DE REKSTROOK-MEETAPPARATUUR VOOR EXPERIMENTEEL SPANNINGS-
ONDERZOEK IN 96 MEETPUNTEN.

A. Beschrijving en toelichting.
   I. Inleiding.
   II. Het meten van spanningen met behulp van rekstrookjes.
   III. Beschrijving der apparatuur.

B. Handleiding voor het gebruik blz. 12
   I. Algemene aanwijzingen.
   II. Het drogen van rekstrookjes.
   III. Het meten met rekstrookjes.
   IV. Het instellen van de wagner-aarde.

A. Beschrijving en toelichting

I. Inleiding.

In verband met de hoge eisen, die speciaal in de luchtvaart
aan de gebruikte materialen worden gesteld, is het van groot
belang een nauwkeurig beeld te hebben van de grootten en het
verloop der materiaalspanningen in vliegtuig-onderdelen.

Dit inzicht kan op verschillende wijzen worden verkregen; in
de eerste plaats via de theorie der elasto-mechanica; anderzijds
via het experiment; tenslotte kan ook een combinatie van beide
methoden worden gebruikt.

Wat betreft de motieven voor het uitvoeren van experimenteel
spanningsonderzoek: in de praktijk kan dit onderzoek dienen als
controle op voorgaande berekeningen van spanningen en spannings-
verloop. Het is evenwel ook mogelijk dat voor bepaalde constructies,
(bv. gecompliceerder beslagen), geen goede of betrouwbare reken-
methoden aanwezig is, zodat men dan vrijwel geheel op het experiment
is aangewezen.

Bij theoretisch spanningsonderzoek kan de experimentele methode
aanwijzingen geven betreffende de juistheid van de toegepaste wijze
van berekenen.

Experimenteel spanningsonderzoek kan op velerlei wijzen worden
uitgevoerd. Vrijwel altijd vindt men de spanning door in het be-
schouwde punt de specifieke rek te bepalen. Deze specifieke rek
(ε), die uiteraard te klein is om met het blote oog te worden
waargenomen, kan op verschillende wijzen worden gemeten. In het
elastisch gebied geldt: \( \sigma = \varepsilon E \)

Als voorbeelden van methoden voor het meten van rekken kunnen worden genoemd. De mechanische methode (Huggenberger); de optische methode (met meetmicroscoop); de methode waarbij het geluid als medium wordt gebruikt (Mainak)

Verder wordt voor het bepalen van spanningsverdelingen gebruik gemaakt van de foto-elastische methode, die berust op de eigenschappen, welke bepaalde soorten kunsthars vertonen ten opzichte van doorvallend gepolariseerd licht.

De methode, die sinds 1940 het meest wordt toegepast is de elektroelasticiteit, hierbij wordt de te meten rek omgezet in een elektrisch verschijnsel, bijv. de verandering van de capacititeit van een condensator, of de verandering van de elektrische weerstand, die een geluidert vertoont wanneer zijn lengte verandert.

Bij experimenteel spannings-onderzoek aan onderdelen van vliegtuigen zal over het algemeen de spanning in meer dan één punt moeten worden gemeten, omdat de te onderzoeken constructies over een bepaalde doorsnede vaak groots en onregelmatige spanningsfluctuaties vertonen. Men denkt hierbij aan een op buiging belaste verstijfde schaal, waar zowel het spanningsverloop over de verstijvers als dat in de huid van belang is. (Hierbij is nog afgezien van de mogelijkheid, dat men in één of meer punten van een constructie de grootten en richtingen der twee hoofdspanningen zou willen bepalen. In elk van deze punten zou men dan de rek in 3 richtingen moeten meten)

Om het spanningsverloop in een schaalconstructie als de bovengenoemde met voldoende betrouwbaarheid te bepalen moet men dus de spanning in een groot aantal punten meten. Dit houdt in, dat men of een groot aantal rekimeters moet gebruiken, of dat, bij gebruik van één rekimeter, na elke meting de constructie moet worden ontlast, de rekimeters verplaatst, en de belasting opnieuw aangebracht. Deze laatste methode is natuurlijk zeer onzinnig, daarbij nog afgezien van het feit dat de vorm van de te onderzoeken constructie veelal het gebruik van de meeste typen rekimeters onmogelijk maakt. De oplossing moet dus worden gevonden in het toepassen van een aantal rekimeters, en liest evenveel als er meetpunten zijn. Het spreekt vanzelf dat het gebruik van bv. rekimeters van Huggenberger, zo al theoretisch mogelijk, hier toch grote praktische moeilijkheden geeft. Men denkt ook aan meting op plaatsen, die voor de waarnemer onzichtbaar zijn.

De enige methode, die hier met succes kan worden toegepast is de elektrische, en wel in het bijzonder die, welke berust op de verandering van de elektrische weerstand van een dunne draad, die vast met de constructie is verbonden en bij juiste plaatsing een verandering van lengte, en dus van weerstand, zal ondergaan.

De in de volgende toelichting te bespreken apparatuur berust op het gebruik van dit soort rekimeters, in de techniek bekend als reksstrookjes (strain gauges)

N.B. De beschrijving van de apparatuur gaat, wat betreft de behandeling van de reksstrookjes zelf, slechts zover als in verbond met een duidelijke verklaring van de werking der apparatuur nodig is.

Vóór men overgaat tot het doen van metingen dient men zich op
de hoogte te stellen van de verschillende soorten rekstrookjes, hun eigenschappen, het lijm-procéédé, het conserveren en controleren der strookjes, enz. Zie hiervoor lit. 1 (lit. lijst op blz. 13)

II. Het metingen van spanningen met behulp van rekstrookjes.

Een rekstrookje bestaat uit een zeer dunne metalen draad (het zgn. filament) met een dikte van bijv. 25 μ, zig-zaggewijs ingebed in een lijmlaag op een strookje papier (zie fig. 1). Het materiaal is meestal constantaant. Het strookje wordt met speciale lijm op de te onderzoeken constructie bevestigd.

Om het principe van spanningsmeting met rekstrookjes te verklaren kan worden uitgegaan van het in fig. 2 getekende schema. De daar getekende schakeling staat bekend als de "Brug van wheatstone". Een dergelijke brug bestaat in zijn eenvoudigste vorm uit 4 weerstanden, op de in fig. 2 aangegeven wijze aangesloten op een stroombron, terwijl tussen de punten B en C een galvanometer is aangesloten. Wanneer er tussen de punten B en C geen stroom vloeiit, en dus de galvanometer geen uitslag vertoont (de brug is dan "in evenwicht") bestaat tussen de 4 weerstanden de verhouding

\[ r_1 : r_2 = r_3 : r_4. \]

Maakt men nu het contactpunt B instelbaar zodat en worden, maar in grootte bekend zijn (een zgn. potentiemeter-schakeling) dan heeft m.n hier de mogelijkheid om een onbekende weerstand te meten.

Neem aan, dat de grootte van onbekend is.

Brennt men nu, door het verschuiven van contactpunt B, de brug in evenwicht, dan geldt, zodra de galvano-meter geen uitslag meer vertoont, waar de verhouding

\[ r_1 : r_2 = r_3 : r_4. \]

\[ r_1, 2, 4 \text{ zijn bekend, zodat dus de grootte van } r_3 \text{ volgt uit } r_3 = \frac{r_1 r_4}{r_2}. \]

Het is op deze wijze eveneens mogelijk een weerstands-verandering te meten. Dit is het principe waarop metingen met rekstrookjes berusten.

Zie nu fig. 3, waar een schema is getekend voor spanningsmeting met rekstrookjes; hier voor slechts één meetpunt.

R is het rekstrookje, dat op de constructie is gelijmd, en dus bij de beproeving een verandering van weerstand krijgt. Nu is evenwel r hun vervangen door een rekstrookje. De belangrijkste reden hiervoor is de volgende: Het strookje R, dat het actieve rekstrookje wordt genoemd, bevindt zich op de constructie, dus op een meer of minder grote metaalmassa. De rest van de apparatuur, de schuifweerstand \( r_1 + r_2 \) en de galvanometer zullen zich over het algemeen op enige afstand van de constructie bevinden. Nu is, in de eerste plaats, de temperatuur van de constructie meestal niet gelijk aan de temperatuur van de op enige afstand opgestelde apparatuur, door geleiding, tocht, temperatuur-gradient etc. Boven-
dien is de temperatuur in de ruimte, waar het onderzoek plaats heeft, nooit constant.

Hierdoor is het mogelijk, dat de rekstroom $R$ temperatuurswijzigingen ondergaat, die niet gelijk zijn aan die van de rest der apparatuur. Wanneer van een weerstand de temperatuur verandert ook de grootte van de electrische weerstand. Dit betekent, dat in een dergelijk geval de brug van Wheatstone uit zijn evenwicht raakt, zonder dat in de constructie een wijziging van de spanningen optreedt. Bovendien zich $r_4$ in de buurt van $r_1$ en $r_2$, dan kan de verstoring van het evenwicht aangetoond worden met de formule

$$R (1 + \alpha); \quad r_4 (1 + \beta) \neq r_1 (1 + \beta); \quad r_2 (1 + \beta).$$

Een wijziging in het temperatuursverschil van $R$ en $r_4$ wordt dus in de apparatuur geinterpreteerd als een spanningsverandering in de constructie.

Het contactpunt B moet nu verschoven worden om de brug weer in evenwicht te krijgen.

De remedie voor deze moeilijkheid is: $r_4$ vervangen door een rekstroom D, dat zich dicht bij $R$ bevindt, en op hetzelfde materiaal is gelijmd, waarbij er echter voor moet worden gezorgd, dat het materiaal waarop D zich bevindt, onbelast blijft.

Nu krijgen $R$ en D dezelfde temperatuur en dezelfde temperatuurswijzigingen.

Ook al krijgen $r_1$ en $r_2$ nu een temperatuurswijziging van andere grootte dan $R$ en D, de brug blijft toch in evenwicht. In formule

$$R (1 + \delta); D (1 + \delta) = r_1 (1 + \beta); r_2 (1 + \beta),$$

$$R : D = r_1 : r_2.$$  

De weerstandsverhoudingen zijn nu dus onafhankelijk van de temperatuur. Er zijn voor het toepassen van een niet-actieve rekstroom D (ook wel dummy of compensatie-stroom genoemd) nog andere motieven aan te voeren. Er wordt echter volstaan met het hiervoor genoemde, en verreweg belangrijkste motief.

Het actieve rekstroomje wordt nu aan een nadere beschouwing onderworpen. Stel de oorspronkelijke grootte van zijn weerstand $R$, en neem aan, dat door vervorming van de constructie de weerstand een bedrag $\Delta R$ verandert.

Om nu het verband tussen de specifieke rek\(\varepsilon\) (zowel van het stroomje als van de constructie) en de specifieke verandering van weerstand $\Delta R$ vast te leggen, wordt een grootheid $k$ ingevoerd, die de ijkmoment genoemd wordt, en die voor elk rekstroomje verschil- lend kan zijn. De grootte van $k$ hangt n.l. enigszins af van de materiaal-eigenschappen, en de nauwkeurigheid van de fabricage. Wel wordt aangenomen, dat voor elk rekstroomje $k$ constant blijft.

Nu is dus

$$\frac{\Delta R}{R} = k \varepsilon.$$  

De meest gebruikte rekstroomjes zijn die van Philips. Ze hebben een weerstand van 600 $\Omega$ en een ijkmoment, die ligt tussen 1,9 en 2,1; deze wordt voor elke serie stroomjes opgegeven. Zie nu weer fig. 3.
In de middenstand is \( r_1 = r_2 = r \)
Is nu \( A \) de verandering van weerstand, die \( R \) ondergaat, als de te onderzoeken constructie wordt belast, dan moet, om de brug weer in evenwicht te krijgen, het contactpunt \( B \) verschoven worden over een afstand, overeenkomend met een weerstandsverandering \( \delta \), zodat
\[ r_1 = r + \delta ; r_2 = r - \delta \]
Nu moet gelden,
\[
(R + A); R = (r + \delta); (r - \delta)
\]
\[
(R + A)(r - \delta) = (r + \delta)R
\]
\[
\Delta r - \Delta \delta = 2R\delta
\]
(aanvankelijke weerstand van \( D \) was ook \( R \), deze is constant gebleven)
De term \( \Delta \delta \) is van hogere orde dan de andere termen, en wordt daarom verwaarloosd. Dan is:
\[
\frac{\Delta}{R} = 2 \frac{\delta}{R}
\]
Stelt men voorlopig \( k = 2 \), dan volgt er
\[
\frac{\Delta}{R} = 2 \varepsilon = 2 \frac{\delta}{R}
\]
Men kan dus, door \( \frac{\delta}{R} \) te meten, met behulp van de elasticiteitsmodulus de spanning bepalen.
N.B. Over het algemeen moet op de gevonden spanning een correctie worden toegepast, die voortkomt uit het feit, dat \( K \) zelden exact 2 is.
\[
\frac{\Delta}{R} = k\varepsilon = 2 \frac{\delta}{R}
\]
d.w.z. \( \varepsilon = \frac{2}{k} \frac{\delta}{R} \)

De fout die men aanvankelijk maakte door \( k = 2 \) te stellen, kan men, bij een werkelijke \( k = k_w \), weer opheffen door de uitkomst van \( \sigma \) of \( \varepsilon \) te vermenigvuldigen met de factor \( \frac{2}{k_w} \)

Deze methode heeft wel nut, omdat, zoals reeds is opgemerkt, de ijkfactor van overigens overeenkomstige rekstroomjes altijd wat verschilt.
Meeet men met veel stroomjes, dan heeft het dus zin om alle stroomjes een fictieve \( k = 2 \) toe te kennen, en pas na de proef de resultaten om te werken met behulp van de bovengenoemde formule.
Het is duidelijk, dat op deze wijze de voor het experimentele gedeelte van de proef benodigde tijd belangrijk wordt bekort.
Er zijn n.l. ook apparaten, waarop men vóór de meting de ijkfactor van het beschouwde stroomje instelt. Behalve het hierboven genoemde tijdverlies heeft men ook de kans, dat het instellen vergeten wordt.

Het meten met meer rekstroomjes.

Om met meer dan één stroomje te kunnen meten moet een schakelsysteem worden toegepast.
Bij alle wijzen van schakelen moet elk bij elkaar behorend paar rekstrookjes achtereenvolgens op de galvanometer worden aangesloten.

Over de keuze van het in de behandelde apparatuur toegepaste systeem kan het volgende worden gezegd: Schakelaars in de leidingen van en naar de rekstrookjes moeten worden vermeden. Ze hebben n.l. een variërende overgangs-weerstand, die in serie met de betreffende rekstrook (stroken) zou worden gemeten en de zuiverheid van de meting ongunstig zou beïnvloeden, tenzij hiertegen speciale maatregelen worden genomen.

Verder is het gunstig als alle bij elkaar horende paren rekstrookken zoveel mogelijk dezelfde temperatuur hebben. Dus niet één dummy laten samenwerken met verschillende actieve strookjes, omdat men, ondanks eventuele kunstgrepen, toch opwarmeffecten opwekt. Hier komt nog bij, dat het gebruik van één dummy samen zou gaan met schakelaars in het circuit der actieve rekstrookjes, daar bij gelijktijdige voeding van alle actieve de dummy door de grote stroomsterkte zou verbranden.

Rekening houdende met deze, en andere factoren is men tot het in fig. 4 afgebeelde schakelsysteem gekomen.

Voor elke actieve rekstrook is een dummy aangebracht. De paren rekstrookjes worden via een tweetal keuze-schakelaars op de potentiometer aangesloten.

De weerstand van deze schakelaar is niet van belang, omdat bij evenwicht de galvanometer-tak toch stroomloos is.

Algemene opmerkingen over de toegepaste methode.

De hier behandelde wijze van meten wordt de nul-methode genoemd. Deze aanduiding slaat uiteraard op het telkens stroomloos maken van de galvanometer-tak.

Een alternatief is de directe methode. Hierbij meet men na het aanbrengen van de belasting de stroomsterkte in de galvanometer-tak en bepaalt daaruit de weerstandsverandering van het actieve strookje. Over het algemeen kan worden opgemerkt, dat de nul-methode de meest nauwkeurige is. Door het stroomloos maken van de galvanometer-tak worden opwarmeffecten in de leiding en in de galvanometer praktisch geëlimineerd, terwijl ook veranderingen van de weerstand in het galvanometer-circuit, bv. van de schakelaar waarmee de rekstrookjes achtereenvolgens op de galvanometer worden aangesloten, geen invloed hebben op de nauwkeurigheid van de meting. Tenslotte kan men bij de nul-methode ook het effect van aanwijsfouten in de galvanometer verwaarlozen, iets wat bij de directe methode niet altijd het geval is. De weerstands- en opwarmeffecten dragen er bij de directe methode toe bij de meting minder nauwkeurig te maken.

III. Beschrijving van de apparatuur.

Samenstelling:

De streep-stip-lijnen in fig. 4 geven aan uit welke delen de complete apparatuur is samengesteld. Deze delen zijn achtereenvolgens:
1. De te onderzoeken constructie met actieve en compensatie-rekstrookjes.
2. De hulpkast. Deze bevat de aansluitpunten voor de rekstrookjes, en de aansluitpunten voor de stroombron.
3. De hoofdkast, met de potentiometer.
4. De galvanometer, aangesloten op de hulpkast.
5. De stroombron voor het meten; 12 V accu.
De onderdelen 2, 3, 4 en 5 zullen nader worden besproken.

De Hulpkast.

Hiervan zijn er twee, elk bestemd voor 48 meetpunten. Fig. 5 geeft een schema van het electrisch systeem in de hulpkast, terwijl in fig. 6 het vooraanzicht is afgebeeld.
Links in het schema ziet men de transformator met stappen-schakelaar voor het drogen (en eventueel opwarmen) van de rekstrookjes. Zie wat het drogen betreft lit. 1. In de handleiding zullen hierover ook nog enige aanwijzingen worden gegeven.
Via een schakelaar "drogen-meter" kunnen de rekstrookjes of op de droogtransformator, of op de accu worden aangesloten (De stroomvoorziening zal later nog ter sprake komen)
Een omkoersschakelaar (S2) in het meetcircuit geeft de mogelijkheid om eventuele thermo-koppels te elimineren. Deze kunnen ontstaan door het tijdens de proef warmer worden van de verschillende contact-punten (aanl. punten rekstrookjes, contactpunten verbindings-strippen hulpkast-hoofdkast etc.)
Thermo-koppels hebben één bepaalde richting; men kan ze dus elimineren door een meting tweemaal uit te voeren, met tegengestelde stroomrichting, en het gemiddelde van beide waarnemingen aan te houden. Zowel in het droog- als in het meetcircuit is een amperemeter opgenomen. Deze doen slechts dienst als controle-middel, evenals de voltmeter in het meetcircuit.
De galvanometer-takken van de rekstrook-circuits worden, evenals de voedings-leidingen, aangesloten op de daarvoor bestemde klemmen aan de achterzijde van de kast. (fig. 7)
De galvanometer-takken worden via de schakelaars S3 en de keuze-schakelaars S4 en S5 stuk voor stuk verbonden met de klem G2, waarop de galvanometer is aangesloten. Uit fig. 4 blijkt, dat in plaats van op de hulpkast een klem G, aan te brengen men theorisch evengoed de andere leiding van de galvanometer op het punt B van de hoofdkast kan aansluiten. Het blijkt echter om verschillende redenen makkelijker te zijn als de beide galvanometer-aansluitpennen zich bij elkaar bevinden.
Tenslotte zal nog, zeer in het kort, een toelichting worden gegeven op de speciale wijze waarop het electrisch systeem van de hulpkast is geaard.
Dit type aard-aansluiting, de z.g. Wagner-aarde, dient om het effect van lekstromen te elimineren. Zie fig. 8.
Zowel de spoel van de galvanometer als de accu kunnen worden beschouwd als massa's, die via een grote weerstand zijn geaard.
In de brug van Wheatstone is de aarding altijd ongeveer symmetrisch ten opzichte van A en D. Het "aardpunt" van de accu is echter niet
bekend. Dit houdt in, dat ook al is de brug in evenwicht, er toch op de punten B en C spanning kan staan ten opzichte van de aarde. In fig. 9 is dit op zeer simpele wijze aangegeven. De getrokken lijn is de ideale, de streeplijn die, welke meestal zal optreden.

Er zal dus een lekstroom gaan vloeien door de galvanometer en laar deze komt van B of C, zal de galvanometer uitslaan. Stelt men nu de galvanometer op nul, dan betekent dat, dat men een zo grote stroom laat vloeien, dat het effect van de lekstroom wordt opgeheven. De galvanometer-tak is dus niet stroomloos. De remedie tegen dit verschijnsel is, de punten B en C spanningloos te maken ten opzichte van aarde. Dit wordt bereikt door het aanbrengen van een variabele schuntweerstand EF (fig. 10).

Het punt H ligt nu via een zeer kleine weerstand aan aarde en is dus spanningloos. Wordt nu het contactpunt H zo ingesteld, dat $r_5 + r_6 = r_1 + r_2 = r_3 + r_4$, dan zijn ook de punten B en C spanningloos ten opzichte van aarde. Deze toestand is niet geheel te verwezenlijken ($r_1 - r_3$ zijn niet constant), maar door H zo goed mogelijke in te stellen, kan men het effect van lekstroom tot een minimum beperken.

De beste manier om H in te stellen is, de lekstroom door de galvanometer kunstmatig te vergroten, door een der punten B en C te aarden. Beperk men dan, door instellen van contact H, deze lekstroom tot het bereikbare minimum, dan zal, ook al is hij nooit nul te krijgen, de werkelijke lekstroom zo klein worden, dat het effect ervan niet meer kan worden waargenomen (zie voor het instellen van de Wagner-aarde de handleiding, hfdst. IV).

Deze uiteenstelling is absoluut niet volledig, maar dient slechts om de lezer enig idee te geven van de notieven die tot het toepassen van een dergelijke aardleiding hebben geleid.

In het schema van fig. 5 is de Wagner-aarde aangegeven.

De Hoofdkast.

Deze is met drie dikke enkanten op de hulpkast aangesloten, t.v.o. de contactpunten A₁, A₂ en B (zie fig. 4, 5, 6, 11 en 12). Voor de punten A₁ en A₂ was dit nodig en wel om de volgende reden: De verbindingen A₁ - A₁ en A₂ - A₂ bevinden zich in één van de brug-takken. Zie ook fig. 4. Zo nu de geleider, die de betreffende punten verbindt, tijdens de proef een verwijdering ondergaan, dan zou de weerstand ervan veranderen en zoals hiervoor reeds is aangegeven zou deze weerstands-verandering een extra verstoring van het evenwicht van de brug ten gevolge hebben, welke, weer als een spanningswrijvigheid in de constructie zou worden geïnterpreteerd. De strip tussen de punten B-B heeft voor dit doel geen zin, (ook dit is aangegeven). Deze strip geeft echter nog wat extra stijfheid van de mechanische verbinding tussen de beide kasten en verkleeft tevens het aantal snoeren.

Fig. 11 geeft het elektrische systeem van de hoofdkast, fig. 12 het vooraanzicht.
Uit het schema blijkt, dat het geheel enigzins afwijkt van het eenvoudige schema in fig. 4. In de eerste plaats is het veranderlijke gedeelte van de weerstand klein genomen ten opzichte van de rest. De veranderingen van de weerstand der rekstrockjes zijn nl. klein ten opzichte van de eigen weerstand.

Neem aan, dat de maximum te meten spanning in dural is 4200 kg/cm². Dit komt overeen met $= 6000 \mu$ rek. (1 $\mu$ rek is een specifieke rek van $10^{-6}$) 6000 $\mu$ rek in staal correspondeert met een spanning van 12600 kg/cm², wat ook wel als maximum mag worden aangenomen.

De weerstand van Philips rekstrockjes wordt opgegeven met een tolerantie van $+ 1/2 \%$. In het ongunstigste geval (bijv. actief strookje $- 1/2 \%$, dummy $+ 1/2 \%$ afwijking) moet dus rekening worden gehouden met $\frac{\delta}{R} = 1\%$, dit komt bij de instelling van de potentiometer neer op een verandering die overeenkomt met een rek van $1/2\%$ of 5000 $\mu$ rek, bij onbelaste constructie. (Hierbij moet immers de galvanometer eerst op nul worden ingesteld.) Er is daardoor een reserve genomen van 5000 $\mu$ rek. Het meetbereik vanuit de middenstand moet dus in elke richting 16000 $\mu$ rek bedragen. Totaal 32000 $\mu$ rek.

Een geschikte waarde voor de totale weerstand van de brugtak waarin de potentiometer is opgenomen is $1000\Omega$.

Bij een gevoeligheidsfactor $k = 2$ is $\frac{\delta}{R} = \varepsilon = 0,016$ (zie ook pag 5).

Dus wordt $\delta$ in beide richtingen $0,016 \times 500\Omega = 8\Omega$

Dit houdt in dat de potentiometer-tak kan bestaan uit achtereenvolgens:

\begin{itemize}
  \item een vaste weerstand van $492\Omega$
  \item een variabele weerstand van $16\Omega$
  \item een vaste weerstand van $492\Omega$
\end{itemize}

Bij een variabele weerstand van $16\Omega$, zou een stap van $1\Omega$, dus $\frac{\delta}{R} = \frac{1}{500}$, overeenkomen met $\varepsilon = \frac{1}{500} = 2000 \mu$ rek daar $k$ altijd $\approx 2$ zal zijn.

Nu zou het wat gemakkelijker zijn als 1 correspondeerde met 1000 $\mu$rek. Bovendien zou de nauwkeurigheid met een factor 2 worden vergroot.

Dit is op de in fig.11 aangegeven wijze bereikt, en wel door de weerstand van $16\Omega$ te vervangen door 2 parallel geschakelde van $32\Omega$, waarvan één vast en één als potentiometer is uitgevoerd.

Om de weerstand van $r_1$ en $r_2$ (zie fig. 2 en 3) te variëren, m.a.w. om de brug in evenwicht te brengen kan men gebruik maken van respectievelijk: één schakelaar ($s_6$) met 2 stappen, die per stap $r_1$ en $r_2$ $10\Omega$ verkleint respectievelijk vergroot of omgekeerd; een schakelaar ($s_7$) met 10 stappen van $1\Omega$ en een zeer nauwkeurige sleepdraad-potentiometer van $2\Omega$. Ook alle vaste weerstanden in de hoofdkast zijn zeer nauwkeurig.

Het feit dat de sleepdraad-potentiometer een weerstand van $2\Omega$ heeft, voorkomt de noodzaak om aan de uiteinden ervan te meten.
Men zou dan misschien een wat kleinere nauwkeurigheid hebben.

De schaal van de sleepdraad-potentiometer is verdeeld in eenheden van $\frac{1}{50} \ldots$. Men kan op ongeveer $\frac{1}{5}$ schaaldeel nauwkeurig schatten.

Alvorens over te gaan tot een bespreking van de gevoeligheids-
schakelaar moeten eerst enkele opmerkingen worden gemaakt over de hier toegepaste galvanometer.

De spoel van deze galvanometer is tussen de polen van een sterke permanente magneet opgehangen met behulp van torsiedraden. De draaiing van de spoel wordt langs optische weg zichtbaar ge-
maakt op de schaal.

Het is bij metingen met rekstrookjes zeer belangrijk, dat zowel bij de meting bij onbelast als bij belast rekstrookje, de galvan-
ometer dezelfde eigen nulstand heeft. Dit spreekt vanzelf, immers als bij onbelast rekstrookje de nulstand van de galvanometer zou verloopen, dan zou men de potentiometer in kunnen gaan stellen om de oude nulstand te herstellen. Dit zou echter niet juist zijn, omdat vóór het verstellen de galvanometer stroomloos was en dat
ook moet blijven. Door het verstellen zou men dan juist het stroom-
loos zijn van de galvanometer-tak te niet doen. Een verandering van
de nul-stand moet op de galvanometer zelf worden gecorrigeerd. In
het handelings zal hierop nog worden ingegaan.

Heeft echter een wijziging van de nul-stand plaats tijdens de
meting, dan is dit niet zonder meer te constateren en is men dus
niet in staat het galvanometer-circuit volkomen stroomloos te
maken, omdat men hoogstens in kan stellen op de oude nulstand.
Natuurlijk kan men, door telkens de contacten $G_1$ en $G_2$ (fig.4)
lots te nemen, de nulstand controleren, wat ook inderdaad tijdens
een proef enkele malen moet worden gedaan.

Voor een vlot verloop van de metingen is het echter beter, om
veranderingen van de nul-stand zoveel mogelijk te voorkomen en wel
door de oorsenen ervan te beperken. Een oorzaak is het bewegen van
of stoten tegen de meter. De gevoeligheid van de meter is zo groot
dat ook vrij lichte schokken de nul-stand kunnen doen veranderen.

Dit kan worden voorkomen door de galvanometer zo weinig mogelijk aan te raken en schok- en trillingvrij op te stellen. Deze maat-
regel voorkomt ook de afwijkingen, veroorzaakt door handeffecten,
dit zijn afwijkingen die ontstaan door de warmte die van de hand
op de meter wordt overgebracht.

Verder moet de galvanometer geaard zijn omstatische electrici-
teit uit het menselijk lichaam, die bij aanraking van de meter
hierop overgaat, af te voeren.

Tenslotte moet als belangrijkste oorzaak voor afwijkingen ge-
noemd worden de overbelasting. Hiertoe wordt bedoeld de belasting-
gen waarbij de index van de meter buiten het gebied van de schaal
komt te liggen. Op zichzelf zijn dergelijke belastingen gewoonlijk
niet schadelijk voor de meter, maar ze hebben zeer vaak een
verandering van de nulstand tot gevolg.

Een vrij kleine weerstandsverandering van het rekstrookje ver-
oorzaakt al een stroomstoring, en daardoor, omdat een stroom
van voldoende sterkte om, zonder tegen
maatregelen, het zoeven genoemde effect te doen optreden. Hier
blijkt nu het nut van de gevoeligheids-schakelaar. Dit is n.l. in principe niets anders dan een zeer grote weerstand, die in het galvanometer-circuit is aangebracht en die in enkele stappen kan worden uitgeschakeld.

Het is nu zonder meer duidelijk dat, ook bij grote weerstandsverandering van het actieve stroomje, aanvankelijk de galvanometer maar een kleine uitslag zal vertonen. Door nu steeds de galvanometer zo goed mogelijk op nul in te stellen en dan telkens de voorschakel-weerstand te verkleinen kan men te grote uitslagen van de meter voorkomen, tot tenslotte de gehele voorschakel-weerstand is uitgeschakeld. De galvanometer is dan dus op zijn gevoeligst.

De gevoeligheids-schakelaar is zo uitgevoerd, dat het zonder meer niet mogelijk is, de galvanometer in een gevoelige stand te laten staan. Dit is bereikt door de hefboom van de schakelaar te voorzien van een veer, die hem bij het loslaten onmiddellijk in zijn ongevoelige stand terugbrengt.

De gevoeligheids-schakelaar heeft nog een functie, namelijk die van het beschermen van de galvanometer tegen de gevolgen van het foutief aansluiten van of defecten in de voedingsleidingen der rekstroomjes. In het schema van fig. 4 is te zien dan bv. bij breuk van een der centrale voedingsleidingen naar de rekstroomjes er een sterke stroom door de galvanometer zal gaan vloeien.

Om in een dergelijk geval de galvanometer te beschermen tegen beschadiging is de eerste weerstandstrap van de gevoeligheids-schakelaar zo groot gemaakt, dat de stroomsterkte door de galvanometer ook in het hier veronderstelde geval beneden de toelaatbare waarde blijft.

Voor bijzondere gevallen is op de gevoeligheids-schakelaar een vastzetinrichting aangebracht, waardoor het mogelijk is een bepaalde gevoeligheid te fixeren. Dit kan nuttig zijn, wanneer men bv. een zeer klein spanningsverloop heeft.

N.B. Ook op de galvanometer bevindt zich een gevoeligheids-schakelaar. Het gebruik hiervan dient echter als regel te worden vermeden.

De voeding.

In deze beschrijving is al opgemerkt dat de benodigde stroom voor het drogen wordt onttrokken aan het lichtnet, terwijl voor het meten een accu wordt gebruikt.

Dit heeft de volgende redenen:

- Voor het drogen zijn vaak vrij grote stroomsterkten nodig, (tot 4 x de meetstroom) soms gedurende enkele dagen (zie hiervoor: Lit. 1 Rekstroomjes meettechniek). Het is niet aan te bevelen deze vermogens aan te trekken aan een accu. In de eerste plaats zou dit onnodig duur worden, daar een accu als stroombron niet efficiënt is, bovendien zou de accu een groot vermogen moeten hebben. Er is ook absoluut geen bezwaar tegen drogen met wisselstroom.
- Voor het meten zijn slechts kleine stroomsterkten nodig. Wegens inductieve en capacitieve verschijnselen, die bij het gebruik van wisselstroom optreden, kan men bij een apparatuur als
deze niet met wisselstroom werken. Bovendien leent zich de galvanometer niet voor het meten met wisselstroom.

Het gebruik van een accu ligt dus hier voor de hand.

Zoals reeds is opgemerkt hebben Philips rekstrokjes een weerstand van 600Ω. De aanbevolen meetstroom is 10 mA. Voor een compleet meetcircuit (actief strookje + dummy) wordt de gevraagde spanning dus 0,01 x 1200 = 12 V. Daar alle meetcircuits parallel zijn geschakeld is ook voor het meten met meer rekstrokjes een 12-Volt accu nodig.

Het aarden van de apparatuur.

De gehele apparatuur dient te worden geaard. Zowel op de galvanometer als op de hoofd- en hulpkasten bevinden zich aardklemmen.

In de handleiding wordt hierop nog nader ingegaan.

De nauwkeurigheid van de apparatuur.

Over de nauwkeurigheid van de meetresultaten is niet veel op te merken. De voornaamste fouten, die verwacht kunnen worden, worden n.l. veroorzaakt door wijzigingen in de overgangsweerstand van de contacten der weerstands-schakelaars S6 en S7 en ongelijkmatigheden in de weerstand van de sleepraad van de potentiometer in de hoofdkast. De wijzigingen in de overgangsweerstand van S6 en S7 zijn volkomen willekeurig, zodat corrigeren van de waarnemingen niet mogelijk is.

Er is enige reden om aan te nemen, dat de maximale fout binnen de + 5 µ rek ligt. Deze fout is absoluut, dus niet afhankelijk van de gemeten rek. Verder moet worden gerekend met een afleesfout van ± \( \frac{1}{500} \), of 2 µ rek (ook absoluut). In totaal dus ± 7 µ rek, wat bij lichtmetaal overeenkomt met een spanning van ongeveer 5 kg/cm\(^2\) of 0,05 kg/mm\(^2\). Relatief variëert deze fout dus van 0,5% bij 10 kg/mm\(^2\) tot 0,125% bij 40 kg/mm\(^2\).

Zeer kleine spannings-variaties kunnen wel nauwkeurig worden gemeten, enkel als de schakelaars niet worden gebruikt en maakt een kleine boog van de sleepraad wordt doorlopen.

In dat geval hoeft men praktisch alleen de afleesfout van de potentiometer in rekening te brengen. De afleesfout van de galvanometer kan verwaarloosd worden.

Tenslotte kan nog opgemerkt worden, dat de galvanometer reeds reageert op een spanningswijziging van 0,2 kg/cm\(^2\).

Op pag.13 ziet men de gehele apparatuur bedrijfsklaar opgesteld.


De actieve rekstrokjes zijn duidelijk waar te nemen, de dummies bevinden zich op een plaat die in de romp is opgehangen en zijn dus niet zichtbaar.
Literatuur.

1. "Rekstrookjes - meettechniek"
   Uitgave Philips, Eindhoven.
   Bibl. VTH nr. 29-19

2. College-dictaat
   "Experimenteel spannings-onderzoek"
   Prof. Koch.

3. M. Hetenyi
   "Handbook of experimental stress-analysis"
   Bibl. VTH 07-44.

Opstelling van de rekstrook-meetapparatuur.
B. Handleiding voor het gebruik van de rekstrookmeetapparatuur.

1. Alvorens over te gaan tot het doen van metingen dient men zich op de hoogte te stellen van de opbouw en de werking der apparatuur, en van het aanbrengen, drogen en controleren van rekstrookjes. Hiervoor kan worden verwezen naar deel A van dit rapport: "Beschrijving en toelichting" en naar no. 1 van de op blz. 13 gegeven lijst.

2. Een tweede handeling, die aan de metingen vooraf moet gaan is het controleren van de isolatie-weerstand van de rekstrookjes, d.w.z. de weerstand tussen rekstrookdraad en proefstuk. Deze moet minstens 1000 M\(\Omega\) per strookje zijn. Voor dit doel is een M\(\Omega\)-meter aanwezig. Deze wordt op het licht aangesloten, de beide voedingsleidingen van de rekstrookjes worden verbonden met de linkse van de twee aansluit-klemmen, de massa van de constructie met de rechtere terwijl deze klem tevens geaard wordt. Met behulp van de instelknop voor het meetgebied kan dan de totale isolatie-weerstand worden bepaald. Deze moet, bij een totaal aantal rekstrookjes n, minstens 1000 M\(\Omega\) bedragen (er zijn n shunt-weerstanden, elk 1000 M\(\Omega\)). Het is natuurlijk niet zeker dat, ook al wordt een bovengenoemde voorwaarde voldaan, de isolatie-weerstand van elk strookje >1000 M\(\Omega\) is, maar men is er wel zeker van dat geen der strookjes en geen der toevoerleidingen kortsluiting maakt.

3. Bij alle handelingen die men bij de apparatuur uitvoert, moet men er voor zorgen dat zowel de hoofdkast, en de in bedrijf zijnde hulpkast als de galvanometer geaard zijn. Voor dit doel is op alle eenheden een toereikend aantal aardklemmen aangebracht. De meest eenvoudige methode is de apparaten onderling te verbinden en een der aardklemmen aan te sluiten op aarde. Wel moet men er aan denken dat de massa's en hun verbindingen geen lussen vormen, omdat men in dat geval kans heeft op storende invloeden van buitenaf, door inductie.

4. Zorg er voor dat alle actieve stroken genummerd zijn en houd enig systeem in de aansluitingen van de galvanometer-takken der rekstrookjes op de hulpkast.


II. Het drogen van rekstrookjes.

1. Zie hoofdstuk I van deze handleiding.
2. Maak de galvanometer-aansluiting los, door de stekkers uit de bussen \( G_1 \) en \( G_2 \) te halen. Verwijder de messing-strippen tussen hulp- en hoofdkast. Zorg dat de hulpkast geschaard is.
3. Verbind de voedings-lijnen van de rekstrookjes met de daarvoor bestemde contactklemmen links en rechts tegen de achterkant van de hulpkast.
4. Zet de droogspannings-regelaar links onder op de hulpkast (fig.5) op spanning nul en zet de schakelaar "drogen-meten" in de stand "drogen".
5. Controleer of alle aansluitingen op de juiste plaats zijn aangebracht.
6. Sluit de kast aan op het lichtnet via de contra-stekker links onder op de hulpkast.
7. Stel op de spannings-regelknop de gevraagde droogspanning in (zie lit. 1).
8. Controleer de stroomsterkte op de A-meter links boven. Let daarbij op de instelling van het juiste meetbereik.
9. Droog nu de rekstrookjes bij de opgegeven spanningen en gedurende de voorgeschreven tijdens (zie lit. 1). Controleer telkens de stroomsterkte, en schakel zo nodig, voor het overgaan op een hogere droogspanning, de A-meter "drogen" over op het grote meetbereik.
10. Na het drogen spannings-regelaar op nul zetten; netaansluiting losnemen.

III. Het meten.

1. Zie Hoofdstuk I van deze handleiding.
2. Verbind de hulp- en hoofdkast door middel van de drie messing stripken.
3. Sluit de rekstrookjes aan, de voedingsleidingen op de klemmen links en rechts tegen de achterwand van de hulpkast; de galvanometer-takken op de klemmen van het middengedeelte.
4. Zet de schakelaar "drogen-meten" op "meten ", de "omgekeerd-normaal" schakelaar in de stand "normaal".
5. Controleer of alle aansluitingen op de juiste plaats zijn aangebracht op de hulpkast.
6. Sluit de accu aan (rechts onder) controleer de spanning op de voltmeter, slaat deze niet uit, verwissel dan de stekker-polen van de voedingsaansluiting.
7. Controleer de stroomsterkte op de A-meter rechts boven. Hij moet 20 m A per actief strookje aanwijzen. (Deze meterwijst n.l. het dubbele van de stroomsterkte aan.)
9. Sluit de galvano-meter aan op de klemmen \( G_1 \) en \( G_2 \).
10. Controleer, zo nodig, de instelling van de Wagner-aarde. (zie hoofdstuk IV.)

11. Verbind nu met behulp van de keuzeschakelaar de rekestroken één voor één met de galvanometer. Breng telkens de galvanometer terug in de nulstand. Dit geschiedt als volgt: neem de knop van de gevoeligheids-regelaar in de linkerhand en beweeg hem langzaam naar beneden. Telkens als een meer gevoelige stand van de regelaar is bereikt, zal de galvanometer uitslaan. Na elke uitslag brengt men de galvanometer zo goed mogelijk terug in de nulstand. Dit kan geschieden door middel van de weersstand-schakelaar en de knop van de sleepdraad-potentiometer. (In het bovendeel van deze knop is een vertraging ingebouwd). Als de grootste gevoeligheid is bereikt en de galvanometer weer in de nulstand is gebracht, laat men de gevoeligheidsregelaar los en leest de standen van de schakelaars en de potentiometer af, waarbij de groote van de laatst-genomde aflezing tot \( \frac{1}{5} \) (\( \frac{1}{2} \) schaaldeel) kan worden geschat.

Op deze wijze worden alle strookjes behandeld.


N.B. Men dient na elke cyclus de nulstand van de galvanometer controleren door de stekkers \( G_1 \) en \( G_2 \) los te nemen en de contactpennen niet aan te raken. Een kleine wijziging in de nulstand kan door verschuiving van de afleesschaal worden verholpen.

14. Na de proef de accu-aansluiting en de net-aansluiting van de galvanometer losnemen.

IV. Het instellen van de Wagner-aarde.

1. Zie de eerste 9 punten van hoofdstuk III.
2. Neem nu de stekker in bus \( G_2 \) los en sluit de stekker aan op aarde.
3. Haal nu de gevoeligheidschakelaar op de hoofdkaas langzaam omlaag en houd ondertussen de galvanometer zo dicht mogelijk bij de nulstand, door met een kleine schroevendraaier het verzonken stelschroefje naast de accu-aansluiting te verdraaien. Ga niet tot de gevoeligste stand van de regelaar. Het zal niet mogelijk zijn, de galvanometer precies op nul te krijgen. Deze toestand moet echter zo goed mogelijk worden benaderd.
4. Controleer de nulstand van de galvanometer.
Fig. 4. Principe van schakeling voor meten met meer rekstrookjes.
Fig. 5 Schema hulpkast met voeding.
Principe wagner-aarde
Fig. 1. Rekstroomje

Fig. 2. Principe brug van Wheatstone

Fig. 3. Eenvoudige rekstroom-schakeling

Fig. 4. Principe van schakeling voor meten met meer rekstroomjes.

TECHNISCHE HOGESCHOOL
VLEGTUIGBOUWKUNDE

RAPPORT
blz. 17
Fig. 5 Schema hulpkast met voeding.
Principe wagen-aarde