Ontgrondingen door vallende stralen

ì

)

.

G.J.C.M Hoffmans

december 1994

W-DWW-94-302

Ĺ

·

INHOUDSOPGAVE

1.	Inleiding		
	1.1 Probleemste	elling	3
	1.2 Doelstelling		3
	1.3 Afbakening	en werkwijze	3
2.	Databestand		
	2.1 Inleiding		3
	2.2 Experimente	ele gegevens	4
3.	Wijze van toetsen		
	3.1 Inleiding		6
	3.2 Gemiddelde		6
	3.3 Discrepantie	e verhouding	7
4.	Theoretische achter	gronden	
	4.1 Inleiding		7
	4.2 Impulsverge	eliiking	7
	4.3 Calibratie n	jeuwe voorspeller	8
5	Evaluatie		
	5.1 Verificatie c	ontgrondingsformules	9
	5.2 Conclusies		10
SYM	BOLEN		11
LITE	ATUUR		12
BIJLA	GEN		14
А	Ontgrondingsformu	ıles	
В	Toetsing ontgrondir	ngsformules (databestand: Schoklitsch, 1932)	
С	Toetsing ontgrondir	ngsformules (databestand: Veronese, 1937)	
D	Toetsing ontgrondir	ngsformules (databestand: Eggenberger, 1944)	
Е	Toetsing ontgrondir	ngsformules (databestand: Doddiah, 1953)	
F	Toetsing ontgrondir	ngsformules (databestand: Hartung, 1957)	
G	Toetsing ontgrondir	ngsformules (databestand: Kotoulas, 1967)	
Н	Toetsing ontgrondir	ngsformules (databestand: Martins, 1973)	
1	Calibratie (214 goo	texperimenten)	
J	Toetsing ontgrondir	ngsformules (databestand: Rajaratnam, 1982)	
К	Toetsing ontgrondir	ngsformules (databestand: Mason, 1983)	·
L	Calibratie (26 proto	otype experimenten)	
М	Toetsing ontgrondir	ngsformules (databestand: Bormann, 1991)	
Ν	Toetsing ontgrondi	ngsformules (databestand: Stein, 1993)	
0	Toetsing ontgrondi	ngsformules (databestand/fijn zand): Stein, 1993)	
Ρ	Verificatie nieuwe v	voorspeller	
Q	Verificatie voorspell	ler Patrashew	
R	Verificatie voorspel	ler Schoklitsch	
S	Verificatie voorspell	ler INCYTH	•
т	Verificatie voorspel	ler Mason	
U	Verificatie voorspel	ler Bormann	
V	Verificatie voorspel	ller Damle	
W	Experimentele data	1	
	·		

<u>ن</u>ر . (° ,

1. Inleiding

1.1 Probleemstelling

In het handboek ontgrondingen van Breusers en Raudkivi (1991) worden grondslagen van het sedimenttransport behandeld. Tevens wordt een uitgebreid overzicht van de beschikbare literatuur over lokale ontgrondingen gegeven. Diverse formules voor het beschrijven van het erosieproces achter waterbouwkundige constructies worden besproken. Veelal zijn deze ontgrondingsformules van empirische aard en sommige formules bevatten coëfficiënten die niet dimensieloos zijn. Breusers voert een discussie omtrent de berekeningsresultaten van deze relaties van de evenwichtsdiepte en concludeert dat deze voorspellingen onderling een grote spreiding vertonen.

Voor een ontwerper is het niet eenvoudig om in een oriënterende studie een goede afschatting van de dimensies van een ontgrondingskuil te geven. De ontwerper kan immers kiezen uit een groot aantal ontgrondingsformules. Vrijwel alle ontgrondingsformules zijn geschikt voor die experimenten waarop ze zijn gecalibreerd. Indien deze relaties buiten het bereik van de geijkte hydraulische condities worden toegepast, zijn de berekeningsresultaten onbetrouwbaar vanwege het empirische karakter.

1.2 Doelstelling

Het handboek ontgrondingen beoogt een instrument te zijn om de grootte van lokale ontgrondingskuilen rondom brugpijlers, kribben, achter drempels met of zonder bodembescherming, uitlaatconstructies, strandmuren, strandhoofden, etc. te voorspellen. Met het handboek kunnen ontwerpers en adviseurs een eerste schatting van het ontgrondingsproces maken.

In het kader van het afronden van het handboek ontgrondingen worden verschillende deelstudies uitgevoerd. In deze deelstudie worden empirische ontgrondingsformules getoetst die de evenwichtsdiepte achter dammen bepalen. Naast deze verificatie wordt ook een ontgrondingsformule gebaseerd op de impulsvergelijking (Fahlbusch, 1994) gemodificeerd.

1.3 Afbakening en werkwijze

De studie beperkt zich tot lokale ontgrondingen achter dammen die door vallende stralen teweeg worden gebracht. Verschillende straaltypen zijn onderzocht te weten: klassieke overlaat (overflow), uitstroming onder druk, skischans overlaat en vertikale vlakke stralen.

6

Het tijdsafhankelijke ontgrondingsproces wordt niet bediscussieerd. In deze studie wordt uitsluitend aandacht besteed aan de maximaal optredende ontgrondingkuil in de evenwichtsfase.

Een databestand van ontgrondingsproeven is gemaakt. Dit bestand bevat hydraulische en morfologische gegevens (afvoeren, waterstanden, evenwichtsdiepten, korrelgrootte) en de tijdsduur van beproeven.

Voor het ijken van de nieuwe voorspeller zijn a priori ontgrondingsproeven van het type overflow geselecteerd. De overige experimenten zijn voor de verificatie aangewend.

Ongeveer 30 ontgrondingsformules zijn op hun voorspellingskracht getoetst. In deze studie wordt niet op de theoretische achtergronden van deze relaties ingegaan. Voor meer informatie hierover wordt naar de desbetreffende literatuur verwezen.

2. Databestand

2.1 Inleiding

In zijn algemeenheid zijn goed gedocumenteerde gegevens van experimenten schaars. In publicaties worden vaak experimentele grootheden in dimensieloze vorm gepresenteerd, waardoor de grootte van de

Figuur 1a Overflow (Schoklitsch, 1932)

fysische parameters niet altijd is af te leiden. Verschillende onderzoekers (Schoklitsch 1932, Veronese 1937, Eggenberger 1944, Doddiah 1953, Hartung 1957, Kotoulas 1967, Martins 1973, Stein 1993) hebben het ontgrondingsproces benedenstrooms van dammen bestudeerd (figuur 1). De bijbehorende rapportages munten uit in het beschrijven van de experimenten. Soms kan men zich afvragen of geen schijnnauwkeurigheid wordt geïntroduceerd als de evenwichtsdiepte in tiende van millimeters wordt gegeven (b.v. Eggenberger, 1944).

Figuur 1b Overflow (Veronese, 1937)

Rajaratnam heeft ondermeer het ontgrondingsproces rondom kribben en achter uitlaten (horizontale stralen) nader onderzocht. Enkele ontgrondingsproeven van Rajaratnam (1982) aangaande vertikale (2D) stralen (figuur 2) zijn in deze studie gebruikt voor het toetsen van ontgrondingsformules. De benedenstroomse waterdiepte in deze experimenten was minimaal en twee verschillende zandmengsels werden nader beproefd.

Mason (1983) heeft data van gootexperimenten en experimenten op prototype schaal (figuur 3) verzameld door verschillende onderzoeksinstellingen uit de gehele wereld aan te schrijven. Het databestand van Mason is uitvoerig gedocumenteerd en bevat experimentele gegevens met een relatief groot bereik.

Het ontgrondingsproces achter drempels zonder bodembescherming (figuur 4) is geanalyseerd door Bormann (1991). De stroming boven de drempel was zowel subkritisch als superkritisch. Totaal werden 88 experimenten door Bormann uitgevoerd.

2.2 Experimentele gegevens

Het databestand bevat de volgende hydraulische variabelen: korreldiameter (*d*), benedenstroomse waterdiepte (h_t), verval (*H*) of snelheid van neervallende straal (*U*), debiet (*q*), hoek van de neervallende straal (θ) en evenwichtsdiepte ($y_{m,e}$). In de proevenseries van respectievelijk Schoklitsch (1932), Hartung (1957), Kotoulas (1967) en Stein et al. (1993) was de benedenstroomse waterdiepte minimaal en niet specifiek gegeven. In deze gevallen

Figuur 1d Overflow (Stein et al., 1993)

onderzoeker	type	d (mm)	<i>h</i> , (m)	<i>Н</i> (m)	U (m/s	<i>q</i> (m²/s)	t (uren)	θ (rad)
Schoklitsch (1932)	Fig.1	0.5-15	-	0.06-0.32	-	0.009-0.07	-	-
Veronese (1937)	Fig.1	9.1-36	0.02-0.25	1.0	-	0.002-0.17	-	-
Eggenberger (1944)	Fig.1	0.9-7.6	0.10-0.21	0.19-0.35	-	0.006-0.02	>100	-
Doddiah (1953)	Fig.1	4.8-12	0.04-0.31	0.14-1.19	-	0.011-0.05	-	-
Hartung (1957)	Fig.1	2.5-9.7	-	0.01-0.14	. _	0.006-0.037	-	
Kotoulas (1967)	Fig.1	5.2-25	-	0.20-0.40	-	0.02-0.08	24	-
Martins (1973)	(3D)	30-47	0.06-0.40	0.91-2.10	-	-	-	0.7-1.2
Rajaratnam (1982)	Fig.2	1.2-2.4	0.01-0.02	÷	2.4-3.6	0.006-0.009	>24	1.56
Mason (1983)	Fig.3	1-41	0.03-42.	0.33-109	-	0.009-220	-	0.4-1.5
Bormann (1991)	Fig.4	0.3-1.7	0.24-1.65	-	0.9-4.7	0.290-2.47	-	0.1-1.0
Stein et al. (1993)	Fig.1	0.1-2.1	-	-	0.7-1.2	0.002-0.005	-	0.5-1.0

Tabel 1 Overzicht databestand

is h_t berekend en gelijkgesteld aan de energiehoogte gerekend vanaf de bovenkant van de stuw wat volgens Kotoulas (1967) voor vallende stralen (overflow) een redelijke aanname is.

$$h_{\rm t} = \left(\frac{q}{c_{\rm f}}\right)^{2/3} \qquad c_{\rm f} = \frac{2}{3}\mu\sqrt{2g} \qquad (\mu = 0.7)$$
 (1)

In het databestand zijn of het verval (verschil tussen de bovenstroomse en benedenstroomse waterstand) of de snelheid van de neervallende straal ter hoogte van de benedenstroomse waterstand opgenomen.

Beide parameters zijn als volgt met elkaar gerelateerd:

$$U = c_{\phi} \sqrt{2gH} \qquad c_{\phi} \simeq 1.0 \tag{2}$$

waarin c_{ϕ} een constante (-) is.

Tot begin jaren zeventig werd voor overflow ontgrondingen de hoek van de neervallende straal niet gerapporteerd (tabel 1). Voor dit type ontgronding varieert de hoek θ van 60° tot 90°. In

Figuur 2 Vertikale straal (Rajaratnam, 1982)

half-sectional view

У_{m,e}

unsubmerged case

tail water

eroded bed profile

OBL

nozzle

axis of jet

5

Figuur 3 Verschillende straal typen (Mason, 1983)

3. Wijze van toetsen

3.1 Inleiding

Voor het ijken van de nieuwe voorspeller zijn a priori experimenten geselecteerd die betrekking hebben op overflow ontgrondingen (figuur 1). De overige experimenten zijn voor de verificatie. Technieken uit de statistiek (gemiddelde en discrepantieverhouding) zijn toegepast voor het interpreteren van de berekeningsresultaten versus metingen.

3.2 Gemiddelde

De algemene ligging van een reeks waarnemingen wordt meestal door een representatief getal aangegeven in de vorm van een gemiddelde. Voor het toetsen van de betrouwbaarheid van ontgrondingsformules is een gemiddelde (x_m) gebruikt dat als volgt is weergegeven:

$$x_{m} = \frac{\sum_{i=1}^{n} (y_{m,e} + h_{t})_{i,berekend}}{\sum_{i=1}^{n} (y_{m,e} + h_{t})_{i,gemeten}}$$
(3)

In vergelijking (3) is h_t de benedenstroomse waterdiepte, n is het aantal experimenten en $y_{m,e}$ is de evenwichtsdiepte.

Feitelijk zou de berekende evenwichtsdiepte moeten worden getoetst in relatie tot de gemeten

evenwichtsdiepte. Omdat verschillende onderzoekers (Schoklitsch, Kotoulas, Hartung) alleen de maximale waterdiepte ($y_{m,e} + h_t$) hebben gemeten, is hier gekozen voor het toetsen van de maximale waterdiepte in de evenwichtsfase.

3.3 Discrepantieverhouding

Aangezien een eerste orde moment niets over de spreiding van de waarnemingen zegt wordt een percentage berekend dat kenmerkend is voor het aantal waarnemingen dat binnen een gedefinieerd

Figuur 5 Discrepantieverhouding r

gebied ligt. Dit gebied heeft een ondergrens (r_o) en een bovengrens (r_b) die beiden arbitrair worden bepaald. De discrepantieverhouding (r) is het quotiënt van de berekende en gemeten waterdiepte in de evenwichtsfase (figuur 5).

4. Theoretische achtergronden

4.1 Inleiding

Het modelleren van de evenwichtsdiepte benedenstrooms van civieltechnische constructies heeft vele waterbouwers beziggehouden. In 1932 ontwikkelde Schoklitsch een empirische relatie voor het beschrijven van het erosieproces achter stuwdammen. Schoklitsch baseerde zijn bevindingen op gootexperimenten

waarin het verval, de afvoer en de materiaaleigenschappen werden gevarieerd. Niet alleen Schoklitsch maar ook andere onderzoekers hebben getracht het erosieproces te modelleren getuige de grote verscheidenheid aan empirische ontgrondingsformules (bijlage A).

4.2 Impulsvergelijking

Voor het voorspellen van de maximale waterdiepte in de evenwichtsfase van het ontgrondingsproces worden de volgende uitgangspunten gehanteerd. De Eulerse benadering wordt hier toegepast op een b_u lucht /waterstraal θ sectie controle sectie volume 2 $---- h_t$ ---- h_t ----

Figuur 6 Impulsbalans (Fahlbusch, 1994)

gebied dat de ontgrondingskuil omsluit. De vallende straal is vlak (twee-dimensionaal). De weerstandscoëfficiënt van het materiaal is gerelateerd aan de kinematische viscositeit, de korreldiameter en de relatieve dichtheid.

Fahlbusch (1994) paste de impulsvergelijking als volgt toe (figuur 6).

$$\left((1 - \epsilon)\rho_{g}^{L}U + pb_{u}\right)\sin\theta = F + \frac{1}{2}\rho gh_{t}^{2} + \rho qU_{2}$$
(4)

De kracht F die door de bodem op het controlevolume wordt uitgeoefend wordt gegeven door:

$$F = \gamma_2 \rho g \left(\beta \left(\gamma_{m,e} + h_t \right)^2 - h_t^2 \right)$$
(5)

waarin b_u de dikte van de straal is, g is de zwaartekracht, h_t is de benedenstroomse waterdiepte, p is de gemiddelde druk in de straal, q is het debiet, U is de snelheid van de straal ter hoogte van het

wateroppervlak, U_2 is de dieptegemiddelde snelheid ter hoogte van de uitsroomrand, $y_{m,e}$ is de evenwichtsdiepte, β is de weerstandscoëfficiënt van het materiaal, ϵ is de volumetrische concentratie van lucht in het lucht/water mengsel, θ is de hoek van de neervallende straal met de horizontaal en ρ is de dichtheid van water.

De snelheid van de straal U (doorsnede 1) is meestal een orde groter dan de uittredende snelheid in doorsnede 2. Aanemende dat dit zo is en wordt bovendien de druk p in de straal verwaarloosd dan kan vergelijking (4) worden vereenvoudigd tot:

 $y_{m,e} + h_t = c_F \sqrt{q U \sin \theta / g}$ $c_F = \sqrt{2(1 - \epsilon)/\beta}$ (6)

Het combineren van vergelijking (2) en (6) leidt tot ($c_{\phi} = 1.0$):

$$y_{m,e} + h_t = c_F \sqrt{q \sin\theta \sqrt{2H/g}}$$
 (7)

Ċ

waarin $c_{\rm F}$ een constante is en H het verval.

Voor het evalueren van vergelijking (6) nam Fahlbusch zowel gootexperimenten als experimenten op prototype schaal en vond voor $c_{\rm F}$ een gemiddelde waarde van $c_{\rm F}$ = 2.79.

De weerstand van niet cohesief materiaal wordt in deze studie door de volgende parameters bepaald:

$$\beta = f(D_{90'}, \Delta) \qquad D_{90} = d_{90} (\Delta g/v^2)^{1/3}$$
(8)

waarin *d* de korreldiameter is, D_{90} , is een karakteristieke sedimentologische korreldiameter, Δ is de relatieve dichtheid en *v* is de kinematische viscositeit.

4.3 Calibratie nieuwe voorspeller

Verscheidene gootexperimenten met betrekking tot het type ontgronding dat achter dammen optreedt zoals weergegeven in figuur 1 (overflow) zijn aangewend om de onbekende $c_{\rm F}$ te ijken. Voor deze exercitie is gebruik gemaakt van ruim 200 experimenten (59 experimenten van Schoklitsch, 33 experimenten van Doddiah, 74 experimenten van Hartung en 48 experimenten van Kotoulas).

Bij het ijken zijn de experimenten van Veronese, Eggenberger en Martins niet meegenomen. Hoogstwaarschijnlijk zijn de experimenten van Veronese niet tot een evenwichtsfase doorgezet. In de proeven van Eggenberger is benedenstrooms van de ontgrondingskuil de opeenhoping van zand zo nu en dan kunstmatig verwijderd. Door dit ingrijpen neemt de ontgrondingscapaciteit toe waardoor een relatief diepere ontgrondingskuil wordt verkregen. Aangezien het stromingsbeeld in de experimenten van Martins een duidelijke driedimensionaal karakter had, zijn deze experimenten buiten beschouwing gelaten.

Voor 1970 is de hoek van de neervallende straal (θ) veelal niet in publicaties opgenomen. In deze studie is aangenomen dat θ voor overflow ontgrondingen gelijk is aan 90°. Uit fotomateriaal kan worden afgeleid dat deze hoek in de range van 60° tot 90° ligt. In het ongunstigste geval wanneer θ gelijk is aan 60° dan is de overschatte waarde van de evenwichtsdiepte relatief klein ($\Delta y_{m,e} = 0.07y_{m,e}$). In vergelijking met skischans overlaten waar θ kleiner is dan 60° zou $\Delta y_{m,e}$ bij $\theta = 30^\circ$ gelijk zijn aan 0.4 $y_{m,e}$.

Het fitten van 214 gootexperimenten en 26 experimenten op prototypeschaal heeft de volgende waarden van $c_{\rm F}$ opgelevert (tabel 2). Omdat in prototype situaties de ondergrond vaak uit rotsachtig materiaal (graniet, gneis) bestaat is verondersteld dat in dergelijke gevallen de korreldiameter groter is dan 12.5 mm. Deze aanname is gedaan vanwege het ontbreken van specifieke informatie omtrent de gradering van de

$c_{\rm F} = 20/D_{90}.^{1/3} \ (d_{90} \le 12.5 \ {\rm mm})$	d ₉₀ (mm)							
$c_{\rm F} = 2.9$ ($d_{90} > 12.5$ mm) ($\Delta = 1.65$, $v = 10^{-6}$ m ² /s)	0.1	0.25	0.5	1	2.5	5	10	25
c _F (-)	14.7	10.8	8.6	6.8	5.0	4.0	3.2	2.9

Tabel 2 $c_{\rm F}$ -waarde versus korreldiameter

eroderende bodem. Bij de calibratie is eveneens aangenomen dat de relatieve dichtheid gelijk is aan 1.65 en de kinematische viscositeit gelijk is aan $v = 10^{-6} \text{ m}^2/\text{s}$.

Model (n = 214)	0.75 <i><r< i=""><1.33</r<></i>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <r<3.00< th=""><th>×_m</th></r<3.00<>	× _m
Hoffmans	86%	100%	100%	0.96
Patrashew	87%	100%	100%	0.92
Schoklitsch	79%	100%	100%	0.82
Bormann (B)	70%	100%	100%	0.91
Mason (C)	64%	99%	100%	0.87
Veronese (B)	38%	82%	99%	0.70
INCYTH	16%	65%	97%	0.57
Damle	0%	0%	2%	0.15
Prototype (n = 26)	0.75 <i><r< i=""><1.33</r<></i>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <i><r<</i> 3.00	× _m
Damle	69%	96%	100%	0.95
Mason (B)	62%	100%	100%	1.01
Hoffmans	62%	92%	100%	0.92
INCYTH	58%	88%	100%	0.84
Veronese (B)	46%	85%	100%	1.21

Tabel 3 Toetsing ontgrondingsformules (calibratie nieuwe voorspeller)

5. Evaluatie

5.1 Verificatie ontgrondingsformules

Algemeen is voor het inventariseren van ontgrondingsformules de oorspronkelijke literatuur geraadpleegd. Enkele formules van met name russische en spaanstalige onderzoekers komen uit tweede hand. De formules van Mikhalev, Patrashew, Tschopp-Bizas en Machado worden in Whittaker en Schleiss (1984) besproken. In Mason (1983), (1985) wordt aandacht besteed aan ontgrondingsformules van INCYTH en Yen. In bijlage A is een overzicht van de getoetste ontgrondingsformules gegeven.

Baserend op diverse experimenten van Rajaratnam (1982), Mason (1983) en Stein et al. (1993) zijn deze formules en de geijkte 'nieuwe voorspeller' geverifieerd. Bovendien zijn ontgrondingsformules getoetst aan

gemeten ontgrondingen die achter drempels zonder bodembescherming optreden (Bormann, 1991). In tabel 4 zijn de berekeningsresultaten van de verificatie weergegeven. Hierin zijn ontgrondingsformules opgenomen die relatief de minst grote spreiding vertonen. Een grafische weergave van de voorspellingskracht van deze formules is in bijlagen P t/m W gegeven. Hierbij dient te worden opgemerkt dat de korrelgrootte voor prototype ontgrondingen is aangenomen (d = 0.25 m).

Meer informatie over de scores van de overige formules en de toetsing van de experimenten van Rajaratnam kunnen in de bijlagen worden gevonden.

Mason en Stein (n = 71)	0.75 <i><r<< i="">1.33</r<<></i>	0.50 <r<2.00< th=""><th>0.33<r<3.00< th=""><th>×_m</th></r<3.00<></th></r<2.00<>	0.33 <r<3.00< th=""><th>×_m</th></r<3.00<>	× _m
Hoffmans	68%	99%	100%	1.06
Patrashew	66%	96%	99%	1.15
Schoklitsch	69%	96%	100%	1.02
Bormann (B)	49%	77%	94%	0.92
Mason (C)	25%	75%	100%	1.28
Veronese (B)	42%	63%	79%	0.94
INCYTH	44%	59%	77%	0.77
Damle	1%	13%	41%	0.31
Bormann (n = 88)	0.75 <i><r<< i="">1.33</r<<></i>	0.50 <r<2.00< td=""><td>0.33<i><r< i=""><3.00</r<></i></td><td>×_m</td></r<2.00<>	0.33 <i><r< i=""><3.00</r<></i>	× _m
Bormann (n = 88) Hoffmans	0.75 <r<1.33 75%</r<1.33 	0.50 <i><r< i=""><2.00 100%</r<></i>	0.33 <i><r<< i="">3.00 100%</r<<></i>	x _m 1.02
Bormann (n = 88) Hoffmans Patrashew	0.75 <r<1.33 75% 13%</r<1.33 	0.50 <r<2.00 100% 56%</r<2.00 	0.33 < r < 3.00 100% 99%	x _m 1.02 1.89
Bormann (n = 88) Hoffmans Patrashew Schoklitsch	0.75 <r<1.33 75% 13% 6%</r<1.33 	0.50 <r<2.00 100% 56% 23%</r<2.00 	0.33 < r < 3.00 100% 99% 89%	x _m 1.02 1.89 2.39
Bormann (n = 88) Hoffmans Patrashew Schoklitsch Bormann (B)	0.75 < r < 1.33 75% 13% 6% 63%	0.50 < r < 2.00 100% 56% 23% 99%	0.33 < r < 3.00 100% 99% 89% 100%	x _m 1.02 1.89 2.39 1.27
Bormann (n = 88) Hoffmans Patrashew Schoklitsch Bormann (B) Mason (C)	0.75 < r < 1.33 75% 13% 6% 63% 5%	0.50 < r < 2.00 100% 56% 23% 99% 9%	0.33 < r < 3.00 100% 99% 89% 100% 74%	x _m 1.02 1.89 2.39 1.27 2.69
Bormann (n = 88) Hoffmans Patrashew Schoklitsch Bormann (B) Mason (C) Veronese (B)	0.75 < r < 1.33 75% 13% 6% 63% 5% 74%	0.50 < r < 2.00 100% 56% 23% 99% 9% 9%	0.33 < r < 3.00 100% 99% 89% 100% 74% 100%	x _m 1.02 1.89 2.39 1.27 2.69 1.09
Bormann (n = 88) Hoffmans Patrashew Schoklitsch Bormann (B) Mason (C) Veronese (B) INCYTH	0.75 < r < 1.33 75% 13% 6% 63% 5% 74% 61%	0.50 < r < 2.00 100% 56% 23% 99% 9% 9% 99% 99% 91%	0.33 < r < 3.00 100% 99% 89% 100% 74% 100% 100%	x _m 1.02 1.89 2.39 1.27 2.69 1.09 0.78

 Tabel 4
 Toetsing ontgrondingsformules (verificatie nieuwe voorspeller)

Ĺ

5.2 Conclusies

Overall geeft de nieuwe voorspeller voor gootexperimenten een redelijk resultaat (tabel 2) en doet niet onder voor de geavanceerde uitdrukking van Mason. Ofschoon voor prototype experimenten de nieuwe voorspeller en de ontgrondingsformules van respectievelijk Mason (B), Damle en INCYTH relatief de minst grote spreiding vertonen, geven ze geen van allen het ontgrondingsproces goed weer. Mogelijke redenen hiervoor zijn:

- Het maatgevend debiet in de rivier is ten gevolge van hoogwatergolven niet constant zoals in de

berekening wordt aangenomen.

De materiaaleigenschappen en de invloed van lucht in het lucht-water mengsel worden verwaarloosd.
In prototype situaties ontstaan geen twee- maar driedimensionale ontgrondingen.

De verificatie is geslaagd voor de experimenten van Mason (1983), Bormann (1991) en Stein et al. (1993), echter voor de proevenserie van Rajaratnam (1982) had het resultaat beter moeten zijn.

De verificatie is min of meer geslaagd voor mengsels van zand en water. De suggestie wordt gewekt dat de nieuwe voorspeller ook geldig zou zijn voor andere mengsels bijvoorbeeld voor polystyreen en water. De relatieve dichtheid en de kinematische viscositeit zitten namelijk in de nieuwe voorspeller opgesloten. Momenteel is de voorspellingskracht voor academische mengsels nog niet nader geanalyseerd.

De voorspellingskracht van de ontgrondingsformules van respectievelijk Damle en INCYTH is voor prototype situaties redelijk, terwijl deze voor gootexperimenten te wensen over laat. Het hoe en waarom is hier niet verder onderzocht.

Vele van de hier onderzochte formules hebben een geheel empirisch karakter. De formules van Patrashew, INCYTH en Hoffmans zijn op de impulsvergelijking gebaseerd. De ontgrondingsformule van Bormann is gebaseerd op 'jet tractory' en 'particle stability'.

De ontgrondingsformules van Schoklitsch, Veronese (B) en Damle voldoen niet aan de dynamische gelijkvormigheid. Het toepassen van deze formules buiten de geijkte hydraulische en morfologische condities leidt ongetwijfeld tot schaaleffecten.

De formules van Eggenberger en Franke geven een bovengrens van de evenwichtsdiepte.

De overige formules, die in deze analyse nader op hun voorspellingskracht zijn onderzocht, geven een middelmatige score en zijn daarom niet interessant om in het handboek ontgrondingen te worden opgenomen.

Symbolen

b _u	=	dikte van de straal (m)
b	=	maximale ontgrondingsbreedte (m)
C _i	=	coëfficiënt (-)
d	=	korreldiameter (m) (niet in mm!!)
g	=	9.81 m/s², zwaartekracht
h _t	=	tailwaterdiepte (m)
H		verval (m)
р	-	gemiddelde druk in de straal (N/m²)
9	=	debiet (m²/s)
Q	=	debiet (m ³ /s)
r	=	discrepantieverhouding (-)
t	=	tijdsduur ontgrondingproef
U	=	snelheid van de straal ter hoogte van het wateroppervlak (m/s)
U_2	=	dieptegemiddelde snelheid (m/s)
w _s	=	gemiddelde valsnelheid (m/s)
× _m	=	gemiddelde (-)
Y _{m.e}	=	evenwichtsdiepte (m)
Z ₂	=	hoogteverschiltussen bovenstroomse wateroppervlak (in reservoir) en uitlaat (m)
β	=	weerstandscoëfficiënt van het materiaal (-)
Δ	.=	relatieve dichtheid (zand/water: Δ = 1.65)

Symbolen (vervolg)

- ϵ = volumetrische concentratie van lucht in het lucht/water mengsel (-)
- θ = hoek van de neervallende straal met de horizontaal
- μ = afvoercoëfficiënt stuw (-)
- v = kinematische viscositeit (water: $v = 10^{-6} \text{ m}^2/\text{s}$)

 ϕ = hoek van inwendige wrijving of constante

Literatuur

- Bormann, N.E., 1988, Physical model of local scour at grade control structures, Proceedings ASCE, National Conference on Hydraulic Engineering ASCE, pp.1129-1124.
- Bormann, N.E. and P.Y. Julien, 1991, Scour downstream of grade-control structures, Journal of Hydraulic Engineering, ASCE, Vol.117, No.5, pp.579-594.
- Breusers, H.N.C. and A.J. Raudkivi, 1991, Scouring, Hydraulic Structures Design Manual, IAHR, Balkema, Rotterdam.
- Chee, S.P. and P.V. Padiyar, 1969, Erosion at the base of flip buckets, Engineering Journal, Vol.52, No.111, pp.22-24.
- Chee, S.P. and T. Kung, 1971, Stable profiles of plunge basins, Water Resources Bulletin, Vol.7, No.2, pp.303-308.
- Chian Min Wu, 1973, Scour at downstream end of dams in Taiwan, Proc. IAHR Symp. on river mechanics, Bangkok, paper A13.
- Damle, P.M., Venkatraman and S.C. Desai, 1966, Evaluation of scour below ski-jump buckets of spillways, Proc. Golden Jubilee Symp., Poona, pp.154-164.
- Doddiah, D., Albertson, M.L. and R. Thomas, 1953, Scour from jets, 5th IAHR-congress, Minneapolis, USA, pp.161-169.
- Eggenberger, W. and R. Müller, 1944, Experimentelle und theoretische Untersuchungen über das Kolkproblem, Mitteilungen aus der Versuchsanstalt für Wasserbau, Nr.5, Zürich.
- Fahlbusch, F.E., 1994, Scour in rock riverbeds downstream of large dams, The International Journal on Hydropower & Dams, IAHR, Vol.1, No.4, pp.30-32.
- Franke, P.G., 1960, Über Kolkbildung und Kolkformen, Österreichische Wasserwirtschaft, Heft 1, pp.11-16.
- Hartung, W., 1957, Die Gesetzmäßigkeit der Kolkbildung hinter überströmten Wehren, Dissertation, Technischen Hochschule Braunschweig.
- Jaeger, C., 1939, Über die Ähnlichkeit bei flußbaulichen Modellversuchen, Wasserwirtschaft und Wassertechnik 34, No.23/27.

Ç

- Kotoulas, D., 1967, Das Kolkproblem unter besonderer Berücksichtigung der Faktoren Zeit und Geschiebemischung im Rahmen der Wildbachverbauung, Dissertation, Prom. Nr.3983, Technischen Hochschule Zürich.
- Martins, R.B.F., 1973, Contribution to the knowledge on the scour action of free jets on rocky river-beds, Proc. 11th Congress on large dams, Madrid, pp.799-814.
- Martins, R.B.F., 1975, Scouring of rocky riverbeds by free-jet spillways, Water Power & Dam Construction, pp.152-153.
- Mason, P.J., 1983, Scour downstream of energy dissipating spillways, Thesis submitted for the degree of master of philosophy, City University London, Department of Civil Engineering.
- Mason, P.J. and K. Arumugam, 1985, Free jet scour below dams and flip buckets, Journal of Hydraulic Engineering, ASCE, Vol.111, No.2, pp.220-235. Discussion and reply, pp.1192-1205.

- Mirtskhoulava, Ts.E., 1967, Mechanism and computation of local and general scour in non-cohesive, cohesive soils and rock beds, 12th IAHR-congress, Fort Collins, paper C20.
- Rajaratnam, N., 1982, Erosion by unsubmerged plane water jets, In: Applying Research to Hydraulic Practise, Jackson, ASCE, New York, pp.280-288.

Schoklitsch, A., 1932, Kolkbildung unter Ueberfallstrahlen, Die Wasserwirtschaft, Nr.24, pp.341-343.

- Stein, O.R., Julien, P.Y. and C.V. Alonso, 1993, Mechanics of jet scour downstream of a headcut, Journal of Hydraulic Research, Vol.31, No.6, pp.723-738.
- Veronese, A., 1937, Erosioni di fondo a valle di uno scarico, Annali dei Lavori Publicci, Vol.75, No.9, pp.717-726.
- Whittaker, J.G. and A. Schleiss, 1984, Scour related to energy dissipators for high head structures, Nr 73 Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Technischen Hochschule Zürich.

BIJLAGEN

- Toetsing ontgrondingsformules (databestand: Schoklitsch, 1932) В Toetsing ontgrondingsformules (databestand: Veronese, 1937) С Toetsing ontgrondingsformules (databestand: Eggenberger, 1944) D Toetsing ontgrondingsformules (databestand: Doddiah, 1953) Ε Toetsing ontgrondingsformules (databestand: Hartung, 1957) F Toetsing ontgrondingsformules (databestand: Kotoulas, 1967) G Toetsing ontgrondingsformules (databestand: Martins, 1973) Н Calibratie (214 gootexperimenten) 1 Toetsing ontgrondingsformules (databestand: Rajaratnam, 1982) J Toetsing ontgrondingsformules (databestand: Mason, 1983) К Calibratie (26 prototype experimenten) L Toetsing ontgrondingsformules (databestand: Bormann, 1991) Μ Toetsing ontgrondingsformules (databestand: Stein, 1993) Ν
- O Toetsing ontgrondingsformules (databestand/fijn zand): Stein, 1993)
- P Verificatie nieuwe voorspeller

Ontgrondingsformules

A

- Q Verificatie voorspeller Patrashew
- R Verificatie voorspeller Schoklitsch
- S Verificatie voorspeller INCYTH
- T Verificatie voorspeller Mason
- U Verificatie voorspeller Bormann
- V Verificatie voorspeller Damle
- W Experimentele data

Schoklitsch (1932)*

$$y_{\rm m,e} + h_{\rm t} = 0.52 \, q^{0.57} H^{0.2} / d_{90}^{0.32}$$

Veronese (1937/A)*

$$y_{m,e} + h_t = 0.20 q^{0.54} H^{0.225} / d_{50}^{0.42} \qquad d_{50} \ge 0.005 \,\mathrm{m}$$

Veronese (1937/B)*

$$y_{\rm m,e} + h_{\rm t} = 1.90 \, q^{0.54} H^{0.225} \qquad d_{\rm 50} < 0.005 \, {\rm m}$$

Jaeger (1939)

$$y_{m,e} + h_t = 1.08 q^{0.50} H^{0.25} h_t^{0.33} / \left(g^{0.25} d_{50}^{0.33}\right)$$

Eggenberger (1944)

$$y_{\rm m,e} + h_{\rm t} = 2.86 \, q^{0.6} H^{0.5} / \left(g^{0.30} d_{90}^{0.4} \right)$$

Hartung (1957)

$$y_{m,e} + h_t = 2.82 q^{0.64} H^{0.36} / \left(g^{0.32} d_{85}^{0.32} \right) \qquad \left(d_{85} \approx d_{90} \right)$$

Franke (1960)

$$y_{m,e} + h_t = 2.42 q^{2/3} H^{0.5} / \left(g^{1/3} d_{90}^{0.5} \right)$$

Mikhalev (1960)

$$y_{m,e} + h_t = 5.65q \left(\frac{d_{90}}{h_t} \right)^{1/6} / \sqrt{g d_{90}} - 9 b_u \qquad b_u \approx 0.8q / \sqrt{2g H} \qquad \theta > 60^\circ$$

Patrashew (1960)*

$$y_{m,e} + h_t = 5.21q^{0.5} H^{0.25} / (g d_{90}/d_{ref})^{0.25} (d_{ref} = 0.003 m)$$

Damle (1966)*

$$y_{\rm m,e} + h_{\rm t} = 0.55 q^{0.5} H^{0.5}$$

Mirtskhulava et al. (1967)

$$y_{m,e} + h_t = q \left(c_{\eta} / (\Delta d_{90})^{0.5} - 4.24 / H^{0.5} \right) / g^{0.5} + 0.25 h_t \quad (\text{model: } c_{\eta} = 3.37) \quad \theta > 60^\circ$$

Kotoulas (1967)

$$y_{m,e} + h_t = 1.73 q^{0.7} H^{0.35} / \left(g^{0.35} d_{90}^{0.4} \right)$$

Chee en Padiyar (1969)*

$$y_{m.e} + h_t = 2.13 q^{0.67} H^{0.18} / d_{50}^{0.063}$$

Chee en Kung (1971)

$$y_{m,e} + h_t = 3.30 \, q^{0.6} \, H^{0.2} / \left(g^{0.3} \, d_{50}^{0.1} \right)$$

Tschopp-Bisaz (1972)

$$y_{m,e} + h_t = 4.88 \, q^{0.5} H^{0.25} / g^{0.25} - 7.125 d_{90}$$

Chian Min Wu (1973)

$$y_{m,e} + h_t = 2.11 q^{0.51} H^{0.235} / g^{0.255}$$

Martins (1973/A)

$$y_{m,e} + h_t = 0.14N + 1.70h_t - 0.73h_t^2/N$$
 met $N = Q^{3/7}H^{3/14}/d_{50}^{2/7}$

Martins (1975/B)

$$y_{m,e} + h_t = 3.0q^{0.6} z_2^{0.1} / g^{0.3} \quad z_2 \simeq H$$

Machado (1982/A)

$$y_{m,e} + h_t = 2.39 c_v^{0.5} q^{0.5} H^{0.3145} / (g^{0.25} d_{90}^{0.0645}) \qquad (c_v \approx 1.0)$$

Machado (1982/B)

$$y_{m,e} + h_t = 5.27 c_v^{0.5} q^{0.5} H^{0.25} / g^{0.25} (c_v \approx 1.0)$$

INCYTH (1982)

$$y_{m,e} + h_t = 2.5q^{0.5}H^{0.25}/g^{0.25}$$

Mason (1985/A)

$$y_{m,e} + h_t = 3.27 q^{0.6} H^{0.05} h_t^{0.15} / (g^{0.30} d_{50}^{0.10})$$

Mason (1985/B)*

$$y_{m,e} + h_t = (6.42 - 3.1H^{0.1})q^{0.6 - H/300}H^{0.05 + H/200}h_t^{0.15}/(g^{0.30}d_{50}^{0.10})$$
 met $d_{50} = 0.25m$

Mason (1985/C)*

$$y_{m,e} + h_t = (6.42 - 3.1H^{0.1})q^{0.6 - H/300}H^{0.05 + H/200}h_t^{0.15}/(g^{0.30}d_{50}^{0.10})$$

Yen (1985)*

$$y_{m,e} + h_{t} = 25 (q^{2}/g)^{1/3} (v^{2}/(gH^{3}))^{1/15} (H/d_{50})^{1/10} (h_{t}/H)^{3/20} ((gH^{3})/q^{2})^{(20 + H)/600}$$

Bormann (1988)

$$y_{m,e} + h_t = 0.7 q^{0.45} U h_t^{0.12} (\sin\theta)^{0.66} / (g^{0.73} d_{50}^{0.30}) + h_t^{0.12}$$

Bormann (1991)

$$y_{m,e} + h_{t} = c_{d}^{2} (\sin\phi/\sin(\phi + \theta))^{0.8} q^{0.6} U \sin\theta/((2\Delta g)^{0.8} d_{90}^{0.4}) + h_{t} (c_{d} \approx 1.8, \phi \approx 25^{\circ})$$

De coëfficiënten in de formules van Schoklitsch, Veronese, Damle, Chee en Padiyar, Mason (B), Mason (C) en Yen (formules met een *) zijn niet dimensieloos. De ontgrondingsformule van Patrashew is hier aangepast met d_{ref} . Dan heeft de constante 5.21 in de ontgrondingsformule van Patrashew geen dimensie. Voor de duidelijkheid wordt nog opgemerkt dat eenheden uit het Internationaal Eenhedenstelsel dienen te worden gebruikt. Het kan dus voorkomen dat de formules die hier worden gegeven niet geheel overeeenkomen met de oorspronkelijke formules die door de onderzoekers zelf zijn gegeven. Om zo volledig mogelijk te zijn volgen hieronder nog enkele formules die overigens in deze studie niet nader zijn onderzocht (Mason, 1983).

Thomos (1953)

$$y_{m,e} + h_t = h_t + 2/3h_t (q/(Hw_s))^{2/3} (H/h_t)^{2(q/(Hw_s))^{n/3}}$$

Mikhalev (1960)

$$y_{m,e} + h_t = \left(5.65q \left(\frac{d_{90}}{h_t}\right)^{1/6} / \sqrt{gd_{90}} - 9b_u\right) \sin\theta / (1 - 0.215 \cot\theta) \qquad b_u \approx 0.8q / \sqrt{2gH}$$

Mirtskhulava et al. (1967)

$$y_{m,e} + h_t = q \sin\theta / (1 - 0.175 \cot\theta) \left(\frac{c_{\eta}}{\Delta d_{90}} \right)^{0.5} - 4.24 / H^{0.5} / g^{0.5} + 0.25 h_t \quad (\text{model: } c_{\eta} = 3.37)$$

Taraimovich (1978)*

$$y_{\rm m.e} + h_{\rm t} = 0.633 q^{0.67} H^{0.25}$$

SOFRELEC (1980)

$$y_{m,e} + h_t = 4.6q^{0.6} z_2^{0.1} / g^{0.3} \quad z_2 \simeq H$$

De franse formule (SOFRELEC) komt nagenoeg overeen met die van Martins (B). Het verschil tussen deze twee formules is de grootte van de constante. SOFRELEC geeft een ruime bovengrens van de evenwichtsdiepte.

Whittaker en Schleiss (1984) berichtten dat Mirtskhulava naast een ontgrondingsformule voor niet-cohesief materiaal ook een voor rotsachtige bodems heeft afgeleid. De formules van Studenichikov (1962), Rubenstein (1963) en Zvorykin et al. (1975) vereisen gedetailleerde informatie inzake de civieltechnische constructie.

Toetsing ontgrondingsformules (databestand: 59 experimenten Schoklitsch 1932)

d₅₀ d₅₀ h, H q t

θ

=	0.5, 0.9, 2.5, 1.5, 1.5, 6.0, 3.0, 14 mm
	0.6, 1.5, 3.0, 4.5, 6.0, 6.3, 10, 15 mm
=	niet gerapporteerd (berekend)
=	0.056-0.32 m
=	0.0088-0.07 m ² /s
=	niet gerapporteerd
=	niet gerapporteerd ($\theta = 90^{\circ}$)

	0.75 <i><r< i=""><1.33</r<></i>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <i><r< i=""><3.00</r<></i>	X _m
Schoklitsch	100%	100%	100%	0.97
Veronese (A)	83%	100%	100%	0.99
Veronese (B)	49%	83%	97%	0.69
Jaeger	51%	88%	100%	0.74
Eggenberger	0%	53%	100%	2.05
Hartung	34%	100%	100%	1.43
Franke	0%	39%	100%	2.17
Mikhalev	49%	100%	100%	1.38
Patrashew	100%	100%	100%	1.02
Damle	0%	0%	0%	0.14
Mirtskhulava	64%	100%	100%	0.98
Kotoulas	100%	100%	100%	1.04
Chee en Padiyar	59%	88%	100%	0.79
Chee en Kung	83%	97%	100%	0.95
Tschopp-Bisaz	83%	98%	100%	0.93
Chian Min Wu	0%	47%	83%	0.47
Martins (B)	5%	76%	95%	0.57
Machado (A)	34%	86%	100%	0.66
Machado (B)	51%	100%	100%	1.18
INCYTH	0%	80%	95%	0.56
Mason (A)	63%	90%	100%	0.83
Mason (B)	22%	73%	92%	0.61
Mason (C)	76%	100%	100%	0.99
Yen	51%	95%	100%	1.29
Bormann (A)	81%	100%	100%	1.00
Bormann (B)	97%	100%	100%	0.91
Hoffmans	98%	100%	100%	1.08

Bijlage B

Opmerkingen:

1) De scores betreffende de ontgrondingsformules van Schoklitsch, Patrashew, Kotoulas, Bormann (B) en Hoffmans zijn uitmuntend. De ontgrondingsformule van Schoklitsch voldoet niet aan de dynamische gelijkvormigheid (schaaleffecten).

2) De experimentele data van Schoklitsch is niet goed gedocumenteerd. De evenwichtsdiepteen het verval zijn uit grafieken afgelezen (afleesfouten voor zowel $y_{m,e}$ als H zijn op 1 cm geschat). In de studie is aangenomen dat de hoek θ gelijk is aan 90°. De benedenstroomse waterdiepte is berekend. Het debiet en zeefkrommes zijn expliciet gegeven.

3) Er is geen informatie over de tijdsduur van beproeven. Op basis van de goede score van Kotoulas $x_m = 1.04$ mag worden aangenomen dat de proeven voldoende lang hebben geduurd om een evenwichtskuil te verkrijgen. De experimenten die door Kotoulas zijn uitgevoerd zijn na 24 uur beëindigd (bijlage G).

Ć

Toetsing ontgrondingsformules (databestand: 43 experimenten Veronese, 1937)

Gegevens:

d₅₀ d₂₀ h H q t θ		9.1, 14.2, 21, 36.2 mm niet gerapporteerd $(d_{90} = 2d_{50})$ 0.02-0.25 m 1 m 0.002-0.1656 m ² /s niet gerapporteerd niet gerapporteerd ($\theta = 90^{\circ}$)
0	-	met gerapporteerd (0 = 507

			T	
	0.75 <i><r< i=""><1.33</r<></i>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <r<3.00< td=""><td>×_m</td></r<3.00<>	× _m
Schoklitsch	30%	91%	98%	1.48
Veronese (A)	72%	93%	100%	1.14
Veronese (B)	0%	47%	91%	2.05
Jaeger	28%	93%	100%	1.42
Eggenberger	0%	0%	0%	4.96
Hartung	0%	0%	33%	3.26
Franke	0%	0%	2%	4.61
Mikhalev	16%	51%	98%	2.07
Patrashew	0%	47%	91%	1.84
Damle	23%	100%	100%	0.65
Mirtskhulava	58%	100%	100%	1.21
Kotoulas	0%	37%	95%	2.11
Chee en Padiyar	0%	40%	93%	2.15
Chee en Kung	0%	16%	91%	2.30
Tschopp-Bisaz	9%	49%	98%	2.01
Chian Min Wu	47%	91%	98%	1.37
Martins (B)	42%	93%	100%	1.42
Machado (A)	0%	49%	91%	1.98
Machado (B)	0%	0%	14%	3,54
INCYTH	2%	77%	91%	1.68
Mason (A)	0%	74%	100%	1.72
Mason (B)	49%	95%	100%	1.36
Mason (C)	0%	74%	98%	1.76
Yen	0%	72%	95%	1.80
Bormann (A)	0%	0%	86%	2.65
Bormann (B)	0%	16%	91%	2.27
Hoffmans	0%	14%	84%	2.37

Opmerkingen:

1) De experimentele data van Veronese is goed gedocumenteerd. De gegevens zijn uit tabellen overgenomen (geen afleesfouten). De d_{90} en θ zijn echter niet gegeven. Hiervoor zijn aannames gedaan; $d_{90} = 2d_{50}$ en $\theta = 90^{\circ}$.

2) De voorspeller van Veronese (A) geeft in deze serie van experimenten het beste resultaat.

3) De tijdsduur van experimenten is niet gerapporteerd. Omdat vrijwel alle ontgrondingsformules (uitgezonderd die van Damle) een overschatte waarde van de evenwichtsdiepte berekenen is hoogstwaarschijnlijk de evenwichtssituatie niet bereikt. Daarom zijn deze experimenten niet gebruikt voor het ijken van de nieuwe voorspeller.

Toetsing ontgrondingsformules (databestand: 29 experimenten Eggenberger, 1944)

Gegevens:

d50 d90

ĥ, H

 $q \\ t$

θ

=

=

=

=

=

=

0.9, 3.1, 6.5 mm 1.2, 3.6, 7.6 mm 0.10-0.21 m 0.19-0.35 m 0.006-0.024 m²/s

100 uur

niet gerapporteerd ($\theta = 90^\circ$)

	0.75 <i><r< i=""><1.33</r<></i>	0.50 <r<2.00< th=""><th>0.33<r<3.00< th=""><th>×_m</th></r<3.00<></th></r<2.00<>	0.33 <r<3.00< th=""><th>×_m</th></r<3.00<>	× _m
Schoklitsch	0%	0%	100%	0.39
Veronese (A)	0%	0%	24%	0.31
Veronese (B)	0%	0%	34%	0.28
Jaeger	0%	0%	86%	0.36
Eggenberger	100%	100%	100%	1.00
Hartung	0%	100%	100%	0.61
Franke	100%	100%	100%	1.01
Mikhalev	0%	0%	38%	0.32
Patrashew	0%	24%	100%	0.45
Damle	0%	0%	0%	0.07
Mirtskhulava	0%	0%	59%	0.35
Kotoulas	0%	0%	100%	0.42
Chee en Padiyar	0%	0%	24%	0.27
Chee en Kung	0%	0%	55%	0.34
Tschopp-Bisaz	0%	0%	86%	0.39
Chian Min Wu	0%	0%	0%	0.19
Martins (B)	0%	0%	0%	0.20
Machado (A)	0%	0%	38%	0.30
Machado (B)	0%	55%	93%	0.50
INCYTH	0%	0%	3%	0.24
Mason (A)	0%	0%	34%	0.30
Mason (B)	0%	0%	14%	0.23
Mason (C)	0%	0%	66%	0.35
Yen	0%	28%	90%	0.42
Bormann (A)	38%	100%	100%	0.72
Bormann (B)	24%	100%	100%	0.67
Hoffmans	0%	38%	100%	0.48

Opmerkingen:

1) De experimentele gegevens zijn uit tabellen overgenomen (geen afleesfouten). De hoek θ is geschat ($\theta = 90^{\circ}$). De tijdsduur van elke proef bedroeg ongeveer 100 uur, wat relatief lang is voor een gootexperiment. Derhalve zijn de proeven vrijwel zeker tot een evenwichtssituatie doorgezet.

2) De voorspellingskracht van de ontgrondingsformules van respectievelijk Eggenbergeren Franke is uitmuntend. De overige formules scoren relatief slecht. De formules van Eggenberger en Franke voorspellen ten opzichte van de overige formules een overschatte waarde van de evenwichtsdiepte. Tijdens het onderzoek heeft Eggenbergerbenedenstroomsvan de ontgrondingskuil de opeenhoping van zand regelmatig verwijderd. Hierdoor neemt de ontgrondingscapaciteit toe waardoor een relatief grotere kuil wordt verkregen.

Bijlage D

ų.

Toetsing ontgrondingsformules (databestand: 33 experimenten Doddiah, 1953)

Gegevens:

d₅₀ d₉₀ h, H q t θ

=	4.8, 9.5 mm
=	7.1, 12.5 mm
=	0.037-0.305 m
-	0.137-1.19 m
=	0.0110-0.0472 m ² /s
=	niet gerapporteerd
=	niet gerapporteerd ($\theta = 90^\circ$)

	0.75 <i><r< i=""><1.33</r<></i>	0.50 <r<2.00< th=""><th>0.33<r<3.00< th=""><th>×_m</th></r<3.00<></th></r<2.00<>	0.33 <r<3.00< th=""><th>×_m</th></r<3.00<>	× _m
Schoklitsch	36%	100%	100%	0.69
Veronese (A)	18%	67%	100%	0.54
Veronese (B)	30%	82%	100%	0.61
Jaeger	15%	82%	100%	0.59
Eggenberger	9%	52%	82%	2.02
Hartung	55%	88%	100%	1.24
Franke	6%	52%	82%	1.99
Mikhalev	52%	100%	100%	0.73
Patrashew	48%	100%	100%	0.81
Damle	0%	0%	12%	0.17
Mirtskhulava	0%	82%	100%	0.59
Kotoulas	64%	100%	100%	0.84
Chee en Padiyar	27%	88%	100%	0.61
Chee en Kung	48%	100%	100%	0.72
Tschopp-Bisaz	61%	100%	100%	0.81
Chian Min Wu	0%	36%	85%	0.42
Martins (B)	0%	45%	97%	0.43
Machado (A)	39%	85%	100%	0.63
Machado (B)	61%	100%	100%	1.08
INCYTH	24%	55%	100%	0.51
Mason (A)	6%	79%	100%	0.59
Mason (B)	0%	42%	91%	0.45
Mason (C)	24%	91%	100%	0.65
Yen	48%	97%	100%	0.74
Bormann (A)	61%	97%	100%	1.10
Bormann (B)	70%	100%	100%	1.02
Hoffmans	58%	100%	100%	0.81

Opmerkingen:

.

1) De experimentele gegevens (d, H, q, $y_{m,e}$) zijn uit tabellen overgenomen (geen afleesfouten). De hoek θ is aangenomen ($\theta = 90^{\circ}$). 2) De formule van Bormann (B) geeft relatief het beste resultaat; score is ruim voldoende. De nieuwe voorspeller scoort voldoende. Toetsing ontgrondingsformules (databestand: 74 experimenten Hartung, 1957)

=

=

=

=

=

Gegevens:

d 50 d₉₀

ĥ, H

q t

θ

2.5, 4.0, 6.0, 8.5 mm 2.9, 4.8, 6.8, 9.7 mm niet altijd gerapporteerd (berekend) 0.012-0.14 m 0.0059-0.0374 m²/s geëxtrapoleerd naar evenwicht niet gerapporteerd ($\theta = 90^\circ$)

	0.75 <i><r< i=""><1.33</r<></i>	0.50 <r<2.00< th=""><th>0.33<i><r< i=""><3.00</r<></i></th><th><i>x</i>_m</th></r<2.00<>	0.33 <i><r< i=""><3.00</r<></i>	<i>x</i> _m
Schoklitsch	66%	100%	100%	0.74
Veronese (A)	0%	78%	100%	0.55
Veronese (B)	1%	70%	100%	0.55
Jaeger	0%	19%	100%	0.43
Eggenberger	59%	100%	100%	1.28
Hartung	91%	100%	100%	0.95
Franke	66%	100%	100%	1.26
Mikhalev	57%	82%	97%	0.75
Patrashew	86%	100%	100%	0.82
Damle	0%	0%	0%	0.09
Mirtskhulava	1%	41%	93%	0.51
Kotoulas	0%	91%	100%	0.65
Chee en Padiyar	1%	74%	99%	0.55
Chee en Kung	22%	96%	100%	0.68
Tschopp-Bisaz	0%	92%	100%	0.66
Chian Min Wu	0%	4%	81%	0.38
Martins (B)	0%	39%	96%	0.47
Machado (A)	0%	62%	100%	0.52
Machado (B)	96%	100%	100%	0.97
INCYTH	0%	36%	96%	0.46
Mason (A)	12%	81%	100%	0.61
Mason (B)	3%	55%	100%	0.53
Mason (C)	51%	100%	100%	0.78
Yen	80%	96%	100%	1.11
Bormann (A)	31%	100%	100%	0.75
Bormann (B)	28%	100%	100%	0.75
Hoffmans	85%	100%	100%	0.84

Opmerkingen:

1) De experimentele gegevens (d, H, q, $y_{m,e}$) zijn uit zowel tabellen als grafieken overgenomen (afleesfout voor $y_{m,e}$ wordt op 1 cm geschat). De hoek θ is aangenomen ($\theta = 90^{\circ}$). In het systematisch onderzoek van Hartung zijn ongeveer 600 experimenten uitgevoerd. Niettemin worden in het proefschrift van Hartung 74 experimenten (25 in tabellen en 49 in grafieken) uitvoerig gedocumenteerd. Hartung heeft de experimenten in 7 series onderverdeeld. In elke serie zijn diverse langeduursproeven (80 uur) uitgevoerd. Op basis van deze resultaten zijn de korteduursproeven (2 uur) gecorrigeerd. Volgens Hartung is de dan gemaakte fout tussen de gemeten en berekende $y_{m,e}$ kleiner dan 5% (dus na extrapolatie).

2) De formule van Machado (B) scoort uitmuntend. De formules van respectievelijk Hartung, Patrashew en Hoffmans geven zeer goede resultaten.

ĺ,

Toetsing ontgrondingsformules (databestand: 48 experimenten Kotoulas, 1967)

Gegevens:

d₅₀ d₉₀ h, H q t Ø

=	5.2, 8.6, 9.5 mm
=	10.5, 19.0, 25.0 mm
=	niet gerapporteerd (berekend)
=	0.2-0.4 m
=	0.02-0.08 m ² /s
-	24 uur

= niet gerapporteerd ($\theta = 90^\circ$)

	0.75 <i><r< i=""><1.33</r<></i>	0.50 <r<2.00< th=""><th>0.33<r<3.00< th=""><th>×_m</th></r<3.00<></th></r<2.00<>	0.33 <r<3.00< th=""><th>×_m</th></r<3.00<>	× _m
Schoklitsch	100%	100%	100%	0.86
Veronese (A)	52%	100%	100%	0.74
Veronese (B)	88%	100%	100%	0.90
Jaeger	23%	100%	100%	0.71
Eggenberger	0%	23%	100%	2.11
Hartung	0%	100%	100%	1.50
Franke	0%	46%	100%	2.04
Mikhalev	88%	100%	100%	1.22
Patrashew	100%	100%	100%	0.99
Damle	0%	0%	0%	0.21
Mirtskhulava	31%	83%	100%	0.71
Kotoulas	100%	100%	100%	1.01
Chee en Padiyar	100%	100%	100%	0.98
Chee en Kung	88%	100%	100%	1.11
Tschopp-Bisaz	94%	100%	100%	1.01
Chian Min Wu	10%	88%	100%	0.60
Martins (B)	38%	100%	100%	0.70
Machado (A)	83%	100%	100%	0.84
Machado (B)	17%	94%	100%	1.54
INCYTH	56%	100%	100%	0.73
Mason (A)	94%	100%	100%	0.92
Mason (B)	40%	98%	100%	0.72
Mason (C)	94%	100%	100%	1.03
Yen	67%	100%	100%	1.22
Bormann (A)	96%	100%	100%	1.10
Bormann (B)	100%	100%	100%	0.97
Hoffmans	92%	100%	100%	1.05

Opmerkingen:

1) De experimentele gegevens zijn uit tabellen overgenomen (geen afleesfouten). De benedenstroomse waterdiepte is berekend. In de studie is aangenomen dat $\theta = 90^{\circ}$.

2) Alle ontgrondingsproevenzijn na ongeveer 24 uur beeindigd. Volgens Kotoulas was dit voldoende lang om een evenwichtsituatie te bereiken.

3) De formules van respectievelijk Schoklitsch, Patreshew, Kotoulas, Chee & Padiyar, Bormann (A) en Bormann (B) scoren uitmuntend. De coëfficiënten in de ontgrondingsformules van Schoklitsch en Chee & Padiyar zijn niet dimensieloos (schaaleffecten!). De nieuwe voorspeller scoort zeer goed. Toetsing ontgrondingsformules (databestand: 90 experimenten Martins, 1973)

=

=

= =

=

=

=

Gegevens:

b ď

h H Q t

θ

- 0.325-0.746 m (maximale ontgrondingsbreedte) 30, 47 mm ($d_{50} = d_{90}$, kubus!) 0.06-0.40 m 0.911-2.104 m 0.0105-0.0371 m³/s
- niet gerapporteerd 0.70-1.22 (rad)

	0.75 <r<1.33< th=""><th>0.50<r<2.00< th=""><th>0.33 < r < 3.00</th><th>ׄ</th></r<2.00<></th></r<1.33<>	0.50 <r<2.00< th=""><th>0.33 < r < 3.00</th><th>ׄ</th></r<2.00<>	0.33 < r < 3.00	ׄ
Schoklitsch	31%	72%	100%	0.69
Veronese (A)	14%	38%	67%	0.41
Veronese (B)	34%	87%	100%	0.99
Jaeger	33%	73%	100%	0.61
Eggenberger	1%	32%	59%	2.64
Hartung	40%	62%	86%	1.57
Franke	17%	43%	63 %	2.32
Mikhalev	20%	56%	82%	0.64
Patrashew	37%	89%	100%	0.94
Damle	14%	34%	57%	0.37
Mirtskhulava	19%	46%	96%	0.49
Kotoulas	37%	87%	100%	0.96
Chee en Padiyar	31%	81%	100%	0.88
Chee en Kung	32%	87%	100%	0.98
Tschopp-Bisaz	31%	74%	100%	0.93
Chian Min Wu	31%	74%	99%	0.68
Martins (A)	98%	100%	100%	0.94
Martins (B)	29%	60%	97%	0.61
Machado (A)	38%	84%	100%	1.03
Machado (B)	, 29%	56%	80%	1.79
INCYTH	32%	80%	100%	0.85
Mason (A)	37%	81%	100%	0.69
Mason (B)	33%	61%	100%	0.57
Mason (C)	39%	79%	100%	0.69
Yen	36%	81%	100%	0.67
Bormann (A)	38%	87%	99%	1.43
Bormann (B)	57%	91%	100%	1.23
Hoffmans	41%	84%	98%	1.07

Opmerkingen:

1) De voorspeller van Martins (A) geeft het beste resultaat.

2) De experimentele gegevens zijn uit tabellen overgenomen (geen afleesfouten). Het specifieke debiet q is als volgt berekend q = Q/b, (b_i is de maximale ontgrondingsbreedte). De breedte van de straal ter hoogte van het wateroppervlak is kleiner dan de maximale ontgrondingsbreedte. Feitelijk zou hiervoor moeten worden gecorrigeerd. In deze studie is hiervan afgezien. Omdat de tijdsduren van de experimenten niet zijn vermeld en gezien de onzekerheid omtrent de omzetting van Q naar q zijn de experimenten van Martins niet gebruikt voor het calibreren van de nieuwe voorspeller.

Bijlage H

ſ

Calibratie (214 gootexperimenten)

De nieuwe voorspeller is gecalibreerd door gebruik te maken van ongeveer 200 gootexperimenten (59 experimenten van Schoklitsch, 33 experimenten van Doddiah, 74 experimenten van Hartung en 48 experimenten van Kotoulas. De proeven van Veronese, Eggenberger en Martins zijn niet in deze analyse meegenomen. Redenen zijn:

Veronese: De experimenten zijn niet doorgezet tot de evenwichtsfase. Eggenberger: Tijdens het onderzoek van Eggenberger is benedenstrooms van de ontgrondingskuil de opeenhoping van zand regelmatig verwijderd. Hierdoor neemt de ontgrondingscapaciteit toe waardoor een relatief grotere kuil wordt verkregen. Martins: De tijdsduren van de experimenten zijn niet vermeld en er is onzekerheid omtrent de omzetting van Q naar q.

	0.75 <r<1.33< th=""><th>0.50<i><r< i=""><2.00</r<></i></th><th>0.33<i><r< i=""><3.00</r<></i></th><th>×_m</th></r<1.33<>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <i><r< i=""><3.00</r<></i>	× _m
Schoklitsch		100%	100%	0.82
Veronese (A)	37%	87%	100%	0.72
Veronese (B)	38%	82%	99%	0.70
Jaeger	21%	66%	100%	0.62
Eggenberger	22%	62%	97%	1.87
Hartung	49%	98%	100%	1.29
Franke	24%	64%	97%	1.88
Mikhalev	61%	94%	99%	1.04
Patrashew	87%	100%	100%	0.92
Damle	0%	0%	2%	0.15
Mirtskhulava	25%	73%	98%	0.71
Kotoulas	60%	97%	100%	0.90
Chee en Padiyar	43%	86%	100%	0.75
Chee en Kung	57%	98%	100%	0.88
Tschopp-Bisaz	53%	97%	100%	0.86
Chian Min Wu	2%	40%	86%	0.47
Martins (B)	10%	64%	97%	0.55
Machado (A)	34%	81%	100%	0.67
Machado (B)	60%	99%	100%	1.21
INCYTH	16%	65%	97%	0.57
Mason (A)	43%	87%	100%	0.75
Mason (B)	16%	68%	96%	0.59
Mason (C)	64%	99%	100%	0.87
Yen	64%	97%	100%	1.11
Bormann (A)	64%	100%	100%	0.99
Bormann (B)	70%	100%	100%	0.91
Hoffmans	86%	100%	100%	0.96

Toetsing ontgrondingsformules (databestand: 21 experimenten Rajaratnam, 1982)

=

Gegevens:

d₅₀ d₉₀ h_t q U t 1.2, 2.38 mm niet gerapporteerd $(d_{so} = 2d_{so})$ 0.01-0.02 m 0.0055-0.0086 m²/s 2.41-3.64 m/s > 24 uur

	0.75 <r<1.33< th=""><th>0.50<i><r< i=""><2.00</r<></i></th><th>0.33<r<3.00< th=""><th>×m</th></r<3.00<></th></r<1.33<>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <r<3.00< th=""><th>×m</th></r<3.00<>	×m
Schoklitsch	19%	100%	100%	1.42
Veronese (A)	14%	100%	100%	1.51
Veronese (B)	100%	100%	100%	0.89
Jaeger	100%	100%	100%	0.86
Eggenberger	0%	0%	0%	4.31
Hartung	0%	0%	100%	2.31
Franke	0%	0%	0%	4.36
Mikhalev	67%	100%	100%	1.25
Patrashew	0%	100%	100%	1.69
Damle	0%	0%	0%	0.25
Mirtskhulava	86%	100%	100%	0.85
Kotoulas	0%	100%	100%	1.59
Chee en Padiyar	95%	100%	100%	0.82
Chee en Kung	100%	100%	100%	1.14
Tschopp-Bisaz	29%	100%	100%	1.38
Chian Min Wu	0%	100%	100%	0.63
Martins (B)	0%	100%	100%	0.58
Machado (A)	100%	100%	100%	1.05
Machado (B)	0%	100%	100%	1.66
INCYTH	67%	100%	100%	0.79
Mason (A)	24%	100%	100%	0.70
Mason (B)	0%	33%	100%	0.46
Mason (C)	67%	100%	100%	0.78
Yen	95%	100%	100%	0.88
Bormann (A)	0%	100%	100%	1.77
Bormann (B)	0%	100%	100%	1.63
Hoffmans	0%	81%	100%	1.86

Opmerkingen:

1) De experimentele data van Rajaratnam is goed gedocumenteerd (tabellen). De d_{90} is geschat ($d_{90} = 2d_{50}$). De berekende evenwichtsdiepte is getoetst in relatie tot de dynamische evenwichtsdiepte (dus niet de statische evenwichtsdiepte).

2) De verificatie betreffende de nieuwe voorspeller is voor deze serie experimenten deels geslaagd; het resultaat had beter moeten zijn.

Bijlage J

Toetsing ontgrondingsformules (databestand: 47 gootexperimenten Mason, 1983)

Gegevens:

d₅₀ d₉₀ h H q t θ

=	1-28 mm
=	6-41 mm
=	0.033-0.561 m
=	0.325-2.150 m
=	0.0093-0.4198 m ² /s
=	niet gerapporteerd
=	0.44-1.48 (rad)

			T THE REPORT OF THE REPORT	
	0.75 <i><r< i=""><1.33</r<></i>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <r<3.00< td=""><td>X</td></r<3.00<>	X
Schoklitsch	66%	94%	100%	1.03
Veronese (A)	45%	85%	100%	0.74
Veronese (B)	64%	96%	100%	1.05
Jaeger	64%	98%	100%	1.02
Eggenberger	2%	6%	32%	3.90
Hartung	11%	34%	79%	2.34
Franke	2%	9%	32%	4.05
Mikhalev	36%	72%	96%	1.53
Patrashew	53%	94%	98%	1.19
Damle	2%	19%	62%	0.35
Mirtskhulava	53%	81%	98%	1.24
Kotoulas	28%	72%	98%	1.65
Chee en Padiyar	53%	98%	100%	1.15
Chee en Kung	49%	94%	100%	1.25
Tschopp-Bisaz	32%	85%	96%	1.41
Chian Min Wu	40%	89%	98%	0.70
Martins (B)	43%	91%	100%	0.72
Machado (A)	62%	91%	100%	1.08
Machado (B)	11%	60%	94%	1.80
INCYTH	66%	89%	100%	0.86
Mason (A)	74%	100%	100%	0.98
Mason (B)	45%	89%	100%	0.73
Mason (C)	74%	100%	100%	1.00
Yen	77%	100%	100%	1.02
Bormann (A)	26%	85%	98%	1.55
Bormann (B)	38%	91%	100%	1.40
Hoffmans	57%	98%	100%	1.06

Opmerkingen:

.

į

1) Er zijn geen afleesfouten met betrekking tot de experimentele gegevens. Mason heeft diverse instanties uit de gehele wereld aangeschreven. Op deze manier heeft hij een databestand van betrouwbare gegevens opgebouwd. Hij heeft zelf geen proeven uitgevoerd.

2) De ontgrondingsformules van Mason (model en prototype) en Yen geven relatief de beste score. De mathematische uitdrukking van Yen is geijkt met de verzamelde data van Mason. De nieuwe voorspeller scoort voldoende.

Calibratie (26 prototype experimenten Mason, 1983)

Gegevens:	d 50	=	niet gerapporteerd
	d_{90}^{30}	=	niet gerapporteerd
	h_1^{∞}	=	1.00-42.1 m
	H	=	15.8-109 m
	9	=	2.36-220 m ² /s
	t	=	niet gerapporteerd
	θ	=	0.35-1.13 rad

	0.75< <i>r</i> <1.33	0.50 <r<2.00< th=""><th>0.33<r<3.00< th=""><th>×</th></r<3.00<></th></r<2.00<>	0.33 <r<3.00< th=""><th>×</th></r<3.00<>	×
Veronese (B)	46%	85%	100%	1.21
Damle	69%	96%	100%	0.95
Chian Min Wu	35%	88%	100%	0.69
Martins (B)	27%	92%	100%	0.73
Machado (B)	15%	54%	85%	1.78
INCYTH	58%	88%	100%	0.84
Mason (B)	62%	100%	100%	1.01
Hoffmans	62%	92%	100%	0.92

Opmerkingen:

1) De experimentele data is zeer goed gedocumenteerd.

2) Diverse voorspellers waarin de korreldiameter in voorkomt zijn in de analyse weggelaten, omdat geen specifieke informatie over de materiaal eigenschappen is verstrekt.

3) Veelal bestaat de ondergrond in prototype situaties uit rotsachtig materiaal (graniet, gneis). In zulke situaties wordt verondersteld dat de d₉₀ groter is dan 1.25 cm wat op zich geen onredelijke aanname is.

4) Ofschoon de nieuwe voorspeller en de ontgrondingsformules van respectievelijk Mason (B), Damle en INCYTH relatief de minst grote spreiding vertonen, beschrijven ze geen van allen het ontgrondingsproces goed. Redenen hiervoor zijn:

- het maatgevende debiet in de rivier is niet constant zoals in de berekening wordt aangenomen
 de materiaaleigenschappen en de invloed van lucht in het lucht/water mengsel worden verwaarloosd
 in prototype situaties ontstaan geen twee maar drie-dimensionale ontgrondingskuilen.

Verder kan men zich afvragen of het ontgrondingsproces daadwerkelijk in de evenwichtsfase bevindt, omdat geen tijdsduren van de experimenten worden vermeld.

Toetsing ontgrondingsformules (databestand: 88 experimenten Bormann, 1991)

Gegevens:

d_{50}	=	0.30, 0.45 mm
d	=	1.58, 1.71 mm
h,	=	0.24-1.65 m
q		0.29-2.47 m ² /s
Ü	=	0.88-4.65 m/s
t	=	niet gerapporteerd
θ	=	0.13-0.97 (rad)

	0.75 <i><r<< i="">1.33</r<<></i>	0.50 <r<2.00< th=""><th>0.33<r<3.00< th=""><th>×_m</th></r<3.00<></th></r<2.00<>	0.33 <r<3.00< th=""><th>×_m</th></r<3.00<>	× _m
Schoklitsch	6%	23%	89%	2.39
Veronese (A)	1%	10%	45%	3.11
Veronese (B)	74%	99%	100%	1.09
Jaeger	0%	6%	18%	4.23
Eggenberger	0%	1%	5%	8.68
Hartung	0%	2%	13%	5.56
Franke	0%	0%	1%	13.4
Mikhalev	0%	0%	2%	10.7
Patrashew	13%	56%	99%	1.89
Damle	0%	1%	18%	0.25
Mirtskhulava	0%	0%	0%	15.5
Kotoulas	0%	2%	15%	5.48
Chee en Padiyar	8%	40%	94%	2.18
Chee en Kung	8%	40%	95%	2.18
Tschopp-Bisaz	33%	89%	100%	1.52
Chian Min Wu	31%	80%	98%	0.66
Martins (B)	86%	98%	100%	1.00
Machado (A)	61%	98%	100%	1.07
Machado (B)	22%	83%	100%	1.65
INCYTH	61%	91%	100%	0.78
Mason (A)	5%	10%	83%	2.58
Mason (B)	35%	98%	100%	1.41
Mason (C)	5%	9%	74%	2.69
Yen	2%	6%	45%	3.16
Bormann (A)	49%	90%	99%	0.98
Bormann (B)	63%	99%	100%	1.27
Hoffmans	75%	100%	100%	1.02

Opmerkingen:

1) Uit de verificatie blijkt dat de nieuwe voorspeller niet onderdoet voor de ontgrondingsformule van Bormann.

Toetsing ontgrondingsformules (databestand: 24 experimenten Stein et al., 1993)

Gegevens:

d₅₀ d₉₀ h_t q t U θ 0.05 (cohesief materiaal), 0.15, 1.5 mm 0.09 (cohesief materiaal), 0.21, 2.1 mm niet gerapporteerd (berekend) 0.0015-0.0049 m²/s geëxtrapoleerd naar evenwicht 0.68-1.20 m/s 0.49-1.03 (rad)

	0.75 <i><r< i=""><1.33</r<></i>	0.50 <i><r< i=""><2.00</r<></i>	0.33 <r<3.00< th=""><th>ׄ</th></r<3.00<>	ׄ
Schoklitsch	75%	100%	100%	0.97
Veronese (A)	50%	92%	100%	1.20
Veronese (B)	0%	0%	38%	0.27
Jaeger	4%	25%	83%	0.45
Eggenberger	25%	75%	100%	1.84
Hartung	92%	100%	100%	1.05
Franke	25%	54%	83%	2.32
Mikhalev	54%	100%	100%	1.03
Patrashew	92%	100%	100%	0.92
Damle	0%	0%	0%	0.04
Mirtskhulava	38%	71%	96%	1.02
Kotoulas	50%	96%	100%	0.87
Chee en Padiyar	0%	0%	42%	0.28
Chee en Kung	0%	42%	96%	0.43
Tschopp-Bisaz	0%	38%	92%	0.43
Chian Min Wu	0%	0%	17%	0.20
Martins (B)	0%	0%	17%	0.22
Machado (A)	0%	13%	42%	0.32
Machado (B)	25%	42%	96%	0.50
INCYTH	0%	0%	33%	0.24
Mason (A)	0%	0%	42%	0.31
Mason (B)	0%	0%	17%	0.21
Mason (C)	0%	33%	83%	0.44
Yen	25%	71%	100%	0.66
Bormann (A)	0%	46%	100%	0.50
Bormann (B)	0%	42%	100%	0.51
Hoffmans	88%	100%	100%	1.06

Opmerkingen:

1) De experimentele gegevens zijn uit tabellen overgenomen (geen afleesfouten). De benedenstroomse waterdiepte is berekend.

2) De gemeten ontgrondingsdiepte aan het einde van het experiment is geëxtrapoleerd naar een evenwichtsdiepte. Voor meer informatie zie paper van Stein et al.

3) De ontgrondingsformules van Hartung, Patrashew en de nieuwe voorspeller scoren zeer goed.

Bijlage N

1

Toetsing ontgrondingsformules (databestand/fijn zand): 16 experimenten Stein et al., 1993)

Gegevens:

d50 d90 h ц U t Ø =

0.05 (cohesief materiaal), 0.15 mm
0.09 (cohesief materiaal), 0.21 mm
niet gerapporteerd (berekend)
0.0015-0.0049 m ² /s
0.68-1.19 m/s
geëxtrapoleerd naar evenwicht
0.49-1.03 (rad)

	0.75 <i><r<< i="">1.33</r<<></i>	0.50 <r<2.00< th=""><th>0.33<r<3.00< th=""><th>×_m</th></r<3.00<></th></r<2.00<>	0.33 <r<3.00< th=""><th>×_m</th></r<3.00<>	× _m
Schoklitsch	88%	100%	100%	1.02
Veronese (A)	50%	88%	100%	1.33
Veronese (B)	0%	0%	6%	0.23
Jaeger	6%	38%	94%	0.48
Eggenberger	0%	63%	100%	2.00
Hartung	88%	100%	100%	1.10
Franke	0%	31%	75%	2.61
Mikhalev	69%	100%	100%	1.11
Patrashew	88%	100%	100%	0.93
Damle	0%	0%	0%	0.04
Mirtskhulava	56%	94%	100%	1.19
Kotoulas	75%	100%	100%	0.94
Chee en Padiyar	0%	0%	13%	0.25
Chee en Kung	0%	13%	94%	0.39
Tschopp-Bisaz	0%	6%	88%	0.38
Chian Min Wu	0%	0% 0%		0.16
Martins (B)	0%	0%	0%	0.19
Machado (A)	0%	0%	13%	0.28
Machado (B)	0%	13%	94%	0.42
INCYTH	0%	0%	0%	0.20
Mason (A)	0%	0%	13%	0.28
Mason (B)	0%	0%	0%	0.18
Mason (C)	0%	13%	75%	0.40
Yen	13%	56%	100%	0.60
Bormann (A)	0%	50%	100%	0.50
Bormann (B)	0%	63%	100%	0.53
Hoffmans	81%	100%	100%	1.12

Opmerkingen (zie ook bijlage N):

1) Er zijn zestien experimenten geselecteerd. Het ontgrondingsmateriaal bestaat uit fijn en heel fijn zand.

2) De nieuwe voorspeller scoort voor relatief fijn materiaal goed.

. .

۰, ۱

.

.

.

. .

Experimentele data

Bijlage W

	Serie	(m²/s)	<i>Н</i> (m)	h _t (m)	d ₅₀ (m)	d90 (m)	$Y_{m,e}+h_t$ (m)
	Schokli01 Schokli02 Schokli04 Schokli05 Schokli06	0.0088 0.0088 0.0088 0.0088 0.0088 0.0440	0.063 0.095 0.210 0.270 0.140		0.00250 0.00250 0.00250 0.00250 0.01400	$\begin{array}{c} 0.00300\\ 0.00300\\ 0.00300\\ 0.00300\\ 0.00300\\ 0.01500 \end{array}$	$0.130 \\ 0.140 \\ 0.160 \\ 0.170 \\ 0.250$
:	Schokli08 Schokli10 Schokli11 Schokli12 Schokli13	$\begin{array}{c} 0.0440 \\ 0.0440 \\ 0.0350 \\ 0.0350 \\ 0.0350 \\ 0.0154 \end{array}$	0.200 0.250 0.089 0.130 0.056		$\begin{array}{c} 0.01400\\ 0.01400\\ 0.00250\\ 0.00250\\ 0.00250\\ 0.00050 \end{array}$	$\begin{array}{c} 0.01500\\ 0.01500\\ 0.00300\\ 0.00300\\ 0.00300\\ 0.00060 \end{array}$	0.270 0.290 0.300 0.330 0.330 0.330
:	Schokli14 Schokli15 Schokli16 Schokli17 Schokli18	$\begin{array}{c} 0.0154 \\ 0.0154 \\ 0.0148 \\ 0.0148 \\ 0.0148 \\ 0.0148 \end{array}$	0.076 0.120 0.040 0.070 0.090		0.00050 0.00050 0.00150 0.00150 0.00150	$\begin{array}{c} 0.00060\\ 0.00060\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600 \end{array}$	$0.350 \\ 0.370 \\ 0.120 \\ 0.140 \\ 0.160$
:	Schokli21 Schokli22 Schokli23 Schokli24 Schokli25	$\begin{array}{c} 0.0148 \\ 0.0148 \\ 0.0254 \\ 0.0254 \\ 0.0254 \\ 0.0254 \end{array}$	0.200 0.250 0.070 0.110 0.180		$\begin{array}{c} 0.00150\\ 0.00150\\ 0.00150\\ 0.00150\\ 0.00150\\ 0.00150\end{array}$	$\begin{array}{c} 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ \end{array}$	$0.160 \\ 0.170 \\ 0.170 \\ 0.200 \\ 0.230$
:	Schokli26 Schokli28 Schokli29 Schokli30 Schokli31	0.0254 0.0377 0.0377 0.0568 0.0568	0.220 0.090 0.200 0.075 0.093		0.00150 0.00150 0.00150 0.00150 0.00150	$\begin{array}{c} 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ \end{array}$	0.240 0.250 0.300 0.300 0.320
	Schokli32 Schokli33 Schokli34 Schokli35 Schokli36	0.0568 0.0568 0.0608 0.0608 0.0608 0.0166	0.130 0.200 0.110 0.170 0.090		0.00150 0.00150 0.00150 0.00150 0.00600	$\begin{array}{c} 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00630 \end{array}$	0.350 0.370 0.350 0.390 0.170
	Schokli37 Schokli38 Schokli39 Schokli40 Schokli41	0.0166 0.0112 0.0112 0.0112 0.0112 0.0112	$\begin{array}{c} 0.140 \\ 0.110 \\ 0.140 \\ 0.180 \\ 0.240 \end{array}$		0.00600 0.00090 0.00090 0.00090 0.00090	$\begin{array}{c} 0.00630\\ 0.00150\\ 0.00150\\ 0.00150\\ 0.00150\\ 0.00150\end{array}$	0.190 0.220 0.240 0.250 0.260
	Schokli42 Schokli43 Schokli44 Schokli45 Schokli46	0.0263 0.0263 0.0231 0.0231 0.0231 0.0231	0.080 0.120 0.070 0.080 0.100		0.00600 0.00600 0.00090 0.00090 0.00090	$\begin{array}{c} 0.00630\\ 0.00630\\ 0.00150\\ 0.00150\\ 0.00150\\ 0.00150\end{array}$	0.220 0.240 0.300 0.310 0.350
	Schokli47 Schokli48 Schokli49 Schokli50 Schokli52	0.0071 0.0071 0.0071 0.0190 0.0190	0.090 0.200 0.300 0.075 0.140		$\begin{array}{c} 0.00150 \\ 0.00150 \\ 0.00150 \\ 0.00300 \\ 0.00300 \end{array}$	$\begin{array}{c} 0.00450 \\ 0.00450 \\ 0.00450 \\ 0.01000 \\ 0.01000 \end{array}$	0.100 0.120 0.130 0.140 0.160
	Schokli53 Schokli55 Schokli56 Schokli57 Schokli58	$\begin{array}{c} 0.0190 \\ 0.0126 \\ 0.0126 \\ 0.0400 \\ 0.0400 \\ 0.0400 \end{array}$	$0.170 \\ 0.130 \\ 0.190 \\ 0.120 \\ 0.150$		$\begin{array}{c} 0.00300\\ 0.00150\\ 0.00150\\ 0.00300\\ 0.00300\\ 0.00300 \end{array}$	$\begin{array}{c} 0.01000\\ 0.00450\\ 0.00450\\ 0.01000\\ 0.01000\\ 0.01000\end{array}$	0.170 0.170 0.180 0.250 0.260
	Schokli59 Schokli60 Schokli62 Schokli63 Schokli64	$\begin{array}{c} 0.0400\\ 0.0400\\ 0.0375\\ 0.0375\\ 0.0375\\ 0.0375\end{array}$	$\begin{array}{c} 0.170 \\ 0.240 \\ 0.100 \\ 0.130 \\ 0.180 \end{array}$		$\begin{array}{c} 0.00300\\ 0.00300\\ 0.00150\\ 0.00150\\ 0.00150\\ 0.00150\end{array}$	$\begin{array}{c} 0.01000\\ 0.01000\\ 0.00450\\ 0.00450\\ 0.00450\\ 0.00450 \end{array}$	0.270 0.280 0.300 0.310 0.340
	Schokli65 Schokli66 Schokli67 Schokli68	0.0700 0.0700 0.0700 0.0700 0.0700	0.150 0.200 0.270 0.320		0.00300 0.00300 0.00300 0.00300 0.00300	$0.01000 \\ 0.01000 \\ 0.01000 \\ 0.01000 \\ 0.01000$	$0.360 \\ 0.380 \\ 0.410 \\ 0.420$

=

Serie	(m^2/s)	<i>Н</i> (m)	$rac{h_{ m t}}{({ m m})}$	d ₅₀ (m)	d ₉₀ (m)	$Y_{m,e}+h_{t}$ (m)
Verones01 Verones02 Verones03 Verones04 Verones05	0.0480 0.0748 0.1032 0.1240 0.1488	1.000 1.000 1.000 1.000 1.000	0.090 0.100 0.145 0.160 0.190	0.03620 0.03620 0.03620 0.03620 0.03620 0.03620		0.090 0.165 0.205 0.230 0.270
Verones06 Verones07 Verones08 Verones10	$\begin{array}{c} 0.0540 \\ 0.0840 \\ 0.1100 \\ 0.1292 \\ 0.1480 \end{array}$	1.000 1.000 1.000 1.000 1.000	0.190 0.215 0.215 0.225 0.235	0.03620 0.03620 0.03620 0.03620 0.03620 0.03620		0.190 0.275 0.300 0.325 0.345
Verones11 Verones12 Verones13 Verones14 Verones15	0.1656 0.0280 0.0600 0.0944 0.1192	1.000 1.000 1.000 1.000 1.000	$\begin{array}{c} 0.235 \\ 0.160 \\ 0.210 \\ 0.220 \\ 0.240 \end{array}$	$\begin{array}{c} 0.03620\\ 0.02100\\ 0.02100\\ 0.02100\\ 0.02100\\ 0.02100\\ \end{array}$		0.355 0.160 0.265 0.320 0.345
Verones16 Verones17 Verones18 Verones19 Verones20	$\begin{array}{c} 0.1316 \\ 0.1482 \\ 0.0200 \\ 0.0432 \\ 0.0728 \end{array}$	1.000 1.000 1.000 1.000 1.000	0.250 0.250 0.050 0.092 0.130	$\begin{array}{c} 0.02100\\ 0.02100\\ 0.02100\\ 0.02100\\ 0.02100\\ 0.02100\\ 0.02100 \end{array}$		0.360 0.370 0.050 0.142 0.195
Verones21 Verones22 Verones23 Verones24 Verones25	0.0944 0.1140 0.1300 0.1492 0.0160	1.000 1.000 1.000 1.000 1.000	$\begin{array}{c} 0.135 \\ 0.160 \\ 0.140 \\ 0.140 \\ 0.140 \\ 0.100 \end{array}$	$\begin{array}{c} 0.02100\\ 0.02100\\ 0.02100\\ 0.02100\\ 0.02100\\ 0.01420 \end{array}$		$\begin{array}{c} 0.215 \\ 0.250 \\ 0.260 \\ 0.280 \\ 0.100 \end{array}$
Verones26 Verones27 Verones28 Verones29 Verones30	0.0448 0.0756 0.1024 0.1292 0.0060	1.000 1.000 1.000 1.000 1.000	0.165 0.185 0.205 0.220 0.030	$\begin{array}{c} 0.01420\\ 0.01420\\ 0.01420\\ 0.01420\\ 0.01420\\ 0.01420\\ \end{array}$		0.220 0.280 0.315 0.360 0.030
Verones31 Verones32 Verones33 Verones34 Verones35	0.0246 0.0442 0.0662 0.0856 0.1024	1.000 1.000 1.000 1.000 1.000	0.050 0.070 0.095 0.100 0.100	$\begin{array}{c} 0.01420\\ 0.01420\\ 0.01420\\ 0.01420\\ 0.01420\\ 0.01420\\ 0.01420\\ \end{array}$		0.130 0.170 0.215 0.230 0.270
Verones36 Verones37 Verones38 Verones39 Verones40	$\begin{array}{c} 0.1156 \\ 0.1300 \\ 0.0020 \\ 0.0458 \\ 0.0580 \end{array}$	1.000 1.000 1.000 1.000 1.000	$\begin{array}{c} 0.100\\ 0.090\\ 0.020\\ 0.100\\ 0.100\\ \end{array}$	0.01420 0.01420 0.00910 0.00910 0.00910		0.280 0.290 0.020 0.200 0.200 0.220
Verones41 Verones42 Verones43	0.0880 0.1072 0.1214	1.000 1.000 1.000	0.130 0.120 0.120	0.00910 0.00910 0.00910		0.290 0.300 0.340
Eggenbr01 Eggenbr02 Eggenbr03 Eggenbr04 Eggenbr05	0.0200 0.0060 0.0120 0.0060 0.0060	0.350 0.350 0.350 0.350 0.260	0.210 0.210 0.210 0.150 0.150	0.00305 0.00305 0.00305 0.00305 0.00305 0.00305	0.00350 0.00350 0.00350 0.00350 0.00350 0.00350	0.771 0.376 0.577 0.377 0.324
Eggenbr06 Eggenbr07 Eggenbr08 Eggenbr09 Eggenbr10	$\begin{array}{c} 0.0120\\ 0.0180\\ 0.0060\\ 0.0120\\ 0.0180 \end{array}$	0.260 0.260 0.190 0.190 0.190 0.190	0.150 0.150 0.150 0.150 0.150	0.00305 0.00305 0.00305 0.00305 0.00305 0.00305	0.00350 0.00350 0.00350 0.00350 0.00350 0.00350	0.497 0.632 0.284 0.428 0.543
Eggenbr11 Eggenbr12 Eggenbr13 Eggenbr14 Eggenbr15	0.0120 0.0085 0.0060 0.0120 0.0180	0.350 0.260 0.350 0.350 0.350	0.100 0.100 0.150 0.150 0.150	0.00305 0.00305 0.00650 0.00650 0.00650	0.00350 0.00350 0.00755 0.00755 0.00755	0.573 0.406 0.278 0.428 0.548

(

Ć

Serie	$q (m^2/s)$	<i>H</i> (m)	h _t (m)	d ₅₀ (m)	d ₉₀ (m)	$Y_{m,e}+h_t$ (m)
Eggenbr16 Eggenbr17 Eggenbr18 Eggenbr19 Eggenbr20	0.0240 0.0060 0.0060 0.0120 0.0120	0.350 0.190 0.260 0.190 0.260	0.150 0.150 0.150 0.150 0.150 0.150	0.00650 0.00650 0.00650 0.00650 0.00650	0.00755 0.00755 0.00755 0.00755 0.00755 0.00755	0.651 0.206 0.241 0.315 0.367
Eggenbr21 Eggenbr22 Eggenbr23 Eggenbr24 Eggenbr25	$\begin{array}{c} 0.0180 \\ 0.0180 \\ 0.0240 \\ 0.0240 \\ 0.0240 \\ 0.0240 \end{array}$	0.190 0.260 0.190 0.260 0.260	$\begin{array}{c} 0.150 \\ 0.150 \\ 0.150 \\ 0.150 \\ 0.150 \\ 0.210 \end{array}$	0.00650 0.00650 0.00650 0.00650 0.00650	0.00755 0.00755 0.00755 0.00755 0.00755 0.00755	0.402 0.469 0.474 0.560 0.557
Eggenbr27 Eggenbr28 Eggenbr29 Eggenbr30	0.0060 0.0060 0.0060 0.0120	0.190 0.260 0.350 0.190	0.150 0.150 0.150 0.170	0.00090 0.00090 0.00090 0.00090	0.00122 0.00122 0.00122 0.00122	0.424 0.504 0.582 0.640
Doddia017 Doddia027 Doddia037 Doddia047 Doddia057	$\begin{array}{c} 0.0116 \\ 0.0121 \\ 0.0233 \\ 0.0235 \\ 0.0463 \end{array}$	0.268 0.247 0.238 0.189 0.217	0.038 0.076 0.076 0.153 0.076	$\begin{array}{c} 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \end{array}$	0.00710 0.00710 0.00710 0.00710 0.00710 0.00710	0.171 0.158 0.381 0.306 0.610
Doddia067 Doddia077 Doddia087 Doddia097 Doddia107	0.0464 0.0465 0.0114 0.0114 0.0240	0.195 0.137 0.580 0.555 0.543	0.149 0.229 0.038 0.076 0.046	$\begin{array}{c} 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \end{array}$	$\begin{array}{c} 0.00710\\ 0.00710\\ 0.00710\\ 0.00710\\ 0.00710\\ 0.00710\\ \end{array}$	0.518 0.470 0.171 0.177 0.421
Doddia117 Doddia127 Doddia137 Doddia147 Doddia157	$\begin{array}{c} 0.0231 \\ 0.0233 \\ 0.0468 \\ 0.0464 \\ 0.0117 \end{array}$	0.531 0.488 0.494 0.549 1.162	0.076 0.153 0.153 0.305 0.038	$\begin{array}{c} 0.00480\\ 0.00480\\ 0.00480\\ 0.00480\\ 0.00480\\ 0.00480\\ 0.00480\end{array}$	$\begin{array}{c} 0.00710\\ 0.00710\\ 0.00710\\ 0.00710\\ 0.00710\\ 0.00710\\ \end{array}$	0.408 0.431 0.736 0.616 0.180
Doddia167 Doddia177 Doddia187 Doddia197 Doddia207	$\begin{array}{c} 0.0110 \\ 0.0230 \\ 0.0230 \\ 0.0460 \\ 0.0116 \end{array}$	1.174 1.135 1.098 0.970 0.256	0.076 0.076 0.153 0.305 0.038	$\begin{array}{c} 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00950 \end{array}$	$\begin{array}{c} 0.00710 \\ 0.00710 \\ 0.00710 \\ 0.00710 \\ 0.01250 \end{array}$	$\begin{array}{c} 0.189 \\ 0.433 \\ 0.370 \\ 0.680 \\ 0.140 \end{array}$
Doddia217 Doddia227 Doddia237 Doddia247 Doddia257	0.0233 0.0233 0.0472 0.0462 0.0117	0.247 0.189 0.250 0.143 0.567	0.079 0.153 0.076 0.229 0.038	0.00950 0.00950 0.00950 0.00950 0.00950	$\begin{array}{c} 0.01250\\ 0.01250\\ 0.01250\\ 0.01250\\ 0.01250\\ 0.01250\end{array}$	$\begin{array}{c} 0.259 \\ 0.254 \\ 0.430 \\ 0.391 \\ 0.165 \end{array}$
Doddia267 Doddia277 Doddia287 Doddia297 Doddia307	0.0113 0.0233 0.0230 0.0465 0.0462	0.549 0.540 0.473 0.494 0.372	0.076 0.085 0.171 0.153 0.305	0.00950 0.00950 0.00950 0.00950 0.00950	$\begin{array}{c} 0.01250\\ 0.01250\\ 0.01250\\ 0.01250\\ 0.01250\\ 0.01250\\ 0.01250\end{array}$	0.171 0.293 0.311 0.523 0.519
Doddia317 Doddia327 Doddia337	0.0115 0.0231 0.0460	1.190 1.153 0.970	0.037 0.079 0.305	0.00950 0.00950 0.00950	0.01250 0.01250 0.01250	0.168 0.259 0.610
Hartung2b Hartung3b Hartung4a Hartung5b Hartung6b	0.0131 0.0131 0.0131 0.0131 0.0131 0.0131	0.047 0.068 0.025 0.050 0.075	$\begin{array}{c} 0.078 \\ 0.082 \\ 0.100 \\ 0.100 \\ 0.100 \\ 0.100 \end{array}$	$\begin{array}{c} 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600 \end{array}$	$\begin{array}{c} 0.00680\\ 0.00680\\ 0.00680\\ 0.00680\\ 0.00680\\ 0.00680\end{array}$	$0.142 \\ 0.159 \\ 0.116 \\ 0.148 \\ 0.166$
Hartung7b Hartung8b Hartung9b Hartung10 Hartung11	0.0131 0.0131 0.0131 0.0131 0.0131 0.0091	0.100 0.050 0.075 0.050 0.050	$\begin{array}{c} 0.100 \\ 0.125 \\ 0.125 \\ 0.150 \\ 0.150 \\ 0.100 \end{array}$	$\begin{array}{c} 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\end{array}$	0.00680 0.00680 0.00680 0.00680 0.00680	0.173 0.171 0.187 0.197 0.141

	Serie	(m^2/s)	H (m)	<i>h</i> t (m)	d ₅₀ (m)	d ₉₀ (m)	$Y_{m,e}+h_t$ (m)
:	Hartung12 Hartung13 Hartung16 Hartung1a Hartung1b	$\begin{array}{c} 0.0091 \\ 0.0091 \\ 0.0091 \\ 0.0325 \\ 0.0052 \end{array}$	0.075 0.100 0.075 0.107 0.045	$\begin{array}{c} 0.100 \\ 0.100 \\ 0.125 \\ 0.121 \\ 0.055 \end{array}$	0.00600 0.00600 0.00600 0.00600 0.00250	0.00680 0.00680 0.00680 0.00680 0.00680 0.00290	0.147 0.155 0.171 0.373 0.159
=	Hartung2a Hartung2b Hartung3a Hartung3b Hartung4a	0.0325 0.0052 0.0374 0.0074 0.0374	0.113 0.048 0.024 0.012 0.079	0.181 0.077 0.127 0.063 0.124	0.00600 0.00250 0.00850 0.00400 0.00850	0.00680 0.00290 0.00970 0.00480 0.00970	0.371 0.158 0.195 0.096 0.292
-	Hartung4b Hartung5a Hartung5b Hartung6a Hartung6b	0.0074 0.0374 0.0074 0.0374 0.0374	0.039 0.093 0.046 0.140 0.069	0.061 0.161 0.079 0.165 0.081	$\begin{array}{c} 0.00400\\ 0.00850\\ 0.00400\\ 0.00850\\ 0.00850\\ 0.00400 \end{array}$	0.00480 0.00970 0.00480 0.00970 0.00480	0.144 0.311 0.153 0.386 0.190
=	HartunF01 HartunF02 HartunF03 HartunF04 HartunF05	0.0059 0.0059 0.0059 0.0059 0.0059 0.0059	$0.050 \\ 0.075 \\ 0.100 \\ 0.125 \\ 0.050$		0.00250 0.00250 0.00250 0.00250 0.00250 0.00400	0.00290 0.00290 0.00290 0.00290 0.00290 0.00480	0.130 0.140 0.150 0.155 0.105
=	HartunF06 HartunF07 HartunF08 HartunF09 HartunF10	0.0059 0.0059 0.0059 0.0059 0.0059 0.0059	0.075 0.100 0.125 0.050 0.075		$\begin{array}{c} 0.00400\\ 0.00400\\ 0.00400\\ 0.00600\\ 0.00600\\ 0.00600 \end{array}$	$\begin{array}{c} 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00480 \\ 0.00680 \\ 0.00680 \end{array}$	0.120 0.125 0.135 0.095 0.105
-	HartunF11 HartunF12 HartunF13 HartunF14 HartunF15	0.0059 0.0059 0.0091 0.0091 0.0091	0.100 0.125 0.100 0.100 0.100		$\begin{array}{c} 0.00600\\ 0.00600\\ 0.00250\\ 0.00400\\ 0.00600 \end{array}$	0.00680 0.00680 0.00290 0.00480 0.00680	0.115 0.120 0.190 0.160 0.145
	HartunF16 HartunF17 HartunF18 HartunF19 HartunF20	$\begin{array}{c} 0.0106 \\ 0.0106 \\ 0.0106 \\ 0.0106 \\ 0.0106 \\ 0.0106 \end{array}$	0.050 0.075 0.100 0.050 0.075		$\begin{array}{c} 0.00250\\ 0.00250\\ 0.00250\\ 0.00400\\ 0.00400\\ 0.00400 \end{array}$	0.00290 0.00290 0.00290 0.00480 0.00480	0.165 0.185 0.205 0.145 0.165
1	HartunF21 HartunF22 HartunF23 HartunF24 HartunF25	$\begin{array}{c} 0.0106 \\ 0.0106 \\ 0.0106 \\ 0.0106 \\ 0.0106 \\ 0.0106 \end{array}$	0.100 0.050 0.075 0.100 0.050		$\begin{array}{c} 0.00400\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00600\\ 0.00850 \end{array}$	0.00480 0.00680 0.00680 0.00680 0.00680 0.00970	0.175 0.130 0.145 0.155 0.110
_	HartunF26 HartunF27 HartunF28 HartunF29 HartunF30	0.0106 0.0106 0.0130 0.0130 0.0130	0.075 0.100 0.075 0.100 0.100		0.00850 0.00850 0.00250 0.00250 0.00400	0.00970 0.00970 0.00290 0.00290 0.00290 0.00480	0.125 0.135 0.210 0.230 0.195
	HartunF31 HartunF32 HartunF33 HartunF34 HartunF35	$\begin{array}{c} 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0130\\ 0.0160 \end{array}$	0.075 0.100 0.075 0.100 0.050		0.00600 0.00600 0.00850 0.00850 0.00250	0.00680 0.00680 0.00970 0.00970 0.00970	0.163 0.175 0.145 0.155 0.215
	HartunF36 HartunF37 HartunF38 HartunF39 HartunF40	$\begin{array}{c} 0.0160\\ 0.0160\\ 0.0160\\ 0.0160\\ 0.0160\\ 0.0160\\ \end{array}$	0.075 0.100 0.125 0.050 0.100		0.00250 0.00250 0.00250 0.00400 0.00400	0.00290 0.00290 0.00290 0.00480 0.00480	0.245 0.270 0.290 0.190 0.240
	HartunF41 HartunF42 HartunF43 HartunF44 HartunF45	$\begin{array}{c} 0.0160\\ 0.0160\\ 0.0160\\ 0.0160\\ 0.0160\\ 0.0160\\ \end{array}$	0.125 0.050 0.075 0.100 0.125		0.00400 0.00600 0.00600 0.00600 0.00600	0.00480 0.00680 0.00680 0.00680 0.00680 0.00680	0.250 0.170 0.185 0.205 0.220

(

Serie	$\frac{q}{(m^2/s)}$	<i>Н</i> (m)	h _t (m)	d ₅₀ (m)	d,90 (m)	$Y_{m,e}+h_{t}$ (m)
HartunF46 HartunF47 HartunF48 HartunF49	0.0160 0.0160 0.0160 0.0160 0.0160	0.050 0.075 0.100 0.125		0.00850 0.00850 0.00850 0.00850	0.00970 0.00970 0.00970 0.00970	0.150 0.165 0.185 0.200
Kotoul 11 Kotoul 12 Kotoul 13 Kotoul 14 Kotoul 21	$\begin{array}{c} 0.0800\\ 0.0600\\ 0.0400\\ 0.0200\\ 0.0800 \end{array}$	$\begin{array}{c} 0.400 \\ 0.400 \\ 0.400 \\ 0.400 \\ 0.332 \end{array}$		0.00950 0.00950 0.00950 0.00950 0.00950	0.02500 0.02500 0.02500 0.02500 0.02500 0.02500	0.410 0.350 0.265 0.185 0.380
Kotoul 22 Kotoul 23 Kotoul 24 Kotoul 31 Kotoul 32	$\begin{array}{c} 0.0600\\ 0.0400\\ 0.0200\\ 0.0800\\ 0.0600 \end{array}$	0.332 0.332 0.332 0.267 0.267		0.00950 0.00950 0.00950 0.00950 0.00950	0.02500 0.02500 0.02500 0.02500 0.02500 0.02500	0.320 0.245 0.150 0.365 0.295
Kotoul 33 Kotoul 34 Kotoul 41 Kotoul 42 Kotoul 43	$\begin{array}{c} 0.0400\\ 0.0200\\ 0.0800\\ 0.0600\\ 0.0400 \end{array}$	0.267 0.267 0.200 0.200 0.200 0.200		0.00950 0.00950 0.00950 0.00950 0.00950 0.00950	0.02500 0.02500 0.02500 0.02500 0.02500 0.02500	0.225 0.140 0.325 0.280 0.200
Kotoul 44 Kotoul 51 Kotoul 52 Kotoul 53 Kotoul 54	$\begin{array}{c} 0.0200\\ 0.0800\\ 0.0600\\ 0.0400\\ 0.0200 \end{array}$	$\begin{array}{c} 0.200 \\ 0.400 \\ 0.400 \\ 0.400 \\ 0.400 \\ 0.400 \end{array}$		0.00950 0.00860 0.00860 0.00860 0.00860 0.00860	0.02500 0.01900 0.01900 0.01900 0.01900 0.01900	0.135 0.445 0.375 0.295 0.190
Kotoul 61 Kotoul 62 Kotoul 63 Kotoul 64 Kotoul 71	$\begin{array}{c} 0.0800 \\ 0.0600 \\ 0.0400 \\ 0.0200 \\ 0.0800 \end{array}$	0.332 0.332 0.332 0.332 0.332 0.267		0.00860 0.00860 0.00860 0.00860 0.00860	$\begin{array}{c} 0.01900\\ 0.01900\\ 0.01900\\ 0.01900\\ 0.01900\\ 0.01900\\ 0.01900 \end{array}$	0.430 0.350 0.280 0.175 0.400
Kotoul 72 Kotoul 73 Kotoul 74 Kotoul 81 Kotoul 82	$\begin{array}{c} 0.0600\\ 0.0400\\ 0.0200\\ 0.0800\\ 0.0600\\ \end{array}$	0.267 0.267 0.267 0.200 0.200		0.00860 0.00860 0.00860 0.00860 0.00860	0.01900 0.01900 0.01900 0.01900 0.01900 0.01900	0.325 0.220 0.170 0.370 0.310
Kotoul 83 Kotoul 84 Kotoul 91 Kotoul 92 Kotoul 93	$\begin{array}{c} 0.0400 \\ 0.0200 \\ 0.0800 \\ 0.0600 \\ 0.0400 \end{array}$	$\begin{array}{c} 0.200 \\ 0.200 \\ 0.400 \\ 0.400 \\ 0.400 \\ 0.400 \end{array}$		0.00860 0.00860 0.00520 0.00520 0.00520	$\begin{array}{c} 0.01900\\ 0.01900\\ 0.01050\\ 0.01050\\ 0.01050\\ 0.01050\end{array}$	0.210 0.165 0.545 0.465 0.345
Kotoul 94 Kotoul101 Kotoul102 Kotoul103 Kotoul104	$\begin{array}{c} 0.0200 \\ 0.0800 \\ 0.0600 \\ 0.0400 \\ 0.0200 \end{array}$	0.400 0.332 0.332 0.332 0.332 0.332		0.00520 0.00520 0.00520 0.00520 0.00520	$\begin{array}{c} 0.01050\\ 0.01050\\ 0.01050\\ 0.01050\\ 0.01050\\ 0.01050\end{array}$	0.240 0.530 0.440 0.330 0.220
Kotoul111 Kotoul112 Kotoul113 Kotoul114 Kotoul121	$\begin{array}{c} 0.0800\\ 0.0600\\ 0.0400\\ 0.0200\\ 0.0800 \end{array}$	0.267 0.267 0.267 0.267 0.267 0.200		0.00520 0.00520 0.00520 0.00520 0.00520	$\begin{array}{c} 0.01050\\ 0.01050\\ 0.01050\\ 0.01050\\ 0.01050\\ 0.01050\\ 0.01050 \end{array}$	0.515 0.410 0.310 0.195 0.470
Kotoul122 Kotoul123 Kotoul124	$0.0600 \\ 0.0400 \\ 0.0200$	0.200 0.200 0.200		0.00520 0.00520 0.00520	0.01050 0.01050 0.01050	0.375 0.285 0.165

Serie	θ (rad)	(m ³ /s)	<i>b</i> (ຫັ້	<i>Н</i> (m)	(m)	d (m)	У _{т,е} (т)
Martins01 Martins02 Martins03 Martins04 Martins05	0.70 0.70 0.70 0.70 0.70 0.70	0.0146 0.0154 0.0162 0.0170 0.0179	0.445 0.528 0.427 0.438 0.393	1.101 1.345 1.487 1.632 1.789	0.300 0.240 0.180 0.120 0.060	$\begin{array}{c} 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ \end{array}$	0.097 0.148 0.197 0.149 0.149
Martins06 Martins07 Martins08 Martins09 Martins10	0.70 0.70 0.70 0.70 0.70	0.0221 0.0235 0.0253 0.0259 0.0270	0.586 0.523 0.513 0.493 0.486	1.229 1.373 1.559 1.677 1.820	$\begin{array}{c} 0.300 \\ 0.240 \\ 0.180 \\ 0.120 \\ 0.060 \end{array}$	$\begin{array}{c} 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ \end{array}$	0.196 0.246 0.189 0.194 0.150
Martins11 Martins12 Martins13 Martins14 Martins15	0.70 0.70 0.70 0.70 0.70	0.0301 0.0324 0.0343 0.0353 0.0371	0.579 0.578 0.542 0.485 0.626	1.266 1.413 1.572 1.709 1.851	0.300 0.240 0.180 0.120 0.060	$\begin{array}{c} 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ \end{array}$	0.246 0.246 0.196 0.198 0.196
Martins16 Martins17 Martins18 Martins19 Martins20	0.70 0.70 0.70 0.70 0.70 0.70	0.0132 0.0143 0.0155 0.0168 0.0176	0.469 0.517 0.654 0.554 0.459	0.911 1.109 1.297 1.499 1.683	0.400 0.320 0.240 0.160 0.080	$\begin{array}{c} 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000 \end{array}$	0.064 0.156 0.248 0.218 0.153
Martins21 Martins22 Martins23 Martins24 Martins25	0.70 0.70 0.70 0.70 0.70	0.0192 0.0212 0.0234 0.0258 0.0271	0.618 0.746 0.718 0.581 0.522	0.954 1.119 1.325 1.542 1.722	0.400 0.320 0.240 0.160 0.080	$\begin{array}{c} 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000 \end{array}$	0.127 0.218 0.283 0.253 0.189
Martins26 Martins27 Martins28 Martins29 Martins30	0.70 0.70 0.70 0.70 0.70	0.0272 0.0300 0.0322 0.0346 0.0368	0.715 0.718 0.620 0.568 0.610	0.980 1.173 1.353 1.559 1.745	$\begin{array}{c} 0.400 \\ 0.320 \\ 0.240 \\ 0.160 \\ 0.080 \end{array}$	0.03000 0.03000 0.03000 0.03000 0.03000 0.03000	0.280 0.311 0.284 0.187 0.194
Martins31 Martins32 Martins33 Martins34 Martins35	0.96 0.96 0.96 0.96 0.96	0.0134 0.0136 0.0144 0.0146 0.0153	0.468 0.446 0.444 0.347 0.341	1.503 1.591 1.695 1.794 1.890	0.300 0.240 0.180 0.120 0.060	$\begin{array}{c} 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ \end{array}$	0.152 0.198 0.197 0.148 0.105
Martins36 Martins37 Martins38 Martins39 Martins40	0.96 0.96 0.96 0.96 0.96	0.0201 0.0208 0.0215 0.0220 0.0226	0.564 0.732 0.445 0.441 0.401	1.528 1.617 1.713 1.812 1.912	$\begin{array}{c} 0.300 \\ 0.240 \\ 0.180 \\ 0.120 \\ 0.060 \end{array}$	$\begin{array}{c} 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \end{array}$	0.192 0.245 0.194 0.143 0.148
Martins41 Martins42 Martins43 Martins44 Martins45	0.96 0.96 0.96 0.96 0.96	0.0269 0.0278 0.0289 0.0293 0.0301	0.647 0.479 0.488 0.492 0.508	1.543 1.641 1.738 1.812 1.929	0.300 0.240 0.180 0.120 0.060	$\begin{array}{c} 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ 0.04700\\ \end{array}$	0.243 0.198 0.199 0.146 0.193
Martins46 Martins47 Martins48 Martins49 Martins50	0.96 0.96 0.96 0.96 0.96	0.0124 0.0129 0.0138 0.0143 0.0146	0.470 0.515 0.520 0.424 0.396	1.3131.4431.5751.7051.827	$\begin{array}{c} 0.400 \\ 0.320 \\ 0.240 \\ 0.160 \\ 0.080 \end{array}$	$\begin{array}{c} 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000 \end{array}$	0.129 0.189 0.221 0.160 0.128
Martins51 Martins52 Martins53 Martins54 Martins55	0.96 0.96 0.96 0.96 0.96	0.0190 0.0201 0.0208 0.0218 0.0222	0.636 0.642 0.663 0.538 0.482	1.338 1.468 1.594 1.728 1.851	$\begin{array}{c} 0.400\\ 0.320\\ 0.240\\ 0.160\\ 0.080 \end{array}$	$\begin{array}{c} 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ \end{array}$	0.157 0.278 0.281 0.152 0.096
Martins56 Martins57 Martins58 Martins59 Martins60	0.96 0.96 0.96 0.96 0.96	0.0261 0.0268 0.0288 0.0289 0.0303	0.742 0.804 0.545 0.466 0.562	1.357 1.488 1.615 1.746 1.876	0.400 0.320 0.240 0.160 0.080	0.03000 0.03000 0.03000 0.03000 0.03000 0.03000	0.220 0.308 0.189 0.160 0.134

ĺ

Serie	θ (rad)	(m^3/s)	b (m)	<i>Н</i> (m)	$\frac{h_{\rm t}}{(m)}$	d (m)	 У _{т,е} (m)
Martins61 Martins62 Martins63 Martins64 Martins65	1.22 1.22 1.22 1.22 1.22 1.22	0.0110 0.0112 0.0115 0.0116 0.0119	0.392 0.388 0.296 0.325 0.292	1.768 1.847 1.925 2.000 2.080	0.300 0.240 0.180 0.120 0.060	$\begin{array}{c} 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \end{array}$	0.099 0.155 0.149 0.129 0.097
Martins66 Martins67 Martins68 Martins69 Martins70	$1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22$	0.0165 0.0166 0.0171 0.0178 0.0179	0.438 0.438 0.485 0.390 0.388	1.782 1.859 1.936 2.015 2.092	$\begin{array}{c} 0.300 \\ 0.240 \\ 0.180 \\ 0.120 \\ 0.060 \end{array}$	$\begin{array}{c} 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \end{array}$	0.099 0.148 0.149 0.099 0.106
Martins71 Martins72 Martins73 Martins74 Martins75	$1.22 \\ $	0.0221 0.0227 0.0232 0.0229 0.0238	0.492 0.536 0.533 0.485 0.484	1.794 1.871 1.950 2.027 2.104	0.300 0.240 0.180 0.120 0.060	$\begin{array}{c} 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \\ 0.04700 \end{array}$	0.104 0.151 0.101 0.150 0.102
Martins76 Martins77 Martins78 Martins79 Martins80	$1.22 \\ $	$\begin{array}{c} 0.0105\\ 0.0109\\ 0.0112\\ 0.0117\\ 0.0117\\ 0.0117\end{array}$	$\begin{array}{c} 0.407 \\ 0.442 \\ 0.458 \\ 0.400 \\ 0.353 \end{array}$	1.629 1.730 1.834 1.936 2.028	0.400 0.320 0.240 0.160 0.080	$\begin{array}{c} 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ \end{array}$	0.064 0.128 0.157 0.094 0.068
Martins81 Martins82 Martins83 Martins84 Martins85	$1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22$	0.0158 0.0168 0.0166 0.0173 0.0184	0.472 0.532 0.530 0.530 0.530 0.496	1.642 1.748 1.837 1.949 2.077	$\begin{array}{c} 0.400 \\ 0.320 \\ 0.240 \\ 0.160 \\ 0.080 \end{array}$	$\begin{array}{c} 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ \end{array}$	0.064 0.126 0.124 0.127 0.098
Martins86 Martins87 Martins88 Martins89 Martins90	$1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 \\ 1.22 $	$\begin{array}{c} 0.0214\\ 0.0221\\ 0.0228\\ 0.0234\\ 0.0237\end{array}$	0.660 0.662 0.690 0.661 0.617	1.656 1.757 1.860 1.962 2.090	$\begin{array}{c} 0.400 \\ 0.320 \\ 0.240 \\ 0.160 \\ 0.080 \end{array}$	$\begin{array}{c} 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000\\ 0.03000 \end{array}$	0.033 0.155 0.188 0.127 0.095
Serie (1	$m^2/s)$	U (m/s)	(m)	d50 (m)		Υ _{m, e} (m)	tijd (uur)
Raj1A17 0 Raj1A27 0 Raj1A37 0 Raj1A37 0 Raj1A47 0 Raj2A17 0	.0060 .0058 .0061 .0061 .0055	2.480 2.410 2.540 2.540 2.430		0.00120 0.00120 0.00120 0.00120 0.00120)))))	$0.086 \\ 0.074 \\ 0.084 \\ 0.084 \\ 0.076$	> 24.0 > 24.0 > 24.0 > 24.0 > 24.0 > 24.0
Raj2A27 0 Raj2A37 0 Raj3A17 0 Raj3A27 0 Raj3A37 0	0.0056 0.0063 0.0059 0.0062 0.0055	2.490 2.860 2.750 2.950 2.750		0.0012 0.0012 0.0012 0.0012 0.0012	0 0 0 0 0	0.076 0.102 0.081 0.091 0.074	> 24.0 > 24.0 > 24.0 > 24.0 > 24.0 > 24.0
Raj3A47 (Raj4A17 (Raj4A27 (Raj4A47 (Raj4A47 (Raj5A17 (0.0068 0.0087 0.0088 0.0062 0.0085	2.810 3.550 3.620 2.710 3.640		0.0012 0.0012 0.0012 0.0012 0.0012 0.0012	0 0 0 0 0	0.109 0.135 0.135 0.094 0.135	> 24.0 > 24.0 > 24.0 > 24.0 > 24.0 > 24.0
Raj5A27 (Raj5A37 (Raj5A47 (Raj6A17 (Raj6A27 ().0074).0074).0058).0081).0084	3.280 3.220 2.670 3.470 3.520		0.0012 0.0012 0.0012 0.0023 0.0023	0 0 0 8 8	0.119 0.117 0.086 0.102 0.107	> 24.0 > 24.0 > 24.0 > 24.0 > 24.0 > 24.0
 Raj6A37 (0.0086	3.540		0.0023	8	0.112	> 24.0

П	Serie	θ (rad)	(m²/s)	(H m)		h _t (m)	d (m)	У _{л,е} (m)
	Alder Dam Brazeau 1 Brazeau 2 CaboBass1 CaboBass2	0.91 0.86 0.86 0.80 0.72	$23.24 \\ 2.36 \\ 4.17 \\ 60.00 \\ 120.00$	71. 58. 58. 99. 102.	62 22 22 00 64	3 2 29 42	.500 .740 .740 .000 .100		24.850 3.960 4.880 13.000 25.000
_	GhandiSa1 GhandiSa2 Grand Rap Hirakud 1 Hirakud 2	0.54 0.54 0.35 0.68 0.68	$\begin{array}{r} 42.74 \\ 42.60 \\ 37.93 \\ 72.46 \\ 72.30 \end{array}$	48. 56. 15. 32. 39.	16 70 82 00 70	13 13 4 11 11	.200 .200 .000 .500		6.31 10.67 28.96 6.79 13.70
-	Jaguara 1 Jaguara 2 Kariba 1 Kariba 2 Maithon	0.59 0.59 1.13 1.13 0.75	$\begin{array}{r} 148.00 \\ 57.14 \\ 90.00 \\ 96.00 \\ 33.40 \end{array}$	37. 34. 93. 91. 40.	50 50 50 50 84	1 3 14 16 4	.000 .500 .000 .000 .570		22.5029.5074.0074.007.62
	Ottenstei Panchet 1 Panchet 2 Picote Tarbela 1	1.26 0.59 0.59 0.49 0.52	7.80 25.08 25.08 220.00 80.60	54. 32. 39. 53. 109.	00 62 01 00 00	7. 6. 12. 30. 13.	000 020 000 000 100		5.00 2.06 4.45 24.00 32.90
	Tarbela 2 Tarbela 3 Tarbela 4 Tarbela 5 Tarbela 6	0.52 0.52 0.52 0.52 0.52 0.52	79.66 66.37 66.37 33.05 58.85	109. 109. 109. 100. 98.	00 00 00 00 00	13. 11. 11. 6. 11.	000 500 500 300 200		29.00 30.50 25.50 30.48 30.48
	Tarbela 7	0.52	68.15	97.	00	12.	200		46.57
=	Comio					_			
	Serie	(rad)	(m ² /s)	(m)		h _t (m)	d ₅₀ (m)	d ₉₀ (m)	۲ _m (m)°
A A A B	lMassir1 lMassir2 lMassir3 lMassir4 razeau 1	0.52 0.52 0.52 0.52 0.52 0.86	0.0672 0.0672 0.0672 0.0672 0.0672 0.0093	0.72 0.72 0.72 0.72 0.72 1.456	0 0 0 0 0	.28 .28 .28 .28 .28 .068	0.025 0.023 0.017 0.017 0.019	0.029 0.025 0.021 0.021 0.021	0.147 0.093 0.073 0.167 0.099
B: B: C: C: C:	razeau 2 razeau 3 rown Can abBasso1 abBasso2	0.86 0.86 1.48 0.77 0.70	0.0165 0.0746 0.0294 0.0934 0.1848	1.4561.3720.351.521.385	0 0 0 0 0	.068 .152 .092 .387 .561	0.019 0.019 0.001 0.028 0.028	0.041 0.041 0.006 0.035 0.035	0.122 0.183 0.165 0.267 0.440
EEEEE	l Cajon1 l Cajon2 l Cajon3 l Cajon4 l Cajon5	1.43 1.43 1.43 1.43 0.79	0.0704 0.0704 0.0704 0.0704 0.0993	1.842 1.842 1.842 1.842 1.842 1.845	0 0 0 0	.233 .233 .233 .233 .233 .155	0.026 0.021 0.016 0.016 0.026	0.033 0.024 0.019 0.019 0.033	0.140 0.140 0.260 0.270 0.250
EI Ha Ha It	l Cajon6 L Cajon7 azelmer1 azelmer2 caipu 1	0.79 0.79 0.93 0.73 0.86	0.0993 0.0993 0.054 0.054 0.0614	$\begin{array}{c} 1.845 \\ 1.845 \\ 0.551 \\ 0.551 \\ 1.010 \end{array}$	0 0 0 0	.155 .155 .042 .042 .390	0.021 0.016 0.0055 0.0055 0.0040	0.024 0.019 0.0065 0.0065 0.0070	0.290 0.280 0.356 0.170 0.150
It It Ka Ka	caipu 2 caipu 3 caipu 4 ariba 1 ariba 2	0.79 0.84 0.77 1.13 1.13	0.0887 0.1207 0.1827 0.0632 0.0632	0.890 1.065 0.840 0.584 0.584	0 0 0 0	.510 .335 .560 .113 .113	0.0040 0.0040 0.0040 0.0105 0.0071	$\begin{array}{c} 0.0070 \\ 0.0070 \\ 0.0070 \\ 0.0130 \\ 0.0100 \end{array}$	0.100 0.185 0.210 0.132 0.548
Ka Lo Lo	ariba 3 ariba 4 owerNot1 owerNot2 owerNot3	1.13 1.13 0.89 0.89 0.89	0.0504 0.0689 0.0101 0.0251 0.0503	0.517 0.585 1.076 1.076 1.076	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.120 .143 .033 .060 .096	0.0053 0.0053 0.0080 0.0080 0.0080 0.0080	0.0180 0.0180 0.0095 0.0095 0.0095	0.237 0.237 0.038 0.154 0.214

Ć

Serie	θ (rad)	(m^2/s)	H (m)	h_{t} (m)	d ₅₀ (m)	d ₉₀ (m)	<i>Y</i> _{m,e} (m) ^e
LowerNot4 Mudhiq 1 Mudhiq 2 Mudhiq 3 Mudhiq 4	0.89 1.15 0.99 0.87 0.99	0.0855 0.0364 0.0909 0.1509 0.0909	1.076 0.325 0.341 0.345 0.341	$\begin{array}{c} 0.136 \\ 0.380 \\ 0.410 \\ 0.450 \\ 0.410 \end{array}$	$\begin{array}{c} 0.0080\\ 0.0140\\ 0.0140\\ 0.0140\\ 0.0140\\ 0.0020 \end{array}$	0.0095 0.0180 0.0180 0.0180 0.0030	$\begin{array}{c} 0.340 \\ 0.090 \\ 0.220 \\ 0.420 \\ 0.450 \end{array}$
Picot Tarabela1 Tarabela2 Tarabela3 Tarabela4	0.49 0.52 0.44 0.52 0.44	0.4198 0.0742 0.1485 0.0742 0.1485	0.815 1.379 1.292 1.528 1.478	0.462 0.033 0.053 0.187 0.236	0.0200 0.0135 0.0135 0.0135 0.0135 0.0135	0.0250 0.0160 0.0160 0.0160 0.0160	0.369 0.474 0.580 0.286 0.381
Tarabela5 Tarabela6 Tarabela7 Tarabela8 Victoria1	0.52 0.52 0.52 0.52 1.05	0.0604 0.1209 0.0151 0.1209 0.1870	1.429 1.311 1.494 1.417 2.150	0.057 0.175 0.221 0.297 0.350	0.0135 0.0135 0.0135 0.0135 0.0135 0.0095	0.0160 0.0160 0.0160 0.0160 0.0115	0.206 0.153 0.038 0.267 0.500
Victoria2 Victoria3	1.03 1.01	0.2700 0.3540	2.113 2.088	0.413 0.475	0.0095 0.0095	0.0115 0.0115	0.525 0.700
Overflow (laag verval)							
Serie	θ (rad)	(m ² /s)	U (m/s)	h _t (m)	d ₅₀ (m)	d ₉₀ (m)	Y _m ,e (m) ^e
Bormann01 Bormann02 Bormann03 Bormann04 Bormann05	0.21 0.19 0.19 0.26 0.19	2.25 2.25 2.25 2.22 2.22 2.22	2.38 2.38 2.38 3.92 3.92	1.250 1.250 0.250 0.980 0.880	0.00030 0.00030 0.00030 0.00030 0.00030 0.00030	$\begin{array}{c} 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\end{array}$	$1.120 \\ 1.020 \\ 1.020 \\ 1.460 \\ 1.400$
Bormann06 Bormann07 Bormann08 Bormann09 Bormann10	0.17 0.25 0.22 0.23 0.22	1.72 1.72 1.72 1.71 1.71	1.95 1.95 1.95 3.58 3.58	1.070 1.070 1.070 0.820 0.820	$\begin{array}{c} 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\\ 0.00030 \end{array}$	$\begin{array}{c} 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\end{array}$	1.010 1.100 1.080 1.160 1.070
Bormann11 Bormann12 Bormann13 Bormann14 Bormann15	0.21 0.23 0.22 0.17 0.25	1.71 1.71 1.81 1.78 1.78	3.58 3.58 1.52 2.38 3.84	0.820 0.820 1.500 1.090 0.920	$\begin{array}{c} 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\end{array}$	$\begin{array}{c} 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\end{array}$	1.140 1.280 0.720 0.980 1.300
Bormann16 Bormann17 Bormann18 Bormann19 Bormann20	0.13 0.23 0.17 0.17 0.19	2.40 2.32 1.93 2.27 2.32	2.07 4.23 1.65 2.87 4.27	$\begin{array}{c} 1.440 \\ 0.910 \\ 1.280 \\ 0.940 \\ 0.710 \end{array}$	$\begin{array}{c} 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\\ 0.00030\end{array}$	$\begin{array}{c} 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\\ 0.00158\end{array}$	0.550 1.320 0.660 1.080 1.210
Bormann21 Bormann22 Bormann23 Bormann24 Bormann25	0.21 0.16 0.27 0.19 0.20	1.94 1.99 2.47 2.32 2.32	3.73 3.76 2.19 3.97 4.23	$\begin{array}{c} 0.860 \\ 0.740 \\ 1.460 \\ 1.080 \\ 0.880 \end{array}$	$\begin{array}{c} 0.00030\\ 0.00030\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\end{array}$	0.00158 0.00158 0.00171 0.00171 0.00171	0.970 1.260 0.960 1.060 1.390
Bormann26 Bormann27 Bormann28 Bormann29 Bormann30	0.25 0.22 0.27 0.20 0.17	1.42 1.46 1.46 0.61 0.58	1.37 3.40 3.70 0.88 1.71	1.260 0.870 0.660 0.930 0.590	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	0.700 0.890 1.100 0.270 0.290
Bormann31 Bormann32 Bormann33 Bormann34 Bormann35	0.21 0.27 0.18 0.20 0.25	0.60 0.59 0.34 0.34 0.33	3.00 3.11 1.36 2.47 2.80	0.450 0.390 0.480 0.390 0.300	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	$\begin{array}{c} 0.00171 \\ 0.00171 \\ 0.00171 \\ 0.00171 \\ 0.00171 \\ 0.00171 \end{array}$	$0.560 \\ 0.620 \\ 0.100 \\ 0.150 \\ 0.390$

=

Serie	θ (rad)	$(\mathfrak{m}^2/\mathfrak{s})$	<i>U</i> (m/s)	h _t (m)	d ₅₀ (m)	d ₉₀ (m)	
Bormann36 Bormann37 Bormann38 Bormann39 Bormann40	0.56 0.22 0.15 0.48 0.16	0.33 2.36 2.32 1.46 1.46	2.87 2.01 3.97 1.71 3.41	0.280 1.650 1.220 1.300 1.030	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171	0.930 0.580 0.940 0.250 0.590
Bormann41 Bormann42 Bormann43 Bormann44 Bormann45	0.25 0.36 0.16 0.27 0.32	1.46 1.48 0.62 0.59 0.58	3.77 4.22 3.90 2.96 3.27	0.780 0.600 0.790 0.580 0.480	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	1.050 1.430 0.310 0.470 0.640
Bormann46 Bormann47 Bormann48 Bormann49 Bormann50	0.29 0.83 0.17 0.18 0.35	0.60 0.29 0.30 0.31 0.29	3.74 0.91 1.39 2.45 2.61	$\begin{array}{c} 0.390 \\ 0.710 \\ 0.600 \\ 0.510 \\ 0.440 \end{array}$	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	0.880 0.280 0.140 0.180 0.280
Bormann51 Bormann52 Bormann53 Bormann54 Bormann55	0.97 0.24 0.23 0.22 0.29	0.30 0.29 0.29 0.30 0.62	3.20 1.13 2.09 2.45 1.34	0.290 0.450 0.290 0.240 0.780	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	1.390 0.230 0.360 0.460 0.110
Bormann56 Bormann57 Bormann58 Bormann59 Bormann60	0.19 0.20 0.20 0.20 0.20 0.19	0.63 0.59 1.47 1.45 0.34	3.71 2.68 1.46 3.86 1.36	0.470 0.370 1.180 0.690 0.480	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	$\begin{array}{c} 0.00171 \\ 0.00171 \\ 0.00171 \\ 0.00171 \\ 0.00171 \\ 0.00171 \\ 0.00171 \end{array}$	0.400 0.530 0.290 0.770 0.120
Bormann61 Bormann62 Bormann63 Bormann64 Bormann65	0.24 0.34 0.22 0.17 0.20	0.34 0.32 0.59 0.58 0.59	2.50 2.80 0.94 1.66 2.92	0.380 0.290 0.870 0.580 0.450	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	0.210 0.420 0.170 0.400 0.520
Bormann66 Bormann67 Bormann68 Bormann69 Bormann70	0.33 0.19 0.19 0.29 0.15	0.59 1.47 1.53 1.44 1.45	3.11 1.34 4.45 3.59 1.34	0.390 1.340 0.890 0.670 1.150	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	0.620 0.370 0.700 1.040 0.280
Bormann71 Bormann72 Bormann73 Bormann74 Bormann75	0.23 0.25 0.17 0.19 0.21	1.45 0.59 0.60 2.37 2.04	4.65 0.88 2.84 2.01 3.79	0.650 0.700 0.330 1.190 0.790	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	0.700 0.160 0.520 0.600 0.890
Bormann76 Bormann77 Bormann78 Bormann79 Bormann80	0.18 0.20 0.22 0.19 0.19	2.23 2.18 2.31 2.45 2.44	1.89 3.89 1.98 4.05 2.16	$ \begin{array}{r} 1.300\\ 0.900\\ 1.410\\ 1.050\\ 1.470 \end{array} $	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	0.470 1.160 0.590 0.940 0.590
Bormann81 Bormann82 Bormann83 Bormann84 Bormann85	0.28 0.22 0.30 0.32 0.31	1.47 1.42 0.59 0.61 0.55	1.34 3.36 0.94 2.53 2.91	$ \begin{array}{r} 1.350\\ 0.850\\ 0.990\\ 0.580\\ 0.440 \end{array} $	$\begin{array}{c} 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ 0.00045\\ \end{array}$	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171	0.300 0.710 0.150 0.570 1.520
Bormann86 Bormann87 Bormann88	0.28 0.31 0.32	0.33 0.32 2.22	2.08 2.41 3.92	0.460 0.370 0.880	0.00045 0.00045 0.00030	0.00171 0.00171 0.00158	$0.480 \\ 0.560 \\ 1.400$

(

^{Y,m, §}	0.068 0.159 0.094 0.125	0.211 0.145 0.180 0.249 0.302	0.047 0.063 0.076 0.096	0.083 0.106 0.129 0.099 0.122	0.161 0.140 0.172 0.172
d30 (m)	0.00000 0.00000 0.00000 0.00000 0.000000	0.00009 0.00009 0.00009 0.00009 0.00009 0.00099	0.00210 0.00210 0.00210 0.00210 0.00210	0.00210 0.00210 0.00210 0.00021	0.00021 0.00021 0.00021 0.00021
$d_{s_0 \atop (m)}$	0.00005 0.00005 0.00005 0.00005	0.00005 0.00005 0.00005 0.00005 0.00005	0.00150 0.00150 0.00150 0.00150	0.00150 0.00150 0.00150 0.00150 0.0015	0.00015 0.00015 0.00015 0.00015
(m)					
U (m/s)	0.680 0.930 0.810 0.870 0.950	1.010 1.040 1.140 1.140 1.190	0.820 0.890 0.950 1.040 1.030	1.080 1.140 1.200 0.820 0.870	0.950 1.040 1.080
$(m^2 \eta_s)$	0.0016 0.0049 0.0015 0.0023 0.0035	0.0045 0.0017 0.0023 0.0035 0.0046	0.0016 0.0026 0.0035 0.0035 0.0049	0.0024 0.0035 0.0048 0.0017 0.0023	0.0035 0.0018 0.0024 0.0034
(rad)	0.72 0.49 0.89 0.80 0.72	0.66 0.98 0.89 0.84	0.87 0.79 0.72 0.65 1.03	0.96 0.89 0.82 0.87 0.87	0.72 0.96 0.89
Serie	Stein13 Stein12 Stein 7 Stein34 Stein11	stein 6 Stein 8 Stein 1 Stein 1 9	Stein21 Stein20 Stein19 Stein18 Stein14	Stein15 Stein16 Stein17 Stein22 Stein23	Stein24 Stein27 Stein26 Stein26

. Ć (