MEMORANDUM M-599

HANDLEIDING VOOR HET GEbruik
VAN HET PROGRAMMA
SAPANO [2.1]

P.G. van Bladel

December 1988
SAMENVATTING

In kort bestek wordt het programma SAPANO uitgelegd. De verschillende randvoorwaarden en het optimaliseren worden behandeld. Een voorbeeldgeval wordt uitgebreid behandeld.
INHOUDSOPGAVE

<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMENVATTING</td>
<td>1</td>
</tr>
<tr>
<td>INHOUDSOPGAVE</td>
<td>ii</td>
</tr>
<tr>
<td>1. INLEIDING</td>
<td>1</td>
</tr>
<tr>
<td>2. ALGEMEEN</td>
<td>2</td>
</tr>
<tr>
<td>3. RANDVOORWAARDEN</td>
<td>4</td>
</tr>
<tr>
<td>4. OPTIMALISATIE</td>
<td>6</td>
</tr>
<tr>
<td>4.1. Samenstelling van de doelfunctie</td>
<td>6</td>
</tr>
<tr>
<td>4.2. De minimalisatieroutine</td>
<td>7</td>
</tr>
<tr>
<td>5. WERKING VAN SAPANO</td>
<td>8</td>
</tr>
<tr>
<td>LITERATUUR</td>
<td>19</td>
</tr>
<tr>
<td>FIGUREN</td>
<td>20</td>
</tr>
<tr>
<td>Appendix A. ENKELE VEELGEBRUIKTE TERMEN</td>
<td>27</td>
</tr>
<tr>
<td>Appendix B. ENKELE MATERIAALGEGEVENS</td>
<td>31</td>
</tr>
</tbody>
</table>
1. INLEIDING

Het programma SAPANO optimaliseert interactief vezelversterkte sandwichpanelen op een personal computer. De basis van het programma is een afstudeerwerk [1], waarin voornamelijk het knikprobleem onderzocht is. De programmaversie volgens het afstudeerverslag is ondertussen op een aantal punten aangepast. De informatie in deze handleiding geldt voor SAPANO 2.1.

Het programma is geschreven in Fortran77. De source code heeft een omvang van ongeveer 100 kB.

Voor een symmetrisch paneel met 5 lagen (4 lagen buitenkant, die 2 aan 2 gekoppeld zijn, en een lichtgewicht kern) zijn voor de optimalisatie typisch 500 iteraties nodig, wat gemiddeld ongeveer één minuut rekentijd vergt.

In de volgende hoofdstukken wordt eerst een algemene uiteenzetting gegeven, waarna meer in detail de randvoorwaarden en de optimalisatie bekeken worden. Als laatste wordt de programmaloop uitgelegd, aan de hand van een uitgewerkt voorbeeld. Door de opgenomen figuren van de ontwerpruimte met het verloop van de doelfunctie en de nevenvoorwaarden (zodat het resultaat van de optimalisatie op voorhand reeds zichtbaar is) kan de gebruiker experimenteren met het programma. Een appendix is gewijd aan orthotropie en symmetrie, een andere aan enkele materiaalgegevens.
2. ALGEMEEN

SAPANO analyseert en optimaliseert vlakke sandwichpanelen, in het programma beschouwd als een stapeling van lagen. Tot 20 lagen kunnen ingevoerd worden, die alle eigen karakteristieken kunnen hebben. Deze eigenschappen zijn de oriëntatie ten opzichte van de natuurlijke assen van het paneel, de dikte en het materiaal waaruit de laag is opgebouwd (zie fig. 1). De oriëntaties en de diktes zijn de variabelen voor de optimalisatie. Deze zijn discrete variabelen, die dus slechts een beperkt aantal waarden (met een vaste stapgrootte) kunnen aannemen. Dit lijkt een beperking, maar de verschillende lagen vezelversterkt materiaal ontstaan tijdens de fabricage door het stapelen van laagjes unidirectioneel of geweven band. De dikte van een laag kan dus slechts waarden aannemen die een veelvoud zijn van de dikte van de band (typisch 0.2 mm). Tevens kan deze band slechts met een beperkte nauwkeurigheid worden neergelegd (ongeveer 5°).

Voor een honingraat gelden de fysische beperkingen voor de dikte niet. In het programma echter wordt de honingraat als elke andere laag beschouwd, dus met een discrete dikte. In het algemeen voldoet voor de honingraat een laag dikte van 1 mm.

Voor de materiaalgegevens kan eventueel gekozen worden uit een aantal in het programma aanwezige materialen. Het is ook mogelijk zelf de materiaalgegevens van een specifiek materiaal in te voeren. Tot vijf verschillende materialen kunnen gebruikt worden in een paneel.

Tot 10 verschillende belastingsgevallen (combinaties van P_x, P_y en S positief bij trek) kunnen opgegeven worden. Randvoorwaarden die hiermee te maken hebben, zijn de spanningen in elke laag, de vezelrek in elke laag en lokale knik van het paneel.

In de context van dit programma wordt onder optimalisatie verstaan het bepalen van het paneel met de laagste massa dat nog steeds voldoet aan de randvoorwaarden. Dit vereist het herhaaldelijk analyseren van het paneel, waarbij de dikte en eventueel de oriëntatie van elke laag gewijzigd worden. De mogelijke randvoorwaarden zijn:

- maximale dikte van het paneel als geheel: optie
- minimale dikte van een laag: optie
- spanning in een laag: standaard
- rek in vezelrichting in een laag (i.v.m. impact): optie
lokale knik van het paneel dat aan alle randen opgelegd beschouwd wordt optie
orthotropie van het paneel als geheel optie

Ook kan het paneel symmetrisch beschouwd worden ten opzichte van het middenvlak, zie figuur 1.

Het programma is zo opgebouwd dat het ook een enkelvoudige analyse kan maken van een gegeven paneel.

Ten opzichte van SAPANO volgens [1] zijn in SAPANO 2.1 de volgende wijzigingen aangebracht:

- typografische correcties om het programma met verschillende compilers te kunnen vertalen;
- correctie van de kniklast voor niet orthotrope panelen wordt standaard uitgevoerd, terwijl de mogelijkheid orthotrope panelen te verkiezen met een extra boetesfunctie behouden blijft;
- de optie vezelrek is toegevoegd;
- de kniklast als gevolg van Py en S, en als gevolg van enkele combinaties van Px, Py en S, kan worden bepaald;
- de invoer is aangepast om sneller alternatieve configuraties te kunnen onderzoeken.
- de uitvoer is aangepast: bij keuze van de optie 'symmetrie' worden de diktes voor slechts het halve paneel getoond.

Alle figuren en de in- en uitvoer van hoofdstuk 5 gelden voor een symmetrisch sandwichpaneel met een unidirectionele CFRP buitenkant en een Nomex honingraat kern, de lengte is steeds 1200. mm, de breedte steeds 500. mm. De oriëntaties zijn niet variabel, zodat een optimalisatieprobleem met 2 variabelen ontstaat. Dit geval is zodanig in het programma opgenomen dat bij het opstarten automatisch de gegevens van dit geval op het scherm verschijnen (zie hoofdstuk 5).
3. RANDVOORWAARDEN

Als geometrische randvoorwaarden kunnen de diktes van de verschillende lagen een ondergrens krijgen en tevens kan de totale dikte van het paneel beperkt worden (zie fig. 2a). Beide zijn opties.

De eerste kan van belang zijn indien een beschermende buitenlaag aangebracht is. De optimalisatieroutine zal eventueel deze laag willen verwijderen, omdat hij niet op efficiënte wijze aan de sterkte en/of stijfheid van het paneel bijdraagt. Deze optie voorkomt dit.

De maximale totale dikte kan van belang zijn in verband met een beperkte inbouwruimte voor het paneel.

De spanningen in de lagen voor elk van de tot tien verschillende belastingsgevallen worden met behulp van de klassieke laminatentheorie berekend. Deze worden vervolgens getoetst met het Tsai-Hill criterium (zie fig. 2b).

Deze randvoorwaarde wordt standaard meegenomen in de optimalisatie.

De rek van een bepaald laagje in vezelrichting kan begrensd worden, in verband met de impactgevoeligheid van vezelversterkt materiaal. Als deze optie gekozen wordt, wordt de vezelrek (als afgeleid resultaat uit de laminatentheorie) vergeleken met een voor dat materiaal toelaatbare waarde (zie fig. 2b). Deze is overigens voor bijvoorbeeld honingraat en aluminium zo gekozen dat de optie voor deze materialen geen beperking met zich meebrengt.

Voor de optie 'knik' wordt het paneel aan alle randen opgelegd beschouwd. Voor elk belastingsgeval wordt voor een aantal combinaties van Px, Py en S gekeken of het paneel bezwijkt. Dit gebeurt door eerst de kniklast te bepalen voor Px, Py en S apart (zie fig. 2c, 2d en 2e) en deze vervolgens met behulp van de parabolische interactieformule [2] te combineren. Voor alle combinaties met Px en Py beide ongeveer nul is het echter niet mogelijk deze interactieformule te gebruiken. Het wordt aangegeven door het programma indien deze combinatie voorkomt in de opgegeven belastingsgevallen.

De optie orthotropie zorgt voor een voorkeur van de optimalisatie voor orthotrope panelen. Hoewel orthotropie in appendix A eenduidig gedefinieerd wordt, kan de gebruiker een specifieker eis stellen. Het is mogelijk in de stijfheidsmatrix de elementen A₁₁ en A₂₂ nul te prefereren, of de elementen D₁₁ en D₂₂, of alle vier. Merk op dat hiermee een aantal lokale minima in doelfunctie gecreëerd worden, zodat het niet zeker is dat de optimalisatie het werkelijke optimum vindt. Indien orthotropie een vereiste is, is het wellicht
beter bijvoorbeeld lagen te gebruiken met een vaste oriëntatie van 0°, +45° en 90°. Orthotropie is dan bij voorbaat gegarandeerd.
Het programma probeert dit te realiseren door een extra bijdrage in de doelfunctie te creëren, als functie van $A_{1\parallel}$ en $A_{2\parallel}$ en/of $D_{1\parallel}$ en $D_{2\parallel}$ (zie ook hoofdstuk 4).

Indien de optie 'SYMMETRIE' geselecteerd wordt, moet de gebruiker slechts gegevens van de lagen van de bovenste helft van het paneel invoeren. Aangezien de onderste helft van het paneel identiek aan de bovenste is, zou men anders twee maal dezelfde informatie (materiaalsoort, oriëntatie, dikte, minimale dikte) van de lagen invoeren.
De waarde van de eventueel op te geven maximaal toegestane totale dikte van het paneel ('THIMAX') staat los van de optie 'SYMMETRIE' en is steeds de werkelijke totale dikte.
Een gevolg van de werkwijze bij symmetrie enkel de helft van het paneel te beschouwen is dat, indien in een symmetrisch paneel de laag ter plaatse van het middenvlak een oneven aantal laagjes materiaal bevat, de gebruiker een decimaal getal moet invoeren voor het aantal laagjes. Nemen we als voorbeeld een symmetrische plaat met twee buitenkanten en een middenlaag. Als deze middenlaag in werkelijkheid 3 fysische laagjes dik is, zal de gebruiker 1.5 laagjes voor de middenlaag moeten invoeren.
4. OPTIMALISATIE

Eerst wordt de samenstelling van de doelfunctie uitgelegd, vervolgens wordt de gebruikte optimalisatieroutine belicht.

4.1. samenstelling van de doelfunctie

De opdracht voor de minimalisatie luidt: minimaliseer de massa van het paneel, waarbij de gestelde randvoorwaarden niet overtroffen worden. Mathematisch gesteld wordt dit:

\[
\begin{align*}
\text{minimaliseer} & \quad \text{MASS}(x_i) \quad i=1,n \\
\text{terwijl} & \quad g_j(x_i) \leq 0. \quad j=1,m \\
\text{evt. ook} & \quad h(x_i) = 0. \\
\end{align*}
\]

(n ontwerpvariabelen)
(m randvoorwaarden, bv. totale dikte beneden maximale waarde, spanning voldoende laag)
(orthotropie eis)

Dit probleem wordt vertaald in het minimaliseren van een doelfunctie OBJ, waarin deze eisen zijn verwerkt:

\[
\text{OBJ} = \text{MASS} + R^*\text{PENF1} + \text{OWF}^*\text{PENF2}
\]

Alle randvoorwaarden 'g_j(x_i)' zijn opgenomen in PENF1. Dit is een inwendige boetefunctie, d.w.z. dat de waarde van PENF1 positief blijft zolang g_j(x_i)<0 en naar oneindig gaat als we een randvoorwaarde naderen. De optimalisatieroutine wordt zo van de grens van de ontwerpruimte verwijderd. Om uiteindelijk toch optima dichtbij of op de rand van de ontwerpruimte te kunnen bereiken, wordt telkens als een optimum gevonden is, de waarde van R verkleind en weer verder gerekend. Dit proces wordt in de literatuur 'sequential unconstrained minimization' genoemd omdat het gegeven probleem met randvoorwaarden vertaald wordt in een reeks minimalisatieproblemen zonder randvoorwaarden.

Aan het einde wordt eenmaal de optimalisatieroutine uitgevoerd met R=0. Om te voorkomen dat dan de randvoorwaarden overschreden worden, is een toets ingebouwd die dit controleert.

PENF2 is een stijgende functie van A_1, A_2, D_1 en D_2, een zogenaamde uitwendige boetefunctie die de voorwaarde 'h(x_i)' weergeeft. Bij keuze voor de optie 'voorkeur voor orthotropie' wordt OWF ('orthotropy weight factor' - deze bepaalt het relatieve gewicht van het gebrek aan orthotropie) ongelijk nul.
4.2. De minimalisatieroutine

Het minimum van 'OBJ' wordt voor elke waarde van de parameter 'R' opgezocht met de Hooke & Jeeves' routine [3], een zogenaamde 0e orde methode (d.w.z. dat deze enkel gebruikt maakt van de functiewaarde van 'OBJ' en niet van de afgeleiden).

Eenvoudig gesteld wijzigt de methode uitgaande van een beginpunt, dat als referentie bewaard wordt, telkens 1 van de variabelen en controleert dan of het ontwerp beter wordt, d.w.z. de waarde van de doelfunctie OBJ kleiner wordt. Als eenmaal alle variabelen aangepast zijn (en het nieuw gevonden punt ongelijk is aan het referentiepunt), wordt het verschil tussen het nieuwe punt en het referentiepunt opgeteld bij het nieuwe punt. Na controle of dit punt beter is dan het vorige gevonden punt, worden weer een voor een alle variabelen bekeken.

Deze methode werkt met een bepaalde stapgrootte om elke variabele te wijzigen. Ze is dus uitermate geschikt om problemen met vezelversterkte materialen te behandelen (zie hoofdstuk 2).

Er schuilt echter ook een groot nadeel in het feit dat slechts een eindige stapgrootte gebruikt wordt. Nabij een randvoorwaarde (in de laatste minimalisatie, met R=0.) is het mogelijk dat de HJ procedure geen mogelijkheid tot verbetering van het ontwerp meer ziet, terwijl het optimum nog niet gevonden is, zie fig.3.

Omdat vaak het optimale ontwerp op een of meer randvoorwaarden ligt, is het goed achteraf met de hand te controleren of een iets ander ontwerp niet nabij meer randvoorwaarden kan liggen en nog lichter zijn.

Fig.4 toont het verloop van het optimale paneel naarmate R afneemt, bij verschillende parameters en beginsituaties. In deze figuur geeft het eerste gemaakte punt van een lijn het beginpaneel weer en elk verder gemaakte punt het (voorlopige) optimum bij de verschillende waarden van 'R' (bijv. in fig.4a is het optimum voor R=1: nf=35,nc=39.5 -zie ook hoofdstuk 5).

Merk op dat bij standaard boetefunctieverloop de optimalisatie zich eerst op ruime afstand van de nevenvoorwaarden wil houden, om daarna vandaaruit te proberen het optimum te bereiken. Als men een beginpunt nabij een nevenvoorwaarde opgeeft, is het daarom beter niet de standaard boetefunctieparameterwaarden te nemen, maar een kleinere beginwaarde voor 'R' op te geven (zie hoofdstuk 5).
5. WERKING VAN SAPANO

SAPANO is opgezet als interactief programma, d.w.z. dat de gebruiker in een soort gesprek met de computer het probleem invoert, een oplossing terugkrijgt, wijzigingen aanbrengt, enz. Het globale stroomschema is opgenomen in fig.5. Om op eenvoudige wijze aanpassingen in de invoer te kunnen aanbrengen, zijn de vaste parameters (wat niet verandert tijdens de optimalisatie) in 4 blokken opgesplitst (de verzameling randvoorwaarden, materiaalkleuze, aantal en grootte van de belastingen en afmetingen) die apart gewijzigd worden (zie fig.5b). Daarna kan een paneel ingevoerd worden en een analyse, eventueel gevolgd door een optimalisatie, verricht worden (zie fig.5c).

Een volledige run is hieronder weergegeven, voor een symmetrisch sandwichpaneel met twee verschillende lagen: buitenkanten ('faces') van unidirectioneel CFRP materiaal en een kern van NOMEX honingraat. De lengte bedraagt 1200. mm en de breedte is 500. mm, er is één belastingsgeval met 5000.N/mm druk in lengterichting. Achtereenvolgens wordt het optimum bepaald bij verschillende randvoorwaarden. De oriëntaties worden steeds vastgehouden op 0°.

Bij het opstarten verschijnen de parameters van een automatisch ingelezen paneel (gelijkwaardig aan het paneel als hierboven, echter met andere belasting en andere opties):

SSSS	AA	PPP	AA	NN	N	OO			
S	A	A	P	A	A	NN	N	O	O
SSS	AAAA	PPP	AAAA	N	NN	N	O	O	
S	A	A	P	A	A	NN	N	O	O
SSSS	A	A	P	A	A	NN	N	O	O

SAndwich Panel AANalysis and Optimisation

ENTER GENERAL DATA + OPTIONS
ENTER A PANEL CONFIGURATION
IF NO VIOLATION OCCURS, OPTIMISATION IS AN OPTION
PARAMETERS

<table>
<thead>
<tr>
<th>BUCKLING</th>
<th>ORTHOTRO</th>
<th>STRAIN</th>
<th>SYMMETRY</th>
<th>MAX.THI.</th>
<th>MIN.THI.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1.00</td>
<td>0</td>
</tr>
</tbody>
</table>

LAYER
1 2
MATERIAL
1 2

PX PY S

CASE 1
-10.00 0.00 0.00

LENGTH= 1200.00 WIDTH= 500.00

INPUT OK
(1: 0)
0

(wat de gebruiker intikt, staat vet gedrukt)
De parameters zijn niet correct: de belasting in 'CASE 1' moet aangepast worden en voorlopig willen we knik nog niet als randvoorwaarde meenenemen (de '1' onder 'BUCKLING' geeft aan dat deze randvoorwaarde wel meegenomen is).
Daarom wordt op de vraag 'INPUT OK (1: 0)' met '0' geantwoord (indien tussen haken '1:0' vermeld is, staat de '1' voor 'YES' en '0' voor 'NO'; indien er staat 'N:0' met N een geheel getal groter dan nul, dan kan ieder geheel getal van 0 tot en met N opgegeven worden).
De invoer wordt aangepast:

CORRECTION OF PARAMETERS

(1 - options/2 - materials/3 - loads/4 - dimensions)

3

INPUT THE NUMBER OF LOADCASES
(1:10)
1

INPUT OF THE LOADCASES
LOADCASE 1
INPUT THE X-LOAD IN N PER MM WIDTH :
-5000
INPUT THE Y-LOAD IN N PER MM WIDTH :
0
INPUT THE SHEARLOAD IN N PER MM WIDTH :
0

PARAMETERS---
BUCKLING ORTHOTRO STRAIN SYMMETRY MAX.THI. MIN.THI.
1 0 0 1 -1.00 0

LAYER 1 2
MATERIAL 1 2

PX PY S

CASE 1 -5000.00 0.00 0.00

LENGTH= 1200.00 WIDTH= 500.00

INPUT OK
(1: 0)
0

Na wijziging van het blok 'loads' wordt weer een overzicht van de parameters gegeven. De invoer is nog niet in orde, nu worden de opties aangepast (de knikoptie wordt uitgeschakeld):

CORRECTION OF PARAMETERS---------------------------------
(1 - options/2 - materials/3 - loads/4 - dimensions)
1

INPUT THE NUMBER OF LAYERS
(FOR A SYMMETRIC LAY-UP ONLY "HALF" OF THEM)
(1:20)
2

ARE YOU THINKING OF A SYMMETRIC LAY-UP
(1: 0)
1

DO YOU WANT A FIBRE STRAIN CONSTRAINT
(1: 0)
0
DO YOU WANT A BUCKLING CALCULATION
(1: 0)
0

DO YOU WANT TO PREFER ORTHOTROPIC PANELS WITH AN EXTRA PENALTY FUNCTION
(1: 0)
0

DO YOU WANT TO SPECIFY A MAXIMUM OVERALL THICKNESS
(1: 0)
0

DO YOU WANT TO SPECIFY MINIMAL THICKNESSES FOR SOME LAYERS
(1: 0)
0

PARAMETERS---

<table>
<thead>
<tr>
<th>BUCKLING</th>
<th>ORTHOTRO</th>
<th>STRAIN</th>
<th>SYMMETRY</th>
<th>MAX.THI.</th>
<th>MIN.THI.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1.00</td>
<td>0</td>
</tr>
</tbody>
</table>

LAYER
1 2

MATERIAL
1 2

PX PY S

CASE 1 -5000.00 0.00 0.00

LENGTH= 1200.00 WIDTH= 500.00

INPUT OK
(1: 0)
1

Nu voldoen de parameters. Het is mogelijk op soortgelijke wijze de materialen (aantal, keuze en verdeling over het aantal lagen) en de dimensies (van belang bij de knikberekening) aan te passen. Voorzichtigheid is geboden bij deze aanpassing, want er kunnen onmogelijke combinaties gegenereerd worden: als bijvoorbeeld het aantal lagen verhoogd wordt, mag men niet vergeten in het blok voor de materialen een materiaal toe te kennen aan deze laag.
Na het invoeren van de parameters kan een beginpaneel ingevoerd worden:

INITIAL DESIGN

! ENTER ONLY HALF OF THE PANEL, !
! UP TO THE CENTER LINE !

THE INPUT OF THE FIBRE-ORIENTATIONS

INPUT THE INITIAL FIBRE-ORIENTATION OF PLY- 1

0
INPUT THE INITIAL NUMBER OF LAYERS FOR PLY- 1

50

INPUT THE INITIAL FIBRE-ORIENTATION OF PLY- 2

0
INPUT THE INITIAL NUMBER OF LAYERS FOR PLY- 2

20

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 50.0
2 2 0.00 20.0

IS THIS LAY-UP ALL RIGHT
(1/0)
1

DO YOU WANT TO OPTIMISE THIS PANEL
(1/0)
1

Als de optie 'SYMMEDE' actief is, heeft de gebruiker enkel de informatie op
te geven tot aan het middenvlak van het paneel. Alle uitvoer (zoals
laagdikte) geldt ook slechts voor de helft van het paneel.
Na een controlemogelijkheid voor de gebruiker ('IS THIS LAY-UP ALL RIGHT')
wordt dit paneel geanalyseerd. Indien het alle randvoorwaarden voldoet, kan
een optimalisatie uitgevoerd worden met dit paneel als beginpaneel. Als geen
optimalisatie gewenst is (enkel analyse) of als het paneel niet aan alle
gestelde randvoorwaarden voldoet, worden de resultaten van de analyse gegeven.

In dit geval gaan we echter verder met de optimalisatie:

OPTIMISATION---

ENTER THE INITIAL VALUE OF THE ANGLESTEP IN Hooke&Jeeves:

0
DO YOU WANT A STANDARD PENALTY FUNCTION
(1: 0)
1

Eerst worden de stapgrootten voor de optimalisatie bepaald. De stapgrootte in de dikte van de lagen is met de materiaalgegevens bekend, de stapgrootte in de oriëntaties ('ANGLESTEP') dient hier ingevoerd te worden. Er wordt '0.' ingevoerd (vaste oriëntatie van de lagen) -merk op dat deze vaste oriëntatie niet 0° hoeft te zijn; we zouden bij 'INITIAL DESIGN' evenzogoed een andere oriëntatie kunnen invoeren.

Voor een eerste optimalisatie voldoet zonder meer de standaard boetefunctie. Als men echter later een beginpunt nabij een randvoorwaarde wil kiezen, is het nodig een kleinere beginwaarde voor R op te geven om te voorkomen dat de optimalisatie eerst van deze grens wegloopt (door de hoge begin-R zal de optimalisatieroutine panelen ver van de randvoorwaarden verkiezen).

De optimalisatie begint:

STARTING POINT

Rbegin= 1.0000 Rend= 0.0010 DIV= 10.000 OWF= 0.0000
STEP IN ORIENTATIONS= 0.0000

PLY MAT ORIENT(DGRS) # OF LAYERS

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0.00</th>
<th>50.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>0.00</td>
<td>20.0</td>
</tr>
</tbody>
</table>

R= 1.0000
ITERATIONS= 61 MASS= 2.6192

PLY MAT ORIENT(DGRS) # OF LAYERS

| 1 | 1 | 0.00 | 35.0 |
2 2 0.00 39.5

R= 0.1000
ITERATIONS= 145 MASS= 0.9520

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 13.0
2 2 0.00 12.5

R= 0.0100
ITERATIONS= 181 MASS= 0.6784

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 10.0
2 2 0.00 4.0

R= 0.0010
ITERATIONS= 201 MASS= 0.6496

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 10.0
2 2 0.00 1.0

R= 0.0000
ITERATIONS= 211 MASS= 0.6400

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 10.0
2 2 0.00 0.0

Voor elke waarde van R wordt het optimum bepaald. Dit wordt weergegeven, samen met de massa van dit optimale paneel en het aantal analyses tot nu toe.
END OF PROGRAM

<table>
<thead>
<tr>
<th>PLY</th>
<th>MAT</th>
<th>ORIENTATIONS(DG S)</th>
<th>THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.000</td>
<td>10.00 * 0.2000 mm</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.000</td>
<td>0.00 * 1.0000 mm</td>
</tr>
</tbody>
</table>

THE PLATE MASS EQUALS 0.64 g/cm²

THE CRITICAL STRESSES OCCUR AT LOADCASE 1

IN PLY 1

THE STRESSES ARE:

SIGX = -1250.00 MPa
SIGY = 0.00 MPa
SIGXY = 0.00 MPa

DO YOU WANT MORE OUTPUT

(1/0)

0

ENTER A NUMBER: 0 to STOP
1 to CHANGE PARAMETERS
2 to CHANGE THE DESIGN

Na afloop wordt een beperkte uitvoer van de analyse van het optimale paneel gegeven. Indien gewenst kan meer uitvoer gekregen worden (zie lager).

Op dit moment zijn er een aantal mogelijkheden: stop het programma (kies '0'), wijzig de parameters (kies '1') of analyseer/optimaliseer een ander paneel met dezelfde parameters (kies '2'). Optie '2' is met name bedoeld om een reeks panelen te analyseren bij dezelfde set voorwaarden, of om een ander beginpunt voor de optimalisatie te kiezen.

In de uitvoer hieronder wordt geoptymaliseerd voor andere set randvoorwaarden (ook knik is actief) en er worden afwijkende optimalisatieparameters gebruikt omdat het beginpaneel dicht bij de knikgrens ligt (zie fig. 4c).
OPTIMISATION

ENTER THE INITIAL VALUE OF THE ANGLESTEP IN Hooke&Jeeves:
0

DO YOU WANT A STANDARD PENALTY FUNCTION
(1: 0)
0

STANDARD VALUES WERE:
Rbegin = 1.0000 Rend = 0.0010 DIV = 10.000 OWF = 0.0000

INPUT THE INITIAL STEERING PARAMETER FOR THE PENALTY-FUNCTION R:
.01

INPUT THE MINIMUM STEERING PARAMETER RMIN:
.001

INPUT THE FACTOR TO DIVIDE R BY AFTER A LOOP:
10

STARTING POINT

Rbegin = 0.0100 Rend = 0.0010 DIV = 10.000 OWF = 0.0000
STEP IN ORIENTATIONS = 0.0000

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 75.0
2 2 0.00 0.0

R = 0.0100
ITERATIONS = 37 MASS = 3.7648

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 58.0
2 2 0.00 5.5

R = 0.0010
ITERATIONS = 52 MASS = 3.6416

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 56.0
2 2 0.00 6.0
R= 0.0000
ITERATIONS= 63 MASS= 3.6320

PLY MAT ORIENT(DGRS) # OF LAYERS
1 1 0.00 56.0
2 2 0.00 5.0

END OF PROGRAM--

PLY MAT ORIENTATIONS(DGRS) THICKNESS
1 1 0.000 56.00 * 0.2000 mm
2 2 0.000 5.00 * 1.0000 mm

Hieronder wordt het eindresultaat gegeven als ook de totale dikte van het paneel beperkt is tot 80.00 mm. Door om extra uitvoer te vragen, worden de opties, materiaalgegevens en stijfheidsgetallen van het paneel gegeven:

END OF PROGRAM--

PLY MAT ORIENTATIONS(DGRS) THICKNESS
1 1 0.000 35.00 * 0.2000 mm
2 2 0.000 32.00 * 1.0000 mm

...

DO YOU WANT MORE OUTPUT
(1/0)
1

BUCKLING ORTHOTRO SYMMETRY MAX.THI. MIN.THI.
1 0 1 80.00 0

THE MATERIAL PROPERTIES ARE:

<table>
<thead>
<tr>
<th>MAT</th>
<th>Q11</th>
<th>Q12</th>
<th>Q22</th>
<th>Q33</th>
<th>TS</th>
<th>GXZ</th>
<th>GYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>145813.7</td>
<td>2393.4</td>
<td>7039.3</td>
<td>3500.0</td>
<td>0.2000</td>
<td>3500.0</td>
<td>1500.0</td>
</tr>
<tr>
<td>2</td>
<td>6.7</td>
<td>3.3</td>
<td>6.7</td>
<td>1.7</td>
<td>1.0000</td>
<td>53.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAT</th>
<th>TENSX</th>
<th>COMFX</th>
<th>TENSY</th>
<th>COMPY</th>
<th>SHEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1750.0</td>
<td>-1350.0</td>
<td>63.0</td>
<td>-210.0</td>
<td>80.0000</td>
</tr>
<tr>
<td>2'</td>
<td>10.0</td>
<td>-10.0</td>
<td>10.0</td>
<td>-10.0</td>
<td>10.0000</td>
</tr>
</tbody>
</table>
THE a_{ij} MATRIX OF THE LAMINATE BECOMES IN N/mm:

$\begin{array}{ccc}
2041819.04 & 33720.33 & 0.00 \\
33720.33 & 98976.64 & 0.00 \\
0.00 & 0.00 & 49106.69 \\
\end{array}$

THE b_{ij} MATRIX OF THE LAMINATE BECOMES IN N:

$\begin{array}{ccc}
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 \\
\end{array}$

THE d_{ij} MATRIX OF THE LAMINATE BECOMES IN N/mm:

$\begin{array}{ccc}
************* & 42436824.82 & 0.00 \\
42436824.82 & 124745656.27 & 0.00 \\
0.00 & 0.00 & 61988749.50 \\
\end{array}$

THE D^{*} MATRIX OF THE LAMINATE BECOMES IN N/mm:

$\begin{array}{ccc}
************* & 42436824.82 & 0.00 \\
42436824.82 & 124745656.27 & 0.00 \\
0.00 & 0.00 & 61988749.50 \\
\end{array}$

THE TRANSVERSE SHEAR STIFFNESSES BECOME IN N/mm:

IN THE XZ-PLANE : $0.5022e+04$

IN THE YZ-PLANE : $0.2745e+04$

ENTER A NUMBER : 0 to STOP
 1 to CHANGE PARAMETERS
 2 to CHANGE THE DESIGN

0

(einde programma)
LITERATUUR

1. van Bladel, P.G.
 Een programma voor optimisatie van vezelversterkte
 sandwichpanelen, SAPANO
 afstudeerverslag
 T.U. Delft, juni 1987

2. van Bladel, P.G.
 Review and development of a formula for the buckling of orthotropic,
 simply supported panels under shear load
 Report LR-571
 T.U. Delft, Nov 1988

3. Hooke, R. and Jeeves T.A.
 Direct search solution of numerical and statistical problems
 Vol. 8 pp. 212-229, 1961
Fig. 1. Enkele sandwichpanelen in doorsnede

![Diagram of sandwich panels](image)

a. verloop van de massa (m) en de totale dikte van het paneel (TL) als functie van nf en nc

Fig. 2. Het verloop van de verschillende randvoorwaarden voor een symmetrisch paneel met 2 lagen (nf= aantal laagjes materiaal in de face, nc= aantal laagjes materiaal in de kern).
b. toelaatbare drukkracht in X-richting (P_x) als functie van nf en nc in verband met toelaatbare spanning en vezelrek

c. verloop van de toelaatbare drukkracht in X-richting (trigr) als functie van nf en nc in verband met knik van het paneel

Fig. 2. vervolg
d. als 2c, voor drukkracht in Y-richting

e. als 2c, voor afschuifbelasting

Fig. 2. vervolg
Fig. 3. De optimalisatieroutine vindt niet altijd het optimum
a. symmetrisch paneel zonder verdere opties aktief

b. als 4a, met extra de optie vezelrek

Fig. 4. De ontwerpruimte en het verloop van de optimalisatie bij verschillende opties en beginsituaties
c. als 4b, met extra de optie knik

d. als 4c, met extra de optie totale dikte niet groter dan 80 mm

Fig. 4. vervolg
Fig. 5. globaal stroomschema van het programma SAPANO
Appendix A. ENKELE VEELGEBRUIKTE TERМEN

Telkens als constructies van vezelversterkte materialen behandeld worden, komen termen als "symmetrisch", "orthotropie", "balanced" (uitgewogen) ter sprake. Ten bate van de eenduidigheid in de naamgeving en het begrip van constructies in vezelversterkte constructies worden deze op een rijtje gezet.

Deze drie eigenschappen hebben elk tot gevolg dat er een aantal nullen verschijnen in de ABD-matrix. Deze matrix wordt gedefinieerd als volgt:

\[
\begin{bmatrix}
P_x & A_{11} & A_{12} & A_{13} & B_{11} & B_{12} & B_{13} & \cdots \\
A_{12} & A_{22} & B_{22} & B_{23} & \cdots \\
A_{13} & B_{23} & A_{33} & B_{33} & \cdots \\
B_{11} & B_{21} & B_{31} & D_{11} & D_{12} & D_{13} & \cdots \\
B_{12} & B_{22} & B_{32} & D_{22} & D_{23} & \cdots \\
B_{13} & B_{23} & B_{33} & D_{33} & \cdots \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
x \\
y \\
x y \\
\gamma_{xy} \\
x y \\
\rho_{xy} \\
\end{bmatrix}
\]

Dit is de tweedimensionale belasting-rek relatie. De matrix is symmetrisch ten opzichte van de hoofddiagonaal en de A-, B- en D-matrices zijn dat elk ten opzichte van hun eigen hoofddiagonaal ook.

De behandeling van de verschillende begrippen gebeurt hier aan de hand van het aannemen van verschillende symmetrievlakken in de constructie.

A.1. Een symmetrisch laminaat

Een symmetrisch laminaat heeft per definitie aan weerszijden van het midden van het paneel lagen met dezelfde eigenschappen. Het symmetrievlak ligt in het middenvlak van het paneel, zie fig.A.1.

In de ABD-matrix wordt dan de hele B-matrix gelijk nul. Immers, een belasting in het vlak van het paneel, die dus symmetrisch is ten opzichte van het middenvlak, kan in een constructie die ook symmetrisch is ten opzichte van dit middenvlak nooit samengaan met vervormingen die niet symmetrisch zijn ten opzichte van dit midden-vlak.

De belasting-rek relatie wordt dan:
\[
\begin{bmatrix}
A_{11} & A_{12} & A_{13} & 0 & 0 & 0 \\
A_{21} & A_{22} & A_{23} & 0 & 0 & 0 \\
A_{31} & A_{32} & A_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & D_{11} & D_{12} & D_{13} \\
0 & 0 & 0 & D_{21} & D_{22} & D_{23} \\
0 & 0 & 0 & D_{31} & D_{32} & D_{33}
\end{bmatrix}
\begin{bmatrix}
ex \\
ey \\
tax \\
px \\
py \\
pxy
\end{bmatrix}
\]

A.2 Een orthotroop laminaat

Jones [1] stelt: "Een orthotroop laminaat heeft drie onderling loodrechte vlakken van symmetrie voor de materiaaleigenschappen."

Verder wordt dan het onderscheid gemaakt tussen:

- "generally orthotropic" : deze hoofdrichtingen liggen niet evenwijdig aan de symmetrieassen van de constructie.
- "specially orthotropic" : deze hoofdrichtingen liggen wel evenwijdig aan de symmetrieassen van de constructie.

Omdat in dit onderzoek de kniklast wordt berekend met methodes die "specially orthotropic" panelen veronderstellen, wordt telkens als er gesproken wordt over orthotropisch, "specially orthotropic" volgens bovenstaande definitie bedoeld.

Fig. A.1 maakt duidelijk welke elementen van de ABD-matrix in dit geval gelijk nul worden. De belasting-rek relatie wordt dan:

\[
\begin{bmatrix}
P_x \\
P_y \\
P_{xy} \\
M_x \\
M_y \\
M_{xy}
\end{bmatrix}
= \begin{bmatrix}
A_{11} & A_{12} & B_{11} & B_{12} & 0 \\
A_{21} & A_{22} & B_{22} & 0 & 0 \\
A_{31} & A_{32} & B_{32} & 0 & 0 \\
B_{11} & B_{12} & D_{11} & D_{12} & 0 \\
B_{21} & B_{22} & D_{22} & 0 & 0 \\
B_{31} & B_{32} & D_{32} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
ex \\
ey \\
tax \\
px \\
py \\
pxy
\end{bmatrix}
\]
A.3 Een "balanced" laminaat

Een "balanced" (uitgewogen) laminaat heeft per definitie evenveel lagen met oriëntatie $+\alpha$ als met oriëntatie $-\alpha$ ten opzichte van de lichaamsassen. In de ABD-matrix worden daardoor de elementen A_{14} en A_{44} gelijk nul. Er is dus geen koppeling tussen normaalbelasting en afschuifvervorming en vice versa.

Merk op dat "balanced" slechts betrekking heeft op het gedrag in het vlak van het paneel, terwijl orthotropisch op alle belastingen en alle vervormingen slaat.

A.4 Literatuur

1. Jones, R.M.
 Mechanics of composite materials
 Mc Graw Hill 1975
Fig. A.1. Symmetrievlakken in de constructie geven aan welke belastingen en vervormingen samen kunnen voorkomen.
Appendix B. ENKELE MATERIAALGEDELEN

Deze appendix bevat materiaalgegevens gegroepeerd in een tabel. Daarna worden enkele getallen verklaard. Enkele referenties onderaan geven bruikbare bronnen aan voor verdere gegevens.

Tabel 1. Gegevens van enkele materialen

<table>
<thead>
<tr>
<th></th>
<th>koolstof</th>
<th>aramide</th>
<th>koolstof</th>
<th>aramide</th>
<th>honingraat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UD</td>
<td>UD</td>
<td>±45°</td>
<td>±45°</td>
<td>Al</td>
</tr>
<tr>
<td>E_x</td>
<td>MPa</td>
<td>145000.</td>
<td>75000.</td>
<td>12849.</td>
<td>6500.</td>
</tr>
<tr>
<td>E_y</td>
<td>MPa</td>
<td>7000.</td>
<td>10000.</td>
<td>12849.</td>
<td>6500.</td>
</tr>
<tr>
<td>v_{xy}</td>
<td>.34</td>
<td>.34</td>
<td>.837</td>
<td>.823</td>
<td>.33</td>
</tr>
<tr>
<td>G_{xy}</td>
<td>MPa</td>
<td>3500.</td>
<td>2100.</td>
<td>37016.</td>
<td>20960.</td>
</tr>
<tr>
<td>G_{xz}</td>
<td>MPa</td>
<td>3500.</td>
<td>2100.</td>
<td>2500.</td>
<td>2500.</td>
</tr>
<tr>
<td>G_{yz}</td>
<td>MPa</td>
<td>1500.</td>
<td>1500.</td>
<td>2500.</td>
<td>2500.</td>
</tr>
<tr>
<td>$\sigma_{\text{all}}^{\text{trek}}$</td>
<td>MPa</td>
<td>1750.</td>
<td>1380.</td>
<td>157.</td>
<td>97.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau_{\text{all}}^{\text{trek}}$</td>
<td>MPa</td>
<td>63.</td>
<td>30.</td>
<td>157.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau_{\text{all}}^{\text{druk}}$</td>
<td>MPa</td>
<td>-210.</td>
<td>-140.</td>
<td>-158.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>kg/m³</td>
<td>1600.</td>
<td>1380.</td>
<td>1600.</td>
<td>1380.</td>
</tr>
<tr>
<td>t_s</td>
<td>mm</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
<td>.2</td>
</tr>
</tbody>
</table>

'x' betekent in vezelrichting, of bij honingraat een richting evenwijdig aan de zijden van de zeshoekige cellen en loodrecht op deze cellen;
'y' betekent loodrecht op 'x' en in het vlak van de laag;
'z' betekent loodrecht op 'x' en loodrecht op het vlak van de laag.
De afschuwstijfheten van de materialen van tabel 1 in XZ- en YZ-richting zijn eerder logisch afgeleid dan in de literatuur gevonden. De onderstaande redenering poogt deze logica te verklaren. Bekijk doorsneden van het materiaal, evenwijdig aan de vlakken waarin de coördinaatassen liggen. Fig. 3.1. geeft dit aan zowel voor UD-materiaal als voor $+45^\circ$-materiaal.

In de doorsnede van een UD-laag evenwijdig aan het XZ-vlak liggen de vezels op dezelfde wijze als in de doorsnede evenwijdig aan het XY-vlak (als de hechting tussen de verschillende laagjes ideaal is). De afschuifmodule zal dan ook dezelfde zijn voor beide doorsneden. De afschuifmodule in het XY-vlak is bekend, deze is G_{xy}.

Voor de afschuifmodule in het YZ-vlak moeten we een aanname doen. Conservatief kunnen we stellen dat deze afschuifmodule gelijk zal zijn aan die van de hars. Dit is conservatief, omdat in de doorsnede ook vezels zitten die een hogere afschuifmodule hebben.

Voor UD-materiaal gaan we dus uit van:

$$G_{xz} = G_{xy}$$
$$G_{yz} = 1.5 \text{ GPa} \quad \text{(afhankelijk van de matrix)}$$

Deze redenering zal voor een $+45^\circ$-materiaal G_{xz} en G_{yz} gelijk aan elkaar maken. De waarde moet dan overigens liggen tussen de G_{xz} en de G_{yz} van het UD-materiaal (hier is het gemiddelde genomen).

Voor de toelaatbare vezelrek gebruiken we 0.04 zowel voor trek als voor druk (negatief bij druk). Dit getal geldt, volgens [A.5], voor UD koolstof voor de slechtste omgevingsconditie, in trek voor het materiaal met 3/16in gat, op druk bij aanwezige niet detecteerbare schade.

Bij gebrek aan informatie is deze waarde overgenomen bij aramide.

Merk op dat bij Al en honingraat de waarde 10³ is opgenomen opdat bij gebruik van deze materialen de nevenvoorwaarde rek nooit maatgevend wordt.

Voor $+45^\circ$-materialen is geen waarde opgenomen omdat de procedure die de actuele vezelrek berekent enkel kijkt naar de normaalrek in de laag. Bij deze materialen speelt echter ook afschuifvervorming een rol bij de vezelrek.
Opmerkingen over de materiaalgegevens:

ad aramide UD: gegevens voornamelijk afkomstig van Du Pont [A.3].

ad koolstof UD: gegevens overgenomen van Koelman [A.2].

ad aramide +/-45°: gegevens overgenomen van Du Pont [A.3], behalve vxy: deze is afgeleid uit de stijfheidsmatrix van een 2-lagig laminaat met een +45° en een -45°-laag.

ad koolstof +/-45°: gegevens volledig afgeleid uit de stijfheden en sterkte van een tweelagig laminaat met een +45° en een -45° laag. Deze UD-lagen hebben de eigenschappen van tabel 1.

ad Aluminium: gegevens voor 2024-T351 gerold plaatmateriaal met een dikte tot 4. mm ('bare', niet 'clad'), Fokker code 3.201. De sterktegetallen zijn de breuksterktes.

ad honingraat: deze getallen komen voornamelijk uit Lubin [A.4].
Literatuur

A.1. PG van Bladel
Een programma voor optimalisatie van vezelversterkte sandwich-panelen,
SAPANO
afstudeerverslag juli 1987

A.2. HJWM. Koelman
Optimalisatie van een laminaat in discrete lagen
TX-verslag dec.85

A.3. Du Pont
Kevlar 49 aramid
data on Kevlar 1977

A.4. GJ. Lubin
Handbook of composites
Van Nostrand Reinhold 1982

A.5. JG Ekvall, CF. Griffin
Design allowables for T300/5208 graphite-epoxy composite materials
AIAA paper 81-0541

Verder heeft ook het volgende werk een aantal gegevens:

JR. Vinson, RL. Sierakovsky
The behavior of structures composed of composite materials
Martinus Nijhoff Publishers 1986
Fig. B.1. Doorsneden in een laagje, i.v.m. afschuifstijfheid.