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Abstract

Purpose: Deformable image registration (DIR) can benefit from additional guidance using
corresponding landmarks in the images. However, the benefits thereof are largely understudied,
especially due to the lack of automatic landmark detection methods for three-dimensional (3D)
medical images.

Approach: We present a deep convolutional neural network (DCNN), called DCNN-Match,
that learns to predict landmark correspondences in 3D images in a self-supervised manner.
We trained DCNN-Match on pairs of computed tomography (CT) scans containing simulated
deformations. We explored five variants of DCNN-Match that use different loss functions and
assessed their effect on the spatial density of predicted landmarks and the associated matching
errors. We also tested DCNN-Match variants in combination with the open-source registration
software Elastix to assess the impact of predicted landmarks in providing additional guidance
to DIR.

Results: We tested our approach on lower abdominal CT scans from cervical cancer patients:
121 pairs containing simulated deformations and 11 pairs demonstrating clinical deformations.
The results showed significant improvement in DIR performance when landmark correspond-
ences predicted by DCNN-Match were used in the case of simulated (p ¼ 0e0) as well as clinical
deformations (p ¼ 0.030). We also observed that the spatial density of the automatic landmarks
with respect to the underlying deformation affect the extent of improvement in DIR. Finally,
DCNN-Match was found to generalize to magnetic resonance imaging scans without requiring
retraining, indicating easy applicability to other datasets.

Conclusions: DCNN-match learns to predict landmark correspondences in 3D medical images
in a self-supervised manner, which can improve DIR performance.
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1 Introduction

Deformable image registration (DIR) is a task of aligning a source (or moving) image to a target
(or fixed) image by optimizing a displacement vector field. The aligned source image can then
be computed by resampling the source image at the spatial locations specified by the mapping.
DIR has tremendous application possibilities in the radiation treatment workflow required for
cancer treatment e.g., automatic contour propagation,1,2 dose accumulation.3–5 However, DIR in
regions such as the pelvis is challenging due to large local deformations and appearance
differences caused by physical processes such as bladder filling, and the presence of gas pockets
and contrast agents.2 In such DIR scenarios, the existing non-linear intensity-based registration
approaches6–8 often get stuck in a local minimum.4 Many previous studies9–14 have shown that
landmark correspondences between the images to be registered can provide additional guidance
to the intensity-based DIR methods and help overcome local minima. However, to the best of
our knowledge, such an approach has not been tested on pelvic scans.

Manual annotation of landmarks for DIR in the clinic is not practically tractable due to two
main reasons. First, a high number of landmarks is desired, and it is difficult to unambiguously
define such a high number of landmarks manually. Second, manual annotations require lots of
time from clinicians, which is hardly available. Therefore, an automatic method for finding land-
mark correspondences is required. Although many endeavors have been made in the direction of
automatic landmarks correspondence detection in medical images,14–16 there remain significant
gaps to fill. The existing methods usually employ large pipelines consisting of multiple com-
ponents, each component using multiple hyperparameters derived from image features specific
to the underlying dataset. Consequently, the entire pipeline is sensitive to small variations in local
image intensities and choices of hyperparameters, making application to a new dataset difficult.
Moreover, in datasets such as pelvic scans with ill-defined boundaries between soft tissues,
intensity gradient–based landmark detection may not work at all.

Convolutional neural networks (CNNs) are known to learn deep features from images, which
are robust to small variations in local image intensities. In recent years, deep CNNs have not only
shown remarkable performance in difficult computer vision tasks in medical imaging,17,18 but
also good generalization to unseen data. Moreover, with the advances in the available computa-
tional resources, CNN-based solutions turn out to be faster than their traditional counterparts.
Therefore, there is a strong motivation to replace the entire pipeline for automatically finding
landmark correspondences by a deep CNN. Recently, some deep CNNmethods have been devel-
oped for automatic landmark detection in medical images,19–21 but these are limited to either 2D
datasets or supervised learning of a few manually annotated landmarks. Other relevant works
include methods for landmark propagation from a template image by learning pixel-wise ana-
tomical embeddings22 or through DIR.23 While such methods allow for single shot landmark
detection in a new image, the requirement of manual annotation of landmarks on the template
image still exists. Another study uses unsupervised image registration as a proxy task to discover
landmarks shape descriptors,24 but this method is limited to discovering a small number of land-
marks (∼100 landmarks per image pair).

In this study, we present a deep CNN (referred to as DCNN-Match) for automatic landmarks
correspondence detection (i.e., simultaneous landmark detection as well as matching) in 3D
images. The presented method is an extension of our method for 2D images.21 Briefly, the neural
network is trained on pairs of lower abdominal 3D computed tomography (CT) scans such that
the network learns to predict landmarks at salient locations in both the images along with the
correspondence score of each landmark pair. One key feature of the presented method is that
unlike supervised methods, the neural network in the presented method is trained in a self-
supervised manner without using any manual annotations. This is important because manual
annotations on medical images are not always readily available, mainly because it is time-
consuming to create them.

It is essential to investigate the added value of automatic landmarks correspondence detec-
tion toward the improvement of the DIR solutions to estimate the potential deployability of
landmarks-guided DIR approaches in the clinic. Existing studies have investigated the added
value of automatic landmark correspondences towards DIR independently of the underlying
automatic landmark detection method.10,11,14 Since change in the automatic landmarks
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correspondence detection method changes the aspects of the automatic landmarks, e.g., spatial
distribution and matching accuracy, the effect of the automatic landmarks on the DIR perfor-
mance is likely to be affected as well. Therefore, we believe that developing a method for
automatic landmarks correspondence detection and at the same time integrating it with a DIR
pipeline can provide numerous insights. To this end, we have integrated our method for auto-
matic landmark detection and matching with an existing DIR software so that the added value of
using landmark correspondences in solving DIR problems can be assessed. Further, we inves-
tigate five different variants of the developed method by use of different loss functions during
training that each predict landmark correspondences with different spatial distributions and
matching errors, to assess the effect of different types of automatic landmark correspondences
towards the improvement of DIR. The present work has the following contributions:

1. We extended our previously published end-to-end self-supervised deep-learning method
for automatically finding landmark correspondences in medical images from 2D to 3D.
The key highlights of the method are:

a. the method does not set any prior on the definition of landmarks and
b. the method does not require manual annotations for training

2. We integrated our automatic landmark correspondence detection method in 3D (DCNN-
Match) with an open-source registration software Elastix6,25 to develop a DIR pipeline
that utilizes additional guidance information from automatic landmark correspondences.
We used this DIR pipeline to investigate the added value of automatic landmark corre-
spondences in providing additional guidance to the DIR method and finding better DIR
solutions.

3. We varied the landmarks correspondence detection method and investigated how it
affected the added value to the DIR method. We explored five different variants of the
proposed automatic landmarks correspondence method.

4. We experimentally investigated the generalization capability of our proposed automatic
landmarks correspondence detection method to a magnetic resonance imaging (MRI)
dataset.

2 Materials and Methods

In the following sections, we describe DCNN-Match (Sec. 2.1), and the DIR pipeline that uses
the information from automatic landmark correspondences predicted by DCNN-Match to guide
the registration (Sec. 2.2). Sections 2.3 and 2.4 provide details of implementation and hyper-
parameters for reproducibility. Sections 2.5, 2.6, 2.7, and 2.8 describe the datasets, experiments,
evaluation metrics, and statistical testing used in the experiments, respectively.

2.1 DCNN-Match

We extended our approach21 for finding landmark correspondences in 2D CT scan slices to work
on 3D CT scans. The different components of the 3D approach are shown in Fig. 1. Briefly, the
approach proposed in Ref. 21 consists of a Siamese network with three modules: (a) two CNN
branches with shared weights, (b) a sampling layer, and (c) a descriptor matching module. The
CNN branches comprise an image-to-image translation network that maps an input image to a
feature map. The architecture of the network is derived from the famous UNet architecture26

proposed for image segmentation. For a given pair of target image (Itarget) and source image
(Isource), the CNN branches predict a landmark probability map describing the probability
p̂Ix
i (x ∈ ftarget; sourceg) of each spatial location i being a landmark. The sampling layer is

a parameter-free module that samples K (hyperparameter) landmark locations with top landmark
probabilities during training. During inference, the sampling layer samples all landmark loca-
tions with landmark probabilities above a threshold. We used the value 0.5, same as in Ref. 21.

Additionally, the sampling layer samples a feature vector from the feature maps of the last
two downsampling levels in the CNN branch at the coordinates of each i’th landmark location
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and constructs the feature descriptor fIxi by concatenating the sampled feature vectors. This
allows for efficient use of the network weights by simultaneous learning the landmark detection
as well as feature description of each landmark without unnecessarily increasing the network
size. Moreover, the concatenation of features from different downsampling levels emulates the
behavior of multi-scale feature description, which otherwise, is achieved by calculating features
from a Gaussian pyramid representation of the image. Following the calculation of feature
descriptors for each landmark location, the sampling layer creates feature descriptor pairs

ðfItargeti ; fIsourcej Þ ∀ i ¼ 1; 2; : : : ; K in Itarget and ∀ j ¼ 1; 2; : : : ; K in Isource to feed to the descriptor
matching module. The descriptor matching module predicts the landmark matching probabilities
corresponding to each feature descriptor pair.

2.1.1 Self-supervised training

The network is trained in a self-supervised manner on pairs of target (Itarget) and source (Isource)
lower abdominal CT scans containing simulated deformations. The details on the generation
of target and source image pairs are provided in Sec. 2.3.

Following the sampling of landmark locations i ¼ 1; 2; : : : ; K in Itarget and j ¼ 1; 2; : : : ; K in

Isource along with their corresponding feature descriptors f
Itarget
i and fIsourcej , feature descriptor pairs

ðfItargeti ; fIsourcej Þ are constructed in the sampling layer. The feature descriptor pairs are considered
corresponding to all i and j, allowing for feature descriptor matching between far-away locations
in the images without requiring encoding of the underlying deformation field explicitly. Since
the simulated deformations used to create source and target image pairs during training can not
represent the complex large deformations in a clinical setup exactly, learning the feature descrip-
tor matching not explicitly dependent on the underlying deformation field is likely to help the
neural network generalize better to clinical scenario.

The ground truth ci;j of the correspondence of each feature descriptor pair is calculated on-
the-fly based on the known simulated deformation. Each sampled landmark location in the target
image is projected onto the source image based on the known simulated deformation and the
nearest predicted landmark (within a distance of 2 voxels = 4 mm) in the source image is con-
sidered its match. We used a threshold of 4 mm (instead of image resolution = 2 mm) to find
a reasonable number of landmark matches from random predictions in the beginning of the
training to ensure sufficient supervision. The value of ci;j ¼ 1 for matching and ci;j ¼ 0 for

non-matching feature descriptor pairs. Subsequently, the ground truth pIx
i for the landmark prob-

ability of landmark location i in image Ix; x ∈ ftarget; sourceg is determined as follows:

Fig. 1 Illustration of the components of DCNN-Match. (a) Illustration of different layers in the
shared CNN branch used for landmark detection and feature description. (b) The sampling layer
samples the feature maps of the last two downsampling levels in the CNN branch at the locations
described by the landmark probability map. (c) The descriptor matching module realized by a fully
connected layer predicts the matching probability of a feature descriptor pair.
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EQ-TARGET;temp:intralink-;e001;116;735pIx
i ¼

�
1 if ∃! j ∈ f0; 1; 2; : : : ; Kg in image Iy; y ∈ ftarget; sourceg; y! ¼ x ∧ ci;j ¼ 1

0 otherwise
:

(1)

The ground truths ci;j are used directly as ground truths for the matching probability of the

feature descriptor pairs ðfItargeti ; fIsourcej Þ. In other words, the ground truth is generated such that
the landmark probability as well as the descriptor matching probability is high for the matching
locations between the two images and low otherwise. The network is trained by minimizing a
multi-task loss defined as follows:

EQ-TARGET;temp:intralink-;e002;116;620

Loss ¼ LandmarkProbabilityLossItarget þ LandmarkProbabilityLossIsource

þ DescriptorMatchingLoss: (2)

The LandmarkProbabilityLossIx for the probabilities of landmarks in image Ix; x ∈
ftarget; sourceg is defined as

EQ-TARGET;temp:intralink-;e003;116;543LandmarkProbabilityLossIx ¼
1

K

XK
i¼1

ðð1 − p̂Ix
i Þ þ CrossEntropyLossðp̂Ix

i ; p
Ix
i ÞÞ; (3)

where CrossEntropyLoss is the cross entropy loss between predicted landmark probability p̂Ix
i

and ground truth pIx
i of the i’th sampled location. K is the total number of sampled landmark

locations in image Ix. Further details of the LandmarkProbabilityLoss are omitted for brevity and
can be found in Ref. 21.

The DescriptorMatchingLoss allows the network to learn feature descriptor matching auto-
matically and is defined as follows:

EQ-TARGET;temp:intralink-;e004;116;417DescriptorMatchingLoss ¼ DescriptorHingeLossþ DescriptorCELoss: (4)

DescriptorHingeLoss is defined as follows:
EQ-TARGET;temp:intralink-;e005;116;373

DescriptorHingeLoss ¼
XK;K

i¼1;j¼1

�
ci;j maxð0; kfItargeti − fIsourcej k2 −mposÞ

Kpos

þ ð1 − ci;jÞmaxð0; mneg − kfItargeti − fIsourcej k2Þ
Kneg

�
; (5)

where f
Itarget
i and fIsourcej are the feature descriptors corresponding to the i’th and j’th landmark

locations in the input images Itarget and Isource, respectively; ci;j is the ground truth matching

probability for the feature descriptor pair ðfItargeti ; fIsourcej Þ; mpos and mneg are the margins for the
L2-norm of matching (positive class) and non-matching (negative class) feature descriptor pairs.
The Hinge losses corresponding to positive and negative classes are normalized by Kpos (number
of positive feature descriptor pairs) and Kneg (number of negative feature descriptor pairs),
respectively to account for the class imbalance between positive and negative feature descriptor
matches. DescriptorCELoss is defined as follows:

EQ-TARGET;temp:intralink-;e006;116;179DescriptorCELoss ¼
XK;K

i¼1;j¼1

�
WeightedCrossEntropyðĉi;j; ci;jÞ

ðKpos þ KnegÞ
�
; (6)

where ĉi;j is the predicted matching probability; WeightedCrossEntropy represents the binary
cross entropy loss where the loss corresponding to the positive class is weighted by the frequency
of negative examples and vice versa.

In the beginning of the training, the predicted landmark probability maps by the CNN
branches are random and by chance only a few landmark locations have correct correspondence
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(i.e., ci;j ¼ 1) between images. The loss defined in (2) encourages high landmark probability at
these locations as well as high feature descriptor matching probability for the feature descriptor
pairs of these locations and low landmark probability and feature descriptor matching probability
otherwise. Additionally, the term ð1 − p̂Ix

i Þ in (3) encourages high landmark probability at all
locations, i.e., encourages more landmark locations to have correct correspondence in the other
image. Consequently as the training progresses, the network learns to identify salient locations
in the images that have correct correspondence in the other image as well and predicts high
landmark probabilities at the these locations.

2.1.2 End-to-end

The conventional approach to establish landmark correspondences between an image pair uti-
lizes the following steps:

1. Landmark detection, in which landmarks are detected in both the images independently.
2. Feature description, wherein a vector (often called “descriptor”) is calculated to describe

the image properties surrounding the landmark location. An example of a feature descrip-
tor is scale invariant feature transform,27 which calculates the histograms of orientations
from the image patches of different scales around the landmark.

3. Landmark matching, wherein landmark descriptors in both the images are matched using a
matching algorithm. A straightforward matching algorithm is brute force matching, which
aims at finding the best match among all the landmark locations in the source image for
each landmark location in the target image.

Our approach replaces each of the abovementioned components with a neural network mod-
ule, and connects the neural network modules such that the gradients flow from the end to the
inputs. The modules of landmark detection and description are represented by the CNN branches
of the Siamese network. The task of landmark matching is performed by the descriptor matching
module. It is important to mention that the key feature of DCNN-Match lies in the assembling of
different modules to provide a simple, end-to-end deep-learning solution for simultaneous land-
mark detection, description, and matching automatically. Therefore, the proposed approach can
be easily modified, e.g., it may be improved by the use of a different neural network in any of the
modules.

2.1.3 Extension to 3D images

We have extended our original approach proposed in Ref. 21 to work on 3D images by perform-
ing three modifications. The first obvious modification was to use 3D convolutional kernels
(kernel size = 3 × 3 × 3) instead of 2D convolutional kernels in the CNN branches. The sampling
layer and the feature descriptor matching module were also adapted for 5D tensors arising from
training on 3D images. The generation of a valid mask during training as described in21 Sec. 2.4
was also adapted for 3D images. The valid mask makes the network learn a content-based prior
to predict landmarks only in the regions that include patient anatomy and not in the background
or the CT couch.

Second, since we had a considerably larger training dataset (details in Sec. 2.5) as opposed
to Ref. 21, we kept the same number of kernels in each layer as the original UNet architecture.26

Third, we trained the network on 3D patches of the entire CT due to GPU memory constraints.
During inference, we evaluated the network on the patches belonging to the same spatial loca-
tions in the target and source images. The patches were cut with 50% overlap and the final
output combined the predicted landmark pairs in all patches. All the corresponding landmarks
predicted in all the overlapping patches were considered landmarks. Using a small patch size
restricts the network from learning landmark matches in locations that are far apart in the two
images. Therefore, the patch size has to be decided while keeping in mind the spatial extent of
deformations we want the network to learn. This is further described in the hyperpara-
meters Sec. 2.4.
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2.2 DIR with Additional Guidance from Automatic Landmark
Correspondences

We integrated DCNN-Match with the open-source registration software Elastix6,25,28 to create
a pipeline for DIR that utilizes the additional guidance information from automatic landmark
correspondences. A schematic of the DIR pipeline is provided in Fig. 2.

DIR requires calculation of a DVF that maps each spatial location in the target image to a
spatial location in the source image. In Elastix, the DVF is parameterized by B-splines and the
coefficients of B-splines are optimized by non-linear optimization. We align the source CT scans
with the target CT scans using affine registration before performing DIR. The parameters of the
3D affine transformation matrix (i.e., translation, rotation, scale, and shear) are optimized by
maximizing the normalized mutual information between the target and source scans. The target
and the affine registered source CT scan are input to the DCNN-Match, which provides the
locations of corresponding landmarks in both the scans. The DIR module in Elastix takes the
target image, affine registered source image, and the pairs of corresponding landmarks in both
the images as input. The DIR is performed by optimizing the following objective function:

EQ-TARGET;temp:intralink-;e007;116;258

fGuidance ¼ weight0AdvancedMattesMutualInformation

þ weight1TransformBendingEnergyPenalty

þ weight2CorrespondingPointsEuclideanDistanceMetric: (7)

where AdvancedMattesMutualInformation represents the maximization of mutual information
between two scans (for details refer to Ref. 29), TransformBendingEnergyPenalty is a regulariza-
tion term that penalizes large transformations, and CorrespondingPointsEuclideanDistanceMetric
is used for minimizing the Euclidean distance between the landmarks in the target CT and the
landmarks in the source CT. weight0, weight1, and weight2 control the relative contribution of
each term towards the objective function.

2.3 Implementation

The DIR pipeline was developed in Python. We used the PyTorch framework30 for developing
DCNN-Match. The training was done on an RTX 2080 Ti GPU and took approximately 21 h.

Fig. 2 DIR pipeline with automatic landmarks correspondence detection using DCNN-Match.
The source image is affine registered with the target image followed by automatic landmarks cor-
respondence detection using DCNN-Match. DCNN-Match provides the locations of corresponding
landmarks (shown with similar colored cross-hairs) in both the target and affine registered source
image. The DIRmodule finds a DVF by utilizing the additional guidance information from automatic
landmark correspondences. The final transformed (deformable registered) source image is
obtained by resampling the affine registered source image according to the obtained DVF.
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The weights of DCNN-Match were initialized using the He norm method.31 The training was
done using the Adam optimizer32 with a learning rate of 1e−4. The neural network weights were
regularized using a weight decay of 1e−4.

We randomly cropped 3D patches of dimension 128 × 128 × 48 from the entire CT scan
volume and used them as target images. The source images were generated on-the-fly by apply-
ing one of the following random transformations on the target images: translation, rotation, scale,
or elastic transformations. The magnitudes of the affine transformations along all axes were
sampled from the following uniform distributions: Uð−12 mm; 12 mmÞ, Uð−20 deg; 20 degÞ,
andUð0.9; 1.1Þ for translation, rotation, and scale, respectively. The elastic transformations were
applied so as to simulate the two types of soft tissue deformations present in the lower abdominal
scans: (a) large local deformations, e.g., bladder filling, and (b) small tissue deformations every-
where in the image. The large local deformations were simulated by a 3D Gaussian DVF
(DVFlarge) of magnitude at center ¼ Uð2 mm; 24 mmÞ and σ ¼ Uð64 mm; 128 mmÞ at a ran-
dom location in the image. The small deformations everywhere in the image were simulated
by Gaussian smoothing of a random DVF (DVFsmall ¼ Uð1 mm; 12 mmÞ) at each location.
DVFlarge and DVFsmall were additively applied to the target image to generate the source image
with elastic transformation.

2.4 Hyperparameters

Apart from the conventional hyperparameters involved in designing and training a DCNN
e.g., network depth and width, optimizer, and learning rate, there are two hyperparameters
specific to DCNN-Match: patch dimensions and the number of sampling points during train-
ing (K). As indicated in the previous section, we used a patch size of 128 × 128 × 48

(256 mm × 256 mm × 96 mm). This way the neural network’s field-of-view (FOV) was maxi-
mum given the network depth and GPU memory constraints, which ensured that the landmark
correspondences could be learned for deformations as large as 128 mm in-plane and 48 mm
along the transverse axis. Similar to Ref. 21, K ¼ 512 was used based on the visual inspection
that the predicted landmarks in the validation set (details in Sec. 2.5.1) covered the image
sufficiently.

In Elastix, we used the advanced mattes mutual information as a similarity metric because
it has been found successful in earlier studies on DIR.2 For deciding other hyperparameters, such
as the number of iterations, step size, step decay, weight0, weight1, and weight2, we used the
development set (details in Sec. 2.5.1). For this purpose, the pairs of target and source images
were generated in a manner similar to the training set. About 100 locations were sampled ran-
domly on the target image and their corresponding location in the source image was established
by transforming the coordinates with the inverse DVF used for generating the source image.
The hyperparameters were tuned based on the following observations on the development set:
the transformed source image after registration was not distorted and showed no visible folding,
the image alignment at the 100 randomly sampled locations improved after registration. The
exact configuration of Elastix used for affine registration and DIR is provided in Appendix A.

2.5 Data

An overview of the data is provided in Fig. 3. We retrospectively included the CT and MRI
scans from female patients (age range 22 to 95 years), who received radiation treatment in the
lower abdominal region between the year 2009 and 2019 at the Amsterdam University Medical
Centers, location AMC, the Netherlands. The data were transferred in anonymized form through
a data transfer agreement. A subset of these scans was the same as used in a previous study.21

2.5.1 Training and validation set

A total of 1671 CT scans of 831 patients were used for developing the approach: 1335 CT scans
for training and 336 CT scans for validation. A subset containing 10 CT scans from the val-
idation set (referred to as the development set) was used to tune the hyperparameters of the
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DIR pipeline. All the CT scans were resampled to have 2 mm × 2 mm × 2 mm voxel spacing
and the image intensities were converted from the Hounsfield units to a range of 0 to 1 after
windowing.

2.5.2 Simulated deformations test set – CT

We tested the performance of DCNN-Match and the DIR pipeline on a curated dataset of 121 CT
scans belonging to 121 patients, who received radiation treatment for cervical cancer. The mean
FOV of acquisition of the CT scans was 546 mm × 546 mm × 368 mm and the scans were
resampled to 2 mm × 2 mm × 2 mm voxel spacing. The available CT scans were used as target
images and corresponding source images were simulated by applying random elastic transfor-
mations to the target CT scans according to the method described in Sec. 2.3 above. Further, an
example of the simulated deformation and the obtained source CT is shown in Fig. 4(a).

In each pair of target and source image, 100 corresponding locations were sampled with
uniform random distribution. These sampled locations were used as validation landmarks for
assessing the performance of DCNN-Match and the DIR pipeline.

2.5.3 Clinical deformations test set – CT

The CT scans in a clinical setup exhibit complex biomechanical deformations, including dis-
continuities in the deformation field around sliding tissues and large deformations that may not
be Gaussian. The random Gaussian DVF used for deforming the images to obtain a simulated
test set is an oversimplification of the underlying situation. Therefore, it is essential to investigate
if the observations on the simulated deformations test set hold in the clinical setting as well. To
this end, additional CT scans (referred to as follow-up scans) were searched in the clinical data-
base for a subset of patients in the test set (11 patients). The first CT scans from these patients
were used as target images and the corresponding follow-up CT scans were used as source
images.

Corresponding landmarks at 29 locations were manually identified in each target and source
CT scan by a clinical expert. These landmarks included six fiducial markers in the vaginal wall,
and anatomical landmarks, e.g., aortic bifurcation, cervical os, and os coccygis. Since clinically
available scans were used, the number of fiducial markers were different in each patient in accor-
dance with the treatments given to the patients. The majority of the patients’ scans had three
fiducial markers, while some had less or more. If a patient’s scan had less than three fiducial
markers, calcification (if present) in corresponding anatomical locations were used as landmarks.
If a patient’s scan had more than three fiducial markers, only three of them were used. An

Fig. 3 Data overview. The vertical dashed gray line depicts the patient-level split between the
training and validation set, and test set.
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example landmark location is shown in Fig. 4(b) and the complete list of landmark locations is
provided in Appendix B.

2.5.4 Simulated deformations test set: MRI

MRI scans of 59 cervical cancer patients (subset of the 121 cervical cancer patients mentioned
in Sec. 2.5.2, who received brachytherapy treatment) acquired during brachytherapy treatment
delivery were used to investigate the generalization capability of DCNN-Match. The mean FOV
of acquisition of the MRI scans was 199 mm × 199 mm × 152 mm and the scans were re-
sampled to 2 mm × 2 mm × 2 mm voxel spacing. The pairs of source and target scans were
generated in a similar way to the CT scans (Sec. 2.5.2).

2.6 Experiments

We conducted three types of experiments. The first type of experiments were aimed to gain
insights in the working of DCNN-Match by changing the DescriptorMatchingLoss (Secs. 2.6.1
and 2.6.2). The second type of experiments were done to investigate the effect of automatically
predicted landmark correspondences on the performance of DIR (Sec. 2.6.3). We also investi-
gated how the changes in DescriptorMatchingLoss affected the added value of the automatic
landmark correspondences toward the performance of DIR. Third, we investigated the gener-
alization capability of DCNN-Match on a different modality (Sec. 2.6.4).

2.6.1 Descriptor loss

We trained three versions of DCNN-Match, each with a different DescriptorMatchingLoss.
The first version was trained with only the DescriptorHingeLoss defined in Eq. (5). This version
is referred to as DCNN-Match Hinge. DCNN-Match Hinge was trained with mpos ¼ 0 and
mneg ¼ 1. In the second version, only DescriptorCELoss Eq. (6) was employed. We refer to
this version as DCNN-Match CE. Next, we trained the network with a linear combination of
DescriptorHingeLoss and DescriptorCELoss Eq. (4), which is referred to as DCNN-Match
Hinge + CE.

Fig. 4 Transverse slices from representative examples. (a) Simulated deformations test set: the
source CT (right) is obtained by applying an elastic transformation to the target CT (left).
(b) Clinical deformations test set: the landmark at the location of a fiducial marker (shown with
red dot) in the target (left) and source (right) CT is shown. Note the appearance difference in the
bowel due to contrast.
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2.6.2 Positive margin in the hinge loss

We considered that the L2-norm of the descriptor pairs of highly deformed regions would be
high, and these pairs would be difficult to match. Further, it is intuitive to think that the land-
mark matches in regions of high deformation would provide more added value to the DIR
approach. To allow the network to focus more on matching these pairs, we trained DCNN-
Match Hinge + CE with two values for mpos: 0.1 and 0.2. These versions are referred to as
DCNN-Match Hinge0.1 + CE and DCNN-Match Hinge0.2 + CE, respectively. The value
of mpos > 0 in the DescriptorHingeLoss makes the loss term 0 for descriptor pairs whose
L2-norm is <mpos, i.e., the network already identifies the descriptor pairs as matching. Thus,
the gradients are influenced only by the descriptor pairs which are difficult to match.
Consequently, the network should be able to predict difficult landmark correspondences in the
highly deformed regions accurately.

2.6.3 Effect of additional guidance from automatic landmark
correspondences

To assess the effect of additional guidance from automatic landmark correspondences on the
DIR, we compared the results from the DIR pipeline with [weight2 ¼ 0.01 in Eq. (7) as obtained
from hyperparameter tuning on the development set] and without [weight2 ¼ 0 in Eq. (7)] auto-
matic landmarks correspondence detection.

2.6.4 Generalization to MRI dataset

Given the capability of deep neural networks to learn robust features, and the self-supervised
nature of our training approach, optimistically one would expect that the developed approach
would generalize to different datasets. To this end, we tested DCNN-Match on pairs of MRI
scans containing simulated deformations (described in Sec. 2.5.4) without retraining. Compared
to the training set, the MRI scans were not only different in imaging modality, but also in the
FOV of acquisition.

2.7 Evaluation

2.7.1 Spatial matching errors of landmark correspondences

In the simulated deformations test set, the landmarks on the source CT scans were projected on
the target CT scans using the known transformation between them. The Euclidean distances
between the landmarks on the target CT scans and the projection of their corresponding land-
marks predicted by the network were calculated. The Euclidean distance gives a measure of the
spatial matching error of the predicted landmark correspondences. The spatial matching errors
were compared between all versions of DCNN-Match.

Quantitative analysis of the spatial matching errors of the predicted landmark correspond-
ences is not feasible in the clinical deformations test set due to the absence of the ground truth
DVF. To provide some insights into the performance on the clinical deformations test set,
we conducted a validation study on a subset of the data. For this purpose, we randomly sampled
75 predicted landmarks from DCNN-Match CE in two patients (total 150 landmark correspond-
ences). A radiation oncologist (henceforth, referred to as clinician) ranked these landmark
correspondences on a 3 point Likert scale: 1 = good match (roughly within 5 mm distance),
2 = moderate match (roughly within 10 mm distance), 3 = poor or wrong match (roughly more
than 15 mm distance) in a 3D (axial, sagittal, and coronal) image viewer. The (approximate)
spatial matching errors were calculated based on the ranking provided by the clinician. The
clinician also labelled the anatomical location of the landmarks in target CT scans according
to the following categories: (a) bony anatomy, (b) soft tissue (i.e., muscles, fatty tissue, and
fascia), (c) bowel, i.e., large and small bowel, including gas pockets, and (d) other (including
organs and blood vessels i.e., veins and arteries). We also analyzed the spatial matching errors of
the predicted landmark correspondences separately for each anatomical category.
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2.7.2 Target registration error

In the clinical deformations test set, we transformed the manually annotated landmarks in the
target images according to the estimated DVF after DIR using the transformix module in
SimpleElastix28 (documentation on using transformix in SimpleElastix can be found at
SimpleElastix documentation and Elastix manual). We calculated their Euclidean distance with
the corresponding landmarks in the source image. This measure is often referred to as target
registration error (TRE). We calculated the TRE values after initial affine registration and before
the DIR (TREbefore) and after DIR (TREafter) for all experiments. In the simulated deformations
test set, TRE calculations were done using the randomly sampled validation landmarks described
in Sec. 2.5.

It should be noted that the TRE calculations were done in image space, i.e., the landmarks
were represented by the center of a voxel. We chose this setup because the automatic landmarks
are predicted in image space. However, this setup may give rise to discretized TRE values.

2.7.3 Landmark correspondences vs. underlying deformation

It is intuitive to think that the DIR performance in a specific region is dependent on the under-
lying deformation in that region. Concordantly, the distribution of landmarks with respect to the
underlying deformation would impact the additional guidance provided by the landmarks over-
all. Therefore, it is important to investigate the choice of landmark locations by the network with
respect to the extent of deformation at those locations. To this end, we partitioned the voxels
in the source images in the simulated deformations test set into bins of different deformations.
For each DCNN-Match variant, the spatial density of predicted landmark correspondences was
calculated in each bin of the underlying deformation by dividing the number of landmarks with
the number of voxels in each bin.

Similarly, we calculated the percentage of automatic landmarks below 4 mm spatial matching
errors (as a surrogate for landmarks correspondence accuracy) and TRE values of validation
landmarks (as a measure of DIR performance) in each deformation region. The threshold of
4 mm was chosen because the same threshold was used during training. In each deformation
region, we analyzed the TRE values in light of the spatial density and landmarks correspondence
accuracy to gain insights about what aspects of automatic landmarks affect the DIR performance.

2.7.4 Determinant of spatial Jacobian

Evaluating the performance of DIR is a difficult task and TRE can only give an estimate of
performance on sparse image locations. Moreover, TRE can give a biased perspective of the
DIR performance because of the observer subjectivity in the manual annotation of landmark
locations. In order to assess whether the obtained DVF is anatomically plausible or not, the
determinant of the spatial Jacobians of the DVF is a good measure. The negative values in the
determinant of the spatial Jacobian represent singularities in the DVF and indicate image folding
in those regions. Therefore, we also investigated the determinant of the spatial Jacobians of the
obtained DVFs after DIR.

2.8 Statistical Testing

The statistical testing was done using IBM SPSS Statistics for Ubuntu (Version 27.0, IBM Corp.
Released 2020. Armonk, NY: IBM Corp).33 We tested the null hypothesis that the TREafter values
in the test sets were the same in the following experimental scenarios: DIR without additional
guidance from corresponding landmarks, and DIR with additional guidance from five different
variants of DCNN-Match.

Kolmogorov–Smirnov tests for normality revealed that the TREafter values were not normally
distributed in any of the experimental scenarios. Therefore, we used the related samples
Friedman’s two way analysis of variance by Ranks test followed by post-hoc pairwise compar-
isons using Dunn–Bonferroni test.34 An alpha of 0.05 with Bonferroni correction for multiple
comparisons was considered significant.
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3 Results

The average inference time of DCNN-Match variants for predicting landmark correspondences
in one CT scan pair was ∼20 s. A representative example of predicted landmark correspond-
ences is shown in Fig. 5. The images in the figure are shown with the couch table cropped for
better visualization, but the automatic landmark correspondence detection as well as DIR were
performed on full CT scans without any cropping.

3.1 Number of Landmark Correspondences

The number of landmark correspondences predicted per image on the simulated test set and
clinical test set is given in Table 1 and Fig. 6. As can be seen in Table 1 and Fig. 6, DCNN-
Match Hinge and DCNN-Match CE approaches predicted a large number of landmarks per CT
scan pair. In DCNN-Match Hinge + CE, the use of an auxiliary loss allows for applying an
additional constraint on the landmark correspondences. Consequently, the number of predicted
landmark correspondences per image was fewer than with using either of the loss separately.
Further, the DCNN-Match Hinge0.1 + CE and DCNN-Match Hinge0.2 + CE predicted even
fewer landmarks per CT scan pair, possibly due to the additional constraint posed by the positive
margin mpos used in the Hinge loss. It should be noted that irrespective of the differences within
different DCNN-Match variants, a considerable number of landmark correspondences were
predicted by all of them in both the simulated as well as the clinical deformations test set.

Fig. 5 Visualization of predicted landmark correspondences by (a) DCNN-Match Hinge,
(b) DCNN-Match CE, (c) DCNN-Match Hinge + CE, (d) DCNN-Match Hinge0.1 + CE, and
(e) DCNN-Match Hinge0.2 + CE. A transverse slice from target and source CTs in the simulated
deformations test set (left) and the clinical deformations test set (right) is shown. The correspond-
ing landmarks are shown with the same colored cross-hairs in target and source image and a
white line is drawn for in-slice corresponding landmarks. It is noteworthy that some corresponding
landmarks may lie on a different slice and are therefore not visible in the figure.
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3.2 Spatial Matching Errors of Landmark Correspondences

The cumulative distribution of the predicted landmark correspondences in the simulated test set
is plotted against their spatial matching errors in Fig. 7. Both DCNN-Match Hinge and DCNN-
Match CE predicted more than 70% landmarks with <2 voxels (equivalent to 4 mm) spatial
matching error. But, DCNN-Match CE predicted a higher percentage of landmarks within a
specific spatial matching error as compared to DCNN-Match Hinge. The decrease in spatial
matching errors could be attributed to the added parameters used in the dedicated descriptor

Table 1 Number of predicted landmark correspondences per CT scan pair. Mean (M) ± standard
deviation (SD), and range (5th percentile–95th percentile) are provided.

DCNN-Match
Hinge

DCNN-Match
CE

DCNN-Match
Hinge + CE

DCNN-Match
Hinge0.1 + CE

DCNN-Match
Hinge0.2 + CE

Simulated deformations

M ± SD 5488 ± 2258 7761 ± 2540 1698 ± 888 1735 ± 959 1220 ± 871

Range 2160–9580 2999–11400 595–3462 563–3563 244–3028

Clinical deformations

M ± SD 3708 ± 1052 7427 ± 1682 946 ± 391 1062 ± 479 511 ± 307

Range 2563–5344 5394–10340 491–1569 455–1819 193–1000

Fig. 6 Distribution of predicted automatic landmark correspondences across patients in (a) simu-
lated deformations test set and (b) clinical deformations test set. The boxes extend from the lower
to upper quartile values of the data, with a line at the median. Mean is shown with a triangular
marker and whiskers represent the range from 5th percentile to 95th percentile.

Fig. 7 Cumulative distribution of the landmarks with respect to the spatial matching errors for
different versions of DCNN-Match on the simulated deformations test set-CT.
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matching module in DCNN-Match CE as opposed to the parameter-free module in DCNN-
Match Hinge. Further, DCNN-Match Hinge + CE takes advantage of the auxiliary loss and there-
fore, the landmark correspondences are predicted with lower spatial matching errors. About
90% of the predicted landmarks had a spatial matching error of <4 mm.

As expected, training with mpos > 0 yielded landmarks with lower spatial matching errors as
compared to DCNN-Match Hinge + CE (Fig. 7). Specifically for DCNN-Match Hinge0.2 + CE,
more than 90% of the predicted landmark correspondences had spatial matching errors of less
than 1 voxel, which is equivalent to 2 mm (image resolution). This finding indicates the potential
of the automatic landmark correspondences predicted by the DCNN-Match variant for use in
clinical applications.

3.3 Spatial Matching Errors in Clinical Data

In Fig. 5, the predicted landmark correspondences from DCNN-Match variants on a represen-
tative transverse slice from the clinical deformations test set are shown for the reader’s perusal.
More examples are shown in Figs. 8(a) and 8(d). The border colors indicate the ranking given by
the clinician: green = good, yellow = moderate, red = wrong match. Figure 8(a) demonstrates a
good match in the small bowel despite the difference of the underlying contrast and Fig. 8(b)
demonstrates a good match in the muscle despite a change in the muscle deformation. In
Fig. 8(c), both the landmarks are present in the rectum, but in different locations, although
it was challenging to review because of the presence of the gas pocket and change in the muscle
deformation. Figure 8(d) shows an example of a wrong match in the bowel. It is important to note
the underlying challenges visible between the two scans in Fig. 8(d), e.g., difference in contrast,
and content mismatch due to presence of gas pockets.

Figure 8(e) shows that more than 72% landmark correspondences were ranked as good match
i.e., approximately within 5 mm distance and about 90% landmark correspondences were ranked

Fig. 8 Validation of landmark correspondences in clinical deformations test set. Representative
examples of (a) and (b) good match, despite contrast variation and difference in muscle deforma-
tion; (c) moderate match; and (d) wrong match. (e) Cumulative distribution of landmarks with
respect to (approximate) spatial matching errors. (f) Distribution of landmarks in different anatomi-
cal categories. The bars are shaded in proportion to the number of landmarks corresponding to a
rank: green = good, yellow =moderate, red = wrong. In each anatomical category, the total number
of landmarks representing a rank is provided in the text above bars in the corresponding color.
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to be within 10 mm distance. These results indicate only a small performance difference in com-
parison to the simulated deformations test set [magenta curve in Figs. 7 and 8(e)], which is
expected due to the presence of additional challenges in the clinical data.

Further, in Fig. 8(f), the percentage of landmarks in bony anatomy, soft tissue, bowel, and
other regions is plotted. The bars in the plot are shaded in green, yellow, and red colors in pro-
portion to the ranking of the landmarks (green = good, yellow = moderate, red = wrong) in that
anatomical category. It is worth noting that the wrong matches are mainly in the bowel region,
where content mismatch may happen along with large deformations and intensity variations.

3.4 Effect of Landmark Correspondences on DIR

In Table 2, the TRE values in the simulated and clinical deformations test sets are provided.
In Fig. 9, boxplots of TRE values are provided. In both test sets, there was a significant main
effect of the experimental scenario (i.e., DIR without landmarks and with landmarks predicted
by either one of the DCNN-Match variants) on the observed TREafter values, (χð5Þ ¼ 6620.117,
p ¼ 0e0) in the simulated test set and [χð5Þ ¼ 34.051, p = 0.000002] in the clinical test set. It is
noteworthy that in the simulated test set, the sample size was quite large (100 landmarks per scan
× 121 scans = 12100) giving rise to near zero p values in the statistical testing.

In the simulated deformations test set, the post-hoc comparisons revealed that TREafter values
from registration using additional guidance from landmark correspondences predicted by any

Table 2 TREs in mm of pre-specified landmarks (for details refer to Sec. 2.7.2) before DIR but
after affine registration (TREbefore) and after DIR with different approaches (TREafter). Mean (M) ±
standard deviation (SD), and range (5th percentile–95th percentile) are provided. Best TRE values
are highlighted in bold.

Simulated deformations Clinical deformations

M ± SD Range M ± SD Range

TREbefore 21.99 ± 12.67 6.00–41.76 8.50 ± 5.81 2.00–19.96

TREafter Without landmarks 5.07 ± 9.98 0.00–20.20 6.85 ± 5.79 2.00–19.12

DCNN-Match Hinge 3.58 ± 8.80* 0.00–12.33 6.69 ± 5.84 2.00–19.53

DCNN-Match CE 3.14 ± 8.61* 0.00–10.77 6.42 ± 5.79* 2.00–19.94

DCNN-Match Hinge + CE 3.21 ± 8.63* 0.00–10.95 6.74 ± 5.77 2.00–19.47

DCNN-Match Hinge0.1 + CE 3.18 ± 8.62* 0.00–10.77 6.79 ± 5.83 2.00–19.31

DCNN-Match Hinge0.2 + CE 3.27 ± 8.65* 0.00–10.95 6.82 ± 5.86 2.00–19.53

*Represents significance in post-hoc comparison against TREafter without landmarks.

Fig. 9 Distribution of TRE in (a) simulated deformations test set and (b) clinical deformations test
set. The boxes extend from the lower to upper quartile values of the data, with a line at the median.
Mean is shown with a triangular marker and whiskers represent the range from 5th percentile to
95th percentile.
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of the DCNN-Match variants were significantly lower than TREafter values from registration
without using additional guidance from landmark correspondences. However, the strongest
effect was observed with landmark correspondences from DCNN-Match CE (p ¼ 0e0).

On the clinical deformations test set, although the TREafter values from registration with the
use of additional guidance by automatic landmark correspondences were smaller than the
TREafter values from registration without using additional guidance from landmark correspond-
ences, the differences were small. Only the post-hoc comparison between TREafter values from
registration using landmark correspondences predicted by DCNN-Match CE and TREafter values
from registration without using landmark correspondences yielded statistical significance after
correction for multiple comparisons (p ¼ 0.030).

3.5 Differential Effect of DCNN-Match Variants on DIR

The post-hoc analysis indicated that the landmarks predicted by DCNN-Match CE had signifi-
cantly more added value (as reflected by the TREafter values) as compared to the landmarks
predicted by DCNN-Match Hinge on the simulated test set (p ¼ 0e0). However, a similar
finding could not be corroborated on the clinical deformations test set—pairwise comparison
of TREafter values obtained by DCNN-Match CE and DCNN-Match Hinge did not yield
significance after correcting for multiple comparisons (p ¼ 0.406).

Based on the observed spatial matching errors, it is intuitive to expect that DCNN-Match
Hinge + CE would yield lower TRE values after registration as compared to DCNN-Match CE.
However, surprisingly this is not the case (Table 2). TREafter values using DCNN-Match CE were
significantly lower than TREafter values using DCNN-Match Hinge + CE in the simulated defor-
mations test set (p ¼ 0.013). In the clinical deformations test set also, the TREafter values using
DCNN-Match CE were significantly lower than TREafter values using DCNN-Match Hinge + CE
(p ¼ 0.046).

Furthermore, the TRE values after registration were not affected by increasing mpos in the
simulated test set. The post-hoc pairwise comparisons of TREafter values using DCNN-Match
Hinge + CE vs DCNN-Match Hinge0.1 + CE were not significant (p ¼ 0.783) on the simulated
deformations test set. In fact, the TREafter values using DCNN-Match Hinge0.2 + CE values were
significantly higher than TREafter values using DCNN-Match Hinge0.1 + CE (p ¼ 0.000244).
This indicates that even though an increase in mpos predicts landmark correspondences with
lower spatial matching errors, there is no additional benefit toward DIR performance. The obser-
vations on clinical deformations also corroborated the findings on simulated deformations. None
of the post-hoc comparisons between experimental scenarios with different mpos values were
significantly different in the clinical deformations test set.

Overall, the results from pairwise comparisons between the TREafter indicate that the added
value of the automatic landmark correspondences towards the improvement of DIR perfor-
mance is dependent on the underlying approach for identifying automatic landmark
correspondences.

3.6 Relation between Aspects of Automatic Landmarks and DIR
Performance

In Fig. 10(a), the landmarks correspondence accuracy (averaged over 121 patients) as described
in Sec. 2.7.3 in the regions of different underlying deformation is plotted for each DCNN-Match
variant. As can be seen, the correspondence accuracy of the automatic landmarks predicted by
DCNN-Match Hinge deteriorated as the underlying deformation increased. A similar trend was
observed for DCNN-Match CE, but to a lesser extent. As expected, the correspondence accuracy
of the landmarks predicted by DCNN-Match Hinge + CE was higher than both DCNN-Match
Hinge as well as DCNN-Match CE in all regions of the underlying deformation. Further, the
purpose of experimenting with mpos ¼ 0.1 and mpos ¼ 0.2 to encourage high landmarks corre-
spondence accuracy in the regions of high deformation seems to be fulfilled. The landmarks
correspondence accuracy was high irrespective of the extent of the underlying deformation for
DCNN-Match Hinge0.1 + CE and even higher for DCNN-Match Hinge0.2 + CE.
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In Fig. 10(b), the spatial density of predicted landmark correspondences (averaged over 121
patients) in different regions of the underlying deformation is plotted for each DCNN-Match
variant. The plot shows that DCNN-Match CE predicted more landmarks in regions with high
deformations as compared to other DCNN-Match variants, which is purely empirical.

In Fig. 10(c), the TREafter values of the validation landmarks (averaged over 121 patients)
in different region of the underlying deformation are plotted for each DCNN-Match variant. As
is apparent from the figure, the TREafter values were lowest in all deformation regions when
the automatic landmarks predicted by DCNN-Match CE were used as compared to the other
DCNN-Match variants.

If we analyze the plots in the Fig. 10 collectively, we observe that in high deformation
regions, DCNN-Match CE predicted landmarks with lower landmarks correspondence accuracy
but higher spatial density as compared to DCNN-Match Hinge + CE, DCNN-Match Hinge0.1 +
CE, and DCNN-Match Hinge0.2 + CE. Further, the DIR performance in the highly deformed
regions was higher (reflected by lower TREafter values) with the use of the automatic landmarks
predicted by DCNN-Match CE as compared to DCNN-Match Hinge + CE, DCNN-Match
Hinge0.1 + CE, and DCNN-Match Hinge0.2 + CE. This implies that a larger number of slightly
less accurate landmarks in highly deformed regions may be more favorable for guiding the DIR
approach as compared to a smaller number of highly accurate landmarks.

3.7 Determinant of Spatial Jacobian and Qualitative Evaluation

The determinant of the spatial Jacobian of the obtained DVFs was observed to be non-negative in
all the registrations obtained in all the experimental scenarios. This indicates that all the obtained
registrations were anatomically plausible.

Figure 11 shows a representative example of registration without using landmarks and regis-
tration with the DCNN-Match CE approach. The source image has a large local deformation in
the center along with small random deformations globally. The transformed source images
obtained after DIR have been overlaid onto the target image [columns (b) and (d)] using com-
plementary colors such that the aligned structures look grey and misalignment is highlighted in
colors. As can be seen in column (b), many regions are not aligned properly after the registration,
but, with the additional guidance information [column (d)], the anatomical structures look per-
fectly aligned. The corresponding landmark pairs are shown with cross-hairs of the same color in
the target and source images. It is worth noting that DCNN-Match CE can find landmark cor-
respondences in highly deformed regions as well. As a result, DIR with landmark correspond-
ences can find a better estimation of the underlying deformation field as compared to the baseline
DIR approach. Columns (c) and (e) represent the root mean square errors (RMSE) of the ground
truth DVF and the DVF obtained after DIR without and with landmark correspondences. Further,
Fig. 12 shows an example of DIR without and with using landmarks for clinical deformations.
While the output of registration without and with using landmark correspondences looks similar
in most cases, a subtle improvement in alignment can still be spotted in some regions of the

Fig. 10 Analysis of relation between aspects of landmark correspondences and DIR perfor-
mance. (a) Landmarks correspondence accuracy in different regions of underlying deformation
represented by the percentage of landmarks predicted within 4 mm spatial matching errors.
(b) Spatial density of landmarks (number of landmarks per voxel) predicted in different regions
of underlying deformation. (c) TRE of validation landmarks after DIR using automatic landmarks.
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images (also highlighted with a red rectangle in the figure) with the use of landmark correspond-
ences in the DIR. The determinant of the spatial Jacobian shown in Figs. 12(c) and 12(e) shows
no visible image folding in the DIR solutions obtained by either of the approaches.

3.8 Generalization to MRI Dataset

A representative example of predicted landmark correspondences by DCNN-Match CE on MRI
scans without retraining is shown in Fig. 13(a). Upon visual inspection, the predicted landmark
correspondences seem to be accurate despite the different modality of the test scans. Further,
the FOVof the acquisition of MRI scans was ∼16 times smaller than the FOVof the acquisition
of CT scans in the test set. To make a direct comparison between the number of predicted land-
mark correspondences in CT and MRI datasets, we calculated the spatial density of predicted
landmarks by dividing the number of landmarks by the total number of voxels in each image.
In CT scan images, a large portion of the image consists of background voxels where the DCNN-
Match variants do not predict landmark correspondences. Therefore, we considered only the
voxels in the patient’s anatomy by counting the number of voxels in the largest connected
component after binarizing the image through intensity thresholding.

The spatial density of predicted landmarks in both CT and MRI test sets is shown in
Fig. 13(b). Since the networks were not trained on MRI scans, the spatial density of the predicted
landmarks was reduced in MRI scans. Still, a considerable number of landmarks (on average for
all patients) were predicted in the MRI test set by each approach (shown as the text above bars).
Further, the spatial matching errors [shown in Fig. 13(c)] of the predicted landmark correspond-
ences on MRI scans were comparable to the spatial matching errors observed for CT scans.
Overall, the above results demonstrate the generalization potential of DCNN-Match on cross-
modality data without retraining.

Fig. 11 Qualitative results on simulated deformations test set. Transverse slices from 10mm apart
from a representative example are shown in different rows. Column (a) target image; columns
(b) and (c) RMSE plot between the ground truth and estimated DVF after registration without auto-
matic landmarks, respectively; columns (d) and (e) transformed source image and RMSE plot
between the ground truth and estimated DVF after registration with using automatic landmarks
predicted by DCNN-Match CE, respectively; and column (f) source image. Landmark correspond-
ences between the target and source images are shown in similar colored cross-hairs in columns
(a) and (f). Note: some of the landmarks may have correspondences in the transverse slices not
shown in the figure. The red rectangles highlight the effect of using landmark correspondences in a
highly deformed region.
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4 Discussion

We developed a self-supervised deep-learning method (DCNN-Match) for automatic landmarks
correspondence detection in 3D medical images. We have also presented quantitative and quali-
tative evidence that a high number of landmark correspondences with good spatial matching
accuracy can be predicted within seconds with the help of our proposed approach. Furthermore,
we integrated DCNN-Match with a DIR pipeline and assessed the added value of automatic
landmark correspondences toward the improvement of intra-patient DIR performance. To the
best of our knowledge, this is the first study to develop a self-supervised deep-learning approach
for predicting automatic landmark correspondences in 3D medical images and investigating their
applicability in improving DIR.

We developed five variants of the proposed approach, which differed in the way feature
descriptor matching is learned. We observed that a separate module for learning feature descrip-
tor matching (DCNN-Match CE) yields landmark correspondences with not only reduced spatial
matching errors but also an increased number of matches in regions of high deformation. The
results also showed that the added value to the performance of DIR was most prominent by the
use of automatic landmark correspondences predicted by DCNN-Match CE. While three other
variants predicted automatic landmark correspondences with better spatial matching accuracy
than DCNN-Match CE, the numbers of predicted landmarks by these variants were fewer than
the number of landmarks predicted by DCNN-Match, especially in regions of high deformation.
This implies that the spatial density of predicted landmarks with respect to the underlying defor-
mation plays a role in the extent of the added value provided by the automated landmark
correspondences.

The results also showed that the additional guidance by automatic landmark correspondences
improved the performance of DIR irrespective of the variance in the number, spatial matching
errors, and spatial distribution of the automatic landmarks in both simulated as well as clinical

Fig. 12 Qualitative results on clinical deformations test set. Transverse slices from 10 mm apart
from a representative example are shown in different rows. Column (a) target image; columns
(b) and (c) transformed source image and determinant of the spatial Jacobian after registration
without automatic landmarks, respectively; columns (d) and (e) transformed source image and
determinant of the spatial Jacobian after registration with using automatic landmarks predicted
by DCNN-Match CE, respectively; and column (f) source image. Landmark correspondences
between the target and source images are shown in similar colored cross-hairs in columns (a) and
(f). Note: some of the landmarks may have correspondences in the transverse slices not shown
in the figure. The red rectangle highlights a region where improvement by adding landmarks
correspondences in the DIR is visible.
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deformations test sets. These findings are in line with the existing literature on the use of auto-
matic landmarks for the improvement of DIR in chest CT,11,12,35 head and neck CT,36 retinal
images,13 and brain MRI images.14,37 A study on DIR of thoracic CT scans38 reported that auto-
matic landmarks-based optimization of the regularization parameter reduced the TRE of expert
landmarks on average by 0.07 mm. Another study on registration of CT scans corresponding to
end-inspiration and end-expiration phases reported a reduction of TRE of expert landmarks from
1.34� 2 mm to 0.82� 0.97 mm by the use of automatic landmarks in DIR.12 Our experiments
showed that the TRE of validation landmarks in the simulated deformations test set reduced from
5.07� 9.98 to 3.14� 8.61, and the TRE of expert landmarks in the clinical deformations test set
reduced from 6.85� 5.79 to 6.42� 5.79 on average by the use of automatic landmark corre-
spondences predicted by DCNN-Match CE in DIR. Since the improvement in DIR performance
reported in terms of TRE values of the expert landmarks is affected by several factors, e.g., the
number and location of the expert landmarks, image resolution, and TRE values before regis-
tration, a comparison in absolute values of TRE improvement cannot be made. Nevertheless, the
current study adds to the existing evidence on the added value of automatic landmark corre-
spondences in improving DIR by providing experimental results from pelvic CT scan registra-
tions, which otherwise did not exist.

Two other studies have looked into intra-patient DIR in cervical cancer patients.4,39 The
authors in one of the studies4 have focused on dose mapping and do not report TRE values.
The average TRE values after registration reported in the other study39 are the following: 3.5�
2.4 mm for bladder top, 8.5� 5.2 mm for cervix tip, 5.7� 2.1 mm for markers, and

Fig. 13 Generalization results on the simulated deformations test set - MRI. (a) Predicted corre-
sponding landmarks in the target and source MRI. Corresponding landmarks are shown with sim-
ilar colored cross-hairs in the target and source images. Note that some of the landmarks match
across slices following the underlying deformation in 3D. (b) Comparison of the spatial density of
predicted landmarks (averaged over all patients) between simulated deformations test set – CT
and simulated deformations test set – MRI for each DCNN-Match variant. The average number
of predicted landmarks is shown in the text above bars. * indicates significant difference after
Mann–Whitney U test. (c) Spatial matching errors of predicted landmark correspondences.
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4.6� 2.2 mm for the midline. As such, a direct correspondence between the landmarks used in
our study and landmarks in the earlier study cannot be ascertained. Moreover, the underlying
dataset and methods used are also different. Still, the mean TRE value obtained after registration
with additional guidance information from landmark correspondences predicted by DCNN-
MatchCE (6.42� 5.79 mm) seems to be within the range of reported TRE values, which gives
some confidence that the obtained DIR results are satisfactory.

The extent of the added value provided by the use of automatic landmark correspondences in
DIR was lower in the clinical deformations test set as compared to the simulated deformations
test set. Our retrospective analysis (provided in Supplementary Material S1) revealed no obvious
patterns regarding the spatial distribution of the automatic landmarks in relation to manual land-
marks used for TRE calculations that could explain the lower added value of using automatic
landmarks in the clinical deformations test set. The DIR performance in case of clinical defor-
mations as reflected by TRE of manually annotated landmarks is affected by several factors e.g.,
choice of manual landmarks, inter- and intra-observer variation in the placement of manual land-
marks, hyperparameters in the parameter map used for Elastix, limitations of Elastix in modeling
large deformations, sliding tissue, and singularities in DVF. Therefore, establishing a direct rela-
tionship between the quality of automatic landmark correspondences and the DIR performance
is difficult. However, we can speculate on a few factors that impacted the quality of automatic
landmark correspondences and hence could have impacted the added value to DIR. In the
clinical test set, the CT scans were acquired with contrast administered via a rectal tube or intra-
venously. Consequently, one or multiple regions (e.g., vagina, bladder, bowel bag, or vascular
regions) were contrast-enhanced giving rise to large differences in appearance between the CT
scan pairs, which was not a part of the training for DCNN-Match. An example of appearance
variation due to contrast is shown in Fig. 4(b). This appearance variance between the source and
target CT scans often overlapped with the large and complex deformations in the bladder and
bowel bag. This posed an additional challenge for finding landmark correspondences between
scans. Although all DCNN-Match variants were still able to find landmark correspondences in
these scans despite the aforementioned challenges, they failed to find correspondences in regions
where appearance was strongly different due to a combination of contrast administration and
underlying deformation. We expect that incorporating a model for simulating contrast
differences between scans and a better (probably a bio-mechanical based) model for simulating
deformations due to physical phenomena such as bladder filling would lead to the prediction of
automatic landmarks in the aforementioned challenging scenario as well and yield a larger added
value of using automatic landmark correspondences in DIR. We are considering pursuing this
direction for a future study.

Another factor affecting the DIR performance in the clinical deformations test set is that we
tuned the hyperparameters used in Elastix (weights of the objectives used in DIR, weight1, and
weight2) based on the DIR of CT scan pairs in the validation set consisting of simulated defor-
mations. We used these hyperparameters for all the registrations in both simulated as well as
clinical deformation test sets. This does not acknowledge the fact that each DIR problem is
unique and therefore, a single setting for all source and target pairs is sub-optimal. Earlier
research has also pointed out the importance of tuning the weights of different objectives in
the DIR separately for each image pair to achieve the best DIR performance.38,40 We conducted
retrospective experiments by changing the weights of the objectives in DIR, which revealed that
weight1, and weight2 values corresponding to best DIR performance (quantified in terms of
minimum TRE values) were indeed different for each CT scan pair in the clinical deformations
test set. Unfortunately, the tuning of weight1, and weight2 separately for each CT scan pair in the
clinical deformations test set could not be done objectively and automatically due to the
unavailability of the underlying ground truth. Note that the manually annotated landmarks were
used to evaluate the DIR performance and therefore using them for tuning weight1, and weight2
would have produced biased results. However, the purpose of this research was not to obtain the
best DIR performance for each CT scan pair but to quantify the effect of additional guidance
provided by the automatic landmark correspondences. Further, the added value of the additional
guidance provided by the automatic landmark correspondences may be limited by erroneous
matches. While the results on the simulated data indicated the benefits of more landmarks
toward DIR performance, the adverse effect of erroneous matches remains unclear. It would
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be interesting to investigate in a future study how much value can be gained by removing the
erroneous landmark matches either using RANSAC41 or a deep-learning approach.42 Another
interesting direction for future research can be to simultaneously learn a deep-learning model for
landmark matching as well as performing DIR. Such a model can be used to investigate how
many landmarks are optimal for improving the DIR. However, care needs to be taken to avoid
degeneracy because landmark matching essentially is performing DIR on a sparse grid and the
optimal number of landmark matches to improve DIR could quite likely be the total number of
voxels in the image.

Remarkably the proposed approach for finding automatic landmark correspondences could
find automatic landmark correspondences on cross-modality data without retraining. Based on
this observation, we expect that with retraining (which requires minimal effort because manual
annotations are not needed), the proposed approach should be able to find automatic landmark
correspondences on any type of medical imaging data. Furthermore, since a considerable number
of landmarks were predicted in the MRI scans with spatial matching errors comparable to the CT
scans, we expect that the use of automatic landmarks should lead to performance gain in DIR on
MRI scans also. With retraining on MRI scans, we expect that the added value to the DIR per-
formance will be similar to as observed in the CT scans.

5 Conclusion

We developed a self-supervised method for automatic landmarks correspondence detection in
abdominal CT scans and investigated the effect of different variants of our automatic landmarks
correspondence detection approach on the performance of DIR. The obtained results provide
strong evidence for the added value of using automatic landmark correspondences in providing
additional guidance information to DIR. The added value of automatic landmarks in DIR is
consistent across different variants of our approach and for both simulated as well as clinical
deformations. Additionally, we observed that the spatial distribution of automatic landmark cor-
respondences with respect to the underlying deformation has a considerable effect on the extent
of the added value provided by landmark correspondences. A higher number of automatic land-
mark correspondences in highly deformed regions has more added value than more accurate but
fewer landmark correspondences. Therefore, further research in the direction of developing land-
mark detection approaches that are aware of the underlying deformation is recommended.

In conclusion, the current study affirms the added value of using automatic landmark cor-
respondences for solving challenging DIR problems and provides insights into what type of
landmark correspondences (in terms of spatial distribution and matching errors) may be more
beneficial to DIR than others.

6 Appendix A: Elastix Parameter Maps

6.1 A.1 Affine Registration

(AutomaticParameterEstimation "true")
(AutomaticTransformInitialization "true")
(AutomaticTransformInitializationMethod "Origins")
(CheckNumberOfSamples "true")
(DefaultPixelValue 0)
(FinalBSplineInterpolationOrder 1)
(FixedImagePyramid "FixedSmoothingImagePyramid")
(ImageSampler "RandomCoordinate")
(Interpolator "LinearInterpolator")
(MaximumNumberOfIterations 1024)
(MaximumNumberOfSamplingAttempts 8)
(Metric "AdvancedMattesMutualInformation")
(MovingImagePyramid "MovingSmoothingImagePyramid")
(NewSamplesEveryIteration "true")
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(NumberOfResolutions 4)
(NumberOfSamplesForExactGradient 4096)
(NumberOfSpatialSamples 4096)
(Optimizer "AdaptiveStochasticGradientDescent")
(Registration "MultiResolutionRegistration")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")
(Transform "AffineTransform")

6.2 A.2 Deformable Image Registration

(AutomaticParameterEstimation "true")
(BSplineInterpolationOrder 1)
(CheckNumberOfSamples "true")
(DefaultPixelValue 0)
(FinalBSplineInterpolationOrder 1)
(FinalGridSpacingInPhysicalUnits 8)
(FixedImageDimension 3)
(FixedImagePixelType "float")
(FixedImagePyramid "FixedRecursiveImagePyramid")
(HowToCombineTransforms "Compose")
(ImageSampler "RandomCoordinate")
(Interpolator "BSplineInterpolator")
(MaximumNumberOfIterations 300 600 900 1200)
(Metric "AdvancedMattesMutualInformation"

"TransformBendingEnergyPenalty"
"CorrespondingPointsEuclideanDistanceMetric")

(Metric0Weight 1)
(Metric1Weight 1)
(Metric2Weight 0.01)
(MovingImageDimension 3)
(MovingImagePixelType "float")
(MovingImagePyramid "MovingRecursiveImagePyramid")
(NewSamplesEveryIteration "true" "true" "true" "true")
(NumberOfHistogramBins 32 32 32 32)
(NumberOfResolutions 4)
(NumberOfSpatialSamples 5000 5000 5000 5000)
(Optimizer "StandardGradientDescent")
(Registration "MultiMetricMultiResolutionRegistration")
(ResampleInterpolator "FinalBSplineInterpolator")
(Resampler "DefaultResampler")
(SP_A 100 200 300 400)
(SP_a 35000 30000 25000 20000)
(SP_alpha 0.602 0.602 0.602 0.602)
(ShowExactMetricValue "false" "false" "false" "false")
(Transform "BSplineTransform")
(UpsampleGridOption "true")

7 Appendix B: List of manually annotated landmarks

1. Fiducial markers in the vaginal wall near the cervix at the locations: posterior left,
anterior mid, posterior right, posterior mid, anterior left, and anterior right,

2. bifurcation aorta,
3. os coccygis,
4. medial tip of right and left trochanter minor,
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5. most caudal, dorsal, and ventral part of the corpus of lumbar vertebrae 3,
6. most caudal, dorsal, and ventral part of the corpus of lumbar vertebrae 5,
7. right and left bifurcation vena iliaca communis,
8. right and left bifurcation of artery iliaca communis,
9. umbilicus,

10. caudal tip of right and left kidney,
11. external and internal anal sphincter,
12. cervical ostium,

13. external and internal urethral ostium,
14. right and left ureteral ostium, and
15. uterus top.
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