., 2009). As a result, the
generalization performance of the prediction model goes down. Assessment of this performance is
extremely important, since it guides the choice of selecting the best model. But the SVR technique
does not set its effective parameters based on the dimension of the input space like for example the
ordinary least squares regression.

The reason that SVR tend to be relatively resistant to over-fitting, even in cases where the
number of features is greater than the number of observations, is that it uses regularization and
kernel selection. They key to avoiding over-fitting lies in a careful choice of the kernel (see section
8.3.2 for more information) and tuning of the kernel and regularization hyperparameters (see
section 8.7 for more information). Every type of data has it unique properties and therefore the
effect of the regularization parameters and kernel is different in every study involving different type
of data. As shown in section 8.3.2 the difference in prediction error of the kernels is relatively big,
causing the V-log data to dependent on the kernel selection. The reason why the SVR the relatively
resistant to over-fitting is that the SVR approach could select a number of data points from a
number of features that is less than the number of features that are presented to the SVR. In a way
the number of support vector are effective parameters, but this is theoretically not completely true.
A high number of support vectors does not immediately cause the model to overfit. Overfitting in a
SVR model could only be seen in higher dimensions, causing the margin around the SVR tube to be
wiggly and unstable (Hastie et al., 2009). Unfortunately, it is impossible to visualize the higher
dimensions and can only assess overfitting based on test and training results. In practice, the risk of
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overfitting a SVR depends on the choice of the kernel, regularization parameters and the kernel
hyperparameters (Cawley & Talbot, 2010). This means that SVRs don’t solve the problem of
overfitting but shift the problem from model fitting to model selection in which the choice of the
kernel and regularization cost parameter C play a dominant role. Figure 27 gives insights in
overfitting of the SVR. The explanation of possible overfitting is given after the figure.
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Figure 27 Training error as a function of the amount of training data

The Training error in Figure 27 correspond to the same experiments from Figure 26. The training
error in Figure 27 increase for both the kernels, while the test error in Figure 26 is decreasing.
Overfitting would mean that the training error is going down, while the test error is increasing. It is
counterintuitive that the training error is increasing while test error is decreasing (Hastie et al.,
2009). To understand this phenomena, the relation of the amount of training data and the model
complexity in the SVR should be explained. Model complexity in a SVR can be expressed as the
number of selected support vectors. If the amount of training data is increased also the chance of
inclusion of more support vectors is increased. The increase of training error in Figure 27 shows a
slight increase of training error that can be explained by the inclusion of more support vectors while
presenting more training data to the SVR. Another explanation for the slight increase in training
error is how the training error is constructed. The training error is the average loss over the training
sample. When millions of extra data points are added to the models, it is likely to end up with a
higher chance of wrongly predicted data points. Figure 27 and Figure 26 do not show overfitting
since the test error stabilizes and does not show a rapid increase while the model complexity
increases.

8.5 Important statements concerning validation procedure

In the previous section is explained what output metrics are used for assessing the model
performance. To assess the generalization error, the true test data or test set is kept in a ‘vault’.
Meaning that trained models did not see the test data during its training process. Another relevant
element is to determine what metrics should be used as assessment criteria. In previous tables 3
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different type of metrics were mentioned that could be used as assessment criteria: Hitrate, Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). The training error and cross validation
error were given as Root Mean Square Error. While the test error is given in Hitrate, MAE and RMSE.
During the model selection process an odd behavior of the cross validation procedure (10-fold cross
validation) was discovered. Normally the cross validation error is always smaller than the test error,
but always bigger than the training error (James et al., 2014). The cross validation is often a reliable
approach of the generalization error or true test error (Hastie et al., 2009). However, preliminary
model results indicate that the cross validation error metric is not a stable model selection metric
and therefore should be used with high caution. In Table 5 examples of odd behavior of the cross
validation error are highlighted. Often the cross validation error is overly optimistic about the
performance of the trained models. For example, feaureset 4 has a RMSE cross validation error of
0.93 seconds, while the MAE test error is 14.72 seconds. The same behavior can be seen for
featureset 5 with a cross validation error of 0.67 seconds and a MAE test error is 16.85 seconds. A
second suspicious behavior is that the cross validation error is not always below the test errors: MAE
or RMSE.

Kernel Systimes SVs Min_pred Hitrate RMSE MAE Cross_error Train_error
Featureset 1 polydot 41.72 4504 -15.13 0.33 10.56 8.12 9.39 0.46
Featureset 1 laplacedot 7.59 1844 4.18 0.27 10.90 8.79 1.52 0.01
Featureset2 polydot 75.60 4461 -11.84 0.36 11.04 8.30 8.82 0.40
Featureset2 laplacedot 47.47 3275 7.04 0.25 11.76 9.29 2.25 0.01
Featureset 3 polydot 18.79 4577 -10.73 0.40 10.16 7.55 10.00 0.52
Featureset3 laplacedot 13.75 4332 0.35 0.40 10.58 7.79 9.52 0.34
Featureset4 polydot 531.6 150 -50.00 0.17 18.65 14.72 0.93 0.00
Featureset4 laplacedot 244.8 1972 20.48 0.19 14.07 11.55 4.77 0.01
Featureset5 polydot 669.00 303 -58.38 0.10 20.89 16.85 0.67 0.05
Featureset5 laplacedot 148.20 2671 19.33 0.19 14.16 11.51 12.36 130.34
Featureset 6 polydot 18.79 4600 -9.28 0.35 10.09 7.68 9.47 0.47
Featureset 6 laplacedot 13.75 4295 0.51 0.32 10.72 8.31 6.56 0.07

Table 5 Instability of the cross validation error during feature selection

A reason why the cross validation error is unstable and therefore unreliable is rooted in how the
sampling within the k-fold cross validation procedure is executed. We figured out that standard k-
fold cross validation methods are not usable for V-log data. The reason is twofold: firstly, the data
points are measured at a high frequency. Although the high frequency logging is advantageous for
the learning process, it is not beneficial for the standard k-fold cross validation. The sampled test
fold within the k-fold cross validation will contain data points that look similar to data points that
were left in the remaining training folds. As a result, the k-fold cross validation error mimics the
behavior of the training error. This behavior can be seen in Table 5 where in the highlighted cases
the cross validation error moves towards the training error instead of the MAE or RMSE. Secondly,
V-log has properties of time series in which a data point is heavily correlated with previous data
points. By definition sampling away data points from a time series as a k-fold procedure relates to an
interpolation procedure. Interpolating a time series is relatively less difficult compared to predicting
completely unseen data for the time series (extrapolating) (Miiller et al., 1997). Instead of using
standard k-fold cross validation a hold out cross validation procedure was used. A complete training
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day was left aside and this particular day was used as pseudo-test data. In terms of k-fold cross
validation we stratified folds in complete morning peaks instead of the random sampling of data
points. True test data, that is used for model validation, is not part of the training data and is kept in
a ‘vault’. True test data is used in the next chapter for the generalization error of the trained
models. During the model validation we primarily looked at the mean absolute error (MAE) metric
instead of the root means square error (RMSE) metric. The RMSE artificially makes small prediction
error smaller and large prediction errors bigger. Since we linked the amount of predictions seconds
we are off to the amount of vehicles we are off, the prediction models need to be assessed on the
absolute deviance. As a result, the MAE metric is our main validation metric.

8.6 Model selection for the red prediction model

The model selection in the previous Chapter is described from the point of view from the green
prediction model. For a large part the preprocessed data and model selection decisions can be
directly copied to the red prediction model. During the preprocessing of the data, also data for the
red signal timings was preprocessed similar to the data for the green signal timings. Examples of red
signal timings features are: red duration of the current phase, past five phases and countdown
timers of the red signal. The only facet that is different in the model selection procedure for the red
prediction is the featureset selection. The red prediction model was tested on both featureset 3 and
featureset 6. Previous experiments indicate that these two featuresets showed the biggest potential
for the green prediction model. To reduce computation time, the SVR models are only fitted to

these two featuresets.
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Figure 28 Difference between featureset 3 and featureset 6

Figure 28 illustrates the difference between featureset 3 and featureset 6. Both featuresets are
based on selecting features according the highest correlation between features and the prediction
target. The prediction target in the red prediction model is the red countdown timer. Featureset 3
contains only data from the signal group (e.g. signal group 02) that the prediction model tries to
predict. Featureset 6 contains data from all signal group while it is trying to predict one particular
signal group. In appendix D the output of the model selection on both the featuresets are given. The
training data is retrieved from signal group 8, which is the same signal group that is used for the
model selection of the green prediction model. Additionally, the amount of training data is varied to
see if the red prediction model has different asymptotic error behavior. The red prediction model
does not show deviant behavior on its learning curve compared to the green prediction model and

therefore also 5 trainingdays of data is preferred as optimal training set.

75



8.7 Optimization of hyperparameters and regularization parameters
The computation of the SVR contains several parameters that can be optimized. Firstly, the SVR
technique contains regularization parameters. Secondly, a kernel can have hyperparameters that
can be tuned during the training process (Hsu et al., 2003). Often the regularization parameters are
referred to as hyperparameters. We save the definition of hyperparameters for parameters
concerning the kernel. Whether the kernel has hyperparameters depends on the chosen kernel.
More hyperparameters give room for more optimization, but also cause higher computation time
that is needed for optimization. During a fast explorative optimization of the parameters was found
that optimization of the parameters is indeed beneficial. To cope with time constraint in this project
further development of the models is proceeded with the default settings of the hyperparameters.
The regularization parameters specific to the SVR are the epsilon € and cost C parameters.
Unfortunately, there are no fixed rules that can be applied to determine the most suitable
combination of parameter settings. Chang and Lin argue that the maximum value of epsilon & should
not exceed the following rule: (max;=; ;y; — min;=y,_;y;)/2 (Chang & Lin, 2002). According to the
current knowledge no effective lower bound of epsilon is theoretically defined. Intuitively it should
be closely related to the prediction target variable. In this study the target variable is the green or
red duration. Similar to the hyperparameters of the kernel, the default setting of the regularization
parameters within kernlab R-package give proper results for initial model selection. To use a more
pragmatic approach for optimizing the parameters a stratified cross-validation in combination with
Grid-search can be used (Hsu et al., 2003). The grid-search computes a number of pairs for the
regularization parameters and hyperparameters. The combination of parameters with the best
cross-validation accuracy is chosen as best performing model. The Grid-search follows a full-factorial
design or fully crossed design, meaning that every combination of parameters is computed. Due to
limited amount of time for this study extensive optimization of the parameters are recommended
for further research. We did execute a couple of random optimization checks with a limited grid-
search including randomly picked values. The preliminary optimization checks were promising and
even under limited amount of training data the test prediction results showed an optimization of
almost 20% of increase in accuracy (MAE error).

8.8 Summary of Chapter 8

This Chapter predominantly describes the model selection procedure. The model selection
procedure is supported by a custom made modelling strategy and an experimental design for
predicting switching timings. The modelling strategy results into a more efficient experimental
design to find the optimal settings for the SVR prediction models. Decisions during the model
selection are supported by the knowledge gained from investigating the control logic, the
preprocessing of the V-log data and the mathematics behind the SVR. ‘The algorithm’ is therefore
more than only the code of the SVR and starts from the point where raw V-log data is transformed
to a useable training and test set. The model selection procedure that is described in this Chapter
was not described in any prior study. Informed decisions based on empirical findings will make this
study easy to reproduce and useful for reproducing similar prediction models. Important findings in
this Chapter regarding the green and red prediction models are:

General points both the green and red prediction model:

e Best performing kernels: Laplace and Polynomial kernels.
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e Optimal amount of morning peaks/ trainingdays for which the green prediction model must
be trained: 5 days (weekdays only). These days can be randomly selected.

e Preliminary optimization of the hyperparamters and regularization parameters should not
be performed. This will lead to a complex study design leading to high computation time.
Default settings in the kernlab R-package are sufficient for model selection and validation of
the models.

e Standard k-fold cross validation gives an overly optimistic generalization error. A stratified
hold out cross validation procedure is preferred.

e Featureset selection based on correlation gives the best set of features.
Specific to the green Prediction model:

1) The preferred featureset selection approach for the green prediction model selects only
features that contain data from the signal group that it tries to predict. This is described as
featureset 3 (see section 7.6.1 for more information).

Specific to the red Prediction model:

2) The preferred featureset selection approach for the red prediction model selects features
that contain data from all signal group while it is trying to predict one particular signal
group. This is described as featureset 6 (see section 7.6.1 for more information).
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PART III

Results and Final Remarks
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9 Model results

In this Chapter the final results of the prediction capabilities of both the green and red prediction
models are given. The prediction results contain information about the generalization error, but also
a deeper understanding about the prediction behavior is given. The algorithm described in the
previous Chapter is deployed on all signal groups of the intersection from the case study. See
Chapter 6 for more information about the chosen intersection N245 Laan van Darmstadt.

9.1 Results green prediction model on full intersection

Table 6 gives is a summarized version of the output table in Appendix E. In total the intersection has
10 signal groups. The labelling goes up to 11, but signal group 6 is not existing. For each of the 10
signal groups a green prediction model was trained. The metrics: Systimes, RMSE, MAE and
Cross_error are measured in seconds. The metric Hitrate is measured in percentage. See section
8.3.1 for more information regarding the output metrics. In Table 6 is shown which kernel is
preferred by the model selection after the training process. The computation time, denoted as
Systimes, include the training time of the model and the prediction of the new data. Some models
are relatively fast, while other models are relatively slow. In Table 10 in Appendix E the amount of
Support Vectors for each model is given. It seems that there is a relation between slower models
and the higher amount of selected Support Vectors. This behavior is seen under the circumstances
that each model gets presented the same amount of data. As explanation: models with higher
computation time are less discriminative on the data. This does not necessarily mean that the
prediction models do perform worse than more discriminative models. For example, signal group 3
has a higher Hitrate and a lower MAE compared to signal group 9. Signal group 3 needs
approximately 21 minutes to train and predict and signal group 9 approximately 1.5 minute to train
and predict. When a model selects a high number of support vectors there is probably room for
optimization. In theory we could search for more explanatory features that make the model more
discriminative and therefore selects a lower amount of Support Vectors. This eventually could also
speed up the computation time.

Signal Kernel Systimes Hitrate RMSE MAE Cross_error
group

1 polynomial 656.57 0.14 26.25 19.76 29.25

2 polynomial 151.70 0.25 15.95 11.46 14.64

3 polynomial 1262.16 0.84 2.94 2.14 3.19

4 polynomial 68.80 0.78 3.31 2.68 4.09

5 Laplace 253.96 0.99 1.25 0.85 1.30

7 Laplace 401.40 0.29 15.82 11.20 12.74

8 Laplace 156.06 0.40 10.44 7.67 9.63

9 Laplace 97.19 0.60 7.34 5.02 3.85

10 Laplace 97.46 0.54 7.54 5.12 6.87

11 polynomial 1841.55 0.90 3.03 2.20 3.21

Table 6 Results Green prediction model on full intersection
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Six models in Table 6 (models 3, 4, 5, 9, 10 and 11) are highlighted in bold with a green color. The
green color indicates that the model performs satisfying, although the mean absolute error (MAE)
on the test set of these models is above the 4 seconds error boundary. The reason why models with
a MAE around 5 seconds are labeled as satisfying is twofold: 1) upcoming section 9.3 shows that
these models catch the underlying mechanism of a countdown and predict expected control
behavior (see section 9.3), 2) preliminary optimization shows that relatively significant accuracies
gains of around 20% can be achieved by optimization of the hyperparemeters and regularization
parameters (see section 8.7). Furthermore, there seems to be a hidden factor why signal groups are
either predicting relatively good or predicting not good at all. Figure 29 illustrates the prediction
capabilities of the Green prediction model for the intersection N245 Laan van Darmstadt in a
graphic.

Figure 29 Graphical representation of results Green prediction model on full intersection

9.2 Results red prediction model on full intersection

Table 7 gives a summarized version of the model output of Table 11 in Appendix E. The same
interpretation as the green prediction model output from the previous section applies to Table 7.
Model output from Table 7 shows that the red prediction model has a preference for the Laplace
kernel while the green prediction model shows an equal mix of kernel preference. Although the red
prediction model does perform satisfying on five signal groups the other five signal groups are
extremely off. Furthermore, the red prediction models have on average a high computation time
compared to the green prediction models. Signal group 1 reaches almost 87 minutes (5219.29
seconds) for training and prediction. The fastest red prediction model takes over 10 minutes (606.46

seconds) for training and prediction.
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Signal Kernel

group
1 Laplace
2 Laplace
3  polynomial
4 Laplace
5 Laplace
7 Laplace
8 Laplace
9 Laplace
10 Laplace
11 Laplace

Systimes

5219.29
649.38
2355.61
4645.37
1803.74
606.46
880.24
483.71
1253.76
1807.74

Table 7 Results Red prediction model on full intersection

Hitrate

0.81
0.70
0.20
0.56
0.37
0.73
0.49
0.02
0.35
0.45

RMSE

4.45
9.17
20.41
8.65
21.86
4.75
7.05
182.98
16.35
11.53

MAE

2.42
4.79
13.86
5.65
11.99
3.27
5.32
133.26
11.38
7.90

Cross_error

2.38
3.40
25.21
4.79
14.03
244
3.08
20.97
9.68
5.14

Figure 30 illustrates the prediction capabilities of the Red prediction model for the intersection N245

Laan van Darmstadt in a graphic.

Figure 30 Graphical representation of results Red prediction model on full intersection
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9.3 Behavior of the prediction models

The Mean Absolute Error (MAE) is used as the main validation criterion in the output tables of the
green and red prediction models. Besides the average prediction error in absolute deviance (MAE)
also the behavior of the prediction is relevant and informative for assessing the performance of the
prediction algorithm. The MAE metric does report the generalization error, but it does not reveal
into greater detail the behavior of the prediction model. To get more insight in the behavior of the
controller a couple of complete phases during the morning peak are sampled for further
investigation. Figure 31 shows such a sampled green phase of signal group 8. The Figure 31 contains
the true countdown line versus the predicted countdown line. The y-axis is the countdown of the
green signal and represents the number of seconds left in the phase at every given second during
that phase. The prediction model predicts for every second in the phase how many seconds there
are left until switching to another signal. The x-axis represents the timer of the green signal and will
increase after every second in the phase. The prediction behavior in Figure 31 is seen in the majority
of the sampled green phases: in early stages when the green signal is high the predicted countdown
is close to the true countdown. However, when the timer of the green signal gets closer to its
maximum (in Figure 31 the maximum is 35 seconds) the accuracy of the predicted countdown is
deteriorating and the error is amplifying. The predicted countdown line in Figure 31 does not follow
a decreasing straight line or a monotone decreasing function, but it does go down. In conclusion, the
trained model understands that is should predict its switching timings as a countdown and therefore
matches expected control behavior.

The error in the last few seconds of the countdown is probably due to high variance in the
data. The variance is likely to be created by the controller due to several characteristics of the
controller: 1) fixed states such as the fixed green time already were realized, 2) loop detector
thresholds might be reached by incoming vehicles or might be missed and therefore misses green
extension and 3) the controller changes its state due to priority rules on other signal groups.

Prediction behavior
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Figure 31 Prediction behavior
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Figure 31 reveals that prediction models trying to predict a vehicle actuated controller might be
poorly assessed by averaged metrics such as the Mean Absolute Error (MAE) or Root Mean Square
Error (RMSE). The majority of the phase in Figure 31 was predicted correct, but the last seconds of
the phase amplified the overall error.

9.4 Troubleshooting: a visible pattern

The green and red prediction model output (Table 6 & 7) shows that either the prediction model
predicts adequate or it predicts the signal timing extremely off. The red prediction model has
trouble predicting the turning movements (see Figure 30), while the green prediction model has
trouble predicting the through movements (see Figure 29). When the output of both the green and
red prediction model are layered on top of each other a pattern is shown. Figure 32 reveals the
pattern between failing predictions of the green and red models.
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Figure 32 Graphical representation of the detected pattern in model output

The control scheme of the controller indicates that signal group 1, 2, 7 and 8 are likely to have a
green signal during the same phase. This explains why the green prediction model is not able to
predict any of those four signal groups correct if three other signal groups of the subset 1, 2, 7 and 8
are unpredictable. The pattern from Figure 32 could also indicate that the majority of conflicting
signal groups with signal groups 1, 2, 7 and 8 are unpredictable. By doing standard statistical
inference checks such as plotting histograms of several features, unexpected behavior in the green
durations were found. In the V-log data of the test dataset, green phases longer than the maximum
green time plus green time extension were found. The maximum green time plus time from the
extension of the green signal should in theory give at maximum 40 till 50 seconds of green for signal
group 8. Figure 33 shows that the the controller logs green phases with a maximum duration of
above 65 and even 80 seconds.
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Figure 33 lllustration of unexpected green duration phases

Two question arise: why are these extremely extended green phases a problem for the green
prediction model? And why do these extremely extended green phases occur? The first question is
partly answered by analyzing Figure 34. Figure 34 shows how the trained prediction model behaves
when it tries to predict the extremely extended phases of green time. The graph shows a green
phase of 65 seconds. The fitted model simply does not recognize the true countdown from the first
second onwards. This behavior is different as illustrated in Figure 31 where the predicted countdown
predicts reasonable close to the true countdown in the early part of the green phase. In other
words, the prediction model does not catch the control logic of those extremely extended green
phases. A statistical explanation for not recognizing the control logic could be that the underlying
mechanism to predict the extremely extended green phases is not present in the data. In conclusion,
the data on which the prediction model is trained does not include the essential information to
predict the extremely extended green phases.
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Figure 34 Prediction behavior of extremely extended Green time
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It turns out that the chosen intersection N245 Laan van Darmstadt has a synchronized connection
with an intersection upstream from the viewpoint of signal group 8. During the morning peak there
is a chance that the intersection upstream of the intersection N245 gives a control signal to
artificially extend the green phase of intersection N245 so that approaching vehicles hit the green
light. Information about the synchronization was not supplied by North-Holland nor data about this
synchronization was included into the data. Unfortunately, the quality assessment framework at
that time only included the arithmetic mean as a quality assessment metric. The arithmetic mean
smoothens out outliers in the green duration features.

9.5 Feature preference of the green and red prediction model

Both the green and red prediction model select a set of features from the initial set of manually
extracted features (over 1000 features). The difference between the feature sets of the green and
red prediction model is described in Chapter 7 in more detail. Briefly, the difference between the
two prediction models: the green prediction models select features, that only contain data from the
signal group that the prediction model tries to predict. The red prediction models select features,
that contain data from all signal groups while it is trying to predict one particular signal group. The
green prediction model has a narrow minded feature set selection, while the red prediction model
performs a more holistic feature set selection.

In appendix F two tables are mentioned that summarize the frequency of features that the
green and red prediction models select while training on the data from the full intersection N245
Laan van Darmstadt. In total 10 green prediction models and 10 red prediction models were trained
for the intersection. The relative frequency of occurring features in the selected featuresets for the
10 green and 10 red prediction models contains interesting information. For example: the red
prediction model selects predominantly features that contain data regarding the internal
parameters states of the controller. The green prediction model predominantly selects features that
contain data about the detector loops. Furthermore, both models hardly select features that contain
historical information about previous red and green phases. This is in contrast with the findings in
the study performed by Weisheit and Hoyer. Weisheit and Hoyer used the classification class of the
Support Vector Theory (SVM) on a semi vehicle-actuated controller with fixed phase lengths
(Weisheit & Hoyer, 2014). Weisheit and Hoyer report that data from the previous three phases
result into improvements of the prediction error of the Support Vector Machine classification model.
In another study in which the SVR was used on basic controller output data, the data consisted of
historical data up to the previous five phases (Koukoumidis et al., 2012). The difference in findings
regarding the historical data could be explained by the use of other data from the controller besides
detector loop data. In this project other features besides detector loop data are used for predicting
the switching timings.

Another finding, which might be of interest of suppliers of the V-log data, is that the red
prediction model tends to pay more attention to third detector loop of a signal group. In the green
prediction model we see that data coming from the first and third detector loop is almost equal. We
would expect that the third detector loop would have major preference over the first detector loop
since the third detector loop has a slight advantage of detecting a vehicle earlier in time.
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9.6 Summary of Chapter 9
In this Chapter the model results of the green and red prediction models are given for the
intersection Laan van Darmstadt. The best performing green prediction model reports a mean
absolute error of 0.85 seconds and a hitrate of 99%. The mean absolute error indicates the
difference between the true switching timing and the predicted switching timing, while the hitrate
gives the percentage of predicted switching timings within a 4 seconds permissible error in terms of
absolute deviance from the true switching timing. The best performing red prediction model shows
a mean absolute error of 2.42 seconds and a hitrate of 81%. Improvements in the prediction
performance can be gained by numerical optimization of the trained models. On average the red
prediction models needed more computation time compared to the green prediction models. The
fastest red prediction model needed 606.46 seconds for training and prediction. The fastest green
prediction model needed 68.80 seconds for training and prediction. Troubleshooting indicates that
the prediction performance of several signal groups can be improved by adding features that
describe the synchronization link with an intersection upstream the investigated intersection.
Besides the reported validation metrics, the model results show that the SVR is capable of
predicting expected control behavior. The SVR models predict for every second in the cycle the
amount of seconds left until the moment of switching. The expected control behavior is that the
amount of predicted seconds until the moment of switching follow a countdown behavior. Model
results show that the SVR is able to predict such countdown behavior and therefore matches
expected control logic.
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10 Discussion

In this Chapter several topics are being discussed that give perspective on the usability and reliability
of the developed prediction algorithm. In sequential order the following topics are discussed: first,
the selected mathematical prediction approach and possible other preferred approaches are
discussed. Secondly, the differences with previous research that uses the Support Vector Theory is
described. Thirdly, the usability of V-log data for prediction purposes is discussed. Next, the
assumptions that are made in the current prediction algorithm and the case study are discussed.
Last, the implementation of the prediction algorithm and developments around self-driving vehicle
technology that could influence the use of the prediction algorithm are discussed.

10.1 The selected prediction approach

In Chapter 4 six prediction approaches are described that were used in prior research to predict
traffic signal timings. A benchmark of the six described prediction approaches resulted into the
selection of the Support Vector Regression (SVR) as prediction approach. Many of the prior
researched prediction approaches are not suited to predict the switching timings of the vehicle-
actuated controller that shows variability in both the phase length and cycle length. Chapter 8
describes that the developed SVR models do not require knowledge about the structure of the
controller and therefore the design of the models does not depend on the structure of the
controller. However, the structure of the controller does make it harder for the SVR approach to be
able to predict the switching timings accurately (see Chapter 9 for more information). If the
structure of the controller is angled towards a pre-timed control scheme, similar to other previous
researched method, the SVR is able to predict the switching timings more accurately.

The Support Vector Machine (SVM) algorithm has almost the same mathematical approach
as the SVR. In Chapter 4 is explained that the SVM approach is not preferred for the prediction of
signal timings of a vehicle-actuated controller due to its classification nature. In theory, the SVM
could predict the switching timings by treating every second in the signal cycle as a class (Weisheit &
Hoyer, 2014). The vehicle-actuated controller that is used in the case study shows variability in the
signal cycle. The amount of possible seconds of switching becomes large, leading to a large set of
classes. By treating every second in the cycle as a class, the SVM algorithm becomes a multi-class
classifier that uses posterior probabilities to select the most probable class of switching (James et al.,
2014). When the signal cycle shows weak distribution for switching timings for every second, the
SVM will tend to assign higher posterior probabilities to switching timings (second in a cycle) that is
most frequent in the training data. By default, the most frequent second of switching in the training
set will have an advantage of being selected as switching moment. This problem could be fixed by
treating segments of 4 or 5 seconds as a class instead of every second as a class. However, weak
posterior probabilities could still occur in classes that are not occupied with a lot of data. The SVM
approach in combination with broader class segments might work satisfying in cases where the
switching timings are uniformly distributed in the training set.

A second method, that was not investigated in this project due to the classification nature of
the method and also was not mentioned in previous research, is the use of decision trees. Again
every second or an interval of seconds could be treated as a class. The problem of predicting the
most frequent class could be prevented by using techniques such as boosting or random forest. Both

techniques are using variance reduction methods by producing many uncorrelated trees (random
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forest) or weak learners (boosting). Currently boosting in combination with decision stumps (single
decision trees) is outperforming almost any classification model (Hastie et al., 2009). For more
information about random forest and boosting see the book The Elements of Statistical Learning by
Hastie et al. The biggest disadvantage of using classification models over regression type models are
the low posterior probabilities for classifying the switching timings in low density regions. Data
sparsity due to low density regions could be prevented by expanding the interval of the class, but
the expansion will affect the prediction accuracy by adding artificial uncertainty due to a 4 or 5
seconds interval.

10.2 Differences with previous research

The prediction of traffic light controllers in previous research is usually related to Green Light
Optimal Speed Advisory (GLOSA) systems. A GLOSA system contains a prediction component for pre-
timed or semi vehicle-actuated control schemes. The level of complexity of these control schemes is
considerably lower compared to the control scheme used in North-Holland. Previous studies
explicitly stated the application for which the prediction component is needed. The focus of these
studies is angled more towards the integration of the prediction application instead of the theory
behind the prediction algorithm. In this project the focal point is placed more on a proof of concept
of an algorithm to predict the controller and therefore has the ambition to formulate a theory
instead of an application. Two prediction approaches showed similarities with the prediction
approach in this project.

The prediction application that shows similarities with to the prediction task of this project
has the name SignalGuru (Koukoumidis et al., 2012). Koukoumidis et al. investigated the prediction
of vehicle-actuated controllers by using Support Vector Regression. The Support Vector Regression
makes use of basic historical controller output signals and lane saturation information. No
background information is given about what data represents lane saturation. The intersection that
was used for a pilot is located in Singapore and follows a high level of complexity. Koukoumidis et al.
do not use data that describe internal states of the controller which is the biggest difference with
this project. The developed SVR models in this project utilize the data coming from the controller to
a greater extend by including data related to internal states of the controller.

Weisheit and Hoyer propose a prediction model that utilizes the Support Vector Machine
approach for predicting the switching timings of a semi vehicle-actuated controlled intersection with
fixed cycle lengths. Because of the fixed cycle lengths, the prediction task is treated as a
classification problem. The prediction of a fully vehicle-actuated controlled intersection cannot
easily be formulated as a classification task. Weisheit and Hoyer state that historical data up to three
previous cycles is beneficial. The model results from Chapter 9 show that historical data from the
previous three cycles is not important for the SVR approach and could be ignored. Weisheit and
Hoyer do not use use data that describe internal states of the controller.

To our knowledge no comparable study gives information about preprocessing of the raw
data retrieved from the traffic light controller. Also no study includes information about what
analytics are used to assess the quality of the used data.
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10.3 The use of V-log data

In this project V-log data is extensively used for predicting the output state of the traffic light
controller. Several insights were gained throughout the process concerning the usability of V-log
data for prediction purposes. The first concern regarding the usability of V-log data for a prediction
application is related to the extraction of the data and its data format. The actual extraction of the
raw data from the controller was beyond the technical capabilities of this project. As part of the joint
project, North-Holland developed software to retrieve the V-log data and transform the data to .CSV
extension. As a drawback, the developed software was a black box and | relied heavily on the
correctness of the code. The process of retrieving V-log data and transforming the data into .CSV
extension was completely new for North-Holland. The novelty of the system caused several datasets
to be incorrect. Luckily professionals in the field of traffic light control and V-log from North-Holland
were involved in the project and problems with the data could be discussed rapidly. The data format
of raw V-log is not usable for statistical learning approaches and therefore by default raw V-log data
cannot be directly used for prediction purposes. After the transformation to a .CSV extension, the V-
log data becomes useable for prediction methods such as the SVR.

The second concern regarding the usability of V-log data for a prediction application is
related to the quality and availability of V-log data. In theory large amounts of V-log data was made
available for this project, but in practice only a relative small amount of data was useable for training
and testing. The data plumbing caused the delivered datasets to be reduced significantly because
the data contained either corruption or many days of data were missing. As an example | was
primarily interested in using complete weeks as training data to correct for factors that occur only
on a particular weekday. If the models would only be trained on Mondays, it would probably show
deviant prediction behavior for predicting data from Fridays. It turned out that the existence of
complete weeks of data was not trivial due to the poor health of the loop detectors, causing
complete days to miss loop detector data. Besides the use of V-log data for training purposes, the
prediction algorithm needs V-log data to predict the future signal timings. In case of missing loop
detector data, which occurs often in reality, the prediction algorithm is not capable of predicting the
switching timings. In conclusion, the current quality of V-log is too volatile for supporting the SVR
prediction algorithm that predicts the switching timings in a real time application.

A third point of attention for further use of V-log data for self-driving vehicle technology is
the inclusion of the correct data. It would be preferable if V-log data contains the prediction
information itself and the vehicle does not need to predict the switching timings. In the situation
that the vehicle is producing the prediction, the V-log data should at least contain the list of data
features with numerical data that is mentioned in Appendix F.

10.4 Developed algorithm and case study

In the previous section is explained how the current quality of V-log causes issues for training the
prediction models and predicting the switching timings. Low quality V-log is caused both by missing
data and corruption in the data. The prediction accuracy of the developed algorithm is influenced
directly by injecting low quality V-log into the model for both training and predicting the switching
timings. During the case study was noticed that corrupted V-log or missing data in the V-log occurs
frequently. As a result, the SVR prediction algorithm is vulnerable and lacks robustness for using it in
a real time application. In the case study corruption in the data was detected by a quality
assessment framework. The quality assessment framework was constructed with limited amount of
time and therefore is not comprehensive enough to detect a wide variety of corruption in the data.
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The quality assessment uses basic statistical metrics that might be to rigid to detect patterns.
Patterns are often smoothed out when the data is stratified to too large segments. The used interval
for segmentation is one complete day. One could debate on whether such a time interval is too
broad or too narrow.

A second point of discussion regarding the quality assessment are the used thresholds that
indicate if corruption was present in the dataset. An example is the minimum amount of correlation
between the cumulative vehicle count and the green duration. We arbitrary set the minimum
correlation at 0.80 to show expected control behavior. The threshold could also have ben set at
0.75, because no strong argumentation is present to set the threshold at 0.80. | think much can be
gained by a comprehensive mechanism that can detect unexpected behavior in large amounts of V-
log data.

The case study included a selection of an intersection that meets the design strategy for the
developed algorithm. The strategy was to start with a simple geometry and a single modality and if
possible add complexity to the model by testing the algorithm on other intersections. This set up
was rather ambitious, because the development of the prediction model for a simple geometry and
single modality needed all the available time. In collaboration with North-Holland we selected the
intersection N245 Laan van Darmstadt as a case study. We naively decided to choose an intersection
of which we taught to be a ‘standalone’ intersection and is not influenced by other surrounding
intersections. It turned out that this intersection did have a synchronization connection with an
intersection located upstream of the investigated intersection. Due to the synchronization link, the
retrieved V-log data contained extremely extended green durations. These green durations occurred
incidentally and therefore showed weak training patterns in the data. However, once the trained
model was deployed on a test set, the test error amplified for four particular signal groups.
Eventually we proposed an additional quality assessment metric for the assessment framework to
detect such deviant patterns for future research. By accident we found out that the undetected
synchronization link between the two vehicles gave us a comparable situation of signal cycles. Signal
cycles that can be predicted accurately and signal cycles that cannot be predicted accurately.
Chapter 9 gives an analysis of the prediction behavior of both signal cycles.

The validation of the model output is given by several error metrics in this project. During
the project many lessons were learned about validating prediction models based on V-log data.
Model results show that the standard k-fold cross validation is a poor assessment metric for
approximating the true test error. During the validation of the green and red prediction model on
the full intersection we noticed that averaged error metrics do not give enough information about
the behavior of the prediction. We are primarily interested in achieving the lowest prediction error,
but the model also should produce prediction output that matches expected control behavior. So
besides standard validation metrics that summarize the model output, also the expected behavior of
the controller output was compared to the prediction output. Previous research related to the
prediction of switching timings are mainly focused on reporting averaged error metrics such as the
MAE and RMSE without describing the set up of the validation procedure.

10.5 Implementation and future perspectives

The transition of the current level of autnomous driving towards fully autnomous driving is not clear
and not well defined yet. It is dificult to do so, because the transition is influenced by aspects such as
involvement of regularisation, standardization of protocols, evolving or lack of compatable
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technology at the infrastructure side and produced added value by self-driving vehicle technology
versus willingness to pay by the consumer (KPMG, 2015). The developed prediction algorithm in this
project serves as intermediate technology that bridges the gap between current level of automation
and fully autnomous driving. However, some assumptions were made during the design process that
could effect the implementation of the algorithm. For example, the assumption was made that there
is no communication between vehicles as well as communication back from the vehicle to the traffic
light controller. Once communication between vehicles and a two-sided communication between
the vehicle and the traffic light controller is realized (full connectivity), the execution of traffic light
control will probably be totally different as stated in this project. For example, once the vehicles are
submitting their location real time towards the controller at a high frequency starting from a
considerable large distance from the intersection, the controller is able to estimate future switching
timings by filling in upcoming blocks of signal groups that will get a green signal. In such a case the
future traffic demand is no longer a black box for the traffic light controller and the controller is
could be able to deterministically predict its future switching timings. Possibly the deterministic
prediction will be more accurate compared to the SVR algorithm and therefore makes the use of the
SVR algrotihm insignificant for predicting the switching timings. The SVR algorithm still could be used
if the loop detector features are replaced by features that give information about the number of
expected vehicles during a given time span. An advantage for SVR in the situation of full connecitvity
could be that the SVR is able to predict the switching timings for a larger prediction horizon
compared to a deterministic approach. In case of fully autonomous vehicles the traffic light
controller will probably have a totally different control logic in which individually vehicles or groups
of vehicles will be coordinated to enter the intersection.

Secondly, it is assumed that the algorithm has access to rich and clean V-log data. In the
previous section is described that the V-log data in its current structure and quality is not usable for
supporting robust technology. The question arises which stakeholder will take responsibility for
installing a prediction algorithm, guarantees access to V-log and performs quality checks on the data
and the prediction performances? Interfacing and implementation of the predicting application is
considered to be future research (see Chapter 11). Below a brief overview is given what the pros (+)
and cons (-) are for each stakeholder that could take responsibility for the implementation of the
prediction algorithm:

Automotive manufacturer: Nissan

+ Ability to influence the speed and quality of the technology advances to a greater
extend once Nissan is implementing the prediction algorithm itself. However, Nissan
will be relying on the access to data from road authorities.

+ Ability to align in-car technology with infrastructure systems in an early stage.

- V-log data is a data standard only used in the Netherlands and prediction
circumstances will be different in other countries for which the prediction algorithm
needs to be compatible. At this moment it is unclear what the differences are in
technology advances of V-log from other countries.

- Low quality of V-log makes it challenging to bring the prediction algorithm into
production. Nissan has limited influence on securing high quality V-log.
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Road authority: North-Holland

+ Direct access to the software and hardware of the controller and large amounts of V-
log for prediction optimization purposes.

+ Ability to secure a higher level of V-log quality and a higher level of prediction
accuracy by adjusting the software and hardware of the controller. Ability to revise
contracts with supplier of traffic light controllers to account for high quality V-log
data.

+ The implementation of the prediction algorithm is more efficient when it is located
at the controller side instead of in the vehicle. The prediction algorithm makes a
prediction that can be used to inform multiple vehicles once it is installed at the
controller side.

+ Uniformity of prediction information from the controller towards all approaching
vehicles could lead to a higher safety around intersections by avoiding conflicting
prediction situations.

Speed of technology advances need to be aligned by the speed of technology
advances of the automotive industry. Road authorities do not have commercial
interests for speeding up technology advances.

KPMG mentioned in a report from 2015 that the annual economic benefit of connected and
autonomous vehicles will grow to £51 billion (approximately 77 billion US dollar) for the UK alone by
2030 in which service providers will enter the market (KPMG, 2015). Connectivity of the vehicle with
other vehicles, devices and infrastructure systems is seen as one of the major drivers behind the
business concept ‘vehicles as a service’. The implementation of a prediction algorithm as mentioned
in this project could be implemented by a third party that commercializes both V-log data and the
prediction information. Liability of the connectivity services and the provided information will be the
biggest barrier for these service providers. A framework for determining liability on the transition of
control from the vehicle to the driver of semi- automated technology would provide clarity including
the application of current civil and criminal law (KPMG, 2015). In conclusion, the implementation
and interfacing of the prediction application is probably the most efficient when it is executed by the
road authority. The implementation and interfacing of the prediction algorithm is considered to be
further research.
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11 Conclusions and recommendations

In 2014 the province of North-Holland and Nissan Research Center Silicon Valley started a joint
project called Traffic Signal Timings Predictions. Central to the joint project is the development of a
prediction model that is able to predict the switching timings of vehicle-actuated controlled
intersections. This project is performed as part of the joint project between Nissan and North
Holland. The research question is formulated as following:

How to predict the traffic signal timings of a vehicle actuated controlled intersection as accurately
as possible for in-vehicle usage, utilizing data retrieved from the traffic light controller?

In this Chapter the main conclusions and recommendations resulting from this project are discussed.
First, several conclusions are drawn regarding the sub-questions as formulated for this project.
Secondly, recommendations are given for Nissan on the way forward after this project. Additional,
recommendations are given for anyone who is interested to work with V-log data. Finally,
recommendations for further research are presented.

11.1 Overall conclusion

This project has shown that the developed Support Vector Regression prediction algorithm is
capable of accurately predicting the switching timings of a (fully) vehicle-actuated controlled
intersection serving a single modality. The best performing green prediction model reports a mean
absolute error of 0.85 seconds and a hitrate of 99%. The mean absolute error indicates the
difference between the true switching timing and the predicted switching timing, while the hitrate
gives the percentage of predicted switching timings within a 4 seconds permissible error in terms of
absolute deviance from the true switching timing. The best performing red prediction model shows
a mean absolute error of 2.42 seconds and a hitrate of 81%. Improvements in the prediction
performance can be gained by numerical optimization of the trained models. Due to time
constraints in this project the optimization is not performed and is therefore recommended for
further research.

Besides the reported validation metrics, the model results show that the SVR is capable of
predicting expected control behavior. The SVR models predict for every second in the cycle the
amount of seconds left until the moment of switching. The expected control behavior is that the
amount of predicted seconds until the moment of switching follow a countdown behavior. Model
results show that the SVR is able to predict such countdown behavior and therefore matches the
expected control logic. The algorithmic approach of the Support Vector Regression (SVR) is at the
heart of the prediction algorithm and shows potential to be easily deployed on other intersections
that are independent of the intersection lay-out and different times of the day.

Although the SVR prediction algorithm is capable of accurately predicting the switching
timings, the prediction algorithm lacks robustness for being used as operational technology. The lack
of robustness is caused by insufficient quality of V-log data.

11.2 Conclusions regarding the sub-questions
The research question has been further specified using sub-questions. The sub-questions represent
the structure of the project and therefore to a large extend correspond to the chapters in this

95



report. The sub-questions guided the process of gaining knowledge and insights that were needed
throughout the development of the prediction algorithm.

e What functional and non-functional requirements need to be taken into account for the
development of a prediction algorithm that is able to predict the switching timings of a vehicle-
actuated controller?

The following requirement were formulated: the prediction algorithm should predict the switching
timings of both the red and green signal. The design of the prediction algorithm has led to two
prediction models: one prediction model for the switching timings of the green signal and a second
model for the prediction of the switching timings of the red signal. The target variable in both
models is the absolute second in the signal phase on which the signal changes. The permissible
prediction error for both the predicted green and red switching timings in terms of absolute
deviance is 4 seconds (predefined by Nissan). The prediction algorithm is primarily designed for the
prediction of vehicle-actuated controllers and could be used as part of a GLOSA system. The
algorithm is designed to be scalable towards intersections that serve a single modality. The
prediction algorithm makes use of data retrieved from the same controller for which it predicts the
switching timings. Data transmission is needed between the controller and the vehicle by using an
intermediate hub such as a cloud structure. The data transmission, which is needed for the
algorithm, follows a single directed path from the controller to the vehicle. No communication back
to the controller and no communication between other vehicles is necessary to predict the switching
timings. The prediction algorithm could be deployed and computed in either the vehicle or the cloud
structure that is used for the data transmission.

e What information regarding the control logic of the vehicle-actuated controller is necessary to

take into account for retrieving V-log data that is used for predicting the switching timings?
Theoretically the vehicle-actuated controller controls its output signal for sets of signal groups at the
same time. However, the controller has a high level of flexibility and due to the flexibility the
controller practically controls each signal group individually. This has led to the development of an
algorithm that is capable of predicting each signal group individually. The labelling of the signal
groups is important for retrieving the correct V-log data from the controller for both training and
prediction purposes.

The vehicle-actuated controller consists of two main control levels, which describe how the
controller regulates its output signals based on the input signals. Both control levels use detector
loop data as input data to control the traffic flow at the intersection. For both the green and the red
prediction model, the model results show that data retrieved from the first and third detector loops
are successfully used for predicting the switching timings. Data from both detector loops are
injected as individual features into the prediction algorithm. Dominant detector loop data for the
prediction of switching timings of the red signal is the so-called request signal. The request signal is
logged by the controller when a vehicle is detected by the detector loop during a red phase.

Besides the detector loop data, the model results indicate that data describing the 7 internal
states of the signal cycle, which are logged by the controller, are highly relevant for prediction
purposes. The duration and switching moment of a signal phase is predominantly described by the
signal group completion level.

The order of signal groups that get assigned a green phase is predominantly determined in the
block procedure level of the controller. Both the red and green prediction model rely heavily on data
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that describe the block procedure level. Example of such data features are: signal cycle length and
the duration of a block cycle. Results of the developed models showed that data features containing
historical output signals, such as the previous red and green duration of the 5 consecutive cycles, do
not have a large influence for predicting future switching timings.

e  What type of prediction framework complies to the functional and non-functional requirements
for a prediction algorithm to predict the switching timings of a vehicle-actuated controller?

A benchmark of several mathematical approaches that were used in previous studies show that the
Support Vector Regression (SVR) approach has the biggest potential in predicting the switching
timings of the vehicle-actuated controller. The biggest advantage of the SVR approach is its fast
computation time, scalability towards other intersections and the use of non-linear input data. The
SVR technique matches the requirement to produce a numerical output that describes the switching
timing in absolute seconds. An important feature of the SVR approach is the use of a so-called kernel
trick. The SVR enables the model developer to choice a kernel that is unique to the structure of V-log
data. By doing so the SVR deals with the non-linear characteristics of the data. Both the Laplace and
polynomial kernels turned out to be numerically a good fit for uncovering discriminative patterns
within the V-log data in higher dimensions.

Furthermore, the Support Vector Regression prediction performance is not influenced directly
by the dimensionality of the input space and therefore less prone to overfitting. As a results, the SVR
approach can be easily extended with additional sources of data that might be needed to predict the
switching timings.

e What preprocessing steps need to be performed to transform V-log data to data that can directly
be injected into the prediction algorithm?

The raw V-log data cannot directly be injected into a SVR model. The preprocessing of raw V-log data
to useable training and test data follows a fixed sequential order of steps. Preprocessing of the raw
V-log include the actions: manual feature extraction, dataset construction, quality assessment of the
data, feature selection, scaling and subsetting into train- and test datasets. The final output of the
data preprocessing is useable training and test data for which the amount of corrupted data is
reduced significantly. The manual feature extraction results into 112 features for each signal group
extracted from the raw V-log data. The features are categorized in three categories: loop detector
features, controller output state features and internal signal state features. The key philosophy
during the feature extraction is to create features that show numerical variance that is needed to
discriminate learning patterns in the data. Raw V-log data is logged in a binary fashion that is not
suited for training the SVR.

The SVR algorithm relies heavily on clean training data. Multiple experiments show that poor
loop detector health cause corruption in the retrieved dataset and is therefore a huge threat for
accurately predicting the switching timings. To secure a clean and representative dataset a quality
assessment procedure is developed in this project. The assessment was performed by using
standard statistical metrics on stratified segments of the preprocessed V-log data. By following the
proposed quality assessment procedure unexpected behavior in the data such as extremely
extended green phases or jittering loop detectors can be detected prior to training the SVR model.

Feature selection was performed in the context of model selection. Model results demonstrate
that the green prediction model only uses features selected from the signal group for which it also
predicts the switching timing of the green signal. The red prediction model uses features selected
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from all signal groups to predict the switching timing of the red signal. During the development of
the prediction algorithm we saw the impact of different scaling techniques on the data. We propose
scaling as shown in standard score values or Z-values.

e Under what circumstances does the prediction model performs satisfying and under what
circumstances does the prediction model fail?

The prediction performance of the SVR algorithm is directly related to the quality and size of the
data on which the SVR is trained. Quality of the data describes the presence of missing values and
artificial noise due to software or hardware failures of the controller. Model results show that noisy
and corrupted data is usually caused by jittering detector loops. Jittering detector loops do not cause
missing values by default and can therefore only be detected by statistical inference on the V-log
data. In case of missing values, the SVR runs directly into trouble. Poor health of the loop detectors
can cause low prediction accuracies. The most ideal situation is the availability of complete and
clean loop detector data produced by detector loops that do not show hardware or software
failures. Besides the quality and size of the data also representativeness of the data is necessary to
obtain an accurate prediction of the signal timings. The SVR is only able to generalize learned
patterns from training data to new input data if the training data is representative for expected
control behavior in the new input data. No hard rules can be stated about how often certain
patterns need to occur in the training data before the SVR is able to generalize the patterns to new
data. Model results indicate that at least data from 5 weekdays is necessary to train the SVR model
for one signal group to predict data coming from a random other weekday. Less available data will
lead to a decrease in prediction accuracy. More available data does not harm the prediction
performance, but is not necessarily required. Besides the amount and quality of the data, also the
content of the data is relevant. Model results show that not only loop detector data is used for
training the models, but also data describing the internal states of the controller is used for training
by the prediction models.

Furthermore, empirical results show that the prediction algorithm performs poorly for
several signal groups who are influenced by a synchronization of an upstream intersection. We
assume that poorly predicted switching timings due to synchronization can be easily solved by
including data concerning the synchronization into the prediction model. The incomplete data due
to synchronization shows the importance of a comprehensive dataset that includes all possible
expected behavior of the controller. In most ideal situation road authorities supply the modeler for
each intersection the expected behavior by giving information about the parameter settings,
synchronization connection etc.

e How applicable is the prediction algorithm on different scenario’s such as different intersections,
multiple modalities and times of the day?

An advantage of the developed algorithm is its easy scalability to other vehicle-actuated controlled
intersections that serve a single modality independent of its intersection layout. The scalability is
caused by two elements: firstly, the algorithm is designed to produce a prediction model for each
signal group individually instead of the intersection as a whole system. As a result, the algorithm
makes no distinction between intersections that consist of a different amount of signal groups.
Secondly, the prediction algorithm uses features that can be extracted from V-log data from
intersections that serve a single modality. No feature labels that are unique to a particular
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intersection are used for training and prediction. Before the prediction model is able to predict a
new intersection the prediction model should be trained on data coming from that intersection.

A second advantage of the prediction algorithm is its transferability to different modalities.
The SVR allows the input space of the training data to be expanded without excessively harming the
prediction performance. It is possible that due to the inclusion of data from other sources a different
kernel should be selected. Generally taken, the Laplace and polynomial kernel can be used for any
further prediction model that includes V-log data and the SVR technique.

Furthermore, it is expected that the prediction algorithm is able to train and predict switching
timings on other times of the day. The training process for other times of the day (afternoon,
evening and night) is similar compared to the morning.

11.3 Recommendations for Nissan

Several recommendations for Nissan can be made based on the outcome of this project. The
recommendations concern a number of additional steps that are recommended if Nissan would like
to implement the prediction algorithm as operational technology and if Nissan would like to
optimize current prediction algorithm.

The first recommendation relates to optimization of the current prediction algorithm. The
parameters of prediction algorithms are not yet extensively optimized due to time constraints in this
project. The SVR approach leaves room for optimization of several regularization parameters and
hyperparameters. Preliminary model results showed significant decreases in prediction error after
simple optimization of the regularization parameters. Optimization could be performed by using grid
search on a combination of parameter settings for both the regularization and hyperparameters. The
process of optimization is described in Chapter 8.

The second recommendation is to rewrite the base code to another programming language.
Transferring the base code to another programming language is both useful for the optimization
process and also useful for further integration of the prediction algorithm as operational technology.
Current scripts are coded in the R programming language that effectively served the purpose of
testing the POC (proof of concept). Numerous tricks were used to speed up computation time in the
R-programming language. However, once optimization schemes are tested such as a full grid-search,
it is recommended to lower the computation time by using faster programming languages.
Recommended programming languages are: C++ or Python. For integration purposes rewriting the
code to the recommended programming languages will make it easier to integrate with other
autonomous vehicle software.

Thirdly, it is recommended to retrieve a list of deviant parameter settings and
synchronization connections of intersections before training the prediction model on intersections in
further projects. Knowing expected control behavior before validation of the prediction models
significantly increases the success of the model selection. Unexpected behavior of the controller
might lead to the inclusion of specific features that could describe the unexpected controller
behavior. An example is the synchronization connection between two intersections in the case study
that could have been predicted with data regarding the synchronization. It is not preferable for
Nissan to do the data plumbing of the V-log data. During this project numerous amount of times
expert knowledge from control engineers of the Province of North-Holland was needed to
preprocess the data or troubleshoot mistakes in the data.

The fourth recommendation relates to testing the algorithm for different intersection
geometries, other times of the day and intersections serving multiple modalities. In this project is
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demonstrated that the developed prediction algorithm is able to predict the switching timings
during the morning peak of intersections serving a single modality. The SVR approach allows to add
complexity to the prediction algorithm without directly harming the prediction performance. It is
expected that different geometries and different times of the day will not lead to significant changes
in the model structure and its prediction performance. Adding multiple modalities to the prediction
model will likely lead to the extraction of additional features from the V-log whereas a new
featureset selection procedure needs to be designed.

A fifth recommendation is related to bringing the developed algorithm to the current
simulation environment that is located in the test lab of Nissan Research Center Silicon Valley. By
doing so, the developed algorithm could be tested as operational technology. At this moment the
simulation environment only contains maps that include US area’s. The current developed algorithm
is tested for Dutch vehicle-actuated controllers. It is recommended to investigate the performance
of the developed algorithm on data coming from US controllers. We assume that the Laplace and
polynomial kernel will still reveal discriminative patterns in high dimensions for V-log data from US
controllers. The basic mechanism of loop detector input, internal states and output signals will be
comparable with Dutch vehicle-actuated controllers.

11.4 Recommendations with regards to the use of V-log

This project shows that V-log data has potential to give explanatory and predictive power about the
situation on and around intersections. Self-driving vehicle technology can benefit from knowledge
forthcoming of V-log data and the automotive industry is likely to utilize V-log data to a greater
extend in the near future. The developed algorithm for predicting the switching timings is a proof of
concept of the usage of V-log. However, V-log data does have drawbacks that add complexity to any
developed model that uses V-log. The following recommendations are given to anybody who is
interested in using V-log for explanatory or predictive technology.

First, the V-log data comes in a data extension that is not useful for statistical models. To our
knowledge the V-log data format is logged in a data extension that cannot be injected in any
statistical software. During this project V-log was transformed to .CSV-extension before it was used
for further preprocessing.

Secondly, the raw V-log data is logged in a binary fashion following a Discrete Event
Simulation analogy (DEVS). Since the data consists primary of binary values, the initial features for
prediction purposes show little numerical variance. Any statistical learning model will detect training
patterns more effective when features are measured on a numerical output scale containing
variance. In this project we manually created these features and tried to include any possible
predictive behavior of the controller in those features. For further research, we strongly
recommend to pay close attention to what type of features should be designed and whether they
truly catch the expected behavior of the controller that is initially logged in a binary fashion.

A third recommendation for further use of V-log for prediction purposes is the use of
detector loop data and gap times. For the development of the prediction algorithm data streams of
the first and third detector loops were used for each signal group. The relative frequency of selected
data of those two detector loops show that the detector loops are almost as equally important. A
confounding factor can be designed that explains the behavior of the two detector loops and gap
times of the detector loops into one factor. In current prediction models the cumulative vehicle
count is used as a predictor, but a counted vehicle does not necessary lead to an extension of the
green signal.
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A fourth recommendation is the level of time aggregation for which the V-log data is logged.
The raw V-log data is logged at an interval of 1/10th of a second, approaching a real-time updating
scheme. During the development of the prediction model we did not encounter a significant drop in
the prediction accuracy when a dataset was constructed representing data at an interval of 1
second. Using an interval larger then 1 seconds gave a decrease in prediction performance. For
predicting the switching timings there is no added value to log the data at 1/10th of a second
instead of 1 second time interval.

The fifth recommendation is related to the validation of the prediction algorithm. The model
validation shows that standard k-fold cross validation gives an overly optimistic estimation of the
true test error. For any further research involving V-log data and a statistical learning technique it is
recommended to use a stratified cross validation. The stratified cross validation contains folds of
complete time segments or complete signal cycles for a signal group. More information about
problems that may arise by using standard k-fold cross validation is given in Chapter 8.

The sixth and final recommendation is the use of a quality assessment framework. The
described preprocessing procedure in this report stresses the importance of clean and complete
data that does not contain corrupted patterns. Securing a V-log dataset that complies to a high
quality standard is rather difficult. We noticed that problems in the V-log data are primarily caused
by the poor health of loop detectors. Both hardware and software failures cause the V-log data to be
incomplete and corrupted. The designed algorithm asks for data coming from two loop detectors
from each signal group. The intersection from the case study contains 10 signal groups. The amount
of loop detectors from which data is retrieved, adds up to 20. We strongly recommend to check
thoroughly of the selected intersection, from which V-log data is retrieved, does not show hardware
and software failures for each of the signal groups. After a hardware and software check is
performed a quality assessment, which is based on statistical metrics, should be used to double-
check for corruption.

11.5 Further Research

A number of recommendations for further research results from this project. These
recommendations particularly concern the overall research approach and methodology, as well as
the development of the prediction algorithm in this project.

This project shows that statistical learning approaches such as the Support Vector
Regression are useful for analyzing and predicting traffic light controllers. Besides statistical learning
techniques also standard statistical techniques are useful in combination with V-log data. In this
report we propose a quality assessment procedure that includes standard statistical metrics to
assess the quality of the used data coming from the traffic light controller. The quality assessment is
not fully comprehensive and is recommended as subject for further research.

A second recommendation for further research is to design a procedure/mechanism that is
capable of curing inefficiencies in loop detector data. Often data is missing or the data is corrupted
by jittering behavior of the detector loops. To design robust prediction models, it would be
recommended to develop a system that could prevent or smoothens out the influence of corrupted
loop detector data that shows such inefficiencies.

A third recommendation regarding the development of the prediction algorithm is to
research the influence of arrival patterns of vehicles on the prediction performance. The developed
algorithm takes cumulative vehicles into account as primarily explanation for the extension of the
green signal. By theory we do know that arrival patterns and driving behavior effects the extension
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of the green signal. Partly this is measured by the gap times for each detector loop. The key question
is how information regarding the gap times can be retrieved from the V-log data and designed into a
feature.

A fourth recommendation for further research that possibly could improve the prediction
performance is the use of queue length estimators. Queue length estimators are predictive models
that are capable of predicting the amount of vehicles that will be waiting for each lane. The
predicted queue could indicate to what extend the duration of the blocks will be utilized for
particular signal groups. Such information could be used as an additional source of information for
the developed prediction algorithm.

Finally, the interfacing and implementation of a prediction application that utilizes the
prediction algorithm is recommended for further research. Examples of topics are data transmission
and data latency of V-log, the installation of the prediction algorithm in the traffic light controller or
in the vehicle and the frequency of retraining the prediction model respecting the chosen prediction
application.
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13 APPENDIX A: Overview of benchmarked prediction approaches

Requirements

Probability theory

Support Vector

Machine/Regression

Kalman Filter

Markov-Chain

Neural Network

Switching time/
probability statement

Probability statement
(Mahler & Vahidi, 2012)

Switching time (Weisheit &
Hoyer, 2014)

Probability
statement (Protschky
et al., 2014b)

Switching time
(Barthauer & Friedrich,
2014)

Switching time

Ability to predict the

. . Yes Yes Yes Yes Yes
prediction horizon
Deali i -
‘ealerg with non No Yes Yes Yes Yes
linearity of the controller
Vehicle-actauted, . Vehicle-actuated,
. .. . . Vehicle-actauted, but . ..
Max degree of control | Pre-timed (Krijger, | Vehicle-actuated but fixed cycle| .. confirmed by by empirical
- - fixed cycle (Barthauer & .
flexibility 2013) (Koukoumidies et al., 2012) | (Protschky et al., Friedrich, 2014) model results of prior
2014b) ! research by Nissan
No, uses only green | No, is not able to utilize
No, only uses . ..
.. ees L. frequency loop detector data | Yes, confirmed by empirical
I conditional probabilities | Yes (Weisheit & Hoyer,| . "~ . . .
Utilization of V-log data . distributions (Bodenheimer, Brauer, | model results of prior
on given green phases |2014) .
(Mahler & Vahidi, 2012) (Protschky et al., | Eckhoff, & German, | research by Nissan
’ 2014b) 2014).
Easy: 2L h.as . Unknown: might be
Not easy: problems problems with | Not easy, needs different .
. . . | Easy: new data can added |. . " . useable on other similar
Scalability to  other [ with low traffic intersections transition matrix for|. .
. . to the model and less prone |, . . . . intersections but suffers
intersections and | volumes. Needs a lot of . including multiple | every new intersection
. " e to overfitting compared to o . fast from curse of
modalities conditional probabilities modalities (Barthauer & Friedrich, | . . . .
» the ANN (Hsu et al., 2003) dimensionality (Hastie et
(Krijger, 2013) (Protschky et al.,|2014). al,, 2009)
2014b) N
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Biggest advantage

Low computation time,
mathematically
understandable.

Prone to overfitting. A

relative large amount of
data can be presented to the
model without harming the
generalization error (Hastie

et al., 2009)

Stable
under semi vehicle-

predictions

controller
scenario (Protschky
et al., 2014b)

actuated

Once transition graph
and matrix are
determined, model
predicts fast and
accurate (Barthauer &

Friedrich, 2014)

No rules of the dynamics of
the controller need to be
specified
2014)

(James et al.,

Biggest disasdvantage

Sparseness of dataset
lead to noninformative
probability distributions
(Krijger, 2013)

Parameter settings of the
Kernel gets complex (Smola
& Scholkopf, 2003)

Computational

intense, does not
show immediate
changes in output
(Protschky et al.,

2014a)

Chance of insufficient
data to
probabilities of transfer

rate (Jeffers, 1988).

calculate

Difficult to interpret results
due to mathematically
complexity. Possible
difficulties
optimum

2014)

with local

(James et al,

109




110



14 APPENDIX B: Overview of manually extracted features

index | featurename description

1 date Date of the logged V-log data in the dataset

2 index Row index

3 X10th_sec 1/10th of a second index, every row indicates 1/10 of a second

4 R_Time Timer of current red signal

5 R_CD Countdown of current red signal

6 R_Length Absolute length in time of current red phase

7 R_Lengthl Absolute length in time of one red phase before current red phase

8 R_Length2 Absolute length in time of the second red phase before current red
phase

9 R_Length3 Absolute length in time of the third red phase before current red phase

10 R_Length4 Absolute length in time of the fourth red phase before current red
phase

11 R_Length5 Absolute length in time of the fifth red phase before current red phase

12 G_Time Timer of current green signal

13 G_CD Countdown of current green signal

14 G_Length Absolute length in time of current green phase

15 G_Lengthl Absolute length in time of one green phase before current green phase

16 G_Length2 Absolute length in time of the second green phase before current green
phase

17 G_Length3 Absolute length in time of the third green phase before current green
phase

18 G_Length4 Absolute length in time of the fourth green phase before current green
phase

19 G_Length5 Absolute length in time of the fifth green phase before current green
phase

20 Y Time Timer of current yellow signal

21 Y CD Countdown of current yellow signal

22 Y _Length Absolute length in time of current yellow phase

23 Block2Block_Time Timer of current block and that same block in the next cycle

24 Block2Block_CD Countdown of current block and that same block in the next cycle

25 Block2Block_Length Absolute length in time of current block and that same block in the next
cycle

26 Block_Time Timer of start to end of current block

27 Block_CD Countdown of start to end of current block

28 Block_Length Absolute length in time of start to end of current block

29 InterCycleTime_cnt The summation of green phases of all signal groups of a total cycle of
the intersection. This variable gives the elapsed time within the
summation of passed green phases

30 InterCycleTime_cntl InterCycleTime_cnt, but one cycle before current cycle
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31 InterCycleTime_cnt2 InterCycleTime_cnt, but second cycle before current cycle

32 InterCycleTime_cnt3 InterCycleTime_cnt, but third cycle before current cycle

33 InterCycleTime_cnt4 InterCycleTime_cnt, but fourth cycle before current cycle

34 InterCycleTime_cnt5 InterCycleTime_cnt, but fifth cycle before current cycle

35 InterCycleNumb_cnt Number of green phases that are summed in InterCycleTime_cnt

36 InterCycleNumb_cntl | Number of green phases that are summed in InterCycleTime_cntl

37 InterCycleNumb_cnt2 | Number of green phases that are summed in InterCycleTime_cnt2

38 InterCycleNumb_cnt3 | Number of green phases that are summed in InterCycleTime_cnt3

39 InterCycleNumb_cnt4 | Number of green phases that are summed in InterCycleTime_cnt4

40 InterCycleNumb_cnt5 | Number of green phases that are summed in InterCycleTime_cnt5

41 SCycle_Time Timer of the start to end of cycle of that particular signal group

42 SCycle_CD Countdown of the start to end of cycle of that particular signal group

43 SCycle_Length Absolute length in time of the start to end of cycle of that particular
signal group

44 AR _Value Binary indication of alternative realization

45 AR _Time Timer if AR_Value ==

46 AR_CD Countdown if AR_Value ==

47 AR _Length Absolute length in time of alternative realization from start to end if
AR Value ==

48 Aan_Active Binary indication of 'aanvraag' request parameter

49 Aan_Time Timer if Aan_Active ==

50 Aan_CD Countdown if Aan_Active ==

51 Aan_Length Absolute length in time of request parameter from start to end if
AR Value ==

52 CG_Value Categorical value of CG value (realization method)

53 RA_Active Binary indication of 'red before green' parameter

54 RA_Time Timer if RA_Active ==

55 RA_CD Countdown if RA_Active ==

56 RA_Length Absolute length in time of start to end of RA_active parameter if
FG_Active ==

57 FG_Active Binary indication when fixed green is active

58 FG_Time Timer if FG_Active ==

59 FG_CD Countdown if FG_Active ==

60 FG_Length Absolute length in time of start to end of FG_active parameter is
FG_active ==

61 WG_Active Binary indication when waiting green is active

62 WG_Time Timer if WG_Active ==

63 WG_CD Countdown if WG_Active ==

64 WG_Length Absolute length in time of start to end of WG_active parameter is
WG_active ==

65 VG_Active Binary indication when extending green is active

66 VG_Time Timer if VG_Active ==
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67 VG_CD Countdown if VG_Active ==

68 VG_Length Absolute length in time of start to end of VG_active parameter is
VG_active ==

69 MG_Active Binary indication when prolonging green is active

70 MG_Time Timer if MG_Active ==

71 MG_CD Countdown if MG_Active ==

72 MG_Length Absolute length in time of start to end of MG_active parameter is
MG_active ==

73 RV_Active Binary indication of red before request parameter

74 RV_Time Timer if RV_Active ==

75 RV_CD Countdown if RV_Active ==

76 RV_Length Absolute length in time of start to end of RV_active parameter is
RV_active ==

77 AtTdetl MaxVol Cumulative vehicle count at the first detector loop at current time

78 RDetl_MaxVol Cumulative vehicle count at the first detector loop at current time
when output signal is red

79 RDetl_MaxVoll RDetl_MaxVol of one cycle before current cycle

80 RDetl_MaxVol2 RDetl_MaxVol of second cycle before current cycle

81 RDetl_MaxVol3 RDetl_MaxVol of third cycle before current cycle

82 RDetl _MaxVol4 RDetl_MaxVol of fourth cycle before current cycle

83 RDetl_MaxVol5 RDetl_MaxVol of fifth cycle before current cycle

84 GDetl_MaxVol Cumulative vehicle count at the first detector loop at current time
when output signal is green

85 GDetl_MaxVoll GDetl_MaxVol of one cycle before current cycle

86 GDetl_MaxVol2 GDetl_MaxVol of second cycle before current cycle

87 GDetl_MaxVol3 GDetl_MaxVol of third cycle before current cycle

88 GDetl_MaxVol4 GDetl_MaxVol of fourth cycle before current cycle

89 GDetl_MaxVol5 GDetl_MaxVol of fifth cycle before current cycle

90 YDetl MaxVol Cumulative vehicle count at the first detector loop at current time
when output signal is yellow

91 YDetl MaxVoll YDetl MaxVol of one cycle before current cycle

92 YDetl MaxVol2 YDetl MaxVol of second cycle before current cycle

93 YDetl MaxVol3 YDetl MaxVol of third cycle before current cycle

94 YDetl MaxVol4 YDetl MaxVol of fourth cycle before current cycle

95 YDetl MaxVol5 YDetl MaxVol of fifth cycle before current cycle

96 AtTdet3_MaxVol Cumulative vehicle count at the third detector loop at current time

97 RDet3_MaxVol Cumulative vehicle count at the third detector loop at current time
when output signal is red

98 RDet3_MaxVoll RDet3_MaxVol of one cycle before current cycle

99 RDet3_MaxVol2 RDet3_MaxVol of second cycle before current cycle

100 RDet3_MaxVol3 RDet3_MaxVol of third cycle before current cycle

101 RDet3_MaxVol4 RDet3_MaxVol of fourth cycle before current cycle
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102 RDet3_MaxVol5 RDet3_MaxVol of fifth cycle before current cycle

103 GDet3_MaxVol Cumulative vehicle count at the third detector loop at current time
when output signal is green

104 GDet3_MaxVoll GDet3_MaxVol of one cycle before current cycle

105 GDet3_MaxVol2 GDet3_MaxVol of second cycle before current cycle

106 GDet3_MaxVol3 GDet3_MaxVol of third cycle before current cycle

107 GDet3_MaxVold GDet3_MaxVol of fourth cycle before current cycle

108 GDet3_MaxVol5 GDet3_MaxVol of fifth cycle before current cycle

109 YDet3_MaxVol Cumulative vehicle count at the third detector loop at current time
when output signal is yellow

110 YDet3_MaxVoll YDet3_MaxVol of one cycle before current cycle

111 YDet3_MaxVol2 YDet3_MaxVol of second cycle before current cycle

112 YDet3_MaxVol3 YDet3_MaxVol of third cycle before current cycle

113 YDet3_MaxVol4 YDet3_MaxVol of fourth cycle before current cycle

114 YDet3_MaxVol5 YDet3_MaxVol of fifth cycle before current cycle
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15 APPENDIX C: Output of the quality assessment

Day Date Correlation Mean.Traffic Max.Traffic Sd.Traffic Mean.Green Max.Green Sd.Green Green.Phases Block2Block
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16 APPENDIX D: Output red prediction models

Model selection output Red prediction model for featureset 3:

Kernel Traindays  Systimes SVs Min_pred Hitrate = RMSE MAE Cross_error
polydot 1 22.03 3272 -357.30 0.34 10.96 7.33 9.07
laplacedot 1 7.24 2182 0.55 0.26 12.75 9.88 2.63
polydot 2 91.20 7181 -17.01 0.36 9.29 7.25 9.29
laplacedot 2 87.00 4786 0.97 0.24 10.53 8.49 2.52
polydot 5 685.20 17679 -20.85 0.36 9.53 7.42 9.11
laplacedot 5 668.40 12303 0.97 0.33 10.27 8.10 2.36
polydot 10 4068.00 35386 -18.04 0.34 9.51 7.41 9.05
laplacedot 10 3744.00 24675 0.43 0.35 9.74 7.55 2.35
polydot 15 16272.00 52786 -19.47 0.34 9.54 7.46 9.05
laplacedot 15 5832.00 38222 0.64 0.38 9.65 7.29 2.36
Table 8 Model selection output for Red prediction model - Featureset 3 - Signal group 8
Model selection output Red prediction model for featureset 6:
Kernel Traindays Systimes SVs Min_pred Hitrate RMSE MAE Cross_error
polydot 1 28.82 3202 -7.17 0.42 8.18 6.26 7.35
laplacedot 1 9.75 2511 1.26 0.43 9.55 7.00 3.01
polydot 2 124.20 6547 -2.03 0.43 7.78 5.98 7.46
laplacedot 2 124.80 4951 0.63 0.42 7.90 6.05 2.97
polydot 5 1279.80 16413 -1.70 0.44 7.56 5.81 7.48
laplacedot 5 876.00 12762 0.02 0.49 7.05 5.32 3.08
polydot 10 10296.00 33084 -2.14 0.44 7.49 5.77 7.51
laplacedot 10 4932.00 25888 -0.06 0.53 6.65 4.93 3.10
polydot 15 32796.00 49216 -2.07 0.45 7.47 5.72 7.49
laplacedot 15 8244.00 38380 -0.45 0.54 6.45 4.78 3.16

Table 9 Model selection output for Red prediction model - Featureset 6 - Signal group 8
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17 APPENDIX E: Output tables green and red prediction models on full
intersection

The table below contains the model output of the Green prediction model on the full intersection N245

Laan van Darmstadt.

Kernel Signal group  Systimes SVs Min_pred Hitrate = RMSE MAE Cross_error Train_error
polydot 1 656.57 22896 -2.73 0.14 26.25 19.76 29.25 0.82
laplacedot 1 934.94 20122 -0.18 0.16 28.37 21.34 19.92 0.28
polydot 2 151.70 12997 -0.15 0.25 15.95 11.46 14.64 0.94
laplacedot 2 274.53 11231 0.40 0.22 16.61 12.26 10.13 0.27
polydot 3 1262.16 4088 -0.71 0.84 2.94 2.14 3.19 0.40
laplacedot 3 811.30 3997 0.66 0.81 3.11 2.35 2.97 0.19
polydot 4 68.80 8205 -1.71 0.78 3.31 2.68 4.09 0.59
laplacedot 4 118.19 7666 0.45 0.77 3.40 2.73 3.51 0.21
polydot 5 510.79 2386 -2.01 0.99 1.29 0.97 1.39 0.21
laplacedot 5 253.96 2073 0.33 0.99 1.25 0.85 1.30 0.10
polydot 7 246.80 15816 -10.34 0.26 14.70 11.19 15.21 0.81
laplacedot 7 401.40 14465 -0.72 0.29 15.82 11.20 12.74 0.40
polydot 8 114.02 11348 -10.53 0.37 10.22 7.74 10.00 0.57
laplacedot 8 156.06 10968 0.52 0.40 10.44 7.67 9.63 0.40
polydot 9 195.32 1412 0.51 0.58 7.77 5.26 6.61 0.93
laplacedot 9 97.19 1177 1.84 0.60 7.34 5.02 3.85 0.14
polydot 10 81.91 9515 -2.63 0.50 7.97 5.62 7.73 0.85
laplacedot 10 97.46 8809 0.97 0.54 7.54 5.12 6.87 0.53
polydot 11 1841.55 4816 -3.10 0.90 3.03 2.20 3.21 0.28
laplacedot 11 2329.17 4623 0.69 0.82 3.31 2.49 2.77 0.07

Table 10 Green prediction model output on full intersection
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The table below contains the model output of the Red prediction model on the full intersection N245

Laan van Darmstadt.

Kernel Signal group  Systimes SVs Min_pred Hitrate = RMSE MAE Cross_error Train_error
polydot 1 7107.49 6314 -3.63 0.75 4.59 3.00 5.39 0.52
laplacedot 1 5219.29 3628 0.53 0.81 4.45 2.42 2.38 0.03
polydot 2 1137.00 13151 -8.66 0.65 11.12 5.84 10.27 0.47
laplacedot 2 649.38 9775 -1.24 0.70 9.17 4.79 3.40 0.02
polydot 3 2355.61 24033 -24.04 0.20 20.41 13.86 25.21 0.59
laplacedot 3 2215.16 21322 -2.08 0.23 22.66 15.44 13.36 0.09
polydot 4 1668.01 20941 -15.54 0.42 9.89 7.09 10.50 0.47
laplacedot 4 4645.37 15427 -0.52 0.56 8.65 5.65 4.79 0.03
polydot 5 5435.36 20379 -4.29 0.34 29.05 14.42 35.18 0.71
laplacedot 5 1803.74 16462 -5.03 0.37 21.86 11.99 14.03 0.06
polydot 7 667.63 11416 -3.34 0.73 5.68 3.53 6.42 0.18
laplacedot 7 606.46 8969 0.27 0.73 4.75 3.27 244 0.01
polydot 8 1347.60 14981 -2.57 0.54 7.08 4.99 7.02 0.13
laplacedot 8 880.24 11966 -0.08 0.57 5.65 4.29 2.85 0.01
polydot 9 2626.25 28318 -58.27 0.02 185.24 127.44 195.67 0.85
laplacedot 9 483.71 5834 19.62 0.02 182.98 133.26 20.97 0.01
polydot 10 933.54 20137 -6.15 0.29 15.93 11.79 15.29 0.62
laplacedot 10 1253.76 17481 -2.92 0.35 16.35 11.38 9.68 0.11
polydot 11 2539.03 23828 -18.61 0.26 12.71 9.88 13.43 0.26
laplacedot 11 1807.74 17130 -1.49 0.45 11.53 7.90 5.14 0.01

Table 11 Red prediction model output on full intersection
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18 APPENDIX F: Preference of features for the green and red prediction
models

Table 12 gives the frequencies of selected features by the Red prediction model fitted on a full
intersection (intersection N245 Laan van Darmstadt).

Feature Frequency count Relative Frequency
Block2Block_Time 30 0.152
R_Time 29 0.147
Block_Time 28 0.142
Aan_Time 25 0.127
SCycle_Time 24 0.122
AtTdet3_MaxVol 11 0.056
G_Time 8 0.041
RA_Time 7 0.036
AtTdetl_MaxVol 5 0.025
InterCycleTime_cntl 4 0.020
InterCycleTime_cnt2 3 0.015
RDetl_MaxVol 3 0.015
InterCycleTime_cnt5 2 0.010
MG_Time 2 0.010
R_Length4 2 0.010
R_Length5 2 0.010
FG_Time 1 0.005
GDetl_MaxVol4 1 0.005
GDetl_MaxVol5 1 0.005
GDet3_MaxVol 1 0.005
InterCycleTime_cnt3 1 0.005
R_Lengthl 1 0.005
R_Length2 1 0.005
R_Length3 1 0.005
RDet3_MaxVoll 1 0.005
RDet3_MaxVol3 1 0.005
RDet3_MaxVol5 1 0.005

VG_Time 1 0.005

Table 12 Overview of selected features by the Red prediction model on a full intersection
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18.1 Frequency of green features

Table 13 gives the frequencies of selected features by the Green prediction model fitted on a full
intersection (intersection N245 Laan van Darmstadt).

Feature Frequency  Relative Frequency
count
AtTdetl MaxVol 9 0.098
G_Time 9 0.098
SCycle_Time 9 0.098
AtTdet3_MaxVol 8 0.087
Block_Time 8 0.087
Block2Block_Time 8 0.087
FG_Time 7 0.076
MG_Time 7 0.076
RDet3_MaxVol 5 0.054
InterCycleTime_cntl 3 0.033
R_Lengthl 3 0.033
VG_Time 3 0.033
G_Lengthl 1 0.011
G_Length5 1 0.011
GDet1_MaxVol2 1 0.011
GDet3_MaxVol2 1 0.011
InterCycleTime_cnt2 1 0.011
InterCycleTime_cnt3 1 0.011
InterCycleTime_cnt4 1 0.011
R_Length2 1 0.011
R_Length4 1 0.011
R_Time 1 0.011
RDetl_MaxVoll 1 0.011

Table 13 Overview of selected features by the Green prediction model on a full intersection
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