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1 Abstract

This thesis gives a more detailed version of a proof from Daniel Mauldin that the set of continuous
functions defined on the interval [0, 1] that are nowhere differentiable is not Borel. On the other hand,
it is shown that the same set is Lebesgue Measurable. The theorems and definitions that are necessary
in the proofs are given in the Glossary, where a knowledge of the course Real Analysis is expected. The
proofs of most of these theorems are given in the Appendix.
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2 Preface

As a student of Applied Mathematics at the TU Delft, I was required to write a Bachelor Thesis about
some mathematical topic. With the help of my supervisor KP Hart, I delved into the world of Descriptive
Set Theory. I set off with the purpose of gaining a thorough understanding of the proof in the article
by Mauldin ’The Set of Nowhere Differentiable Functions’ [2], including the correction for the final part
that was later issued [4]. For that, I first had to gain some more knowledge in the field of Descriptive Set
Theory, which I acquired through the book of Kechris ’Classical Descriptive Set Theory’ [1].

’An example of a Lebesgue Measurable Set that is not Borel’; the title of this paper might be enough of a
reason for many a student in my year to put it away without making any attempt at reading it. Although
the content essentially requires no knowledge beyond that acquired in the course Real Analysis, it might
be a tough undertaking for those that do not have a profound interest in analysis and topology.

In my report, I have attempted to explain things in a way that someone with the same mathematical
background as me should be able to understand; that is, the most important prerequisite for being able
to read this paper is a good understanding of the course Real Analysis. I have also tried to explain or
prove the properties and theorems that I need for my paper without using theory that has not been
treated in Real Analysis. I did not completely succeed, however; at the end, I settled for the use of one
theorem from the book of Kechris without giving a proof. All other properties are proven or at least
roughly explained.

I would like to thank my supervisor, K.P. Hart, for helping me out plenty of times when I was stuck with
something.
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3 Introduction

After Lebesgue set up his measure and integration theory, he was interested in finding out how to accu-
rately describe the class of Lebesgue measurable sets. He knew that open sets were Lebesgue measurable,
and since the Lebesgue measurable sets form a σ-algebra, it follows that every set in the σ-algebra gener-
ated by the open sets must be Lebesgue measurable. However, as the example in this paper shows, these
were not yet all the Lebesgue measurable sets. The σ-algebra generated by the open sets was later named
after Emile Borel, one of the other leading figures besides Lebesgue in the development of measure theory.

Some theorems that were proved later made it very easy to show that there must exist Lebesgue mea-
surable sets that are not Borel. For instance, it can be proved that the Borel σ-algebra is equinumerous
to R, i.e. it has cardinality 2ℵ0 . Also, it was proven that every set of outer measure 0 must be mea-
surable (where the outer measure of a set A is the infimum of measures of measurable sets covering A).
Combining this fact with the result that the Cantor set has measure 0, we find that every subset of the
Cantor set is measurable. Since the Cantor set has cardinality 2ℵ0 , the class of subsets has a strictly
greater cardinality. Therefore, there are more (measurable) subsets of the Cantor set than Borel sets,
so many of these subsets (in fact, one could say the majority), must be Lebesgue measurable but not Borel.

However, this proof does not give us an actual description of a Lebesgue measurable, non-Borel set. This
paper shows that the set M of nowhere differential functions, within the space C of continuous functions
on [0, 1], is measurable but not Borel. It is therefore one of a few examples of a ’nicely describable’
Lebesgue measurable non-Borel set.

Our first chapter will deal with the proof that M is not Borel. The proof is largely based on the article
of Daniel Mauldin ’The set of continuous nowhere differential functions’ [2] and its subsequent correction
[4], following the same proof with some extra explanation and attention to details. In the second (shorter)
chapter, we will show that M is Lebesgue measurable. Some partial results will be based on Kuratowski
[3] as well as, again, Mauldin [2].
Some theory on descriptive set theory will be needed throughout the proof. The necessary theorems are
mentioned in the Glossary chapter and proven in the appendix. Those proofs as well are largely the same
as those given in the book ’Classical Descriptive Set Theory’ of Alexander Kechris [1]. Since proving all
underlying concepts of descriptive set theory would make this paper too much of a descriptive set theory
textbook, there is one theorem from Kechris’ book that we will refer to without giving a proof.
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4 Glossary

The following terms are assumed to be known from Real Analysis: metric space, open and closed sets,
compact sets/spaces, continuous functions, bijections.
A homeomorphism is a bijection f such that both f and f−1 are continuous. We will usually prove
this by showing that f(U) and f−1(O) are open for open sets U and O.
We denote by G(X) and F (X) respectively the open and closed sets of X. For a class of sets Γ, we denote
by Γσ the class of all sets that are countable unions of sets in Γ; similarly, Γδ is the class of countable
intersections of sets in Γ. As such, Gδ(X) is the class of all countable intersections of open sets in X,
and Fσ(X) is the class of all countable unions of closed sets in X. We can go on to define classes like
Fσδ, Gδσ, etc.

The Borel σ-algebra on X is the smallest collection of subsets of X that contains all open sets and is
closed under countable intersections, unions and complements. It is denoted by B(X). A set in the Borel
σ-algebra is called a Borel set.
A map f : X → Y is a Borel measurable map if for every Borel B ⊂ Y , the set f−1(B) is a Borel set
in X. (Notice the analogy with continuous maps).
The following three statements hold for all functions f :
- f−1(

⋂∞
n=1An) =

⋂∞
n=1 f

−1(An).
- f−1(

⋃∞
n=1An) =

⋃∞
n=1 f

−1(An).
- f−1(Ac) = f−1(A)c.
It follows from these statements that it is sufficient to require that the pre-images of open sets are Borel,
or indeed, that the pre-images of any class of sets that generate the Borel σ-algebra are Borel.
From this fact, it follows that all continuous functions are Borel measurable.

A Topology on a space X is a collection T of subsets of X such that ∅, X ∈ T and T is closed under
countable unions and finite intersections. We call the sets of T open.
A basis for a topology is a collection B ⊆ T such that every element of T can be written as a union of
sets in B.

Note that we can derive a topology from a metric, using the familiar definition of open sets from Real
Analysis.
Conversely, we call a topological space (X,T ) metrizable if there is some metric d on X such that d
defines the same open sets as T . Such a metric d is called compatible for the topological space.

Similarly to metric spaces, a dense subset D ⊂ X of a topological space X is a subset that intersects
every nonempty open set.
X is called separable if there exists a countable dense subset of X. An obvious example of a separable
topological space is R with the usual topology, having Q as a countable dense subset.

In this paper, we will define N as the postive integers (so excluding 0).
We will frequently be using the space AN or A<N consisting of infinite respectively finite sequences with
entries in A. Some notation:
- We shall denote such a sequence with the brackets 〈〉, i.e. 〈s1, s2, . . . , sn〉 in the case of a finite sequence.
- s|n is the (finite) subsequence of s consisting of the first n elements.
- We write s ⊆ t when t is an ’extension’ of s, so when length(s) = n, we have that t|n = s.
- ŝ t is the ’concatenation’ of a finite sequence s and a finite or infinite sequence t. In other words,
ŝ t = 〈s1, . . . , sn, t1, t2, . . .〉.

We can view AN as a topology with the sets Ns := {x ∈ J : s ⊆ x} as a basis.
Notice that these sets Ns are actually clopen; if s = 〈s1, s2, . . . , sn〉, then Ns

c =
⋃
{Nt : length(t) =

length(s), s 6= t}. Since this is a countable union, Ns
c is open.

AN has compatible metric d(x, y) = 2−n−1, with n the lowest integer such that yn 6= xn. In other words,
two sequences are ’close’ together when a large initial segment coincides.
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We will be mostly using the following two cases:
We define the Baire space J = NN = { sequences of natural numbers }. The finite sequences are denoted
by N∗ := N<N.
The Cantor space is defined as 2N := {0, 1}N, consisting of all sequences with entries 0 and 1.

A topological space X is completely metrizable if there is some compatible metric d (i.e. a metric
which defines the same open sets as the given topology on X) such that (X, d) is complete.
A space is called Polish if it is separable and completely metrizable.

As an example, the Baire space J as well as the Cantor space 2N are Polish. They are separable because
the set N∗ˆ1 containing all finite sequences concatenated with an infinite sequence of 1’s is dense in J
respectively 2N. They are completely metrizable by the given compatible metric d.

We will need the following theorem:

Theorem 4.1. Let X be a Polish and A ⊂ X be Borel. There is a closed set F ⊂ J and a continuous
bijection f : F → A. In addition, if A 6= ∅, there is also a continuous surjection g : J → A extending f .

The proof of this theorem falls outside the scope of this paper. A proof can be found in Kechris (theorem
13.7) [1].

We denote by K the Cantor set, which is defined as K = {
∑∞
n=1 cn3−n : cn ∈ {0, 2}}.

Let X be a Polish space. A set A ⊂ X is called analytic if there is a Polish space Y and a continuous
function f : Y → X such that f(Y ) = A. According to Theorem 4.1, we can equivalently take Y = J
(since Y is Borel in itself, we can take the composition f ◦ g with g as in the theorem). Both these
versions will be used.
The analytic subsets of X are denoted by A(X). The complements of analytic sets are called co-analytic.
Note that Theorem 4.1 also implies that all Borel sets are analytic.
The following Lemma gives another way to show that a set is analytic:

Lemma 4.2. Assume X,Y are Polish and B ⊂ X × Y is Borel. Then A := projX(B) is analytic.

The following result will be needed in the final steps of the main proof:

Theorem 4.3. B(K) ( A(K).

The following result is of fundamental importance in descriptive set theory, and we will need the subse-
quent corollary for the finishing touch of the main proof:

Theorem 4.4. Let X be a Polish space and A,B ⊂ X be disjoint analytic sets. Then there is a borel set
C ⊂ X separating A from B, i.e. A ⊂ C and C ∩B = ∅.

Theorem 4.5. Let X be a Polish space. Then A ∈ B(x) if and only if A ∈ A(x) and Ac ∈ A(x) (in
other words, a set is Borel if and only if it is analytic and co-analytic).

Theorem 4.5 follows immediately from Theorem 4.4 by taking B = Ac; after all, if C is such that A ⊂ C
and C ∩Ac = ∅, then we must have A = C.
Besides the fact that we will need this theorem for a proof, it is generally interesting since it gives very
good insight in the relation between Borel and Analytic sets.

Another theorem we will need is as follows:

Theorem 4.6. If a set A ⊂ X is analytic, there exists a family (Fs)s∈N∗ ⊂ X of closed sets such that:
1) s ⊆ t⇒ Ft ⊂ Fs (the family (Fs) is regular),
2) diam(Fx|n)→ 0, ∀x ∈ J (i.e. the Fx|n are of vanishing diameter),
3) Fs 6= ∅ if A 6= ∅, and
4) A =

⋃
x∈J

⋂
n Fx|n.

In the case X = K, we can choose the Fs to be clopen.
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These theorems will be proven in the appendix. Please note that all of these proofs are based on proofs
from the book of Kechris [1], but with some more attention to details.

The (outer) Lebesgue measure of a set X is denoted by λ(X). The definition of Lebesgue measurable as
used by Lebesgue and his colleagues is as follows:
A set X is called Lebesgue measurable if there exists a Gδ-set Z ⊃ X such that λ(Z \X) = 0.
Note that this definition is different from the one used by Caratheodory and given in the course Real
Analysis. In this paper, however, Lebesgue’s version will be more useful.

Note that the Lebesgue measure works on sets in R by definition. However, we will be dealing with
Lebesgue measurability of the set of nowhere differential functions, which is a set in a function space.
We can define the Lebesgue measure here through the use of a Borel isomorphism φ mapping R onto C,
the space of continuous real-valued functions defined on [0, 1]. For a subset A ⊂ C we can now define
λ(A) := λ(φ−1(A)). The construction of such a Borel isomorphism falls outside the scope of this paper;
a proof can be found in Kuratowski [3], §36 III.
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5 The set of nowhere differential functions: Not Borel

5.1 Preliminary comments and general idea of the proof

We define C as the space of continuous real-valued functions defined on the closed interval [0, 1], provided
with the uniform metric (|f − g|∞ = supx∈[0,1] |f(x) − g(x)|). We define the subset M of C as the set
consisting of all functions that are not differentiable at any point, that is, the defining limit is infinite or
does not exist. Also, we define by K the Cantor set.

The main idea of the proof is, given an analytic subset E of K, to construct a Borel measurable map
Γ : K → C so that the pre-image of M is exactly the set K \ E. Assuming that M is a Borel set, we
could now deduce that the set K \ E is Borel in K, and therefore E is. However, since not all analytic
sets are Borel (Theorem 4.3), this leads us to a contradiction.

We will not be able to achieve this result entirely, though. Instead, we will prove that the image of K \E
under Γ contains functions that are not differentiable anywhere except (possibly) on a fixed countable
set Y , that does not depend on the choice of the analytic set E.

To link things back to M , we will also need to consider what our function Γ does on the elements of E.
In total, we will prove the following theorem:

Theorem 5.1. There is a countable subset Y of [0, 1] such that for each analytic subset E of K there
is an injective Borel measurable map Γ of K into C and a countable subset S of E so that (1) if t is in
E −S, then Γ(t) has a finite derivative at some point of [0, 1] \ Y and (2) if t is in K \E, then Γ(t) does
not have a finite derivative at any point of [0, 1] \ Y .

5.2 Core of the proof

For an element s = 〈s1, s2, . . . , sk〉 ∈ N∗, let I(s) be the left open, right closed interval with left boundary

a(s) =

k∑
j=1

2−
∑j

i=1 si = 2−s1 + 2−(s1+s2) + · · ·+ 2−(s1+···+sk)

and with right boundary
b(s) = a(s) + 2−(s1+···+sk).

This ’encoding’ of intervals via sequences will be used a lot throughout the proof. We will first explain
some properties.
As an example, I(〈1〉) = (2−1, 2−1 + 2−1] = (1

2 , 1], and I(〈2〉) = ( 1
4 ,

1
2 ].

In general, I(〈p〉) = (2−p, 2−p+1]. In this light, it should be clear that (0, 1] =
⋃∞
p=1 I(〈p〉).

Now let’s take a look at what happens when we extend a sequence with one extra number. Let s =
〈s1, . . . , sk〉. Now note:

a(ŝ 〈p〉) = 2−s1 + · · ·+ 2−(s1+···+sk) + 2−(s1+···+sk+p) = a(s) + 2−(s1+···+sk+p)

and

b(ŝ 〈p〉) = a(ŝ 〈p〉) + 2−(s1+···+sk+p) = a(s) + 2 · 2−(s1+···+sk+p) = a(s) + 2−(s1+···+sk+p−1).

By making p arbitrarily large we can let a(ŝ 〈p〉) approach the left boundary a(s) arbitrarily close from
the right. Also notice that since p − 1 ≥ 0, we have b(ŝ 〈p〉) ≤ b(s), with equality for p = 1. Finally,
notice that a(ŝ 〈p〉) = b(ŝ 〈p+ 1〉), which means that the intervals I(ŝ 〈p〉) and I(ŝ 〈p+ 1〉) ’fit’ perfectly
adjacent to each other. From these remarks we can deduce

I(〈s1, . . . , sk〉) =

∞⋃
p=1

I(〈s1, . . . , sk, p〉).
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We have seen here that extensions with different numbers produce disjoint intervals; this is in fact true
for all sequences of the same length. This can be proven by induction, using the previous remarks. For
sequences of length 1, we have seen that all intervals are disjoint, and extending a sequence causes the
original interval to be divided in an infinite amount of disjoint pieces. If two sequences s and t of length
n are not the same in the first n − 1 digits, then I(s|n − 1) and I(t|n − 1) will already be disjoint, and
since I(ŝ 〈p〉) ⊂ I(s) for any extension ŝ 〈p〉 of s, it follows that the extended intervals are also disjoint.

For an infinite sequence σ ∈ J , we define x(σ) as the point of intersection of
⋂∞
k=1 I(σ|k). Looking at

the definition of the left and right end points, it is not difficult to see that x(σ) =
∑∞
i=1 2−(s1+···+si). We

will be coming back to these numbers later.

We now define a few functions. For an interval (a, b], we define

φ(a,b](x) =


x− a, if a < x ≤ (a+ b)/2

b− x, if (a+ b)/2 ≤ x ≤ b,
0, otherwise

One could consider this a ’hat’ function. For a positive integer n ∈ N, we define hn =
∑
φI(s) as the sum

of these hat functions, where the summation is taken over all finite sequences in N∗ of length n. Also,
we set h0(x) = 1

2 − |x −
1
2 |, for x ∈ [0, 1]. We can consider these hn as ’sawtooth’ functions on the unit

interval, as illustrated in this figure.

1
2

1

1
2

0

Figure 1: h0(x)

1
8

1
4

1
2

1

1
4

0

Figure 2: h1(x)
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4

3
8

1
2

5
8

3
4

1

1
4

0

Figure 3: h2(x) on ( 1
4 , 1]

We will now prove three Lemmas concerning these functions. After that, we will go back to the proof of
Theorem 5.1.

Lemma 5.2. For each n, hn is nonnegative and hn(x) ≤ x/(2n+1 − 1), for each x ∈ [0, 1].

Proof. Since each φ(a,b] is nonnegative, it is clear that hn is also nonnegative for every n.
Let s = 〈s1, . . . , sn〉 ∈ N∗. The highest function value within the interval I(s) is

1

2
(b(s)− a(s)) =

1

2
· 2−(s1+···+sn) = 2−(s1+···+sn+1).

This value is assumed in the middle of the middle of the interval, at 1
2 (a(s)+b(s)) = a(s)+2−(s1+···+sn+1).

We can now calculate the slope of the line from (0, 0) to this maximum point:

2−(s1+···+sn+1)

a(s) + 2−(s1+···+sn+1)
= 1/

(
2s1+···+sn+1(2−s1 + · · ·+ 2−(s1+···+sn) + 2−(s1+···+sn+1))

)
= 1/

(
2s2+···+sn+1 + · · ·+ 2sn+1 + 21 + 1

)
≤ 1/

(
1 + 2 + 22 + · · ·+ 2n

)
=

1

2n+1 − 1
,

where equality is achieved for sequences s of the form 〈s1, 1, . . . , 1〉. All function values within the interval
I(s) are bounded from above by this line, as shown in the illustration.
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Since the final estimate does not depend on the se-
quence s, we can deduce that all function values are
beneath this line, therefore we get our final result
hn(x) ≤ x

2n+1−1 for x ∈ [0, 1]

1
4

3
8

1
2

5
8

3
4

1

1
4

0

Figure 4: h3(x) with the line from
(0,0) to the maximum value.

The next Lemma tells us something about how the function h is reproduced for a higher index, on a
smaller interval.

Lemma 5.3. Let q = 〈q1, . . . , qn〉 ∈ N∗ and let

g(x) = 2q1+···+qn
(
x− (2−q1 + · · ·+ 2−(q1+···+qn))

)
= 2q1+···+qn(x− a(q)).

Then g maps I(q) onto (0, 1] and for each p ≥ 0, hp(g(x)) = (2q1+···+qn)hn+p(x), for x ∈ I(q).

Proof. It is clear that g is a continuous, increasing function, so it suffices to show that the left boundary
and right boundary are mapped to 0 and 1, respectively.
From the definition of g we immediately see that indeed g(a(q)) = 0.
Since b(q) = a(q) + 2−(q1+···+qn), we find that g(b(q)) = 2q1+···+qn(2−(q1+···+qn)) = 1.

Now assume that g(x) ∈ I(s), with s = 〈s1, . . . , sp〉 of length p. In this case we have

a(s) < 2q1+...qn(x− a(q)) ≤ b(s) = a(s) + 2−(s1+···+sp),

and hence,

a(q) + 2−(q1+···+qn)a(s) < x ≤ a(q) + 2−(q1+···+qn)a(s) + 2−(q1+···+qn+s1+···+sp).

Notice that

a(q) + 2−(q1+···+qn)a(s) = 2−q1 + · · ·+ 2−(q1+···+qn) + 2−(q1+···+qn+s1) + · · ·+ 2−(q1+···+qn+s1+···+sp)

= a(t),

where t := 〈q1, . . . , qn, s1, . . . , sp〉 is of length n+ p.
We find that a(t) < x ≤ b(t), so x ∈ I(t).

Now assume g(x) ≤ 1
2 (a(s) + b(s)) = a(s) + 2−(s1+···+sp+1).

Rewriting gives

x ≤ a(q) + 2−(q1+···+qn)a(s) + 2−(q1+···+qn+s1+···+sp+1)

= a(t) + 2−(q1+···+qn+s1+···+sp+1) =
1

2
(a(t) + b(t)).

So we find that hn+p(x) = x − a(t). Replacing all ” ≤ ” with ” ≥ ” in this argument shows that
hn+p(x) = b(t)− x for g(x) ≥ 1

2 (a(s) + b(s)).

In the first case we find that

2q1+···+qnhn+p(x) = 2q1+···+qn(x− a(t))

= 2q1+···+qn
(
x− a(q)− 2−(q1+···+qn)a(s)

)
= 2q1+···+qn(x− a(q))− a(s) = g(x)− a(s)

= hp(g(x))

The second case shows the same result in a similar manner.
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Finally we give another upper bound for special instances of hn.

Lemma 5.4. Let 〈q1, . . . , q2k〉 ∈ N∗, then

h2k+1(x) ≤ 1

22k

(
x−

(
2−q1 + · · ·+ 2−(q1+···+q2k )

))
,

for each x ∈ I(〈q1, . . . , q2k〉).

Proof. Using Lemma 5.3 (with n = p = 2k), we find for x ∈ I(〈q1, . . . , q2k):

h2k+1(x) = 2−(q1+···+q2k )h2k(g(x)),

with g the function defined in Lemma 5.3. According to Lemma 5.2,

h2k+1(x) ≤ 2−(q1+···+q2k )
g(x)

22k+1 − 1
.

Note that (since k ≥ 1) we have 22
k

< 22
k+1 − 1. Substituting for g(x) we now get

h2k+1(x) ≤ 1

22k

(
x−

(
2−q1 + · · ·+ 2−(q1+···+q2k )

))
.

A modified version of the functions hn will be used to construct the function Γ, and we will use the
preceding Lemmas to prove some of the necessary differentiability results.

We will now go back to the proof of theorem B by defining a number of functions leading up to the
definition of Γ.
Let E be an analytic subset of the Cantor set K.
We use the characterisation given in Theorem 4.6. This theorem says we can find a map H from N∗ into
the clopen subsets of K, such that H(s) ⊂ H(t) if t ⊂ s, diam H(s)→ 0 for length(s)→∞, and

E =
⋃
σ∈J

∞⋂
k=1

H(σ|k).

For q = 〈q1, q2, . . . , q2i〉 ∈ N2i , we define

λq = 1− χA(q)∪H(〈q1,...,q2i−1 )

where A(q) =
⋃
{H(s) : s ∈ N2i and |a(s)− b(q)| < 2i/(22

i+1 − 1 + 2i)}. Here χB denotes the character-
istic function of B within the Cantor set K.
This rather intimidating definition of the function λ is merely a way of ensuring that the proof of the
next few Lemma’s proceeds smoothly. The reasons will become clear to the reader upon reading onwards.

For n ∈ N, define

fn(x, t) =
∑

λs(t)φI(s)(x),

where the summation is taken over N2n , so all sequences of length 2n. This function can be viewed as a
modification of the function h, since at a point x it takes either the same value as h2n(x) or 0, depending
on t.
Let G(x, t) =

∑∞
n=1 fn(x, t) and F (x, t) = t+

√
x+G(x, t), for (x, t) ∈ [0, 1]×K.

Finally we can define the map Γ from K into C by

Γ(t) = F (·, t), t ∈ K.

Let us prove a list of elementary characteristics of the functions just defined.
-We first check that these functions are well defined; this requires only that G is well-defined, since the
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other functions are clear. Note that we have fn(x, t) ≤ h2n(x). We also have maxhn+1(x) = 1
2 maxhn(x)

(see figures 1-3) and h0(x) < 1 = 20, so we find that hn(x) < 2−n for n ∈ N; we only need that
fn(x, t) ≤ h2n(x) < 2−n, since this shows that the series

∑∞
n=1 fn(x, t) converges uniformly over [0, 1]×K.

In other words, the function G(x, t) is well defined.

-Since f(t, ·) is continuous for all t (after, all λs(t) is now only a constant in each term of the sum, and
every function φI(s) is continuous), we find (using uniform convergence) that every image function Γ(t)
is continuous.
-The additional t in the definition of F (x, t) allows us to show that Γ is injective: after all, F (0, t) = t,
so every function Γ(t) has a different value at x = 0.
-The additional

√
x in the definition of F (x, t) is used to show that any image function Γ(t) is not dif-

ferentiable at 0. After all, ∂F
∂x (x, t) = 1

2
√
x

+ ∂G
∂x (x, t), and since G(0, t) = 0, G(x, t) ≥ 0 ∀ x ∈ [0, 1], it

follows that ∂G
∂x (0, t) > 0 and so limx→0

∂F
∂x (x, t) = +∞.

- Finally we prove that Γ is a Borel measurable map. For this, we define its partial sums:

(Γn(t))(x) = t+
√
x+

n∑
p=1

fp(x, t).

As we proved earlier, Γ is well-defined so Γn → Γ uniformly for n → ∞ (as functions from K into C).
As the following Lemma dictates, it is now enough to prove that the functions Γn are Borel:

Lemma 5.5. If (fn)∞n=1 is a sequence of Borel measurable maps from K × [0, 1] into R that converge
uniformly to a function f , then f is also Borel measurable.

Proof. Let A ⊂ R be open, and denote B = f−1(A). We will prove that B is Borel.
Note that x ∈ B if and only if f(x) ∈ A, which is the case if and only if there exists some N ∈ N such
that for all n ≥ N : fn(x) ∈ A (since A is open and the fn converge to f uniformly).
Now call Bn = f−1n (A) = {x ∈ X : fn(x) ∈ A}. According to the assumption, the Bn are all Borel.
The preceding remarks show that B =

⋃
N∈N

⋂
n≥N Bn, so it follows that B is also Borel. Therefore f is

Borel measurable.

The fixed part t +
√
x has no influence on the measurability of the functions Γn. We will only consider

the partial sums
∑n
p=1 fp(x, t).

Let us look at a single function fp(x, t); it is defined as
∑
s λs(t)φI(s)(x), summing over all sequences of

length 2p.
We define Φp : K → C by Φp(t) = fp(·, t). We will prove that this function is Borel measurable.
To simplify things, we first prove another Lemma:

Lemma 5.6. The σ-algebra on C generated by the sets Bs,p = {g ∈ C : g(s) > p} and Cs,p = {g ∈ C :
g(s) < p} is equal to the Borel σ-algebra on C.

Proof. First note that Bs,p is open; if g ∈ Bs,p, then g(s) > p, so there is some ε > 0 such that g(s)−ε > p.
This means that for all h ∈ C with |g − h|∞ < ε, we have h(s) > g(s) − ε = p, so h ∈ Bs,p. Similar
considerations show that Cs,p is open.
It follows that the σ-algebra generated by the sets Bs,p and Cs,p is contained in the Borel σ-algebra.

Now take g ∈ C, ε > 0 and for all s ∈ [0, 1]∩Q and n ∈ N, take pns , q
n
s ∈ Q such that: g(s)−ε(1−2−n−1) <

pns < g(s)− ε(1− 2−n), and g(s) + ε(1− 2−n) < qns < g(s) + ε(1− 2−n−1).
Define Pn =

(⋂
sBs,pns

)
∩
(⋂

s Cs,qns
)
.

If h ∈ Pn, we find that g(s)−ε(1−2−n−1) < h(s) < g(s)+ε(1−2−n−1) for all s ∈ [0, 1]∩Q. Now, because
g and h are both continuous, we can conclude that g(x)− ε(1− 2−n−1) ≤ h(x) ≤ g(x) + ε(1− 2−n−1) for
all x ∈ [0, 1].
Therefore: Pn ⊂ B(g, ε(1− 2−n−1))
Also note that if h ∈ B(g, ε(1− 2−n)), then ps < g(s)− ε(1− 2−n) < h(s) < g(s) + ε(1− 2−n) < qs for
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all s ∈ [0, 1] ∩Q, so h ∈ Pn. Therefore, B(g, ε(1− 2−n)) ⊂ Pn.
Putting these results together, we find:

B(g, ε) =
⋃
n

B(g, ε(1− 2−n)) ⊂
⋃
n

Pn ⊂
⋃
n

B(g, ε(1− 2−n−1)) = B(g, ε).

We conclude that B(g, ε) =
⋃
n Pn, where the Pn are contained in the σ-algebra generated by sets Bs,p

and Cs,p.
Therefore, for each g ∈ C and ε > 0, the set B(g, ε) is also in this σ-algebra.
Note that C is separable (for example, the set of polynomials with rational coefficients is dense in C by
Stone-Weierstrass), so let D ⊂ C be countable and dense in C. Then we can write any open set U ⊂ C
as U =

⋃
f∈D∩U B(f, εf ), where εf is chosen such that B(f, εf ) ⊂ U . As such, every open set in C is

contained in the σ-algebra generated by the sets Bs,p and Cs,p, which completes our proof.

In view of this Lemma, it suffices to show that for every s ∈ [0, 1] ∩ Q, q ∈ Q, the sets Φ−1p (Bs,q) and
Φ−1(Cs,q) are Borel.
Remark that Φ−1p (Bs,q) = {t : fp(s, t) > q} = {t : λτ (t)φI(τ)(s) > q}, where τ is the sequence of length
2p such that s ∈ I(τ). (For other τ of length 2p, φI(τ)(s) = 0).
Since φI(τ)(s) is fixed, the only variable of λτ (t)φI(τ)(s) is λτ (t), which is either 0 or 1. Therefore, the
only three possibilities for Φ−1p (Bs,q) are ∅ (if q ≥ φI(τ)(s)) or the whole space K (if q < 0), or the subset
of K where λ takes the value of 1 (if 0 ≤ q < φI(τ)(s)).
As stated before, λτ (t) = 1 − χA(τ)∪H(〈sτ1,...,τ2p−1 〉). Here, the H(〈τ1, . . . , τ2p−1〉) is given to be clopen.
Furthermore, A(τ) is defined as a (countable) union of (clopen) sets H(t), and is therefore open. In short,
we find that λτ (t) = 1− χU , for some open U ⊂ K.
We conclude that the only possibilities for Φ−1p (Bs,q) are ∅, U c or K, all of which are clearly Borel.
In a similar fashion, we can deduce that the only possibilities for Φ−1p (Cs,q) are ∅, U or K, which are all
Borel.
We can conclude that Φp is a Borel measurable map. Since Γn is a finite sum of functions Φp plus

√
x+ t,

this means that the Γn are Borel measurable, and by Lemma 5.5, Γ is Borel measurable.

We now prove some deeper Lemma’s building up to the result of theorem 5.1.

Lemma 5.7. Suppose σ ∈ J and {t} =
⋂∞
n=1H(σ|n) and x0 = x(σ). Then Γ(t) has a left derivative at

x0 and G(·, t) has left derivative zero at x0.

Proof. Since x0 6= 0 (it is an infinite sum of powers of 2), we know that t +
√
x has a left derivative at

x0. It therefore suffices to show the second part.
Let ε > 0, and take n ∈ N such that 2−n < ε. Let δ > 0 be such that (x0 − δ, x0] ⊂ I(σ|2n). Finally take
x ∈ (x0 − δ, x0) ⊂ I(σ|2n).

For any i ∈ N, if s ∈ N2i is such that x0 ∈ I(s), then we have s = σ|2i and thus t ∈ H(σ|2i) = H(s).
Since H(s) ⊂ H(〈s1, . . . , s2i−1〉), we find that λs(t) = 0. If x0 6∈ I(s), we have φI(s)(x0) = 0. From these
remarks we deduce that fi(x0, t) = 0 for all i ∈ N. We can now estimate the differential quotient as
follows (using the triangle inequality):∣∣∣∣G(x, t)−G(x0, t)

x− x0

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣fi(x, t)x− x0

∣∣∣∣+

∞∑
p=1

∣∣∣∣fn+p(x, t)x− x0

∣∣∣∣ .
If 1 ≤ i ≤ n, since I(σ|2n) ⊆ I(σ|2i) we have x ∈ I(σ|2i). Using the same argumentation as before, we
get fi(x, t) = 0.

Take p ≥ 1. We set α = 22
n+p+1 − 1, β = 2n+p and d = α

α+βx0.
First suppose x ≤ d.

a(σ|2n) x0 − δ x d x0 b(σ|2n)

Figure 5: Case x ≤ d
Since we also have that x < x0 we get∣∣∣∣fn+p(x, t)x− x0

∣∣∣∣ ≤ h2n+p(x)

x0 − x
≤ h2n+p(x)

x0 − d
.

16



We can now use Lemma 5.2:

h2n+p(x)

x0 − d
≤ x

(22n+p+1 − 1)(x0 − d)
≤ d

α

1

x0 − d

=
x0

α+ β

1

x0(1− α
α+β )

=
1

α+ β − α
=

1

β
= 2−(n+p) < ε

Now suppose d < x < x0. In this case, there must be some z = 〈z1, . . . , z2n+p〉 so that x ∈ I(z).
Then we have

fn+p(x, t) = λz(t)φI(z)(x).

If z = σ|2n+p, then we can again use the same argumentation as before to show that fn+p(x, t) = λz(t) =
0.
If not, then notice that z and σ|2n+p have the same length and are different, so the intervals I(z) and
I(σ|2n+p) must be disjunct. As illustrated in Figure 6, we now have d < b(z) ≤ a(σ|2n+p) < x0.

x0 − δ a(z) d x b(z) a(σ|2n+p) x0 b(σ|2n+p)

Figure 6: Case d < x < x0
It follows that

|a(σ|2n+p)− b(z)| < x0 − d

= x0(1− α

α+ β
) = x0

β

α+ β
≤ β

α+ β

=
2n+p

22n+p+1 − 1 + 2n+p
.

This is a term that we recognize: indeed, it follows from the definition of λz that t ∈ A(z), and so
λz(t) = 0 = fn+p(x+ t).

We can now conclude that
∣∣∣G(x,t)−G(x0,t)

x−x0

∣∣∣ < ε for all x ∈ (x0 − δ, x0], thus G(·, t) has left derivative zero

at x0.

To summarise the proof: We split up the differential quotient and looked seperately at the contribution
of each of the functions fn(x, t). We then chose a d so close to x0 such that, if x is between them, then the
sequence z belonging to the corresponding interval is such that λz(t) = 0, using the abstract definition

of A(z). If x is to the left of d, we used one of the earlier Lemmas to estimate the term
∣∣∣ fn+p(x,t)

x−x0

∣∣∣ from

above with ε.

To also calculate the derivative at the right, we need to make an exception for a countable subset of [0, 1].
This will turn out to be the subset Y mentioned in Theorem 5.1.
We denote by Q the subset of J containing all sequences whose entries are equal to one from some term
on. Additionally, we denote by R(Q) the set of all x in [0, 1] such that x = x(σ) for some σ ∈ Q.
Since we can identify Q by N∗, the set of finite sequences, by simply adding an infinite amount of ones
at the end of each sequence, we can deduce that Q and R(Q) are indeed countable.

We show that σ ∈ J \ Q if and only if x(σ) is in the interior of I(σ|k), for each k. Notice that x(σ) is
not in the interior of I(σ|k) if and only if x(σ) is on the right boundary of I(σ|k), i.e. x(σ) = b(σ|k). In
other words, the remainder x(σ) − a(σ|k) =

∑∞
n=k+1 2−(s1+···+sn) must be as large as possible. This is

the case when all subsequent si, i > k are equal to 1.
On the other hand, if σ ∈ Q, then there is k ∈ N such that si = 1, ∀ i > k. In that case we have

x(σ) =

∞∑
n=1

2−(s1+···+sn) =

k∑
n=1

2−(s1+···+sn) + 2−(s1+···+sk)
∞∑
n=1

2−n = a(σ|k) + 2−(s1+···+sk) = b(σ|k),

and therefore x(σ) is not in the interior of I(s|k).
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Lemma 5.8. Suppose σ ∈ J \Q, {t} =
⋂
H(σ|k), and x0 = x(σ). Then Γ(t) is differentiable at x0.

Proof. Using Lemma 5.7, it suffices to show that G(t) has right derivative zero at x0.
Let ε > 0, and take n ∈ N such that 2−n < ε. Since σ ∈ J \Q, x0 is in the interior of I(σ|2n).
Therefore we can take δ > 0 be such that [x0, x0 + δ) ⊂ I(σ|2n), and let x ∈ (x0, x0 + δ).
For the same reason as in Lemma 5.7, we have fk(x0, t) = 0 for all k ∈ N. Therefore we write again:∣∣∣∣G(x, t)−G(x0, t)

x− x0

∣∣∣∣ ≤ n∑
i=1

∣∣∣∣fi(x, t)x− x0

∣∣∣∣+

∞∑
p=1

∣∣∣∣fn+p(x, t)x− x0

∣∣∣∣ .
Also as in Lemma 5.7, we have fi(x, t) = 0 for 1 ≤ i ≤ n.
Take p ≥ 1. We first presume x ∈ I(σ|2n+p−1). Let z = 〈z1, . . . , z2n+p〉 be such that x ∈ I(z). It
follows that 〈z1, . . . , z2n+p−1〉 = σ|2n+p−1, so t ∈ H(〈z1, . . . , z2n+p−1〉). This means that λz(t) = 0, so
fn+p(x, t) = 0.
Now presume x 6∈ I(σ|2n+p−1), so b(σ|2n+p−1) < x < x0+δ. Then there must be some q = 〈q1, . . . , q2n+p−1〉
so that x ∈ I(q).

a(σ|2n+p−1) x0 b(σ|2n+p−1) a(q) x b(q) x0 + δ

Figure 7: Case x 6∈ I(σ|2n+p−1)
We have: ∣∣∣∣fn+p(x, t)x− x0

∣∣∣∣ ≤ h2n+p(x)

x− x0
=
h2n+p(x)

x− a(q)
· x− a(q)

x− x0
.

From figure 7 it is clear that x−a(q)
x−x0

< 1. Using Lemma 5.4 on
h2n+p (x)

x−a(q) we obtain:∣∣∣∣fn+p(x, t)x− x0

∣∣∣∣ ≤ 2−2
n+p−1

(x− a(q))

x− a(q)
= 2−2

n+p−1

< 2−(n+p) < ε.

We can now conclude that for all x ∈ [x0, x0 + δ):∣∣∣∣G(x, t)−G(x0, t)

x− x0

∣∣∣∣ < ε,

so G(·, t) has right derivative zero at x0.

To summarise the proof: we started off in the same way as in Lemma 5.7, and used our assumption of
σ ∈ J \ Q to fit an interval [x0, x0 + δ) within I(σ|2n). This time, we looked at sequences of length
2n+p−1 instead of 2n+p to allow the use of Lemma 3. This also unveiled another reason for the ’strange’
definition of λs.

Our final Lemma deals with the opposite case

Lemma 5.9. If t is in K \ E, then Γ(t) does not have a finite derivative at any point of [0, 1] \R(Q).

Proof. We remarked before that Γ(t) does not have a finite derivative at 0. Since 1 ∈ R(Q), we only have
to check that Γ(t) does not have a finite derivative anywhere in (0, 1) \R(Q).
Note that every point in (0, 1] can be written as the corresponding point x(σ) of a sequence σ ∈ J . So,
we can without loss of generality take σ ∈ J \Q and x0 = x(σ).

Suppose there is some p0 ∈ N such that for every p ≥ p0, λσ|2p(t) = 0.
This means that if p ≥ p0, we must have p ∈ A(σ|2p) or p ∈ H(σ|2p−1).
If t ∈ H(σ|2p−1) for infinitely many p ≥ p0, we find that t ∈ H(σ|2p−1) for all p, since H(σ|2k) ⊂
H(σ|2k−1). It follows that t ∈ E, contrary to our assumption.
Therefore t ∈ H(σ|2p−1) for only finitely many p. By increasing p0, we may assume that t ∈ A(σ|2p) for
all p ≥ p0.
According to the definition, this means that for each p ≥ p0, we can find a point qp = 〈qp1 , . . . , q

p
2p〉 ∈ N2p
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such that t ∈ H(qp) and |a(qp)− b(σ|2p)| < 2p

22
p+1−1+2p

, which tends to 0 as p approaches infinity.

Because we also have b(σ|2p) → x0 for p → ∞, we find that a(qp) → x0 for p → ∞. (Which can be
shown by using a standard triangle inequality).

Because x0 ∈ R(Q), we have that x0 is in the interior of I(σ|i), for every i ∈ N.
Taking i fixed, we find that there exists an ni ∈ N (with 2ni ≥ i) such that for all p ≥ ni, we have
a(qp) ∈ I(σ|i). This is equivalent to saying that 〈qp1 , . . . , q

p
i 〉 = σ|i, so σ|i ⊂ qp. But this means

t ∈ H(qp) ⊂ H(σ|i). Since this works for all i ∈ N, it follows that t ∈ E, contrary to our assumption.
We can now conclude that there are infintitely many p such that λσ|2p(t) = 1.

Assume G(·, t) does have a finite derivative at x0, say ∂G
∂x (x0, t) = d. In that case, letting ε > 0, we can

find δ > 0 such that for any x ∈ (x0 − δ, x0 + δ) we have∣∣∣∣G(x, t)−G(x0, t)

x− x0
− d
∣∣∣∣ < ε

2
.

Now assume that x, y are such that x0 − δ < x < x0 < y < x0 + δ. We find:∣∣∣∣G(x, t)−G(y, t)

x− y
− d
∣∣∣∣ =

∣∣∣∣G(x, t)−G(x0, t) +G(x0, t)−G(y, t)− d(x− x0 + x0 − y)

x− y

∣∣∣∣
≤

∣∣∣∣G(x, t)−G(x0, t)− d(x− x0)

x− y

∣∣∣∣+

∣∣∣∣G(x0, t)−G(y, t)− d(x0 − y)

x− y

∣∣∣∣
So:

|x− y|
∣∣∣∣G(x, t)−G(y, t)

x− y
− d
∣∣∣∣ ≤ |x− x0|

∣∣∣∣G(x, t)−G(x0, t)

x− x0
− d
∣∣∣∣+ |x0 − y|

∣∣∣∣G(x0, t)−G(y, t)

x0 − y
− d
∣∣∣∣

⇒
∣∣∣∣G(x, t)−G(y, t)

x− y
− d
∣∣∣∣ ≤ |x− x0|

|x− y|

∣∣∣∣G(x, t)−G(x0, t)

x− x0
− d
∣∣∣∣+
|x0 − y|
|x− y|

∣∣∣∣G(x0, t)−G(y, t)

x0 − y
− d
∣∣∣∣

<

∣∣∣∣G(x, t)−G(x0, t)

x− x0
− d
∣∣∣∣+

∣∣∣∣G(x0, t)−G(y, t)

x0 − y
− d
∣∣∣∣

<
ε

2
+
ε

2
= ε

We now take ε = 1
4 , and an appropriate δ > 0, and take p such that λσ|2p(t) = 1 and (a, b] = I(σ|2p) ⊂

(x0 − δ
2 , x0 + δ

2 ). Also, take m = a+b
2 .

Assuming m < x0 ≤ b, we have∣∣∣∣G(b, t)−G(a, t)

b− a
− G(b, t)−G(m, t)

b−m

∣∣∣∣ ≤ ∣∣∣∣G(b, t)−G(a, t)

b− a

∣∣∣∣+

∣∣∣∣G(b, t)−G(m, t)

b−m

∣∣∣∣ < 1

4
+

1

4
=

1

2
.

On the other hand, we have∣∣∣∣G(b, t)−G(a, t)

b− a
− G(b, t)−G(m, t)

b−m

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

(
fn(b, t)− fn(a, t)

b− a
− fn(b, t)− fn(m, t)

b−m

)∣∣∣∣∣ .
For n > p, a and b will stay being right endpoints of intervals I(sn) and I(qn) with sn, qn of length 2n.
(Check back the beginning of this chapter if necessary). This means that φI(sn)(a) = φI(qn)(b) = 0, so
fn(b, t) = fn(a, t) = 0.
We also havem = a+b

2 = 2−s1+· · ·+2−(s1+···+s2p )+2−(s1+···+s2p+1) = a(〈s1, . . . , s2p , 1〉) = b(〈s1, . . . , s2p , 2〉),
so fn(m, t) = 0 as well.

Now assume n < p. Define an = a(σ|2n), bn = b(σ|2n), mn = an+bn
2 .

Because mn = a(〈s1, . . . , s2n , 1〉) (as before), bn = b(〈s1, . . . , s2n , 1〉), we find that I(〈s1, . . . , s2n , 1〉) =
(mn, bn]. Additionally, we have either I(σ|2p) ⊂ I(〈s1, . . . , s2n , 1〉) or I(σ|2p) ∩ I(〈s1, . . . , s2n , 1〉) = ∅.
Therefore, we find that (a, b] = I(σ|2p) is either entirely to the left of mn or entirely to the right of mn.
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Now note that φ(an,bn] is linear with derivative 1 in (an,mn) and linear with derivative −1 in (mn, bn).
With these remarks we can conclude that fn is linear on (a, b], so we finally find∣∣∣∣fn(b, t)− fn(a, t)

b− a
− fn(b, t)− fn(m, t)

b−m

∣∣∣∣ = 0.

We conclude:∣∣∣∣G(b, t)−G(a, t)

b− a
− G(b, t)−G(m, t)

b−m

∣∣∣∣ =

∣∣∣∣fp(b, t)− fp(a, t)b− a
− fp(b, t)− fp(m, t)

b−m

∣∣∣∣
=

∣∣∣∣0− 0− (b−m)

b−m

∣∣∣∣ = 1 >
1

2
.

We have a contradiction. The case where a < x0 < m is analogous, showing instead that

1

2
>

∣∣∣∣G(b, t)−G(a, t)

b− a
− G(m, t)−G(a, t)

m− a

∣∣∣∣ = 1.

Therefore, G(·, t) does not have a finite derivative at x0.

To summarise the proof: picking an arbitrary x0 ∈ [0, 1] \ R(Q) and σ ∈ J \Q such that x(σ) = x0, we
first showed that we can find infinitely many p such that λσ|2p(t) = 1, using the definition of λs. After
proving a general claim for a function differentiable at a point, we provided a contradiction with this
claim by cleverly using the definition of fn.

Proof of Theorem 5.1. Setting Y = R(Q) and S =
⋃
σ∈Q

⋂∞
n=1H(σ|k), the last two Lemmas give the

necessary results.

We now proceed to prove our original goal: that the set of nowhere differential functions is not Borel.
We take Y so that Theorem 5.1 holds and enumerate it: Y = (yn)∞n=1.
Define D(Y ) = {f ∈ C : f has a finite derivative at some point of [0, 1] \ Y }.
Now, if D(Y ) were a Borel set, then for every analytic subset E ⊂ K we could apply Theorem 5.1 to find
a Borel measurable, injective map Γ such that E = Γ−1(D(Y )), which implies that E is Borel. However,
this would show that every analytic set in K is Borel, so B(K) = A(K), which is in contradiction with
Theorem 4.3. Therefore, D(Y ) is not Borel.

Define Dn = {f ∈ C : f has a finite derivative at yn}. We will show that this set is Fσδ.
Note that f ∈ Dn if and only if for all ε ∈ Q>0 there is some δ ∈ Q>0 such that:

if xn, zn ∈ (yn − δ, yn + δ), then

∣∣∣∣f(xn)− f(yn)

xn − yn
− f(zn)− f(yn)

zn − yn

∣∣∣∣ < ε. (1)

Now define Aε,δ = {f ∈ C : (1) holds}. We can prove that this set is closed by taking a sequence
(fn) ∈ Aε,δ that converge to a function f ∈ C and showing that f ∈ Aε,δ. This proof is standard, and a
similar proof can be found in chapter 6.2.
Since Dn =

⋂
ε∈Q>0

⋃
δ∈Q>0

Aε,δ, we find that Dn is a Fσδ set.

Define H = {(f, 〈εn〉) ∈ C × 2N : ∀n f has a finite derivative at yn if and only if εn = 1}.
Clearly, H is the graph of the map h that sends a function f ∈ C to the sequence 〈εn〉 that ’codes’ at
what points of Y the function f is differentiable.
We will prove that H is Borel. The following holds: (f, 〈εn〉) ∈ H if and only if ∀n : f ∈ Dεn

n , where we
denote D0

n = Dc
n and D1

n = Dn.
With this definition in mind, we see that we can write H =

⋂
n∈N{(f, 〈εn〉) : f ∈ Dεn

n } =:
⋂
n∈NEn.

Now note that En is the union of two sets An and Bn, with An = {(f, 〈εn〉) : f ∈ Dn and εn = 1} and
Bn = {(f, 〈εn〉) : f ∈ Dc

n and εn = 0}.
We can write An = Dn ×

⋃
sNsˆ1, where we take the union over all sequences s of length n− 1.
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Similarly, we write Bn = Dc
n ×

⋃
sNsˆ0. Since both sets are clearly the product of Borel sets, they are

both Borel. Therefore each En is Borel, and so H is Borel as well.

This means that the map h is a Borel measurable map. After all, for s ∈ 2<N with length n, we find that
h−1(Ns) = {f : f has a finite derivative at yi if and only if si = 1, for i = 1, . . . , n} =

⋂n
i=1D

si
i . This

is clearly Borel. Since the Ns form a basis for the topology of 2N, this is sufficient to conclude that h is
Borel measurable.

Define g : 2N → C by g(〈εn〉) =
∑∞
k=1 εk2−kgk, with gk(x) = |x − yk|. To see that this function is

well-defined, we need to check that any function g(〈εn〉) is indeed continuous. This follows from the fact
that εk2−kgk ≤ 2−k, so the sequence

∑∞
k=1 εk2−kgk converges uniformly. Since the partial sums are

continuous, the sum function g(〈εn〉) is also continuous.

We proceed to show that the function g : 2N → C is continuous. Take ε > 0 and let n ∈ N be such
that 2−n < ε. Now take 〈εn〉, 〈δn〉 ∈ 2N such that their first n elements are the same (they are ’close’
together’). Then, for any x ∈ [0, 1], we have:

|g(〈εn〉)(x)− g(〈δn〉)(x)| =

∣∣∣∣∣
∞∑
k=1

εk2−kgk(x)−
∞∑
k=1

δk2−kgk(x)

∣∣∣∣∣
≤

∞∑
k=1

2−k|gk(x)(εk(x)− δk(x))| =
∞∑

k=n+1

2−k|gk(x)(εk(x)− δk(x))|

≤
∞∑

k=n+1

2−k = 1−
n∑
k=1

2−k = 1− (1− 2−n) = 2−n < ε

It follows that |g(〈εn〉)− g(〈δn〉)|∞ < ε, according to the uniform norm. Therefore, g is continuous.

Next, we prove the following lemma:

Lemma 5.10. g(〈εn〉) is differentiable at x if and only if x 6∈ {yk : εk = 1}.

Proof. Similarly to the proof of Lemma 5.9, proving that g(〈εn〉) is differentiable is equivalent to showing
that for ε > 0, there exists δ > 0 such that for p, q ∈ (x− δ, x+ δ),∣∣∣∣g(〈εn〉)(p)− g(〈εn〉)(x)

p− x
− g(〈εn〉)(q)− g(〈εn〉)(x)

q − x

∣∣∣∣ < ε.

We can rewrite this as follows:∣∣∣∣∑∞k=1 εk2−k(gk(p)− gk(x))

p− x
−
∑∞
k=1 εk2−k(gk(q)− gk(x))

q − x

∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

εk2−k
(

(gk(p)− gk(x))

p− x
− (gk(q)− gk(x))

q − x

)∣∣∣∣∣ =:

∣∣∣∣∣
∞∑
k=1

Sk

∣∣∣∣∣
Note that |gk(p)− gk(x)| =

∣∣|p− yk| − |x− yk|∣∣ ≤ |(p− yk)− (x− yk)| = |p− x|, by the reverse triangle
inequality.

It follows that |Sk| ≤ εk2−k
(∣∣∣ (gk(p)−gk(x))p−x

∣∣∣+
∣∣∣ (gk(q)−gk(x))q−x

∣∣∣) ≤ 2 · 2−k = 2−k+1.

First, assume x 6∈ {yk : εk = 1}. Let ε > 0, and take n ∈ N such that 2−n+1 < ε. Also, take δ > 0 such
that for all m ≤ n : ym 6∈ (x− δ, x+ δ). This is possible due to the assumption.
Take p, q ∈ (x− δ, x+ δ). For m ≤ n, we have that either ym < p, q, x or ym > p, q, x.
In the first case, we have gm(p)−gm(x) = |p−ym|− |x−ym| = (p−ym)− (x−ym) = p−x, and similarly
for gm(q)−gm(x); in the second case, we have gm(p)−gm(x) = (ym−p)− (ym−x) = p−x, and similarly
for gm(q)− gm(x). In either case, we find that Sm = εm2−m(1− 1) = 0. Therefore:∣∣∣∣∣

∞∑
k=1

Sk

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

Sk

∣∣∣∣∣ ≤
∞∑

k=n+1

2−k+1 =

∞∑
k=n

2−k = 2−n+1 < ε.
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So g(〈εn〉) is differentiable at x.

Next assume x ∈ {yk : εk = 1}, say x = yn. Take ε < 2−n, and let δ > 0.
Now take x− δ < p < x < q < x+ δ such that for all m ∈ {1, . . . , n− 1, n+ 1} we have ym 6∈ [p, q].
In a similar way as before, we have Sm = 0 for all m ∈ {1, . . . , n− 1, n+ 1}.
Also, gn(p)− gn(x) = |p− yn| − 0 = −(p− x) and gn(q)− gn(x) = |q − yn| − 0 = q − x.
Therefore, Sn = εn2−n(−1− 1) = −2−n+1.
Finally, notice that

∣∣∑∞
k=n+2 Sk

∣∣ ≤∑∞k=n+2 |Sk| ≤
∑∞
k=n+2 2−k+1 = 2−n. We can conclude:∣∣∣∣∣

∞∑
k=1

Sk

∣∣∣∣∣ ≥ |Sn| −
∣∣∣∣∣
∞∑

k=n+2

Sk

∣∣∣∣∣ ≥ 2−n+1 − 2−n = 2−n > ε.

So g(〈εn〉) is not differentiable at x. This proves the Lemma.

Define T : C × 2N → C by T ((f, 〈εn〉)) = f + g(〈εn〉). Notice that T is the sum of the functions projC
and g ◦ proj2N , both of which are continuous; therefore, T is a continuous function.
Now, note that (f, h(f)) ∈ T−1(M)∩H if and only if f ∈ C \D(Y ). Indeed, f+g(h(f)) has no derivative
anywhere in Y - after all, g(h(f)) is differentiable at the points of Y where f isn’t, and the other way
around. Therefore, f + g(h(f)) has no derivative anywhere in [0, 1] if and only if it has no derivative
anywhere in [0, 1]\Y , which is equivalent to saying f 6∈ D(Y ) (as g is differentiable everywhere in [0, 1]\Y ).

Now, if M were Borel, then T−1(M) would be Borel (T is continuous), and since H is Borel, T−1(M)∩H
would be Borel.
Since C \D(Y ) = projC(T−1(M) ∩H), we can apply Lemma 4.2. For this, we first need to remark that
C is separable (by Weierstrass’ approximation theorem, the set Q[X] of finite polynomials with rational
coefficients is dense in C), and it is completely metrizable by the uniform metric. Therefore, C is Polish.

We find that C \ D(Y ) is analytic, so D(Y ) is co-analytic. Since H is a graph, we also have that
D(Y ) = projC((T−1(M) ∩H)c), so D(Y ) is analytic. However, Theorem 4.5 now tells us that D(Y ) is
Borel, which is a contradiction. This establishes the final result that M is not a Borel set.
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6 The set of nowhere differential functions: Lebesgue Measur-
able

Before we proceed, we remind the reader that the Lebesgue measurable sets (denoted by Λ) form a σ-
algebra. This is a fact that we will need frequently.
We will start the proof with the general result that analytic sets are Lebesgue Measurable. Therefore,
co-analytic sets are also Lebesgue Measurable. Finally, we will show that the set of nowhere differential
functions is co-analytic.
For the proof, we will be working in R; as mentioned in the glossary, we can lift any results for measura-
bility in R up to C by using a Borel isomorphism between the two.

6.1 Analytic sets are Lebesgue Measurable

According to Theorem 4.6, it suffices to prove the following theorem:

Theorem 6.1. For a regular scheme of Lebesgue Measurable sets Xs, s ∈ N∗ of vanishing diameter, the
set X =

⋃
σ

⋂
nXσ|n is Lebesgue Measurable.

This result is actually more general than we need, since we will be requiring the Xs to be closed.

We first prove the following Lemma:

Lemma 6.2. For every set X ⊂ R, there exists a Gδ set Z ⊃ X such that: if B ∈ Λ and X ⊂ B, then
λ(Z \B) = 0.

Proof. By λ∗(X) we denote the outer measure of X, defined by inf{λ(O) : O ⊂ X open }.
First assume λ∗(X) <∞. Then, for each n we can find an open set On ⊃ X such that λ(On) < λ∗(X)+ 1

n .
Define Z :=

⋂∞
n=1On; then Z is a Gδ set and λ(Z) < λ∗(X) + 1

n , ∀n ∈ N, so λ(Z) ≤ λ∗(X).
because X ⊂ Z, we must also have λ(Z) ≥ λ∗(X) (after all, λ(Z) = λ∗(Z) and the outer measure is
monotone). So we find λ(Z) = λ∗(X).
Now if λ(Z\B) > 0 for someB ∈ Λ withX ⊂ B, we would find that λ∗(X) = λ(Z) = λ(Z∩B)+λ(Z\B) >
λ(Z ∩ B), but since Z ∩ B ∈ Λ and X ⊂ Z ∩ B, this gives a contradiction with the monotonicity of the
outer measure. We can conclude that λ(Z \B) = 0, as required.

Now assume λ∗(X) =∞. In this case, define Xk = X ∩ [k, k+ 1). Now we have λ∗(Xk) ≤ 1 for all k ∈ Z.
We can now again find open On,k such that for each n ∈ N, k ∈ Z : λ(On,k) < λ∗(Xn) + 1

n . It follows
that Zk :=

⋂
nOn,k is again Gδ and for each B ∈ Λ with Xk ⊂ B, λ(Zk \B) = 0 holds.

Now putting Z :=
⋃
k∈Z Zn, we find for B ∈ Λ with X ⊂ B that

λ(Z \B) = λ(
⋃
n∈Z

Zn \B) ≤
∑
n∈Z

λ(Zn \B) = 0,

so λ(Z \B) = 0. Since Z =
⋃
k∈Z

⋂
n∈NOn,k, it seems at first glance that Z might not be Gδ (but instead

Gδσ). However, in this case we will prove that Z =
⋃
k∈Z

⋂
n∈NOn,k =

⋂
n∈N

⋃
k∈ZOn,k holds.

First, we assume that the On,k are decreasing for fixed k (which we can do by taking intersections), and
that each On,k is contained in the interval (k−1, k+2) (by simply replacing On,k with On,k∩(k−1, k+2)).
Since λ(Zk) = λ∗(X∩[k, k+1)), we can presume that Zk ⊂ [k, k+1) (since the set of points in Zk\[k, k+1)
can have at most measure 0, so cutting them out changes neither the measurability nor the actual mea-
sure of Zn). This means that for every k ∈ Z and for every x ∈ R\ [k, k+ 1), there exists a certain N ∈ N
so that for all n ≥ N , x 6∈ On,k (*).

Now, if x ∈ Z =
⋃
k∈Z

⋂
n∈NOn,k, then ∃k ∀n : x ∈ On,k. But this implies ∀n ∃k : x ∈ On,k, since

for every n we can simply take the one k that works for all n. Therefore x ∈
⋂
n∈N

⋃
k∈ZOn,k, and so

Z ⊂
⋂
n∈N

⋃
k∈ZOn,k

Conversely, assume x ∈
⋂
n∈N

⋃
k∈ZOn,k. This means ∀n ∃k : x ∈ On,k.

Also, there is some k ∈ Z such that x ∈ [k, k + 1). Using the assumption that On,m ∈ (m − 1,m + 2)
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for every m ∈ Z, we find that for each n ∈ N we only have the possibilities x ∈ On,k−1 or x ∈ On,k or
x ∈ On,k+1.
Now using (*), we find N1 and N2 such that for n ≥ N1 respectively n ≥ N2, x 6∈ On,k−1 respectively
n 6∈ On,k+1. So, for n ≥ max(N1, N2), we find that x ∈ On,k. But since the On,k were decreasing, it
follows that x ∈ On,k for all n ∈ N. Therefore, x ∈

⋃
k∈Z

⋂
n∈NOn,k = Z.

We can conclude that Z =
⋂
n∈N

⋃
k∈ZOn,k, so Z is a Gδ-set.

proof of Theorem 6.1. We have X =
⋃
σ

⋂
nXσ|n, with all Xσ|n measurable. Applying the lemma, we

find a Gδ set Z ⊃ X so that for every B ∈ Λ with X ⊂ B, λ(Z \B) = 0.
Similarly, we find Gδ sets Zσ|n such that

⋃
τ

⋂
mXσ|nˆτ |m ⊂ Zσ|n and if B ∈ Λ and

⋃
τ

⋂
mXσ|nˆτ |m ⊂ B,

then λ(Zσ|n \B) = 0.
If we only assume that the Zσ|n are measurable (instead of Gδ), we can replace Zσ|n by Zσ|n ∩Xσ|n, so
we can assume Zσ|n ⊂ Xσ|n.
By using X = Z \ (Z \X), we can write X as a Gδ set minus Z \X. Therefore, it suffices to show that
λ(Z \X) = 0 to satisfy the definition of measurability.
We have:

Z \X = Z \

(⋃
σ

∞⋂
n=1

Xσ|n

)
⊂ Z \

(⋃
σ

∞⋂
n=1

Zσ|n

)
∗
⊂
⋃
σ

∞⋃
n=0

(
Zσ|n \

∞⋃
m=1

Zσ|nˆ〈m〉

)
.

Here we define Zσ|0 = Z.
* To prove this inclusion, assume p is not in the right hand side. We assume p ∈ Z, for if p 6∈ Z we are
done.
It follows that for all σ ∈ J and n ∈ N∪{0}: if p ∈ Zσ|n, then there exists some m such that p ∈ Zσ|nˆ〈m〉.
Because p ∈ Z, this implies that there is some m1 such that p ∈ Z〈m1〉. This in turn implies ∃m2 such
that p ∈ Z〈m1,m2〉, etc. Using this argument recursively, we find an infinite sequence 〈m1,m2, . . .〉 such
that p ∈

⋂
k Z〈m1,...,mk〉, so p ∈

⋃
σ

⋂
k Zσ|k. We conclude that p is not in the left hand side.

Note that we can write
⋃
σ

⋃∞
n=0

(
Zσ|n \

⋃∞
m=1 Zσ|nˆ〈m〉

)
=
⋃
s∈N∗

(
Zs \

⋃∞
m=0 Zsˆ〈m〉

)
, which is a count-

able union. Therefore, it suffices to show that λ
(
Zσ|n \

⋃∞
m=1 Zσ|nˆ〈m〉

)
= 0.

We set B =
⋃∞
m=1 Zσ|nˆ〈m〉. Since the Zσ|nˆ〈m〉 are all measurable, we find B ∈ Λ. Furthermore,

⋃
τ

⋂
m

Xσ|nˆτ |m =

∞⋃
k=1

⋃
τ

⋂
m

Xσ|nˆ〈k〉ˆτ |m ⊂
⋃
k

Zσ|nˆ〈k〉 = B.

Due to our assumption, we find λ(Zσ|n \B) = 0, which concludes our proof.
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6.2 The set of nowhere differential functions is co-analytic

We want to prove that C \M , the set of functions that is somewhere differentiable in [0, 1], is analytic.
For this, we use the fact that a continuous function f is differentiable at a point x ∈ [0, 1] if and only if
for every k ∈ N, there is an l ∈ N such that:

if 0 < |h1|, |h2| <
1

l
and x+ h1 and x+ h2 are both elements of [0, 1], then∣∣∣∣f(x+ h1)− f(x)

h1
− f(x+ h2)− f(x)

h2

∣∣∣∣ ≤ 1

k
. (2)

For each pair (k, l) ∈ N× N, we define Ek,l = {(f, x) ∈ C × [0, 1] : (2) holds}.
We will show that these sets are closed, using a rather cumbersome 8ε-argument (!):
Assume {(fn, xn)} ∈ E(k, l) is a sequence converging to (f, x) ∈ C × [0, 1]. We will show (f, x) ∈ E(k, l).
Let 0 < |h1|, |h2| < 1

l , and let ε > 0. Because (fn, xn) → (f, x), we also know that fn → f (uniformly)
and xn → x. Additionally using the fact that the fn and f are continuous, we can find the following
integers:
-N1 ∈ N such that for all n ≥ N1, |f(x+ h1)− fn(x+ h1)| < ε|h1|,
-N2 ∈ N such that for all n ≥ N2, |fn(x+ h1)− fn(xn + h1)| < ε|h1|,
-N3 ∈ N such that for all n ≥ N3, |fn(xn)− fn(x)| < ε|h1|,
-N4 ∈ N such that for all n ≥ N4, |fn(x)− f(x)| < ε|h1|,
-N5 to N8 ∈ N similarly as N1 to N4, with each h1 replaced by h2.
Now take n = max(N1, . . . , N8). We can write, by adding terms and repeatedly using the triangle
inequality:∣∣∣∣f(x+ h1)− f(x)

h1
− f(x+ h2)− f(x)

h2

∣∣∣∣ ≤ B1 +B2 +

∣∣∣∣fn(xn + h1)− fn(xn)

h1
− fn(xn + h2)− fn(xn)

h2

∣∣∣∣ ,
where

B1 =

∣∣∣∣f(x+ h1)− fn(x+ h1)

h1

∣∣∣∣+

∣∣∣∣fn(x+ h1)− fn(xn + h1)

h1

∣∣∣∣+

∣∣∣∣fn(xn)− fn(x)

h1

∣∣∣∣+

∣∣∣∣fn(x)− f(x)

h1

∣∣∣∣
and B2 is defined similarly with all h1 replaced by h2.
Using our choice of n, we now find that B1 ≤ 4ε and B2 ≤ 4ε. Combining this with the fact that
(fn, xn) ∈ E(k, l), we find: ∣∣∣∣f(x+ h1)− f(x)

h1
− f(x+ h2)− f(x)

h2

∣∣∣∣ ≤ 1

k
+ 8ε.

This for all ε > 0 implies that indeed (f, x) ∈ E(k, l).
So E(k, l) is closed for each δ ∈ Q>0,m ∈ N.
Next, note that C \M is the projection of B =

⋂
k∈N

⋃
l∈NE(k, l) onto C. (In other words: f ∈ C \M

if and only if there is some x ∈ [0, 1] such that (f, x) ∈ B).
So we have found a Borel set B ⊂ C × [0, 1] such that C \M = projC(B). As mentioned at the end of
chapter 5, C is Polish, and as noted in the Glossary, J is Polish.
Now, Lemma 4.2 now says that C \M is analytic.

By the preceding subsection, C \M is a Lebesgue measurable set, so its complement M is also Lebesgue
measurable.
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Appendices

A Proofs of theorems from the Glossary

Lemma 4.2 Assume X,Y are Polish and B ⊂ X × Y is Borel. Then A := projX(B) is analytic.

Proof. First note that the projection function is continuous. According to Theorem 4.1, there exists a
closed F ⊂ J and a continuous function f : F → B. Now the function φ := projX ◦ f : F → X is
continuous.
Define G := graph(φ)−1. Take a converging sequence (φ(xn), xn) that converges to some point (y, x).
By continuity of φ we find that y = φ(x) and so (φ(x), x) ∈ G. This means that G is closed. Also,
projX(G) = φ(F ) = A.

SinceX×Y is a Polish space andG is closed, we find thatG is also Polish. This means that projX : G→ X
is a continuous function from a Polish space with projX(G) = A, satisfying the definition of analytic
sets.

Theorem 4.3. B(K) ( A(K).

Proof. Let Γ be a class of sets in the Cantor space K (such as open, Borel, analytic, etc.). By Γ(K) we
denote all subsets of K in Γ. A set U ⊂ J ×K is called J-universal for Γ(K) if U is in Γ(J ×K) and
Γ(K) = {Uy : y ∈ J}. We can view U as an ’encoding’ of the class Γ as sequences in J ; every set in Γ
corresponds to an element of J .

First notice that there is a J-universal set for G(J), or the open sets of J . For this, we enumerate N∗ in
a sequence (sn)∞n=1. Now define U by (y, x) ∈ U ⇔ x ∈

⋃
{Nsi : y(i) = 1}.

We first show that U is indeed open in J × J . Take t ∈ N∗. First note that for all y ∈ Nt and for all
x ∈

⋃
{Nsi : t(i) = 1}, we have that (y, x) ∈ U . It follows that Nt ×

⋃
{Nsi : t(i) = 1} ⊂ U , and the set

is open (since the cartesian product of two open sets is open in the product topology).
Conversely, if (y, x) ∈ U , we have that x ∈ Nsi for some i such that y(i) = 1.
Now setting t = y|i, we have (y, x) ∈ Nt ×

⋃
{Nsj : t(j) = 1}.

We find that U =
⋃
t∈N∗ (Nt ×

⋃
{Nsi : t(i) = 1}), so U is open.

Clearly, every section Uy (y ∈ J) is open; after all, any union of sets Nt, t ∈ N∗ is open.
Conversely, assume G ⊂ J is open. Since the sets Nt, t ∈ N∗ form a basis for J , we can find a subset
D ⊂ N∗ such that G =

⋃
t∈DNt. Take k1, k2, . . . such that D = {sk1 , sk2 , . . . }. Now take any y that has

ones only at the entries k1, k2, . . . . We now have Uy =
⋃
{Nsi : y(i) = 1} =

⋃
t∈DNt = G. So indeed U

is a J-universal set for G(J).

Before proceeding, we prove another small Lemma:

Lemma A.1. J2 is homeomorphic to J .

Proof. Define φ : J2 → J by φ(s, t) =

{
s(i/2) i even

t((i− 1)/2) odd
.

It can easily be verified that this is a bijection.
Note that the products Nt × Ns, s, t ∈ N∗ form a basis of J2. We only need to show that the images
and pre-images of the elements in the basis are open, since φ(A ∪ B) = φ(A) ∪ φ(B) and φ−1(A ∪ B) =
φ−1(A) ∪ φ−1(B).
For t ∈ N∗, it can be seen that φ−1(Nt) = Nt1 ×Nt2 , where (t1, t2) = φ(t). This set is clearly open.
Conversely, for s, t ∈ N∗, call n = max(length(s), length(t)). For x ∈ φ(Ns ×Nt), we find that x ∈ Nx|2n
and Nx|2n ⊂ φ(Ns ×Nt). Therefore, φ(Ns ×Nt) is open.

Setting U ′ = {(φ−1(y), x) : (y, x) ∈ U} (using the φ from Lemma A.1) we get a J-universal set for
G(J2). Its complement F = (U ′)c is now a J-universal set for F (J2): clearly, F is closed in J × J2.
Also, because every closed set is the complement of exactly 1 open set (’they occur in pairs’), we find
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that F (J2) = {Fy : y ∈ J}.

We now claim that the set A = {(y, x) : ∃z such that (y, x, z) ∈ F} is J-universal for A(J). First
note that according to the definition, A = π1,2(F), where π1,2 stands for the projection on the first 2
coordinates. Since every closed subset of a Polish set is Polish (separable and metrizable are clear; closed
allows for the metric to be complete), F is Polish. Also, projection is continuous, so we find that A is
analytic. Similarly, Ay = π1(Fy), so Ay is analytic.
Conversely, assume A ⊂ J is analytic. Combining the definition and Theorem 4.1, we can find a closed
F ⊂ J and a continuous surjection f : F → A. Now define G as the inverse graph of f , consisting of the
points (f(t), t), for t ∈ A.
In a similar way as in the proof of Lemma 4.2. we cam use continuity of f to prove that G is closed.
Also, we have x ∈ A ⇔ ∃z : (x, z) ∈ G. Since F was universal for closed sets, we can find y ∈ J such
that G = Fy.
So, A = {x : ∃z(x, z) ∈ Fy} = Ay, therefore A is indeed J-universal for A(J).

Now assume that A is Borel. Then Ac is also Borel, and since A = {x : (x, x) 6∈ A} is the inverse image
of Ac under the continuous function f : x→ (x, x), it is also Borel. As mentioned in the Glossary, Borel
sets are analytic, so A is analytic.
This means that we can find some y ∈ J such that A = Ay. But now (y, y) 6∈ A ⇔ y ∈ A⇔ (y, y) ∈ A.
We have a contradiction.

It follows that B(J2) ( A(J2). Using again Lemma A.1 gives B(J) ( A(J). To finish the proof, we
need one more Lemma:

Lemma A.2. The Cantor set contains a homeomorphic copy of J .

Proof. We will first prove that the Cantor space 2N contains a homeomorphic copy of J .
We notate 0n = 0 . . . 0 as the sequence of n zeroes. Define the map f : J → 2N by f(σ) = 0s110s210s3 . . .
(here we allow the sequences to contain 0’s: this is not a problem as we could replace the si by si − 1).
We show that f : J → f(J) is a homeomorphism.
First note that the image of f contains any sequence that does not contain an infinite amount of consec-
utive zeros. (If xi = 0, then 0xi denotes an ’empty’ sequence).
First let Ns ∈ J . Then f(Ns) = Nt ∩ f(J), with t = 0s110s2 . . . 10sn1. The set Nt ∩ f(J) is open within
the image f(J).
Conversely, assume Nt ∈ 2N. The pre-image f−1(Nt) = f−1(Nt ∩ f(J)) = Ns, with s the ’pre-image’ of
t under the natural extension of f on the finite sequences. This shows that f : J → f(J) is indeed a
homeomorphism.

We now prove that the Cantor set is homeomorphic to the Cantor space. According to the definition (see
the Glossary), we have x ∈ K ⇔ x =

∑∞
n=1 cn3−n, for some sequence (cn) ∈ {0, 2}N. According to the

definition, the following map is well-defined and a bijection:

φ : 2N → K

σ 7→
∞∑
n=1

2σ(n)3−n

Note that since 2σ(n)3−n < 4 · 3−n, the sum
∑∞
n=1 2σ(n)3−n is uniformly convergent. Since σ 7→ σ(n)

is basically the projection on the n’th coordinate, the function σ → 2σ(n)3−n is continuous, and each of
the partial sums is continuous. Therefore, we find that φ is continuous.

For the converse, we use the fact that both 2N and K are compact. This is clear for K as it is a closed
subset of [0, 1]. For 2N, we will show that it is complete and totally bounded by the metric d defined in
the glossary. If we have a Cauchy sequence (sn), then for every k ∈ N we can find an N ∈ N such that
for all m,n ≥ N , the first k elements of sm and sn are the same. It follows that the sequence converges
to a certain sequence s, so 2N is complete.
For totally bonded, take r > 0, and take k ∈ N such that 2−k−1 < r. Let {s1, . . . , s2k} be all sequences of
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length k. Then 2N =
⋃2k

i=1Nsi ⊂
⋃2k

i=1B(si, r), so 2N =
⋃2k

i=1B(si, r). Therefore 2N is totally bounded,
and as proven in the course Real Analysis, it is compact.

Now, a closed subset G ⊂ 2N is compact. Therefore, the image f(G) is also compact, and thus closed
(Heine-Borel). This means that f−1 is continuous.

We can conclude that B(K) ( A(K).

Theorem 4.4 Let X be a Polish space and A,B ⊂ X be disjoint analytic sets. Then there is a borel set
C ⊂ X separating A from B, i.e. A ⊂ C and C ∩B = ∅.

Proof. We call two subsets P,Q of X Borel-separable if there is a Borel set R separating P from Q.

We make the following claim: If P =
⋃
m Pm and Q =

⋃
nQn, and Pm, Qn are Borel-separable for each

m,n, then P,Q are Borel-separable.
Indeed, if Rm,n is a Borel set seperating Pm from Qn, define R =

⋃
m

⋂
nRm,n.

Since for every m and n, Rm,n ∩Qn = ∅, we find that for all m and n,
⋂
k Rm,k ∩Qn = ∅. This means

that for all m, Q ∩ (
⋂
nRm,n) = (

⋃
nQn) ∩ (

⋂
nRm,n) = ∅. Therefore, R ∩Q = ∅.

Also, for any m, we have that Pm ⊂ Rm,n for all n. Thus, Pm ⊂
⋂
nRm,n for all m. It follows that

P =
⋃
m Pm ⊂

⋃
m

⋂
nRm,n = R. So R separates P from Q, which proves the claim.

We can assume that A and B are nonempty, for otherwise we can take either X or ∅ for our Borel set C.
Using the equivalent definition of analytic sets (see Glossary), we can find continuous surjections f : J →
A and g : J → B. Put As = f(Ns) and Bs = g(Ns). Note that for s = ∅ we have A∅ = A and B∅ = B.
Since Ns =

⋃
nNsˆ〈n〉, we can write As =

⋃
mAsˆ〈m〉 and Bs =

⋃
nBsˆ〈n〉.

If we assume A and B are not Borel separable, then by the (contraposition of the) claim we can find
x1, y1 ∈ N such that A〈x1〉 and B〈y1〉 are not Borel separable. Again using the claim, we find x2, y2 ∈ N
such that A〈x1,x2〉 and B〈y1,y2〉 are not Borel separable, etc. Using this argument recursively, we can
construct sequences x, y ∈ J such that Ax|n and Bx|n are not Borel separable for each n ∈ N.
Of course, f(x) ∈ A and g(y) ∈ B (according to the definition of f and g). Since A and B were disjoint,
we have f(x) 6= f(y).
This means that we can find open disjoint sets U and V such that f(x) ∈ U and g(y) ∈ V . Since f and
g are continuous and the diameter of Ns|n vanishes for s ∈ J , we find that the diameters of f(Nx|n) and
g(Ny|n) also vanish. Thus, for large enough n, Ax|n = f(Nx|n) ⊂ U and By|n = g(Ny|n) ⊂ V .
But this means that U ∩ By|n ⊂ U ∩ V = ∅, so U separates Ax|n and Bx|n (and since U is open, it is
Borel). We have a contradiction.

Theorem 4.6. If a set A ⊂ X is analytic, there exists a family (Fs)s∈N∗ ⊂ X of closed sets such that:
1) s ⊆ t⇒ Ft ⊂ Fs (the family (Fs) is regular),
2) diam(Fx|n)→ 0, ∀x ∈ J (i.e. the Fx|n are of vanishing diameter),
3) Fs 6= ∅ if A 6= ∅, and
4) A =

⋃
x∈J

⋂
n Fx|n.

In the case X = K, we can choose the Fs to be clopen.

Proof. Let A ⊂ X be analytic. For A = ∅ we can just take Fs = ∅ for all s, so assume A 6= ∅. According
to the ’second’ definition of analytic sets, there is a continuous function f : J → X with f(J) = A.
Now put Fs = f(Ns). Clearly, Fs is closed and non-empty, satisfying 3). Also, s ⊆ t⇒ Nt ⊂ Ns ⇒ Ft ⊆
Fs, satisfying 1).

Let t ∈ J . Take d a compatible metric of X, and ρ the compatible metric of J discussed in the Glos-
sary chapter. We will prove that diamFt|n → 0 as n → ∞ by using continuity of f and the fact that
diamNt|n → 0 as n→∞.
Let ε > 0 and take δ > 0 such that d(f(x), f(y)) < ε whenever ρ(x, y) < δ. Now take N ∈ N such that
for all n ≥ N , we have diamNt|n < δ.
Take a fixed n ≥ N . For all f(x), f(y) ∈ f(Nt|n) we have ρ(x, y) < δ, so d(f(x), f(y)) < ε. Since this
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is true for all f(x), f(y) ∈ f(Nt|n), we find that diamf(Nt|n) → 0 as n → ∞. This implies that also

Ft|n = f(Nt|n)→ 0 as n→∞. Since t was arbitrary in J , we can conclude that the Fs are of vanishing
diameter, satisfying 2).

Now let y ∈ J and x ∈
⋂
n Fy|n arbitrarily. We will prove that x = f(y), and therefore x is the only

element in
⋃
n Fy|n.

For all n ∈ N, we can find a xn ∈ f(Ny|n) such that d(x, xn) < 2−n, since x ∈ f(Ny|n).
Now take yn ∈ Ny|n such that xn = f(yn). Then yn → y as n→∞ (after all, d(yn, y) ≤ 2−n−1).
Since f is continuous, we have xn = f(yn)→ f(y) as n→∞. Since d(x, xn) < 2−n, we also have xn → x
as n→∞, so we find x = f(y). It follows that {f(y)} =

⋂
n Fy|n.

We conclude that A =
⋃
y∈J{f(y)} =

⋃
y∈J

⋂
n Fy|n, satisfying 4).

For the final statement, take s ∈ N∗ and let x ∈ Fs. Let φ be a homeomorphism between K and the
Cantor space 2N (see the second part of Lemma A.2), and set x′ = φ(x).
Since diamNx′|k → 0 as k → ∞ and φ is continuous, there is a k(x, s) such that diam φ(Nx′|k(x,s)) <
diamFs. (See the earlier proof that vanishing diameters are conserved under continuous functions).
We find that Gx,s := φ(Nx′|k(x,s)) is clopen (φ−1 is continuous and Nx′|k(x,s) is clopen), x ∈ Gx,s, and
diam Gx,s < diam Fs.

It follows that Fs ⊂ ∪x∈Fs
Gx,s. Because Fs is closed and K is compact, Fs is compact, so there are

x1, . . . , xm ∈ Fs such that Fs ⊂
⋃m
i=1Gxi,s =: Gs. Note that Gs is clopen (finite union of clopen sets).

Because d(x, Fs) < diam Fs for every x ∈ Gs, we find that diam Gs ≤ 3 · diam Fs. Therefore Gs has
vanishing diameter, so

⋂
nGx|n =

⋂
n Fx|n = {y} for a certain y ∈ K.

Finally, we can achieve 1) as follows: for every s of length n and x ∈ Fs, choose ks,x greater or equal to
ks|n−1,x, so that Gx,s ⊂ Gx,s|n−1.
Now the Gs satisfy all previous criteria and are clopen.
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