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1. INTRODUCTION

In recent years attention has been focussed on means of
extracting energy from ocean waves. As a result, a
number of systems have been devised by means of
which wave energy, which consists of potential and
kinetic fluid energy, can be captured and transformed
into either mechanical, hydraulic or electrical energy.
The majority of the systems transform the wave motion
into a reciprocating motion of a mechanical system
which in turn, drives some other form of energy
transformation system finally yielding electric or
hydraulic energy. The selection of a reciprocating
system to transform Wave Motion into mechanical
motion is an obvious choice when the waves are inter-
preted in terms of being a free-surface phenomenon. It
can be shown however, that it is possible to transform
wave energy directly into rotational mechanical energy
based on a different viewpoint of wave motion. In this
paper, the fundamental characteristics of such a device
will be discussed and a mathematical model developed
at the Delft University of Technology describing the
properties of the device will be verified by means of
results of model tests carried out at the Maritime
Research Institute Netherlands.

The device has been conceived based on knowledge
of the fluid kinematics in a regular long-crested wave
travelling in deep water. Under these conditions the
fluid velocity in any fixed point in the fluid domain
takes the form of a vector with constant. magnitude
which rotates with constant angular velocity equal to
the wave frequency (see Fig. I).

We now consider a submerged horizontal shaft
aligned with the crest of the regular waves to which a
foil is attached as shown in Fig. 2. At time zero, we let
the fluid velocity vector at the location of the shaft be
directed at the foil. As time progresses the velocity
vector of the fluid rotates and the angle of attack of the
foil increases. This results in an increasing lift force on
the foil which is directed so that if the shaft is allowed
to rotate it will tend to reduce the foil's angle of attack.
This system will in fact rotate With wave frequency as

Fig. I. Wave motion

long as the load on the shaft is exceeded by the torque
exerted by the foil thus constituting a 'synchronous'
motor. The concept was verified by preliminary concept
tests carried out at MARIN. During the tests which
were carried out in regular waves, weights were lifted by
using the rotating shaft as a winch. The test set-up is
shown in Fig. 3.

The feasibility of the system being verified, the next
step is to analyse the hydrodynamic aspects of the
system with a view to optimization: To this end, a
mathematical model based on two-dimensional linear
potential theory has been set up. Results obtained based
on this model have been compared with results of
model tests with a rotating foil in deep water.
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Fig. 3. Test set-up lift experiment

2. MATHEMATICAL FORMULATION

In this section we discuss some properties of a rotating
device to extract energy from a travelling plane wave at
deep water. The device consists of a profile rotating
around an axis. The fluid velocity is at an angle with
respect to the profile. Hence, a lift force is exerted at
the profile. This driving force generates the rotation of
the device at the wave frequency. The energy dissi-
pation of the device determines the angle of incidence
of the flow at the profile. If this angle exceeds the stall
angle, the lift force diminishes and the rotation stops.
Therefore, we know beforehand that the amount of
energy extracted from the waves is limited by the hydro-
dynamics properties of the device. The efficiency of the
device is determined by the energy loss of the.f.,-aves.
Therefore, we study the influence of the rotating profile
on the amplitude of the travelling wave and the ampli-
tude of higher harmonics generated.

We assume that the lift force can be determined by
means of the balance of angular momentum of the
device. With the total fluid velocity known, the angle of
attack can be computed under the assumption that
linearized theory holds. The rotating profile is then
replaced by a rotating lifting line. In other words, the
wave field is influenced by a rotating vortex if we con-
sider the problem two-dimensional. To obtain more
accurate results we also consider the two-dimensional
profile completely, together with a simplified descrip-
tion of the shed vortices due to the fluctuating incident
velocity vector. It is assumed that the fields due to the
incoming wave and the rotating vortex may be superim-
posed due to the linearity of the problem. Therefore,
we study the effect of the rotating vortex or the profile
at a small angle in still water.

As mentioned before, we restrict ourselves to the
two-dimensional case. First we consider the rotor and
assume that at time t the relative fluid velocity V(t) at
the profile makes a small angle a(t) with respectto the
profile. This results in an approximate lift force

L = piV(t)Ir(t) (I)

where

r(1)= Koif 1g cv(1) (2)
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The balance of angular moments gives

d 20J = L(t) M (3)
cif

where J is the moment of inertia and M the moment
exerted externally at the axis of the device. For instance
damping may be incorporated in M. In the case of
linear damping we write

M = /C1 + (4)

The fluid velocity is described by means of the velocity
potential c6(x, 1) with V(x,1)= grad 0. In the fluid
domain D we- have

0 (5)

while at the free surface we assume that the dynamic
and the static condition may be linearized; we have

Ott + = 0 at y 0 (6)

The free surface elevation (x, 1) is given by

(x, ()= cto, (x, 0, t) (7)

The incident wave is defined as

t)= A COS [k(x x() cod (8)

hence

ci5(ic,1)=. Re !le- exp [Icy ik(x + hal (9)

From Fig. 4 point on the profile is situated at the
vectorial position

x--- x, + R(cos 0 sin 0) (10)

where we assume R to be small with respect to the wave
length (Rk I).

We take as the local fluid velocity at the position of
the profile, the fluid velocity at the position of the axis
(xi.).

The relative fluid velocity V(I) becomes

V(t)= ve4(xi,t)+ Re)(sin 0, cos 0)
= coAeLI.(cos(kx, w1), sin(kx, ca))

+ Rksin 0, cos 0) (II)
In the ideal case of M(t) 0 stationary rotation is poss-
ible with 0 = cot + while V(t)=. V(cos 0, Siri 0) which
meant that the angle of attack a(t) is zero. The values

rfinc

Fig. 4. Notation



of V and 7 are determined by equation (11)

V =1((oAek-v cos kx,)2 + (wAek"' sin kx + Rco)2)

7= arc tg{ (coAek-Y. sin kx,. +
coAekY` cos kxr

In the case M(1)= M(const), we may take
oi(t)= a(constant) for small value of ki2. If MO) is a
general function of time or the assumption kR 4 1 does
not hold, we should consider a (t) as a function of time.

In this study we assume the lift force to be a constant
therefore the profile is replaced by a lifting line rotating
at constant speed around x. In two dimensions we may
use the model of a vortexwith constant strength in the
moving point

x = x + R[cos(0.1 + 7), sin(wt + 7)]

in the presence of the free surface. The moving vortex
generates waves. The energy of these waves equals the
energy extracted from the incident wave. The field of a
moving vortex can be derived by means of an asymp-
totic evaluation for large values of t of the field of a
vortex started at I= 0.

We define

c(t):=- Ice + R[cos(cot + 7), sin(ca + 7)] = V(t)
for t 0

c(t):= 0 for < 0.

The complex potential f(z, t)= + (z= x+ iy)
can be derived by means of complex function theory or
may be found in Wehausen and Laitone

It becomes for t 0

, r , - c.1.(z,l)=-- logz o)
27ri z e(t)

, I

g e ikf: "7)) sin (iik(t )J dk dr
7i o o ,Tgk

where c(t)= CI + ic2 which e(1) is its complex conju-
gate.

We study the integral in equation (13) for a large
value of t in order to obtain the wave contribution.
First we study the integration with respect to r

gin 1 e -
I=

7rt

X [ft explikResinfsigk(t )) dr] dk (14)
0

partial integration with respect to 7 leads to
t, e-rit(z-i)

/=--. [exp(ikRe''"r)cosjik(t 7)]
71-1 0 7=0

+ e-irc(z- el(w,+-y)
Itt JO

Rwr

x exp [ikR ei(""))cosFc(t 7) dr] dk (15)

the stock term for T= 0 leads, after partial integration
with respect to k, to terms that tend to zero for CO.
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Further partial integration leads to

r (Rco)"I = e 4- 4 )+
n=o 27i i

x k"-1{
11 (tnw jg-k)

1 }e'"u' dk (16)
II 7=, (mco + jgk

(where we define 11%. 1).
This expression is meaningful if the series expansion

is convergent. We are interested in waves at the free
surface y =0 while ye is negative, hence the integrals
with respect to k exist and the rate of convergence of
the series depends on the magnitude of R. The integral
has first order singularities for gk =2ni (.02

= 1, 2,3, .... The integral with respect to k originates
from a Fourier integral, therefore the integration
contour passes the singularities in the lower or upper
complex k-plane. We require a radiation condition and
assume a radiated wave travelling in the same direction
as the incoming wave and hence and no disturbance far
upstream. This leads to a unique choice of the contour.

For x> x, the contour may be closed in the lower
quarter plane. The contribution of the poles are the
waves travelling to the right hand side while the integral
along the negative imaginary axis tends to zero as
X 03.

For x < xe the contour may be closed in the upper
quarter plane. There is no contribution of poles, hence
no waves, while the integral along the positive
imaginary axis tends to zero as x xc co.

For a rotating vortex this means that for clockwise
rotation, co> 0, waves are generated travelling to the
right only. For counter clockwise rotation, w <
(corresponding to waves travelling from the right) the
poles have to be passed in the loiver plane, waves are
generated travelling to the left.

For clockwise rotation we compute the wave compo-
nents. To do so, we restrict ourselves to the situation of
R being small compared to the wave length. In this case
the wave spectrum becomes as follows:

uw2n2R1g)n) + ye)}
2 2

4)=ao 21' E
n!n=2

even

21'
n
odd

x in+I (w2n2RI g) exp{w2n 2 (y + Y 0}n! g

{
0)2,12x sin n(wt + 7) (X Xr)] (17)

g

2n2
X COS[n(cot + xed+

4 te/g

Fig. 5. Contour in the complex k-plane
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equation (17). The mean energy of the incident wave is

pgA 2 (19)

while the wave at the right-hand side has an energy of

cos 7 + E
I

(20)
n=

&rani =A," I
1 [A2 A

We keep in mind that A, is proportional to A because
the vortex strength is proportional to the velocity of the
incident field (2). The energy, averaged over one period,
absorbed by the device becomes

AE =1 pg[-2AA cos 7 + A!] (21)
2 n= I

As mentioned before, these results hold fora rotating
profile at a constant angle with respect to the local fluid
velocity. A more elaborate model has been used in the
case that the angle varies due to the velocity profile of
the incident wave. We used the thin airfoil theory where
the potential function is described by means of a vortex
distribution on the foil while vortices are shed in the
wake due to the variations in vortex strength. We
employ a simple model to displace these vortices and
assume that the velocity field is a small perturbation
with respect to the incident field. Hence, the free vor-
tices are displaced by the local unperturbed fluid veloc-
ities. This means that each vortex makes a circular
motion. It turns out that after a few cycles the pattern
becomes stationary and the waves can be computed. It
turns out that the amplitude of the wave components in
equation (17) have changed 10% at most, depending on
the configuration. Therefore we restrict ourselves here
to the case of constant angle of attack.

3. EXPERIMENTS AND COMPUTATION

To check the theory, a long profile is rotated around a
fixed axis

Fig. 6. R =0.14 m; f= 0.1 m; X,,,= 1.8 M
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Fig. 7. yo = 0.271 m, w = 6.91 radls, a = 0.384 rad
measured, -- computed

time

8. yo= 0.271 m, w = 6.91 radls, a = 0.576 rad

The radius R and the length of the profile fare fixed but
the position of the center ye, the angle of attack and
angular velocity (t) may be varied. Tests were carried out
in the deep water basin of MARIN. The span of the
profile was 1.5 m, long enough to observe a two-
dimensional wave profile at the point x,,, when the wave
height was measured. We have chosen x,,, = 1.8 m.

The wave height is computed by evaluating
equation (13) in (7) numerically. Some results of the
experiments are shown in Figs 7-10.

If the linearized free surface holds, Fig. 8 must
follow from Fig. 7 by means of amplification of
tg(0.576)/tg(0.384) because the angle only plays a role
in the determination of r(2). The change in shape is
due to higher harmonics generated by the nonlinearity
at the free surface. The computation predicts the wave
reasonably well. A closer look at (17) shows that higher
harmonics due to the rotating device play a minor role
in this case. A closer study of Figs 9 and 10 reveals that
it is not possible to make a proper distinction between
higher order harmonics generated by the second order
effects at the free surface and the higher order
harmonics generated by the device. The theory leads to

time

Fig. 9. yo= 0.231 m, t = 4.6 radls, a = 0.384 rad
measured, -- computed

1sec

time

Fig. 10. yo = 0.231 m, u = 4.6 radls, a =0.576 rad

when

{A0 4- E A,,
n=1

(.02n2

.0+ n7
71

2
(18)x4ccwnt --- (x

g

(0, n even
(1, n odd

The amplitudes are defined according to
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The constant ao may be computed; it results from the
singularity at the origin. However, it leads to a zero
contribution to the wave height.

We write

0.04

T1 Cm) 0

-0.04
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0.01

time

0.01

0.02

0.03

Fig. 11. Computed results

a good description of the wave profile in general. In
Fig. 11 some computed results are compared. It shows
that for decreasing values of co and y, higher order har-
monics are more relevant. This is explained by the
exponential factor in equation (17).

A result is also shown in front of the profile, where
according to the asymptotic derivation of equation (17)
the disturbance dies out. This is confirmed by the com-
putations. The solid line in Fig. 11 suggests that the
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transient may be neglected at t 4 sec. The computa-
tions show that at Z = 1.8 at t =5 sec. the transient
is about 10% of the signal at 1.8m.

Some experiments are carried out to check the energy
generator in regular waves. It is shown that the device
rotates at the wave frequency. However, the influence
at the wave height could not be measured because of the
small values at a. The radiated wave height is about one
percent Of the incident wave height.

4. CONCLUSIONS

The waves radiated by the rotating device may be calcu,
lated by means of the theory developed here. The non-
linear effects of the free surface may be neglected
because in the realistic case the vortex "strength is less
than the one generated in the rotating ekperiments. An
important conclusion is that waves are generated
'down stream", only Higher order harmonics become
significant if the center is situated closer to the free sur-
face, which is the same region where the device becomes
more efficient. They are also of importance in the case
Of long waves. Finally equation (17) can be used in
equation (7) to compute the wave height for large
values of time at model scale after 10 sec. The energy
absorption Of the rotating device in regular waves is
given in equation (21). Future efforts will be directed
towards more experimental verification of the theor-
etical results.
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