
eNose
An electronic nose for solid stools detection
Software perspective
Maxim Chin-On
Mark Fijneman
Gabriel Yousef

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

eNose
An electronic nose for solid stools detection

Software perspective
by

Maxim Chin-On
Mark Fijneman
Gabriel Yousef

A thesis presented for the degree of BSc Electrical Engineering

Project duration: April 12, 2021 – June 30, 2021
Thesis committee: Prof. dr. ir. R.E. Kooij, TU Delft

Prof. dr. P.J. French, TU Delft, supervisor
Dr. M. Mastrangeli, TU Delft, supervisor
M. Gravemaker, Momo Medical

This thesis is confidential and cannot be made public until June 30th, 2023

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
This report details the software part of the development process of the eNose technology. The technology
is posed by Momo Medical. Momo Medical is a start-up company located in Delft, it provides and de-
velops non-intrusive monitoring systems in the nursing sector. The project is the next step in an already
existing product: BedSense. BedSense enables nurses to check for among others decubritus, whether
the patient is out of bed, and even if the patient has passed away. The finished project will be able to
detect solid stool and hence, when integrated into the system of BedSense, will greatly assist the nurses.

The eNose technology is able to detect solid bowel movement using its gas sensing abilities. It con-
sists of gas sensors that detect the relevant gasses that are related to feces. These sensor values are
then fed into an algorithm that is able to interpret them and detect defecation. Besides it includes
a communication system that handles the internal and external communication. Finally, the technol-
ogy supports Over The Air (OTA) updates which allows to update the firmware of the devices remotely.

The final prototype functions accurately in certain restrooms and can be regarded as a proof of concept.
However more work and data is needed in order to make the eNose work in various environments, with
possible integration of machine learning analysis, as it has showed great potential.

The project is executed in two groups, hardware and software. This report contains only the soft-
ware part of the process. It includes the development of the detection algorithm. And the development
of a communication and OTA programming system.

ii

Preface
This thesis is written for the Bachelor Graduation Project of the study Electrical Engineering. The
subject of the project has been proposed by Momo Medical. The company was closely involved in the
execution of the project. As the results of the project is a fully functional prototype, the eNose will
be tested inside care facilities soon after the deadline of the thesis. The conclusions and results of the
resting will be presented during the defence of the thesis.

We would like to sincerely thank Menno Gravemaker, CEO of Momo Medical and Thomas Bakker,
CTO of Momo Medical, for giving us the opportunity to work on this hands-on project, challenging us
and supporting us.

Not to mention are we grateful for the excellent guidance and support provided by our supervisors,
prof. dr. Paddy French and dr. Massimo Mastrangeli. The quick feedback and critical question were
of immense value.

Last but not least, we want to acknowledge the other subgroup’s members: Niels van Damme, Stein
Fakkel and Anne Stijns. We enjoyed and valued the close and effective collaboration during the project.

Maxim Chin-on
Mark Fijneman
Gabriel Yousef

Delft, 17 June 2021

iii

Contents

Preface iii

1 Introduction 1

2 Specification 2

3 Hardware 3

4 Detection algorithm 5
4.1 External influences . 5

4.1.1 Temperature and Humidity . 5
4.1.2 Warm-up time . 5

4.2 Detection . 6
4.2.1 Sensor Imperfection. 8
4.2.2 Algorithm . 8
4.2.3 Machine Learning. 10

4.3 Testing the algorithm. 12

5 Communication 13
5.1 Sensor read-out . 13
5.2 Wi-Fi . 14
5.3 Protocol . 15

5.3.1 Generating the request . 16
5.3.2 Setting up the connection . 16
5.3.3 Processing the response . 17

5.4 Server side . 18
5.4.1 Database . 18
5.4.2 Webserver . 19
5.4.3 Dashboard. 20

6 Over The Air Programming 22
6.1 Firmware Over The Air . 22

6.1.1 Partitions . 22
6.1.2 Checking for an update. 23
6.1.3 Downloading . 23
6.1.4 Reliability . 23

6.2 Parameter adjustments . 24
6.2.1 Wi-Fi Over The Air . 24
6.2.2 Algorithm Over The Air . 25

7 Conclusion 26

Bibliography 27

A Algorithm 28
A.1 C++ code . 28
A.2 Matlab Code . 32
A.3 Testing . 39

B Communication 40
B.1 Sensor read-out . 40
B.2 Wi-Fi connection . 43
B.3 Webserver . 49
B.4 Protocol . 58

C Over the Air Programming 73

iv

1
Introduction

As part of the bachelor end project of the study electrical engineering of the TU Delft, a team of future
electrical engineers chose to work on a technical challenge posed by Momo Medical1. Momo Medical is
a start-up company located in Yes!Delft that provides and develops non-intrusive monitoring systems
in the nursing sector. The project is the next step in an already existing product: BedSense. BedSense
is a system that exists out of an under-the-mattress sensor and a server application. It enables nurses
to check for decubitus, whether the patient is out of bed, and even if the patient has possibly passed away.

A common problem of incontinent elderly people is incontinence-associated dermatitis, diaper rash in
layman terms, caused by prolonged exposure to the moisture of stools and urine combined with changes
in pH [1]. Currently, nurses routinely inspect the diaper of patients throughout the day and night for
defecates. This is done either by smelling or checking for humidity with a hand placed inside the dia-
per. This method is time-consuming for the healthcare workers and disruptive for the patient. Hence,
a method to detect feces would represent a great addition for the BedSense.

The goal of the project is to develop a non-intrusive device that can be eventually integrated into the
BedSense system and can detect solid stool. The device should be easy for nurses to use and not burden
them with extra work. To develop and implement this product, the project is split up into two parts.
The first part relates to the sensors and sensor read-out. The second part relates to the detecting algo-
rithm and communication. An overview of the project is given in Fig. 1.1. This report will specifically
be about the second part

Figure 1.1: Flowchart of project components.

The detection algorithm depends on the data supplied by sensors and will be transmitted wirelessly
to a server. Hence, the research question raised is: "What are effective methods related to extracting,
interpreting, and communicating the stool sensor data?". To answer this question, this report will first
discuss the specifications which are desired. The second chapter will discuss the algorithm part. The
next chapter is about the communication between the eNose and BedSense. Inside the fourth chapter
Over The Air (OTA) programming is explored for updating the device remotely. This thesis will finish
with a conclusion and recommendations for future work.

1https://www.momomedical.com/

1

2
Specification

This chapter will introduce the requirements for the algorithm, communication part and Over The Air
(OTA) programming. It will first reiterate the general requirements of the project and continues with
specific requirements.

General requirements
The main requirement of the eNose is to be able to correctly distinguish solid stools from other odors
and smells. On top of that, both the eNose and the BedSense, are mainly used by healthcare workers
for patients that require nightly care. Both devices aim to reduce the workload. Health care workers
experience a high workload and are generally not technically schooled. Hence, the eNose should be easy
to use for the nurses and not burden them with extra technical work. As the eNose is monitoring all
the time, the device should be as non-intrusive for the patient as possible. The price of a unit should
be aimed around 20 euros, but it has an absolute maximum price of 300 euros per unit.

Detecting
One of the most important requirements for this project is that the device needs to be able to detect
solid stools. An algorithm needs to do this based on different sensor values and should ignore all other
types of smells and odors. To prove the working of the concept, the eNose will first be placed in different
restrooms owned by members of the team, and if time allows for it, the device will also be tested in
nursing homes.

Communication
For the development of the algorithm and for monitoring the devices, a large quantity of data is re-
quired. As the eNoses will be distributed among many rooms at different locations, the data should
be collected at a central location automatically. An important factor to consider is the scale-ability of
the server/database system as many devices will be connected eventually. Furthermore, a monitoring/-
graphing tool should be used to make the data easily visible and understandable. For the actual usages
by the health care workers, an SMS containing the location needs to be sent when solid stool has been
detected.

Over The Air
As the end product will be used in many rooms over several care facilities, it can be difficult to perform
updates and tweaks by physically accessing the devices. Hence, the devices should be update-able
remotely. This includes installing a complete new firmware on the device as well as changing the
parameters of the Wi-Fi.

2

3
Hardware

Literature shows that solid stools detection can be done using multiple techniques such as gas detection,
moisture detection or ultrasound-based detection. [2] However based on the requirements, gas detection
was chosen as it can solely detects solid stools and is not sensitive to urine, unlike moisture sensors. And
it can happen remotely without touching the patients skin, which is the case with ultrasonic detection.[2]

The Sensors
Gas detection can happen through several chemical properties of gas. Hence there are various commer-
cial gas sensors available, each with a different sensing mechanism. [3] There are two important metrics
regarding gas sensors. The selectivity of a sensor, which specifies to which degree a sensor can detect
one gas from another and the sensitivity of a sensor, which is indicator of the magnitude of output as a
response to a certain gas. After conducting an extensive literature study about gas sensors, MQ sensors
were chosen. MQ sensors are a well known and a cheap series of gas sensors. Since they were relatively
cheap and available for delivery within a week, as quick delivery was an important requirement as well.

The MQ sensors are Metal Oxide Semiconductor (MOS) gas sensors. MOS sensors have a relatively
simple sensing mechanism. Once these sensors are surrounded by the target gas, their resistance changes
as a function of the partial pressure of the target gas. This gas interaction with the surface stimulates
an electronic change in this oxide surface. This surface electronic change, translates into an electrical
resistance. [4]

The MQ sensors are also provided with a heater, that regulates the internal temperature of the sen-
sor. Following the chemical principle that different gasses show different optimal inter-action with the
surface of the semiconducting material based on this surface temperature, this improves the sensitivity
and the selectivity of the sensor. [5] This chemical property also explains the need for a warm-up before
putting the sensors to work. This assures that the semiconductor has a sufficient temperature to ensure
ideal sensing. The sensing degree also depends on the surrounding humidity, for this reason humidity
should also be considered.

The main target gas for defecation detection is methane (CH4). To detect methane, a methane sensitive
MQ sensor is used. However, MQ sensors have a low selectivity and the sensor might react to other
gasses that are exhaled by cleaning and sanitizers. For this reason, a non methane sensitive MQ sensor
is used to filter out false detection caused by these gasses.

Other sensors included on the eNose are a temperature and humidity sensor, due to the dependence of
the gas sensors on these properties as discussed prior. The sensor used for temperature and humidity
is DHT22.

Microcontroller
The main core of the system consists of the microcontroller. It should have enough computational
power and storage to support the software of the system and to make the necessary communication
with the web-based part of it.
The BedSense device by Momo Technology uses the ESP32 as the internal microcontroller. The ESP32
supports Wi-Fi communication, and has built-in Analog to Digital Converters (ADCs), which are
extremely useful in our case to transform the analog sensor readout to digital, without the need of an
external ADC, The internal ADC pins of the ESP32 read the analog voltage signal and transform that
into a 12 bits digital number, with a maximum value of 1.1 V.
The ESP32 is also characterized by having a low power consumption.
Based on these features the ESP32 was selected as the internal microcontroller of the eNose.

3

4 3. Hardware

Hardware Integration
The final step was integrating the hardware. A PCB was designed to connect the hardware components.
The focus while creating the final PCB design was the compactness of the total device. Finally, a
case was designed to embrace all the electrical components. The case fulfilled two important design
requirements: being water-resistant and having ventilation slots to allow passive cooling to stabilise
the internal temperature. This was achieved by creating roof-like ventilation slots that allowed passive
cooling and water resistance (as shown in Fig. 3.1b). The case also includes a bedclip to mount the
eNose device on the bed of the patient (as shown in Fig. 3.1a). The gas sensors protrude out of the
case to ensure optimal gas sensing. The final case design is illustrated in Fig. 3.2.

(a) The bed clip design. [2] (b) The roof-like structure around ventilation holes.[2]

Figure 3.1: Features of the case design.

Figure 3.2: The final design of the case. [2]

4
Detection algorithm

The main purpose of the algorithm is to check whether the sensor values suggest solid stools rather than
cleaning solutions, farts or other stimulants. These other stimulants also release gasses into the room
affecting the sensor values. The device should be able to distinguish these other stimulants from feces,
this is why the algorithm is needed. Whilst detecting feces, unwanted influences and signals can be
present. To determine if this can cause problems, the significance of these influences will be examined.
Next, relevant theories and approaches for the detection algorithm will be explained. The chapter will
be concluded with the description of the implementation of the algorithm.

4.1. External influences
The sensors used are MQ gas sensors, these type of sensors can be affected by both temperature and
humidity [6]. These influences could significantly change the sensor measurements and should be further
examined. On top of that the sensors heat up by themselves, this results in a certain warm-up time
until a stable output is reached, this could make detecting solid stools more difficult and should be
looked into.

4.1.1. Temperature and Humidity
As discussed previously, the MQ sensors sensing ability is depending on temperature and humidity.
The device is meant to be used in nursing homes. Climate control in the rooms only allows for small
deviations in temperature and humidity. It is estimated that the sensor output voltages will not change
by more than 5-10% due to these small deviations. This decision will be reevaluated if the temperature
and humidity end up playing a bigger role, but for now this seems to suffice. This response is similar
for all MQ sensors.

4.1.2. Warm-up time
The sensors have a heating element that makes sure that the sensor stays at a stable temperature be-
cause the sensors are temperature dependent [6]. This means that the sensors need a warm-up time. It
was decided to plot the warm-up time. The warm-up time is defined as the time it takes for the sensor
to reach a stable value. This is when the deviation between the last 10 sensor measurements is less than
a percent. This definition was chosen because the stable value allows the algorithm to detect coming
spikes correctly. In the first minute of the warm-up, the sensors output voltage spike after which the
sensor voltage exponentially decrease to their stable output voltage (Fig. 4.1).

To better understand this process, the sensor warm-up time was measured for different cool-down pe-
riods in between measurements. The maximum temperature deviation for these data points was only
three degrees Celsius and the relative humidity stayed quite stable. Because of this, these environment
conditions were neglected. This resulted in Fig. 4.2. The warm-up time of the sensors seems to depend
on the time it was offline. If the device had been offline for a longer period of time, the warm-up time
would also increase in comparison to a shorter offline period.

As can be seen from the data, the warm-up time does not go over 10 minutes and is not expected to
go over 10 minutes for longer cool-down periods. This value should give sufficient time for the sensor
to heat up enough so it should not influence the detecting algorithm.

5

6 4. Detection algorithm

Figure 4.1: Plot showing the general warm-up behaviour of different sensors.

Figure 4.2: Warm-up time versus cool-down time.

4.2. Detection
Because the lack of literature on discriminating gasses released by feces from other stimulants, decisions
needed to be made based on our own data. Data collection was started early in the project to improve
the chances of creating a sufficiently accurate algorithm. This data was then analysed to find ways to
differentiate between instances of stimulants.

All instances of feces and flatulence should consist of a similar concentration of gasses [7]. This means
that the sensors measurements should react similarly every time they detect feces in a comparable
environment. The MQ sensors should react differently compared to one another when exposed to
gasses. By looking at these different changes of the sensor measurements when detecting feces and
comparing these to each other, certain ratio’s can be found. Because both small and large quantities
of feces need to trigger the algorithm, the data needs to be normalized. The sensor to be used for the

4. Detection algorithm 7

normalization is the MQ-3 sensor, this was done because when exposed to any gas its spike has the
biggest increase of value. This makes it easier to neglect noise. This was first done with data collected
from the first prototype board, this particular device was using the MQ-3 for normalizing MQ-5, MQ-9
and MQ-135. The resulting plot can be seen in Fig. 4.3. As can be seen in the figures, the feces boxplots

Figure 4.3: Normalized sensor behaviour plotted out in box plots.

do not overlap with the other boxplots, which is preferred. Both MQ-9 and MQ-135 show potential
for detecting defecate data. The same plot was recreated for the second board, which uses the MQ-5,
MQ-6 and MQ-9, and again uses MQ-3 for normalizing. Fig. 4.4a shows the box plots for the sensor
measurements based on feces and other inputs. The boxplots here overlap, these sensor anomalies were
results of defecation with an open restroom door. When the open door datapoints are taken out of the
plot, Fig. 4.4b results.

(a) Normalized sensor behaviour plotted out in box plots shows
the behaviour with open door data.

(b) Normalized sensor behaviour plotted out in box plots shows
the behaviour without open door data.

Figure 4.4: Boxplots showing the normalized behaviour of different sensors

This data shows again that the MQ-9 sensor shows great potential for the detecting algorithm. This is
because it is the only sensor here where the blue and red lines can be split using a value between the
lowest blue line and the highest red line. However, even though the cases with the open door can be

8 4. Detection algorithm

neglected for now, since the detecting algorithm is only applied in restrooms, it does show that bigger
rooms could prove big challenges for this type of device.

4.2.1. Sensor Imperfection
Analysing the obtained data yielded further findings of the sensors. It was observed that the output
voltages of the same type of sensors were not always equal. However, this was expected since the sensors
are not calibrated before use. This phenomenon is illustrated in Fig. 4.5. In the figure, the readout of
4 MQ-135 sensors is plotted. The four sensors were placed next to each other and connected to a single
ESP32 and placed above a toilet.

Figure 4.5: This plot shows four MQ-135 sensor, each with a slightly different output.

It can be seen that the mean of the sensors differs, but also the shape of some of the peaks is different.
The difference between the means is 33% which could have large consequences. While creating the
algorithm, the possibility of sensor calibration was still being investigated. This could mean that to
ensure that all devices have the same detection precision, the algorithm has to be specifically designed
for each device based on its sensors. The plots to choose the algorithm parameters in Fig. 4.4b and
Fig. 4.3 have been made with three devices so far, so these devices are expected to accurately detect
the poop. Other devices, however, do need to be tested before putting them into use to ensure selectivity.

4.2.2. Algorithm
The algorithm is written in C++ and runs on the ESP32. This makes it easier to scale as opposed to
running the algorithm on a central system. This is because this way each device can make decisions
on itself instead of the central system having to make decisions for each device. The algorithm works
from the buffer class. This class stores the most recent sensor measurements and deploys the algorithm
and a multitude of functions on the data. The complete C++ code fo the algorithm can be found in
Appendix A.1. The algorithm is tested using collected data and plotting it in Matlab using the code in
Appendix A.2.

The algorithm is initialized with setBuffer. This sets the variables including its maximum capacity,
the warm-up time needed, sample rate (Fs), the period that should be considered and the detecting
threshold. If these variables need to be changed during operation, they can be changed using setValues.
Every time new data is collected, it is stored in sensor1, sensor 2 and sensor3 using addData. This
function keeps track of the amount of data it has collected, and if the number surpasses its capacity
it deletes the oldest datapoints. Every time data gets added to the buffer, the algorithm is applied to
that data using algo. This function calls getMean to get the mean of the data. Using the mean, the
stored data and the remaining variables, the algorithm makes a decision to either say defecate has been
detected or not. The algorithm will be further explained. If the stored data is needed it can be requested
using getData or printed using printData. Currently the buffer only stores data for three sensors. This

4. Detection algorithm 9

is because the algorithm does not yet have the need for more. The class is easily extendable if more
sensors are necessary to accurately detect feces.

Version 1
The first version of the algorithm worked according to a very simple principle. If a sensor value rises
by enough in a short time, it would say it detected something. This algorithm proved to be able to
detect defecation, and by keeping track of the duration of the value change, flatulence was neglected.
However, this method also responds to any other change of gas concentration. Deodorant and a shower
next doors proved to also be detected by the algorithm. To test the algorithm, it was applied on
an already collected data set which included multiple instances of feces but also a spike caused by
deodorant. The results of the algorithm can be seen in Fig. 4.6.

Figure 4.6: First version algorithm applied to dataset.

Although this version does indeed detect feces, its selectivity is way too low to be used in actual nursing
homes. The next algorithm should focus on differentiating defecate from other stimulants.

Version 2
This version of the algorithm is an enhancement of the first version that uses the inputs from multiple
sensors to help differentiate between different stimulants. It is based on the ratios shown by Fig. 4.3. A
finite state model is used to implement the algorithm. The model can be seen in Fig. 4.7. This method
features six different states. The starting state is the warm-up state, this state is only entered when
booting up the device to ensure the device is warmed up before the algorithm is deployed. After the 10
minute mark has been reached it will continue to the neutral state. The neutral state is pretty straight
forward, it waits until a spike is detected and if not it stays in the neutral state. If a spike is detected it
goes to the ’Waiting for peak’ state. This state waits for a peak to be reached, and when that happens
it checks if the ratios are within the bounds explained above. The ratios that are considered in the
bounds now only consists of the normalized value of MQ-9 being below 0.5. This number was chosen
based on the plots shown in Fig. 4.3 and Fig. 4.4b. If the ratios are off or the peak takes too long to
reach, the system waits in the cooldown state until the sensor values are normal again and then goes
back to the neutral state. A normal sensor value is described as a sensor value that has or almost has
returned to its mean. If the ratios are within the bounds it will go to the counter state. The counter
state is to make sure small spikes such as flatulence are neglected. When the counter reaches a chosen
number and the sensor value is still high, it will go to the detected state, otherwise it will return to
neutral. In the detected state an output will be send, telling the system it has detected poop. The
algorithm remains in this state until the signal returns to normal again. The ratios that are considered
in the bounds now only consists of the normalized value of MQ-9 being below 0.5. This number was
chosen based on the normalized sensor ratios shown in Fig. 4.3 and Fig. 4.4b

Using this algorithm on the same dataset as used to test the first version, Fig. 4.8 shows the results. The
results look promising, the feces are correctly distinguished from the deodorant. However, as mentioned
in the analysis section, when defecating with an open door the algorithm does not detect anything.
This suggests that it will be more difficult to detect feces in a bigger room. To improve this algorithm
more data needs to be collected. This data needs to be based on examining the effect of room size and
ventilation.

10 4. Detection algorithm

Figure 4.7: State diagram describing working of second version algorithm.

4.2.3. Machine Learning
On top of the standard algorithm, a decision was made to also explore the possibilities of machine
learning (ML). This is because the ML algorithm is capable of identifying more patterns in the data
provided. The algorithm was first coded in Python, but with existing libraries it can be put on the
ESP32 in C++ code. This has not been done yet due to time constraints.

To train the ML algorithm, the already collected data was used. Out of the 7 devices with enough data
points, 3 are chosen to train the algorithm. The remaining 4 are used to test the data. This is because
the algorithm needs to work on new devices without having collected data for them. The ML is done
with some extracted parameters. The datasets are divided in parts of 16 samples. The mean, standard
deviation and difference between the first and last value are extracted for each of the parts and the
dataset as a whole. Because the amount of non-poop datasets greatly outnumbers the amount of poop
sets, they are equalized. This means that the poop datapoints are copied so there is an equal amount
of poop as non-poop datasets.

Using the extracted parameters, the ML algorithm is trained. The results of this training process can
be seen in Fig. 4.9a in a confusion matrix. The y-axis shows the true value of the dataset, and the
x-axis the predicted value. The figures show that about 18% of the data containing no feces is detected
as feces and 20% of feces data as non feces. The validation data results in an accuracy of 29% and 5%
respectively. Although the majority of the datapoints is predicted correctly, these still are not great
results. To improve the ML algorithm, an assumption was made. If feces are present, the gasses are
not suddenly going to disappear. This means that if one datapoint detects feces, the next one should
as well. Otherwise it is probably a wrong prediction. Using this assumption the algorithm was tested
again. The results are shown in Fig. 4.10. Using this method, the accuracy improved to 0% and 5%

4. Detection algorithm 11

Figure 4.8: Second version algorithm applied to dataset.

(a) The confusion matrix for the training set (b) The confusion matrix for the validation set

Figure 4.9: Confusion matrices of the ML Algorithm

respectively. These results are way closer to the desired accuracy. However, it should be mentioned that
this test, as well as the others, are done for relatively small data sets compared to other ML algorithms.
If more data is added the performance could change. Just as for the previous algorithm versions, once
more data has been collected, the performance of the ML algorithm should improve as well.

Figure 4.10: The confusion matrix for the improved validation set

12 4. Detection algorithm

4.3. Testing the algorithm
Testing the eNose algorithm was executed in 2 phases.

Phase 1
After understanding the behaviour of the sensors the first version of the algorithm was constructed
and six units were distributed on six toilets to test the current algorithm, the outputs of these devices
were closely monitored in the dashboard. The problem about this setup however was that the incoming
data was unlabeled, which means that it was not obvious whether the current algorithm was indeed
detecting correctly, since it is not known what exactly is happening in the toilets. To solve this problem
two methods were implemented. First a button was added to the device, and the participants were
requested to press the button each time they defecated. However, some devices were placed out of reach,
for instance above the toilet, which made it inconvenient to press the button, so a second method was
implemented. The second method was a short questionnaire that participants accessed via a QR-code
placed next to the toilet. The second method yielded high quality data since the participants could
also mention other activities carried out in the toilet such as showering, and they could describe their
defecation. The obtained data was then analyzed and used to improve the algorithm and create the
upgraded versions of the algorithm that were described prior. This process is illustrated in Appendix
A.3.

The performance of the first phase was evaluated based on the selectivity of the algorithm. Because it is
hard to know if an instance of defecate happened without it being detected this was left out of consider-
ation. This is because roommates might not notify the team of defecate and thus the team has no way
of knowing if it should have been detected. This is why the selectivity is defined as the percentage of
correctly predictions of feces as opposed to all predictions saying feces have been detected. The results
are based on the devices of Maxim, Menno and Mark. This is because these devices have collected
enough data using the newest prototype board with the correct sensors and the newest software. Most
of the data was collected at Maxim’s location. This is because of roommates that were contributing to
the amount of data. It is expected that this location will have the best performance since most of the
datapoints were from this location resulting in the algorithm being fine tuned for this site.

Using the questionnaire and the algorithm predictions, the selectivity was computed. The devices of
Maxim, Mark and Menno had selectivities of 95%, 59% and 57% respectively. The overall performance
was calculated to be 73%. Even though most of the instances are correctly predicted, this still is not
the performance sought after. As stated before, it is necessary to collect more data on more different
locations to improve the algorithm significantly.

Phase 2
After upgrading the algorithm based on fase 2, the complete device will be tested in the intended en-
vironment, namely, the nursing home.
In this phase a number of devices will be distributed among several rooms of the nursing homes, and
the devices will be put to work. To verify whether the eNose is detecting correctly, an SMS will be sent
to the nurses each time the device detects solid tools. The nurses are then requested to respond to the
SMS with a "Yes" if the detection is correct and "No" if it is not.

The obtained data based on this testing phase will then be used to upgrade the algorithm again. These
results will however not be discussed in this report due to time restrictions beyond our control.

5
Communication

The eNose needs to communicate with the server when solid stools are detected. As the eNose operates
in close proximity to the Bedsense, which is already connected to the server of MomoMedical, there
are two possibilities for communication: direct or via the BedSense module. BedSense contains the
microcontroller unit (MCU) ESP32-WROOM-32D, which has an onboard radio chip capable of various
communication techniques in the 2.4GHz band. This gives great freedom to choose the wireless com-
munication method between BedSense and eNose. On the other hand, direct communication with the
server limits the method to the internet only. The benefits of using direct communication rather than
indirect communicating are that it enables easy OTA updates and integration with monitoring systems.
Hence, direct communication is used.

In order to send data to the server, the ESP32 must connect to the internet and send data through a
protocol to the server which in turn must interpret the received data. As nursing homes do not have a
spare Ethernet connection in every patient room and there is already an existing Wi-Fi network present,
the connection mode to the internet is Wi-Fi. Regarding the protocol, there are various options that
can be transmitted over the internet and require further analysis. How the server-side processes the
received process depends mostly on the chosen protocol. Hence, this chapter will first discuss how the
sensors are read out by and stored on the ESP32. Secondly, Wi-Fi and the relevant key concepts of
Wi-Fi are explored. During the same section, the implementation of the software to connect to the Wi-
Fi for the ESP32 is addressed. The third section discusses the HTTP protocol and the implementation
of the communication between ESP32 and the server. Lastly, the server-side of the communication is
discussed.

5.1. Sensor read-out
The read-out functions, as well as the sensor data, are grouped together inside the class sensor (See
Fig. 5.2 and Appendix B.1 for the code). The function read sensors, as the name might suggest, reads
the values of all the sensors. The gas sensors output the concentration in an analogue way to the GPIO
pins of the ESP32. The ESP32 has two types of 12-byte ADCs that can convert the analog signal into
a number. ADC1 has 8 channels while ADC2 has 10 channels but cannot be used in combination with
an active Wi-Fi component. [8, p. 663] Hence, only ADC1’s channels are used. To use the ESP-IDF
functions adc1_get_raw(channel), the output length and attenuation needs to be configured. As the
sensors do not exceed 1 V [2], the best resolution is obtained by setting the attenuation to zero dB. The
ADC output can be noisy and not consistent. However, this can be reduced by using multisampling
which averages multiple rapid successive measurements. [8, p. 676] In Fig. 5.1 the benefit of multisam-
pling is displayed. On the left is the signal of the MQ-3 sensor varies with 20 mV. While after an OTA
update with multisampling, the signal of the MQ-3 sensors varies only with 2 mV.

The DHT sensor is a digital sensor that consists out of a thermistor and a humidity sensor. The data
of the sensors are encoded and sent with a proprietary protocol to the ESP32. Rather than designing the
system that can read the sensor, an existing C++ class is forked from https://github.com/gosouth/DHT22
due to time constraints. Another class included inside the sensor class is the buffer. The buffer is the
class that contains the algorithm functions and variables, as discussed in Chapter 4.

When the button, used to signal solid stools, is pressed, it should be registered instantaneously rather
than waiting for the function update_sensor to read the button. This is realised by setting the GPIO
interrupt configuration to a Positive Edge, create and set up a task, and register an Interrupt Service
Register (ISR) service as well as a handler. When the button is pressed the ISR sends a message into
the Queue that the button has been pressed. The task continuously runs and checks whether a message

13

14 5. Communication

Figure 5.1: Effects of multisampling on noise. Figure 5.2: Class sensor.

from the Queue has been received and starts the function button_pressed. This function sets the
button value to 20, which will be subtracted by one in the update_sensor function each time. This
will ensure that the button value is sent multiple times to the server.

To obtain the values stored inside the class, the function update_sensor can be used. The input of
this function is an integer in the range 1 to 6 which represents the MQ-3, MQ-4, MQ-5, MQ-6, MQ-9
and MQ-135 respectively. The numbers 7 and 8 are used for temperature and humidity. The algorithm
value uses the number 9 while the button value uses number 10. With a simple switch case instruction,
the value is read from the class and returned.

5.2. Wi-Fi
Most Wi-Fi networks use a security protocol, such as WEP, WPA, WPA2 or WPA3, to prevent unau-
thorised users access to the network. The earlier protocols WEP and WPA are now mostly obsolete due
to security weaknesses that can be easily exploited. Currently, the most widely used security protocol
is WPA2, which will eventually be replaced by WPA3 as it provides additional security. Fortunately,
WPA3 is backwards compatible with WPA2 [9]. Hence, the focus will lie on WPA2 as most nursing
homes still use this protocol. Within WPA2 there are two modes: PreShared Key (PSK) which uses a
password and Enterprise. With a WPA2-enterprise network, a user communicates to the router which
will verify with a Remote Authentication Dial-In User Service (RADIUS) if the connecting user is au-
thorised to connect. Within WPA2-enterprise there are additional sub-modes such as EAP-MSCHAPv2
or EAP-TLS. The former only requires an anonymous identity, username and a password from the client
while the latter also requires that the client has a certificate.

All the functions related to connecting to Wi-Fi are combined into the class wifi_connect (See Fig. 5.3
and Appendix B.2 for the code). Inside this class, the necessary Wi-Fi parameters are stored.

The function wifi_init_sta connects to an AP based on the stored parameters. The function can
be divided into seven steps. The first step is to initialise netif, which is an abstraction on top of the
TCP/IP stack developed by ESP-IDF. Secondly, instances of event handles are registered. Thirdly,
through the struct wifi_config the Wi-Fi settings and mode are copied to the underlying Wi-Fi
handler. During this step, it is possible to configure the WPA2-enterprise settings. The fourth step
creates a station control block and starts the Wi-Fi station. The next step blocks the main program
and performs the task which tries x times or until it is connected. In the sixth step, the bits set by the
task are read to check whether the task was successful or failed. The last step is deregistering the event
handles created in the second step.

5. Communication 15

Figure 5.3: Class responsible for connecting to Wi-Fi.

5.3. Protocol
In Internet of Things (IoT) applications, the four main application protocols are MQTT, CoAP, AMQP
and HTTP. [10] These protocols are all handled further by a TCP/IP-stack. Important aspects to se-
lect the application protocol on are: overhead size, reliability, security possibilities, as well as ease of use.

The bandwidth usage of the ESP32 should be minimised as a nursing home will have many eNose
devices present. Those many devices all use a small amount of bandwidth which, when summed up,
can be significant. The data will be transported with a header included. This header provides extra
overhead and needs to be minimalised to increase the efficiency of the used bandwidth. The default size
of the Header of MQTT is 2 Byte, CoAP is 4 Byte, AMQP is 8 Byte, and the HTTP header is of an
undefined size. A basic HTTP header used for this project is around 100 bytes due to the mandatory
header fields such as the hostname, HTTP version, user agent and content-type. Hence, HTTP has a
significantly larger overhead size compared to MQTT, CoAP, and AMQP.

Reliability is an important factor as all the sensor data should be visible in the monitoring dash-
board. Moreover, it is bandwidth expensive to compensate for possible transmission losses with the
extra transmission of the same data. Unlike CoAP which uses UDP as transport protocol, the other
application protocols use TCP. The TCP protocol can guarantee delivery and use extensive error check-
ing while the UDP protocol cannot. However, UDP is faster than TCP since it for example does not
require handshakes. Hence, CoAP is not a suitable application protocol for the ESP32.

As the communication contains medical sensitive information, solid stool frequency, the communication
between device and server should be protected to prevent eavesdropping. This security, however, comes
with a cost of higher data usage and introduces communication latency. [11] All the protocols support
TLS, which is an encryption protocol between server and client. The server will be authorised by the
client using a stored certificate and the communication will be encrypted. In the case of HTTP and a
TLS connection is used, the protocol is called HTTPS.

The last aspect to consider for the application protocol is the ease of use. The bodies of MQTT, CoAP
and AMQP are all in binary to reduce bandwidth. The body of the HTTP request can be in plain text
as well as in binary data. A common format of the body is JavaScript Object Notation (JSON) which
is a standardised data format that is easy for humans to read. Another format for the HTTP request’
body is Protocol Buffers (PROTOBUF). The format uses binary data to represent a message that can
be deserialised by the server to obtain the values sent. This reduces the used bandwidth significantly
but it is unreadable for humans. To speed up development, the HTTP protocol with a JSON format is
chosen. The format can eventually be replaced by PROTOBUF to reduce the bandwidth.

The actual implementation of the HTTP protocol as communication can be split up into three parts:
generating the request, setting up the connection, and processing the response. The code regarding
to the implementation of the HTTP protocol can be found in Appendix B.4. All the functions and

16 5. Communication

variables are grouped inside the class http_request (Fig. 5.5). An overview of the communication of
the measurement data between the server and ESP32 is displayed in Fig. 5.4

Figure 5.4: Communication measurements between server and ESP32 during
measurements. Figure 5.5: Class http_request.

5.3.1. Generating the request
The HTTP request is HTTP method dependent and consists out of a body and a header. HTTP
methods, often called verbs, describe the action that the HTTP request performs. The most common
verbs are GET, used to retrieves data, and POST, used to create a resource on the server. Only the
GET request has no body. To determine which verb to use, it needs to be considered whether the
operation needs to safe or idempotent. Verbs such as GET are called safe as they can be called many
times without changing anything on the server. Idempotent verbs such as PUT and GET can be called
multiple times and produce the same result. Verbs as POST and PATCH are neither idempotent nor
safe. To publish the measurements data into the database a non-idempotent non-safe action is used,
hence a POST method is used

The headers of the request with a body should at least contain the verb, host URL, host path, content-
type and content length (See Listing 1 for an example). GET methods do not require a content-type
and content-length header as it does not contain a body. Both types of headers can be generated in
the function generate_header which takes as input the content length and outputs a string with the
header. The actual content of the message depends on what the server expects. The variables that are
sent to the server are all the sensor data, algorithm values and button values. Additionally, to estimate
the reliability and check for fatal errors of the ESP32s’ it is useful to also send the uptime of the de-
vices. A low uptime can indicate that the device periodically reboots on itself due to a bug. Another
variable transmitted is the MAC address of the device. This MAC address is unique for every device
and programmed by the manufacturer. Hence, it makes an excellent device identifier. The function
generate_body takes a pointer to the sensor class as input and generates the body in JSON format.

5.3.2. Setting up the connection
To communicate with HTTPS the server needs to be verified by the client and the communication must
be encrypted. Verifying the server is done using certificates. Certificates are issued in a chain of trust
by certificate authorities, which means that certificates of one authority are signed with a higher trusted
certificate. The highest level of certification is called a root certificate. A copy of these are stored on
devices to verify the root certificates.

The first step of the connection is the client obtaining the certificate of the server. To verify if the
certificate is neither expired nor invalid, the client verifies if it is signed by the authorising certificate
authority. This does not require another connection to the authority due to asymmetric encryption.

5. Communication 17

1 POST /API/endpoint.php HTTP/1.1
2 Host: URL
3 User-Agent: ESP32 v9
4 Content-Type: application/json
5 Content-Length: 202
6

7 {
8 "tag": "4C:11:AE:A5:F1:CC", "T": 10, "H": 100, "S1": 10,
9 "S2": 123, "S3": 523, "S4": 213, "S5": 213,

10 "S6": 213, "UP": 912, "A": 0, "B": 1
11 }

Listing 1: Example of HTTP post request to publish the measurements.

The verifying of the intermediate signing certificate authority continues until the device recognises a
trusted authority, i.e. root certificate. The trusted authority is recognised as its certificate is stored on
the device.

The ESP-IDF esp_tls is very useful and contains all the functions required to set up an HTTPS
connection through TLS. The root certificate for the TLS connection is configured by the ESP-IDF
function esp_tls_set_global_ca_store. After initialising the function esp_tls_conn_http_new is
used to start the TLS connection with the server. When connected successfully, the HTTP request
is written to the server through the function esp_tls_conn_write. The following step is to read the
response of the request using the function esp_tls_conn_read.

5.3.3. Processing the response
When the measurements are successfully processed by the server, it will respond with an HTTP 200
code and a message ’measurement processed’ and the ESP32 continues its program. There are two kinds
of failures possible where the measurement is not placed in the database: server errors and network
errors. Server errors rarely occur and are caused primarily by wrongful input. In this case, the server
will pass an error code to the ESP, which the ESP32 will discard and continue with the program like
no error occurred. Re-transmission is undesirable as the server error is likely to repeat itself. The other
kind of errors, network errors, can occur due to a poor Wi-Fi connection or an internet outage. In
this case, no message is received by the ESP32 and the device will time-out waiting for a response and
reboot. The reboot is done to reset the device in the case that the device is stuck. This solution will lose
the last measurement as well as the measurements that would have been performed during the rebooting.

A more elegant solution is to generate a sort of queue where the HTTP requests are stored in case of
a time-out. This could not be implemented due to time constraints of the project. To implement this
several changes to the structure/code are advised. Firstly, all the requests need to be stored inside
a First In - First Out (FIFO) queue. This queue should be limited to a certain amount of requests
as otherwise there would be no memory left during a long internet outage. When the transmission is
successful the request needs to be removed from the queue. Such queue can be generated using the
ESP-IDF ring buffer API which can create a queue of variable-sized items. Another method is to create
a linked list using a struct with a string of the request and the pointer to the next struct. The second
change is to place the functions that perform the HTTPS request inside a task that runs continuously.
A task can run in parallel from the main software. [8]. Inside the task, it is checked whether a new
HTTP request is present inside a queue. Thirdly, in case of time-out the device should not reboot but
rather continue with the program and try again later. Fourthly, the server checks the timestamp of the
previous entry and the current time against the uptime of the previous entry and current, to calculate
what time the measurement has been taken. Otherwise, the dashboard could show only bursts of data
rather than continuous data.

18 5. Communication

5.4. Server side
The server should exist out of three sub servers: a web server that is reachable via the HTTP protocol,
a database server to store any data send by the ESP32 and an application server for the dashboard. To
ensure that all data is captured and stored, reliability and uptime are very important. Commercially
available web/database servers are relatively cheap nowadays with high uptime, unlike self-hosted servers
where it can be tricky to have high uptime. For this reason, the web and database servers are outsourced
to a commercial service. Unlike the database and webserver, the dashboard does not need to be on
all the time as it only used for debugging or monitoring. The application can be run on a commercial
Linux server but to save prototyping cost, the dashboard is run on a local Linux machine.

5.4.1. Database
The database server is the opensource MariaDB, based on an MYSQL database, run on an InnoDB
engine. To control the database, opensource PHPMyAdmin is used which can control and manipulate
the database. Important aspects for designing a good database is data integrity, reduce the duplication
of data, and reduce the size of the database [12]. Rather than storing all the measurement data in one
table, multiple relational tables are generated. There are three tables: Locations, Devices, Measurement
(see Appendix B.3 for a SQL structure export). This would reduce the need to store all the location
information, such as phone number, for each measurement. The table devices in turn reduces the need
to store all device information as well as the location information, as the device is part of the location.
In Fig. 5.6 an overview is given of the relations of/and tables.

Figure 5.6: Tables on the Database.

Measurements
Gas sensor data are 12 bit number, which can be stored inside a small int that requires just 2 bytes. The
data of temperature and humidity lies between -40.0-80.0 and 0-100.0% respectively, can be represented
by a float or a decimal. But it is more data-efficient to multiply with ten and store it inside a small
int. To sort the data on time, there is also a DateTime column that stores information about the time
and date. As there are multiple devices that send data to this table, an identifier needs to be given to
each device. One way to accomplish this is to store the send mac-address with each entry. However, a
string of 17 chars requires a lot of storage and searching is more resource-intensive. A better method is
to store the 17 char mac address in the separate look-up table devices and store the id, which is of the
type int, in the measurements table. With 1000 devices and a sample rate of .5 Hz this method saves
576 MB of redundant data a day.

The device id of the measurement is labelled as a foreign key of the device table column device id.
This means that it is restricted to delete or update any device id from the device table. This ensures
data integrity. The device id is indexed to speed up the loading times for the dashboard.

Devices
In the table devices there are six columns: tag (text), device id (int), description (int), location
(int), version (int), algo (tinyint). The tag contains the MAC address of the device, while the
description column describes in what room the device is. In this table, the column location is
a foreign key of the table location column location, which restricts updating and deleting. The
version column is used to keep track of the device version for OTA. The last algorithm value is also

5. Communication 19

stored in this table. This is redundant data but as the API, discussed in the Subsection 5.4.2, uses the
previously algorithm value it is faster to store it inside a smaller table rather than searching the large
measurements table.

Location
The location table contains the location (int), description (text), phone (tinytext) and Wi-Fi
parameters. The description contains the location name and the phone number the number to which
an SMS needs to be sent. The table stores Wi-Fi parameters as this will be used for Wi-Fi OTA
discussed in Subsection 6.2.1.

5.4.2. Webserver
The web server is an Apache server that allows an HTTP client to access files present on the server
through the HTTPS protocol. On this server, an Application programming interface (API) needs to be
created to interact with the database. An API is used to link two different software applications and in
this case the software of the ESP32 and the database/webserver. There are various kinds of APIs styles
such as Representational state transfer (REST) and GraphQL. Both can work through HTTP request
and hence can be used as API on the webserver. GraphQL is a quickly upcoming and very flexible
API language designed by Facebook focused on data retrieval queries. [13] REST, on the other hand,
is not query-based and more focused on URLs and predefined structures, which makes it less flexible
for data retrieval. The provided flexibility of GraphQL is not necessary as the API needs to only store
a standard measurement and perform OTA updates. Hence, a RESTful API will be developed.

REST is a stateless client-server communication, which means that there is no information stored
between requests. Richardson maturity model is used to describe how well an API adheres to the
REST principles, which provides 4 maturity levels with each their own specific requirements. [14] Level
0 is the Swamp of POX where HTTP is merely used as a transfer protocol to execute a specific piece of
code based on the arguments. E.g. there is a single endpoint that provides all the operations. Level 2
requires that a device can make a request to multiple endpoints where functions are grouped by func-
tionality. E.g. the storing of the measurement has a different endpoint than OTA related operations.
Level 0 and 1 primarily uses just HTTP post request to communicate with the API. Level 2, on the
other hand, uses the HTTP verbs such as GET, PUT, PATCH and POST requests which reduces the
functionality of each operation. Level 3 APIs can return hypermedia such as a URL which allows having
some state-based experience. The state-based experience is not useful in the basic API required by the
eNose and hence the focus lies on a level 2 RESTful API and requires a focus on verbs and resource
distribution.

The posting of the measurements can be performed inside a single endpoint as a POST request the re-
quest is supposed to be not safe nor idempotent. The implementation of this endpoint measurements.php
and other relevant files are given in Appendix B.4. When the ESP32’ HTTP request is received at the
server, the script executes five steps. In the first step, the script connects to the database server and
creates a connection handle. Secondly, the scripts retrieve and decode the HTTP request and check
whether it is a POST request and all the parameters (MAC address, temperature, relative humidity,
all the sensors, uptime, algorithm value, and the button value) are set. When it is a valid request, the
device id is searched based on the received mac address in table devices. If the result is empty, the
device is not registered and an error message is passed. Otherwise, all the parameter data as well as a
timestamp in the format of Y-m-d H:i:s. The fifth and last step is to update the solid stools detected
parameter in the table devices. When the previous value stored in the table is the same as the incoming
packet, nothing needs to be updated or called. When the incoming and previously stored value differs,
the latter needs to be updated. If the value is updated to true, an SMS message needs to be sent to the
number registered to the location using the smsWebHook function. The function requires a number and
a message text, which sends an HTTP post request to an SMS service server. It is useful to put in the
text message the location description as well as the device description of the detecting eNose. To ob-
tain all this data from the tables devices and locations, aliasing is used in the SQL query (See Listing 2).

To make the documentation of the API easier as well as providing useful HTTP request simulators,
the API is also described in the OpenAPI 3.0 specification (See Appendix B.3). This specification is a

20 5. Communication

1 SELECT devices.tag, devices.location, devices.description as place, location.phone,
2 location.description as user
3 FROM devices
4 INNER JOIN location ON devices.location=location.location
5 WHERE devices.tag = mac address

Listing 2: SQL query with aliasing to obtain phone number, device and location description.

way to describe REST APIs in a standardised way. As it is standardised there are many tools that can
either generate documentation with examples, spin up mock servers which return dummy data when
called or even create server implementations in various kind of programming languages.

5.4.3. Dashboard
The dashboard should visualise all the data relevant for the visualisation. There are many open-source
visualisation platforms such as Apache Superset, Apache Druid, Graphite, or Grafana. All these plat-
forms can plot graphs based on SQL queries and are capable of meeting the requirements. For future
integration purposes, the platform Grafana will be used as the client currently uses it as well.

The operating software of the application server is centos 8, a server distro based on Red Hat Linux,
which runs multiple other servers. Hence, the open-source containerization platform Docker is used. A
container, unlike a virtual machine, runs on the OS of the main system which reduces the footprint of
docker significantly while still offering isolation. The container includes any dependencies or libraries
that are necessary to execute the application. Docker container can easily port exposed ports, run
multiple instances of the same software, set up underlying networks, and can provide extra security by
increased isolation (in contrast to running the service barebone on the device). To create the docker
container a docker-compose file is needed, which is given in Listing 3. The script configures a net-
work port from and to the container as well as persistence storage, which can be reached outside the
container. To configure Grafana, inside the configuration file grafana.ini the eventual domain and
root_url are changed to ensure the correct functioning of user invites etc. After running the terminal
command docker-compose up from the relevant folder, Grafana starts on the default port 3000 and
can be configured further through a web browser.

1 version: '3.3'
2 services:
3 grafana:
4 ports:
5 - '3000:3000'
6 container_name: grafana
7 volumes:
8 - ./volumes/grafana/data:/var/lib/grafana
9 - ./volumes/grafana/log:/var/log/grafana

10 - ./volumes/grafana/config/custom.ini:/etc/grafana/grafana.ini
11 image: 'grafana/grafana:latest'

Listing 3: Docker Compose file for Grafana.

The server is up to this point only reachable through port 3000 inside the same Wi-Fi network. To fix
this, on the router the default HTTP port 80 and HTTPS port 443 on the outside are port forwarded
internally to the server. To translate the incoming ports 80 and 443 to ports used by Grafana on the
server, a simple reverse proxy is used. Such proxy is exposed to the default HTTPS ports and scans
incoming network connections’ origin. Based on the origin, the traffic is redirected to another server,
in this case Grafana. As the reverse proxy and Grafana run on the same server, the traffic in between
is not encrypted. HTTPS requires certificates to operate securely and without a warning. With the

5. Communication 21

free service letsencrypt certificates can be generated for a specific domain which can be linked to the
configuration files of the reverse proxy server. To promote a secure connection, SSL is forced for every
connection. As an HTTP connection is requested, a redirect is given to HTTPS.

Within Grafana it is possible to create variables to be used in the queries of the plots. It is useful
to select the setup_type, setupID, and the size limit due to speed performance. An example code for
the plot for the sensor data is given in Listing 4.

1 location = select location as __value, description as __text from location;
2 select device_id as __value, description as __text from devices WHERE location IN (location);
3

4 --------
5 SELECT created_at, sensor_1, sensor_2, sensor_3, sensor_4, sensor_5, sensor_6
6 FROM measurements
7 WHERE tag IN (setupID)
8 ORDER BY created_at desc

Listing 4: Code of graphana plot for the sensors.

Figure 5.7: Dashboard of Grafana.

6
Over The Air Programming

OTA programming is useful when the product is difficult to reach and physical access. A device can
receive a complete firmware update through Firmware Over The Air (FOTA) or some small adjustments
through Over The Air Parameter adjustment (POTA). It is possible to use OTA for complete firmware
updates as well as parameter adjustments. The eNose uses both kinds to update the software as well
as the settings of the algorithms and Wi-Fi.

There are various differences between FOTA and POTA. An important difference between firmware up-
dates and parameter updates are the size of the data. Firmware of the ESP32 is stored in .bin files and
is around 1MB, 25% of the flash memory, in the case of the eNose. Meanwhile, parameter adjustments
are presented in JSON format and are less than 1kb in size. The relatively large size of the firmware
update makes it much more prone to error than the parameters. Moreover, Firmware updates require
that the firmware is transported completely and without any error, as otherwise, a fatal bug can occur
which could brick the MCU. Parameter adjustments are less sensitive to fatal bugs as the parameters
should not affect the actual functions of the device. Hence, special attention needs to be given to file
integrity when using FOTA. Another difference between FOTA and POTA are the distribution capa-
bilities. Firmware updates need to be compiled which makes it undesirable to have many differences
for each device. Parameters can be passed to any device without compiling which makes it an efficient
method to customize settings for each device separately.

As discussed in Chapter 5, the communication method used for measurements of the eNose is Wi-Fi
with the client-server HTTP protocol. It is convenient to use the same method for OTA and make the
ESP32 the client and the remote server the server. This does not require changes to internet settings
of the nursing location and it allows for easy one-to-many communication. The server has an API that
reads and responds to the incoming HTTP requests of the client, the ESP32.

In this chapter the process of a firmware update is discussed firstly. The chapter continuous with
parameter adjustments which can be separated into two parts: Wi-Fi OTA and Algorithm OTA.

6.1. Firmware Over The Air
The general process of the FOTA exists out of three steps. Firstly, the device needs to check the server
whether there is a firmware update. The second step is to download and write the data to an empty
space on the memory of the ESP32. Lastly, the device should change its boot records and start from
the newly uploaded firmware. Within these steps, it is important to verify if the downloaded firmware
file is intact and that the effects of corrupt firmware are mitigated. As discussed in the introduction
of this chapter, the firmware is uniform which means it cannot be used to pass e.g. Wi-Fi parameters.
How the Wi-Fi parameters are stored during an FOTA update is discussed in the Section 6.2.1. An
overview of the communication is given in Fig. 6.1.

6.1.1. Partitions
Software of ESP32, FOTA updates and other kinds of data are all stored inside the memory of the
ESP32. This memory is divided into partitions which are defined into a partition table (see Table 6.1).
It contains any non-volatile storage, otadata which holds data about which partition to run, phy init
which contains device-specific calibration data, as well as two applications partitions of 1.5MB each.
The first application type partition is initially uploaded through USB to the device. When a firmware
update is present, the factory partition will write to the second OTA partitions. After the downloading
is finished, the device will boot from this partition. When again a new firmware update is presented,
the update will be overwritten to the first OTA partition.

22

6. Over The Air Programming 23

Table 6.1: Partition table of ESP32.

Name Type Offset Size
nvs data 0x9000 25.6 kB
otadata data 0xd000 12.8 kB
Phy init data 0x1000 6.4 kB
OTA 0 App 0x10000 1.5MB
OTA 1 App , 1.5MB

6.1.2. Checking for an update
To check whether an update is available, the ESP32 will send a GET request to the API (Appendix C)
which will respond with a checksum and version of the update. This checksum can be used to check file
integrity. It is generated by a SHA256 algorithm which rarely has false positives of integrity, also called
collisions, compared to a default MD5 hash algorithm. When the remote version number has the same
as the version number on the device, nothing will happen. If the numbers vary, the ESP32 will start
the function preform_ota. The function will first determine which partition is currently run from and
which partition to write through. Using the OTA library of ESP-IDF, the function esp_ota_begin is
called which erases the partition and provides an update handle.

6.1.3. Downloading
The next step is to download the update from the server. Although the HTTP protocol supports a 32
bit - or 64 bit depending on the server - content length and thus have a maximum body size of 2TB in
theory. Hence, the protocol does not pose a limitation for the direct transfer of the file. However, given
the nature of the HTTP interface discussed in Chapter 5 and the required processing of the data, it is
not possible to directly write the file to the OTA partition. It is also not possible to store the whole
1MB firmware update in ram as the ram has only a few hundred KB of storage. A solution of this
problem lies in sending the information partially such that it can be processed in parts. The HTTP pro-
tocol offers such possibility via chunking, where the connection is opened and the server sends multiple
responses with each a part of the data. However, it is not clear how the ESP-IDF functions can support
chunking. Hence, the ESP32 will send a request to the server with an offset and length variables.
The server will respond with that part of the firmware update. The ESP32 write that specific part to
the OTA partition using the function esp_ota_write with the help of the update handle generated by
esp_ota_begin. This process is repeated until no bytes in the body are sent by the server to the ESP32.

The body of the HTTP response of the server can directly send binary data. However, the binary data
contains NULL characters which are difficult to handle in C as it is used to indicate an end of a char
array. A solution to this problem is to encode the raw binary data of the server into BASE64. This
introduces an overhead of 33% as only 64 chars. The received data on the ESP32 is decoded using the
mbedtls library, which is already used for HTTPS connection, before being written to the OTA partition.

After the download is finished, the new OTA partition is validated using the default ESP32 esp_ota_end
function. If it is validated, the boot partition is switched to the new OTA partition and the ESP32
reboots.

6.1.4. Reliability
With FOTA updates it is important to keep the device always connected to the internet and capable
to perform another update as physically accessing all the devices is time-consuming and difficult. The
threats to an online and FOTA-capable device are that either the firmware update is corrupted dur-
ing the transmission or that there is a mistake/bug in the firmware that prevents a future FOTA update.

To combat corruption caused by transmission, the server sends a generated SHA-256 hash of the software
update. Due to time constraints, this checksum is currently not used. However in further updates, this
checksum should be stored and compared to the ESP32 generated checksum of the new OTA partition
during the validation after downloading. The checksum can easily be generated using the default ESP32
function esp_partition_get_sha256. When the checksums differ, the whole OTA update should be

24 6. Over The Air Programming

Figure 6.1: Communication process of the Firmware Over The Air.

discarded.

Another reliability improving method is a firmware rollback system. After the downloaded firmware
update is validated and the ESP32 reboots to that partition, the device does not immediately delete
the old OTA partition. Rather the bootloader of the ESP32 checks during the reboot whether there is
already an IMG_PENDING_VERIFY flag on the new OTA partition. If there is, the bootloader discards the
new update and rollsback to the old partition. When there is no flag set, the bootloader continues and
sets the IMG_PENDING_VERIFY and boots the partition. During the partition, an active confirmation
needs to be given to verify the correct working of the ESP32 and cancel the rollback. The correct
working of the partition occurs in the class-less partition_check function. This function currently
verifies the working of the firmware by pulling up and down certain unused GPIO pin. After 5 seconds
these pins are read and when the result is as expected, the flag IMG_PENDING_VERIFY is removed. Ideally,
this partition check would check whether the device is able to connect to the internet and decode the
OTA message. This would ensure that the device is online and capable of FOTA

6.2. Parameter adjustments
POTA updates are very useful as it allows for quick and small updates as well as the personalising of
devices. Wi-Fi credentials vary between location and can change over time, hence the Wi-Fi credentials
of the ESP32 should be able to update per location. The algorithm values are not location depended
but as many small improvements can be made through new parameters, it can be useful to pass these
to the eNose. The benefit over a FOTA in this case is that the system-critical software is not changed.
This reduces the time needed to testing non-algorithm part of the software and reduces accidental errors
in those parts.

6.2.1. Wi-Fi Over The Air
Wi-Fi credentials should always be present on the eNose in order to connect to the internet and receive
updates. This implies that the credentials should be stored inside the non-volatile memory to ensure
that reboot or FOTA does not erase the credentials. With Wi-Fi Over The Air (WOTA) those creden-
tials can be updated.

The function nvs_wifi_para is used to store and retrieve the Wi-Fi parameters from the non-volatile
memory. When the firmware is flashed through USB for the first time, Wi-Fi credentials are given in
the firmware and the global flag UPDATE is set to false. Inside the function, the non-volatile memory is
opened. Within this storage, the Wi-Fi credentials are searched. When there are not any credentials
in the storage, the UPDATE flag or the WOTA flag is set, the Wi-Fi credentials are written to the NVS.
The UPDATE flag is given to each FOTA update and the WOTA flag is set when Wi-Fi parameters are
updated over the air. If the flags are not set, the credentials are obtained from the NVS and stored
inside the Wi-Fi class. Currently, the storage is not encrypted which means that anybody with physical
access to the device can obtain Wi-Fi credentials and even the software can be reverse engineered which
allows an attacker to obtain Wi-Fi credentials of all the locations.

Even though the communication is secured through the use of HTTPS, sending all the credentials

6. Over The Air Programming 25

periodically is undesirable due to security and due to unnecessary bandwidth. The solution to this
problem is to generate a SHA256 checksum of all the Wi-Fi credentials on the ESP32. This checksum
is sent to the API (Appendix C) with an API key and the device tag. Such key varies per location
and is used for increased security. The API will retrieve the location of the device and the location’s
Wi-Fi checksum and credentials. When the checksums differ but the API keys are the same, the Wi-Fi
credentials are sent to the eNose. The eNose will decode the JSON response and use the nvs_wifi_para
to store the credentials.

Figure 6.2: Process of updating Wi-Fi parameters OTA.

6.2.2. Algorithm Over The Air
Compared to WOTA and FOTA, the algorithm has no specific requirements. Using a GET request
to the API (Appendix C), the capacity, warm up, and threshold are obtained from the table settings.
After decoding the response on the eNose, the values are passed to the function setValues of the class
buffer.

7
Conclusion

The work described inside this thesis tried to answer the following research question: "What are effective
methods related to extracting, interpreting, and communicating the stool sensor data?". To answer the
question an algorithm has been developed as well as a communication and Over The Air (OTA) method.

The algorithm shows that the concept works accurately for certain restrooms. The machine learning
version shows great potential but needs to be expanded further. For both approaches more data would
help improving the algorithm to be able to be deployed in bigger rooms such as those in nursing homes.

The eNose directly connects to Wi-Fi to an server through an Application programming interface (API).
The protocol used between the eNose and the server is Hypertext Transfer Protocol (HTTP) with a
JavaScript Object Notation (JSON) body. Although the JSON body uses more bandwidth than a
binary body such as Protocol Buffers (PROTOBUF), it allows for faster development and easy debug-
ging. The data is stored inside a simple relational database with multiple tables in order to reduce
redundant data and increase speed. When feces are detected, an SMS alerts called by the API used
which contains the location of the alerting device. There is also an dashboard which allows for eas-
ier development and monitoring of all the devices. The dashboard is an open source tool called Grafana.

As the devices are difficult to reach for updating, OTA programming is used. The firmware of the de-
vices is stored centrally on the server and is the same of each device. Using HTTP request the update is
obtained and executed through the OTA libary of ESP-IDF. As not all the devices must run the exact
same software with the same settings, Over The Air Parameter adjustment (POTA) is used. This al-
lows individually device configuration for parameters suchs as Wi-Fi credentials and Algorithm settings.

Future work
There are several recommendations and further developing steps needed to make the eNose market
ready. As repeated many times, the amount of data directly influences the effectiveness of the algo-
rithm. Before it is able to work robustly for all locations, more data is needed based on different factors
such as room size, ventilation and other behaviours. On top of that, it would be beneficial if sensors
were chosen that are less prone to cross-sensitivity (e.g. infrared gas sensors). These sensors, however,
come at a certain price tag, which is why they were not considered for this project.

The communication should be based around FreeRTOS tasks to allow for parallel operation of inde-
pendent parts. This allows for a queue for messages, to increase the reliability of the system. Another
communication related part is the connection to WPA2 enterprise networks, which is not completely
tested due to time constraints.

A recommendation of the OTA part is to encrypt the flash storage. The OTA currently stores Wi-Fi
parameters in the flash, which can pose a security threat. Also API-keys can be reversed. This is solved
when the flash memory of the ESP32 is encrypted.

26

Bibliography
[1] H Beele, s Smet, N van Damme, and D Beeckman. Incontinence-associated dermatitis: Patho-

genesis, contributing factors, prevention and management options. Drugs & Aging, 35(1):1–10,
December 2017. doi: 10.1007/s40266-017-0507-1.

[2] N. van Damme, S. Fakkel, and A. Stijns. E-nose for detecting solid stools: Sensor, 2021.

[3] Z. Yunusa, M.N. Hamidon, A. Kaiser, and Z. Awang. Gas sensors: A review. Sensors and Trans-
ducers, 168:61–75, 04 2014.

[4] R Jaaniso and O. Kiang Tan. Semiconductor gas sensors. Woodhead Publishing, Cambridge, 2013.
ISBN 9780857098665.

[5] T. Schütze, A. Baur, W. Conrad T. Leidinger, M. Reimringer, and T. Sauerwald. Highly sensitive
and selective voc sensor systems based on semiconductor gas sensors: How to? 03 2017. doi:
10.3390/environments4010020Âă.

[6] Ajiboye A. T., Opadiji J. F., and Yusuf A. O.and Popoola J. O. Analytical determination of load
resistance value for mq-series gas sensors: Mq-6 as case study. TELKOMNIKA JOURNAL, 2020.
doi: 10.12928/telkomnika.v19i2.17427.

[7] A.B. Karki. Biogas as renewable energy from organic waste. In BIOTECHNOLOGY, Volume X,
2009.

[8] ESP32 ESP-IDF Programming Guide. Espressif Systems, 2021. URL https://www.espressif.
com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_
en.pdf.

[9] B. Indira Reddy and V. Srikanth. Review on wireless security protocols (WEP, WPA, WPA2
& WPA3). International Journal of Scientific Research in Computer Science, Engineering and
Information Technology, pages 28–35, July 2019. doi: 10.32628/cseit1953127.

[10] N. Naik. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and
HTTP. In 2017 IEEE International Systems Engineering Symposium (ISSE). IEEE, October 2017.
doi: 10.1109/syseng.2017.8088251.

[11] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco Mellia, Maurizio
Munafò, Konstantina Papagiannaki, and Peter Steenkiste. The cost of the "s" in HTTPS. In
Proceedings of the 10th ACM International on Conference on emerging Networking Experiments
and Technologies. ACM, December 2014. doi: 10.1145/2674005.2674991.

[12] Dedi Iskandar Inan and Ratna Juita. Analysis and design complex and large data base using
MySQL workbench. International Journal of Computer Science and Information Technology, 3(5):
173–183, October 2011. doi: 10.5121/ijcsit.2011.3515.

[13] O. Hartig and J. Pérez. An initial analysis of facebook’s graphql language. In CEUR Workshop
Proceedings, 05 2019. URL http://repositorio.uchile.cl/handle/2250/169110.

[14] Arne Koschel, Maximilian Blankschyn, Kevin Schulze, Dominik Schoner, Irina Astrova, and Igor
Astrov. RESTfulness of APIs in the wild. In 2019 IEEE World Congress on Services (SERVICES).
IEEE, July 2019. doi: 10.1109/services.2019.00114.

27

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
http://repositorio.uchile.cl/handle/2250/169110

A
Algorithm

A.1. C++ code
buffer.h

1 /*
2 * Project: eNose software
3 * File: buffer.cpp
4 * Author: Maxim Chin-On
5 * Created on: 4 May 2021
6 * Description: header file for buffer.cpp
7 */
8 #ifndef BUFFER_H_INCLUDED
9 #define BUFFER_H_INCLUDED

10 #include <iostream>
11 #include <vector>
12 using namespace std;
13

14 class Buffer
15 {
16 public:
17 void setBuffer(int g, int h, int i, int j);
18 int addData(int a, int b, int c);
19 void printData();
20 int getMean(std::vector<int> data);
21 int algo(std::vector<int> mq3, std::vector<int> mq5, std::vector<int> mq9);
22 void setValues(int thres, int g, int h, int i, int j);
23 std::vector<int> getData(int sensor);
24 ~Buffer();
25 private:
26 //Constants
27 int capacity; //Maximum number of minutes saved in buffer
28 int Fs; //Sample rate in "per minute"
29 int warmup; //Warmup period that should be neglected in minutes
30 int period; //Period that should be looked at for rolling mean
31 int threshold;
32 //Variables used for algorithm
33 int benchmark3,benchmark5,benchmark9;
34 int counter;
35 int max3,max5,max9;
36 int state;
37 int maxcounter;
38 int slopecount;
39 int avg;
40 //Sensors
41 std::vector<int> sensor1;
42 std::vector<int> sensor2;
43 std::vector<int> sensor3;
44

45

46 };

28

A. Algorithm 29

47

48 #endif // BUFFER_H_INCLUDED

buffer.cpp

1 /*
2 * Project: eNose software
3 * File: buffer.cpp
4 * Author: Maxim Chin-On
5 * Created on: 4 May 2021
6 * Description: contains the functions used for the buffer class
7 */
8 #include <iostream>
9 #include <algorithm>

10 using namespace std;
11 #include <vector>
12 #include "buffer.h"
13 //Initializes values
14 void Buffer::setBuffer(int g,int h, int i, int j)
15 {
16 capacity = g;
17 Fs = h;
18 warmup = i;
19 period = j;
20 benchmark3 = 0;
21 benchmark5 = 0;
22 benchmark9 = 0;
23 counter = 0;
24 threshold = 60;
25 state = 1;
26 }
27

28 //Adds data to the vector and gives new rolling mean
29 int Buffer::addData(int a, int b, int c)
30 {
31 int detect = 0;
32 int mean3;
33 int size = sensor1.size();
34 //Adding new data in the vectors
35 sensor1.push_back(a);
36 sensor2.push_back(b);
37 sensor3.push_back(c);
38 //If the vector is too large, delete the oldest entry
39 if(sensor1.size() > unsigned(capacity*Fs))
40 {
41 sensor1.erase(sensor1.begin());
42 sensor2.erase(sensor2.begin());
43 sensor3.erase(sensor3.begin());
44 }
45 //Call algorithm to check for feces
46 detect = algo(sensor1, sensor2, sensor3);
47 return detect;
48 }
49

50 int Buffer::algo(std::vector<int> mq3, std::vector<int> mq5, std::vector<int> mq9)
51 {
52 int size = mq3.size();
53 int diff3, diff5,diff9;

30 A. Algorithm

54 int algod =0;
55 switch(state){
56 case 0: //warm-up
57 if(size > (warmup + period) * Fs)
58 {
59 state = 1;
60 }
61 break;
62 case 1: //neutral
63 int cvalue = mq3[size-1];
64 int means = getMean(mq3);
65 int limit = threshold + means;
66 algod = 0;
67 counter = 0;
68 max3 = 0;
69 maxcounter =0;
70 slopecount = 0;
71 //if the current value is above the limit, meaning there is a spike, the data is saved
72 if(cvalue > limit)
73 {
74 benchmark3 = mq3[size-10];
75 benchmark5 = mq5[size-10];
76 benchmark9 = mq9[size-10];
77 state = 2;
78 }
79 break;
80 case 2: //waiting for max
81 //if new value is significantly higher than the saved maximum it is used as the new maximum
82 if(cvalue > max3*1.01)
83 {
84 max3 = mq3[size-1];
85 max5 = mq5[size-1];
86 max9 = mq9[size-1];
87 maxcounter = 0;
88 slopecount = slopecount + 1;
89 }
90 else
91 {
92 slopecount = 0;
93 maxcounter = maxcounter + 1;
94 }
95 //if the data keeps rising without reaching a maximum for too long, the data does not represent feces
96 if(slopecount > Fs * 5)
97 {
98 state = 5;
99 }

100 else
101 {
102 if(maxcounter > 10) //the saved maximum is sufficient to use for the algorithm
103 {
104 avg = (max3 + benchmark3) /2;
105 diff3 = max3 - benchmark3;
106 diff5 = max5 - benchmark5;
107 diff9 = max9 - benchmark9;
108 if(diff9/diff3 < 0.45) //if the ratios check out we go to counter state
109 {
110 state = 3;
111 }
112 else

A. Algorithm 31

113 {
114 state = 5;
115 }
116 }
117 }
118 break;
119 case 3: //counter
120

121 if(cvalue > avg)
122 {
123 if(counter > 1 * Fs) //if counter reaches the chosen time it means we detected feces
124 {
125 state = 4;
126 }
127 else //if signal disappears below avg it means it is not feces but probably a fart
128 {
129 counter = counter + 1;
130 }
131 }
132 else
133 {
134 state = 1;
135 }
136 break;
137 case 4: //detect
138 algod = 1;
139 if(cvalue < limit)
140 {
141 state = 1;
142 }
143 break;
144 case 5: //wait till normal again
145 if(cvalue < limit)
146 {
147 state = 1;
148 }
149 break;
150 default:
151 state = 1;
152 break;
153 }
154

155 return algod;
156 }
157

158 //Prints the entire vector array
159 void Buffer::printData()
160 {
161 int vecsize = sensor1.size(); //vectors have same size so this will suffice
162 for(int i = 0; i < vecsize;i++)
163 {
164 // cout<< sensor1[i]<< " " << sensor2[i]<< " " << sensor3[i] << endl;
165 }
166 }
167

168 //Based on input, gives certain sensor vector
169 std::vector<int> Buffer::getData(int sensor)
170 {
171 //returning sensor array

32 A. Algorithm

172 std::vector<int> result;
173 switch(sensor){
174 case 1:
175 result = sensor1;
176 break;
177 case 2:
178 result = sensor2;
179 break;
180 case 3:
181 result = sensor3;
182 break;
183 default:
184 //cout<< "wrong input!" << endl;
185 break;
186 }
187 return result;
188

189 }
190

191 //Calculates rolling mean
192 int Buffer::getMean(std::vector<int> data)
193 {
194 int mean = 0;
195 int size = data.size();
196 int start;
197 int sum = 0;
198 int diff;
199 start = size - period*Fs;
200 for(int i = start; i<size; i++)
201 {
202 sum = sum + data[i];
203 }
204 mean = sum/(period*Fs);
205 return mean;
206 }
207

208 void Buffer::setValues(int thres, int g, int h, int i, int j)
209 {
210 threshold = thres;
211 capacity = g;
212 Fs = h;
213 warmup = i;
214 period = j;
215 }
216 Buffer::~Buffer()
217 {
218 }

A.2. Matlab Code
1 %%
2 % se t t i n g data out o f the data2tab l e func t i on
3 % Authors : Maxim
4 % Date : 19/05/21
5 % Desc r ip t i on : Takes the data read out and puts i t in v a r i a b l e s
6 % Li s t o f d ev i c e s f o r chos ing the r i g h t dev i ce number
7 dev i c e s = [" 4C: 1 1 :AE:A5 : F1 :CC" , " 8 4 :CC:A8 : 6 0 : 6 : C4 " , " 8 4 :CC:A8

: 6 0 : 7 : 8 " , " 8 4 :CC:A8 : 6 0 : 8 : 3C" , " 8 4 :CC:A8 : 6 0 : 9 : 4 " , " 8 4 :CC:A8 : 6 0 : B1

A. Algorithm 33

: 1 4 " , " 8 4 :CC:A8 : 6 0 : B1 : 7 0 " , " 8 4 :CC:A8 : 6 0 : B1 : 8C" , " 8 4 :CC:A8 : 6 0 : B2
: 8 " , " 8 4 :CC:A8 : 6 0 : B2 :A8 " , " 8 4 :CC:A8 : 6 0 : B6 :DC" , " 8 4 :CC:A8 : 6 0 : B7 : 1 8 "] ;

8 %Loading in csv f i l e
9 data = data2 tab l e s (" l o c a l h o s t . csv ") ;

10 datapo int = 30 ; %data s e t
11 dev i c e = 4 ; %dev i ce number
12 row = [3 , 4 , 5 , 6 , 7 , 8] ; %the three s en so r s
13 % Converting the adc value to vo l tage
14 amptovolt = 1100/4095;
15 % Loading in the s enso r data
16 dev icedata = data {1 , dev i c e } ;
17 dev i cenr = dev i c e s (dev i c e) ;
18 datase t = dev icedata {1 , datapo int } ;
19 timestamp = datase t (1 , 11) ;
20 x l = length (datase t) ;
21 %removing l a s t va lue
22 x = st r2doub l e (datase t (1 : xl −1 , :)) ;
23 %trimming i f nece s sa ry f o r a n a l y s i s
24 % x = x (61000 : end , :) ;
25 s ensor1 = x (: , row (1)) ;
26 s ensor2 = x (: , row (2)) ;
27 s ensor3 = x (: , row (3)) ;
28 s ensor4 = x (: , row (4)) ;
29 s ensor5 = x (: , row (5)) ;
30 s ensor6 = x (: , row (6)) ;
31

32 y = 1 : l ength (sensor1) ;
33 hum = x (: , 1) ;
34 temp = x (: , 2) ;
35 %%
36 % p l o t t i n g data
37 % Authors : Maxim
38 % Date : 19/05/21
39 % Desc r ip t i on : p l o t s data
40 % t i l e d l a y o u t (2 , 1)
41 per iod = 10 ;
42 Fs = 30 ;
43 %Vers ion 1
44 % algo r = algor i thm (sensor3 , 60 , 30 , 5 , 30) ;
45 %Vers ion 2
46 [a lgor , s t a t e s] = algor i thm2 (sensor1 , sensor2 , sensor4 , 6 0 , per iod , 3 0) ;
47 warm1 = warmuptime (sensor1 , 0 . 05 , Fs) ;
48 warm2 = warmuptime (sensor2 , 0 . 05 , Fs) ;
49 warm3 = warmuptime (sensor3 , 0 . 05 , Fs) ;
50 warm4 = warmuptime (sensor4 , 0 . 05 , Fs) ;
51 % Normal iz ing
52 % mult31 = (max(sensor3 (500 : end))−min (sensor3 (500 : end))) /(max(sensor1 (500 :

end))−min (sensor1 (500 : end))) ;
53 % mult32 = (max(sensor3 (500 : end))−min (sensor3 (500 : end))) /(max(sensor2 (500 :

end))−min (sensor2 (500 : end))) ;
54 % mult34 = (max(sensor3 (500 : end))−min (sensor3 (500 : end))) /(max(sensor4 (500 :

end))−min (sensor4 (500 : end))) ;
55 % sensor1 = sensor1 ∗mult31 ;
56 % sensor2 = sensor2 ∗mult32 ;
57 % sensor4 = sensor4 ∗mult34 ;
58 % add31 = mean(sensor3 (500 : end))−mean(sensor1 (500 : end)) ;

34 A. Algorithm

59 % add32 = mean(sensor3 (500 : end))−mean(sensor2 (500 : end)) ;
60 % add34 = mean(sensor3 (500 : end))−mean(sensor4 (500 : end)) ;
61 % Plo t t i ng
62 p lo t (y/30 , s ensor1 ∗amptovolt) ;
63 hold on ;
64 p lo t (y/30 , s ensor2 ∗amptovolt) ;
65 p lo t (y/30 , s ensor3 ∗amptovolt) ;
66 p lo t (y/30 , s ensor4 ∗amptovolt) ;
67 p lo t (y , a l go r ∗amptovolt) ;
68 % x l i n e (warm1∗30) ;
69 % x l i n e (warm2∗30) ;
70 % x l i n e (warm3∗30) ;
71 hold o f f ;
72 l egend ("MQ3" , "MQ5" , "MQ6" , "MQ9" , " Algo ") ;
73 %t i t l e (" Sensor data f o r s t a r t t ime " + timestamp + " and dev i ce " + dev i cenr

) ;
74 t i t l e (" Algorithm app l i ed to s enso r data ") ;
75 x l ab e l (" Time [minutes] ") ;
76 y l ab e l (" Voltage [mV] ") ;
77 %Humidity and Temperature p l o t s
78 % plo t (y , temp/10) ;
79 % y lab e l (" Humidity [%] ") ;
80 % ylim ([0 100]) ;
81 % hold on ;
82 % legend ("RH" , " Temperature ") ;
83 %%
84 % Warmup time check
85 % Authors : Maxim
86 % Date : 24/05/21
87 % Desc r ip t i on : Determines warmup time in minutes
88 f unc t i on time = warmuptime (sensor , thres , Fs)
89 min = 10000;
90 counter = 0 ;
91 f o r i = 10:1000
92 mean = getmean (sensor , i , 11 , 1) ;
93 %i f s enso r value i s 0 i t cant get lower
94 i f s en so r (i) == 0
95 time = i /30 ;
96 break ;
97 end
98 %I f s enso r va lue i s with ing the th r e sho ld r e l a t i v e to the senso r
99 %value 10 samples back , the s enso r i s cons ide r ed warmed up

100 i f s en so r (i) / s enso r (i −10) < 1−thr e s
101 min = mean ;
102 time = i ;
103 end
104 end
105 end
106 %%
107 % Function : Applying a lgo on the data
108 % Authors : Maxim
109 % Data : 20/05/21
110 % Applying the a lgor i thm on the data to v e r i f y i t
111

112 f unc t i on a lgo = algor i thm (sensor , thres , countl im , per iod , Fs)
113 s c a l e = max(senso r) ;

A. Algorithm 35

114 l eng th s = length (s enso r) ;
115 a lgo (1 : l eng th s) = 0 ;
116 maxv = 0 ;
117 benchmark = 0 ;
118 counter = 0 ;
119 de tec t = 0 ;
120 f o r i = 10 : l eng th s
121 cva lue = senso r (i) ;
122 l v a l u e = senso r (i −1) ;
123 means = getmean (sensor , i , per iod , Fs) ;
124 l im i t = th r e s + means ;
125 %keeping t rack o f maximum value
126 i f cva lue > maxv
127 maxv = cva lue ;
128 end
129 avg = (maxv + benchmark) /2 ;
130 %i f cur rent va lue su rpa s s e s l im i t , s t a r t count ing
131 i f cva lue >= l im i t
132

133 i f d e t e c t == 0
134 benchmark = senso r (i −6) ;
135 de tec t = 1 ;
136 counter = 1 ;
137 maxv = 0 ;
138 e l s e
139 %i f va lue drop , re turn to no de t e c t i on
140 i f cva lue <avg
141 de tec t = 0 ;
142 poop = 0 ;
143 counter = 0 ;
144 e l s e
145 counter = counter + 1 ;
146 end
147 end
148 e l s e
149 %i f va lue drop , re turn to no de t e c t i on
150 i f d e t e c t == 1
151 i f cva lue < l im i t
152 de tec t = 0 ;
153 poop = 0 ;
154 counter = 0 ;
155 end
156 end
157 end
158 %i f counter r eaches count l imi t , i t d e t e c t s f e c e s
159 i f counter >= countl im
160 a lgo (i) = s c a l e ;
161 end
162 end
163 end
164 %%
165 % Function : Applying a lgo on the data
166 % Authors : Maxim
167 % Data : 28/05/21
168 % Applying the a lgor i thm on the data to v e r i f y i t
169

36 A. Algorithm

170 f unc t i on [algo2 , s t a t e s] = algor i thm2 (mq3 , mq5 , mq9 , thres , per iod , Fs)
171 s c a l e = max(mq3) ;
172 l eng th s = length (mq3) ;
173 a lgo2 (1 : l eng th s) = 0 ;
174 s t a t e s (1 : l eng th s) = 0 ;
175 s t a t e = 1 ;
176 d i f f 3 = 0 ;
177 d i f f 5 = 0 ;
178 d i f f 9 = 0 ;
179

180

181 f o r i = 20 : l eng th s
182 cva lue = mq3(i) ;
183 means = getmean (mq3 , i , per iod , Fs) ;
184 l im i t = th r e s + means ;
185 switch s t a t e
186 case 1 %neut ra l
187 %va r i a b l e s
188 de tec t = 0 ;
189 max3 = 0 ;
190 counter = 0 ;
191 maxcounter =0;
192 s l opecount = 0 ;
193 i f cva lue > l im i t
194 benchmark3 = mq3(i −10) ;
195 benchmark5 = mq5(i −10) ;
196 benchmark9 = mq9(i −10) ;
197 s t a t e = 2 ;
198 end
199 case 2 %wait ing f o r max
200 %look ing f o r maximum
201 i f cva lue > max3
202 max3 = mq3(i −1) ;
203 max5 = mq5(i −1) ;
204 max9 = mq9(i −1) ;
205 maxcounter = 0 ;
206 s lopecount = s lopecount + 1 ;
207 e l s e
208 maxcounter = maxcounter + 1 ;
209 end
210 %i f i t takes too long to f i nd maximum, i t i s not f e c e s
211 i f (s l opecount > Fs ∗ 5)
212 s t a t e = 5 ;
213 e l s e
214 %i f maximum i s reached , check f o r r a t i o s
215 i f maxcounter > 10
216

217 avg = (max3 + benchmark3) /2 ;
218

219 d i f f 3 = max3−benchmark3 ;
220 d i f f 5 = max5−benchmark5 ;
221 d i f f 9 = max9−benchmark9 ;
222

223 i f d i f f 9 / d i f f 3 < 0 .5
224 %i f r a t i o s check out , go to count s t a t e
225 s t a t e = 3 ;

A. Algorithm 37

226 e l s e
227 %otherwi se go to wait f o r normal s t a t e
228 s t a t e = 5 ;
229 end
230 end
231 end
232 case 3 %counter
233 %va r i a b l e s
234 i f cva lue > avg
235 %i f counter r eaches thresho ld , go to de t e c t s t a t e
236 i f counter > 1 ∗ Fs
237 s t a t e = 4 ;
238 e l s e
239 counter = counter + 1 ;
240 end
241 e l s e
242 %i f va lue drops to f a s t go to neut ra l s t a t e
243 s t a t e = 1 ;
244

245 end
246 case 4 %detec t
247 %va r i a b l e s
248 de tec t = 1 ;
249 %once value drops go to wait t i l l normal s t a t e
250 i f cva lue < l im i t
251 s t a t e = 5 ;
252

253 end
254 case 5 %wait t i l l normal again
255

256 i f cva lue < l im i t
257 s t a t e = 1 ;
258

259 end
260 otherwi se
261 s t a t e = 1 ;
262 end
263 %save r e s u l t s
264 s t a t e s (i) = s t a t e ;
265 i f d e t e c t == 1
266 a lgo2 (i) = s c a l e ;
267 end
268 end
269 end
270 %%
271 % Function : getMean
272 % Authors : Maxim
273 % Date : 13/05/21
274 % Desc r ip t i on : Function that ge t s the mean o f s enso r va lue s
275 f unc t i on means = getmean (sensor , i , per iod , Fs)
276 means = 0 ;
277 tsum = 0 ;
278 l ength = per iod ∗Fs ;
279 %i f the re i s n t enough data f o r normal mean use t h i s
280 i f i <= length
281 s t a r t = 6 ;

38 A. Algorithm

282 l ength = i −6;
283 e l s e
284 s t a r t = i − length ;
285 end
286 %otherwi se j u s t compute mean normally
287 f o r k = s t a r t : i
288 tsum = tsum + senso r (k) ;
289 end
290 i f tsum == 0 %avo id ing d i v i d i ng by zero
291 means = 0 ;
292 e l s e
293 means = tsum/(l ength+1) ;
294 end
295 end
296 %%
297

298 % Function : data2tab l e ()
299 % Authors : Maxim , Gabr ie l and Mark
300 % Date : 13/05/21
301 % Desc r ip t i on : Function that takes csv and s ep e r a t e s i t per dev i ce
302

303

304

305 f unc t i on data = data2 tab l e s (d a t a f i l e)
306 t ab l e = readtab l e (d a t a f i l e) ;
307 % Find unique va lue s
308 tags = [0 2 3 4 5 6 7 8 9 10 11 1 2] ;
309 % Seperate data per tag
310 f o r i =1: l ength (tags)
311 deviceDATA = [] ;
312 %Retr i eve l o c a t i o n s o f unique tags
313 INDEX = f ind (double (t ab l e . device_id) == tags (i)) ;
314 % Retr i eve cor respond ing data
315 sensor_1=tab l e . sensor_1 (INDEX) ;
316 sensor_2=tab l e . sensor_2 (INDEX) ;
317 sensor_3=tab l e . sensor_3 (INDEX) ;
318 sensor_4=tab l e . sensor_4 (INDEX) ;
319 sensor_5=tab l e . sensor_5 (INDEX) ;
320 sensor_6=tab l e . sensor_6 (INDEX) ;
321 time_uo=tab l e . time_up (INDEX) ;
322 a lgo=tab l e . algo_h (INDEX) ;
323 temprature=tab l e . temp(INDEX) ;
324 RH=tab l e . rh (INDEX) ;
325 TS=s t r i n g (t ab l e . created_at (INDEX)) ;
326

327 % Find l o c a l minima
328 i_local_minima=i s l o c a lm i n (time_uo) ;
329 local_min=f i nd (i_local_minima==1) ;
330 local_min =[1; local_min ; l ength (time_uo)] ;
331

332 f o r j =1: (l ength (local_min==1)−1)
333 % crea t e INDEX per run
334 index=l i n s p a c e (local_min (j) , local_min (j +1) , local_min (j +1)−

local_min (j)+1) ;
335 %put data in c e l l
336 deviceDATA{ j }=[temprature (index) , RH(index) , sensor_1 (index) ,

A. Algorithm 39

sensor_2 (index) , sensor_3 (index) , sensor_4 (index) , sensor_5 (
index) , sensor_6 (index) , time_uo (index) , a lgo (index) ,TS(index)
] ;

337 end
338

339 %Make c e l l aray per dev i c e
340 data{ i }= [deviceDATA , tags (i)] ;
341

342 end
343 end

A.3. Testing

Figure A.1: The testing setup of phase 1.

B
Communication

B.1. Sensor read-out
sensor.h

1 /*
2 * Project: eNose software
3 * File: sensor.h
4 * Author: Mark Fijneman
5 * Description: Header function of sensor.cpp
6 * History: 05/05/21 - created class
7 *
8 */
9

10 #ifndef MAIN_SENSOR_H_
11 #define MAIN_SENSOR_H_
12

13 #include "DHT.h"
14 #include "buffer.h"
15 #include <driver/adc.h>
16

17 // Define classes
18 class sensor {
19 private:
20 DHT dht; // DHT sensor class
21 int sensor1; // MQ3 sensor
22 int sensor2; // MQ4 sensor
23 int sensor3; // MQ5 sensor
24 int sensor4; // MQ6 sensor
25 int sensor5; // MQ9 sensor
26 int sensor6; // MQ135 sensor
27

28 float temperature; // Temp in celcius
29 float rh; // Relative humidity in percentage
30 int algo; // Algorithm (1=detected)
31 int button; // Button (1=pressed)
32

33 // Helper function which multisamples a ADC channel
34 int multi_sampling(adc1_channel_t channel);
35

36 public:
37 Buffer buffer_sensor; // Buffer and algorihm class
38

39 sensor(void); // Constructor functions
40

41 // Functions related to the DHT sensor
42 void set_DHT(gpio_num_t pin);
43 void read_DHT(void);
44

45 // Function that is called by ISR when button is pressed
46 void button_pressed(void);
47

40

B. Communication 41

48 // Functions to read and update the sensor
49 int read_sensor(int number);
50 void update_sensor(void);
51 };
52

53 #endif /* MAIN_SENSOR_H_ */

sensor.cpp

1 /*
2 * Project: eNose software
3 * File: sensor.cpp
4 * Author: Mark Fijneman
5 * Description: Contains the functions of the class sensor
6 * History: 05/05/21 - created class
7 * 12/05/21 - added sensor adc readout
8 *
9 */

10

11 // Libaries
12 #include <driver/adc.h>
13 #include "driver/gpio.h"
14 #include "freertos/FreeRTOS.h"
15 #include "freertos/task.h"
16 #include "freertos/queue.h"
17 #include <algorithm>
18

19 // Local files
20 #include "esp_log.h"
21 #include "sensor.h"
22

23 //
24 // Name: set_DHT
25 // Description: sets the DHT pin in the DHT class
26 // IO: Input the pin connect to the DHT sensor
27 void sensor::set_DHT(gpio_num_t pin) {
28 dht.setDHTgpio(pin);
29 }
30

31 //
32 // Name: read_dht
33 // Description: Retrieves the DHT values from the DHT class and store it inside the sensor class
34 // IO: N/A
35 void sensor::read_DHT(void) {
36 int ret = dht.readDHT();
37 dht.errorHandler(ret);
38 temperature = dht.getTemperature();
39 rh = dht.getHumidity();
40

41 // The interval of whole process must be beyond 2 seconds !!
42 }
43

44 //
45 // Name: read_sensor
46 // Description: getter function for the variables stored in the sensor class
47 // IO: input number, output value of the sensor
48 int sensor::read_sensor(int number) {
49 int result;

42 B. Communication

50 switch (number) {
51 case 1:
52 result = sensor1;
53 break;
54 case 2:
55 result = sensor2;
56 break;
57 case 3:
58 result = sensor3;
59 break;
60 case 4:
61 result = sensor4;
62 break;
63 case 5:
64 result = sensor4;
65 break;
66 case 6:
67 result = sensor4;
68 break;
69 case 7:
70 result = temperature * 10;
71 break;
72 case 8:
73 result = rh * 10;
74 break;
75 case 9:
76 result = algo;
77 gpio_set_level(GPIO_NUM_13, algo); // update led
78 break;
79 case 10:
80 // To normalise the button data, an one or zero is passed
81 result = std::min(button, 1);
82 break;
83 default:
84 // Pin number is not valid
85 result = -1;
86 ESP_LOGE("SENSOR_READ", "Invalid readout pin selected");
87 }
88

89 return result;
90 }
91

92 //
93 // Name: button_pressed
94 // Description: Function that is called by ISR when button is pressed
95 // IO: N/A
96 void sensor::button_pressed(void) {
97 button = 20; // Button will be repeated 20 times
98 }
99

100 //
101 // Name: multi sampling
102 // Description: Obtains and averages the ADC value to reduce noise
103 // IO: input channel, output the averaged ADC value
104 int sensor::multi_sampling(adc1_channel_t channel) {
105 int temp = 0;
106 adc1_config_channel_atten(channel, ADC_ATTEN_DB_0);
107

108 // Average the readings

B. Communication 43

109 for (int i = 0; i < 10; i++) {
110 temp += adc1_get_raw(channel);
111 vTaskDelay(1 / portTICK_PERIOD_MS);
112 }
113 return temp / 10;
114 }
115

116 //
117 // Name: update_sensor
118 // Description: Update the sensors, button and algo
119 // IO: N/A
120 void sensor::update_sensor(void) {
121 adc1_channel_t channel;
122 adc1_config_width(ADC_WIDTH_BIT_12); //12bit output
123

124 // Read every sensor
125 sensor1 = multi_sampling(ADC1_CHANNEL_0); //Sensor 1 ~ pin 36
126 sensor2 = multi_sampling(ADC1_CHANNEL_3); //Sensor 2 ~ pin 39
127 sensor3 = multi_sampling(ADC1_CHANNEL_4); //Sensor 3 ~ pin 32
128 sensor4 = multi_sampling(ADC1_CHANNEL_5); //Sensor 4 ~ pin 33
129 sensor5 = multi_sampling(ADC1_CHANNEL_4); //Sensor 3 ~ pin 32
130 sensor6 = multi_sampling(ADC1_CHANNEL_5); //Sensor 4 ~ pin 33
131

132 // Update Algoritm
133 algo = buffer_sensor.addData(sensor1, sensor2, sensor4);
134

135 // Update button
136 if (button > 0) {
137 button = button - 1;
138 } else {
139 button = 0;
140 }
141 }
142

143 //
144 // Name: sensor
145 // Description: constructor function
146 // IO: N/A
147 sensor::sensor(void) {
148

149 }

B.2. Wi-Fi connection
wifi_connect.h

1 /*
2 * Project: Main software eNose
3 * File: wifi_connect.h
4 * Author: Mark Fijneman
5 * Description: header of wifi_connect.cpp that initalise the wifi conneciton
6 * History: 04/05/21 - Init
7 */
8

9 #ifndef MAIN_WIFI_CONNECT_H_
10 #define MAIN_WIFI_CONNECT_H_
11

12 #include "connection.h"

44 B. Communication

13

14 // Define wifi_para struct
15 struct struct_wifi_para {
16 bool connection_open;
17 std::string SSID;
18 std::string PASS;
19 bool enterprise;
20 std::string USERNAME;
21 std::string cert;
22 std::string IDENTITY;
23 };
24

25 // Define connecting classes
26 class wifi_connect {
27 bool connection_open;
28 std::string SSID;
29 std::string PASS;
30 bool enterprise;
31 std::string USERNAME;
32 std::string cert;
33 std::string IDENTITY;
34 std::string checksum;
35 public:
36

37 // Function that starts WiFi
38 void wifi_init_sta(void);
39

40 // Wifi parameters functions
41 void set_wifi_para(std::string i_ssid, std::string i_pass);
42 void set_wifi_para(std::string i_ssid, std::string i_identity, std::string i_username, std::string i_pass);
43 void set_wifi_para(struct_wifi_para para);
44 void set_wifi_para(bool connection_opened);
45 struct struct_wifi_para get_wifi_para(void);
46

47 // OTA related functions
48 void nvs_wifi_para(bool ota);
49 std::string get_checksum(void);
50

51 };
52

53 #endif /* MAIN_WIFI_CONNECT_H_ */

wifi_connect.cpp

1 /*
2 * Project: Main software eNose
3 * File: wifi_connect.cpp
4 * Author: Mark Fijneman
5 * Description: Contains the function that initalise the wifi conneciton
6 * History: 04/05/21 - Project forked from https://github.com/espressif/esp-idf/
7 * Translated to c++
8 * 12/05/21 - Added support for connection class
9 */

10

11 #include "freertos/FreeRTOS.h"
12 #include "freertos/task.h"
13 #include "freertos/event_groups.h"
14 #include "esp_system.h"

B. Communication 45

15 #include "esp_wifi.h"
16 #include "esp_event.h"
17 #include "esp_log.h"
18 #include "nvs_flash.h"
19 #include "nvs.h"
20

21 #include "lwip/err.h"
22 #include "lwip/sys.h"
23 #include "esp_wpa2.h"
24 #include "esp_netif.h"
25 #include "esp_tls.h"
26 #include "mbedtls/base64.h"
27

28 #include "esp_wifi.h"
29 #include "esp_wpa2.h"
30

31

32 // CPP libaries
33 #include <algorithm>
34 #include <string.h>
35 #include <stdlib.h>
36

37 // Local files
38 #include "wifi_connect.h"
39 #include "connection.h"
40 #include "config.h"
41

42

43

44 #define ESP_MAXIMUM_RETRY 50
45

46 /* FreeRTOS event group to signal when we are connected*/
47 static EventGroupHandle_t s_wifi_event_group;
48 /* esp netif object representing the WIFI station */
49 static esp_netif_t *sta_netif = NULL;
50

51 /* The event group allows multiple bits for each event, but we only care about two events:
52 * - we are connected to the AP with an IP
53 * - we failed to connect after the maximum amount of retries */
54 #define WIFI_CONNECTED_BIT BIT0
55 #define WIFI_FAIL_BIT BIT1
56

57 static const char *TAG = "WIFI_connect";
58

59 static int s_retry_num = 0;
60

61 static void event_handler(void* arg, esp_event_base_t event_base,
62 int32_t event_id, void* event_data)
63 {
64 if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
65 esp_wifi_connect();
66 } else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
67 if (s_retry_num < ESP_MAXIMUM_RETRY) {
68 esp_wifi_connect();
69 s_retry_num++;
70 ESP_LOGI(TAG, "Retry to connect to the AP");
71 } else {
72 xEventGroupSetBits(s_wifi_event_group, WIFI_FAIL_BIT);
73 }

46 B. Communication

74 ESP_LOGI(TAG,"Connect to the AP fail");
75 } else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
76 ip_event_got_ip_t* event = (ip_event_got_ip_t*) event_data;
77 ESP_LOGI(TAG, "Got ip:" IPSTR, IP2STR(&event->ip_info.ip));
78 s_retry_num = 0;
79 xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
80 }
81 }
82

83 void wifi_connect::wifi_init_sta(void)
84 {
85 s_wifi_event_group = xEventGroupCreate();
86 ESP_LOGI(TAG, "Wifi_init_start");
87 ESP_ERROR_CHECK(esp_netif_init());
88

89 ESP_ERROR_CHECK(esp_event_loop_create_default());
90 sta_netif = esp_netif_create_default_wifi_sta();
91 assert(sta_netif);
92

93 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
94 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
95

96 esp_event_handler_instance_t instance_any_id;
97 esp_event_handler_instance_t instance_got_ip;
98 ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
99 ESP_EVENT_ANY_ID,

100 &event_handler,
101 NULL,
102 &instance_any_id));
103 ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
104 IP_EVENT_STA_GOT_IP,
105 &event_handler,
106 NULL,
107 &instance_got_ip));
108

109

110 // Changed to be used in c++ rather than c
111 //Allocate storage for the struct
112 wifi_config_t wifi_config = {};
113

114 //Assign ssid & password strings by copying in uint8_t arrays
115 strcpy((char*)wifi_config.sta.ssid, SSID.c_str());
116 strcpy((char*)wifi_config.sta.password, PASS.c_str());
117 // wifi_config.sta.threshold.authmode = WIFI_AUTH_WPA_WPA2_PSK; // Not set right yet
118 wifi_config.sta.pmf_cfg.capable=true;
119 wifi_config.sta.pmf_cfg.required=false;
120 ESP_LOGI(TAG, "Setting WiFi configuration SSID %s...", wifi_config.sta.ssid);
121

122 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
123 ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));
124

125 if(enterprise==true){
126 ESP_ERROR_CHECK(esp_wifi_sta_wpa2_ent_set_identity((uint8_t *)CONST_IDENTITY, strlen(CONST_IDENTITY)));
127 ESP_ERROR_CHECK(esp_wifi_sta_wpa2_ent_set_username((uint8_t *)CONST_USERNAME, strlen(CONST_USERNAME)));
128 ESP_ERROR_CHECK(esp_wifi_sta_wpa2_ent_set_password((uint8_t *)CONST_PASS, strlen(CONST_PASS)));
129 ESP_ERROR_CHECK(esp_wifi_sta_wpa2_ent_enable());
130

131

132 }

B. Communication 47

133

134 ESP_ERROR_CHECK(esp_wifi_start());
135 /* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
136 * number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
137 EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
138 WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
139 pdFALSE,
140 pdFALSE,
141 portMAX_DELAY);
142

143 /* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
144 * happened. */
145 if (bits & WIFI_CONNECTED_BIT) {
146 ESP_LOGI(TAG, "Connected to ap SSID:%s password:%s",
147 SSID.c_str(), PASS.c_str());
148 } else if (bits & WIFI_FAIL_BIT) {
149 ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
150 SSID.c_str(), PASS.c_str());
151 } else {
152 ESP_LOGE(TAG, "UNEXPECTED EVENT");
153 }
154

155 /* The event will not be processed after unregister */
156 ESP_ERROR_CHECK(esp_event_handler_instance_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, instance_got_ip));
157 ESP_ERROR_CHECK(esp_event_handler_instance_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, instance_any_id));
158 vEventGroupDelete(s_wifi_event_group);
159 }
160

161

162

163 ///
164 // Wifi parameters functions
165 void wifi_connect::set_wifi_para(bool connection_opened)
166 {
167 connection_open = connection_open;
168 }
169

170 void wifi_connect::set_wifi_para(std::string i_ssid, std::string i_pass)
171 {
172 SSID = i_ssid;
173 PASS = i_pass;
174 enterprise = false;
175 }
176

177 void wifi_connect::set_wifi_para(std::string i_ssid, std::string i_identity, std::string i_username, std::string i_pass)
178 {
179 enterprise = true;
180 SSID = i_ssid;
181 IDENTITY=i_identity;
182 USERNAME=i_username;
183 PASS = i_pass;
184 }
185

186 void wifi_connect::set_wifi_para(struct_wifi_para para){
187 connection_open=para.connection_open;
188 SSID= para.SSID;
189 PASS= para.PASS;
190 enterprise= para.enterprise;
191 USERNAME= para.USERNAME;

48 B. Communication

192 cert= para.cert;
193 IDENTITY= para.IDENTITY;
194 }
195

196 struct struct_wifi_para wifi_connect::get_wifi_para(void)
197 {
198 struct_wifi_para para;
199 return para;
200 }
201

202

203 //
204 // Non voiliate wifi parameter retrieval
205 void wifi_connect::nvs_wifi_para(bool ota)
206 {
207 esp_err_t ret;
208 nvs_handle handle;
209 ret = nvs_open("wifi_para", NVS_READWRITE, &handle);
210 if (ret != ESP_OK) {
211 ESP_LOGE("NVS_WiFi", "Error opening NVS handle (%s)", esp_err_to_name(ret));
212 }
213 else{
214 ESP_LOGI("NVS_WiFi", "NVS WiFi space opened");
215

216 char SSID_buf[30];
217 char PASS_buf[30];
218 size_t SSID_size;
219 size_t PASS_size;
220

221 // Obtain or write SSID
222 nvs_get_str(handle, "SSID", NULL, &SSID_size);
223 ret = nvs_get_str(handle, "SSID", (char *)&SSID_buf, &SSID_size);
224 if((ret==ESP_ERR_NVS_NOT_FOUND) || !UPDATE || ota){
225

226 // SSID is not present yet
227 ESP_LOGI("NVS_WiFi", "SSID written to NVS");
228 strcpy (SSID_buf, CONST_SSID);
229 ret = nvs_set_str(handle, "SSID", (const char*)SSID_buf);
230 if(ret!=ESP_OK){
231 ESP_LOGE("NVS_WiFi", "Error writing SSID (%s)", esp_err_to_name(ret));
232 }
233 ret = nvs_commit(handle);
234 if(ret!=ESP_OK){
235 ESP_LOGE("NVS_WiFi", "Error commiting SSID (%s)", esp_err_to_name(ret));
236 }
237 }
238 else if(ret== ESP_OK){
239 // Read succesfull
240 ESP_LOGI("NVS_WiFi", "Read of SSID succesful");
241 }
242 else{
243 ESP_LOGE("NVS_WiFi", "Error reading SSID (%s)", esp_err_to_name(ret));
244 }
245

246 // Obtain or write PASS
247 nvs_get_str(handle, "PASS", NULL, &PASS_size);
248 ret = nvs_get_str(handle, "PASS", (char *)&PASS_buf, &PASS_size);
249 if(ret==ESP_ERR_NVS_NOT_FOUND|| !UPDATE || ota){
250 // SSID is not present yet

B. Communication 49

251 ESP_LOGI("NVS_WiFi", "PASS written to NVS");
252 strcpy(PASS_buf, CONST_PASS);
253 ret = nvs_set_str(handle, "PASS", (const char*)PASS_buf);
254 if(ret!=ESP_OK){
255 ESP_LOGE("NVS_WiFi", "Error writing PASS (%s)", esp_err_to_name(ret));
256 }
257 ret = nvs_commit(handle);
258 if(ret!=ESP_OK){
259 ESP_LOGE("NVS_WiFi", "Error commiting PASS (%s)", esp_err_to_name(ret));
260 }
261 }
262 else if(ret== ESP_OK){
263 // Read succesfull
264 ESP_LOGI("NVS_WiFi", "Read of PASS succesful");
265 }
266 else{
267 ESP_LOGE("NVS_WiFi", "Error reading PASS (%s)", esp_err_to_name(ret));
268 }
269

270 set_wifi_para(SSID_buf, PASS_buf);
271 nvs_close(handle);
272 }
273 }
274

275 std::string wifi_connect::get_checksum(void){
276 if(checksum.empty()){
277 char *payload = "Hello SHA 256 from test";
278 char shaResult[32];
279 unsigned char output[64];
280 size_t outlen;
281

282 // Generate hash
283 mbedtls_md_context_t ctx;
284 mbedtls_md_type_t md_type = MBEDTLS_MD_SHA256;
285

286 const size_t payloadLength = strlen(payload);
287

288 mbedtls_md_init(&ctx);
289 mbedtls_md_setup(&ctx, mbedtls_md_info_from_type(md_type), 0);
290 mbedtls_md_starts(&ctx);
291 mbedtls_md_update(&ctx, (const unsigned char *) payload, payloadLength);
292 mbedtls_md_finish(&ctx, (unsigned char*)shaResult);
293 mbedtls_md_free(&ctx);
294

295 // Base64 encode
296 mbedtls_base64_encode((unsigned char*)output, 64, &outlen, (unsigned char*)shaResult, 32);
297 ESP_LOGI("wifi checksum", "%s", output);
298 std::string output_str (output, output + sizeof output / sizeof output[0]);
299 checksum=output_str;
300 }
301

302 return checksum;
303

304 }

B.3. Webserver

50 B. Communication

OPENAPI 3.0 documentation

1 openapi: 3.0.0
2 info:
3 version: 1.0.0
4 title: sensorDATA
5 servers:
6 - url: 'https://url.com'
7 paths:
8 /measurements.php:
9 post:

10 summary: 'Endpoint: takes the sensor data of esp32 and stores it in the db'
11 requestBody:
12 required: true
13 content:
14 application/json:
15 schema:
16 $ref: '#/components/schemas/sensor_data'
17 responses:
18 '200':
19 description: 'Measurements succeeded: return algorihm parameters'
20 default:
21 description: Unexpected error
22 content:
23 application/json:
24 schema:
25 $ref: '#/components/schemas/Error'
26 /OTA/parameters.php:
27 get:
28 summary: 'Endpoint: retrieves the latest algorithm parameters from the data base and parses it to the client'
29 responses:
30 '200':
31 description: 'Measurements succeeded: return algorihm parameters'
32 content:
33 application/json:
34 schema:
35 $ref: '#/components/schemas/algo_para'
36 default:
37 description: Unexpected error
38 content:
39 application/json:
40 schema:
41 $ref: '#/components/schemas/Error'
42 /OTA/firmware.php:
43 get:
44 summary: 'Endpoint: retrieves the latest version number and a checksum of the OTA firmware'
45 responses:
46 '200':
47 description: 'OTA firmware found on the server'
48 content:
49 application/json:
50 schema:
51 $ref: '#/components/schemas/firmware_checks'
52 default:
53 description: Unexpected error
54 content:
55 application/json:
56 schema:
57 $ref: '#/components/schemas/Error'

B. Communication 51

58 post:
59 summary: 'Retrieve part of the OTA firmware'
60 requestBody:
61 required: true
62 content:
63 application/json:
64 schema:
65 $ref: '#/components/schemas/firmware_request'
66

67 responses:
68 '200':
69 description: 'Piece found of the OTA firmware'
70 content:
71 application/json:
72 schema:
73 $ref: '#/components/schemas/firmware_response'
74 default:
75 description: Unexpected error
76 content:
77 application/json:
78 schema:
79 $ref: '#/components/schemas/Error'
80 /OTA/wifi.php:
81 post:
82 summary: 'Retrieve part of the OTA firmware'
83 requestBody:
84 required: true
85 content:
86 application/json:
87 schema:
88 $ref: '#/components/schemas/wifi_request'
89

90 responses:
91 '200':
92 description: 'Wifi is not up to date and new credentials are returned'
93 content:
94 application/json:
95 schema:
96 $ref: '#/components/schemas/wifi_response'
97 default:
98 description: Unexpected error
99 content:

100 application/json:
101 schema:
102 $ref: '#/components/schemas/Error'
103

104 components:
105 schemas:
106 Error:
107 type: object
108 required:
109 - message
110 properties:
111 message:
112 type: string
113 sensor_data:
114 type: object
115 required:
116 - tag

52 B. Communication

117 - T
118 - C
119 - S1
120 - S2
121 - S3
122 - S4
123 - S5
124 - S6
125 - UP
126 - A
127 - B
128 properties:
129 tag:
130 description: MAC address of the ESP32 seperate by an semicolon
131 type: string
132 pattern: '^([0-9A-FA-F]{2}[:]){5}([0-9A-FA-F]{2})$'
133 T:
134 description: Temperature measurement of ESP32 multiplied by ten
135 type: integer
136 format: uint16
137 minimum: 0
138 maximum: 600
139 H:
140 description: Humidity measurement of ESP32 multiplied by ten
141 type: integer
142 format: uint16
143 minimum: 0
144 maximum: 1000
145 S1:
146 description: Sensor 1 measurement of ESP32
147 type: integer
148 format: uint16
149 minimum: 0
150 maximum: 4096
151 S2:
152 description: Sensor 2 measurement of ESP32
153 type: integer
154 format: uint16
155 minimum: 0
156 maximum: 4096
157 S3:
158 description: Sensor 3 measurement of ESP32
159 type: integer
160 format: uint16
161 minimum: 0
162 maximum: 4096
163 S4:
164 description: Sensor 4 measurement of ESP32
165 type: integer
166 format: uint16
167 minimum: 0
168 maximum: 4096
169 S5:
170 description: Sensor 5 measurement of ESP32
171 type: integer
172 format: uint16
173 minimum: 0
174 maximum: 4096
175 S6:

B. Communication 53

176 description: Sensor 6 measurement of ESP32
177 type: integer
178 format: uint16
179 minimum: 0
180 maximum: 4096
181 UP:
182 description: Uptime of the esp32 in seconds
183 type: integer
184 format: uint32
185 minimum: 0
186 A:
187 description: Algorithm value of esp32
188 type: integer
189 format: uint16
190 minimum: 0
191 maximum: 4096
192 B:
193 description: Algorithm value of esp32
194 type: integer
195 format: uint16
196 minimum: 0
197 maximum: 4096
198 algo_para:
199 description: Offset of the to-be-received datafile
200 type: object
201 required:
202 - capacity
203 - fs
204 - warmup
205 - period
206 - threshold
207 properties:
208 capacity:
209 type: integer
210 format: uint64
211 minimum: 0
212 fs:
213 type: integer
214 format: uint64
215 minimum: 0
216 warmup:
217 type: integer
218 format: uint64
219 minimum: 0
220 period:
221 type: integer
222 format: uint64
223 minimum: 0
224 threshold:
225 type: integer
226 format: uint64
227 minimum: 0
228 firmware_request:
229 description: Parameters to receive a part of the firmware update
230 type: object
231 required:
232 - offset
233 - length
234 properties:

54 B. Communication

235 offset:
236 description: Offset of the to-be-received datafile
237 type: integer
238 format: uint64
239 minimum: 0
240 length:
241 description: Length of the to-be-received datafile
242 type: integer
243 format: uint64
244 minimum: 0
245 firmware_response:
246 description: The response which contains the actual data of the firmware OTA update
247 type: object
248 required:
249 - data
250 properties:
251 offset:
252 description: String in base64 that contains the actual data of the firmware with an offset and length
253 type: string
254 format: byte
255 firmware_checks:
256 description: Retrieves the current OTA firmware version along with an checksum
257 type: object
258 required:
259 - version
260 - checksum
261 properties:
262 version:
263 description: Current version of the OTA firmware
264 type: integer
265 format: uint64
266 minimum: 0
267 checksum:
268 description: SHA256 checksum of the total firmware used to check the integrity of the update
269 type: string
270 format: byte
271 wifi_request:
272 description: Check if wifi settings are valid and up-to-date
273 type: object
274 required:
275 - tag
276 - checksum
277 properties:
278 tag:
279 description: MAC address of the ESP32 seperate by an semicolon
280 type: string
281 pattern: '^([0-9A-FA-F]{2}[:]){5}([0-9A-FA-F]{2})$'
282 checksum:
283 description: SHA256 checksum of wifi settings
284 type: string
285 format: byte
286 wifi_response:
287 description: Check if wifi settings are valid and up-to-date
288 type: object
289 required:
290 - checksum
291 - ssid
292 - pass
293 properties:

B. Communication 55

294 location:
295 description: Location number
296 type: integer
297 format: uint64
298 minimum: 0
299 checksum:
300 description: SHA256 checksum of wifi settings
301 type: string
302 format: byte
303 ssid:
304 description: SSID of wifi network
305 type: string
306 pass:
307 description: PASS of wifi network
308 type: string
309 cert:
310 description: PASS of wifi network
311 type: string
312 identity:
313 description: PASS of wifi network
314 type: string

SQL database structure export

1 -- phpMyAdmin SQL Dump
2 -- version 5.0.3
3 -- https://www.phpmyadmin.net/
4 --
5 -- Host: localhost:3306
6 -- Gegenereerd op: 16 jun 2021 om 10:44
7 -- Serverversie: 10.2.36-MariaDB
8 -- PHP-versie: 7.3.26
9

10 SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";
11 START TRANSACTION;
12 SET time_zone = "+00:00";
13

14

15 /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
16 /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
17 /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
18 /*!40101 SET NAMES utf8mb4 */;
19

20 --
21 -- Database: `poop_db`
22 --
23

24 -- --
25

26 --
27 -- Tabelstructuur voor tabel `algo_settings`
28 --
29

30 CREATE TABLE `algo_settings` (
31 `ID` int(10) UNSIGNED NOT NULL,
32 `capacity` int(11) NOT NULL,
33 `fs` int(11) NOT NULL,
34 `warmup` int(11) NOT NULL,

56 B. Communication

35 `period` int(11) NOT NULL,
36 `threshold` int(11) NOT NULL
37) ENGINE=InnoDB DEFAULT CHARSET=utf8;
38

39 -- --
40

41 --
42 -- Tabelstructuur voor tabel `devices`
43 --
44

45 CREATE TABLE `devices` (
46 `tag` text NOT NULL,
47 `device_id` int(10) UNSIGNED NOT NULL,
48 `description` tinytext NOT NULL,
49 `location` int(10) UNSIGNED NOT NULL,
50 `version` int(11) NOT NULL,
51 `algo` tinyint(4) NOT NULL
52) ENGINE=InnoDB DEFAULT CHARSET=utf8;
53

54 -- --
55

56 --
57 -- Tabelstructuur voor tabel `location`
58 --
59

60 CREATE TABLE `location` (
61 `location` int(10) UNSIGNED NOT NULL,
62 `description` text NOT NULL,
63 `wifi_type` enum('WPA2-PSK','WPA2-enterprise') NOT NULL,
64 `ssid` tinytext NOT NULL,
65 `pass` tinytext NOT NULL,
66 `identity` tinytext NOT NULL,
67 `username` tinytext NOT NULL,
68 `wifi_checksum` text NOT NULL,
69 `phone` tinytext NOT NULL
70) ENGINE=InnoDB DEFAULT CHARSET=utf8;
71

72 -- --
73

74 --
75 -- Tabelstructuur voor tabel `measurements`
76 --
77

78 CREATE TABLE `measurements` (
79 `id` int(10) UNSIGNED NOT NULL,
80 `device_id` int(10) UNSIGNED NOT NULL,
81 `temp` smallint(3) NOT NULL,
82 `rh` smallint(3) NOT NULL,
83 `sensor_1` smallint(4) NOT NULL,
84 `sensor_2` smallint(4) NOT NULL,
85 `sensor_3` smallint(4) NOT NULL,
86 `sensor_4` smallint(4) NOT NULL,
87 `sensor_5` smallint(4) NOT NULL,
88 `sensor_6` smallint(4) NOT NULL,
89 `time_up` int(11) NOT NULL,
90 `algo_h` tinyint(2) NOT NULL,
91 `button` tinyint(1) NOT NULL,
92 `created_at` datetime NOT NULL
93) ENGINE=InnoDB DEFAULT CHARSET=utf8;

B. Communication 57

94

95 --
96 -- Indexen voor geëxporteerde tabellen
97 --
98

99 --
100 -- Indexen voor tabel `algo_settings`
101 --
102 ALTER TABLE `algo_settings`
103 ADD PRIMARY KEY (`ID`);
104

105 --
106 -- Indexen voor tabel `devices`
107 --
108 ALTER TABLE `devices`
109 ADD PRIMARY KEY (`tag`(18)) USING BTREE,
110 ADD UNIQUE KEY `device_id` (`device_id`),
111 ADD KEY `location_foreign` (`location`);
112

113 --
114 -- Indexen voor tabel `location`
115 --
116 ALTER TABLE `location`
117 ADD PRIMARY KEY (`location`);
118

119 --
120 -- Indexen voor tabel `measurements`
121 --
122 ALTER TABLE `measurements`
123 ADD PRIMARY KEY (`id`),
124 ADD KEY `device_id_foreign` (`device_id`),
125 ADD KEY `created_at` (`created_at`);
126

127 --
128 -- AUTO_INCREMENT voor geëxporteerde tabellen
129 --
130

131 --
132 -- AUTO_INCREMENT voor een tabel `algo_settings`
133 --
134 ALTER TABLE `algo_settings`
135 MODIFY `ID` int(10) UNSIGNED NOT NULL AUTO_INCREMENT;
136

137 --
138 -- AUTO_INCREMENT voor een tabel `devices`
139 --
140 ALTER TABLE `devices`
141 MODIFY `device_id` int(10) UNSIGNED NOT NULL AUTO_INCREMENT;
142

143 --
144 -- AUTO_INCREMENT voor een tabel `location`
145 --
146 ALTER TABLE `location`
147 MODIFY `location` int(10) UNSIGNED NOT NULL AUTO_INCREMENT;
148

149 --
150 -- AUTO_INCREMENT voor een tabel `measurements`
151 --
152 ALTER TABLE `measurements`

58 B. Communication

153 MODIFY `id` int(10) UNSIGNED NOT NULL AUTO_INCREMENT;
154

155 --
156 -- Beperkingen voor geëxporteerde tabellen
157 --
158

159 --
160 -- Beperkingen voor tabel `devices`
161 --
162 ALTER TABLE `devices`
163 ADD CONSTRAINT `location_foreign` FOREIGN KEY (`location`) REFERENCES `location` (`location`);
164

165 --
166 -- Beperkingen voor tabel `measurements`
167 --
168 ALTER TABLE `measurements`
169 ADD CONSTRAINT `device_id_foreign` FOREIGN KEY (`device_id`) REFERENCES `devices` (`device_id`);
170 COMMIT;
171

172 /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
173 /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
174 /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

B.4. Protocol
http_post.h

1 /*
2 * Project: Main software eNose
3 * File: http_post.h
4 * Author: Mark Fijneman
5 * Description: Contain functions to construct the JSON content and preform the http post through POSIX-socket
6 * History: 10/05/21: Init
7 */
8

9

10 #ifndef MAIN_HTTP_POST_CPP_
11 #define MAIN_HTTP_POST_CPP_
12 #include "connection.h"
13 #include "sensor.h"
14 #include <string.h>
15 #include "esp_tls.h"
16

17

18 struct https_data{
19 std::string web_full_url;
20 std::string REQUEST;
21 esp_tls_cfg_t* settings;
22 std::string received_message;
23 };
24

25 class http_request{
26 // Private variables
27 std::string web_port;
28 std::string web_path;
29 std::string web_url;
30 std::string web_full_url;
31 bool secure_connection;

B. Communication 59

32 uint8_t mac_address[6]= { 0 };
33 esp_tls_cfg_t settings;
34

35 //Helper for http requesr functions
36 uint8_t* get_mac_address(void);
37 std::string generate_body(sensor* sensor_main);
38 std::string generate_body(int offset, int length);
39 std::string generate_header(int content_length);
40 std::string http_get(void);
41

42 //Helpers to decode http response
43 std::string extract_json(std::string message);
44 std::string extract_json(std::string message, std::string component);
45 public:
46

47 std::string https_task_start (void);
48 esp_tls_cfg_t https_settings(void);
49 http_request(void);
50 void set_config(std::string url, std::string port, std::string path);
51 struct struct_http_config get_config(void);
52

53 // Sensor data + algo update
54 void post(sensor* sensor_main);
55

56 // wifi ota
57 void wifi_ota(std::string checksum, struct_wifi_para *wifi_settings, bool *current);
58

59 // Firmware update related
60 std::string check_ota(int version, int* remote_version);
61 std::string get_ota(int offset, int length);
62 };
63

64

65

66

67 #endif /* MAIN_HTTP_POST_CPP_ */

http_post.cpp

1 /*
2 * Project: Main software eNose
3 * File: http_post
4 * Author: Mark Fijneman
5 * Description: Contain functions to construct the JSON content and preform the http post through POSIX-socket
6 * History: 10/05/21: Forked from ESP http_request example
7 * 11/05/21: Added JSON constructor + Variable message
8 * 01/06/21: Added https support
9 */

10

11 // Deault libaries
12 #include <string.h>
13 #include "freertos/FreeRTOS.h"
14 #include "freertos/task.h"
15 #include "esp_system.h"
16 #include "esp_wifi.h"
17 #include "esp_event.h"
18 #include "esp_log.h"
19 #include "nvs_flash.h"

60 B. Communication

20 #include <iostream>
21 #include <string>
22

23 // HTTP post specific libaries
24 #include "protocol_examples_common.h"
25 #include "lwip/err.h"
26 #include "lwip/sockets.h"
27 #include "lwip/sys.h"
28 #include "lwip/netdb.h"
29 #include "lwip/dns.h"
30 #include "esp_timer.h"
31 #include "esp_tls.h"
32 #include "esp_crt_bundle.h"
33

34 // Local libaries
35 #include "wifi_connect.h"
36 #include "sensor.h"
37 #include "http_post.h"
38

39 #include "config.h"
40

41 static const char *TAG = "HTTP_POST";
42

43 //
44 // Name: https_get and http_get
45 // Description: Perform the actual http(s) communication
46 // IO: Outputs string containing http request response
47 extern const uint8_t server_root_cert_pem_start[] asm("_binary_server_root_cert_pem_start");
48 extern const uint8_t server_root_cert_pem_end[] asm("_binary_server_root_cert_pem_end");
49 static char REQUEST[600]; // Place holder for actual request for later development
50

51 void https_get(void *Struct)
52 {
53 https_data * data = (https_data *) Struct;
54 std::cout<<data->web_full_url;
55 std::cout<<data->REQUEST;
56 char buf[512];
57 int ret, len;
58 std::string received_message;
59 esp_tls_cfg_t *cfg = data->settings;
60 ESP_LOGD(TAG, "start new connection");
61

62

63 struct esp_tls *tls = esp_tls_conn_http_new(data->web_full_url.c_str(), cfg);
64

65 if (tls != NULL) {
66 ESP_LOGD(TAG, "Connection established...");
67 } else {
68 ESP_LOGE(TAG, "Connection failed...");
69 esp_tls_conn_destroy(tls);
70 //received_message=https_get();
71 //return
72 }
73

74 size_t written_bytes = 0;
75 do {
76 ret = esp_tls_conn_write(tls,
77 data->REQUEST.c_str() + written_bytes,
78 sizeof(data->REQUEST.c_str()) - written_bytes);

B. Communication 61

79 if (ret >= 0) {
80 ESP_LOGD(TAG, "%d bytes written", ret);
81 written_bytes += ret;
82 } else if (ret != ESP_TLS_ERR_SSL_WANT_READ && ret != ESP_TLS_ERR_SSL_WANT_WRITE) {
83 ESP_LOGE(TAG, "esp_tls_conn_write returned: [0x%02X](%s)", ret, esp_err_to_name(ret));
84 }
85 } while (written_bytes < sizeof(REQUEST));
86

87 ESP_LOGD(TAG, "Reading HTTP response...");
88

89 do {
90 len = sizeof(buf) - 1;
91 bzero(buf, sizeof(buf));
92 ret = esp_tls_conn_read(tls, (char *)buf, len);
93 received_message.append(buf);
94

95 if (ret == ESP_TLS_ERR_SSL_WANT_WRITE || ret == ESP_TLS_ERR_SSL_WANT_READ) {
96 continue;
97 }
98

99 if (ret < 0) {
100 ESP_LOGE(TAG, "esp_tls_conn_read returned [-0x%02X](%s)", -ret, esp_err_to_name(ret));
101 break;
102 }
103

104 if (ret == 0) {
105 ESP_LOGD(TAG, "connection closed");
106 break;
107 }
108

109 len = ret;
110 ESP_LOGD(TAG, "%d bytes read", len);
111

112

113 } while (1);
114

115 esp_tls_conn_destroy(tls);
116

117 //return received_message;
118 }
119

120 std::string http_request::https_task_start(void){
121 https_data https;
122 https.REQUEST=REQUEST;
123 https.web_full_url=web_full_url;
124 https.settings=&settings;
125

126 xTaskCreate(&https_get, "https_get", 8192, (void*)&https, 5, NULL);
127

128 return "placeholder";
129 }
130

131 std::string http_request::http_get(void)
132 {
133 const struct addrinfo hints = {
134 .ai_family = AF_INET,
135 .ai_socktype = SOCK_STREAM,
136 };
137 struct addrinfo *res;

62 B. Communication

138 struct in_addr *addr;
139 int s, r;
140 char recv_buf[64];
141 std::string received_message;
142

143 // Obtain socket and adress information
144 int err = getaddrinfo(web_url.c_str(), web_port.c_str(), &hints, &res);
145

146 if(err != 0 || res == NULL) {
147 ESP_LOGE(TAG, "DNS lookup failed err=%d res=%p", err, res);
148 vTaskDelay(1000 / portTICK_PERIOD_MS);
149 //continue;
150 }
151

152 /* Code to print the resolved IP.
153 Note: inet_ntoa is non-reentrant, look at ipaddr_ntoa_r for "real" code */
154 addr = &((struct sockaddr_in *)res->ai_addr)->sin_addr;
155 ESP_LOGD(TAG, "DNS lookup succeeded. IP=%s", inet_ntoa(*addr));
156

157 s = socket(res->ai_family, res->ai_socktype, 0);
158 if(s < 0) {
159 ESP_LOGE(TAG, "... Failed to allocate socket.");
160 freeaddrinfo(res);
161 vTaskDelay(1000 / portTICK_PERIOD_MS);
162 // continue;
163 }
164 ESP_LOGD(TAG, "... allocated socket");
165

166 if(connect(s, res->ai_addr, res->ai_addrlen) != 0) {
167 ESP_LOGE(TAG, "... socket connect failed errno=%d", errno);
168 close(s);
169 freeaddrinfo(res);
170 vTaskDelay(4000 / portTICK_PERIOD_MS);
171 // continue;
172 }
173

174 ESP_LOGD(TAG, "... connected");
175 freeaddrinfo(res);
176

177

178 if (write(s, REQUEST, strlen(REQUEST))< 0) {
179 ESP_LOGE(TAG, "... socket send failed");
180 close(s);
181 vTaskDelay(4000 / portTICK_PERIOD_MS);
182 // continue;
183 }
184 ESP_LOGD(TAG, "... socket send success");
185

186 struct timeval receiving_timeout;
187 receiving_timeout.tv_sec = 5;
188 receiving_timeout.tv_usec = 0;
189 if (setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &receiving_timeout,
190 sizeof(receiving_timeout)) < 0) {
191 ESP_LOGE(TAG, "... failed to set socket receiving timeout");
192 close(s);
193 vTaskDelay(4000 / portTICK_PERIOD_MS);
194 // continue;
195 }
196 ESP_LOGD(TAG, "... set socket receiving timeout success");

B. Communication 63

197

198 /* Read HTTP response */
199

200 do {
201 bzero(recv_buf, sizeof(recv_buf));
202 r = read(s, recv_buf, sizeof(recv_buf)-1);
203 received_message.append(recv_buf);
204 } while(r > 0);
205

206 close(s);
207 return received_message;
208 }
209

210 //
211 // Name: extract_json
212 // Description: Extracts information from the http response
213 // IO: Input string containing http request response, Output either body of https response or specific parts
214 std::string extract_json(std::string message, std::string component)
215 {
216 std::string component_json_form= "\"" + component + "\":";
217

218 int pos=message.find(component_json_form)+component_json_form.size(); // remove compent string
219 int end=pos+message.substr(pos).find(",")-1; // Remove ,
220

221 std::string result=message.substr (pos+1,end-pos-1); // Remove quotation marks
222 return result;
223 }
224

225 std::string http_request::extract_json(std::string message, std::string component)
226 {
227 std::string component_json_form= "\"" + component + "\":";
228

229 int pos=message.find(component_json_form)+component_json_form.size(); // remove compent string
230 int end=pos+message.substr(pos).find(",")-1; // Remove ,
231

232 std::string result=message.substr (pos+1,end-pos-1); // Remove quotation marks
233 return result;
234 }
235

236 std::string http_request::extract_json(std::string message)
237 {
238 int start_json=message.find("{");
239 int end_json=message.find("}");
240 std::string result=message.substr (start_json+1,end_json-start_json-1);
241 return result;
242 }
243

244 //
245 // Name: generate_body and generate_header
246 // Description: Generates body and header for the http request
247 // IO: Input sensor or offset + length, Outputs string containing header/body.
248

249 std::string http_request::generate_body(sensor* sensor_main)
250 {
251 char BODY[350];
252 int body_size = 0; // Contains the body size nessecary for the header
253 uint8_t* mac = get_mac_address();
254

255 body_size=snprintf(BODY, 350, "{ \"tag\": \"%X:%X:%X:%X:%X:%X\",",

64 B. Communication

256 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
257 body_size=snprintf(BODY, 350-body_size, "%s \"T\": %d,",BODY, sensor_main->read_sensor(5));
258 body_size=snprintf(BODY, 350-body_size, "%s \"H\": %d,",BODY, sensor_main->read_sensor(6));
259 body_size=snprintf(BODY, 350-body_size, "%s \"S1\": %d,",BODY, sensor_main->read_sensor(1));
260 body_size=snprintf(BODY, 350-body_size, "%s \"S2\": %d,",BODY, sensor_main->read_sensor(2));
261 body_size=snprintf(BODY, 350-body_size, "%s \"S3\": %d,",BODY, sensor_main->read_sensor(3));
262 body_size=snprintf(BODY, 350-body_size, "%s \"S4\": %d,",BODY, sensor_main->read_sensor(4));
263 body_size=snprintf(BODY, 350-body_size, "%s \"S5\": %d,",BODY, 0);
264 body_size=snprintf(BODY, 350-body_size, "%s \"S6\": %d,",BODY, 0);
265 body_size=snprintf(BODY, 350-body_size, "%s \"UP\": %lld,",BODY, esp_timer_get_time()/1000000);
266 body_size=snprintf(BODY, 350-body_size, "%s \"A\": %d,",BODY, sensor_main->read_sensor(7));
267 body_size=snprintf(BODY, 350-body_size, "%s \"B\": %d } \r\n",BODY, sensor_main->read_sensor(8));
268

269 return BODY;
270 }
271 std::string http_request::generate_body(int offset, int length)
272 {
273 char BODY[350];
274 int body_size = 0; // Contains the body size nessecary for the header
275

276 body_size=snprintf(BODY, 350, "{\"offset\": %d, \"length\": %d}", offset, length);
277

278 return BODY;
279 }
280

281 std::string http_request::generate_header(int content_length)
282 {
283 char HEADER[350];
284 int header_size =0;
285

286 if(content_length != 0){
287 header_size=snprintf(HEADER, 350, "POST %s HTTP/1.0\r\n", web_path.c_str());
288 header_size=snprintf(HEADER, 350-header_size, "%sHost: %s \r\n", HEADER, web_url.c_str());
289 header_size=snprintf(HEADER, 350-header_size, "%sUser-Agent: ESP %d \r\n", HEADER, VERSION);
290 header_size=snprintf(HEADER, 350-header_size, "%sContent-Type: application/json\r\n", HEADER);
291 header_size=snprintf(HEADER, 350-header_size, "%sContent-Length: %d \r\n\r\n",
292 HEADER, content_length);
293 }
294 else{
295 header_size=snprintf(HEADER, 350, "GET %s HTTP/1.0\r\n", web_path.c_str());
296 header_size=snprintf(HEADER, 350-header_size, "%sHost: %s \r\n", HEADER, web_url.c_str());
297 header_size=snprintf(HEADER, 350-header_size, "%sUser-Agent: ESP %d \r\n\r\n", HEADER, VERSION);
298 }
299 return HEADER;
300 }
301

302 //
303 // Name: post
304 // Description: General script that controls the posting of sensor data
305 // IO: Input sensor
306 void http_request::post(sensor* sensor_main)
307 {
308 std::string received_message;
309 std::string BODY = generate_body(sensor_main);
310 std::string HEADER = generate_header(BODY.size());
311

312 // Write to request buffer
313 snprintf(REQUEST, 600, "%s%s", HEADER.c_str() , BODY.c_str());
314 // Post and read http response

B. Communication 65

315 if(secure_connection==false)
316 {
317 received_message = http_get();
318 }
319 else{
320 received_message=https_task_start();
321 }
322 // Decode JSON by first remove header, dividing into substrings and converting to ints
323 // Need to add checker for npos and boundary conditions
324

325 // Remove header completely
326

327 std::string received_json=extract_json(received_message);
328

329 if(received_message.find("ID")!=string::npos){
330 int capacity =stoi(extract_json(received_message, "capacity"));
331 int fs =stoi(extract_json(received_message, "fs"));
332 int warmup =stoi(extract_json(received_message, "warmup"));
333 int period =stoi(extract_json(received_message, "period"));
334 int threshold =stoi(extract_json(received_message, "threshold"));
335

336 uint8_t* mac = get_mac_address();
337

338 ESP_LOGI(TAG, "Data posted and received at %X:%X:%X:%X:%X:%X",
339 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
340

341 sensor_main->buffer_sensor.setValues(threshold, capacity, fs, warmup, period);
342 }
343 else
344 {
345 ESP_LOGE(TAG, "JSON decode failed");
346 }
347

348 }
349

350 //
351 // Name: hexval and hex2ascii
352 // Description: Script to convert hex data to ascii data
353 // IO: Input hex string, output ascii string
354

355 unsigned char hexval(unsigned char c)
356 {
357 if ('0' <= c && c <= '9')
358 return c - '0';
359 else if ('a' <= c && c <= 'f')
360 return c - 'a' + 10;
361 else if ('A' <= c && c <= 'F')
362 return c - 'A' + 10;
363 else abort();
364 }
365 void hex2ascii(const std::string& in, std::string& out)
366 {
367 out.clear();
368 out.reserve(in.length() / 2);
369 for (std::string::const_iterator p = in.begin(); p != in.end(); p++)
370 {
371 unsigned char c = hexval(*p);
372 p++;
373 if (p == in.end()) break; // incomplete last digit - should report error

66 B. Communication

374 c = (c << 4) + hexval(*p); // + takes precedence over <<
375 out.push_back(c);
376 }
377 }
378

379 //
380 // Name: get_ota
381 // Description: Function that retrieves part of the ota program
382 // IO: Input offset and length, output string which contains ota data
383

384 std::string http_request::get_ota(int offset, int length)
385 {
386 std::string received_message;
387 char BODY[350];
388

389 // Generate body of POST request
390 int body_size = 0; // Contains the body size nessecary for the header
391

392 body_size=snprintf(BODY, 350, "{\"offset\": %d, \"length\": %d}", offset, length);
393 //body_size=snprintf(BODY, 350-body_size, "%s \n next line of the body",BODY);
394

395 // Write to request buffer
396 snprintf(REQUEST, 600, "%s%s", generate_header(body_size).c_str(), BODY);
397

398 //
399 // Post and read http response
400 std::string received_data;
401 std::string received_encoded;
402 received_message = http_get();
403

404 // Remove header completely
405 received_encoded=extract_json(received_message);
406

407 // Convert hex to bin string
408 hex2ascii(received_encoded, received_data);
409

410 return received_data;
411 }
412

413 //
414 // Name: check_ota
415 // Description: Function that checks the remote version against current function
416 // IO: Input version and pointer to remote version, output checksum of remote version
417

418 std::string http_request::check_ota(int version, int* remote_version)
419 {
420

421

422 // Generate GET REQUEST and write to buffer
423 snprintf(REQUEST, 250, "%s", generate_header(0).c_str());
424

425 //
426 // Post and read http response
427 std::string received_json;
428 std::string checksum;
429 int new_version;
430

431 // Remove header completely
432 received_json=extract_json(http_get());

B. Communication 67

433 new_version =stoi(extract_json(received_json, "version"));
434 checksum= extract_json(received_json, "checksum");
435 *remote_version=new_version;
436

437 return checksum;
438 }
439

440 //
441 // Name: set_config and get_config
442 // Description: Sets and retrieves certain parameters of the class
443

444 void http_request::set_config(std::string url, std::string port, std::string path)
445 {
446 web_url = url;
447 web_port = port;
448 web_path = path;
449 }
450

451 struct struct_http_config http_request::get_config(void)
452 {
453 struct_http_config http_config;
454 return http_config;
455 }
456

457 //
458 // Name: get_mac_address
459 // Description: Function that retrieves part of the ota program
460 // IO: Input offset and length, output string which contains ota data
461

462 uint8_t* http_request::get_mac_address(void)
463 {
464 // Only need to read the mac adress from the fuses once
465 if(mac_address[0] == 0 && mac_address[1] == 0 && mac_address[2] == 0)
466 {
467 esp_read_mac(mac_address, ESP_MAC_WIFI_STA); //obtain mac of station
468 }
469

470 return &mac_address[0];
471

472 }
473

474 //
475 // Name: https_settings
476 // Description: Sets the https certifactes
477 // IO: Output config file
478

479 esp_tls_cfg_t http_request::https_settings(void)
480 {
481

482

483 esp_err_t esp_ret = ESP_FAIL;
484 ESP_LOGI(TAG, "https_request using global ca_store");
485 esp_ret = esp_tls_set_global_ca_store(server_root_cert_pem_start, server_root_cert_pem_end -
486 server_root_cert_pem_start);
487 if (esp_ret != ESP_OK) {
488 ESP_LOGE(TAG, "Error in setting the global ca store: [%02X] (%s),
489 could not complete the https_request using global_ca_store",
490 esp_ret, esp_err_to_name(esp_ret));
491 abort();

68 B. Communication

492 }
493 esp_tls_cfg_t cfg = {
494 .use_global_ca_store = true,
495 };
496

497 settings=cfg;
498 return cfg;
499 }
500

501 //
502 // Name: wifi_ota
503 // Description: checks and retrieves new wifi
504 // IO: Output config file
505 void http_request::wifi_ota(std::string checksum, struct_wifi_para *wifi_settings, bool *current){
506 std::string received_message;
507 char BODY[350];
508 uint8_t* mac = get_mac_address();
509

510 // Generate body of POST request
511 int body_size = 0; // Contains the body size nessecary for the header
512 body_size=snprintf(BODY, 350, "{\"tag\": \"%X:%X:%X:%X:%X:%X\", \"WIFI_checksum\": \"%s\", "
513 "\"key\":\"74621bb8-7e7c-4ba4-90a0-1c3a78935dd9\"}",
514 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], checksum.c_str());
515

516 // Write to request buffer
517 snprintf(REQUEST, 600, "%s%s", generate_header(body_size).c_str(), BODY);
518

519 // Post and read http response
520 std::string received_data;
521 received_message = http_get();
522 // Remove header completely
523 received_data=extract_json(received_message);
524 std::cout<<received_message;
525 if(received_message.find("null")!=string::npos){ // device not found in db
526

527 }
528 else if(received_data.find("WiFi OK")!=string::npos){ // wifi up to date
529 *current = true;
530 ESP_LOGI("WiFi OTA", "WiFi up-to-date");
531 }
532 else if(received_data.find("user")==string::npos){ // Not enterprise
533 *current = false;
534 ESP_LOGI("WiFi OTA", "New WiFi PSK found");
535 wifi_settings->enterprise=false;
536 wifi_settings->SSID=extract_json(received_message, "ssid");
537 wifi_settings->PASS=extract_json(received_message, "pass");
538 std::cout<<wifi_settings->SSID;
539 std::cout<<wifi_settings->PASS;
540 }
541 else{
542 ESP_LOGI("WiFi OTA", "New WiFi ENT found");
543 // enterprise
544 }
545 }
546

547 //
548 // Constructor function
549 http_request::http_request(void)
550 {

B. Communication 69

551 web_url = "poop.markfijneman.nl";
552 web_port = "80";
553

554 #if TESTMODE==true
555 web_path = "/tesp.php";
556 #else
557 web_path = "/esp.php";
558 #endif
559 web_full_url = "https://";
560 web_full_url.append(web_url);
561 web_full_url.append(web_path);
562

563 secure_connection=false;
564 }

measurements.php

1 <?php
2

3 include "connection.php";
4 include "discordhook.php";
5 include "smshook";
6 /*
7 * Obtain HTTP request
8 */
9 $_POST = json_decode(file_get_contents('php://input'), true);

10

11

12 /*
13 * creating new measurement
14 */
15 if ($_SERVER['REQUEST_METHOD'] === 'POST') {
16

17 if(isset($_POST['tag'])
18 && isset($_POST['T'])
19 && isset($_POST['H'])
20 && isset($_POST['S1'])
21 && isset($_POST['S2'])
22 && isset($_POST['S3'])
23 && isset($_POST['S4'])
24 && isset($_POST['S5'])
25 && isset($_POST['S6'])
26 && isset($_POST['UP'])
27 && isset($_POST['A'])
28 && isset($_POST['B']))
29 {
30 // Obtain device ID
31 $device=saveMysql($_POST['tag']);
32 $sql = "SELECT tag, device_id FROM devices WHERE tag=\"$device\"";
33 $result=$conn->query($sql)->fetch_assoc();
34 $device_id=$result['device_id'];
35

36 if(empty($device_id)) // No device ID found
37 {
38 die(json_encode(['message' => 'Device not registered']));
39 }
40

41 // Post sensor data in DB

70 B. Communication

42 $sql = "INSERT INTO measurements (device_id, temp, rh, sensor_1, sensor_2, sensor_3, sensor_4,
43 sensor_5, sensor_6, time_up, algo_h, button, created_at) VALUES
44 ('".saveMysql($device_id)."',
45 '".saveMysql($_POST['T'])."',
46 '".saveMysql($_POST['H'])."',
47 '".saveMysql($_POST['S1'])."',
48 '".saveMysql($_POST['S2'])."',
49 '".saveMysql($_POST['S3'])."',
50 '".saveMysql($_POST['S4'])."',
51 '".saveMysql($_POST['S5'])."',
52 '".saveMysql($_POST['S6'])."',
53 '".saveMysql($_POST['UP'])."',
54 '".saveMysql($_POST['A'])."',
55 '".saveMysql($_POST['B'])."', '".date("Y-m-d H:i:s")."')";
56 $conn->query($sql);
57

58 // Update poop detected param of device
59 $sql = "SELECT algo, tag FROM devices WHERE tag=\"$device\"";
60 $result=$conn->query($sql)->fetch_assoc();
61 if(($_POST['A']=='0') && $result["algo"]=='1') // Poop is not detected anymore
62 {
63 // Set poop detected to negative
64 $sql = "UPDATE devices SET algo='0' WHERE tag=\"$device\"";
65 $conn->query($sql);
66 }
67 if($_POST['A']=='1'&& $result["algo"]=='0')
68 {
69 // Poop detected and need to activate webhook
70 $sql = "UPDATE devices SET algo='1' WHERE tag=\"$device\"";
71 $conn->query($sql);
72

73 // Retrieve descriptions of user
74 $sql = "SELECT devices.tag, devices.location, devices.description as place, location.phone,
75 location.description as user FROM devices INNER JOIN location
76 ON devices.location=location.location WHERE devices.tag=\"$device\"";
77 $result=$conn->query($sql)->fetch_assoc();
78

79 // Start sms and discordhook
80 sendWebHook($result["user"], $result["place"]);
81 smsWebHook($result["user"], $result["place"], $result["phone"]);
82 }
83

84

85 // returing algo para
86 $sql = "SELECT * FROM algo_settings ORDER BY ID desc limit 1";
87 $result = $conn->query($sql);
88

89 die(json_encode($result->fetch_assoc()));
90 }
91 else
92 {
93 die(json_encode(['message' => 'Not all required values are filled.']));
94 }
95

96 }
97

98 /*
99 * no valid endpoint

100 */

B. Communication 71

101 die(json_encode(['message' => 'Endpoint not valid.']));
102

103

104 ?>

1 <?php
2 // Init default timezone
3 date_default_timezone_set('Europe/Amsterdam');
4

5 /*
6 * connect with db
7 */
8

9 $host = "localhost";
10 $user = "USERNAME";
11 $pass = "PASSWORD";
12 $db = "DATABASE NAME";
13

14 $conn = mysqli_connect($host, $user, $pass, $db);
15

16

17 /*
18 * Function that prevents Cross-Site Scripting Attacks
19 */
20 function saveMysql($input)
21 {
22 return str_replace(array("\"", "'", "\\", "<", ">"), "", htmlentities($input, ENT_QUOTES));
23 }
24

25 ?>

1 <?php
2 /*
3 * Discord webhook
4 */
5 function sendWebHook($location, $device){
6 $curl = curl_init();
7 $user = "test";
8 curl_setopt_array($curl, array(
9 CURLOPT_URL => 'discord hook URL',

10 CURLOPT_RETURNTRANSFER => true,
11 CURLOPT_ENCODING => '',
12 CURLOPT_MAXREDIRS => 10,
13 CURLOPT_TIMEOUT => 0,
14 CURLOPT_FOLLOWLOCATION => true,
15 CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION_1_1,
16 CURLOPT_CUSTOMREQUEST => 'POST',
17 CURLOPT_POSTFIELDS =>'{
18 "content": "Poop detected at user '.$location .' on device '.$device .'"
19 }',
20 CURLOPT_HTTPHEADER => array(
21 'Content-Type: application/json',
22 'Cookie: __dcfduid=4e6464ce248649518d79002a510ed3a8'
23),
24));
25

26 $response = curl_exec($curl);

72 B. Communication

27

28 curl_close($curl);
29 }
30

31 ?>

1 <?php
2 /*
3 * SMS webhook
4 */
5 function smsWebHook($location, $device, $cellphone){
6 $curl = curl_init();
7

8 curl_setopt_array($curl, array(
9 CURLOPT_URL => 'sms hook url server',

10 CURLOPT_RETURNTRANSFER => true,
11 CURLOPT_ENCODING => '',
12 CURLOPT_MAXREDIRS => 10,
13 CURLOPT_TIMEOUT => 0,
14 CURLOPT_FOLLOWLOCATION => true,
15 CURLOPT_HTTP_VERSION => CURL_HTTP_VERSION_1_1,
16 CURLOPT_CUSTOMREQUEST => 'POST',
17 CURLOPT_POSTFIELDS => 'msg=Poop detected at user '.$location .' on device '.$device .'&no=%2B' . $cellphone,
18 CURLOPT_HTTPHEADER => array(
19 'Content-Type: application/x-www-form-urlencoded'
20),
21));
22

23 $response = curl_exec($curl);
24

25 curl_close($curl);
26

27 }
28 ?>

C
Over the Air Programming

webserver
firmware.php

1 <?php
2

3 include "connection.php";
4 include "discordhook.php"
5 include "smshook.php"
6 /*
7 * Obtain HTTP request
8 */
9 $_POST = json_decode(file_get_contents('php://input'), true);

10

11

12 /*
13 * Requesting new piece of OTA firmware data
14 */
15 if ($_SERVER['REQUEST_METHOD'] === 'POST') {
16 if(isset($_POST['offset']) && isset($_POST['length'])){
17 if (file_exists($file)) {
18 $totalsize = filesize($file);
19

20 $handle = fopen($file, 'r');
21 //$data = base64_encode (fread($handle, filesize($file)));
22 $data = bin2hex (fread($handle, filesize($file)));
23 fclose ($handle);
24

25

26 header('Content-Description: File Transfer');
27 header('Content-Type: application/octet-stream');
28 // header('Content-Disposition: attachment; filename="'.basename($file).'"');
29

30 echo '{'. substr($data, $_POST['offset'], $_POST['length']) . '}';
31

32 exit;
33 }
34 else{
35 die(json_encode(['message' => 'Update is not found.']));
36 }
37

38 }
39 else {
40 die(json_encode(['message' => 'Not all required values are filled.']));
41 }
42 }
43

44

45 /*
46 * Obtain version numbers
47 */

73

74 C. Over the Air Programming

48 if ($_SERVER['REQUEST_METHOD'] === 'GET') {
49 $arr = array('version' => '8',
50 'checksum' => 'a67a6a30a6bc5e8f86e797d7a095d96588c811de082462de1acb5d9d6bdb8043',
51 ' created_at' => 3);
52 echo json_encode($arr);
53 exit;
54 }
55

56 /*
57 * no valid endpoint
58 */
59 die(json_encode(['message' => 'Endpoint not valid.']));
60

61

62

63

64

65 ?>

parameters.php

1 <?php
2 include "connection.php";
3

4 /*
5 * Process OTA updates
6 */
7 if ($_SERVER['REQUEST_METHOD'] === 'GET') {
8 // return algo para
9 $sql = "SELECT * FROM algo_settings ORDER BY ID desc limit 1";

10 $result = $conn->query($sql);
11

12 die(json_encode($result->fetch_assoc()));
13 }
14

15

16 /*
17 * no valid endpoint
18 */
19 die(json_encode(['message' => 'Endpoint not valid.']));
20

21

22 ?>

wifi.php

1 <?php
2

3 include "connection.php";
4

5 /*
6 * Obtain HTTP request
7 */
8 $_POST = json_decode(file_get_contents('php://input'), true);
9

10 /*
11 * Check and obtain new wifi parameters

C. Over the Air Programming 75

12 */
13 if ($_SERVER['REQUEST_METHOD'] === 'POST') {
14

15 if(isset($_POST['tag'])
16 && isset($_POST['WIFI_checksum'])
17 && ($_POST['key']=='74621bb8-7e7c-4ba4-90a0-1c3a78935dd9'))
18 {
19 // Obtain version of esp from user agent field and update device table
20 $local_version = preg_replace('/[^0-9]/', '', $_SERVER['HTTP_USER_AGENT']);
21 $device=saveMysql($_POST['tag']);
22 $sql = "UPDATE devices SET version=$local_version WHERE tag=\"$device\"";
23 $conn->query($sql);
24

25 // Obtain location of the device and check if wificheckum is valid
26 $sql = "SELECT devices.tag, location.wifi_checksum, location.location,
27 location.wifi_type FROM devices INNER JOIN location
28 ON devices.location=location.location WHERE devices.tag=\"$device\"";
29 $result=$conn->query($sql)->fetch_assoc();
30 $location=$result["location"];
31 if($_POST['WIFI_checksum']==$result["wifi_checksum"]){
32 die(json_encode(['message' => 'WiFi OK']));
33 }
34 else { // WiFi not up to date
35 // Need to check wheter it is psk or enterprise
36 $sql = "SELECT location, ssid, pass, wifi_checksum FROM location WHERE location=\"$location\"";
37 $result=$conn->query($sql)->fetch_assoc();
38 die(json_encode($result));
39 }
40

41

42 }
43 else {
44 die(json_encode(['message' => 'Not all required values are filled.']));
45 }
46

47 }
48

49

50 /*
51 * no valid endpoint
52 */
53 die(json_encode(['message' => 'Endpoint not valid.']));
54

55

56 ?>

	Preface
	Introduction
	Specification
	Hardware
	Detection algorithm
	External influences
	Temperature and Humidity
	Warm-up time

	Detection
	Sensor Imperfection
	Algorithm
	Machine Learning

	Testing the algorithm

	Communication
	Sensor read-out
	Wi-Fi
	Protocol
	Generating the request
	Setting up the connection
	Processing the response

	Server side
	Database
	Webserver
	Dashboard

	Over The Air Programming
	Firmware Over The Air
	Partitions
	Checking for an update
	Downloading
	Reliability

	Parameter adjustments
	Wi-Fi Over The Air
	Algorithm Over The Air

	Conclusion
	Bibliography
	Algorithm
	C++ code
	Matlab Code
	Testing

	Communication
	Sensor read-out
	Wi-Fi connection
	Webserver
	Protocol

	Over the Air Programming

