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MEAN AND LOW FREQUENCY WAVE DRIFTING FORCES
ON FLOATING STRUCTURES

J. A. PINKSTER

Netherlands Ship Model Bashi, P.O. Box 28, Wageningen, The Netherlands

AbstractA recently developed method, based on three-dimensional potential theory, to
compute the mean wave drifting forces on a free floating structure in regular waves, is extended
to include low frequency oscillatory components which arise when the structure is floating in
regular wave groups consisting of two regular waves with small difference frequency. This
completes the information necessary for the determination of the wave drifting forces under
arbitrary irregular wave conditions.

In regular wave groups the drifting forces not only depend on the first order velocity
potential and the first order body motions, but also on the wave exciting forces due to the low
frequency part of the second order potential. For the general three-dimensional case the latter
contribution can only be determined numerically and at the expense of long computation
times. Since this contribution is generally not large compared to components which may be
determined using linear potential theory it is included using a simple approximation. Results
of the method of approximation are compared with some two-dimensional cases for which
exact solutions are known.

Results of computations of the total mean and low frequency surge forces on a rectangular
barge and a column stabilized semi-submersible platform are presented. For both structures, the
computed mean surge drifting forces in regular head waves are compared with results of model
tests.

The computed components of the total mean drifting forces are presented. It appears that
for both the barge and the semi-submersible the same components are of importance.

For the semi-submersible, the computed low frequency second order surge forces in head
waves are compared with results obtained from a test in irregular head waves using cross-bi-
spectral analysis methods.

NOMENCLATURE
mi, to frequency in rad/sec
si random phase angle
Ci amplitude of component with frequency co;
N a large number
Pip Qn in- and out-of-phase components of the second order low frequency force

amplitude of second order force
V total velocity potential including all orders
s a small parameter

9(1), 909 first and second order approximations to the total potential
i P ' specific mass of water

acceleration of gravity
RCI matrix containing first order oscillatory angular motions, see Pinkster and Van Oortmerssen

(1977)
ii. normal vector, positive outwards from body referenced to body axesd/ length element along the waterline
m mass of body in air

instantaneous wetted surface
So mean wetted surface
X(1) first order linear motion vector of a point on So
dS surface element of S or So
x position vector of surface element in body axes
k, k, wave number
h waterdepth

593

Lab. v. Scheepsbouwkunde

Technische Hogeschool

D
I

Pillir*Prrrir°7777777. 771177-79er-d;



'n(

to

dr

to

di

se

Pz

th
(e
se
0-

in
UI

Is

594 J. A. PINKSTER

vertical co-ordinate of a point positive if above the mean surface
C. amplitude of a regular wave
F(') first order wave exciting force or moment
g1j transformed gravity constant
X(1), first order linear acceleration vector of the centre of gravity relative to the fixed system of

co-ordinate axes
ir(x) first order angular acceleration vector

time
displaced volume

v0) first order velocity of a point on So relative to the fixed system of co-ordinate axes
normal rector, including mean and oscillatory parts, of a surface element dS relative to the
fixed system of co-ordinate axes

NO) first order oscillatory component of the normal vector N of a surface element ciS relative
to the fixed system of co-ordinate axes

SC(to) spectral density of irregular waves
frequency of second order force
first order relative wave height at a point along the waterline including effect of undisturbed
waves, diffraction and body motions
length of the barge
draft of horizontal two-dimensional cylinder with breadth equal to 2d
matrix containing mass of body

1 matrix containing moment of inertia
WL waterline
0-X1-X2-X, fixed system of rectangular co-ordinate axes. Positive X,-axis vertically upwards. Origin in

mean free surface
G-x,-x,-x, system of body axes. Origin in center of gravity G. xraxis positive upwards. x,-axis positive

to port. x,-axis positive forward.
G-X1-X,-X, system of axes parallel to 0-X1-X2-X, system but with origin in center of gravity of the

body. Coincides with G-x1-x2-x3 system in the mean position.

INTRODUCTION
THE mtniv and low frequency second order wave drifting forces acting on structures moored
in waves are usually of interest from the point of view of mooring loads and horizontal
motions. Investigations into the nature of the wave drifting forces have generally stemmed
from the need to include these effects in the total load on structures moored by anchor
lines or cables (Hsu and Blenkarn, 1970; Remery and Hermans, 1972; Rye et al., 1975;
Arai et al., 1976).

Such investigations were initially prompted by the fact that the observed horizontal
motions of vessels moored in irregular waves and the associated mooring line forces
showed low frequency components which could not be explained by linear wave theory
alone. Van Oortmerssen (1976) demonstrated that the low frequency horizontal motions
of a vessel moored to a jetty in irregular waves were in many cases directly attributable
to the second order wave drifting force, thus underlining the necessity for reliable means
of determining this part of the total wave forces.

The influence of the second order wave drifting forces is not only restricted to the
horizontal plane. This is, for instance, indicated by Numata et al. (1976) in connection
with the steady_sitt of semi-submersible vessels in regular waves.

The presence of low frequency components in the vertical motions of large volume
structures with small water plane area during model tests in irregular waves infers that
non-linear hydrodynamic effects play a large part here also.

Up to now, however, the majority of the investigations concerning the mean and
low frequency wave drifting forces are concerned with forces and motions in the horizontal
plane. Faltinsen and Loken (1978) reviewed the available methods for calculating the
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Mean and low frequency wave drifting forces on floating structures 595

horizontal drifting forces on fixed and floating objects. A comparable study on the methods
to calculate the vertical wave drifting forces has not been presented yet.

This paper deals with a method to calculate the mean and low frequency order wave
drifting forces which is applicable to all six degrees of freedom.

The method is based on direct integration of all contributions to the second order
forces over the instantaneous wetted surface of the hull of the structure.

The expressions obtained are evaluated using numerical methods based on three-
dimensional potential theory which includes the effect of water depth.

In the following the procedure to obtain the theoretical expression for the second order
wave forces is reviewed.

The theoretical expressions are used to obtain quadratic transfer functions for the
second order forces. The relationship between the slowly varying second order forces in
irregular waves and the irregular waves is given.

In the Appendix the method of approximating the contribution due to the low frequency
part of the second order potential is presented.

SECOND ORDER WAVE EXCITING FORCES ON FLOATING STRUCTURES
We assume that the fluid is homogeneous, inviscid, incompressible and irrotational.

The fluid motions may be described by a velocity potential 9:

= se) + 629(2) (1)

In this expression the first order potential yo) and the second order potential 9(2) include
the effects from the incoming waves, the diffraction due to the body and the body motions
(excluding effects of low frequency motions which occur in response to the low frequency
second order forces). If the potentials are defined relative to a fixed system of co-ordinates
0X3A'2--X3, the pressure in a point on the hull can be determined using the Bernoulli
equation:

p = pg ,X, 17912 +p(0), (2)

in which pol is the static pressure. This will be disregarded hereafter since it has no influence
upon the final results.

Assuming that the body is carrying out small amplitude motions about the mean posi-
tion, the first and second order components of the pressure in a point on the hull may be
expressed in terms of the hydrostatic component due to the vertical motion of the point
and in terms of the derivatives of the first and second order potentials taken at the mean
position of the point. The pressure p becomes:

p = si(1) + cape), (3)

where
p(i) p g X(1)3 p(pa) (4)

is the total first order pressure including the oscillatory hydrostatic component and

p(2) p gX(2)3 pc)(2.), p 179(1) 12 WO) V(p(1)f) (5)
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is the total second order contribution, also including a hydrostatic component due to
second order vertical motions. In further calculations the latter component is disregarded
since it is part of the second order reaction force. The total fluid force acting on the vessel
referenced to a rectangular system of co-ordinates GX1X2X3 which coincides with a
body bound Gx1--x2--x3 system of co-ordinates in the mean position follows from:

F = ff p N dS. (6)

In this expression the wetted surface S consists of a mean wetted surface S, which extends
up to the mean waterline on the structure, and an oscillating part between the mean water-
line and the instantaneous wave profile along the hull.

Also taking into account that the body is carrying out small oscillatory angular motions
(pitch, roll and yaw) due to which the components of the normal vector N of a surface
element dS along the axes of the fixed system of co-ordinates 0X1X2--X3 contain a constant
and an oscillatory part, it can be shown (see Pinkster, 1977) that the second order wave
exciting forces follow from:

F(2) = pg f (i)2, n d/ R(1) . M. (x') If { ip I voo 12 pcp(2),

WL So

p(X(o . \79(1),)) n dS. (7)

A similar expression can be deduced for the second order moment:

11(2) = ipg 5V)2, (x x n) d/ R(1) . (I. X('),) ff { 4t Iv9() i 2 - pp(2),
WL So

p(X(i) . Vtpws)} (x x n) dS. (8)

The expressions shown here differ from earlier eressions for the second order force and
moment in so far that they have to be evaluated on the surface of the body and give
insight in the mechanism by which the waves and vessel interact to produce the second
order force. -

We will see this upon closer inspection of the expression for the second order wave
force and restrict ourselves to the surge force in irregular head waves.

The expression for the surge force becomes:

F(2), = ipg 5 V', n1d1 x5(1) . m . X(1)3g - If - p /7790.) /2 pc)(2),

WL So

- P(x(1) Vet)} nidS. (9)

The preceding expression contains three components: The first part is a line integral
around the static waterline of the vessel of the square of the relative wave height. The
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relative wave height is the wave height as measured from the vessel. This contribution arises
from the fact that near the surface the pressure in the waves can be approximated by the
hydrostatic pressure. The hydrostatic pressure increase at the mean waterline on the hull
is proportional to the relative wave height and the additional area on which the pressure
acts is also proportional to the relative wave height. This results in an inwardly directed
force proportional to the square of the relative wave height which has the form of the first
part of the preceding equation.

The second contribution to the second order wave drifting force is a consequence of
the choice of the axes to which the second order force is referenced. The expressions (7)
and (8) apply to forces and moments relative to a GX1X2X3 system of axes with X3-axis
vertically upwards. The surge force given in expression (9) is along a horizontal Xraxis
and not along the moving longitudinal xl body axis. As a result of this, first order vertical
hydrodynamic and hydrostatic forces acting along the vertical body axis Gx3 will give a
longitudinal second order force component along the Xraxis according to:

F(1)3 . x(1)3 (see Fig. 1),

FIG. I. Contribution of pitch angle and heave force to second order surge drifting force.

where: Fo), first order vertical force,
= first order pitch angle.

Taking into account that the vertical force F0)3 is the total fluid force which equals:

F(1)5 = rn .(1)3,, (10)

this contribution becomes:

x. n. u.4)3g-5 A



The third contribution to the second order wave drifting force stems from the integration
of all second order hydrodynamic pressures over the mean submerged part of the hull.
These pressure contributions follow from the second order part of the Bernoulli equation
(2) which, excluding the second order hydrostatic term, follow from:

pa) p(p(2), ip Vya) 12 W(1) Vq)a),) (12)

in which: 0) = first order approximation for the total velocity potential = cp(on,_Food + on.,
(Pow, ya)d, cp('), first order velocity potentials associated with respectively the un-

disturbed incoming wave, the diffraction potential and the body
motion potential,

(I)(0 = second order approximation for the total velocity potential consisting
of contributions from the incoming waves, diffraction and body
motions. Since we are restricting ourselves to the wave exciting forces
this potential does not include the component due to second order
motions of the body which are the reactions to the second order
forces.

For vessels or floating structures at zero forward speed, the components of the second order
wave drifting forces and moments which depend on product of first order quantities may
be calculated using computer programs based on three-dimensional potential theory
(Pinkster, 1976, 1977).

The components due to the second order potential (p(2) are determined using a simple
approximation which is discussed in the Appendix.

The method is based on transformation of a first order wave exciting force in a long
wave corresponding to the length of a wave group into a second order wave force. The
accuracy of this method is indicated by comparison with some exact two-dimensional
results. The method of approximation is applicable to three-dimensional cases and to
shallow water.

Equations (7) and (8) for the second order wave forces and moments are not in a form
which is easily manageable for practical cases. In Pinkster (1976) it is shown that, as is also
the case with linear wave exciting forces, the second order wave exciting forces may be
expressed in terms of (quadratic) transfer functions which, in turn, may be used to construct
time records of the second order forces as indicated by Dalzell (1976) or to calculate the
spectral density of the forces. A brief summary of the main characteristics of the low
frequency part of the second order forces in relation to the waves is given in the following
section.

LOW FREQUENCY SECOND FORCES IN IRREGULAR WAVES
In irregular waves the wave elevation in a point may be written as follows:

(t) = E cos Om si).It
The square of the wave elevation is:

N N
2 ( 1)C(11s(0)it-Pei)cos(0).-Fe) .j

i=1 J=I
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The low frequency part of the square of the wave elevation is:

N N
(2)Al) =Z cos (e) coj)t (ei (15)

1=1 J=1

The low frequency second order wave drifting forces are related to the square of the wave
elevation and may be written as follows:

N N
F(2)(1) = E U.; Pu cos {(coi (oi)t (el ei)}

1=1 j

N N
Q1 sin {(coi co 1)t -F (ei ej)) (16)

1=1 1=1

where:

Pu = second order transfer function for the part of the force which is in-phase
with the low frequency part of the wave height squared,

Qu =-- out-of-phase part of the second order transfer 'function.

These transfer functions are evaluated based on (7) and (8) and each contain con-
tributions from the components discussed in the previous section.

As indicated by the subscripts i and j, Pu and Qu are quantities which are a function
of two frequencies co, and co./. In a physical sense, Pi; and Qu give the in- and out-of-phase
components of the low frequency oscillating part of the second order wave exciting forces
when the structure is placed in a wave train consisting of two regular waves with frequencies
co; and coj. This is known as a regular wave group. The frequency of the oscillating part of
the force equals the difference frequency co, co.i. This is also the frequency associated with
the envelope of the group.

The total second order force in a regular wave group also contains a constant part
which corresponds to the sum of the mean or constant forces exerted by each of the two
regular waves which make up the regular wave group. In irregular waves the situation is
the same. The mean force included in (16) is found by letting co, = COF

p(2)
mean

The frequency transfer functions Pt; and Qu can be determined in such a way that the
following relationships exist:

(18)

= E
1=1

(17)

The low frequency force in a regular wave group consisting of regular waves with frequency,
amplitude and phase cot, ei and a),, e2, respectively, is:

Qij Qj1. (19)



where:

F(a-22) (co, co)

F(2)
(co, + E2)

F(2)
SF = 8 f Sc (co) ,Sc(co p.) (co, co +]2c1co,

0 12
(24)

= mean second order wave drifting force in regular waves of
frequency co. Equivalent of Fil in (21) with co = cot,

= amplitude of the low frequency component of the wave drifting
force. Equivalent of Fu in (21) with co; = co + II and co,
while E.t > 0.

MEAN SECOND ORDER WAVE DRIFTING FORCES IN REGULAR WAVES:
COMPARISON BETWEEN EXPERIMENTS AND COMPUTATIONS

In order to check the method of calculation described in this paper, model tests were
carried out in regular waves with the model of a rectangular barge and a column stabilized
semi-submersible platform.

The lay-out and main particulars of the models are given in Fig. 2.
The model scale amounted to I : 50 for the barge and 1 : 40 for the semi-submersible.

The waterdepth corresponded to 50 m and 40 m, respectively, in reality.
The tests were carried out in regular head waves and the models were moored by soft

-

,a44,&

600 J. A. PTNICSTER

F(2)(1) = P1121 P2272 + (P12 + P21)2 cos ((C°1 032)t ± (62 e2.)}

+ (Q12 Q21) 12 sin {( 032)1 (e1 e2)}- (20)

For the sake of brevity, in this paper use will be made of the amplitudes of the second
order transfer functions. These are defined as follows:

Fu = -VP211 Q2u. (21)

For Fu the following relationship exists:

SPECTRAL REPRESENTATION OF MEAN AND LOW FREQUENCY SECOND
ORDER WAVE EXCITING FORCES

Equations (16) and (17) give the total and mean second order wave exciting forces in
irregular waves as a function of time for discrete values of the frequencies co; and co/.

If the spectral density ..g(c.o) of the irregular waves is given, the mean second order wave
drifting force may be determined from:

F(2)Pan 2 f
(

(co) (co, oddco,

while the spectral density of the low frequency oscillatory part follows from:
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spring mooring systems. This allowed the models to execute freely motions with wave
frequency while applying a constant mooring force equal and opposite to the mean surge
drifting force in the regular waves.

The results of the calculations are compared with measurements in Fig. 3.
The results are given as mean wave drifting force transfer. functions which have been

made non-dimensional using the displaced volume. The wave frequency has also been

Semi- submersible

FIG. 3. Mean surge drifting force in regular head seas.
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V
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Length .150.0 m Length . 100.0 m
Breadth 50.0m Breodth = 76.0 m
Draft .10.0m Draft . 20.0 m
Displacement = 73750 m3 Displacement . 35925 rn3

Barge
Semi- submersible



made non-dimensional using the displaced volume. This makes it possible to compare the
drift forces on the barge and the semi-submersible on the basis of equal displacement.

The results given in the figures show good agreement between theory and experiment
for both the barge and the semi-submersible. The agreement for the barge is not so sur-
prising since one expects potential effects to dominate the wave drift forces for this type of
hull. More surprising is the good agreement obtained for the semi-submersible. It appears
that the wave drift force on such a structure is also dominated by potential effects.

This has been a matter of conjecture as is apparent from results given by Huse
(1976) and Pijfers and Brink (1977).

Noteworthy in the results for the semi-submersible is the wavy character of the transfer
function. It appears that this is due to the interference effect between the six columns. The

low value of the transfer function at a non-dimensional frequency of 2.2 coincides with a
wave length equal to the column spacing.

RELATIVE MAGNITUDE OF THE COMPONENTS OF THE COMPUTED
MEAN SURGE DRIFTING FORCE IN REGULAR WAVES

In regular waves, the influence of the second order potential 02) on the second order
wave drifting forces vanishes leaving only the following components:

I: Relative wave height contribution:

pg f ni d/. (25)

WL bc

II: Pressure drop due to velocity squared: su
thi

H Ivq)(') 12 n, dS. (26) tic

So
sec

III: Pressure due to product of gradient of first order pressure and first order motion:

jj p (VI) . c(p(i)n, dS. (27)

So

IV: Contribution due to products of angular motions and inertia forces:x(1),(28)3g

For the barge and the semi-submersible the components are indicated in Fig. 4 by the
appropriate numerals.

The results shown in these figures show that in general the contribution I due to the
relative wave height is dominant while the three remaining terms tend only to reduce
somewhat the effect of contribution I. For high frequencies terms M and IV vanish since
the body motions, on which these terms are dependent, reduce to zero in short waves.
This leaves only the terms I and II.

For the semi-submersible it is apparent that it is the wave drift forces acting on the
columns which form the greater part of the total horizontal wave drift forces.

--' .114
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FIG. 5. Computed mean heave drifting force.
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FIG. 4. Components of the computed mean surge drifting force.

Finally, the results of the computed mean vertical wave drifting force are given for
both structures in Fig. 5.

The results indicate that the mean force on the barge is downwards while on the semi-
submersible it is upwards. Since both vessels have vertical walls at the waterline, it is clear
that contribution I is zero. It further appears that contribution II and also partly contribu-
tion HI and IV are responsible for the vertical force.

In the case of the semi-submersible it will be clear that the vertical force is due to the
second order pressures acting on the floaters.
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The peak in the response function of the mean vertical wave drift force is at the natural
pitch and heave frequency.

COMPUTATION OF THE LOW FREQUENCY SECOND ORDER FORCES
IN REGULAR WAVE GROUPS

For the barge and the semi-submersible, the quadratic transfer functions of the low
frequency second order surge drifting forces in regular head wave groups have been com-
puted.

The results are presented in the form of amplitude response functions of the total surge
force in Table 1.

Since these are symmetrical about the diagonal (see (22)) only one side is given.
The results can be used to calculate the mean surge drifting force and the spectrum

of the low frequency surge drifting force in irregular head waves as indicated in (23) and
(24). The quadratic transfer functions for the forces have not been made non-dimensional.
They are expressed in tf/m2 for the vessel sizes indicated in Fig. 2. The values given on the
diagonals represent the mean drifting forces which have been given in non-dimensional
form in Fig. 3.

The negative sign for the components on the diagonal indicates that the mean force in
head waves (180') is in the direction of the negative Xi-axis.

In regular wave groups the contribution due to the second order potential 02) is not
equal to zero. The absolute value of this contribution is shown in Table 2 for the barge
and the semi-submersible.

Another way of judging the influence of the second order potential is to compare the
transfer function which includes all components with the transfer function excluding the
effect of 9(2). The latter case is presented in Table 3.

Comparison Of Table 3 and Table 1 reveals that near the diagonal, the influence of the
second order potential is small in the frequency range where the mean drifting force is large
(higher frequencies) and increases in relative importance in the range of frequencies where
the mean drifting force is small (low frequencies).

This means that in long waves where diffraction effects are small, the low frequency
second order excitation due to the second order potential may be of some importance,
whereas in the range of short waves where the low frequency excitation is dominated by
second order effects arising from products of first order, the second order potential 02)

TABLE 1. TOTAL MEAN AND LOW FREQUENCY SURGE DRIFTING FORCE IN HEAD WAVES

1../T Roo

Barge Semi-submersible

coi coi

oh 0.5 0.6 0.7 0.8 0.9 1.0 1.1 (02 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.5 0 2 14 47 46 25 71 0.5 0 8 11 7 8 20 15
0.6 -9 17 48 53 19 74 0.6 -1 6 7 5 14 19
0.7 -22 36 41 20 49 0.7 0 7 15 3 18

0.8 -26 32 31 24 0.8 -11 23 20 13

0.9 F(2) -27 31 26 0.9 Frequencies in -25 21 9

1.0
in tf/m2

CiC2 -29 28 1.0 rad/sec -20 21

1.1 -29 1.1 -24



Mean and low frequency wave drifting forces on floating structures 605

TABLE 2. CONTRIBUTION OF SECOND ORDER POTENTIAL TO SURGE DRIFTING FORCE

is of less importance. It is noted that the approximation for the force component due to
02) as given in this paper is expected to be most accurate when diffraction effects and effects
of body motions are small. From this it is concluded that in the range of frequencies where
the second order potential 021 is of importance, the approximation for this force com-
ponent is closest to the correct value. The component due to 9(2) generally tends to increase
the surge force on the semi-submersible while it tends to decrease the surge force on the
barge.

DETERMINATION OF THE QUADRATIC TRANSFER FUNCTION FROM
A TEST IN IRREGULAR WAVES

A test was carried out in irregular waves with the model of the semi-submersible to
determine the low frequency second order surge force in head waves. From the measured
record of the surge force and the simultaneously obtained wave elevation, it is possible
to determine, using cross-bi-spectral methods, the quadratic transfer function for the low
frequency surge force of which calculated results were presented in the previous section.

MOORING SYSTEM
In order to obtain the correct surge force, it is necessary to restrain the model in such

a way that it is allowed to carry out freely the first order wave induced motions while
restricting completely the low frequency surge motions induced by the low frequency
second order surge force.

Barge Semi-submersible

C°1

CO2 0.5 0.6 0.7 0.8 0.9 1.0 1.1 (02 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.5 06 8 5 15 17 20 0.5 0 7 12 11 3 19 12
0.6 0 6 6 8 14 17 0.6 0 6 10 6 12 15
0.7 0 6 5 11 14 0.7 0 6 9 0 15
0.8 0 6 4 12 0.8 0 6 8 6
0.9 . 0 6 5 0.9 0 7 6
1.0 FP) 0 6 1.0 Frequencies in 0 7
1.1

TZ in tf/m2
0 1.1 radisec 0

TABLE 3. SURGE DRIFTING FORCE EXCLUDING EFFECT OF SECOND ORDER POTENTIAL

Barge Semi-submersible

(02 0.5 0.6 0.7 0.8 0.9 1.0 1.1 (o, 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.5 0 8 22 48 33 30 54 0.5 0 1 1 5 6 3 7
0.6 -9 21 54 48 28 68 0.6 -1 1 3 6 5 12
0.7 -22 42 44 19 54 0.7 0 3 10 3 8
0.8 -26 37 34 34 0.8 -11 21 18 8
0.9 -27 36 29 0.9 -25 21 11
1.0 F('). -29 34 1.0 Frequencies in -20 20
1.1

-a2 in tf/m2 -29 1.1 rad/sec -24
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This can be easily seen from (7) and (8) for the second order forces. This requires a
system of restrain which has the properties of an ideal low pass filter. Such a system does
not exert forces on the vessel with wave frequencies but is infinitely stiff for surge motions
at frequencies below the wave frequencies.

An analogous situation exists for dynamic positioning systems for drillships. In that
case the thrust must be controlled in such a manner that the vessel is kept on station and
the low frequency horizontal motions are reduced to a minimum while it is not permitted,
from the point of view of wear of the propulsion units, to vary the thrust with frequencies
corresponding to the wave frequencies.

A dynamic restraining system which can aid in achieving this and which can be used.
in model tests to restrain the model in the manner described here is in development at the
N.S.M.B. It is discussed in Pinkster (1978) in relation to the dynamic positioning of drill-
ships.

Instead of using a dynamic restraining system, it is also possible to make use of a less
complex system using linear springs to restrain the model in surge. The stiffness of the
mooring system must then be great enough so that little or no dynamic magnification occurs
in the measured low frequency surge force while at the same time the mooring stiffness is
not so great that the natural surge frequency is too close to the frequency range of the
waves. In such a case the first order wave induced surge motions will not be affected signi-
ficantly which means that the low frequency part of the measured force will be correct.

This system of restraint was used to moor the semi-submersible in irregular head seas.
The model was moored by lines running horizontally fore and aft from the pontoons.
Each line incorporated a force transducer. The stiffness of the mooring system resulted in a
natural surge frequency of 0.4 rad/sec corresponding to about 15.8 sec full scale. -

The spectrum pf the irregular waves is given in Fig. 6. As can be seen, the natural surge
frequency is just below the frequencies in the spectrum. In order to show the influence
of the stiffness of the mooring system on the first order motions, the response functions of
surge, heave and pitch are given in Fig. 7. The results for the very stiff mooring system are

,,gmg-c.r.,---,sjr9.1:mrr77,rx^"7": .---mr.verraccm-mgorw""°.---4
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Fla. 7. First order motions of the semi-submersible in head waves.

compared to results for a very soft mooring system which gave a natural surge period of
about 175 sec. The response functions were determined from tests in irregular head seas.

From the results it appears that the heave and pitch response functions are not affected
by the stiff mooring system. The surge response function increases towards the lower
frequencies as the frequency approaches the natural surge frequency of 0.4 rad/sec. In the
frequency range of the major energy in the waves the surge response is unaffected.

From the comparison of the surge response function it appears that probably the
mooring system was a little too stiff. The influence on the first order, wave frequency motions
is, however, small.

From this it is concluded that the mean and the low frequency surge forces measured
during the test are not significantly affected by the mooring system.

Assuming that the equation of motion for surge can be approximated by a second
order differential equation it can be concluded that the dynamic magnification of the low
frequency force is about 6% for a frequency of 0.1 rad/sec which corresponds to a period
of 62.8 sec. Higher frequencies are not of practical interest since a real mooring system for
such a vessel will almost certainly result in natural surge frequencies which are considerably
lower than 0.1 rad/sec.

METHOD OF ANALYSIS
The total low frequency surge force measured in the mooring system was analysed by

means of cross-bi-spectral methods based on work by Dalzell (1976).
By means of C.B.S. methods it is possible to determine the quadratic transfer function

for the surge force in regular wave groups from the measured low frequency surge force
and the irregular wave measured during the test. The wave elevation was measured some
distance away from the model in a line parallel to the wave crests through the mean position
of the center of gravity.
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TEST DURATION
In order to have sufficient oscillations in the low frequency surge force on which to base

the analysis, the test was carried out for a time duration corresponding to 6 hr in reality.
During this time about 2700 waves passed the model. The low frequency surge force
components with a frequency of 0.1 rad/sec (62.8 sec) contained about 340 oscillations.

COMPARISON OF RESULTS OF THEORETICAL COMPUTATIONS AND
CROSS-BI-SPECTRAL ANALYSIS

The results are given in Fig. 8. In this figure the amplitude of the quadratic transfer
functions of the mean surge drifting force and the low frequency surge drifting force with

a frequency equal to 0.1 rad/sec are given in tf/m2.
The computed values of the total force correspond to the numbers given in Table 1 on

the diagonal (mean force) and in the first row beside the diagonal (low frequency force with

frequency 0.1 rad/sec).
The computed values of the total force excluding the component of 9(2) correspond

with the numbers given in Table 4 in the row next to the diagonal.
The results given in Fig. 8 shows a reasonable correlation between the measured and

computed results.
The mean wave drifting forces compare well for frequencies higher than 0.75 rad/sec

while the C.B.S. results are somewhat higher for lower frequencies.
The computed amplitude of the total low frequency force with a frequency of 0.1 rad/

sec compares well with the results obtained by C.B.S. methods over the whole frequency
range except for the spike at 0.92 rad/sec.

From the result it would appear that the second order potential contribution is indeed
present at lower wave frequencies, since the total force excluding the effect of (p(2) gives a

significantly lower value.
This conclusion is perhaps not fully supported, however, since in the same range of

wave frequencies the C.B.S. results tend to over-estimate the mean surge force transfer
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FIG. 8. Comparison of mean and low frequency surge drifting forces.

1

1.0

in rod sec-1

function.

-50

Mean
50

Low-frequency

Computed
(total)Computed

From C.B.S (total)
Computed withou
0.1 rod see'

-
-- -- From C.B.S

0.5 1.0 0.5
to, + u.r2

-
2

608 J. A. PINKSTER



Mean and low frequency wave drifting forces on floating structures 609

TABLE 4. Low FREQUENCY DRIFTING FORCES ON A CYLINDER IN BEAM SEAS DUE TO THE
SECOND ORDER POTENTIAL

It should be considered, however, that the C.B.S. method of analysis obtains the
quadratic transfer function for the force by an averaging process over the number of
oscillations occurring in the measured force signal at the (low) frequency of interest. This
means that the transfer function for the surge force at a frequency of 0.1 rad/scc has been
obtained by averaging over about 340 oscillations. The mean force transfer function is
obtained from averaging over an oscillatory component with frequency zero. The accuracy
of results for the mean force transfer function becomes questionable when taking this
into account. At present, there is no clear indication of the accuracy which may be expected
from cross-bi-spectral methods other than that the accuracy increases with the length of the
record.

Exact Approximation

0.59 0.72 0.84 0.95 1.12 co,l/dIg 0.59 0.72 0.84 0.95 1.12 coi

0.59 0
0.72
0.84
0.95
1.12 .

co,VdIg

0.02
0

0.01
0.03
0

0.02
0.01
0.03
0

0.13
0.10
0.04
0.06
0

F(2)

0.59 0
0.72
0.84
0.95
1.12 "

caBA/dIg

0.03
0

0.11
0.03
0

0.20
0.11
0.04
0

0.33
0.26
0.18
0.10

0

F(')
pgL C 1 C3 F.gLCIC2

CONCLUSIONS
It has been shown that the mean and low frequency second order wave drifting forces

can be obtained through the method of direct integration of pressures on the instantaneous
wetted surface of the hull of a floating structure. The theoretical expressions have been
evaluated using numerical methods based on three-dimensional potential theory.

Comparisons of the computed mean surge drifting force in regular head waves with
result of measurements show good agreement for the case of a rectangular barge and for a
column stabilized semi-submersible.

This implies that, also for a semi-submersible, potential effects dominate in the wave
drifting forces.

It appears that for the barge and the semi-submersible the contribution of the relative
wave height to the mean wave drifting force is dominant.

Comparisons between the computed values of the mean and low frequency surge forces
on the semi-submersible and the values obtained from a test in irregular head seas using
cross-bi-spectral methods show reasonable correlation.

More information is needed concerning the accuracy of cross-bi-spectral methods when
these are used to obtain transfer functions for very low frequency components in the
measured forces.



0,
On

Everywhere within the fluid,

A9(2) --- 0,

Besides these conditions also a radiation condition has to be satisfied.

-
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APPENDIX A
CONTRIBUTION OF THE LOW FREQUENCY SECOND ORDER POTENTIAL cp(2)

When a body is floating in a regular wave group consisting of two regular waves with frequencies co;
and cof, part of the second order wave exciting forces are due to the second order velocity potential (1)(2
as was already indicated by (7) and (8).

The second order potential 9(2) has to be determined taking into account the following boundary condi-
tions; see Pinkster (1979):

At the mean free surface,
vp1(2)3 (4)(9,, = 2.v(p(1) v(p(I), 9('). ((pi3z(93 ttx(t)a),

At the mean position of the body,

VP(2) n = {X(1) v) v9(9)} ('v41) V9(1)). N('),

At the sea floor,
4(2)
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Faltinsen and Loken (1979) have given a solution for the low frequency wave exciting force due to
second order potential T(2) which is valid for the two-dimensional case with infinite waterdepth. For prac-
tical cases this may be used to estimate the wave drifting forces on a vessel in beam waves.

For the general three-dimensional case no analytical solution has been given and only numerical
methods can be applied. The main difficulties lie in the inhomogeneous free surface boundary condition
(29). The right-hand side of this equation contains the total solution to the first order problem. The total
first order potential w(') contains contributions from the undisturbed incoming waves, diffraction waves
and waves due to first order body motions.

If the total force due to the second order potential is to be determined numerically by means of distribu-
tions of sources then, in order to satisfy the free surface boundary condition of (29), the sources must not
only be distributed over the hull but also over the free surface. This method will require a lot of computer
space and computing time. It is not clear at this time whether the importance of this contribution justifies
such a step.

As indicated by Newman (1974) and also inferred by results obtained by Faltinsen and Loken, it appears
that for many practical cases the contribution due to the second order potential will be small. This conclusion
is justified when regarding the low frequency wave drifting forces on structures which have very low natural
frequencies due to their large effective mass in relation to the stiffness of the mooring systems. As a con-
sequence of the low damping at the natural frequency, the wave drifting force components with the same
frequency as the natural frequency are of importance.

It can be shown that, as the frequency approaches zero, the contribution to the drifting forces due to
the second order potential vanishes leaving only contributions which are due to products of first order
quantities.

Results obtained by Bowers (1975) on the low frequency surge motions of a barge in irregular head
waves indicate that, as the natural surge frequency is increased by increasing the stiffness of the mooring
system, the influence of contributions to the low frequency drifting force related to the second order potential
increase also. The general conclusions to be drawn at this time is that for systems which have very low
natural frequencies the second order potential will not be very important but for systems with higher natural
frequencies it may be necessary to include a contribution due this potential. Systems with low natural fre-
quencies in the horizontal motions are for instance vessels moored to single point mooring systems in deep
water. In such cases natural periods in the order of several hundreds of seconds are not uncommon. Higher
natural frequencies are found in, for instance, the vertical motions of semi-submersible type structures
which have natural periods of 20-40 sec or in the horizontal motion of vessels moored to jetties. Due to the
stiffness of the mooring systems natural periods of the horizontal motions of 30-100 sec occur in such cases.

APPROXIMATION FOR THE CONTRIBUTION OF THE SECOND ORDER
POTENTIAL

From the afore-going it will be clear that at least an indication of the magnitude of the contribution of
the second order potential to the low frequency wave drifting forces in relation to other components is
desirable.

To this end an approximative method can be used based on linear potential theory which is applicable
in both two and three dimensions. The approximation is based on the assumption that the major part of
the low frequency second order force due to the second order potential is the wave exciting force component
due to the contribution of the undisturbed incoming waves to the second order potential.

This means that in the right hand side of the free surface boundary condition of (29) only terms involving
the first order velocity potential of the undisturbed incoming waves remain. The second order potential
which satisfies this boundary condition and the boundary condition at the sea-floor of (31) as well as the
equation of continuity (32) has, for instance been given by Bowers (1975).

If the first order velocity potential associated with the undisturbed incoming regular wave group con-
sisting of two regular waves is as follows:

2 Cs cosh k (X, h) .VI) = sin (k,X, + wit + Ei).i=i cog cosh /4

Then the low frequency component of the second order velocity potential associated with these waves is as
follows:

2 2 cosh {(1c, lc)) (X, + h))
.n ((k1 ki)X,9(2) = E CiCp4u sin

i= I j= cosh (k,

+ + co,



in which Aj is a coefficient depending on co, and the waterdepth and is given by Bowers (1975).
The low frequency component of this second order potential represent long waves which are induced

by the presence of the regular wave group. The phase of this long wave relative to the regular wave
group is such that it has a trough where the wave group attains its maximum wave height. This is shown
in Fig. 9.

Envelope of group

FIG. 9. Wave due to second order potential in a wave group.

The method for approximating the component of the second order wave exciting force due to this
potential is based on the assumption that the long waves associated with the potential may be viewed as
separate waves.

The potential associated with such a wave does not satisfy the boundary condition on the body which,
for the simplified case, is assumed to be equivalent to the normal first order boundary condition. This
means that the right hand side of (30) is zero. This means that an additional diffraction potential must be
introduced. This potential need only satisfy the equation of continuity, the boundary condition at the sea-
floor, the radiation condition and the homogeneous free surface condition:

gg)13 (pp = 0. (35)

This last condition gives rise to the well known dispersion relationship:

= kg tanh kh. (36)

The incoming waves have a wave number equal to lc; k, and wave frequency equal to co, co,.

These waves do not obey the dispersion law Equation (36). If the incoming waves have a frequency of
coi co, then the diffracted waves have the same frequency but the wave number will be according to the
relationship.

(co, als)2 = kg tanh kh. (37)

In order to simplify the situation we allow the diffraction waves to have the same wave number lc, k
as the incoming waves: This means that differences will occur in the diffracted waves further away from the
vessel. Close to the body the situation will be unchanged, since the boundary condition at the body still
has to be satisfied. The reason for this alteration in wave number of the diffraction waves will be apparent
from the following.

We have now reduced the problem to the situation where we have to determine the wave exciting force
on the body due to a wave which has a velocity potential as given by (34) while we allow the diffracted
waves to have the same wave number and frequency as the incoming waves.

This is solved by considering the ordinary first order wave exciting force F(') on the body in a regular
wave with wave number k equal to k, k, in an ordinary gravity field with g as constant of gravity. For
such a case the associated wave frequency co will be in accordance with the dispersion relationship of (34).
The frequency of this wave can be made equal to the frequency of the second order waves by selecting a
different value for the constant of gravity:

COY"(k kj) tanh (ki ki)h

Since the wave exciting force is proportional to the constant of gravity, the initial force F(') with wave with
frequency co which follows from (36) becomes a second order force with frequency Oh - (Di by simply
applying the factor

C0j. (38)

612 J. A. PINKS1ER



Mean and low frequency wave drifting forces on floating structures

go
no = 7,

to the initial force.
This does not complete the transformation, however, since besides satisfying the requirement that wave

number and wave frequency be equal, the amplitudes of the potentials must be equal. After the alteration
of the constant of gravity, the transformed potential of the first order regular wave is:

C g15 cosh ((IQ k5) (X + h)}- sin
k,)) + -

00, - 0)j) anti - kj)h

F(2)0 = nu.

which taking into account (35) gives:

F(),, = f . F(1)0 ,

where

Ao(o (0j)
fa

COMPARISON BETWEEN THE EXACT RESULTS AND THE APPROXIMATION
It can be shown that this method of approximation gives exact results in two simple cases and gives a

reasonable approximation for a third, more practical, case.
The first case concerns the second order pressure due to the second order potential in undisturbed

irregular waves in a point X3 = a below the still water level. The second order pressure is:

The amplitude of the second order potential is given in (34). Equality of the amplitudes means that:

C a go

((i3,
co)) C,CJ Ao

This means that the first order wave amplitude must be selected so that:

=
Au (COI (42)

g1.1

cosh ((k, kJ) ( a + h)}
IX% = PC4 At/ cod) (k, ki) h

For the first order potential the pressure follows from:

P(1) = P

O) i (0). (41)

The first order force F(') is determined for a value of unity for C,,.
Since forces are proportional to the wave amplitude, (42) gives a second correction factor which has

to be applied to the force F(') in order to give the required second order force F(2):

Au (cat coi).

For the low frequency component given in (34) the amplitude of the pressure is:

.! (47)

The amplitude of the pressure using a first order potential component of the type given in (33), unit wave
amplitude and wave number IQ k, is:

(48)
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+ COI -co.a j (40)

p(1) = p (p(2), (46)
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cosh ((k, kj) ( a + h)}p(1)
° cosh (k, kj) h

Using the coefficient .1",, given in (45), gives the following approximation for the second order pressure
amplitude:

cosh {(k, 10)( a + h))
P0)0 = P Au (ON cosh (k, kj) h

which equals the exact value given in (47). The reason for this is that other contributions to the exact value
which are neglected in the approximation namely, those due to diffraction and body motions are in this
case zero.

The second case concerns the horizontal low frequency wave drifting force, due to the second order
potential, acting on a vertical wall in deep water. It can be shown that the approximation is also equal to
the exact result in this case. The reason for this is that the first order incoming waves and the first order
outgoing waves are identical (total reflection) and the total second order potential consists of a contribution
associated with the undisturbed incoming waves and a contribution due to the outgoing diffraction waves.
Since the approximation gives the exact value for the second order potential associated with the incoming
waves it also gives the exact value for the second order potential associated with the outgoing waves and
hence the approximation is also the exact value.

The third example concerns the two-dimensional case of a free floating cylinder in beam waves as
presented by Faltinsen and Loken (1979).

These authors solved the second order problem exactly and gave results on the contribution of the
total second order potential to the low frequency second order sway force in regular wave groups in deep
water. The method of approximation presented here was applied to the same case using results given by
Vugts (1968) on the first order sway force in regular beam waves.

(50)

The results are presented in the form of the amplitude of the low frequency second order force due to the
second order potential for a range of combinations of co, and co, which are the frequencies of two waves
making up a regular wave group. The exact results are compared with the approximation in Table 4.

Comparison of the results show that near the line coi co, the approximation is good but for larger
differences between co, and co; the approximation is considerably higher than the exact value. Further study
will be required to determine the reason for the large differences which occur at higher difference frequencies.
At the present, however, it may be tentatively concluded that the method of approximation gives the right
order of magnitude to the low frequency forces due to the second order potential for difference frequencies
which are not too large. For the cylinder in beam seas large differences between the exact results and the
approximation occurred for values of the non-dimensional difference frequency greater than about 0.1.

The approximation will give best results when the contribution to the second order potential ofthe first
order diffraction waves and waves due to body motions are negligible. This requirement is probably satisfied
more by vessels such as semi-submersibles than by ordinary ship or barge shapes.

APPENDIX B

SYMMETRY OF THE QUADRATIC TRANSFER FUNCTION OF THE
COMPONENT DUE TO 90)

The approximation for FCj as given in (44) is only defined for co, > w. In order to conform with the
definition given in (18)(22) for the quadratic transfer function, the in- and out-of-phase parts of the force
component due to tp(2) become:

= iP(a). coi > cop (52)

Pii = (53)
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The coefficient 4, of (45) becomes for deep water:

0(0, (0.1)
CaCi 0); > (0.1. (51)

(Di C0j. (49)
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In these equations P(2)13 and Q(t)ki represent the in- and out-of-phase components of F(t) as determined
by (44).

This transformation was applied to the example concerning the free floating cylinder in beam waves
and also to the results concerning the barge and the semi-submersible.

5

r-
?

= 0.11, (54)

Qji = - Qu (55)


