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Determining Optimal Conflict Avoidance Manoeuvres

At High Densities With Reinforcement Learning

Marta Ribeiro, Joost Ellerbroek and Jacco Hoekstra
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology, The Netherlands

Abstract—The use of drones for applications such as package
delivery, in an urban setting, would result in traffic densities that
are orders of magnitude higher than any observed in manned
aviation. Current geometric resolution models have proven to be
very efficient at relatively moderate densities. However, at higher
densities, performance is hindered by the unpredictable emergent
behaviour from neighbouring aircraft. In this paper, we use a
hybrid solution between existing geometric resolution approaches
and reinforcement learning (RL), directed at improving conflict
resolution performance at high densities. We resort to a Deep
Deterministic Policy Gradient (DDPG) model to improve the
behaviour of the Modified Voltage Potential (MVP) geometric
conflict resolution method. By default, the MVP method generates
avoidance manoeuvres of a geometrically-defined type, using a
fixed look-ahead time. In the current study, we instead aim to use
RL to determine the values for these variables, based on intruder
position and traffic density. The analysis in this paper specifically
addresses the difficulty of training algorithms in a cooperative
multi-agent case to converge to optimal values. We prove that
finding the right representation of state/rewards in a non-
stationary environment is non-trivial and highly influences the
learning process. Finally, we show that a variation of resolution
manoeuvres can improve the safety of several scenarios at high
traffic densities.

Keywords—Conflict Detection and Resolution (CD&R), Rein-
forcement Leaning (RL), Deep Deterministic Policy Gradient
(DDPG), Modified Voltage Potential (MVP), U-Space, Unmanned
Traffic Management (UTM), BlueSky ATC Simulator

I. INTRODUCTION

To prepare for the introduction of large numbers of mass-

market drones, safety automation within unmanned aviation

is a priority, as drones must be capable of conflict detection

and resolution (CD&R) without human intervention. Both

The Federal Aviation Administration (FAA) and the Interna-

tional Civil Aviation Organization (ICAO) have ruled that an

Unmanned Aerial System (UAS) must have Sense & Avoid

capability in order to be allowed in the civil airspace [1], [2].

In manned aviation research into conflict resolution algo-

rithms, conflict resolution (CR) models based on geometric

solutions have proven to be very successful at achieving a high

level of safety, with only a minor impact on (path) efficiency.

Yet, at the extreme traffic densities envisioned for urban drone

applications, such as package delivery, these methods start

to suffer from unpredictable interactions that can result in

destabilising emergent patterns. For one-to-one conflicts, a set

of rules can be defined which leads to implicitly coordinated

optimal behaviour. However, as the number of aircraft in-

creases, multi-actor conflicts and knock-on effects can lead

to global patterns that cannot be predicted based on these

single rules or analytical methods. As a consequence, with

these methods we can no longer predict which characteristics

lead to optimal behaviour at these higher densities.

Through continuous improvement, reinforcement learning

(RL) can potentially identify trends and patterns in this other-

wise unpredictable emergent behaviour. By using repetition,

RL can adjust to this emergent behaviour, and develop a

large set of rules and weights from the knowledge of the

environment captured during training. A learning algorithm

is used to automatically identify such rules, which can ex-

tend the empirical knowledge already present from geometric

methods. RL therefore has the potential to help mitigate part

of the decline in performance observed in geometric resolution

methods when traffic density increases.

Unfortunately, RL also has its drawbacks, such as non-

convergence, high dependence on initial conditions, and long

training times. A RL model that is completely responsible for

the definition of avoidance manoeuvres is therefore unfeasi-

ble, as it would have severe issues converging to desirable

behaviour. In this paper we hypothesise that, instead, a hybrid

approach, combining the strengths of geometric methods and

of learning methods, has the potential to mitigate the draw-

backs of each of the individual methods. In this approach,

rewards are scaled by the efficiency of the resolution model,

and the RL starting point is the current performance of the

CR model.

When applying RL to mitigate undesirable emergent pat-

terns several questions follow: which states should the RL

model know; which CR parameters should the RL model

control? Additionally, two problems arise when using RL in

cooperative multi-aircraft situations. First, with each action,

the next state depends not only on the action performed by the

ownship, but on the combination of that action with the actions

simultaneously performed by the intruders. Current research

[3], [4] shows that emergent behaviour and complexity arise,

not as a result of the number of agents, but from the agents

interacting and co-evolving. From the point of view of each

agent, the environment is non-stationary and, as training

progresses, modifies in a way that cannot be explained by

the agent’s behaviour alone. Furthermore, this non-stationarity

limits the straightforward use of experience replay; the data in

the agent’s replay memory quickly becomes obsolete as it no

longer reflects the current dynamics of the environment [5].

Second, a certain action may be favourable to the ownship



but may have negative results on the intruding aircraft. The

latter may, for example, have to perform bigger deviations

from their nominal path to avoid loss of minimum separation

with the ownship. An action with good local results may have

a negative impact globally. In this paper, we start to explore

these questions.

This work will employ the Modified Voltage Potential

(MVP) [6] method, which has proven successful in reducing

the effect of resolution manoeuvres on flight efficiency while

still guaranteeing minimal losses of separation (LoSs) [7]. The

Deep Deterministic Policy Gradient (DDPG) RL model [8],

which has shown promising results in other studies [9], will

be used to determine the look-ahead time and manoeuvre type

used by MVP for each conflict resolution situation. Different

ways of training the DDPG algorithm will be compared,

directly evaluating the impact of rewards based on LoSs,

number of conflicts, and time in conflict. Experimental results

were obtained through fast-time simulations with open-source,

multi-agent ATC simulation tool BlueSky [10].

II. CONFLICT RESOLUTION ALGORITHMS

A. CR Geometric Model: Model Voltage Potential (MVP)

The geometric resolution of the MVP model, as defined

by Hoekstra [6], [11], is displayed in Fig. 1. When a con-

flict is detected, MVP uses the predicted future positions of

both ownship and intruder at the closest point of approach

(CPA). These calculated positions ‘repel’ each other, and this

‘repelling force’ is converted to a displacement of the predicted

position at CPA. The avoidance vector is calculated as the

vector starting at the future position of the ownship and ending

at the edge of the intruder’s protected zone, in the direction

of the minimum distance vector. This displacement is thus the

shortest way out of the intruder’s protected zone. Dividing

the avoidance vector by the time left to CPA, yields a new

speed, which can be added to the ownship’s current speed

vector resulting in a new advised speed vector. From the

latter, a new advised heading and speed can be retrieved. The

same principle is used on the vertical situation, resulting in

an advised vertical speed. In a multi-conflict situation, the

final avoidance vector is determined by summing the repulsive

forces with all intruders. As it is assumed that both aircraft

in a conflict will take (opposite) measures to evade the other,

MVP is implicitly coordinated.

PZIntruder

Repelling
Force

Ownship

Heading
Deviation

•

CPA

Intruder

Speed
Change

Figure 1. MVP geometric resolution. Adapted from Hoekstra [6].

B. CR Calculation: Look-Ahead Time And Manoeuvre Type

In deterministic conflict avoidance methods, the generated

avoidance manoeuvre is often a result of avoiding the detected

intruders up to a fixed look-ahead time by resorting to speed,

heading and/or altitude variation as pre-defined. Often the

same hard-coded values are used for all avoidance calculations.

Nevertheless, at high traffic densities, each aircraft will face

multiple conflict situations with the number of intruders and

their positions varying greatly. However, there is no optimal

single set of values for all of these situations. Preference over

which values to use for look-ahead time and manoeuvre type

may vary based upon the conditions described below.

A resolution manoeuvre can be a heading, speed, or altitude

variation. One or multiple of these manoeuvres are performed

to follow a conflict free path. Manoeuvres are, in many studies,

restricted to the horizontal plane. Sunil [12] showed that, for a

stratified airspace, having only horizontal resolutions improves

stability; less conflicts are considered and accounted for with

only an horizontal conflict layer. However, for resolving short-

term conflicts, climb/descent is a fast and efficient action since

the required vertical separation is smaller than the horizontal

one. A fast vertical change can thus prevent an imminent loss

of separation in an airspace where aircraft are predominantly

expected to travel in the horizontal plane. Additionally, speed-

only variation can be a useful tool in crossing conflicts as it

does not require the ownship to occupy more airspace, which

is crucial at high traffic densities given the scarcity of airspace.

The look-ahead time used for the conflict resolution defines

how far in advance the ownship defends for conflicts. There

are advantages and disadvantages for both low and high look-

ahead times. With the latter, the ownship initiates resolution

manoeuvres with more time in advance, which allows for

smaller manoeuvres. For example, as per Fig. 1, a closer CPA

results in a bigger heading variation. However, uncertainties

increase as the current state of intruders is propagated farther

into the future, thus increasing the number of false positive

conflicts considered. Moreover, an optimal solution may not

exist in situations with multiple intruders. Switching to a

lower look-ahead time allows for a prioritization of short-term

conflicts. Nevertheless, a solution to a subset of intruders may

worsen the conflict with the next layer of intruders.

C. RL Model: Deep Deterministic Policy Gradient (DDPG)

A reinforcement learning model consists of an agent in-

teracting with an environment E in discrete timesteps. At

each timestep, the agent receives the current state s of the

environment and performs an action a in accordance, for which

it receives a reward st. An agent’s behavior is defined by a

policy, π, which maps states to a probability distribution over

the actions. The goal is to learn a policy which maximizes the

reward. Many RL algorithms have been researched in terms of

defining the expected reward following action a. In this work,

we use the Deep Deterministic Policy Gradient (DDPG) [8].

Policy gradient algorithms first evaluate the policy, and

then follow the policy gradient to maximize performance.

DDPG is a deterministic actor-critic policy gradient algorithm,

designed to handle continuous and high dimensional state

and action spaces. These models have proven to outperform

other RL algorithms in environments with stable dynamics
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[9]. However, they can become unstable, being particularly

sensitive to reward scale settings [13], [14]. As a result,

rewards must be carefully defined. Moreover, policy gradient

methods tend to exhibit high variance on scenarios which

include the coordination of multiple agents [3]. This will be

further analyzed with the experimental results.

DDPG uses an actor-critic architecture; it primarily uses

two neural networks, one for the actor and one for the critic.

The actor function μ(s|θμ) (also called policy) specifies the

output action a in regard to the input, the current state s of

the environment in the direction suggested by the critic. The

critic Q(s, a|θQ) estimates a correlation between the current

state and the action produced by the actor. The critic network

is updated from the gradients obtained from a temporal-

difference (TD) error signal each time step. The output of the

critic drives learning in both the actor and the critic. θμ and θQ

represent the weights of each network. Updating the actor and

critic neural network weights with the values calculated by the

networks may lead to divergence. As a result, target networks

are used to generate the targets. The target networks are time-

delayed copies of their original networks, μ′(s|θμ′
) and target

critic Q(s′, a|θQ′
), that slowly track the learned networks.

All hidden neural networks use the non-sigmoidal rectified

linear unit (ReLU) activation function, as this has been shown

to outperform other functions in statistical performance and

computational cost [15].

Experience replay is used in order to improve the indepen-

dence of samples in the input batch. Past experiences are stored

in a replay buffer, a finite sized cache R. At each timestamp,

the actor and critic are updated by sampling data from this

buffer. Because DDPG is an off-policy algorithm, the replay

buffer can be large. However, if the replay buffer becomes full

the oldest samples are discarded. DDPG uses target networks

for both the actor, the critic and experience replay. Finally,

exploration noise is used in order to promote exploration of

the environment; an Ornstein-Uhlenbeck process [16] is used

in parallel to the authors of the DDPG model.

III. HYBRID APPROACH: GEOMETRIC CR SOLUTION + RL

In this work we resort to a hybrid approach combining

the strengths of both model-based approaches and RL. The

objective is to improve the efficiency of a geometric resolution

approach, by having RL determining the optimal look-ahead

time and manoeuvre type to be used for every avoidance

manoeuvre calculation. This results in avoidance manoeuvres

catered to each specific conflict situation. Moreover, having the

RL model deciding both these values simultaneously allows

for two degrees of freedom where not only the type but the

‘magnitude’ of the manoeuvre can be controlled.

IV. EXPERIMENT: IMPROVING MVP WITH RL

A. Learning Environment

Aircraft have a pre-defined route with a set of waypoints,

and their objective is to reach the final waypoint safely (i.e.

no losses of separation). All waypoints are set at the same

altitude. The conflict evaluation interval is set to one second;

each second, the current conflicts and LoSs are detected, and

the necessary avoidance manoeuvres are calculated. When an

aircraft is detected to be in conflict, it will receive an action

value from the DDPG model.

A sigmoid activation function is used to transform the

value calculated by the hidden neural networks into a value

within the interval [0, 1], which is then multiplied by 300 to

produce a fitting look-ahead value between 0 and 300 seconds.
Regarding the manoeuvre type, a softmax activation function

is used to select between Speed only variation, Altitude only

variation, Speed + Heading variation, and Speed + Heading +

Altitude; the type with the highest probability value is used.

The look-ahead time and manoeuvre type are used to

generate the avoidance manoeuvre to be performed by the

aircraft for the next 60 seconds. Afterwards, if the aircraft

is still in conflict, a new look-ahead time and manoeuvre

type are requested with the aircraft’s state at that point. A

60 second time period for updating the resolution manoeuvre

was considered sufficient to correctly assess the consequences

of the manoeuvre, while still allowing the model to perform

different manoeuvre types during a conflict situation (instead

of one single manoeuvre) until the aircraft is out of conflict.

B. State of the Environment

The state of the environment received by the training model

defines the current state of the aircraft in conflict situation. It

should provide enough information to allow the RL model

to correctly respond to the emergent behaviour. However, we

are limited by the information available to each agent, as

well as by the computational effort. Within this first stage of

exploration, simplicity was preferred. Note that making more

information available can potentially improve the results of the

model; however, it also increases complexity of the training

process and thus decreases the efficiency.

We employ a state representing the location and quantity

of intruders. The area surrounding the ownship is divided into

four regions regarding the relative bearing to intruders (i.e.

front: [−315, 45], right: ]45, 135[, back: [135, 225], and left:

]225, 315[), as represented in Fig. 2. The state array’s size is

equal to 4, where each position on the array corresponds to a

different sector. The integer value in each element of the state

array represents the number of intruders in that sector. All the

intruders can thus be represented within this fixed size array.
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Figure 2. Separation of intruders by relative bearing to the ownship to form
the current state of the environment.

C. Reward Model

A policy gradient model tweaks the policy parameters

following the gradient towards higher rewards. As a result, the

3



training model is highly influenced by the reward structure.

In this work, reward is based on the safety of the manoeuvre,

which may be based upon the number of LoSs, number of

conflicts, and/or time in conflict. However, the relationship

between these elements is not trivial: the number of conflicts

and LoSs are not directly proportional [7]; reducing conflicts

may not have a direct impact on reducing LoSs. Second, the

MVP excels in performance as it calculates the minimum

deviation required to avoid LoS. A higher deviation to avoid

more conflicts may have a negative effect - when free airspace

is scarce, the number of LoSs increases when aircraft do

not limit the portion of airspace used [7]. Finally, one has

to make the decision: how do the penalties for conflicts and

LoSs compare? A certain number of conflicts equals having

one LoS; this relationship has to be tuned as to prevent the

RL model from often choosing to have one LoS in favour

of resolving a high number of conflicts. In this work we

compare three different reward approaches: (1) only LoSs are

considered, the model receives -1 for every loss of separation;

(2) both LoSs and conflicts are considered, the model receives

-1000 for every LoSs and -1 for every conflict; (3) LoSs and

time in conflicts are considered, -100 for every LoSs and -1

for every second in conflict. The magnitude of the previous

values were achieved through empirical testing and the best

values are herein used.

Note also that negative rewards were employed instead of

positive rewards. The reason for this is to motivate the system

to reach the destination point of each aircraft as quickly as

possible to avoid accumulating penalties. Positive rewards

could potentially lead the system to try to accumulate rewards

by continuously resolving conflict situations.

D. Apparatus and Aircraft Model

The open Air Traffic Simulator BlueSky [10] was used. This

tool has an Airborne Separation Assurance System (ASAS)

to which different CD&R implementations can be added;

therefore, allowing for all CD&R to be tested under the

same scenarios and conditions. The results obtained should be

directly associated with using this specific tool and scenarios.

Additionally, Bluesky allows for multiple clients working

simultaneously while communicating with one server. By

implementing the training model in the server, we can have

multiple episodes (each client runs one episode at a time)

receiving actions and updating the same training model in the

server. Such enables a faster training process.

All vehicles in the simulation used a DJI Mavic Pro quad-

copter performance model. The data for this model, speed

(−35 kts to 35 kts) and mass were retrieved from manufacturer

data. Although exact turn rate and acceleration/braking values

are not available, common values of 15 ◦/s and 1 kts/s were

assumed, respectively.

E. Independent Variables

CR model, traffic density are set as independent variables.

During training phase, three different CR approaches will

be experimented with. These differ on the reward given to the

RL model: (1) only LoSs are considered; (2) both LoSs and

conflicts are considered; (3) both LoSs and time in conflict are

considered. These models will be responsible for defining the

resolution look-ahead and manoeuvre type to be used by the

MVP to generate avoidance manoeuvres. The model with the

best performance is then used in the testing phase.

Traffic density ranges from low to high, as shown in

Table I. High densities were considered based on the rule

of thumb that aircraft should spend more than 10% of their

flight time avoiding conflicts [17]. The instantaneous aircraft

count defines the number of aircraft expected at any given

moment during the measurement period. Given the duration

of the measurement and the average flight time, the simulator

constantly spawns (adds to the simulation) aircraft at the same

rate as they are removed from simulation, in order to keep

a constant traffic density. A scenario of 211 instantaneous

aircraft is used for training. During testing, the trained RL

model will be used with identical traffic densities, as well as

with lower and higher traffic densities.

TABLE I. TRAFFIC VOLUME USED IN SIMULATION.

Training Scenarios

Traffic density [ac/10 000NM2] 14697
Number of instantaneous aircraft [-] 211
Number of spawned aircraft [-] 2442

Testing Scenarios

Low Moderate High
Traffic density [ac/10 000NM2] 12000 14697 18000
Number of instantaneous aircraft [-] 172 211 259
Number of spawned aircraft [-] 1994 2442 2991

F. Simulation Scenarios

Aircraft fly within a square data collection area, whose

dimensions were defined based on the average True Air Speed

(TAS), multiplied by the expected average flight time. Aircraft

are spawned just outside of the data collection area; this

prevents the logging of very short-term conflicts between

just spawned aircraft and pre-existing cruising traffic. Spawn

locations (origins) are spaced at a distance of the minimum

separation distance plus a 10% margin, to avoid conflicts

between spawn aircraft and aircraft arriving at their destina-

tion. The initial heading of each aircraft varies from 0◦ to

360◦, computed with a normal distribution random number

generator. All aircraft are initially set to fly at the same level.

The data collection area is inside a larger square area

designated the simulation area. An aircraft is removed from

the simulation once it exits this simulation area. This second

area is used as we do not want to delete aircraft as soon as

they leave the data collection area; they may temporary exit

it in case a conflicting manoeuvre demands it to.

Each scenario consists of a build-up period to reach a steady

state in terms of traffic volume and traffic pattern. The build-up

is followed by the logging phase, during which traffic volume

is held constant, and a build-down period, allowing for aircraft

created during the logging period to finish their flights. During

testing of the model, the experiment is repeated multiple times

with different origin-destination combinations. More details

are displayed in Table II. No wind was considered.
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TABLE II. PROPERTIES OF THE SCENARIOS USED IN SIMULATION.

Training + Testing

Data Logging Area [NM2] 144
Simulation Area [NM2] 250
Minimum Flight Distance [NM] 6
Maximum Flight Distance [NM] 7
Flight Level [ft] 30
Average TAS [kts] 30
Scenario Duration [h] 2

Testing Only

Number of Repetitions [-] 3

G. Minimum Separation

There is no pre-defined standard separation distance for

minimum separation distance for unmanned aviation. How-

ever, for horizontal separation, 50m to 400m are values com-

monly used in research [18], [19] depending on the properties

of the UASs considered. In order to emphasize the effect of

RL in losses of separation, a conservative value of 400m was

used. For vertical separation, 30 ft was used.

H. Conflict Detection and Resolution

A look-ahead time of five minutes is used for conflict

detection in both training and testing. The number of conflicts

can thus be directly compared. However, the look-ahead time

used for conflict resolution is decided by the training model.

I. Dependent Measures

Two different categories are used to compare the simulated

conflict resolution methods: safety and efficiency. Safety is

defined in terms of the number and duration of conflicts and

LOSs. Naturally, fewer conflicts and LOSs are expected to be

safer. Efficiency is evaluated in terms of distance travelled and

duration of flight. An off-CR situation has better performance

in terms of flight distance and time, as the flight path is a

straight line. CR models move aircraft out of their intended

trajectory in order to avoid conflicts/LOSs; thus, making the

path longer. However, a CR model which results in consider-

able path deviations, significantly increasing the path travelled

and/or the duration of the flight is considered inefficient.

V. EXPERIMENT: RESULTS

A. Training the Model

In total, 200 episodes were run; one episode is a full

execution of the simulation environment, which runs for 2

hours. The episodes do not all have the same number of calls

to the DDPG model, as this is proportional to the number

of conflicts throughout the episode. As a reference, between

70 000 and 125 000 calls were performed in each episode.

Figs. 3 to 5 show the progression of the number of LoSs,

number of pairwise conflicts, and average time in conflict per

aircraft during training for all the trained models. The models

differ in the form of the reward: with LoSs only losses of

separation are considered; with LoSs+Conf both LoSs and

conflicts are considered; and lastly LoSs+TConf considers

both LoSs and time in conflict.

As expected, when the number of conflicts is included in the

reward calculation, the model excels in reducing the number

of conflicts (see Fig. 4). However, this does not have a direct

impact on reducing the number of LoSs (see Fig. 3). In fact,

having more conflicts seems to be beneficial for preventing

LoS. This behaviour has been previously observed with the

MVP method; Hoekstra [6] argues that a moderately positive

number of secondary conflicts can be beneficial on a global

scale. The effect of sequentially running into a new conflict

creates a wave-like pattern, spreading the aircraft out in the

available airspace thus ‘creating’ more airspace. This effect

might be particular to the MVP model, however it shows how

adding rewards in favour of preventing conflicts may have an

adverse effect on the total number of LoSs. This should also

be considered with other conflict resolution methods.
Considering either the number of conflicts or time in conflict

results in similar reductions of the number of conflicts and

average time in conflict (see Figs. 4 and 5). Surprisingly,

reducing the number of conflicts results in fewer LoSs than

reducing time in conflict (see Fig. 3). In the case of non-

simultaneous conflicts, reducing the number of conflicts di-

rectly reduces the time in conflict. However, although simul-

taneous conflicts directly increase the conflict count, they may

not impact the total time in conflict. As a result, although the

final number of conflicts is similar, it results from preventing

different conflicts. To reduce time in conflict, it is preferable

to avoid single-conflict situations over some conflicts in multi-

conflict situations. The downside of this approach is that it

results in more LoSs.esu ts o e oSs.

Figure 3. Total number of losses of separation (LoSs) during training.

Figure 4. Total number of pairwise conflicts during training.

The non-stationarity of the environment is evident in the

observed high variation of total LoSs/conflicts throughout

the episodes. In stationary environments, where an agent’s
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Figure 5. Average time in conflict per aircraft during training.

behaviour is optimized based on its own actions, the RL model

is often capable of an almost linear progression. However, in

our case, as the agent is also dependent on the actions of the

surrounding agents, its optimization exhibits more variability.

Both LoSs+Conf and LoSs+TConf show an improvement

as training progresses, however at a slow pace and marked

by a high variation of values. In comparison, LoSs does not

have a significant improvement over training. According to

results, the best reward setting is to focus solely on the number

of LoSs. However, the number of LoSs per calls to the RL

model might be too sparse to favour a faster convergence to

an optimal solution. In the LoS only reward situation, almost

99% of the calls to the RL model result in no LoSs. As

a result, it is very hard for the model to find occasions to

improve (see Fig. 6). In comparison, there is more information

regarding conflicts and time in conflict for the models trained

with LoSs+Conf and LoSs+TConf to evolve.

Figure 6. Division of rewards values during training per percentage.

Fig. 7 shows the actions performed by each model in the

episode that achieved the fewest LoSs. For clarity, outliers

were removed. In the model trained with LoSs only, roughly

99% of the actions of the avoidance manoeuvres are based on

Speed+Heading separation with an optimal look-ahead time

of almost 5 minutes. Sporadically, a fast vertical deviation

is used. As proven by the LoSs+Conf and LoSs+TConf

models, vertical deviation in an environment where aircraft

are mostly expected to deviate in the horizontal plane, helps

to efficiently resolve horizontal conflicts, as aircraft move

out of the main traffic layer. However, the more vertical

manoeuvres are performed, the more traffic is dispersed into

different layers. Aircraft now have to take into account not

only horizontal, but also an increasing number of vertical

conflicts. When performed often, it leads to more LoSs as

the extra layer of conflicts increases the complexity of the

multi-conflict resolution.
For both the LoSs+Conf and LoSs+TConf models, about

80% of the manoeuvres are based on altitude deviation.

The LoSs+TConf model has on average shorter look-ahead

times than the other models. These allow the model to focus

on short-term conflicts, which helps prevent single-conflict

situations which in turn reduces the total time in conflict.

Figure 7. Actions taken by each model in the episode with the fewest LoSs.

B. Testing the Model
The DDPG model trained with only LoSs as a reward, was

used with the testing scenarios and is defined with symbol

MVP+RL. The main objective of having a RL model pro-

ducing varying avoidance manoeuvres, was to achieve better

safety compared to the best combination of a static look-

ahead time and manoeuvre type MVP-Hor. The latter employs

horizontal (speed+heading) only deviation with a resolution

look-ahead of 300 seconds. This is the best combination we

have previously empirically found and employed in our work

[7]. Note that this look-ahead time is directly associated with

linear routes in a non-limited space scenario. In a constrained

airspace (e.g. an urban environment), smaller look-ahead val-

ues are preferable [20]. Results for MVP-Hor and MVP+RL
are also compared with an off-CR situation, where aircraft

follow their nominal path without conflict resolution.
The total number of LoSs for all cases is presented in Fig. 8.

The manoeuvre variation inputted by the trained RL model

6



MVP+RL, was able to prevent more losses of separation

than the static manoeuvre option MVP-Hor for the low and

medium traffic densities. The latter, with which the RL model

was trained, has the best improvement. However, at high den-

sities it performed worse. Such suggests that the complexity

in coordination in higher traffic densities, and consequent

emergent behaviour, is not something we can prepare for with

lower densities. With higher densities, we expect a change

in the most common set of states seen during an episode.

The trained RL model was able to optimize manoeuvres

for the most common states in the medium density, and is

missing optimality in the states representing a higher number

of intruders.

Figure 8. Total number of LoSs of when using: MVP-Hor the best static
manoeuvre scenario; MVP+RL the actions defined by the DDPG model.

Fig. 9 shows the total number of pairwise conflicts with the

testing scenarios. A pairwise conflict is only counted once, in-

dependent of its duration. The increase in number of conflicts,

compared to the off-CR situation, is due to secondary conflicts

created by the tactical resolution manoeuvres. Interestingly,

even tough reduction of conflicts was not part of the reward

for the trained model, it was able to diminish the number of

conflicts for every traffic density.

Figure 9. Total number of pairwise conflicts when using: MVP-Hor the best
static manoeuvre scenario; MVP+RL the actions defined by the DDPG model.

Fig. 10 shows the amount of time spent in ‘conflict mode’

per aircraft. An aircraft enters ‘conflict mode’ when it adopts

a new state computed by the CR method. The aircraft will

exit this mode, once it is detected that it is past the previously

calculated time to CPA. The time to recovery is not included

in total time in conflict. With the trained RL model, aircraft

spent in average more time in conflict. Such is likely related to

a lower look-ahead time for CR; as aircraft initiate avoidance

manoeuvres later, conflicts are also resolved later, increasing

the total time spent in conflict.

Figure 10. Total time in conflict per aircraft when using: MVP-Hor the best
static manoeuvre scenario; MVP+RL the actions defined by the DDPG model.

Figs. 11 and 12 display the extra flight path and time

performed by aircraft compared with an off-CR situation. With

the trained RL mode, aircraft travelled more to guarantee

safety. A bigger path resulted in longer travel times. Given the

similarities in values with Fig. 10, this is likely a consequence

of the increase in time in conflict. The longer aircraft remained

in ‘conflict mode’, the farther they deviated from their nominal

path, increasing their flight time.

Figure 11. Extra flight path (3D) when using: MVP-Hor the best static
manoeuvre scenario; MVP+RL the actions defined by the DDPG model.

VI. DISCUSSION

Similarly to existing work [4], our experimental results

show the difficulty of algorithms in a multi-agent environment

to converge towards optimal values. Due to the constant

changing of actions by the other agents, the environment is

non-stationary outside the range of influence of each agent.

This results in a difficult and slow convergence to optimal

values. In these situations, research into the best state and

reward representations is essential.

The final outcome of the trained RL model was as ex-

pected given past experience with the MVP method: with

hard-coded values, having only horizontal manoeuvres proved
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Figure 12. Extra flight time when using: MVP-Hor the best static manoeuvre
scenario; MVP+RL the actions defined by the DDPG model.

more efficient safety-wise. Moreover, fast singular vertical

manoeuvres can be efficient in an airspace where aircraft

are predominantly expected to move with the horizontal plan.

However, training in a specific traffic density proved inefficient

for higher densities. The model should therefore at least be

trained at the highest traffic density that is expected under

actual operations. It may also be that different traffic densities

require different resolution strategies, as was also hypothesised

in the Metropolis project [21]. In this case, the RL model must

learn different responses per complexity of emergent behaviour

resulting from increasing traffic densities. As always, these

results are highly dependent on the conflict resolution method

and type of aircraft. A different method may prove more

efficient with a different set of manoeuvres. Additionally, the

efficiency of all resolutions manoeuvres is dependent on the

speed/acceleration of the involved aircraft. RL training with a

different resolution method, and/or aircraft type, may produce

different results.

The training of the RL model is highly influenced by

the reward values used. Within aircraft safety this can be a

complex decision: safety is often set in terms of both losses

of separation and conflicts. On a first approach, it can be

intuitive to consider that fewer conflicts will equal fewer

losses of separation. However, multiple studies [6], [7] have

shown that focusing on diminishing the number of conflicts

may be counter-productive for the MVP. Next to considering

LoSs, the best solution may be to consider more efficient

manoeuvres, which result in a smaller path deviation. We leave

this investigation for future work.

VII. CONCLUSION

This paper analysed how reinforcement learning (RL) can

help surpass the limitations of geometric conflict resolution

models. Results show that a variation of avoidance manoeuvres

catered to each specific conflict situation is beneficial to

improving safety at high traffic densities. More specifically,

our trained model found that focusing on horizontal conflict

avoidance manoeuvres, with occasional fast vertical devia-

tions, improves prevention of losses of minimum separation.

Translating the success of deep learning on single agent RL

to a multi-agent environment continues to be a key challenge.

This works constitutes a first exploratory phase with using RL

in a cooperative multi-aircraft environment with promising re-

sults. Future work will be oriented towards further stabilization

of experience replay and additional training on a variety of

cooperative and competitive multi-aircraft environments.
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