
Honeytrack
Persistent honeypot for the Internet of Things

by

S. Kamoen

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday July 24, 2018 at 13:00 PM.

Student number: 1534866
Thesis committee: Dr. ir. J. C. A. van der Lubbe, TU Delft, committee chair

Dr. C. Doerr, TU Delft, supervisor
Dr. T. Abeel, TU Delft, committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

1 Introduction 1
1.1 IoT malware. 3
1.2 Adversary motivation . 4
1.3 IoT threat research . 4
1.4 Research outline . 5

2 Background 7
2.1 The Telnet protocol . 7
2.2 The Cyber Killchain. 9
2.3 Honeypot research . 10

2.3.1 Low-interaction honeypot . 11
2.3.2 High-interaction honeypot . 12

3 Requirements & Related work 13
3.1 Honeypot research . 13

3.1.1 Honeypot evasion and detection. 13
3.1.2 Adversary behavior . 14

3.2 IoT honeypots . 15
3.2.1 IoTPot . 15
3.2.2 IoTCandyJar . 16

3.3 Available implementations . 17
3.3.1 Kippo, Cowrie and Kojoney2. 17
3.3.2 Malware-specific . 17

3.4 IoT botnet analysis . 17
3.4.1 Mirai . 18
3.4.2 Hajime. 19

4 Design Considerations 21
4.1 Censys data analysis. 21
4.2 TU Delft Telescope . 21
4.3 Telnet metrics . 22
4.4 Interaction data . 23
4.5 Sandboxing . 23
4.6 Scaling high-interaction honeypots . 24
4.7 Persistence . 25

5 Honeytrack: Persistent IoT honeypot 27
5.1 Listener . 27
5.2 Services. 29
5.3 Directors . 30
5.4 Data collection . 30
5.5 Honeytrack Additions. 31

5.5.1 Telnet Service. 31
5.5.2 Negotiation Module. 31
5.5.3 Authentication Module . 31
5.5.4 Interaction Module . 32
5.5.5 LXC Director . 32
5.5.6 Objectives. 33

iii

iv Contents

6 Evaluation 35
6.1 Honeypot Discovery . 36

6.1.1 Honeytrack deployment & strategies . 37
6.1.2 Connection statistics . 38

6.2 Telnet Negotiation . 39
6.2.1 Invalid Telnet responses . 40
6.2.2 Valid Telnet responses . 41

6.3 Telnet Banners . 42
6.4 Credentials . 43

6.4.1 Multi-password sessions . 45
6.4.2 Dictionaries . 45
6.4.3 Input delays . 47
6.4.4 Misconfigured hosts . 47

6.5 Installation . 48
6.6 Device selection . 49

6.6.1 Single-password strategy . 49
6.6.2 Braces strategy . 50
6.6.3 Hajime family . 52
6.6.4 Other strategies. 53
6.6.5 Decision patterns . 54
6.6.6 Honeypot detection. 54

6.7 Malware installation . 54
6.7.1 Base64 encoded payload . 55

7 Conclusions and Future Work 57

A LXC mounts file 59

B Variant Dictionary overlap 61

Bibliography 65

1
Introduction

In recent years, there has been an enormous increase in so called “smart” devices. Starting with the
rise of the smartphone such as the iPhone and Samsung Galaxy devices, more and more consumer
devices get the “smart” label. While there is no formal definition for what a makes a device “smart”, it
usually involves data collection, an Internet connection, or both. These devices usually involve some
logic based on this data, to automate certain tasks users had to do manually before.

This trend of giving devices access to the Internet continued to spread to devices outside of the wear-
able and mobile market. Next to “smart” devices, other types of devices with Internet access were
introduced. The main purpose was to collect data rather than to perform automated tasks. The term
“Internet of Things” was introduced to describe these types of devices. As this term is relatively broad
and vague, again there is no formal specifications on what such a device must do, but effectively,
they serve as Internet-connected sensors. To get an idea about what types of devices the “Internet of
Things” contains, one can think of these examples:

1. Temperature sensors around your house, connected to Wi-Fi to control the heating in a house
more efficiently.

2. To increase (the sense of) security, cameras are now connected to the Internet andmade remotely
accessible through an app so you can always monitor your home, from wherever you are.

3. Existing concepts are transformed into connected systems, such as lighting systems that can be
fully automated and controlled through an app with Philips Hue or Osram Lightify.

4. Common household items such as a laundry machine or a fridge are being connected to the
Internet to report on the status of your laundry or the remaining amount of eggs in your fridge.

As connected devices become the standard, more types of devices are connected to home networks
and made accessible from the Internet for convenience. According to a report by Gartner, an estimated
11.2 billion Internet of Things devices will be in use in 2018, and will reach 20.4 billion by 2020 [25]. Next
to home networks in the form of Wi-Fi, several specialized wireless protocols for home-automation net-
works emerged. These protocols such as Z-Wave1 and Zigbee2 allow for more efficient communication
between automation products which can often be considered IoT devices as well. These networks can
be exposed to the Internet through a bridge, making them accessible to other devices such as comput-
ers and smartphones which do not support these specialized protocols but do have Wi-Fi.

On the industrial side of the market, the IoT trend is starting to become clearly visible as well. According
to the same report by Gartner mentioned earlier, it is estimated that businesses will spend over 1.1
trillion dollars on IoT devices [25]. Instead of expensive recurring maintenance, where specialized
equipment is required for measurements, industrial machines can be equipped with cheap integrated
sensors, which can broadcast their data directly over a network. When the sensor indicates something
1http://www.z-wave.com/
2http://www.zigbee.org/

1

http://www.z-wave.com/
http://www.zigbee.org/

2 1. Introduction

is wrong, maintenance can be done based on necessity instead of periodically. Automation can go even
further than just sensor data. For example, machines can be automatically and dynamically oiled from
a reservoir based on sensor data, which can measure how well the machine is running and whether
extra lubrication is required to prevent wear and tear. This can save a lot of expensive labour, as
inspecting and maintaining these machines requires specialized personnel. IoT devices can generate
a lot of data in real-time, allowing for new methods of analysis with recent techniques such as machine
learning. Sensors measure the entire lifetime of a machine, including points of failure. With enough
data, characteristics of a failure can be predicted by recognizing indicators leading to such failures.
If the failure of an expensive industrial machine can be prevented by analyzing previous sensor data
before such an event, companies can save a lot of money and productivity.

IoT adoption is also accelerated by the availability of widely deployed connectivity networks. Where
traditional Wide-Area Networks (WAN) offer high speed connections through fiber, copper or 4G, such
technology requires a lot of power to operate. As IoT devices only require a low bandwidth solution,
Low-Power Wide-Area Networks (LPWAN) were introduced as a type of network suitable for these
requirements. A number of different standards are available, of which LoRa is the most well known
in Europe. This proprietary technology enables very-long-range transmissions of more than 10 km
with low power consumption [22]. The LoRa alliance is a network of telecom providers across the
world operating LoRa networks. In order to give these devices their required connectivity, special
LoRa network modules are available, or built into the IoT devices. This way, real-time monitoring was
enabled for a low price. A LoRa transmitter can operate for 15 years on two batteries [15], enabling
many possibilities for widespread deployment without high maintenance cost for these sensors. In the
Netherlands, KPN has a LoRa covering the entire country.

As development continues, newer products will be brought tomarket. For vendors, it is not economically
attractive to keep supporting their entire product line-up until the last device is taken out of operation.
Maintaining software is expensive, and getting updates to devices is a challenge in itself. Instead,
if devices are supported beyond warranty at all, any software update often stops shortly after a new
version of the product is introduced. The business model is not about a lengthy support term after
purchase, but rather the purchase itself and fast replacement by a product which has more features,
or is cheaper to produce.

However, products are being used much longer than the period covered under support. If an industrial
sensor can operate independently for 15 years, it is unlikely it will be replaced after the warranty period
ends. The same goes for consumer products. Even if replacement was an option, one can think of
many scenarios where IoT devices are deeply integrated in structures or other places where a device is
simply unreachable. Sensors deeply embedded in an industrial plant likely require a full plant shutdown
to allow access to the sensor. Simply leaving them be is much more viable than spending millions on
replacing or updating. This leads to products running on outdated software, while still connected to the
Internet. Even when a device is brand new, the software controlling it might not be. Vendors often rely
on hardware manufacturers themselves for software support, for example in terms of drivers for their
chips. As stated by Schneier [23], the Linux version running on IoT devices was at least 4 years older
than the device itself. Updates for certain vulnerabilities might not even be possible, as source code
for example drivers is often not available and patching binary blobs is not feasible.

IoT devices are often directly connected to the Internet for their connectivity needs. With such a direct
connection, these devices can be vulnerable when vulnerabilities are found in their software. New
vulnerabilities are found very regularly and can allow unrestricted access to a device. And it is not just
the devices that can contain security flaws. As new protocols are rushed into a production environment,
they are not properly evaluated and can also contain more fundamental flaws, as has been shown
by Yang [27] These vulnerabilities are caused by various flaws such as outdated software with known
exploits, mistakes in software implementation, or the use of default credentials. Such vulnerabilities
allow a complete compromise of the device with ease. Compared to compromise of a company-server
containing sensitive information, the impact can be considered limited as typical IoT devices have
limited capabilities. However, due to the large scale these devices are deployed and connected to the
Internet, the number of compromises can become significant.

1.1. IoT malware 3

1.1. IoT malware
As IoT devices are widely deployed in mass numbers, they can be easily exploited once a vulnerability
has been published. As we have established earlier, many devices will never be updated and remain
vulnerable for their entire lifespan. For vulnerabilities found in desktop or server software, adversaries
usually have to keep up and act fast. Serious threats are often patched relatively quickly, rendering
exploits ineffective. This has lead to the rise of IoT malware, focussing specifically on low-powered
devices connected to the Internet.

Once a device has been successfully breached, the adversary has full control and can do anything on
the device. In cases where these devices are part of a corporate network without proper segmentation,
this could even mean adversaries gain a permanent foothold inside the network from which they can
continue laterally through the network3. By forming a so called botnet of compromised low-capability
devices, a combined attack can be very effective. Vendors won’t publish updates for their entire product
lines for various because the devices are no longer supported, patches aren’t available from subven-
dors, or because certain functionality essential to the device relies on the vulnerable piece of code.
Next to that, the value of cheap and old devices can make the vendor decide it is no longer economi-
cally feasible to invest in updates, or they simply do not care anymore once the product has been sold.
Even if a patch is available, getting the updates to these devices can be impossible, for example if it is
integrated in industrial hardware. As software updates aren’t being distributed to these devices, they
remain vulnerable for the rest of their operating lifetime. This makes attacks against them very effective
and dangerous.

An example of this effectiveness was demonstrated in various attacks of the Mirai malware. A well
known and high impact attack was a major DDoS attack on DNS provider Dyn, which occurred on
October 21st, 20164. This attack, which caused widely used websites such as Twitter, Github, Reddit
and Netflix to become unavailable. The attack was later attributed to the Mirai botnet, which turned out
to consist of thousands of compromised Internet-connected security cameras with default username/-
password combinations. With alleged peaks of 1.2Tbps coming from over 100,000 malicious devices,
it was an attack twice as big as anything recorded before that time.

On September 30, 2016, source code of the Mirai malware was released by its author under the nick-
name “Anna-senpai”5. While this allowed for an in-depth analysis of themalware, it also allowed anyone
to create their own variant. In the period after publishing the source code, many variants were discov-
ered. For example, a variant called Satori added a zero-day exploit in the Huawei HG532 routers to
infect additional hosts, next to the traditional default passwords6.

Another notable IoT malware variant is “Hajime”. This malware was first observed early as October
2016, but unlike traditional malware, Hajime does not have any capability for malicious activity at this
point. Instead, it is considered a “vigilante IoT worm”. Hajime attacks hosts using the same credentials
Mirai uses, but the exploitation method is far more advanced than Mirai. A detailed analysis of Hajime is
discussed in Chapter 3.4. It supports multiple CPU architectures such as ARM, AMD64 and MIPS. For
all these architectures, the payloads contain handwritten assembly code in the binaries. Additionally,
instead of a centralized C&C infrastructure, Hajime uses the decentralized BitTorrent DHT (Distributed
Hash Table) protocol to discover other infected hosts and the uTorrent Transport Protocol for data
exchange. Hajime does not have any malicious modules enabled in its current form, but it behaves and
spreads like any other malware. Security researchers often assume a malicious module will eventually
be added, but it is also possible the author of Hajime did not have any malicious intent and just wanted
to prevent other malware from spreading.

Where previously discussed malware primarily focused on the Telnet protocol, that isn’t the only proto-
col used by IoT malware. As is demonstrated by BrickerBot, a so-called “permanent denial-of-service
botnet”7. BrickerBot uses vulnerabilities and default credentials of services listening on port 22, com-
monly used for SSH. Instead of using the compromised device for DDoS attacks, it disables the device
3https://www.zscaler.com/blogs/research/iot-devices-enterprise
4https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
5https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
6https://research.checkpoint.com/good-zero-day-skiddie/
7https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-back-with-vengeance/

https://www.zscaler.com/blogs/research/iot-devices-enterprise
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://research.checkpoint.com/good-zero-day-skiddie/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-back-with-vengeance/

4 1. Introduction

by wiping drives and changing network parameters. This way, the device becomes inoperable and
difficult to restore to a working state. While this also prevents the device from being infected by other
malware, BrickerBot can definitely be considered malicious, unlike Hajime.

1.2. Adversary motivation
Sometimes, authors of malware make themselves known through a nickname on forums. They allow
interviews or make statements by themselves, allowing some insight in the motivation and goals behind
the malware.

When it comes to IoT malware, we see several distinct types of motivation. One category, for example
Mirai’s authors, aim to create a large and powerful botnet, which they can sell as a service to perform
DDoS attacks. Also belonging to this category is a botnet author known as “Wicked”, author of both the
“SORA” and “OWARI” botnets. In an interview with Ankit Anubhav [3], “Wicked” explains his motivation
behind his work. Next to making money by renting his botnet to so called “web stressers”, “Wicked”
mostly enjoys working on a project like this. These web stressers are a service where its clients can
launch DDoS attacks on victims of their choice, by renting the capacity of the botnet.

Another category of authors is either looking for fame or trying to make name for themselves. While
eventually they have a similar goal than the first group, they make themselves known online and aren’t
always as successful. An example of such an author is known as “Daddyl33t”. This author was also
tracked down by Ankit Anubhav, which wasmade easy as “Daddyl33t” used identifying information such
as his Skype name on multiple places on the Internet, and even job interviews. From both the interview
and malware samples observed in honeypots, it became clear the author fully relied on existing code
and help from others on an Internet forum.

A third category aims to prevent other malware from spreading. In an article written by Cimpanu [7], a
team of the website Bleepingcomputer.com managed to get an interview with the author of BrickerBot.
The interview provides insight into the motivation behind this malware. The author, who goes by the
nickname “janit0r”, shares his dissatisfaction with the way the industry handles vulnerabilities in their
devices. Rather than waiting for vendors to solve the problems, “janit0r” took manners into his own
hands and allegedly disabled over 2 million devices which otherwise could have been compromised by
botnets such as Mirai. While the means and execution wildly varies, both Hajime and BrickerBot fall
under this category.

Even if authors make themselves known and express their motivation behind creating a bot, it is of-
ten after the damage has been done. To investigate the motivation of adversaries before a botnet is
widespread can be crucial in devising security measures against them.

The various botnets also compete with each other. In a message addressed to owners of botnets,
the author of BrickerBot states that he took over a significant number of devices that were previously
part of competing botnets. With such competition, it is not unlikely attackers may return to their pre-
viously infected target. When an attacker returns, a number of scenarios can occur in such a setting.
For instance, an attacker wants to reinforce the device’s defenses against a competing botnet, or the
Command and Control software requires an update that can’t be done through the previously installed
malware. If we want a full understanding of attacker motivations and strategies, we need a method to
account for these scenarios. For this purpose, a form of persistence is needed between sessions of
the same attacker. If an attacker infects a honeypot, but such a honeypot is reset after a period of time,
a follow-up attack can not be observed.

1.3. IoT threat research
As the IoT market is unregulated, it is likely this trend of insecure devices hitting the market will continue
for the forseeable future. In order to understand the vulnerabilities and devisemeasures to protect them,
we need to know how these devices are being attacked.

So far, research into IoT malware is mostly done by cyber security companies after a major exploit or
other incident. Only after a significant attack, the cause is investigated and the responsible malware

1.4. Research outline 5

analysed. This helps understanding the cause of the attack and possible measures to prevent further
spreading. These samples can be retrieved using honeypots of various interaction levels. However,
this method only allows research into the malware itself, and a very limited insight into the movement
patterns. In order to discover new attacks sooner than an incident with major impact, research needs
to be done in the behavioral part of adversaries. Instead of malware-based research, we have to look
at IoT threats from a broader perspective. Only by answering questions covering the entire attack path
from reconnaissance to post-infection behavior can we start looking at a more fundamental solution.
For example, by analyzing attacks as part of the cyber killchain as introduced by Hutchins et al. [14],
common patterns might be discovered that were previously missed. The killchain concept and how this
can help with IoT threat research, is discussed in more detail in Chapter 2.2.

Using high-interaction honeypots, every aspect of an attack can be monitored and observed. How-
ever, once a (virtual) box is compromised, new attackers are either shut out, or encounter an already
compromised machine. This can be compensated by regularly wiping the machine, allowing for new
infections to take place. Recent work, such as research done by Minn et al. [17] proves this is an ef-
fective method of discovering attacks on IoT devices, but leaves room for improvement. A downside of
this approach is the fact you lose any progress an adversary made up until that point. As shown in the
analysis of recent botnets [4, 10], part of command sequence involves checking for previous infections.
In case an adversary returns, he either finds a machine compromised by someone else, or a freshly
wiped machine.

Figure 1.1: A setup where multiple attackers can connect to different IP ad-
dresses, but are routed to the same central server. Based on different met-
rics, the attacker can be connected to one of the honeypots running in the
backend

To overcome these limitations, we
need a form of persistence in honey-
pots. By saving machine state, and
binding this state to a certain attacker,
we can serve attackers their “own”
previously attacked honeypot, serving
a large number of adversaries at the
same time in parallel. The same at-
tacker can connect to a honeypot from
different IP addresses, so the IP ad-
dress is not the only metric that should
be used to recognize attackers. By
combining different metrics, individual
attackers or related groups can be
connected to a single honeypot (Fig-
ure 1.1). Not only does this signifi-
cantly increases the amount of poten-
tial infections, it also allows for more in-
depth research towards follow-up ad-
versary behavior.

1.4. Research outline
This thesis introduces Honeytrack, a persistent scalable virtual high-interaction honeypot for the In-
ternet of Things. Honeytrack aims to solve the limitations of the current available honeypots by pro-
viding the means to analyze adversaries in large networks. By using isolated containers for the high-
interaction module, it allows for saving state for each adversary. In addition to that, the data collected
by Honeytrack allows for an in-depth analysis of every phase of an attack, going beyond the traditional
malware-sample based research.

With Honeytrack, we aim to answer the following research questions:

1) How do adversaries discover, scan and exploit potentially vulnerable devices?

a) Can we scale honeypot deployment to gain insight in global attack behavior?

b) What methods are used to discover devices?

6 1. Introduction

c) Can we identify groups or clusters of similar discovery methods?

d) What are the used methods of exploitation and how do these methods relate to each other?

2) What do adversaries do after successful exploitation, what are the Tactics, Techniques and Pro-
cedures (TTP)?

a) How are devices suitable for infection selected and identified?

b) How is malware installed?

3) What do adversaries do with a compromised machine, what do they do to remote machines?

a) What type of attacks are conducted with compromised machines?

The remainder of this thesis is organized as follows. Chapter 2 will introduce the background knowledge
related to aspects regarding this research. We discuss the Telnet protocol, the Killchain model and
finally an overview of honeypot concepts. In Chapter 3, an overview is presented of work done in the
field over the past years. Next to a number of currently available honeypots, we also discuss work
done in the field of honeypot evasion, adversary behavior analysis and IoT specific honeypots. From
these related works, we derive a number of requirements for the honeypot in order to achieve the goals
set out in this chapter. Chapter 4 introduces a number of concept for the engineering required for
this thesis. The implementation developed for this thesis is described in Chapter 5. First, Honeytrap
is discussed, which is the basis for Honeytrack, as described in Chapter 5.5. The evaluation of the
results are discussed in Chapter 6, followed by the conclusion in Chapter 7.

2
Background

In the previous chapter, we discussed the rise of the Internet of Things and the threats that come with
it. In this chapter, we will discuss a number of aspects which are important for the context of this
research. First, the Telnet protocol itself is explained. Secondly, we discuss the Killchain model, which
can be used to identify the different phases of a cyber attack and analyse them from a more campaign-
oriented perspective. Finally, we go over the honeypot concepts. We discuss the different types, their
advantages and disadvantages and how they perform in terms of killchain analysis.

2.1. The Telnet protocol
An important attack vector for IoT devices is an enabled Telnet service. Telnet is a very old inter-
device communication protocol, allowing administrators to log on to a device remotely and execute
commands. The Telnet protocol provides the means to establish communication with a remote server.
How that communication is handled, and what the possibilities are once connected, depends on the
implementation of the Telnet server.

Common Telnet servers provide a standard terminal, very similar to what one would get when con-
necting a monitor to a device without a graphical user interface. Other custom implementations have
a limited set of commands that can be executed, specific to the device. When the Telnet protocol was
designed, security was not as important as it is these days. Before encryption or security became an
important aspect of the Internet, Telnet was a widely used protocol for remote interaction with systems.
As proper security is essential for a remote interaction protocol, Telnet has been superseded by more
modern alternatives such as SSH. However, despite the availability of protocols much better suited for
this purpose, Telnet still has a significant presence on the Internet. While there are some Telnet servers
that are kept online on purpose, most legitimate use of Telnet belongs to old systems that never got
the support of upgrading to a modern communication protocol. Telnet is also popular on devices like
modems and routers, as a way to configure these devices when they are being setup for production
usage. An advantage of Telnet is the fact it is very lightweight as there are no cryptographic calculations
to be done, which can be expensive on embedded chips.

The Telnet protocol is relatively straightforward and allows flexibility in its implementation. By itself,
Telnet is a thin layer on top of a TCP socket. The protocol itself is described in RFC 854 [19] and RFC
855 [18]. The first standard concerns the Telnet protocol itself and the goal it aims to achieve. From
RFC854, page 1:

The TELNET Protocol is built upon three main ideas: first, the concept of a “Network Vir-
tual Terminal”; second, the principle of negotiated options; and third, a symmetric view of
terminals and processes.

This second notion plays an important role in determining device capabilities, and the level of flexibility
an attacking client has. Telnet without a negotiation is very minimal, but it supports setting several

7

8 2. Background

Table 2.1: The defined TELNET commands [19]

Name Code Description

SE 240 End of sub-negotiation parameters.
NOP 241 No operation.
Data Mark 242 The data stream portion of a Synch. This should always be accompanied by a TCP Urgent notification.
Break 243 NVT character BRK
Interrupt Process 244 The function IP
Abort output 245 The function AO
Are You There 246 The function AYT
Erase character 247 The function EC
Erase Line 248 The function EL
Go ahead 249 The GA signal
SB 250 Indicates that what follows is sub-negotiation of the indicated option
WILL (option code) 251 Indicates the desire to begin performing, or confirmation that you are now performing, the indicated option
WON’T (option code) 252 Indicates the refusal to perform, or continue performing, the indicated option
DO (option code) 253 Indicates the request that the other party perform, or confirmation that you are expecting the other party

to perform, the indicated option.
DON’T (option code) 254 Indicates the demand that the other party stop performing, or confirmation that you are no longer expecting

the other party to perform, the indicated option.
IAC 255 Data Byte 255

Table 2.2: An overview of structured Telnet negotiation options

Sender Response Description

IAC WILL [OPTION] IAC DO [OPTION] Sender wants to enable, receiver confirms
IAC WILL [OPTION] IAC DONT [OPTION] Sender wants to enable, receiver denies
IAC DO [OPTION] IAC WILL [OPTION] Sender wants receiver to enable, receiver confirms
IAC DO [OPTION] IAC WON’T [OPTION] Sender wants receiver to enable, receiver refuses
IAC WON’T [OPTION] IAC DON’T [OPTION] Sender wants to disable, receiver confirms
IAC DON’T [OPTION] IAC WON’T [OPTION] Sender wants receiver to disable, receiver confirms

conventions for a connection between two parties, in order to create a more elegant experience, such
as changing the character set or echo mode. In the negotiation phase, the client and server set several
parameters for the later communication. The negotiation revolves around a number of Telnet options, as
described in RFC 855 [18], which can be set between server and client. Either party can propose setting
a Telnet option using a predefined structure, to which the other party can respond with a confirmation or
rejection. See Table 2.1 for an overview of all Telnet commands. Negotiation around an Option code
parameter can work both ways, see Table 2.2 for an overview of typical structured negotiation scenarios.
For Options where a binary DO or DON’T is not sufficient, it is possible to have sub-negotiations. An
example option where this is uses, is the negotiation for the Terminal type, using the TTYPE option.
For a sub-negotiation, a regular Option sequence is initiated as, IAC WILL TERMINAL-TYPE, just
like the scenarios in Table 2.2. However, instead of a regular confirmation by the server, it requests
additional information with IAC SB TERMINAL-TYPE SEND IAC SE. The client is asked to send
the parameters for this option, and can do so like IAC SB TERMINAL-TYPE IS ”ANSI” IAC SE,
where ANSI is the Terminal Type that the client wants to use for this session.

Several Telnet implementations exist, but no reference or default implementation ever became domi-
nant. For that reason, not all clients using Telnet fully implement the standard, meaning not all options
are equally supported. This presents an opportunity to fingerprint certain devices, by sending clients
negotiation requests with uncommon Options to find out which options were supported.

Support for the Telnet protocol is present in a large number of Linux-based operating systems, and by
extension, in many IoT devices. By enabling Telnet capabilities by default, often using standard weak
credentials, these devices became the target of recent hack attacks. Functionality that was meant
to stay local is sometimes exposed to the Internet without a firewall, making them accessible to the
world. These attacks are well known as they were extensively covered in the media, as discussed in
Chapter 1.1. Even today, recent scans by Shodan1 indicate there are over 6.5 million publicly available
Telnet servers connected to the Internet.

An encrypted alternative was introduced in the form of TelnetS, but that never became as popular as
Telnet. Instead, SSH is by far the most popular protocol with similar features like Telnet, but with much
better security features and encryption.
1https://www.shodan.io/

https://www.shodan.io/

2.2. The Cyber Killchain 9

2.2. The Cyber Killchain
An attack on a device often consists of various stages. One of the methods to divide these stages was
introduced by Hutchins et al. [14], named the Cyber Killchain. The killchain is a method to map the
different attack stages to a single model. By linking these separate stages together, it is possible to
analyse an attack as a whole or even as part of a campaign. If two stages are often used together,
the killchain model can help uncover the initial reconnaissance an attacker did after a certain type of
malware was discovered on a system. It also makes the reverse possible, allowing defenders to take
specific action as soon as an attack is detected in the early stages. The different stages in the killchain
are:

1. Reconnaissance

2. Weaponization

3. Delivery

4. Exploitation

5. Installation

6. Command & Control

7. Actions on Objectives

In the first phase, reconnaissance, the goal is to gain as much information on the target as possible.
As the killchain model covers all attacks related to cyber security, this can be through any means, both
on- and offline. Depending on the target, one can think of different methods to do reconnaissance.
If the target is a server connected to the machine, attackers could employ vulnerability scanners to
find weaknesses in the servers’ connected services. However, a target can also include the system
administrator of a company, in which case one could think of observation and social media usage as
methods of reconnaissance. When we consider attacks on IoT devices, this phase could, amongst
other techniques, involve scanning the Internet for devices with open ports or grabbing banners from
open Telnet servers.

When an attacker gathered enough intelligence to proceed with an actual attack, a remote access
trojan is combined with an exploit to create a deliverable payload. The exploit is the part that takes
advantage of a vulnerability in a program or other security measure, allowing the execution of code
on the target system. The code that is being executed installs the remote access trojan, which is a
program that allows full control over the system it is being executed on. Multiple strategies exist for
both the exploit and the remote access trojan installation, all with different characteristics and suitable
usages. Selecting the right combination, and putting them together is what happens in the weaponiza-
tion phase. Mapping this phase to an IoT device, the exploit could be as easy as obtaining a set of
default credentials, known to work on the device since they are hardcoded or not changed since instal-
lation. As for the payload, a variant of Mirai can be used based on its source code, but other malware
compatible with IoT devices can be selected as well.

In the Delivery phase, the attacker aims to deliver the weaponized package from the previous phase to
the target. There are various ways this can be achieved, for example through (spear) phishing, luring
the target to a malicious website, dropping an USB-stick nearby, or connecting directly to the server.
IoT devices are often directly connected to the Internet, which enables a trivial delivery phase. Simply
connecting to the device allows for the delivery of the exploit in the form of default credentials, after
which code can be executed through the shell access granted.

Once the package has been successfully been delivered to the target, a vulnerability is used by the
exploit to execute the attackers’ code on the system. This can be interpreted in different ways, and
does not always rely on a technical vulnerability in a program. If a user is lured into running a malicious
program, code is executed without abusing a technical vulnerability, but rather the user’s trust is abused.
An example on the other side of the spectrum is for example a bug in the web server software, allowing
code execution on a machine without any user involved at all.

10 2. Background

Running the attacker’s code on a system results in the installation of the remote access trojan part of
the weaponized package. Just like the exploit, there are many different types of trojans, all with their
own benefits and features. Depending on the attacker’s goal, this trojan is selected and installed. The
goal of the installation phase is to maintain persistence on the system, instead of relying on exploits
to run code on the system. This means the attacker has an independent foothold on the system that
can’t just be solved by fixing the original vulnerabilities on the system. Where attacks on IoT devices
are instantiated through a poorly secured Telnet connection, malware like Mirai does not rely on Telnet
to control the system. Instead, a binary is downloaded and executed, enabling control over the device
independent from the Telnet connection.

The remote access trojan uses it is own methods of communication with the attacker. This communi-
cation is called Command and Control traffic, also known as C&C or C2 traffic. As it is an application
communicating from inside the network to the outside, it is often not blocked by the firewall, opposed
to incoming connections. The trojan connects to a server outside of the network, where it can find
instructions on how to proceed with the attack.

The possibilities are endless but dependent on the features the trojan has. Common features can in-
clude opening a shell on the system, extracting files, making screenshots or spreading itself throughout
the internal network. This can either be fully automated, but can also be done manually in an attempt to
evade possible detection measures in place. This final phase of the attack is the last phase of the cyber
killchain model, called “Actions on Objectives”. Objectives vary widely per attacker. For IoT botnets,
“renting” the devices for extensive DDoS attacks is a common objective, but more advanced attackers
might use IoT devices to gain initial foothold inside a company network and proceed from there. Previ-
ous studies investigating IoT compromises [17] observed DDoS attacks in the form of UDP floods and
many different types of TCP floods. Furthermore a DNS water torture attack2 and SSL attacks were
observed.

For accurate analysis of an attacker’s methods and motivation, it is important that each stage of the
killchain can independently be investigated. By creating a fingerprint for each stage, patterns can
be derived to identify adversaries or groups of adversaries. More importantly, by linking the different
stages together as part of a single attack or campaign, attacks can be detected considerably earlier in
the killchain, reducing the amount of damage an attacker can do.

2.3. Honeypot research
In recent literature, the term honeypot is commonly used to define a concept in network security re-
search. The first mention in literature about a network security honeypot was by Spitzner in his book
“Honeypots: Tracking Hackers” [24]. In this book, a number of definitions and terms are formalized,
which are later often cited in scientific literature. His definition of a honeypot is as follows:

It is a security resource whose value lies in being probed, attacked, or compromised.

Additionally, he first describes the different types of honeypots, “physical” and “virtual”:

Aphysical honeypot is a realmachine on the networkwith its own IP address. A virtual hon-
eypot is simulated by another machine that responds to network traffic sent to the virtual
honeypot.

Deploying honeypots to detect possible attack vectors isn’t a novel approach. It is unclear when the
honeypot concept was first introduced, but one of the earliest works which defines a honeypot which is
still used to this day is HoneyD, introduced by Provos [20] in 2003. Provos proposes a framework for
virtual honeypot, but also refines the definition for a honeypot as initially set by Spitzner [24].

Ahoneypot is a closelymonitored computing resource thatwe intend to be probed, attacked,
or compromised. The value of a honeypot is determined by the information that we can
obtain from it. Monitoring the data that enters and leaves a honeypot lets us gather infor-
mation that is not available to NIDS.

2https://secure64.com/water-torture-slow-drip-dns-ddos-attack/

https://secure64.com/water-torture-slow-drip-dns-ddos-attack/

2.3. Honeypot research 11

Despite its age, it is still a commonly used implementation and is used as a basis or inspiration for later
honeypots. Provos introduces a lot of good concepts and requirements which overlap with the goal of
this project, but the framework itself only provides a low-interaction network stack emulation.

In later work, various approaches to honeypot implementations have been introduced which can be
divided in two main groups; low-interaction and high-interaction honeypots. Many implementations
currently used in practice are created without published work backing it up with scientific methodology
and evaluation. Past work shows a couple of different approaches. We compare these approaches
using the killchain, in terms of observability and detection functionality. As these implementations still
include various innovations and push the state-of-the art in terms of functionality, they are important
to include in scientific research. Therefore, these implementations will be discussed later in Chap-
ter 3.

2.3.1. Low-interaction honeypot
Low-interaction honeypots are simple applications which emulate a vulnerable system in a static and
predefined manner. When an attacker connects to a low-interaction honeypot, the input is parsed and
commands are extracted. When a command is supported by the honeypot, a response matching that
command is returned. This means all interaction is static, a command is mapped to a static response.
Some variation is possible based on some parameters from the user input, but commands are never
actually executed on a system. With a low-interaction honeypot, you can research known threats by
tailoring the honeypot to a specific malware variant. As commands are not really executed, deploying
a low-interaction honeypot poses no significant risk to a network as there is no possibility for abuse and
code execution.

Another scenario where a low-interaction honeypot is useful is for initial exploration. When emulating
certain devices, the initial entry point is often shared between attack paths. Bruteforcing credentials for
example is a common attack vector. While this collects adequate information about possible attackers,
it lacks the functionality to analyze attacker behavior. A usecase for a low-interaction honeypot could
be the collection of known malicious IP addresses. These IP addresses could then be blocked in the
firewall to prevent access to any other accessible systems.

A downside to low-interaction honeypots is the limited flexibility. When an adversary connects, it is
very easy to detect that the device is not real. As pre-configured commands always result in the same
response, small variations in those commands can reveal if the command is actually executed or be-
ing processed by something else. Similarly, when new malware is released that does not follow the
attack paths of previously observed malware, it is unlikely that low-interaction honeypots will observe
a successful infection or capture any payload samples. As we will see in Chapter 6.6.5, malware relies
on certain triggers to determine of a system is suitable for infection. If a low-interaction honeypot is
not configured to provide a suitable response to the exploratory commands, an attacker may abort its
attack.

When we map low-interaction honeypot capabilities to the killchain, we can state that each step up
the killchain requires a more specific implementation. The maximum phase possible for low-interaction
honeypots is an attempt at installation. For the first phase, Reconnaissance, a generic low-interaction
honeypot is enough to observe an adversary scanning or probing a system.

When we move up the killchain, one can argue that delivery and exploitation are possible on a low-
interaction honeypot, though with an important limitation that each step of the way requires predefined
responses so that an adversary “thinks” an attack is successful. Actual exploitation or installation is not
possible due to the nature of the low-interaction approach. However, these attempts can be captured
and malware samples can be collected for analysis, outside the regular operation.

A low-interaction honeypot can be extended with a number of more advanced features. When it can do
more than just parsing commands and returning a response, it is called a medium-interaction honeypot.
Such features can include the possibility to download files when such a command is recognized, or
executing a parsed command on a real system using the SSH Execute function. The major difference
between low-, medium- and high-interaction honeypot remains that an attacker will not have full control
over a system with the first two systems, while it does for high-interaction.

12 2. Background

2.3.2. High-interaction honeypot
On the other end of the spectrum, you have the high-interaction honeypots. High-interaction honeypots
can be further divided in physical and virtual honeypots. A physical honeypot is an actual system,
assigned to a single IP address, being directly attacked by adversaries. When scaling this up to larger
networks, having a physical system becomes unfeasible as it does not scale very well. That is where
virtual honeypots come in. Virtual honeypots are virtual machines, which allow for multiple of them
running on a single physical machine. Both types are tightly controlled by their owners as it is expected
or even desired that these devices get compromised.

Opposed to lower-interaction machines where each command needs a predefined response, high-
interaction machines directly execute commands issued by adversaries. This makes it very hard for an
attacker to distinguish the honeypot from a real system. By letting attackers fully compromise a ma-
chine, new threats and techniques can be detected without specific knowledge of these threats.

A downside of high-interaction honeypots is the lack of control you have over what attackers are doing
on these systems. If the goal is to provide a realistic experience, adversaries should be able to do
anything they can do on a real system. This often includes malicious activity such as DDoS attacks
or spreading itself like a worm. A trade-off needs to be made between the level of freedom and the
ethical aspect of letting the device partake in malicious activity. Even if you closely monitor the incoming
connections through a honeypot, it is possible an attacker installs its own software for communication
such as a custom SSH server. This way, you quickly lose control and turn a honeypot into a serious
security risk.

Mapping high-interaction to the killchain immediately shows the major advantage this type of honeypot
has. Every phase of the killchain can be achieved, but more importantly, monitored using this approach.
An adversary has a high level of freedom, but that does not mean it can’t be closely monitored and col-
lect data on what is being done on the system. This data can be analysed to get a better understanding
of a malware variant or attacker motivation.

3
Requirements & Related work

While the Internet of Things may be a concept introduced in recent years, methods to research threats
from online adversaries exist much longer. This chapter will provide an overview of related work in the
field of honeypot research, detection and adversary analysis. Additionally, several honeypots appli-
cable to the Internet of Things will be discussed. In Chapter 1, a number of aspects were discussed
which are needed to perform research towards the current IoT threat landscape. Works discussed in
this chapter are evaluated against these aspects and any shortcomings are identified.

3.1. Honeypot research
Botnets have been around longer than the recent IoT trend. This section discusses some of the work
that has been done in the field of honeypots.

3.1.1. Honeypot evasion and detection
When an attacker compromises a honeypot, it allows the operator of that honeypot to fully analyze
the attack path. This can lead to unwanted attention, or even unmask the attacker itself when specific
pointers are found in for example the binary or the Command andControl infrastructure. For this reason,
malware commonly has functionality that detects a honeypot environment, at which point the malware
might abort its attack. As we’re interested in analyzing attacker behavior and tracking adversaries over
time, it is important to mask honeypot indicators from attackers.

A famous example of such functionality was present in the Wanacry ransomware. The security re-
searcher known as MalwareTech found a domain name when analyzing a sample of the malware which
was not registered yet1. Honeypot-like environments often resolve all DNS queries in an attempt to trick
the malware in sending traffic to a system controlled by the researcher. In this case, Wanacry assumed
that if that domain resolved, it must be running in a controlled environment, aborting further infection.
By registering this domain, the malware was able to resolve the domain globally which it did not expect
in a real environment. As such, it wrongly assumed all systems were a honeypot-like environment
effectively stopping it from spreading any further.

While this was a poorly implemented method of honeypot detection, the principle remains an impor-
tant aspect to consider. This section discusses a number of published works about honeypot detec-
tion.

Zou and Cunningham [28] introduce several techniques and tools to detect suspicious environments.
An example of such a technique, is sending a “fake” malicious instruction to the honeypot, telling it

1https://www.theguardian.com/technology/2017/may/13/accidental-hero-finds-kill-switch-to-stop-spread-of-ransomware-cyber-
attack

13

14 3. Requirements & Related work

to attack a target under the attackers’ control. As it is impossible to determine if the target is a legiti-
mate target or not, it is possible to verify if a honeypot will actually participate in such an attack (see
Figure 3.1). This technique assumes honeypot administrators will not allow their honeypots to attack
innocent computers.

Holz and Raynal [13] present a more technical approach for this problem. Based on several techniques
honeypots use to secure their system from compromises, they describe how these techniques can be
identified. For example, User-mode Linux (UML) is a way to embed a Linux kernel within another
kernel. This way, escalated privileges on one kernel does not necessarily mean root privileges on the
other. This method leaves some easily detectable traces, such as fake mounted devices and CPU
information indicating such techniques are used.

Figure 3.1: Detecting a honeypot by testing the will-
ingness to participate in an actual attack using a
sensor under control of the attacker [28].

Additionally, they present techniques for detecting virtual-
ization software VMWare, by looking at the graphics card,
network card and again the names of the hard drives. As
all hardware in a virtual machine (VM) is virtualized, just the
names of these devices will indicate the system is actually
a Virtual Machine. The detection of these aspects depend
on the default settings of VMWare. It is possible to change
the names of these values, but that requires changes to
the actual VMware binary. Next to that, VMWare contains
an I/O backdoor that allows configuration of the machine
during runtime. As it turns out, it is possible to detect the
presence of this backdoor, indicating the system is running
in VMWare.

Finally, a method for detecting debuggers is presented. A debugger provides the operating system
the means to supervise the way a process is running. Debuggers can be used to gain insight how a
process is running, for example learning about the inner workings of a piece of malware. The technique
described is quite complex, but it comes down to the fact a process that is being debugged, can not
start a debugger itself. If a process being debugged tries to call a debugger itself, this will fail, which
could indicate the presence of a debugger.

3.1.2. Adversary behavior
Once an attacker gained access to the system, there are various ways to create a profile of the attacker.
In work done by Ramsbrock et al. [21], the authors ran an SSH honeypot with easy-to-guess passwords.
To create a profile of attacker behavior, they looked for specific actions taken by the attacker and the
order in which they occurred. This profile contained actions such as password changes, file downloads
and system configuration changes. From these profiles, a state machine was built showing the number
of times attackers changed from one state to another. From this data, a statistical analysis lead to a
number of recommendations to increase security of systems with an exposed SSH service.

A more advanced technique of analyzing attacker behavior, is keystroke analysis. Dowland et al. [8]
attempt to use keystroke analysis for user authentication. They propose to use this technique to verify
periodically whether the current keystroke profile matches regular behavior. By splitting the profiling up
into static profiling and dynamic profiling, access is not only granted on login, but also during system us-
age. While this usecase is not directly applicable to honeypot systems, having profiles for each attacker
which can be compared in real-time to a current session can be useful for adversary identification. This
method however, requires a lot more data that simply the network delays between characters. Their
models include the exact times a key is pressed, staying pressed and then released. Such informa-
tion is not available for a honeypot implementation. Ahmed et al. [1] attempts to minimize the data
required to construct a reliable fingerprint based on keystrokes. Their models require less data than
Dowland et al., but experiments are based on client-side software, which make it not directly applicable
to a honeypot situation. Their detector includes a false acceptance rate (FAR) of 0.0152% and a false
rejection rate (FRR) of 4.82%. Telnet allows per-character transmission of input using the LINEMODE
option (as described in Chapter 2.1). By measuring the timing between input, it could be possible to
identify returning attackers based on their keystroke patterns.

3.2. IoT honeypots 15

3.2. IoT honeypots
The rising threat against IoT devices did not go unnoticed and the need for honeypots was recognized
by several developers. Honeypots discussed in this section all aim to gather intelligence on malware
targeting the Internet of Things.

3.2.1. IoTPot
An initiative from Japan by Minn et al. [17] called IoTPot shows a lot of similarities with our research
goals. They propose a honeypot that aims to retrieve IoT malware binaries by emulating multiple CPU
architectures. By supporting multiple architectures, a wide array of malware can be captured and
analysed. This way, they’ve been able to identify several different groups of malware, attackers and
analyse their behavior.

Figure 3.2: An overview of IoTPot [17]
The design is specifically tai-
lored to emulate various Tel-
net devices, based on the
Telnet protocol (Chapter 2.1)
The banners are collected
by scanning active devices
on port 23, accessible from
the Internet. For authenti-
cation, IoTPot supports var-
ious strategies for accepting
credentials. For example, it
can accept certain specific
credentials, or accept any
credentials after a number
of attempts. As for the in-
teraction phase, IoTPot sup-
ports running commands on
different CPU architectures,
as not all IoT devices run
on the same hardware plat-
form.

A design overview of IoTPot
can be found in Figure 3.2.
The implementation for IoTPot consists of the following modules:

Frontend Responder The Frontend responder handles the incoming connections from attackers. The
frontend responder has a set of “device profiles”, which consists of details on the different phases
of a Telnet session such as Telnet negotiation options, banner, accepted credentials and how to
respond to interaction commands. The Manager component selects which device profile is linked
to which IP, so that multiple device configuration can be tested on the same instance. When an
attacker enters a command now previously observed, the Frontend Responder sets up a Telnet
connection to IoTBox, which is the execution sandbox discussed later.

Profiler When the Frontend Responder sends an unknown command to IoTBox, the Profiler is used
to extract the response. This response is saved in the device profiles for later use. This way,
when this command is seen in a later session, the Frontend Responder knows how to respond.

Downloader When an attacker executes commands, it is possible they attempt to download malicious
files. The Downloader intercepts such commands and downloads these files in a safe environ-
ment for later analysis.

IoTBox When an unknown command is received by the Frontend Responder, it is sent to IoTBox.
IoTBox is a set of sandbox environments that run a Linux distribution for embedded devices with
multiple different CPU architectures.

16 3. Requirements & Related work

IoTPot was deployed for 39 days across 165 IP addresses. The device profiles consisted of 29 banner
profiles, and a single command interaction profile based on a commonly exploited DVR. The IoTBox
backend supported 8 different CPU architectures, all running the OpenWRT Operating system, com-
monly found in routers. During the observation period, 49.141 out of 76.605 attackers successfully
logged in, and 76.605 download attempts were intercepted.

From their observations, they divide an attack path into three different stages: intrusion, infection and
monetization. These stages are described as a simplified version of the Killchain, as discussed in
Chapter 2.2. Findings include the discovery of 4 malware families with unique characteristics for each
of the described stages. Additionally, they found that all families but one share a common goal, namely
DoS attacks and Telnet scans. Finally, they conclude that the different malware families have a different
level of aggression. For example, a family named ZORRO updated its command sequences twice
during the observation period.

The work done by Minn et al. was a major source of inspiration for this project. Their design approach
ensures a wide variety of devices emulated for the first phases of a Telnet connection before the in-
teraction. However, a downside of their approach is that interaction is saved for later use, where the
sandbox environment (called IoTBox), is reset after a while. This way, follow-up commands to an al-
ready infected machines can not be reliably reproduced, and commands are sent to a clean machine
instead. As observed during their experiments, adversaries sometimes return to the same device with
a different command sequence. As the device was supposed to be compromised before, this should
be accounted for when commands are executed. Furthermore, the research seems to be focussed
on collecting malware samples, rather than adversary behavior. By splitting up the attacks in only 3
phases, valuable intermediate steps are combined instead of analysed separately.

From IoTPot, we can derive a number of requirements, to both replicate and extend their work.

1. Support for configurable Telnet protocol responses

2. Support for configurable Banner

3. Able to run commands on “real” systems

4. Account for attackers returning to systems previously compromised

3.2.2. IoTCandyJar

While acknowledging the limitations of low-interaction honeypots, Luo et al. [16] propose a machine-
learning based approach, named “IoTCandyJar”. They state that building a comprehensive low-interaction
honeypot is very time-consuming and difficult due to the large variety in IoT devices. High-interaction
honeypots also pose a challenge, as emulators aren’t available and deploying physical machines would
pose increased risk and is not very cost-effective. Instead, Luo et al. propose a new interaction level:
“intelligent-interaction”. The goal is to extract malware samples from the honeypot, and for that all
they need is to come up with a response such that an adversary executes the commands leading
to a payload. From the requests received, a suitable response has to be derived. Using a module
“IoT-Scanner”, they scan the Internet, searching for IoT devices and repeating the previously received
requests to the devices. This way, they get a response a real IoT device would return, adding to the
knowledge required for a convincing reply.

This concept has some similarities with IoTPot, though given enough time, “IoTCandyJar” could learn
to deal with a wider array of responses than the limited number of devices IoTPot has at its disposal.
Their approach is novel, but the goals differ from the goals set for this research. There is no persistence,
or even a environment that allows adversaries to return to, as the honeypot still effectively behaves as
a low-interaction honeypot. An approach like this however, does help solve the problem of honeypot
evasion techniques.

3.3. Available implementations 17

3.3. Available implementations
Most honeypots used in practice are developed without a scientific paper to back them up. There are
many implementations available, both freely available or as a commercial product. There is a lot of
overlap in functionality, and each honeypot has their own advantages and disadvantages, as each
honeypot is designed and implemented with a specific goal in mind. We will evaluate a number of
potentially suitable options in this chapter.

Many implementations are available to mimic Databases, web applications and mailservers. For our
goal, the Internet of Things, a number of potential candidates are available. The following honeypots
were selected based on their popularity on Github and features relevant for our research. Especially
Telnet support was an important consideration.

3.3.1. Kippo, Cowrie and Kojoney2
Kippo2 is a popular SSH honeypot written in Python. It is currently no longer active development, but
has been forked by Michel Oosterhof, who named it Cowrie3. Cowrie is a medium interaction SSH
and Telnet honeypot designed to log brute force attacks and the shell interaction performed by the
attacker. Next to the typical low-interaction features such as credential collection and fake shells, it is
possible to forward unknown commands to an SSH instance using the “Execute” functionality. This is
not considered a true high-interaction honeypot based on the definition fromChapter 2.3.2, but because
of the dynamic nature it is often referred to as medium interaction.

There is a lot of functionality in Cowrie that makes it behave like a high-interaction honeypot. For ex-
ample, there is support for a fake filesystem, so if an attacker tries to access files through the emulated
shell, a number of files are actually available. This enables users to configure a honeypot with a high
level of flexibility, but with a much lower risk than a typical high-interaction honeypot.

Another popular medium-interaction honeypot is Kojoney24. It offers similar functionality than Cowrie,
but is focused on SSH instead of both SSH and Telnet. With Kojoney2, download requests made by
attackers are actually performed in the background so they can be analyzed later. These files are not
usable in the emulated environment so there is no risk of infection through binary execution.

3.3.2. Malware-specific
Additionally, various Mirai specific honeypots are available as well. Based on analysis of the Mirai mal-
ware, these honeypots are designed in such a way that responses to the known commands are within
the Mirai selection criteria. This makes it very useful to collect Mirai malware samples and to research
attackers with a very similar attack path as Mirai itself. However, for more generic research discov-
ery of previously unknown malware, these honeypots aren’t advanced enough. These low-interaction
implementations can be useful for initial data gathering, but for the more advanced requirements, a
high-interaction honeypot is needed.

MTPot is a project by Cymmetria5, designed to capture Mirai samples. It is designed to listen for Telnet
connections, and behave exactly as Mirai expects it, triggering a sample download. It is a pure low-
interaction honeypot, with predefined expected commands and related responses. The application is
useful to investigate the circumstances in which Mirai will attempt to infect a machine. However, as a
whole, it is far too simple and is missing a lot of configuration options to be suitable for our goals.

3.4. IoT botnet analysis
In Chapter 1.1, we discussed a number of current botnets active on IoT devices. A number of these
botnets were extensively analysed, providing insight into the way adversaries attack and infect de-
2https://github.com/desaster/kippo
3https://github.com/micheloosterhof/cowrie
4https://github.com/madirish/kojoney2
5https://github.com/Cymmetria/MTPot

https://github.com/desaster/kippo
https://github.com/micheloosterhof/cowrie
https://github.com/madirish/kojoney2
https://github.com/Cymmetria/MTPot

18 3. Requirements & Related work

vices.

3.4.1. Mirai
Mirai was analysed by Antonakakis et al. [4]. While Mirai only gained widespread attention by a number
of massive DDoS attacks on “Krebs on Security”, OVH and Dyn, reports of Mirai were seen several
months earlier on August 31 2016. Based on the source code which was released, the authors de-
veloped a measurement methodology. A copy of the source code itself can be found on Github6.
Figure 3.3 depicts the operation method of Mirai.

Figure 3.3: Operation of the Mirai botnet [4].
Mirai finds its victims by scanning the Internet in
a pseudo-random order using TCP SYN probes.
These scans are done on port 23 and port 2323,
and certain IP ranges are blacklisted, likely to
prevent drawing attention from high-profile com-
panies or governments. After a potential victim
is found using the scans, a Telnet connection is
established and 10 random entries are selected
from a pre-configured list of 62 credentials. On
successful login, the victim IP and correct cre-
dentials are sent to a reporting server. Separate
from the reporting server, a loader program logs
into the victim machine using the reported cre-
dentials. This loader program determines the un-
derlying architecture, after which it loads and ex-
ecutes the specific malware. After a successful
infection, Mirai attempts to hide itself by deleting
the executables and using pseudorandom names
for its process. As a result, Mirai will not persist
across reboots, making it harder to investigate.
In order to prevent other malware from infecting
the device, processes bound to port 22 and 23

are killed, as well as known processes from rivaling malware such as .anime and Qbot. Finally, the
infected device will listen for Command and Control traffic while scanning for other potential victims
using the method described above.

The number of infected devices changed a lot over time. As can be seen in Figure 3.4, Mirai had
between 200,000 and 300,000 infections in September 2016. In November of that year, a peak of
600,000 infections was observed, with a decrease to 100,000 devices around the end of February
2017. This big variance in infection numbers was due to the evolution of Mirai during the observed time
period.

Figure 3.4: Number of Mirai infections over time [4].

The authors note that even before the source code was released on September 30 2016, 24 unique Mi-
rai samples were uploaded to VirusTotal. These samples were used to analyse Mirai’s initial evolution.
6https://github.com/jgamblin/Mirai-Source-Code

https://github.com/jgamblin/Mirai-Source-Code

3.4. IoT botnet analysis 19

Where the C&C infrastructure was initially IP address based, this was later upgraded to a domain-
based variant in mid-September. Additionally, around the same time the malware began to delete its
own binaries and obfuscate its process ID. In one of the last samples collected before the source code
release, features such as the closing of infection ports and aggressive killing of competitive infections
were observed. After the release, the malware evolved rapidly, with different actors adding various
features. These features include new sets of credentials, changes to the IP blacklist and scanning on
ports related to the CWMP protocol.

Based on a DNS dataset in combination with the obtained malware samples, Antonakakis et al. were
able to cluster Command and Control Server IP addresses and shared network infrastructure. These
clusters varied greatly in size, the smallest being a single host and the largest containing 11 domains
with 92 IP addresses. As these clusters do not share any infrastructure, it is possible that multiple
actors were actively operating botnets using Mirai. These clusters showed different levels of evolution,
but a large number of features did not equal successful infection volumes. Using data from a large ISP,
the authors were able to determine DNS lookup volumes for domain names previous obtained through
reverse engineering. The cluster with the highest number of features and added credentials was only
19th out of 33 clusters in terms of DNS lookup volume. Oh the other hand, a cluster which showed no
evolution at all achieved the highest lookup volume of all clusters.

During the monitoring period, thousands of DDoS attacks were observed conducted by Mirai. Next
to the high-profile attacks on “Krebs on Security”, Dyn and Liberia’s Lonestar, Mirai showed the same
characteristics as a so called stresser- or booter service. These services allow customers to pay for
DDoS attacks against targets of their choice. Some Mirai operators were targeting gaming platforms
such as Steam, Minecraft and Runescape. These attacks employed a wide range of strategies, such as
volumetric attacks, TCP state exhaustion and application-layer attacks. An interesting observation was
made regarding one of the attack targets. The 7th most popular target was an IP address associated
with one of the Command and Control servers. Out of the 484 observed Mirai Command and Control
IPs, 47 were the target of a DDoS attack themselves. When clustered by attack commands, 93 unique
clusters were identified, of which 26 clusters were targeted at least once. This supports the hypothesis
that Mirai actually consists of multiple rivaling botnet operators.

Where common DDoS attack relies on amplification strategies, Mirai primarily used direct non-reflective
attacks. Even without relying on amplification strategies, Mirai was still able to inflict serious damage
as shown by the high-profile attacks mentioned earlier.

The Mirai botnet shows that even a relatively simple dictionary attacks can still lead to the compromise
of hundreds of thousands of IoT devices. In the future, it is likely that IoT devices will become the target
of software vulnerabilities as well, which is why it is imperative vendors need to adapt a much stricter
hardening strategy for their devices.

3.4.2. Hajime
Another notable botnet consisting of IoT devices is Hajime. Hajime was extensively analysed by Ed-
wards and Profetis [10] in October 2016. Three stages are identified, namely:

Reconnaissance and infection phase The reconnaissance stage of Hajime runs over a Telnet ses-
sion, very similar to other IoT malware discussed before. It scans the Internet using a random-
ization algorithm which generates a random IP address to which a connection is made. When a
connection can be established on port 23, it goes through a list of credentials sequentially. This
is a significant difference compared to Mirai and its variants, which attempts credentials in a ran-
dom order. When a username/password combination is rejected, Hajime disconnects and then
reconnects to attempt a different set of credentials. This way, only one combination is attempted
per session while still going through a dictionary.

Once a set of credentials is accepted, a number of commands are executed to determine the
suitability of the compromised device. A suitable location on the filesystem is selected and the
system architecture is determined by inspecting the “echo” application. Once the target is deemed
suitable for infection, a binary is uploaded by entering encoded bytes through the terminal session.

20 3. Requirements & Related work

Downloader stub The binary downloaded at the end of the first stage is a simple program, aiming to
connect to a remote server and store all received bytes in a file. The authors noticed that each
architecture receives a different binary, handwritten specifically for that architecture. They arrive
at this conclusion based on two indicators, which are characteristics not fitting to a compiler which
can create executables for different architectures from the same source code.

DHT downloader The binary downloaded in the previous phase is the final stage of the Hajime worm.
This binary is responsible for retrieving and executing additional payloads using a Peer-to-Peer
(P2P) network, consisting of infected hosts. It uses several protocols used in BitTorrent. For ex-
ample DHT protocol is used to discover other infected hosts, and the uTorrent Transport Protocol
is used to exchange data over the network.

From the inner workings of the binary from the final stage, it appears that Hajime supports a number of
different modules. Up until the point of publication, only the exploitation “exp” module was observed on
the Internet. No other modules are currently active, though Hajime supports loading new and possibly
malicious modules over its P2P network, still posing a serious threat. In Chapter 6, we will compare
the findings from Edwards and Profetis [10] with observations done of our own.

From this chapter, we can conclude no implementation currently exists that meets all requirements.
However, many of the concepts discussed in this chapter partially cover our requirements. From these
concepts, combined with missing requirements, we designed Honeytrack, which will be discussed in
Chapter 5.

4
Design Considerations

To design and implement an effective IoT honeypot requires predefined design parameters. This chap-
ter describes which steps to take in order determine the optimal design parameters and deployment
strategies for our honeypot. It involves a number of different phases, ranging from dataset exploration,
network traffic analysis and passive data gathering. Before we can effectively deploy a honeypot as
envisioned, there are a number of steps we can take to get an overview of the current exposure of
Telnet.

4.1. Censys data analysis
As IoT botnets can cause a lot of damage, a lot of vulnerable devices must exist. Censys is a search
engine that collects data on hosts and websites through daily scans of the Internet. Their dataset in-
cludes a scan on port 23, on which Telnet servers listen by default. Results include all publicly reachable
devices on port 23 and lists the IP address, banner and negotiation components. This banner is the
initial (textual) data a Telnet server returns, and is often used to identify the device, as well as present
a login prompt for authentication.

From this dataset, we can establish an understanding of how many Telnet devices are actually exposed
to the Internet. Additionally, we can extract common characteristics and identify the nature of such
devices. As a honeypot aims to mimic a vulnerable device, this provides essential information for the
implementation.

By analyzing this data, we can answer the questions “What sort of IoT devices are connected to the
Internet” and “What are characteristics of IoT devices connected to the Internet”

4.2. TU Delft Telescope
After it is established what sort of IoT devices are connected to the Internet, we can investigate who is
connecting to them. While the usage of a Telnet service is justified in a few cases, the devices which
were used in the attacks mentioned in Chapter 1 likely had no critical dependency on Telnet. From
various research done on one of the most comprehensive Telnet-based worms in recent history, Mirai,
we know that malware spreads by scanning the entire Internet for potential targets [4]. If we want
to capture infection attempts on a honeypot, we need to investigate where and how often attackers
attempt to connect to these devices.

These scans can follow a number of different scenarios, each requiring a different strategy to achieve
sufficient honeypot coverage.

Random When an attacker scans the internet in a random fashion, there is no pattern to be detected.
When this scenario is the case, the distribution over a number of observed IP addresses will be
a normal distribution for the number of hits. In this case, it does not matter in which part of a

21

22 4. Design Considerations

network you set up your honeypots as they’ll be hit with the same probability as other parts of the
network. Therefore the number of hits is not dependent on the location of your honeypots.

Pseudo-random Another scenario is a the pseudo-random approach. Such an approach consists of
a round-robin algorithm which initially looks random, but ensures every IP address is only hit once
before hitting an IP address again. An example of a program using such an approach is zMap [9].

Targeted scan The final scenario we will consider is a targeted scan. In this case, an attacker is
specifically targeting a range of IPs while ignoring the others. For this scenario, you would expect
certain areas to be hit a lot more then others.

To draw conclusions on scanning traffic, we will analyze a large number of consecutive IP addresses.
We have access to a large dataset consisting of all incoming network traffic of 3 partial /16 networks.
From these networks, all traffic to unroutable IP addresses is forwarded to a network telescope. Over
the course of 8 days, this came down to 1,704,422,219 incoming connections. Due to the large number
of IP addresses present in the dataset, it provides a good indication of what we can expect in terms of
incoming connections.

The three networks each have their own characteristics. The first two network, 130.161.0.0/16
and 131.180.0.0/16 are employee networks, consisting of workstations, servers and other rela-
tively static devices. The third range at our disposal is 145.94.0.0/16, which is the Eduroam net-
work. Eduroam is a global university network, providing Internet access to students all around the
world. This network consists of devices owned by students and employees, such as laptops and smart-
phones.

As we will see in Chapter 6.1, the Eduroam network is targeted 8% less than the other two networks
available. The number of connections is normally distributed over all networks, indicating a random
scanning scenario. For the design of our honeypot, this means that no special attention is required for
the location of the honeypots in the networks.

4.3. Telnet metrics
When an attacker connects to a device, there are various methods of identification possible. Even
before giving access to a shell, a lot can be derived from the connection setup and activity before any
commands are executed.

The goal of a honeypot is to mimic a vulnerable Telnet device. This means we have all aspects of Telnet
available as a metric to identify attackers. As discussed in Chapter 2.1, when a device establishes
a Telnet connection, a Telnet-specific negotiation protocol is the first type of communication. This
negotiation is part of the Telnet protocol specification and is used to set the parameters for the upcoming
session. By controlling this negotiation, we can both set the terms for the Telnet session, and use the
negotiation response as a metric for fingerprinting. Next to the negotiation, we can use other aspects
of the connections at this point as well. Such aspects include IP address and Geo-location, but also
timing data about the received bytes. A Telnet negotiation is done under the hood by Telnet clients,
invisible to the user. However, when checked manually, a non-standard Telnet negotiation might the
raise suspicion of an attacker. It should therefore be investigated if there is a difference in behavior
when presented a non-standard Telnet negotiation.

Telnet negotiation allows for several possibilities for data gathering. If a connecting device is fully
Telnet compliant, we can ask it to send data per character, the so-called LINEMODE option. This is
meant for devices with very small input buffers, or devices that can’t handle lines. While our honeypot
is technically capable of accepting full lines, it is very useful to receive input per character, as this
reveals a number of characteristics of the remote device. When an attack is automated, this will likely
result in very low input lag. However, in the case of manual (human) input, the higher input delays
will immediately stand out. Additionally, as LINEMODE is not a common negotiation parameter, we can
obtain an indication on the Telnet-compliancy of the connecting device.

The next feature of Telnet negotiation which could be applied to our honeypot is ECHO Telnet option.
The ECHO option determines whether or not the server is responsible for what is being displayed on

4.4. Interaction data 23

the screen, or if the connecting client keeps track of the terminal screen itself. Server-controlled echo
is mostly used to hide the password input, emulating default SSH behavior. It is not as useful as
LINEMODE, but the preference for server- or client side echo can still be used as a fingerprint prop-
erty.

As Telnet is only a protocol specification, many different implementations exist on the different devices.
Responses to Telnet negotiation options can therefore be answered in different ways, or not responded
to at all. To make our honeypot as convincing as possible, the Telnet negotiation should consider and
act on a number of common responses.

Considering the above, this gives us the following possibilities for attacker fingerprinting, just based on
the initial connection establishment:

1. IP address

2. Geo-IP location

3. Time to first received byte

4. Input delay

5. Telnet Negotiation response

4.4. Interaction data
Depending on the level of clustering, the parameters described in the previous sections may not be
sufficient to identify attackers. When a Telnet session is successfully established, the attacker is pre-
sented with a banner of a device we’re emulating. The Censys dataset forms the source of the banners.
The attacker is then presented with a login prompt, for the attacker to submit credentials.

As we’re in full control of the Telnet session, this is not an actual login prompt. Instead, we gather all
used credentials, and present the attacker with an error message stating the credentials are wrong.
This way, we aim to collect the usernames and passwords used by attackers. We can use this data to
form dictionaries for better classification of different types of attackers.

As a final step, the first set of commands executed can be used to determine the target’s intention. As
automated scripts often have easily identifiable characteristics, this should generate enough features
to distinguish different malware variants.

4.5. Sandboxing
Honeypots are meant to be infected with malware. Executing these malicious files is often needed to
investigate, it also poses great risk to the network. Malware can take control over an entire system, and
even spread over the network if the infected host is not isolated properly. In order to analyze malware
in a controlled environment, reducing the risk of unwanted spreading, there are several approaches
possible.

First, we have virtual machines, for example implemented by VirtualBox of VMWare. Virtual machines
are fully virtualized, including the hardware they run on. This allows for good isolation, as very little
system resources are shared between the actual system and the virtual machine. Because all the
hardware has to be virtualized and the machine runs completely separate from the host, this approach
is resource heavy. Several virtual machines can run simultaneously on a single system, but resource
usage and boot-times are comparable to actual systems. As adversaries expect to be attacking func-
tioning running systems, requiring the allocation of both resources and time to boot virtual machines
does not scale well. This can be partially overcome by having a cache of running systems that can
be linked with incoming sessions, but having persistence throughout sessions becomes increasingly
complex using this approach.

There are different methods of isolating processes from a host system. Containers are an approach
that isolates processes from the host system, but without the full virtualization of all hardware. Instead,

24 4. Design Considerations

containers share the host kernel and optionally have access to other parts of the system through the
use of namespaces. This way, the applications running in a container have their own view of the hosts’
resources and hardware. This greatly reduces both resource usage and boot-time for container-based
systems. Well-known implementations of containers are Docker and Linux Containers (LXC).

An additional security feature of LXC is very useful when allowing unknown malicious activity on the
container. LXC containers can be mapped to a permissionless user, meaning the processes running
as root in the container, actually run as a non-root user on the host system. This means that when an
LXC container is exploited and an adversary manages to escape the container environment, permis-
sions on the host are limited to this user. This does not guarantee unwanted or critical damage to the
system as various privilege-escalating attacks could still be possible, but it greatly reduces the risk of
a compromised host.

4.6. Scaling high-interaction honeypots
Running a high-interaction honeypot is relatively much more expensive than a low- or medium inter-
action honeypot. The fact a real system needs to be behind one significantly increases the computing
power to run one. When scaling up a honeypot network (sometimes called a honeynet), this become
an increasingly large problem. Various research has been done in order to scale up high-interaction
honeypots, with different approaches.

Bailey et al. [5] state that high-interaction honeypots are not feasible when deployed on a large scale.
It is important to note that for this conclusion, it is assumed that high-interaction honeypots are imple-
mented as fully virtualized machines. On the other hand, low-interaction honeypots can serve large IP
ranges at once with relative ease. All IPv4 addresses are allocated, so large ranges of IP addresses
on which to deploy honeypots on are not always easily available. Bailey et al. propose a framework
that aims to solve both these issues. The scaling problem is addressed by combining low- and high-
interaction honeypots and utilizing the best of both. Many lightweight low-interaction honeypots are
deployed over a number of different ranges. These low-interaction honeypots serve as filters for a
high-interaction setup. This high-interaction setup is a collection of centralized VMware hosts, running
a wide variety of operating systems and applications.

The role of the low-interaction machines is to filter most of the traffic that is uninteresting or seen before.
As they have the capability to respond to these requests themselves, there is no interaction with the
high-interaction backend, saving a lot of resources. Based on several metrics such as connection state
and payload hash, a low-interaction honeypot can hand over the connection to the high-interaction
backend. This process is dynamic, so this decision is not only based on static rules, but accounts for
different types of investigation goals, which we will get back to later.

The high-interactionmachines use VMWare to provide several hosts per physical machine. All outgoing
network traffic is prevented from directly going out, but instead is routed through the heavyweight hon-
eypots. This traffic can be monitored to provide indicators of successful infections. The setup enables
worms to propagate within the backend, as long as machines are available. This provides insights into
the methods of spreading once a host has been infected. As soon as such an infection is detected,
snapshots are created automatically, enabling analysis at a later point in time.

Both low- and high-interaction machines are monitored and controlled by a central control component.
This component is responsible for data aggregation and analysis for all machines, so it is able to com-
bine data from both the low- and high-interaction machines. This way, it has the possibility to present
an attacker a previously infected machine to monitor possible secondary attacks.

Details on how this is achieved, or under which circumstances the control component decides to check
for follow-up infections remain unclear. The experiments and results discussed in the paper mostly go
into the filtering aspect and possible applications of the presented frameworks. Results show that low-
interaction filtering is highly effective in terms of load reduction, while still achieving enough coverage to
investigate attacker behavior. Their work serves as a good starting point to incorporate both scaling and
persistence into a honeypot system, but lacks specifics on technical implementations and use cases
for low-powered devices such as the IoT.

4.7. Persistence 25

In work done by Guarnizo et al. [12], physical IoT devices are exposed to so-called wormholes. These
wormholes are deployed across different IP ranges worldwide, similar to the lightweight honeypots as
described by Bailey et al. [5]. Using a “forwarder” module, traffic is re-written in real time to make it look
like the physical device is actually at the location of the wormhole. Multiple wormholes are connected to
different ports on the IoT device, allowing multiple attackers to interact with the same physical device.
As the devices are very likely to be compromised, they propose to periodically reset the devices and
block any potential outgoing attacks to prevent collateral damage.

The authors estimate that by combining IoT devices with different wormholes, it is possible to expose
𝑛 ∗ 𝑚 services to the Internet, where 𝑛 is the amount of physical IoT devices and 𝑚 is the number of
wormholes. While this does scale significantly better than binding a single device to an IP address,
it still requires dozes of IoT devices to be set up. The proposed solution however, is suitable for IoT
devices and allows for a more realistic setup than for example IoTPot [17].

So far, scaling up honeypot deployment was achieved by reducing the level of interaction of honeypots
in order to reduce system load. Virtual machines allow for limited scaling per physical machines, but this
does not scale beyond dozens of machines. Containers are suitable to isolate the different attackers
from the system and each other, but so far using containers to run a large number of high-interaction
honeypots has not been proposed.

4.7. Persistence
Maintaining the state of a honeypot after an attacker is disconnected could be very useful in tracking
adversary activity over time. However, this functionality is absent in most currently available implemen-
tations.

Work done by Fairbanks et al. [11] proposes a method to store metadata from honeypots, for later
analysis. While this can’t be considered persistence in the sense that attackers can return to their
previously compromised machine, it does work towards the solution for the problem that a honeypot
needs to be reset periodically. A method is proposed to extract and analyze a richer set of forensic
information from the file system journal of honeypots in spite of anti-forensic tool use. This forensic
information can then be used for system recovery, research on attack techniques, insight into attacker
motives, and for criminal investigations.

The research of Bailey et al. [5] describes a form of persistence. When an intrusion is detected based
on a number of metrics, the state of the virtual machine is saved with the checkpoint functionality.
These checkpoints are for analysis purposes only, in order to investigate the exact changes made to
the system.

While some work was done to enable persistence in honeypots, a scalable solution to store and restore
machine state has not been proposed in past works. An alternative method previously unexplored, is
the use of LXC containers to store machine state. LXC containers can be cloned in an efficient way.
Where a clone virtual machine requires a full copy of the filesystem, a container clone uses the same
root filesystem as the template. When changes are made, only these changes are saved to disk.
This way, many containers can be created on a single machine without requiring a lot of space on the
filesystem.

5
Honeytrack: Persistent IoT honeypot

For the implementation, we use the open source Honeytrap “Advanced Honeypot framework” [26].
Honeytrap is a modular framework for running, monitoring and managing honeypots. It aims to simplify
the creation of custom honeypots, consisting of (possible) combinations of simple services, isolated
containers or even real hosts. Using Honeytrap you can use sensors, high interaction and low interac-
tion honeypots togethers, while still using the same event mechanisms for data collection. Honeytrap
is a project under heavy development, but contained many of the features necessary for meeting the
requirement set in earlier chapters. An overview of the requirements set in Chapter 3 can be found in
Table 5.1.

Table 5.1: An overview of requirements for a persistent IoT honeypot.

Requirements

Scalable
Allow for extensive data collection
Configurable for A/B testing
Support for persistence

Honeytrap is both scalable in terms of architecture and implementation, but was lacking support for the
Telnet protocol, commonly used for the IoT adversaries. Honeytrap is made up of several components,
each responsible for a different phase of the handling of a connection. The connection enters the
application through the listener. This listener accepts the incoming connection and attempts to match
it to the next phase of Honeytrack, the service. A service is amodule where the connections are handled
based on a specific protocol or applications. Behavior such as reading and writing to the connection is
done manually and hardcoded in the Honeytrap module. When a higher level of interaction is required,
Honeytrap allows the connection to be passed on to an external application, such as a virtual machine
running on the system. The module that takes care of this connection is called a director. Both services
and directors can notify Honeytrap of important events. These events are all handled in a unified way,
and can be passed on to various data collectors, through modules called pushers. A general overview
of Honeytrap’s design can be found in Figure 5.1. This chapter will discuss Honeytrap’s design and
architecture more in depth, as well as modifications necessary to meet the requirements.

5.1. Listener
At the entry point of Honeytrap is the listener. The listener accepts connections and forwards those
connections to the appropriate services further down the pipeline. While Honeytrap can only run with
one listener, there are several options possible. A schematic overview of the different types of listeners
can be found in Figure 5.2.

27

28 5. Honeytrack: Persistent IoT honeypot

Figure 5.1: Honeytrap Design overview

Figure 5.2: Honeytrap Listeners

Socket Listener The first listener is the socket listener. The socket listener accepts connections on
all configured ports, but relies on the OS to create sockets to accept. This can be compared
with a webserver listening on the default port 80. When a remote machine makes a connection
to this server on port 80, this connection is picked up by the listening application which handles
the request. The dependency on the operating for example means that it must recognize the
incoming packets as its own. Simply sending packets to the server’s network interface is not
enough, as the destination IP address has to match the IP configured for the network interface.
The Socket Listener is the default listener for Honeytrap, and enables support for all application
layer communication between Honeytrap and remote hosts.

Agent Listener Instead of accepting connections on the machine running Honeytrap, the agent lis-
tener accepts connections which in turn are accepted by listeners on remote agents. Agents are
devices running the Honeytrap Agent program, which forwards connection to a Honeytrap server.
After an agent connects to the server, the configuration is retrieved and local (socket) listeners
are started according to this configuration. This way, agent behavior can be controlled through a
central server, turning Honeytrap into a distributed honeypot network. Connections accepted on

5.2. Services 29

an agent listener are encrypted and sent to the server for processing, where they will go through
the regular service matching flow as described above. This means that from the service compo-
nent on, there is no difference between an agent connection and a socket connection. Data is
also sent back over this connection, turning the agent into a man-in-the-middle probe. The device
which is running the agent is not at risk of being compromised by itself. All login attempts and
commands are simply forwarded to the central Honeytrap server, so the agent does not do any
of the processing itself.

Raw Listener When the Raw listener is enabled, Honeytrap binds directly to the network interface.
Where the socket listener relies on the operating system to turn incoming connections into sock-
ets, the Raw Listener responds to all packets arriving at the network interface. This way, it can
capture the first few bytes of data transmitted by a remote host. When a SYN packet is received,
the Raw Listener is able to respond to it like a regular application, and follow-up packets are all
confirmed with ACK packets. This way, the remote host gets confirmation packets are success-
fully received, tricking the remote host into thinking an actual application is listening on the other
side. However, as no socket is created, application layer traffic is not possible so interaction is
only possible on the Link Layer. This mode is very suitable to monitor all traffic sent to a server,
but when a higher level of interaction is not required.

5.2. Services
Figure 5.3: Honeytrap Services

Every type of honeypot has it is own service, for example SSH, Telnet or a webserver. All those types
require different responses to different requests, which is why each service is a separate module, ca-
pable of handling connections as if they were a SSH, Telnet or webserver. A service can be considered
as the low-interaction component, where the connection is manually read, processed and responded
to. Connections for each service come in through the central listener, so after a connection is accepted,
Honeytrap has to determine for which service the connection was intended. A schematic overview of
the relation between the listener and services can be found in Figure 5.3. The mapping of connections
to a service can be done in multiple ways. The most common approach is to define a port on which
the service listens. In the case of a Telnet service, made to handle Telnet traffic, this means all traffic
on port 23 should be directed to this service. Services can also indicate if they are capable of handling
a certain connection by looking at the first few bytes read from a connection. This could be used for

30 5. Honeytrack: Persistent IoT honeypot

webservers, which can run on a variety of ports apart from the default port 80. Webservers typically re-
ceive HTTP requests, which have the format like GET / HTTP/1.0, where the first few bytes consist
of GET. A service for a webserver can indicate that connections starting with GET should be handled
by it, regardless on which port that connection was established.

Services allow full control over a connection, but all downsides of low-interaction honeypots discussed
previously apply here. However, as the transition from a service to a director based connection can be
done from the service, the best of both worlds can be combined. Currently, a wide variety of services is
implemented such as FTP (File Transfer Protocol), IPP (Internet Printing Protocol), SSH, VNC (Remote
Desktop) and ElasticSearch (Database). Honeytrap only supported very limited Telnet capabilities. The
Telnet service developed for Honeytrack will be discussed later in Section 5.5.

5.3. Directors

When a higher level of interaction is required for a connection, a service can pass the connection on to
an external application such as a Virtual Machine. A service can call a director, which is responsible for
passing on this connection. A director calls an external program and establishes a network connection
to be used by the Honeytrap service. For example, a connection can be established to an external
remote device, to which the service can forward all received traffic, effectively becoming a man-in-
the-middle. The same functionality currently exists for a Qemu virtual machine and an LXC container.
For our implementation, a custom director is implemented with more refined control over the container
selection process. This allows for better matching and grouping of attackers to the same containers.
Details of this director will be discussed later in Section 5.5.

5.4. Data collection

Next to the listeners, services and directors, there are several utilities available for easy data collec-
tion. The event system is a centralized module where all Honeytrap components can send events
to for central collection. Based on the configuration, these events are forwarded to various data col-
lection modules. These modules, called pushers translate and send the event in a suitable format to
their respective processing component. These components currently include basic output such as con-
sole and logfile, but also more advanced options such as Elasticsearch, Kafka, Splunk and Slack are
available. Events can be filtered and directed to specific pushers, based on any information contained
in the event. For instance the originating Honeytrap service, but also connection-specific details like
destination IP address or origin Agent IP address.

Finally, it is possible to capture all network traffic on a given network interface. The sniffer can be
started from any Honeytrap component, which allows for direct control over what is captured and when
in the session flow. This interface can be the interface where sockets are created on the OS, but
can also include the virtual interfaces made for each LXC container. This way, a full network capture
can be generated for each session and processed directly, or it can be saved in a Packet Capture file
(PCAP).

Due to the modularity of the system, all these components can be integrated or chained together,
allowing for easy extension and detailed data connection. As Honeytrap is written in the Go language,
it enables the use of powerful Go-routines1. These Go-routines are comparable to native OS threads,
but much less resource intensive allowing many concurrent processes without losing performance.
With each connection running in its own Go-routine, the software scales very well and can handle
thousands of connections per hour without the need for extreme system specifications. This makes
Honeytrap very suitable to achieve the requirements set in earlier chapters.

1https://golang.org/ref/spec#Go_statements

https://golang.org/ref/spec#Go_statements

5.5. Honeytrack Additions 31

5.5. Honeytrack Additions
Where Honeytrap has most of the architectural requirements needed for the intended research goal, it
needed some specific additions. For example the Telnet service was very basic, static and most impor-
tantly, only low-interaction. This section describes the modifications and additions made to Honeytrap
to create Honeytrack.

5.5.1. Telnet Service
The Telnet service is the primary addition to Honeytrap. The existing service is very limited in terms of
flexibility, and was low-interaction only.

As described in Chapter 2.1, a Telnet session typically consists of 3 different phases.

1. Negotiation

2. Authentication

3. Interaction

The Telnet service implemented for Honeytrack consists of different modules to support those phases.
Each module allows full control over each phase, and can be independently configured for various
experiments. After a Telnet phase is completed, the results are made available to the consecutive
modules to account for variables set during those phases.

5.5.2. Negotiation Module
The first phase of a Telnet session is the Telnet negotiation. The technical details of the negotiation
phase of Telnet are discussed in Chapter 2.1. In the negotiation module, attackers are presented
with a custom negotiation challenge to test whether they connect using a proper Telnet client. The
negotiation consists of two Telnet Option challenges, to which Honeytrack expects a valid response.
When the response is valid and contains expected values, these values are stored for use later in the
session. As Telnet implementations can vary, the response to the challenges posed by Honeytrack do
not have to be valid for the session to continue. For example, an automated attack can be configured
to have a fixed response to a negotiation, regardless of the challenges posed by a Telnet server. When
a response does not meet the expected values, the session is marked as raw, so later analysis can be
done to see what type of traffic was received anyway. A connection is only terminated in the negotiation
phase when an attacker does not respond to the challenge within 5 seconds. As the negotiation is
always automated, a failure to respond within 5 seconds is highly likely not to receive a response at
all, wasting resources by waiting. From observation, we see that a response typically occurs within a
couple hundred milliseconds. No sessions were observed where a response was recorded later than
a response time of two seconds. After the negotiation phase, a banner is sent to the attacker. This
banner is configurable and depends on the destination IP address to allow for experiments with different
banners. Results from the negotiation module are saved and passed on to the next module, which is
the authentication module.

5.5.3. Authentication Module
The authentication module is responsible for collecting credentials entered by attackers. It is a low-
interaction login prompt service that consists of two states. In the first state, it expects a username. This
isn’t directly made clear with a Username: prompt, as this is the responsibility of the banner previously
sent. As the module has access to the negotiation results, it can adhere to the established parameters,
such as terminal echo. The module stores all input and looks for a newline character sequence. Once it
observes this, all input so far is considered a username entry and moves to the second state, password
collection. The first step is explicitly asking for a password with a prompt. The rest of the password
collection state is identical to the username collecting, with the only difference being that characters
are not echoed, no matter the negotiation value. When a newline character sequence is observed in
the password collection phase, the entry is matched against a list of accepted credentials, which is set

32 5. Honeytrack: Persistent IoT honeypot

through a configuration file. The configuration allows for both user- and root credentials, intended to be
passed on to a director for correct handling. If a given entry does not match any of the pre-configured
credentials, it notifies the user of wrong credentials, and goes back to the username collection state
and start over. All entries, regardless of validity or correctness, are stored for later analysis. When
the given entry matches one of the configured allowed credentials, the authentication is marked as
successful and the phase ends. The authentication module is terminated when nothing is received
after 30 seconds. Where automated scripts are expected to instantly start their brute-force attempts,
humans might need a bit longer to enter credentials.

5.5.4. Interaction Module
When an attacker enters accepted credentials, the connection is passed on to the interaction mod-
ule. Both low-interaction and high-interaction sessions are supported, depending on the availability
of LXC containers and configuration. The difference between low- and high-interaction honeypots
was discussed in Chapter 2. In low-interaction, Honeytrack presents the attacker with a fake prompt
(~#), pretending a successful login. In a very similar fashion as the authentication phase, Honeytrack
stores all input and looks for a newline character sequence. When a newline character sequence is
detected, all input so far is processed by a string-matching algorithm to detect any known commands.
These known commands are hardcoded and provide a fixed response when a command is matched.
For example, when a command contains /bin/busybox, Honeytrack returns the first argument after
busybox followed by applet not found. Several other strings were added in order to investigate
common commands and the difference in behavior upon response.

If high-interaction is selected, the LXC Director is called to provide a connection to an LXC container.
The implementation of this director is discussed later. The director returns a connection to an authenti-
cated Telnet session on an LXC container. The interaction module reads from the connection with the
attacker, stores all input, and passes the input directly to the container. This includes non-ascii char-
acters such as the arrow-key bytes and other input supported by an actual Telnet session, increasing
realism and predictability. A similar approach is used for the traffic coming from the container. Before
the output of the container is passed to the attacker, it is first processed by a filter method. As a real
LXC based system is hard to hide as being such, this filter function matches for strings known to expose
the system as a honeypot. Such strings for example include lines containing LXC and virtual. Lines
containing matching strings are stripped from the response, and not passed on to the attacker. While
it is acknowledged this can lead to unexpected results on the adversaries side, it is an efficient way of
covering some of the potential exposing characteristics of an LXC container. Output from the container
is unknown and hard to predict. In order to prevent cluttering up the data collection with large and un-
necessary output, traffic coming from the container is not stored using the event system. However, this
data is still worth collecting. In order to log this traffic in a better way, we capture all traffic going over
the LXC bridge adapter. The interaction module terminates the connection when the remote adversary
closes the connection, or if no activity was observed for 60 seconds.

5.5.5. LXC Director
The LXC director is the component of Honeytrack that links the honeypot logic to LXC container man-
agement. It handles everything related to the LXC containers. Services can call the director, and it is
expected to deliver a working connection to a container corresponding to the remote attacker. Binding
with LXC is achieved through go-lxc bindings, enabling the director to perform any operation on the
containers that is also possible through the native command line utility. As there is no direct control
over these bindings, the director is designed to minimize interaction with the LXC bindings. Honeytrack
is highly concurrent with every incoming connection being handled in (various) separate threads, the
number of calls to the LXC system should be minimized to prevent concurrency issues and excessive
load on the LXC control application. In order to reduce this load as much as possible, most LXC in-
formation is wrapped in a custom data structure, allowing the director to read and store information
about a container without accessing the LXC subsystem. This information mostly regards name, IP
address, idle time and other information that is unlikely to change from the container itself. The name
of the container serves as a unique identifier and is made up of a hash from the various parameters

5.5. Honeytrack Additions 33

that make it unique. For example, if a container is requested for a network connection, both the source
and destination IP address can be used as arguments for the hash function, resulting in a name unique
for that combination. When a request for a container connection is received, the Director derives the
name for the corresponding container first, and then checks if that container is already active. If this
is the case, a new network connection is established with the already-running container without any
additional changes. In most cases, a container is not active yet.

When the a container is created, a “housekeeper” routine is also started to monitor the LXC activity.
This housekeeper checks for network activity coming from and to the container. If a container is idle
for two minutes, meaning no network traffic whatsoever was observed, the container is shut down and
stored for possible later use. When an attacker returns after having previously been connected to a
container, the container is started, resulting in a connection to the container previously visited.

If a container does not exist yet, a new container is cloned from the configured template. The fresh
container is then started and assigned an IP address by the DHCP server running on the host. This
information is used to set up a new network connection to the container, and this connection is returned
to the service for further handling.

5.5.6. Objectives
When this design is evaluated against the requirements discussed in Chapter 3, we can conclude
Honeytrack overcomes the limitations existing honeypot implementations have.

1. Honeytrack has a hybrid architecture, leveraging the best of both worlds from low- and high-
interaction honeypots. Only when an attacker successfully manages to log in to a honeypot, a
high-interaction system is started.

2. Using LXC containers, it is possible to provide many attackers dedicated and separate high-
interaction environments. These containers can be dynamically enabled and disabled, while
saving state between different sessions enabling persistence across distinct sessions.

3. Honeytrack allows for an extensive distributed sensor network using the Agent listener, deploy-
able on cheap hardware.

4. Honeytrack is able to analyse adversary behavior in detail, by directly controlling the Telnet ne-
gotiation and authentication phase, and by acting as man-in-the-middle for the high-interaction
module.

5. Honeytrack can disguise itself from being a honeypot by filtering exposing lines coming from the
high-interaction environment.

6. Honeytrack allows for extensive adversary analysis with several configurable variables, enabling
A/B testing in both accepted credentials as high-interaction system images.

6
Evaluation

After several small experiments being conducted over the course of 6 months, the final experiments
were conducted over the course of 2 months. During the first phase of the experiments, system perfor-
mance was tweaked and a number of configurable variables were tested for viability and impact. With
these experiments, we wanted to answer the following questions:

1) How do adversaries discover, scan and exploit potentially vulnerable devices?

a) Can we scale honeypot deployment to gain insight in global attack behavior?

b) What methods are used to discover devices?

c) Can we identify groups or clusters of similar discovery methods?

d) What are the used methods of exploitation and how do these methods relate to each other?

2) What do adversaries after successful exploitation, what are the Tactics, Techniques and Proce-
dures (TTP)?

a) How are devices suitable for infection selected and identified?

b) How is malware installed?

These questions are directly linked to the different phases of the killchain, which was discussed in
Chapter 2.2. Each section addresses an aspect of the Telnet protocol, and links this to the killchain
model. Section 6.1 and can be linked to the reconnaissance phase of the killchain model. There, scan-
ning behavior and connection statistics provide insight into the methods adversaries use to discover
potentially vulnerable devices. The exploitation phase can be found in Section 6.4. In that section,
login attempts are discussed which are the primary method of exploitation observed on our honeypots.
Going back two phases in the killchain, we find weaponization in Sections 6.6, where observations
regarding device selection are discussed. Not all malware is suitable for each device. As part of the
weaponization phase, a malware package is prepared for a certain type of device, which is selected by
extracting a number of characteristics of the device. The final phases discussed in this chapter are the
delivery and installation phases, which can be linked to Section 6.5. The last phases of the killchain,
“Command & Control” and “Actions on Objectives” were out of scope for this thesis. However, with our
honeypot we collected relevant data for analysis of these phases. Chapter 7 will contain a discussion
of possible future work based on this collected data.

Throughout this chapter, the following terminology is used: When talking about groups, a cluster of
similarly behaving malware is used. When talking about variants, a piece of malware is meant that
is based on another piece of malware, or shares attack methods. In the broadest sense, all malware
discussed in this chapter operates over Telnet, which classifies them all as variants of malware using
this attack path. When talking about actors, the human actors behind the creation, spreading and/or
exploitation of the malware is discussed.

35

36 6. Evaluation

6.1. Honeypot Discovery
To discover how devices are being scanned on the Internet, we do not need data from the entire
Internet to derive conclusions on scanning behavior. When data is collected from a large enough
subnet, conclusions derived from it are statistically significant. As shown by Blenn et al. [6], data from
a /17 network (consisting of 32,768 IP addresses) is already enough to get error margins down to below
2% when dealing with 20 Mbps attacks. For this section, we have data available from three distinct
/16 ranges. The nature of these ranges are described in Chapter 4.2. To summarize, we use three /16
partially used networks where all traffic directed to unroutable IP addresses is collected and stored. To
gain insight into scanning behavior on the IP ranges available to us, we are going to visualize activity
in them. A suitable visualization for this purpose is the Hilbert curve, a space filling curve which fills up
a square with 1D data. When applied on IP addresses, subnets form coherent blocks, as consecutive
IPs will translate a compact region of the map. Figure 6.1 shows the first three iterations of such a
mapping.

Figure 6.1: The first three orders of a Hilbert curve.

For our visualization, we use a Hilbert curve that creates a coordinate system with 128 possible coor-
dinates, on which we map the 2 possible addresses. Each of these coordinates represents 4 distinct
consecutive IP addresses in their respective range. By counting each incoming connection on these
addresses, we get a visual representation of network activity and the spread across the networks.

(a) 130.161.0.0/16 (b) 131.180.0.0/16 (c) 145.94.0.0/16, Eduroam

Figure 6.2: The Hilbert visualization of the three available ranges. The number of connections are mapped to a color gradient
from red to green. Red indicates no connections, green indicate the highest number of connections.

The resulting Hilbert curve for each of the 3 IP ranges can be found in Figure 6.2. The number of
connections counted on each square of 4 consecutive IP addresses is mapped to a red-to-green color
gradient. From these visualizations, we can conclude that the spread of the scanning activity is evenly
distributed. The size of the green areas is not of importance in this case, as this only indicates the
availability of the IP addresses. While there is some variation between the blocks, there are no areas

6.1. Honeypot Discovery 37

Table 6.1: The median and average values for each of the separate ranges

Range 130.161.0.0/16 131.180.0.0/16 145.94.0.0/16

Median 3291 3230 3007
Average 3203.03 3243.34 3082.87

that show anomalies in the amount of data received. The blocks with used IP addresses (and therefore
not present in this data set) can be very clearly distinguished by the red areas.

Figure 6.3: The number of incoming connections show a normal distribution for all measured ranges. See Table 6.1 for the
median and average values for these ranges.

From the same data, we also make histograms of the number of connections observed on each IP
address. By looking at the distribution of the number of incoming SYN packets per IP address, we
can see a normal distribution. As discussed in Chapter 4.2, this corresponds to the random scanning
scenario where scanning behavior is random and not targeted at any specific IP (range). However, at
the time of collection, there was no response to incoming SYN packets for these ranges. When we
compare this distribution with incoming connections on the honeypot, we can determine if there is a
difference between an active and inactive IP address.

Our honeypots were deployed across these three distinct ranges with different characteristics. For
one range, there is a notable difference from the rest of the ranges. This shows from the average
and median values (Table 6.1), both of which are 8% lower for the 145.94.0.0/16 range than the other
ranges.

6.1.1. Honeytrack deployment & strategies
The 4 machines used for Honeytrack were each assigned between 1000 and 2600 addresses from IP
ranges described above. Next to the central gathering in the TU Delft IP ranges, various agents were
deployed at Dutch consumer IP addresses, as well as at Google and Microsoft Cloud instances.

One of the aspects to investigate is the public IP address on which the honeypots listen. For the setup,
honeypots are deployed using 3 strategies:

1. Small non-consecutive subnets

38 6. Evaluation

2. Large consecutive subnet

3. Distributed, non-consecutive addresses using agents

The ranges used for the first two are discussed in Chapter 4.2. All servers were assigned between
2600 and 1000 IP addresses, following different strategies in deployment. Two servers were deployed
using the first strategy, one with the second, and the fourth server was set up as a server for the
agents following the third strategy. As we had no control over the routing of these IP addresses, minor
changes in the number of active IP addresses were possible due to IP addresses being activated and
deactivated, removing them from the scope. Table 6.2 shows an overview of IP distribution at the peak
operating times.

Table 6.2: The number of IP addresses active at peak operation

Server Listening IPs Strategy

Mimas 2,636 Consecutive
Ganymede 2,283 Consecutive
Io 1,769 Consecutive
Europa 1,015 Low-interaction
Callisto 77 Agents

Figure 6.4: The number of IP addresses monitored, split by range. The sudden drops were the result of technical difficulties.

IP addresses were added over time, as can be seen from Figure 6.4. During peak operations, slightly
more than 7800 IP addresses had an active listener on port 23 combined over all servers. The agents
were deployed on various ranges, reaching from Cloud providers such as Google, Microsoft and Ama-
zon, to Dutch consumer IP addresses of the major Internet Service Providers in the Netherlands.
As part of a Masters’ course, students deployed agents on their home IP addresses for at least 3
days.

6.1.2. Connection statistics
Before analyzing the Telnet sessions, we start by comparing the differences between the three ranges
in terms of connections.

Whenwe look at hits over time, a few observations can bemade as seen in Figure 6.5. The 145.94.0.0/16
range is mostly uncorrelated with the other two ranges, except for a peak around January 13th. Both
other ranges show close correlation, both in terms of changes in activity as well as the number of ses-
sions per IP address. As can be seen from the Figure, IP addresses in the 145.94.0.0/16 receive a

6.2. Telnet Negotiation 39

significantly larger amount of sessions compared to the other ranges. This does not correspond to the
statistics obtained in Section 6.1. This could be explained by changes in network usage, which caused
it to become more active between the time of the exploration data and the moment the honeypots were
deployed. Additionally, the 145.94.0.0/16 range is more dynamic in nature than the other ranges. IP
addresses are removed and added back to the monitored pool as demand requires it.

Figure 6.5: Number of hits per destination IP address, split over the three distinct ranges.

6.2. Telnet Negotiation
Scanning is done in most cases by sending TCP SYN packets. Such a packet indicates to the receiving
client that the remote server would like to set up a connection. When a response to this SYN packet
is received by the client, it indicates something is listening on the server side. Upon a successful TCP
handshake, a session is established. The first thing Honeytrack sends to the remote host, are the Telnet
negotiation bytes. This negotiation phase of the Telnet protocol is discussed in Chapter 2.1.

All honeypots were configured to check for two option codes. The first being the well known and often
used ECHO option code, indicating whether or not the Telnet server shouldmirror any input received from
the client. The second option code is the LINEMODE option code. This option code is less common,
and provides the means to fingerprint based on Telnet compliance level, as well as if the LINEMODE

40 6. Evaluation

feature is actually correctly implemented.

From this negotiation phase, we can already make a distinction between attackers, based on the re-
sponse to this initial request. If a remote host supports some form of negotiation, we expect a valid
response to the Telnet options, starting with the IAC byte. If the first response to Honeytrack’s request
does not correspond to a valid negotiation response, we can conclude the remote host does not sup-
port the Telnet protocol. This comes down to if the first byte being read from the connection isn’t the
IAC byte, which is the only way a Telnet response (or request) can start. Honeytrack proceeds to send
the banner after an invalid negotiation is detected, in order to capture any payload that the remote host
might send, regardless of the negotiation. This is possible because the Telnet protocol is a thin layer
on top of the TCP protocol. If the Telnet negotiation phase is not supported, follow-up communication
is handled through the standard TCP protocol. From this first byte, the inter-arrival time between bytes
is measured. As a TCP packet can contain more than one byte, bytes with an inter-arrival time of 0 are
sent using the same packet, or without any delay at all.

6.2.1. Invalid Telnet responses
From all Telnet sessions recorded, 11.3% had an invalid Telnet negotiation response. If we look at TCP
sessions with an invalid response to Honeytrack’s negotiation request, we can make some interesting
observations. Often, the remote host does not wait for an initial request from Honeytrack, but starts
sending it is payload right after a TCP session has been established. If we interpret the incoming bytes
as ASCII characters, the first category of payloads can be identified as HTTP requests. Even though
HTTP servers commonly run on port 80 and port 23 is the default for Telnet servers, we still see a
large number of HTTP requests with various complexity. Out of 208 million sessions, 117,518 sessions
have an invalid Telnet negotiation and contain “HTTP” as part of their payload. These sessions are
distributed across 1103 unique IP addresses. Many of these IP addresses belong to the same actors,
as we observe clusters of consecutive IP addresses with a similar amount of requests, using a very
similar payload. As IPs being scanned more than once by a combined range are not observed, it is
likely they are operating as a distributed Internet scanner. Some requests contain the bare minimal
(GET / HTTP/1.1), while others contain various headers, such as User-agents, Cookies, Host or
specific paths. An overview of the most common payloads containing HTTP can be found in Table 6.3.

Table 6.3: HTTP Requests on port 23

Payload Percentage

GET / HTTP/1.1 88%
GET / HTTP/1.0 5%
GET / HTTP/1.0: Host: [IP]:23 3%

Based on the information visible in the User-agent header, this behavior matches well known scanners
like zGrab.

Another notable presence is a request for a SIP service. SIP, which stands for Session Initiation Pro-
tocol, is commonly used for media transfer and Internet telephony. Various SIP exploits have been
published in the past, so the SIP related requests are likely part of an effort to discover potentially vul-
nerable devices. Unlike the HTTP requests, all SIP requests are the same, and match the signature
for an NMap SIP version scan.

When we look at remote IP addresses who send these requests, we see that these hosts never have
sessions with both valid and invalid negotiations. A single IP address does not necessarily scan the
Internet with a single request. Different requests can be observed coming from the same remote IP.
The same local IP address is hit with various requests from the same remote IP address as well, but not
in consistent patterns. Likely, the used software has some sort of randomization algorithm to prevent
easy detection or network congestion.

Next to fully invalid Telnet negotiation responses, 1,915,778 (0.9%) sessions were recorded with partial
Telnet negotiations. These negotiations did start with the 255 IAC byte as specified in the Telnet pro-
tocol, but did not include a valid response to both the ECHO and LINEMODE requests. Due to the way

6.2. Telnet Negotiation 41

Honeytrack determines an invalid negotiation, these sessions were timed out, as a valid response was
expected after a partially correct response. As a result it is not possible to determine the differences
between partially valid and fully valid responses.

When looking into the source IPs behind these partially invalid responses, we find some inconsistent
behavior. For the top 10 remote IP addresses showing this behavior, other sessions recorded coming
from these IPs show different types of negotiation responses.

6.2.2. Valid Telnet responses
The majority (with 88.7%) of Telnet sessions recorded have a valid response to the Telnet negotiation.
We consider a negotiation valid when a reply is received for both the ECHO and LINEMODE options,
regardless of what this reply entails. Honeytrack checks for two Telnet options during this negotiation.
The first option is the ECHO option, a very common option, which is widely supported in many Telnet
implementations. The second option is LINEMODE, which, when enabled, tells the client to send each
character separately instead of per line.

Figure 6.6: Ratio between Telnet option ECHO acceptance. Over time, the number of sessions with a positive response to the
ECHO option converges to the number of sessions with a negative response.

When looking at the ECHO option, we see that the response to this option changes over time as can
be seen in Figure 6.6. As we will see later in this chapter, malware variants often respond the same to
the Telnet negotiation, so this diverging trend could indicate a dominance in variants employed. From
the sessions where ECHO is set to false, the overwhelming majority comes from a single variant using
a single credential entry per session. This strategy will be discussed later in Section 6.4. During the
observation period, only a couple of dozen sessions were recorded with ECHO set to false, and not
using the single-password strategy.

By itself, the support of the ECHO option does not say much about the capabilities of an attacker. How-
ever, as there are differences in response, this is still useful to divide attackers up into clusters, finding
connections that would have otherwise been overlooked. In the following sections, the effect of an en-
abled or disabled ECHO option will be discussed compared to other aspects of the Telnet session.

From all recorded sessions, only 61 sessions supported the LINEMODE option. The LINEMODE option
proves to be a very uncommon option, as a very small percentage of incoming clients reply positively to
this negotiation request. Additionally, sessions with enabled LINEMODE respond with a more extensive
negotiation reply than just the bare minimum, as observed with the majority of the request. The reply
contains a number of sub-negotiations, which correspond to a negotiation. A noteworthy observation
is that debug sessions, done with both Windows, Linux and Mac Telnet clients on default sessions
supported LINEMODE out of the box. Based on these observations, we can hypothesis that a Telnet
negotiation with LINEMODE enabled is a good classifier for human interaction. A nice side-effect of a
client supporting LINEMODE, is that each character is transmitted to Honeytrack as it is typed. More on

42 6. Evaluation

Table 6.4: Banners used for Honeytrack honeypots

Banner

1 RICOH Maintenance Shell. User access verification. login:
2 MikroTik v6.35.4 (stable) Login:
3 Welcome Visiting Huawei Home Gateway Copyright by Huawei Technologies Co., Ltd. Login:
4 Remote Management Console login:
5 Welcome to Microsoft Telnet Service login:
6 ***

Welcome to ZXR10 Carrier-class High-end Routing Switch of ZTE Corporation

7 User Access Verification Username:
8 This is a honeypot, please don’t log in

Table 6.5: Differences in credentials entered per banner

With credentials Without credentials Percentage with credentials

Control Banner 772,238 18,336,482 4%
Other Banner 145,161,384 22,339,230 86%

how this feature can be used to classify human behavior is discussed in Chapter 6.4.

6.3. Telnet Banners
One of the A/B tests performed on the honeypot system is a number of different banners presented
upon successful Telnet negotiation. As there is a large variety of devices with exposed Telnet servers,
we would like to observe how attackers behave on these devices, and if different devices are attacked
in a different manner. From the Censys Dataset, 8 different banners were selected that cover a wide
array of different types of devices. An overview of these banners can be found in Table 6.4. Next to
the 8 common banners, a control banner was added. This control banner stated “This is a honeypot,
please don’t log in”, and was added to investigate whether attackers pay attention to non-standard
banners.

From the Censys data set, we can alreadymake a number of observations regarding the type of devices
connected to the Internet. The banners often clearly indicate what device type it is, and even what
version of the software is currently running. Given this information, one could expect that attackers
craft their attacks based on specific vulnerabilities found in these devices.

The different banners were equally distributed amongst the IP ranges assigned to Honeytrack, with a
maximum deviation of 2.7% in number of sessions recorded. Even though the banners indicated a
wide range of different devices, all attackers show identical login behavior for all banners, except the
control banner. For the control banner, which clearly states the device is a honeypot, we see a major
difference in the number of sessions where credentials are entered. For honeypots where a banner
was transmitted, 145,161,384 had entered credentials, and 23,339,230 did not. On average, when the
session had the control banner displayed, 18,336,482 sessions did not have any entered credentials,
and only 772,238 with credentials (see Table 6.5). Additionally, we observe a sharp decrease in the
amount of sessions that enter credentials after February 12th. This is an interesting observation, as
no changes were made to the setup of Honeytrack at this time, and the control banner is the only one
affected. Overnight, the number of sessions with entered credentials drop from 10,000’s per day, to
about 200 to 100 attempts per day. When we filter only for valid Telnet negotiations, only 6 sessions
were recorded since February 13th, in total. In that same period, over 4.1 million connections were
established with a fully valid Telnet negotiation to IPs with another banner than the control banner.

As can be seen from Table 6.4, the banners are formatted in various ways and end in different ways.
For example, both “Username” and “Login” were used as prompt, both with and without a newline. The
fact that our control banner is rejected by almost all adversaries indicates a form of blacklisting on the
transmitted banner. To fully determine whether black- or whitelist behavior is the used method, further
research is required. As the control banner was the only banner that was not based on an existing
banner, we can not derive a definitive conclusion about this.

6.4. Credentials 43

6.4. Credentials
After the banner is presented to the connecting host, a response is expected in the form of login creden-
tials. These credentials are the first non-automated payload coming from adversaries, after the Telnet
negotiation phase. From the credentials, credential lists can be derived of commonly used credentials
and patterns between different groups of malware can be made.

For the authentication phase, Honeytrack allows for 2 parameters to be configured. The first parameter
is a list of accepted credentials, indicating whether or not an adversary is presented with an interac-
tive shell. The list of accepted credentials was different for each of the three servers, but with some
overlap for commonly used credentials. From various known botnets, malware analysis and vulnera-
bility reports, a list of 6 passwords were chosen which the honeypot would accept. When selecting the
credentials, the goal was to get a wide range of possible adversary access. Malware like Mirai has a
known dictionary, but we’re interested in more than just Mirai.

Before looking at the actual used credentials, we can already make an observation regarding the way
credentials are entered. A large malware family opens 5 to 6 parallel sessions at once, and in each
session a single password/username combination is entered. Instead of waiting for feedback whether
the credentials are accepted, it immediately enters a series of bash commands. This family is, or closely
related to, the Mirai botnet. This can be derived from the bash command /bin/busybox MIRAI,
which will be discussed later in this chapter. From this command, we can extract an identifier, MIRAI
in this case, which we will call the Busybox identifier. This string varies per malware group and can
be used for clustering sessions. Mirai isn’t the only variant using this strategy. Many variants can be
derived from these bash commands, with MIORI and daddyl33t standing out as very active groups,
with XWIFZ and MASUTA notable, though less active.

In total, we identified 33 unique Busybox identifiers. Not all single-password strategy variant were
constantly active at any given time. Where the active variants like MIRAI and daddyl33t have a
constant presence, the smaller variants show more distinct peak activity. A timeline of the different
variants is shown in Figure 6.7. From this timeline, we can see that there’s a large variance in attack
volume for each variant.

Figure 6.7: Activity of the different variants over time. The logarithmic Y-axis shows the number of sessions recorded containing
a certain variant, represented by the individual colors.

A single source IP is not bound to a single variant. Of the 2,675,389 unique source IP addresses
observed during the experiment, 186,439 used the single-password strategy. Of those IPs, 6,632
showed more than one Busybox identifier over time, where the others have only been observed with
one identifier. The maximum number of variants for a single IP address is no less than 10 different
variants over time. When we plot variant activity of the most active IP addresses, we see two distinct

44 6. Evaluation

scenarios. For the most time, different variants are active on the same IP at the same time. However,
at a different point in time, we see the variants clearly alternating. This alternating behavior is also
observed on more IPs with more then 4 different variants during the experiment.

Figure 6.8: Activity of the different variants from two distinct source IPs. Each color indicates activity of a different variant. In
the two scenarios below, the first shows only consecutive activity while the second shows an overlap in activity from different
variants.

In Figure 6.8, we plot the activity of the different variants for two IPs showing the two scenarios dis-
cussed above. The first scenario can be explained by the fact that a public IP address may have
different devices behind a firewall or proxy server. The outgoing route of those devices may be shared,
much like Honeytrack’s setup. Another possibility is that a device is infected by multiple malware vari-
ants at once. Previous work showed that some malware removes rival malware from a device before
installing, but it is possible not all variants do this.

After the source code of Mirai was published online, anyone with sufficient programming knowledge
could create their own variant, adding credentials to the dictionary at will. The other major groups,
MIORI and daddyl33t, have significantly smaller dictionaries than Mirai, but the overlap is not large
enough to classify them as a single actor. Between these groups or even amongst devices infected by
the same actor, there does not seem to be any communication about correct credentials on a certain
IP address. Over time, Honeytrack accepted different credentials. However, at times where these cre-
dentials were introduced, there wasn’t a significant increase in attempts using those passwords. What
is however notable, is that actors are updating their dictionary when a new vulnerability is disclosed.
For example, when the existence of a backdoor account in certain ZyXEL modems1 was published,
1https://www.exploit-db.com/exploits/43105/

6.4. Credentials 45

this gave rise to a new Mirai variant using credentials specific to this exploit2. Shortly after publishing,
an enormous increase of roughly 800% in sessions per hour was recorded in Honeytrack, using this
username/password combination.

Figure 6.9: Usage of the CenturyL1nk password greatly increased after an exploit was published. The top line shows the total
number of sessions over time, with the bottom line showing the number of sessions where the CenturyL1nk password was used.

Not all sessions with a single password contain a busybox identifier. 7.1% of the recorded sessions
contain a single password, followed by the typical enable command, but do not proceedwith a busybox
identifier, as seen by for example Mirai (which uses /bin/busybox MIRAI after a single password
attempt).

6.4.1. Multi-password sessions
A second group has a more sophisticated method of entering passwords. Instead of blindly entering
credentials and an immediate follow-up bash command, this group supports entering multiple creden-
tials during the same session. By looking at sessions with more than one attempt, effectively ignoring
the group mentioned earlier, we still observe a large overlap in dictionaries. As these variants can
not be identified using a Busybox identifier, and a large overlap exists between dictionaries, we need
to look at the interaction phase of the session in order to identify variants of this type. These will be
discussed later in Section 6.5.

Looking at the other side of the spectrum, we can observe credentials used only a handful of times,
recorded over millions of sessions. Many of these entries are part of a dictionary of a single piece
of malware, identified by /bin/busybox OBJPRN as they’re using the single-credential-per-session
strategy.

6.4.2. Dictionaries
From previous work, we knowmalware has fixed dictionaries of credentials fromwhich it attempts either
a fixed number, or attempts them all. From the groups of malware identified in previous sections, it can
be observed that many credentials are shared between them. When looking at an overview of most
used credentials, we can identify a number of credentials are much more often used than others.

2https://www.trendmicro.com/vinfo/us/security/news/Internet-of-things/new-Mirai-variant-found-spreading-like-wildfire

46 6. Evaluation

Figure 6.10: Distribution of the used credentials. From this plot we can derive there are no clearly distinguishable dictionaries
belonging to just one variant.

From Figure 6.10 we can see the popularity does not show any clustering by itself. Another method
of clustering is looking at combinations of credentials used per session. As discussed in the previous
section, different password entry strategies exist. These strategies indicate a different group of malware
anyway, so we analyze single-password sessions separately.

When we combine all passwords used by the single-password strategy and group them by Busybox
identifier, we can determine several dictionaries used by these variants. From the 33 busybox identifiers
discussed previously, the side of the dictionary varies greatly. The smallest dictionary contained a single
entry, while the largest contained 446 unique username/password combinations. This largest dictionary
belongs to the MIRAI| Busybox identifier. Previous analysis of Mirai concluded that the original Mirai
malware only has a dictionary of 62 credentials. As this does not match with our findings, it is likely this
dictionary actually consists of multiple variants which all use the MIRAI identifier. From the credential
entries alone however, it is difficult to derive sub-dictionaries. When looking at the distinct credentials
used for these groups, it is easy to observe there is a large overlap between dictionaries.

In Table B.1 and B.2 in the Appendix, we compare the similarity between all variants. Each column
header shows the overlap with the variant named in its respective row header. Rows containing a
large number of high-percentage values indicate a relatively small dictionary, with credentials often
found in other variants. On the other hand, columns containing many low-percentage values indicate
a variant with a largely unique dictionary. Examples of the latter are variants with Busybox identifier
ORION, Word, ZEAZO and ECCHI. Some of these variants simply have a very small dictionary consisting
of 5 or less unique credentials which results in the high percentages. Next to relative overlap, an
interesting observation can also be made regarding cross-variant overlap. When looking at the number
of unique credentials per variant, we see a different picture than the individual overlap between variants.
If the uniqueness is considered for all variants combined, the number of unique entries per variant
drops drastically. It seems dictionaries consist of subsets of the “global” dictionary with a few optional
additions, but there does not seem to be a relation between these subsets. It is possible that the
choice of credentials is related to the targeted devices, but our experimental setup did not contain
enough device specific configuration to make this type of distinction.

From the interview with the author of both the OWARI and SORA variants [3], we know the two are from
the same actor. However, when comparing the dictionary of both variants, the relation between the two
is not obvious. Both variants have their own unique entries the other does not have and the number
of entries is not the same either. OWARI has been observed using 30 unique username/password
combination, where SORA has a dictionary of 44 credentials.

6.4. Credentials 47

6.4.3. Input delays

Honeytrack records the delay between each incoming character during the authentication phase. This
feature relies mostly on the correct implementation of the LINEMODE option on the remote host. When
LINEMODE is not enabled or incorrectly implemented, characters are only transmitted by line. In this
case, the delay between characters will be 0, even if the characters are typedmanually. However, when
LINEMODE is enabled, and correctly implemented, the remote host will send each character separately.
By recording the time between these characters, we can measure the typing speed between sessions.
A clear distinction can be made between two groups with valid enabled LINEMODE options. The first
group uses an automated script to enter commands. Delay between characters are likely caused by
TCP delays.

The second group shows a significantly bigger delay for each character, as well as a bigger variance
between each measurement. Where automated scripts have a small variance within 10 milliseconds,
the other groups shows a variance an order of magnitude bigger. What also stands out for this second
group, is the delay before the first character is received. Automated scripts have a very small or no
delay at all, while the second group often takes one to four seconds before input is transmitted. When
comparing these values to manual debug sessions, we see similar values for both initial and between-
character delays.

So far we covered the first 4 phases of the killchain model. Adversaries scan the entire Internet looking
for vulnerable devices. The presented banner is of hardly any influence, except for an apparent blacklist
for certain keywords like “honeypot”. By using automated scripts, which attempt a number of known
default credentials, they’re able to weaponize these security weaknesses. Delivery is trivial, as these
devices are directly accessible on the Internet. By simply connecting to the device, the attack can be
carried out directly and immediately. Once the correct credentials have been found, an attacker has
direct access to the device and execute arbitrary code.

6.4.4. Misconfigured hosts

As the credentials phase records all input coming from an attacker, several hosts can be observed
where existing software was used in a misconfigured way. A notable mistake by attackers running the
a variant of Mirai, is that the full output of the executable is sent to the victim (our honeypot). In the
Mirai source code, various debug statements are present to indicate the status of certain operations
such as scanning, credential input and other phases of the attack path. These statements can be
identified by the component responsible for the action, which is printed between brackets. For example,
debug statements regarding operations of the scanner component are shown as [scanner] in Mirai’s
execution window. However, due to a misconfiguration, these debug statements are also sent to the
victim, resulting in a full debug log entered during the credentials phase.

This variant has the busybox identifier SORA and 16 sessions with this behavior were observed coming
from different source IPs. However, next to these misconfigured sessions, regular single-password
sessions coming from the same IPs are also observed during the same time frame. The debug log
session can be directly linked to the other sessions running in parallel, with the logs showing the debug
output for entries found in another session. This could indicate that the SORA variant supports a form of
remote debug logging to a system under the attacker’s control. Additionally, it is shown that connections
nearly always time out, instead of SORA recognizing a failed attempt instead.

Honeytrack is designed to verify the entered credentials after a newline character is observed and
a password is expected. Due to the way the single-password strategy works, the last entry (often
containing the Busybox identifier) is considered a username. Where SORA expects a response to
its input, Honeytrack expects a password, resulting in a timed-out connection. This time-out behavior
SORA displays is also observed with other variants using the single-password strategy. Therefore it is
likely other variants with this strategy are affected by the same situation.

48 6. Evaluation

6.5. Installation
The next step in the kill chain is “Installation”. The device needs to be prepared to serve the adversary’s
goals. This often happens by installing customized malware on the device, making it part of a larger
network containingmore infected devices. In this section, the next phases of the killchain are discussed,
namely “Installation” and “Command & Control”.

When an adversary enters accepted credentials, an LXC container is started and the connection is
patched through to the container. Network traffic is directly forwarded by Honeytrack, effectively be-
coming a Man-in-the-Middle (MitM), see Figure 6.11 for a schematic overview of this setup. This way,
the connection has all the features one can expect from a Telnet terminal, but is still observable by
Honeytrack. In the case of an Agent listener (Chapter 5.2), this also means that any malicious activity
only occurs on the Honeytrack server. An advantage of that approach is that users can run this safely
from their home network without risking any breaches as a result from running the agent.

Figure 6.11: Overview of Honeytrack acting as a Man-in-the-Middle between the LXC container and an attacker. The dotted line
is the perceived situation from the attacker’s perspective.

Based on the commands entered in an LXC session, it becomes easier to distinguish groups of adver-
saries. Most attack paths were shared up until this point in order to exploit the device. From the list of
selected credentials accepted by Honeytrack, it is possible to select the level of access the adversary
gains on the container. For each server, a different set of credentials was selected that would give
root access to the interaction phase. Combined with the other configurable options, this provided the
means to investigate differences in behavior if an attacker had root access from the start.

For the experiments described in this chapter, LXC version 2.1.1 was used, in combination with LXCFS
2.0.8 and libseccomp 2.3.1. The template for the LXC containers was based on the Ubuntu Xenial
image. Two users were made available, one with user privileges and one with root privileges. Next do
the default programs available in the LXC Ubuntu image, the following programs were installed:

Busybox Busybox is a program that provides a number of common Unix tools, from a single exe-
cutable. It is designed to operate in embedded environments where processing power is scarce,
to give basic functionality to a device without providing a full Unix environment. As Telnet devices
usually fall in that category, Busybox is an easy and reliable way to get access to useful Unix
tools.

6.6. Device selection 49

Wget & cURL To download files from the Internet, Wget and cURL are two common Unix tools often
used for this task. Both tools are often used for the same task, but cURL supports a huge amount
of file transfer protocols, where Wget only supports HTTP, HTTPS, FTP and FTPS.

TFTP The Trivial File Transfer Protocol, better known as TFTP, is an application used for file transfers.
It uses very few system resources, making it suitable for embedded systems with low amounts
of memory. TFTP does not support authentication or encryption, but is very easy to implement,
which makes it a popular tool.

TelnetD TelnetD is the program that enables Telnet access to a machine. For TelnetD to work as de-
sired for Honeytrack, settings were adjusted to allow direct root login, something which is disabled
by default as a security precaution. In order to present an adversary with a device as neutral as
possible, Message-of-the-Day (MotD) display on successful login was disabled. The MotD is
shown upon login and often shows some information about the current state of the system, such
as resource usage, system temperatures and available updates. In addition to that, the $PS1
environment variable was adjusted to not display the hostname and username. This was done to
initially hide the fact that the username of the current user may not correspond with the credentials
offered.

LXC containers are running in unprivileged mode, meaning that the root user in the container, was
mapped to an unprivileged user on the host system. In case an adversary discovers the environment
is actually a container, it might be possible to break out of this secure environment due to security flaws
in LXC. However, should this occur, the attacker only has the rights of an unprivileged user, instead
of the administrator privileges LXC is running on. As it is possible our honeypots will be infected with
real malware, the possibility of actively participating in attacks is not excluded. In order to prevent
attackers from taking full advantage of the full TU Delft infrastructure, containers had a combined re-
stricted bandwidth of 20480 bits down and 8096 bits up. While this does not eliminate it, this restriction
greatly reduces the possible impact an attacker has, while still maintaining a level of realism. As de-
scribed in Chapter 3.1.1, a common approach to detect honeypots is to verify it is able to conduct real
attacks.

6.6. Device selection
Once an attacker has successfully logged in, it does not instantly start to download malware. As there
are many devices vulnerable to its attacks, it needs to determine what sort of device its dealing with
in order to determine further steps. Additionally, its possible that an attacker is accounting for possible
honeypots, so steps need to be taken in order to verify its a legitimate target. This section describes
a number of strategies observed that deal with initial exploration and device detection. The download
and execution of malware will be discussed in Section 6.7.

6.6.1. Single-password strategy
The first installation strategy to stand out is actually one we’ve seen before during the authentication
phase. This strategy consisted of concurrently entering credentials in different sessions, followed by
a bash command directly. When the entered credentials weren’t accepted, the attacker would get a
“Wrong password, please try again” message after every second newline. However, when the single
username/password combination tried in that session was one Honeytrack accepted, these commands
were are actually executed in an LXC environment.

For the most common example, Mirai, the command calls on the Busybox program, which is described
above. When a command is not recognized, for example a tool is called that does not exist, Busybox re-
turns applet not found. In the case of the bash commandMirai executes, /bin/busybox Mirai
will result in Mirai: applet not found. A large group using a similar strategy never went further
than this first command. Identifying strings include MIORI and daddyl33t. This could indicate that
the response wasn’t what Mirai expected or that there were other factors leading to an abort of the
attack.

From one of the interviews discussed in Chapter 1.2, we learned that malware authors test their own

50 6. Evaluation

malware with honeypots themselves. One of the honeypots used is “telnet-iot-honeypot”3. The source
code contains a number of analysis from common attacks as well, providing insight into behavior of a
number of variants in other honeypots. From these analyses, as well as observations made by Minn
et al. [17], we learn that Mirai consists of two separate components responsible for infection. From the
single-password strategy sessions, we observe behavior that closely resembles both. However, due
to the large scale of deployment and limited number of functional credentials, it proves very difficult to
directly match the reconnaissance phase to the infection phase by a second host.

6.6.2. Braces strategy
Another strategy often observed in Honeytrack is far more sophisticated than plain Busybox calls. At the
start of this strategy lies a command in the form of cat /proc/mounts; (/bin/busybox OSEWX |
:)|. While this may seem like a single command, it actually consists of a number of distinct sub-
commands and seems to be designed around fingerprinting the system it is run on. In order to un-
derstand the sophistication behind this command better, we break it down in separate pieces.

The first part, cat /proc/mounts, is a command that shows the content of the “mounts” file. “cat” is
a command available in any Unix environment, and also one of the commands present in the Busybox
program which was discussed earlier. While originally intended to concatenate files, it is often used
for it is ability to simply print the contents of a file. In this case, it is used to print the contents of the
“mounts file”. This file contains information about the various file systems mounted on the device.
Next to physical hard drives, this also includes temporary file systems and information regarding Linux
cgroups. As this information is quite detailed and highly dependent on the device, it provides a good
insight in the type of device it is run on.

Right after the first part, we find a ;. This semicolon indicates to execute whatever comes after it, right
after the part that comes before it. This way, you can combine multiple commands with a single line of
input.

The part of the command behind the semicolon, (/bin/busybox OSEWX | :)|, is actually a statement
evaluation rather than a command. This command can again be split up in two parts. The first part
/bin/busybox OSEWX is equivalent to the command we’ve seen before. Instead of an identifying
string observed before such as MIRAI or MIORI, this strategy uses random 5-character strings. This
makes it much more difficult to identify specific groups, and adds an extra challenge for possible low-
interaction systems in recognizing this command. The command is followed by ∥, which is the logic
operator for XOR. If the command before it fails, it executes the command that comes after it. For the
example described above, this means that if the Busybox command fails with a non-zero exit code, :
is executed instead. The colon character is specified by POSIX as a shorthand for “true”. This com-
pletes the statement between the brackets and turns it into a complete logic check. In practice, it is a
complicated way to check if Busybox is present on the system.

Due to the way it is designed, it is likely the command was intended to fool honeypot or other auto-
mated command parsing systems. A common method of executing commands in a safe environment
employed by honeypots and sandboxes, is by the use of a “Execute” function. Many implementations,
such as PHP, LXC and Docker take a string array as input, representing the command and its argu-
ments. This works quite well for most commands, but without correct parsing, does not work for logic
comparisons as described above. The implementation used by the LXC Execute function does not
accept the command unless fully parsed, making it difficult to realistically execute this function. This
could be solved by implementing an advanced command parser, but that would defeat the purpose of
running the commands in an container environment.

Adversaries using this strategy are very common. In total, 4.1 million sessions were recorded following
this strategy, out of 6.1 million sessions where commands were executed. Adversaries using this
strategy proved to be tough to convince that Honeytrack was a legitimate target when running in an LXC
environment. Initially, the attack stopped after executing this command in the container environment.
Based on the output of /proc/mounts, it is easy to discover that the environment is LXC-based
and being used as a honeypot. Based on this behavior, it was hypothesized that the contents of the
3https://github.com/Phype/telnet-iot-honeypot

https://github.com/Phype/telnet-iot-honeypot

6.6. Device selection 51

mounts file was likely the cause of these aborted attacks. To test this hypothesis, 3 experiments were
conducted to investigate this behavior. For the first experiment, Honeytrack was configured to operate
in low-interaction mode for a range of IP addresses in the 145.94.0.0/16 range.

A modified version of the Honeytrack low-interaction module was configured to recognize the command
explained above. When this command was detected, a string was returned, emulating the actual exe-
cution of the cat command. This string was based on the mounts file of a freshly installed Raspberry
Pi running Raspbian, which can be seen in Listing 6.1.

Listing 6.1: The mounts file of a freshly installed Raspberry Pi
1 sys fs / sys sys fs rw , nosuid , nodev , noexec , re l a t ime 0 0
2 proc / proc proc rw , nosuid , nodev , noexec , re l a t ime 0 0
3 udev / dev devtmpfs rw , nosuid , re la t ime , s ize=243480k , nr_inodes=60870,mode=755 0 0
4 devpts / dev / p ts devpts rw , nosuid , noexec , re la t ime , g id =5 ,mode=620 ,ptmxmode=000 0 0
5 tmpfs / run tmpfs rw , nosuid , noexec , re la t ime , s ize=50952k ,mode=755 0 0
6 / dev / mmcblk0p2 / ext4 rw , re la t ime , data=ordered 0 0
7 tmpfs / dev / shm tmpfs rw , nosuid , nodev 0 0
8 tmpfs / run / lock tmpfs rw , nosuid , nodev , noexec , re la t ime , s ize=5120k 0 0
9 tmpfs / sys / f s / cgroup tmpfs ro , nosuid , nodev , noexec ,mode=755 0 0
10 cgroup / sys / f s / cgroup / systemd cgroup rw , nosuid , nodev , noexec , re la t ime , xa t t r , re lease_agent =/ l i b

↪ / systemd / systemd cgroups agent , name=systemd 0 0
11 cgroup / sys / f s / cgroup / ne t_c l s cgroup rw , nosuid , nodev , noexec , re la t ime , ne t_c l s 0 0
12 mqueue / dev /mqueue mqueue rw , re l a t ime 0 0
13 debugfs / sys / ke rne l / debug debugfs rw , re l a t ime 0 0
14 con f i g f s / sys / ke rne l / con f i g con f i g f s rw , re l a t ime 0 0
15 f u s e c t l / sys / f s / fuse / connect ions f u s e c t l rw , re l a t ime 0 0
16 / dev / mmcblk0p1 / boot v f a t rw , re la t ime , fmask=0022 ,dmask=0022 ,codepage=437 , i ocha rse t=asc i i ,

↪ shortname=mixed , u t f8 , e r r o r s=remount ro 0 0
17 tmpfs / run / user /1000 tmpfs rw , nosuid , nodev , re la t ime , s ize=50952k ,mode=700 , u id =1000 , g id=1000 0

↪ 0
18 tmpfs / run / user /0 tmpfs rw , nosuid , nodev , re la t ime , s ize=50952k ,mode=700 0 0

This mounts file does not contain any references to LXC or honeypot activity as it is an actual system
suitable for infection, if an attacker would connect to such a device. When an attacker enters accepted
credentials, they’re routed to an emulated environment with very basic support for a few commands,
instead of a full LXC environment. This approach proved to be more successful in convincing the
attacker to continue, as 100% of the sessions recorded using this strategy, proceeded with the second
batch of commands. However, due to the very limited amount of commands supported by the low-
interaction module, the attack still did not result in an attempted malware download. Still, a significant
number of commands were executed before the attack was aborted, giving us valuable insight in the
follow-up strategy of this attacker. The next sequence of commands is as follows:

1 cd / dev / shm; cat . s | | cp / b in / echo . s ; (/ b in / busybox UBWTS | | :)
2 t f t p ; wget ; (/ b in / busybox UBWTS | | :)
3 dd bs=52 count=1 i f = . s | | ca t . s | | wh i le read i ; do echo \ $ i ; done < . s
4 (/ b in / busybox UBWTS | | :)
5 tmpfs / run / user /0 tmpfs rw , nosuid , nodev , re la t ime , s ize=50952k ,mode=700 0 0

These follow-up commands use similar techniques as used before. On the first line, the attacker
changes the working directory to /dev/shm, which is the filesystem that uses virtual memory. All
files created in this directory exists while the device is running, but will be removed when it is rebooted.
It will not leave any trace, as these files completely reside in memory. In this directory, a copy of the
echo program is copied to a new file .s. This very simple program simply prints the given input to the
standard output. For example echo ”Hello World” will print “Hello World” to the standard output.
The line is followed by another check if Busybox exists, equal to the command used before.

In the second line, the presence of two applications is tested. tftp and wget are both common applica-
tions to download files from a remote ftp host or webserver. Simply executing these commands in this
form does not actually download anything, but the output can be easily parsed for relevant information
regarding the existence of these programs.

The third line contains three commands with very similar output. The dd command prints the first 52
bytes of the “.s” file. If that command succeeds, the whole line terminates there. However, when that
command exits with a non-zero exit code, the next command is executed. “cat .s” will print the contents

52 6. Evaluation

of the “.s” file in total. Finally, if the cat command fails, the third option achieves a similar goal, resulting
in an equal output as the cat command.

The point behind this command sequence seems to be testing the suitability of the infected device. If
all commands execute as expected, this indicates the current user has rights to both read and write
to the ramdisk, making it suitable for stealthy infection. With either tftp or wget available, the device
enables the download of the malware required for the actual infection. Due to the way these commands
are formatted and executed, it filters a significant amount of honeypot systems, as it is a challenge to
execute these commands in a generic way.

Now that it is confirmed that a different output for the mounts file results in different behavior for this
attack, we can conclude this strategy uses either a whitelist or a blacklist on the content. To test this
hypothesis, the LXC output filter was configured to prevent any revealing lines from the mounts file
from getting to the adversary. As Honeytrack acts like a man-in-the-middle, traffic from the container
can easily be manipulated before forwarding the traffic to the remote host. Lines from the mounts file
have a very characteristic pattern and can be easily recognized by the LXC filter. All lines referencing
LXC, virtualized filesystems or non-default security measures were intercepted and filtered from the
forwarding one by one. Instead of filtering all lines at once, this was done one at a time in an attempt to
discover what lines of the mounts file were responsible for the abort. While this strategy was aimed at
the braces strategy, it also affected all other variants which depended on the mounts file. The impact
on other strategies will be discussed in Section 6.6.5. As this strategy included changing the work-
ing directory to the ramdisk, all entries regarding this, as well as other writable filesystems, remained
untouched. Even with a minimal mounts file, not containing any reference to LXC whatsoever, the
attack aborted after the first command. This supports the hypothesis that this strategy does not work
by blacklist, but rather uses a whitelist to scan for suitable filesystems.

For the third experiment, the aim was to replicate the out from the low-interaction module on the high-
interaction module completely; in the LXC container environment. As mentioned before, the mounts
file of the LXC container environment contains a lot of information, giving away that the user is in such
an environment. For this experiment, all output from the mounts file was replaced by the same lines as
used in the low-interaction module, as described in the first experiment using the low-interaction mod-
ule. The result of applying the filter was that the cat /proc/mounts command printed the contents
of the Raspberry Pi mounts file, instead of the LXC container file. Despite this equal output, the attack
does not continue on after the first command when executed in the high-interaction module. At this
point it remains unclear what triggers the abort.

6.6.3. Hajime family
Next to Mirai, there is another well known IoT worm currently active on the Internet. This worm was
briefly discussed in Chapter 1.1. Hajime shares several characteristics with strategies discussed in this
chapter, but has different triggers to abort an attack. Hajime is very active, as Honeytrack recorded
580,000 sessions using the characteristic ECCHI string as Busybox parameter, checking its availability.
The follow-up commands are listed in Listing 6.2. Other groups have different triggers, or rely less on
the ouput of the initial command. This strategy included an initial command with an identifying string,
but followed up immediately with commands such as the following:

Listing 6.2: The command sequence of the Hajime family
1 enable
2 she l l
3 sh
4 / b in / busybox ECCHI
5 / b in / busybox ps ; / b in / busybox ECCHI
6 / b in / busybox k i l l 9 2713
7 / b in / busybox k i l l 9 2714
8 / b in / busybox k i l l 9 2715
9 / b in / busybox k i l l 9 2717
10 / b in / busybox k i l l 9 2718
11 / b in / busybox k i l l 9 2719
12 / b in / busybox cat / proc / mounts ; / b in / busybox ECCHI

6.6. Device selection 53

The nature of these commands are similar to the ones used in the braces strategy. Besides the com-
mands discussed before such as cat /proc/mounts, Hajime also calls the ps command. ps is
another tool supported by Busybox, and lists all processes running on a system. After running the
ps commands, Hajime attempts to kill a number processes using the pkill command. The pkill
command uses ProcessIDs, or PIDs as input, which uniquely identify a running proces on a system.
The PIDs used by Hajime vary widely per session with over 8000 different PIDs used. Howver, these
are not based on the previous commands as the plan ps command does not contain any information
about the PIDs of processes running on the system. A relation between used PIDs and output from
previous commands could not be found. In addition to the PID, the number of kill commands per ses-
sion also varies from a single command to six per session. These PIDs are incremental per pair, for
example:

1 / b in / busybox k i l l 9 591 , / b in / busybox k i l l 9 592
2 / b in / busybox k i l l 9 673 , / b in / busybox k i l l 9 674

However, these pairs do not seem related to other pairs. For some sessions, the attack ends after the
kill command, where in other sessions a Busybox identifier command is executed afterwards and a
final scenario consists of multiple file checks as described below. These differences did not correlate
with differences in Honeytrack responses, used credentials or other measured metrics.

Similar to the braces strategy, Hajime checks certain filesystems for accessibility. A major difference
here is that each series of command is applied to every line of the mounts file. Additionally, not every
command sequence is equal for every session.

Hajime has already been extensively analyzed by Edwards and Profetis [10]. When we compare their
findings with observations made with Honeytrack, we can conclude that the original Hajime as analyzed
by Edwards and Profetis is still present. However, there are a number of variants which initially look
like Hajime, but either use a different Busybox identifier or use the ECCHI identifier but show different
behavior.

6.6.4. Other strategies
Aside from the strategies discussed above, Honeytrack observed dozens of sessions using slightly
different variations.

/bin/busybox echo -e ’\x6b\x61\x6d\x69/dev’ > /dev/.nippon; followed by
/bin/busybox cat /dev/.nippon; /bin/busybox rm /dev/.nippon occurs in several
variations, based on the mounts file which was discussed previously. This command attempts
to create a file containing “kami/dev” at a number of locations. The escaped bytes \x6b \x61
\x6d \x69 are part of a device compatibility check, as not all shells correctly process escaped
byte input. Next to the escaped bytes, the file also contains the path it is currently being writ-
ten to. If the file is being written to “/run/lock/”, it would attempt to write “kami/run/lock”. In this
case, the file is written to the “/dev” directory, but is always part of a series of commands iterat-
ing over the entries of a mounts file. This behaviour is observed in multiple variants, including
ones identied by their busybox identifiers daddyl33t and ECCHI. Additionally, variants using
the single-password strategy, but do not include a Busybox identifier are also observed using
similar commands. The iteration over the different mounts file entries is the same, as well as
the structure of the commands. However, the escaped bytes are different for these variants.
From observations found with existing honeypots, this behaviour is originally attributed to the Ha-
jime worm4, but the daddyl33t Busybox identifier indicates this strategy was adopted by multiple
variants.

>/tmp/.ptmx && cd /tmp/ is a command observed in about 110,000 sessions. This command is
combined with very similar combinations of the same command, in different locations and is also
based on the mounts file. Attackers using this strategy use a limited dictionary, and a noticable
detail is that all source IP addresses only use correct credentials. It is likely this is part of the loader
strategy as used by Mirai [4, 17], where the password probing and actual exploitation are done by

4https://github.com/Phype/telnet-iot-honeypot

https://github.com/Phype/telnet-iot-honeypot

54 6. Evaluation

two different machines. The used credentials are admin:admin1234, admin:CenturyL1nk,
admin:atlantis, admin:ho4uku6at and admin:zyad5001 but it is possible the discovery
phase employs a wider dictionary. Due to the fact that these passwords are also used for different
strategies, we could not distuingish the discovery machines directly related to this strategy.

6.6.5. Decision patterns
As discussed earlier in this section, many different commands are used to gather information on the
system. Where different groups of malware act different on the same commands, we can identify
a number commands which are responsible for these actions and decisions. These decisions can
help us understand the type of device a piece of malware is targetting, and what it does to evade
honeypots.

In general, the observed malware use one or more of the following commands to determine if an at-
tacked device is suitable for further infection:

1 cat / proc / mounts
2 t f t p , wget , c u r l
3 / b in / busybox IDENTIFIER
4 ps
5 echo
6 k i l l

Based on the output of these commands, attacks either continue or are aborted instantly. These com-
mands play an important role in catching as many different attackers as possible in a honeypot. Where
the used LXC container has the same response for all attackers to these commands, a number of vari-
ants likely specifically targetting certain devices abort their attack early in the killchain. Especially the
content of the mounts file seems to be important, as the attackers use the contents of this file to both
check suitability, as well as a source for potentially writable destinations required for follow-up steps.
Evading potential honeypot detection methods by replacing the output of the cat /proc/mounts
turns out to be counter-productive, as subsequent steps would fail because the fake file locations were
not actually writeable.

6.6.6. Honeypot detection
There is a difference between how different groups of malware behave based on their initial commands.
These commands can partially be attributed to architecture detection or vulnerability detection. How-
ever, based on the complexity of some of the commands, it is possible some groups are actively looking
for ways to detect honeypots. It is difficult to determine if an attacker aborts a command sequence be-
cause a honeypot environment has been detected.

A way to check the universal knowledge of honeypots, Shodan has a metric called “honeyscore”5.
Based on its scans, Shodan attempts to identify honeypot environments and assigns a score between
0 and 1, indicating the probability the given IP address is a honeypot. For all IP addresses used in the
experiments, the honeyscore was requested. None of the IPs had a score other than 0.0, indicating
the IP address did not show any sign of honeypot activity. While this can be interpreted as a good
indicator, it requires an active scan conducted in the period the honeypot was active. Despite the
regular scanning activity by Shodan, none of the IPs in the TU Delft range used in the experiments
were scanned during that time. One of the agents which has been running for a longer period of time
was scanned, but still indicated a honeyscore of 0.0.

6.7. Malware installation
Once an attacker has determined a device is suitable for infection using for example one of the strate-
gies described above, the malware is downloaded. To achieve this, various methods can be used to
get malware on the system. A common approach is the use of download tools available in the Busybox
5https://honeyscore.shodan.io/

https://honeyscore.shodan.io/

6.7. Malware installation 55

toolset, such as wget and tftp. As observed earlier, it is common for attackers to check the availability
of these tools on the system. Using this method, it is easy to get a malicious binary on the system, but
requires a server hosting the files.

6.7.1. Base64 encoded payload
Using a Busybox download tool is not the only method to get a malicious binary on the system. The
variants discussed earlier, which use the single-password strategy but do not include a Busybox identi-
fier, have been observed writing a malicious binary directly through the Telnet session. This technique
is used as both a fallback or as the primary method for downloading a malicious binary on the system.
In the snippet below, the fallback method is shown.

1 / b in / busybox t f t p g l / dev / . none r yCz31g9 37.79.60.38 ; cat / dev / . none ; rm / dev / .
↪ none ; / b in / busybox SSfAh2cK

2 / b in / busybox wget h t t p : / / 37 . 79 . 60 . 38 : 15798 / lvn3 /eU O / dev / . none ; cat / dev / . none ; rm /
↪ dev / . none ; / b in / busybox SSfAh2cK

3 / b in / busybox echo bFRP | base64 d ; / b in / busybox echo Nkty | openssl base64 d ; / b in /
↪ busybox SSfAh2cK

4 base64 d > / dev / con << .

The first line shows an attempt to download a file using the TFTP protocol (explained in Section 6.5).
A notable difference from other variants attempting such a download, is the fact that in the same com-
mand, the downloaded file is examined using cat but then immediately removed again. Usually, when
a binary is successfully downloaded, that binary is used for further communication with the Command
and Control server. After the TFTP command, a similar command sequence is executed, only then
using the Wget application. Again, after the file is downloaded, it is examined with cat and directly
removed without actually executing the binary. The final exploratory command checks the presence
the base64 application. As this can be found both as a standalone program or part of the openssl
toolkit, both are checked using a method comparable to application presence checks seen previously.
This time, the output of an echo indicates which version of the base64 application is available. Both
versions of the base64 applications are effectively the same, and allow the encoding and decoding
of input to and from base64. In the last line, input is read from the terminal, decoded from base64,
and written to /dev/con. What follows is a full base64 encoded binary executable file, which when
decoded, is about 75 kB.

We observed 4,653 sessions where the presence of base64 was checked. However, not all attackers
proceeded with the input of the binary file. To separate the sessions where a base64 encoded payload
was completely transferred, we can look at the first part of the payload. As these first few bytes consist
of the file header (ELF) required to make the file executable, they are always present. Filtering for
this value (“f0VMRg” in its base64 encoded form) results in 989 observed sessions using this strategy.
Those 989 sessions came from 714 unique source IPs and 683 unique destination IPs were hit. What
stands out is that there’s very little duplicate infection attempts. At most, a single destination IP was
infected 5 times by 3 different IP addresses.

When this attack path is traced back to earlier phases of the killchain, we observe this variant uses
the single-password strategy without exposing a Busybox identifier. Just like other variants using the
single-password strategy, the control banner is completely ignored by this variant.

7
Conclusions and Future Work

These days, malware targeting Internet of Things devices pose a serious threat to consumers, com-
panies and the Internet as a whole. There are many actors active in the field and attack methods are
becoming more sophisticated with each large scale attack. While the security of the Internet of Things
is slowly gaining attention in both the media and vendor priorities, devices that are already deployed
will make an impact for the forseeable future. Until good security becomes the standard, continuous
research towards new threats is required to minimize the possible impact. As the expected number of
active IoT devices will grow towards billions of devices in the coming years, research needs to scale
up with this growth in order to keep up with the rising threat.

With Honeytrack, we were able to collect data on Telnet attacks on over 8000 observed IP addresses.
To the best of our knowledge, this is the biggest high-interaction honeypot experiment compared to
other published work.

The attacks were analyzed and mapped to a phase of the killchain model, allowing us to identify a
number of strategies for each phase of a Telnet session.

For the negotiation phase, the chosen option codes proved insufficient for effective clustering. As nearly
all attacks were automated and from previously infected machines, the hypothesis that the LINEMODE
option would reveal human attackers turned out difficult to confirm. Only a handful of sessions were
recorded with this option enabled, and those sessions could not prove the presence of a human at-
tacker. The other option, ECHO, showed a clear separation of variants, with each client belonging to a
specific variant showing identical behavior.

The credentials attempted after a successful negotiation prove to be dynamic in nature. As new hard-
coded credentials are discovered in a device, malware authors quickly incorporate them into their dic-
tionaries. Between all variants, only a few have truly unique dictionaries. Most variants use their own
subset of all available credentials, where a full overlap between variants is rare.

When an attacker compromises a device by guessing the correct credentials, a number of strategies
can be identified. Most attacks involve a number of commands to determine if the device is suitable for
infection and to identify the underlying system architecture. After this is done, a suitable location for a
payload is determined based on the mounts file. This file serves an important purpose, as the contents
of this file are reason for number of variants to abort their attack. The retrieval of the payload is done
in a number of different ways. These methods vary from the utilization of already present utilities such
as wget or TFTP, to the manual input of a base64 encoded binary through the Telnet terminal.

For the final two phases of the killchain, Command & Control and Actions on Objectives, further study
is required as these were out of scope for this thesis. With Honeytrack, we gathered a large number
of malware samples downloaded through various methods such as wget and TFTP. A small number of
samples were checked against the VirusTotal database. Several of these samples were already known
malicious files marked as Mirai variants. A number of files described in Chapter 6.7 were manually
reconstructed and hashed. None of the resulting hashes were found on VirusTotal, indicating that the

57

58 7. Conclusions and Future Work

malware is either unique in nature or only introduced very recently. Further analysis is required, but
could lead to better insights into this malware retrieval strategy. Additionally, using full packet capture
all traffic to and from the container was captured and stored. While not analyzed in detail, these packet
captures likely contains communication with Command and Control servers such as instructions to
attack certain targets.

When analyzing the data gathered with Honeytrack during the experimentation phase, we discovered
more advanced methods are required to fully utilize the data gathered. As a large number of metrics
are stored for each phase of a Telnet session, it is likely more subtle relationships between the sessions
and related malware variants can be discovered using more advanced clustering algorithms.

Next to the original research questions, much more data was collected than we were able to analyze
within the scope of this thesis. In the process of answering our research questions based on the data
collected, we also discovered that more data is required to be able to cluster related sessions together.
Due to the large overlap in used credentials, similar discovery procedures and data structure used to
collect the data, attributing different IP addresses to the same attacker proved difficult. Finally, a more
dynamic method of A/B testing is necessary in order to maximize the number of malware variants fully
completing their attack. With the current setup, only a subset of variants completed all stages of the
killchain model.

For future work, Honeytrack can be extended to include on-the-fly analysis of a Telnet session, allowing
for a better way of matching a current attack to an already existing container. This way, the number
of required containers can be reduced and an attack coming from different machines and/or attackers
can be executed on a single container, increasing simulation accuracy.

A
LXC mounts file

1 / dev / sda1 / ext4 rw , re la t ime , e r r o r s=remount ro , data=ordered 0 0
2 none / dev tmpfs rw , nodev , re la t ime , s ize=492k ,mode=755 , u id =1000000, g id=1000000 0 0
3 proc / proc proc rw , nosuid , nodev , noexec , re l a t ime 0 0
4 proc / proc / sys / net proc rw , nosuid , nodev , noexec , re l a t ime 0 0
5 proc / proc / sys proc ro , nosuid , nodev , noexec , re l a t ime 0 0
6 proc / proc / sysrq t r i g g e r proc ro , nosuid , nodev , noexec , re l a t ime 0 0
7 sys fs / sys sys fs rw , nosuid , nodev , noexec , re l a t ime 0 0
8 sys fs / sys sys fs ro , nosuid , nodev , noexec , re l a t ime 0 0
9 sys fs / sys / devices / v i r t u a l / net sys fs rw , nodev , re l a t ime 0 0
10 sys fs / sys / devices / v i r t u a l / net sys fs rw , nosuid , nodev , noexec , re l a t ime 0 0
11 f u s e c t l / sys / f s / fuse / connect ions f u s e c t l rw , re l a t ime 0 0
12 debugfs / sys / ke rne l / debug debugfs rw , re l a t ime 0 0
13 s e c u r i t y f s / sys / ke rne l / s e cu r i t y s e c u r i t y f s rw , nosuid , nodev , noexec , r e l a t ime 0 0
14 pstore / sys / f s / ps tore pstore rw , nosuid , nodev , noexec , re l a t ime 0 0
15 mqueue / dev /mqueue mqueue rw , nodev , re l a t ime 0 0
16 binfmt_misc / proc / sys / f s / b infmt_misc binfmt_misc rw , re l a t ime 0 0
17 l x c f s / proc / cpu in fo fuse . l x c f s rw , nosuid , nodev , re la t ime , user_ id =0 , group_id =0 , a l low_other 0 0
18 l x c f s / proc / d i s k s t a t s fuse . l x c f s rw , nosuid , nodev , re la t ime , user_ id =0 , group_id =0 , a l low_other 0

↪ 0
19 l x c f s / proc / meminfo fuse . l x c f s rw , nosuid , nodev , re la t ime , user_ id =0 , group_id =0 , a l low_other 0 0
20 l x c f s / proc / s t a t fuse . l x c f s rw , nosuid , nodev , re la t ime , user_ id =0 , group_id =0 , a l low_other 0 0
21 l x c f s / proc / swaps fuse . l x c f s rw , nosuid , nodev , re la t ime , user_ id =0 , group_id =0 , a l low_other 0 0
22 l x c f s / proc / uptime fuse . l x c f s rw , nosuid , nodev , re la t ime , user_ id =0 , group_id =0 , a l low_other 0 0
23 udev / dev / n u l l devtmpfs rw , nosuid , re la t ime , s ize =24705676k , nr_inodes=6176419,mode=755 0 0
24 udev / dev / zero devtmpfs rw , nosuid , re la t ime , s ize =24705676k , nr_inodes=6176419,mode=755 0 0
25 udev / dev / f u l l devtmpfs rw , nosuid , re la t ime , s ize =24705676k , nr_inodes=6176419,mode=755 0 0
26 udev / dev / urandom devtmpfs rw , nosuid , re la t ime , s ize =24705676k , nr_inodes=6176419,mode=755 0 0
27 udev / dev / random devtmpfs rw , nosuid , re la t ime , s ize =24705676k , nr_inodes=6176419,mode=755 0 0
28 udev / dev / t t y devtmpfs rw , nosuid , re la t ime , s ize =24705676k , nr_inodes=6176419,mode=755 0 0
29 devpts / dev / console devpts rw , nosuid , noexec , re la t ime , g id =5 ,mode=620 ,ptmxmode=000 0 0
30 devpts / dev / p ts devpts rw , re la t ime , g id =1000005,mode=620 ,ptmxmode=666 ,max=1024 0 0
31 devpts / dev / ptmx devpts rw , re la t ime , g id =1000005,mode=620 ,ptmxmode=666 ,max=1024 0 0
32 devpts / dev / t t y 1 devpts rw , re la t ime , g id =1000005,mode=620 ,ptmxmode=666 ,max=1024 0 0
33 devpts / dev / t t y 2 devpts rw , re la t ime , g id =1000005,mode=620 ,ptmxmode=666 ,max=1024 0 0
34 devpts / dev / t t y 3 devpts rw , re la t ime , g id =1000005,mode=620 ,ptmxmode=666 ,max=1024 0 0
35 devpts / dev / t t y 4 devpts rw , re la t ime , g id =1000005,mode=620 ,ptmxmode=666 ,max=1024 0 0
36 tmpfs / dev / shm tmpfs rw , nosuid , nodev , u id =1000000, g id=1000000 0 0
37 tmpfs / run tmpfs rw , nosuid , nodev ,mode=755 , u id =1000000, g id=1000000 0 0
38 tmpfs / run / lock tmpfs rw , nosuid , nodev , noexec , re la t ime , s ize=5120k , u id =1000000, g id=1000000 0 0
39 tmpfs / sys / f s / cgroup tmpfs ro , nosuid , nodev , noexec ,mode=755 , u id =1000000, g id=1000000 0 0
40 cgroup / sys / f s / cgroup / systemd cgroup rw , nosuid , nodev , noexec , re la t ime , xa t t r , re lease_agent =/ l i b

↪ / systemd / systemd cgroups agent , name=systemd 0 0
41 cgroup / sys / f s / cgroup /memory cgroup rw , nosuid , nodev , noexec , re la t ime ,memory 0 0
42 cgroup / sys / f s / cgroup / cpu , cpuacct cgroup rw , nosuid , nodev , noexec , re la t ime , cpu , cpuacct 0 0
43 cgroup / sys / f s / cgroup / per f_event cgroup rw , nosuid , nodev , noexec , re la t ime , per f_event 0 0
44 cgroup / sys / f s / cgroup / cpuset cgroup rw , nosuid , nodev , noexec , re la t ime , cpuset , c lone_ch i l d ren 0 0
45 cgroup / sys / f s / cgroup / f r eeze r cgroup rw , nosuid , nodev , noexec , re la t ime , f r eeze r 0 0
46 cgroup / sys / f s / cgroup / devices cgroup rw , nosuid , nodev , noexec , re la t ime , devices 0 0
47 cgroup / sys / f s / cgroup / net_c ls , ne t_p r i o cgroup rw , nosuid , nodev , noexec , re la t ime , net_c ls ,

59

60 A. LXC mounts file

↪ ne t_p r io 0 0
48 cgroup / sys / f s / cgroup / huget lb cgroup rw , nosuid , nodev , noexec , re la t ime , huget lb 0 0
49 cgroup / sys / f s / cgroup / b l k i o cgroup rw , nosuid , nodev , noexec , re la t ime , b l k i o 0 0
50 cgroup / sys / f s / cgroup / p ids cgroup rw , nosuid , nodev , noexec , re la t ime , p ids 0 0

B
Variant Dictionary overlap

61

62 B. Variant Dictionary overlap

Ta
bl
e
B.
1:

Th
e
ov
er
la
p
be
tw
ee
n
di
ct
io
na
rie
s
of
al
ls
in
gl
e-
pa
ss
w
or
d
st
ra
te
gy

va
ria
nt
s.

R
ea
d
fro
m
rig
ht
to
up
;f
or

ex
am

pl
e
va
ria
nt
“s
”s
ha
re
s
83
.7
2%

of
its

cr
ed
en
tia
ls
w
ith

va
ria
nt
“s
un
le
ss
”,
an
d

“s
un
le
ss
”d́
ic
tio
na
ry
co
ns
is
ts
45
.7
8%

of
pa
ss
w
or
ds

al
so

in
“d
ad
dy
l3
3t
”d́
ic
tio
na
ry

s
su
nl
es
s

da
dd
yl
33
t

O
BJ
PR

N
M
M

dw
ic
ke
dg
od

M
AT

O
S

O
R
IO
N

C
ul
t

N
G
R
LS

M
IR
AI

sa
to
ri

PU
TI
N

Q
BO

TV
1

SO
R
A

s
10
0.
00
%

83
.7
2%

45
.3
5%

29
.0
7%

22
.0
9%

20
.9
3%

18
.6
0%

1.
16
%

18
.6
0%

16
.2
8%

47
.6
7%

24
.4
2%

30
.2
3%

30
.2
3%

26
.7
4%

su
nl
es
s

86
.7
5%

10
0.
00
%

45
.7
8%

33
.7
3%

24
.1
0%

20
.4
8%

19
.2
8%

1.
20
%

16
.8
7%

16
.8
7%

50
.6
0%

30
.1
2%

34
.9
4%

34
.9
4%

30
.1
2%

da
dd
yl
33
t

11
.6
1%

11
.3
1%

10
0.
00
%

19
.9
4%

10
.4
2%

39
.5
8%

5.
36
%

0.
30
%

4.
46
%

7.
74
%

56
.5
5%

13
.3
9%

15
.4
8%

16
.3
7%

10
.1
2%

O
BJ
PR

N
7.
60
%

8.
51
%

20
.3
6%

10
0.
00
%

11
.2
5%

5.
17
%

2.
13
%

0.
00
%

3.
04
%

3.
34
%

27
.0
5%

15
.8
1%

15
.5
0%

16
.7
2%

6.
38
%

M
M

47
.5
0%

50
.0
0%

87
.5
0%

92
.5
0%

10
0.
00
%

37
.5
0%

12
.5
0%

2.
50
%

22
.5
0%

27
.5
0%

10
0.
00
%

95
.0
0%

95
.0
0%

10
0.
00
%

40
.0
0%

dw
ic
ke
dg
od

13
.5
3%

12
.7
8%

10
0.
00
%

12
.7
8%

11
.2
8%

10
0.
00
%

5.
26
%

0.
75
%

8.
27
%

11
.2
8%

25
.5
6%

13
.5
3%

15
.0
4%

15
.7
9%

14
.2
9%

M
AT

O
S

69
.5
7%

69
.5
7%

78
.2
6%

30
.4
3%

21
.7
4%

30
.4
3%

10
0.
00
%

4.
35
%

34
.7
8%

26
.0
9%

73
.9
1%

26
.0
9%

43
.4
8%

39
.1
3%

65
.2
2%

O
R
IO
N

10
0.
00
%

10
0.
00
%

10
0.
00
%

0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

C
ul
t

8.
08
%

7.
07
%

7.
58
%

5.
05
%

4.
55
%

5.
56
%

4.
04
%

0.
51
%

10
0.
00
%

5.
05
%

7.
07
%

4.
55
%

6.
57
%

6.
57
%

6.
06
%

N
G
R
LS

46
.6
7%

46
.6
7%

86
.6
7%

36
.6
7%

36
.6
7%

50
.0
0%

20
.0
0%

3.
33
%

33
.3
3%

10
0.
00
%

90
.0
0%

40
.0
0%

53
.3
3%

56
.6
7%

53
.3
3%

M
IR
AI

9.
34
%

9.
57
%

43
.2
8%

20
.2
7%

9.
11
%

7.
74
%

3.
87
%

0.
23
%

3.
19
%

6.
15
%

10
0.
00
%

12
.7
6%

13
.4
4%

15
.2
6%

8.
43
%

sa
to
ri

36
.8
4%

43
.8
6%

78
.9
5%

91
.2
3%

66
.6
7%

31
.5
8%

10
.5
3%

1.
75
%

15
.7
9%

21
.0
5%

98
.2
5%

10
0.
00
%

87
.7
2%

96
.4
9%

35
.0
9%

PU
TI
N

41
.2
7%

46
.0
3%

82
.5
4%

80
.9
5%

60
.3
2%

31
.7
5%

15
.8
7%

1.
59
%

20
.6
3%

25
.4
0%

93
.6
5%

79
.3
7%

10
0.
00
%

92
.0
6%

39
.6
8%

Q
BO

TV
1

37
.1
4%

41
.4
3%

78
.5
7%

78
.5
7%

57
.1
4%

30
.0
0%

12
.8
6%

1.
43
%

18
.5
7%

24
.2
9%

95
.7
1%

78
.5
7%

82
.8
6%

10
0.
00
%

37
.1
4%

SO
R
A

52
.2
7%

56
.8
2%

77
.2
7%

47
.7
3%

36
.3
6%

43
.1
8%

34
.0
9%

2.
27
%

27
.2
7%

36
.3
6%

84
.0
9%

45
.4
5%

56
.8
2%

59
.0
9%

10
0.
00
%

W
or
d

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

EX
TE

N
D
O

8.
94
%

7.
82
%

8.
38
%

5.
59
%

5.
03
%

6.
15
%

4.
47
%

0.
56
%

10
0.
00
%

5.
59
%

7.
82
%

5.
03
%

7.
26
%

7.
26
%

6.
70
%

ZE
AZ

O
0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

AK
U
M
A

17
.0
2%

16
.6
0%

45
.1
1%

30
.6
4%

16
.6
0%

14
.4
7%

7.
23
%

0.
43
%

5.
96
%

11
.4
9%

59
.5
7%

21
.2
8%

22
.9
8%

25
.1
1%

16
.1
7%

JO
SH

O
23
.5
5%

21
.8
0%

17
.7
3%

9.
01
%

5.
81
%

6.
98
%

5.
81
%

0.
29
%

56
.6
9%

5.
23
%

24
.1
3%

7.
27
%

8.
43
%

9.
01
%

9.
30
%

AS
U
N
A

90
.9
1%

90
.9
1%

10
0.
00
%

72
.7
3%

63
.6
4%

72
.7
3%

36
.3
6%

9.
09
%

90
.9
1%

63
.6
4%

10
0.
00
%

72
.7
3%

81
.8
2%

81
.8
2%

81
.8
2%

H
H
H
H

35
.7
1%

44
.6
4%

78
.5
7%

91
.0
7%

66
.0
7%

32
.1
4%

10
.7
1%

1.
79
%

16
.0
7%

21
.4
3%

98
.2
1%

10
0.
00
%

89
.2
9%

96
.4
3%

35
.7
1%

O
O
M
G
A

6.
25
%

5.
21
%

15
.6
2%

15
.6
2%

8.
33
%

7.
29
%

2.
08
%

1.
04
%

4.
17
%

7.
29
%

29
.1
7%

12
.5
0%

11
.4
6%

12
.5
0%

9.
38
%

XW
IF
Z

27
.5
9%

27
.5
9%

50
.0
0%

18
.9
7%

15
.5
2%

32
.7
6%

13
.7
9%

1.
72
%

18
.9
7%

39
.6
6%

84
.4
8%

18
.9
7%

25
.8
6%

31
.0
3%

32
.7
6%

O
W
AR

I
70
.0
0%

76
.6
7%

93
.3
3%

43
.3
3%

36
.6
7%

43
.3
3%

60
.0
0%

3.
33
%

33
.3
3%

43
.3
3%

90
.0
0%

40
.0
0%

56
.6
7%

53
.3
3%

76
.6
7%

Ze
us

14
.4
8%

15
.1
7%

28
.2
8%

13
.7
9%

10
.3
4%

13
.1
0%

9.
66
%

0.
69
%

6.
21
%

9.
66
%

40
.6
9%

11
.7
2%

12
.4
1%

12
.4
1%

15
.8
6%

M
AS

U
TA

18
.4
9%

21
.9
2%

49
.3
2%

39
.0
4%

27
.4
0%

21
.9
2%

6.
16
%

0.
68
%

8.
90
%

16
.4
4%

72
.6
0%

37
.6
7%

38
.3
6%

42
.4
7%

18
.4
9%

M
IO
R
I

46
.3
4%

39
.0
2%

53
.6
6%

26
.8
3%

21
.9
5%

36
.5
9%

17
.0
7%

2.
44
%

39
.0
2%

31
.7
1%

56
.1
0%

24
.3
9%

36
.5
9%

36
.5
9%

36
.5
9%

EC
C
H
I

8.
33
%

8.
33
%

33
.3
3%

8.
33
%

8.
33
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

16
.6
7%

8.
33
%

8.
33
%

8.
33
%

0.
00
%

R
BG

LZ
49
.0
6%

43
.4
0%

81
.1
3%

50
.9
4%

37
.7
4%

41
.5
1%

24
.5
3%

1.
89
%

24
.5
3%

49
.0
6%

94
.3
4%

45
.2
8%

54
.7
2%

58
.4
9%

45
.2
8%

FR
EE

PE
IN

36
.0
7%

42
.6
2%

81
.9
7%

90
.1
6%

65
.5
7%

31
.1
5%

9.
84
%

1.
64
%

16
.3
9%

21
.3
1%

10
0.
00
%

90
.1
6%

90
.1
6%

98
.3
6%

32
.7
9%

63

Ta
bl
e
B.
2:

Th
e
ov
er
la
p
be
tw
ee
n
di
ct
io
na
rie
s
of
al
ls
in
gl
e-
pa
ss
w
or
d
st
ra
te
gy

va
ria
nt
s.
R
ea
d
fro
m
rig
ht
to
up

W
or
d

EX
TE

N
D
O

ZE
AZ

O
AK

U
M
A

JO
SH

O
AS

U
N
A

H
H
H
H

O
O
M
G
A

XW
IF
Z

O
W
AR

I
Ze
us

M
AS

U
TA

M
IO
R
I

EC
C
H
I

R
BG

LZ
FR

EE
PE

IN
s

0.
00
%

18
.6
0%

0.
00
%

46
.5
1%

94
.1
9%

11
.6
3%

23
.2
6%

6.
98
%

18
.6
0%

24
.4
2%

24
.4
2%

31
.4
0%

22
.0
9%

1.
16
%

30
.2
3%

25
.5
8%

su
nl
es
s

0.
00
%

16
.8
7%

0.
00
%

46
.9
9%

90
.3
6%

12
.0
5%

30
.1
2%

6.
02
%

19
.2
8%

27
.7
1%

26
.5
1%

38
.5
5%

19
.2
8%

1.
20
%

27
.7
1%

31
.3
3%

da
dd
yl
33
t

0.
00
%

4.
46
%

0.
00
%

31
.5
5%

18
.1
5%

3.
27
%

13
.1
0%

4.
46
%

8.
63
%

8.
33
%

12
.2
0%

21
.4
3%

6.
55
%

1.
19
%

12
.8
0%

14
.8
8%

O
BJ
PR

N
0.
00
%

3.
04
%

0.
00
%

21
.8
8%

9.
42
%

2.
43
%

15
.5
0%

4.
56
%

3.
34
%

3.
95
%

6.
08
%

17
.3
3%

3.
34
%

0.
30
%

8.
21
%

16
.7
2%

M
M

0.
00
%

22
.5
0%

0.
00
%

97
.5
0%

50
.0
0%

17
.5
0%

92
.5
0%

20
.0
0%

22
.5
0%

27
.5
0%

37
.5
0%

10
0.
00
%

22
.5
0%

2.
50
%

50
.0
0%

10
0.
00
%

dw
ic
ke
dg
od

0.
00
%

8.
27
%

0.
00
%

25
.5
6%

18
.0
5%

6.
02
%

13
.5
3%

5.
26
%

14
.2
9%

9.
77
%

14
.2
9%

24
.0
6%

11
.2
8%

0.
00
%

16
.5
4%

14
.2
9%

M
AT

O
S

0.
00
%

34
.7
8%

0.
00
%

73
.9
1%

86
.9
6%

17
.3
9%

26
.0
9%

8.
70
%

34
.7
8%

78
.2
6%

60
.8
7%

39
.1
3%

30
.4
3%

0.
00
%

56
.5
2%

26
.0
9%

O
R
IO
N

0.
00
%

10
0.
00
%

0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

0.
00
%

10
0.
00
%

10
0.
00
%

C
ul
t

0.
00
%

90
.4
0%

0.
00
%

7.
07
%

98
.4
8%

5.
05
%

4.
55
%

2.
02
%

5.
56
%

5.
05
%

4.
55
%

6.
57
%

8.
08
%

0.
00
%

6.
57
%

5.
05
%

N
G
R
LS

0.
00
%

33
.3
3%

0.
00
%

90
.0
0%

60
.0
0%

23
.3
3%

40
.0
0%

23
.3
3%

76
.6
7%

43
.3
3%

46
.6
7%

80
.0
0%

43
.3
3%

0.
00
%

86
.6
7%

43
.3
3%

M
IR
AI

0.
00
%

3.
19
%

0.
00
%

31
.8
9%

18
.9
1%

2.
51
%

12
.5
3%

6.
38
%

11
.1
6%

6.
15
%

13
.4
4%

24
.1
5%

5.
24
%

0.
46
%

11
.3
9%

13
.9
0%

sa
to
ri

0.
00
%

15
.7
9%

0.
00
%

87
.7
2%

43
.8
6%

14
.0
4%

98
.2
5%

21
.0
5%

19
.3
0%

21
.0
5%

29
.8
2%

96
.4
9%

17
.5
4%

1.
75
%

42
.1
1%

96
.4
9%

PU
TI
N

0.
00
%

20
.6
3%

0.
00
%

85
.7
1%

46
.0
3%

14
.2
9%

79
.3
7%

17
.4
6%

23
.8
1%

26
.9
8%

28
.5
7%

88
.8
9%

23
.8
1%

1.
59
%

46
.0
3%

87
.3
0%

Q
BO

TV
1

0.
00
%

18
.5
7%

0.
00
%

84
.2
9%

44
.2
9%

12
.8
6%

77
.1
4%

17
.1
4%

25
.7
1%

22
.8
6%

25
.7
1%

88
.5
7%

21
.4
3%

1.
43
%

44
.2
9%

85
.7
1%

SO
R
A

0.
00
%

27
.2
7%

0.
00
%

86
.3
6%

72
.7
3%

20
.4
5%

45
.4
5%

20
.4
5%

43
.1
8%

52
.2
7%

52
.2
7%

61
.3
6%

34
.0
9%

0.
00
%

54
.5
5%

45
.4
5%

W
or
d

10
0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

EX
TE

N
D
O

0.
00
%

10
0.
00
%

0.
00
%

7.
82
%

98
.3
2%

5.
59
%

5.
03
%

2.
23
%

6.
15
%

5.
59
%

5.
03
%

7.
26
%

8.
94
%

0.
00
%

7.
26
%

5.
59
%

ZE
AZ

O
0.
00
%

0.
00
%

10
0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

0.
00
%

AK
U
M
A

0.
00
%

5.
96
%

0.
00
%

10
0.
00
%

25
.5
3%

4.
68
%

20
.8
5%

8.
09
%

15
.3
2%

11
.0
6%

16
.6
0%

38
.3
0%

9.
79
%

0.
43
%

20
.8
5%

22
.5
5%

JO
SH

O
0.
00
%

51
.1
6%

0.
00
%

17
.4
4%

10
0.
00
%

3.
20
%

6.
98
%

2.
91
%

6.
40
%

8.
14
%

18
.3
1%

11
.0
5%

6.
40
%

0.
58
%

8.
14
%

7.
56
%

AS
U
N
A

0.
00
%

90
.9
1%

0.
00
%

10
0.
00
%

10
0.
00
%

10
0.
00
%

72
.7
3%

36
.3
6%

72
.7
3%

72
.7
3%

72
.7
3%

10
0.
00
%

90
.9
1%

0.
00
%

90
.9
1%

72
.7
3%

H
H
H
H

0.
00
%

16
.0
7%

0.
00
%

87
.5
0%

42
.8
6%

14
.2
9%

10
0.
00
%

21
.4
3%

19
.6
4%

21
.4
3%

30
.3
6%

96
.4
3%

17
.8
6%

1.
79
%

42
.8
6%

96
.4
3%

O
O
M
G
A

0.
00
%

4.
17
%

0.
00
%

19
.7
9%

10
.4
2%

4.
17
%

12
.5
0%

10
0.
00
%

7.
29
%

5.
21
%

10
.4
2%

16
.6
7%

5.
21
%

0.
00
%

11
.4
6%

12
.5
0%

XW
IF
Z

0.
00
%

18
.9
7%

0.
00
%

62
.0
7%

37
.9
3%

13
.7
9%

18
.9
7%

12
.0
7%

10
0.
00
%

27
.5
9%

29
.3
1%

75
.8
6%

27
.5
9%

0.
00
%

53
.4
5%

20
.6
9%

O
W
AR

I
0.
00
%

33
.3
3%

0.
00
%

86
.6
7%

93
.3
3%

26
.6
7%

40
.0
0%

16
.6
7%

53
.3
3%

10
0.
00
%

66
.6
7%

60
.0
0%

36
.6
7%

6.
67
%

66
.6
7%

40
.0
0%

Ze
us

0.
00
%

6.
21
%

0.
00
%

26
.9
0%

43
.4
5%

5.
52
%

11
.7
2%

6.
90
%

11
.7
2%

13
.7
9%

10
0.
00
%

18
.6
2%

8.
28
%

0.
00
%

15
.8
6%

11
.7
2%

M
AS

U
TA

0.
00
%

8.
90
%

0.
00
%

61
.6
4%

26
.0
3%

7.
53
%

36
.9
9%

10
.9
6%

30
.1
4%

12
.3
3%

18
.4
9%

10
0.
00
%

13
.0
1%

0.
68
%

27
.4
0%

41
.7
8%

M
IO
R
I

0.
00
%

39
.0
2%

0.
00
%

56
.1
0%

53
.6
6%

24
.3
9%

24
.3
9%

12
.2
0%

39
.0
2%

26
.8
3%

29
.2
7%

46
.3
4%

10
0.
00
%

0.
00
%

43
.9
0%

26
.8
3%

EC
C
H
I

0.
00
%

0.
00
%

0.
00
%

8.
33
%

16
.6
7%

0.
00
%

8.
33
%

0.
00
%

0.
00
%

16
.6
7%

0.
00
%

8.
33
%

0.
00
%

10
0.
00
%

0.
00
%

8.
33
%

R
BG

LZ
0.
00
%

24
.5
3%

0.
00
%

92
.4
5%

52
.8
3%

18
.8
7%

45
.2
8%

20
.7
5%

58
.4
9%

37
.7
4%

43
.4
0%

75
.4
7%

33
.9
6%

0.
00
%

10
0.
00
%

47
.1
7%

FR
EE

PE
IN

0.
00
%

16
.3
9%

0.
00
%

86
.8
9%

42
.6
2%

13
.1
1%

88
.5
2%

19
.6
7%

19
.6
7%

19
.6
7%

27
.8
7%

10
0.
00
%

18
.0
3%

1.
64
%

40
.9
8%

10
0.
00
%

Bibliography

[1] Ahmed Awad E. Ahmed, Issa Traoré, and Ahmad Almulhem. Digital Fingerprinting Based on
Keystroke Dynamics. Second International Symposium on Human Aspects of Information Security
& Assurance (HAISA 2008) Digital, (Haisa):94–104, 2008.

[2] Ankit Anubhav. IoT Hackers Shift to the Dark Side, 2017. URL https://blog.
newskysecurity.com/iot-hackers-shift-to-the-dark-side-cd3d0005a5e0.

[3] Ankit Anubhav. Understanding the IoT Hacker — A Conversation With Owar-
i/Sora IoT Botnet Author, 2018. URL https://blog.newskysecurity.com/
understanding-the-iot-hacker-a-conversation-with-owari-sora-iot-botnet-author-117feff56863.

[4] Manos Antonakakis, Tim April, Michael Bailey, Elie Bursztein, Jaime Cochran, Zakir Durumeric,
J Alex Halderman, DamianMenscher, Chad Seaman, Nick Sullivan, Kurt Thomas, Yi Zhou, Manos
Antonakakis TimApril Michael BaileyMatthewBernhard Elie Bursztein, Bullet J JaimeCochran Za-
kir Durumeric Alex Halderman Luca Invernizzi, Bullet Michalis Kallitsis Deepak Kumar Chaz Lever
Zane Ma, Joshua Mason Damian Menscher, Bullet Chad Seaman Nick Sullivan Kurt Thomas, and
Bullet Yi Zhou. Understanding the Mirai Botnet. In Proceedings of the 26th USENIX Security Sym-
posium, pages 1093–1110, 2017. ISBN 978-1-931971-40-9.

[5] Michael Bailey, Evan Cooke, and David Watson. A hybrid honeypot architecture for scalable
network monitoring. … -Tr-499-04, …, 2004.

[6] Norbert Blenn, Vincent Ghiëtte, and Christian Doerr. Quantifying the Spectrum of Denial-of-
Service Attacks through Internet Backscatter. In Proceedings of the 12th International Confer-
ence on Availability, Reliability and Security - ARES ’17, pages 1–10, New York, New York,
USA, 2017. ACM Press. ISBN 9781450352574. doi: 10.1145/3098954.3098985. URL
http://dl.acm.org/citation.cfm?doid=3098954.3098985.

[7] Catalin Cimpanu. BrickerBot Author Claims He Bricked Two Million De-
vices, 2017. URL https://www.bleepingcomputer.com/news/security/
brickerbot-author-claims-he-bricked-two-million-devices/.

[8] P. S. Dowland, S. M. Furnell, and M. Papadaki. Keystroke Analysis as a Method of Advanced User
Authentication and Response. pages 215–226. Springer, Boston, MA, 2002. ISBN 1-4020-7030-
6. doi: 10.1007/978-0-387-35586-3_17. URL http://link.springer.com/10.1007/
978-0-387-35586-3{_}17.

[9] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. ZMap: Fast Internet-wide Scanning and Its
Security Applications. In Proceedings of the 22nd USENIX Security Symposium, number August,
pages 605–619, 2013. ISBN 9781931971034.

[10] Sam Edwards and Ioannis Profetis. Hajime: Analysis of a decentralized internet worm for IoT
devices. 2016.

[11] Kevin D. Fairbanks, Christopher P. Lee, Ying H. Xia, and Henry L. Owen. Timekeeper: A
metadata archiving method for honeypot forensics. In Proceedings of the 2007 IEEE Work-
shop on Information Assurance, IAW, pages 114–118. IEEE, jun 2007. ISBN 1424413044. doi:
10.1109/IAW.2007.381922.

[12] Juan Guarnizo, Amit Tambe, Suman Sankar Bhunia, Martín Ochoa, Nils Tippenhauer, Asaf Shab-
tai, and Yuval Elovici. SIPHON: Towards Scalable High-Interaction Physical Honeypots. jan 2017.
URL http://arxiv.org/abs/1701.02446.

65

https://blog.newskysecurity.com/iot-hackers-shift-to-the-dark-side-cd3d0005a5e0
https://blog.newskysecurity.com/iot-hackers-shift-to-the-dark-side-cd3d0005a5e0
https://blog.newskysecurity.com/understanding-the-iot-hacker-a-conversation-with-owari-sora-iot-botnet-author-117feff56863
https://blog.newskysecurity.com/understanding-the-iot-hacker-a-conversation-with-owari-sora-iot-botnet-author-117feff56863
http://dl.acm.org/citation.cfm?doid=3098954.3098985
https://www.bleepingcomputer.com/news/security/brickerbot-author-claims-he-bricked-two-million-devices/
https://www.bleepingcomputer.com/news/security/brickerbot-author-claims-he-bricked-two-million-devices/
http://link.springer.com/10.1007/978-0-387-35586-3{_}17
http://link.springer.com/10.1007/978-0-387-35586-3{_}17
http://arxiv.org/abs/1701.02446

66 Bibliography

[13] Thorsten Holz and Frederic Raynal. Detecting honeypots and other suspicious environments.
In Proceedings from the 6th Annual IEEE System, Man and Cybernetics Information Assurance
Workshop, SMC 2005, volume 2005, pages 29–36. IEEE, 2005. ISBN 0780392906. doi: 10.
1109/IAW.2005.1495930. URL http://ieeexplore.ieee.org/document/1495930/.

[14] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-Driven Computer Network
Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill Chains. 6th Annual
International Conference on Information Warfare and Security, (July 2005):1–14, 2011.

[15] KPN. LoRa connectivity | KPN IoT. URL https://www.kpn.com/zakelijk/
grootzakelijk/internet-of-things/en/lora-connectivity.htm.

[16] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang. IoTCandyJar: Towards an
Intelligent-Interaction Honeypot for IoT Devices. Blackhat, 2017.

[17] Yin Minn, Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama,
and Christian Rossow. IoTPOT: Analysing the Rise of IoT Compromises. URL https://www.
usenix.org/system/files/conference/woot15/woot15-paper-pa.pdf.

[18] J. Postel and J.K. Reynolds. Telnet Option Specifications. Technical report, 1983. URL https:
//tools.ietf.org/html/rfc855https://www.rfc-editor.org/info/rfc0855.

[19] J. Postel and J.K. Reynolds. Telnet Protocol Specification. Technical report, 1983. URL https:
//tools.ietf.org/html/rfc854https://www.rfc-editor.org/info/rfc0854.

[20] Niels Provos. Honeyd: A Virtual Honeypot Daemon. Proceedings of the 10th DFNCERT Work-
shop, pages 1–7, 2003. doi: 10.1.1.63.8084. URL http://repository.mdp.ac.id/
ebook/library-sw-hw/linux-1/HONEYPOTS/honeyd/docs/honeyd-eabstract.pdf.

[21] Daniel Ramsbrock, Robin Berthier, and Michel Cukier. Profiling attacker behavior following SSH
compromises. In Proceedings of the International Conference on Dependable Systems and Net-
works, pages 119–124. IEEE, jun 2007. ISBN 0769528554. doi: 10.1109/DSN.2007.76. URL
http://ieeexplore.ieee.org/document/4272962/.

[22] Ramon Sanchez-Iborra, Jesus Sanchez-Gomez, Juan Ballesta-Viñas, Maria Dolores Cano, and
Antonio F. Skarmeta. Performance evaluation of lora considering scenario conditions. Sensors
(Switzerland), 18(3):772, mar 2018. ISSN 14248220. doi: 10.3390/s18030772. URL http:
//www.mdpi.com/1424-8220/18/3/772.

[23] Bruce Schneier. Essays: The Internet of Things Is Wildly Insecure—And Often Un-
patchable, 2014. URL https://www.schneier.com/essays/archives/2014/01/
the{_}internet{_}of{_}thin.html.

[24] Lance. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2002. ISBN 0321108957. doi:
10.1128/AAC.03728-14. URL https://dl.acm.org/citation.cfm?id=515237.

[25] Rob van der Meulen. Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in 2017, Up 31
Percent From 2016, 2017. ISSN 1098-6596. URL https://www.gartner.com/newsroom/
id/3598917https://www.gartner.com/newsroom/id/3598917{%}0Ahttps:
//www.gartner.com/newsroom/id/3165317{%}0Ahttp://www.gartner.com/
newsroom/id/3598917.

[26] Remco Verhoef. What is Honeytrap | Honeytrap. URL http://docs.honeytrap.io/docs/
concepts/overview/what-is-honeytrap/.

[27] Xueying Yang. LoRaWAN: Vulnerability Analysis and Practical Exploitation. 2017.

[28] Cliff C. Zou and Ryan Cunningham. Honeypot-aware advanced botnet construction and mainte-
nance. In Proceedings of the International Conference on Dependable Systems and Networks,
volume 2006, pages 199–208. IEEE, 2006. ISBN 0769526071. doi: 10.1109/DSN.2006.38.
URL http://ieeexplore.ieee.org/document/1633509/.

http://ieeexplore.ieee.org/document/1495930/
https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/en/lora-connectivity.htm
https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/en/lora-connectivity.htm
https://www.usenix.org/system/files/conference/woot15/woot15-paper-pa.pdf
https://www.usenix.org/system/files/conference/woot15/woot15-paper-pa.pdf
https://tools.ietf.org/html/rfc855 https://www.rfc-editor.org/info/rfc0855
https://tools.ietf.org/html/rfc855 https://www.rfc-editor.org/info/rfc0855
https://tools.ietf.org/html/rfc854 https://www.rfc-editor.org/info/rfc0854
https://tools.ietf.org/html/rfc854 https://www.rfc-editor.org/info/rfc0854
http://repository.mdp.ac.id/ebook/library-sw-hw/linux-1/HONEYPOTS/honeyd/docs/honeyd-eabstract.pdf
http://repository.mdp.ac.id/ebook/library-sw-hw/linux-1/HONEYPOTS/honeyd/docs/honeyd-eabstract.pdf
http://ieeexplore.ieee.org/document/4272962/
http://www.mdpi.com/1424-8220/18/3/772
http://www.mdpi.com/1424-8220/18/3/772
https://www.schneier.com/essays/archives/2014/01/the{_}internet{_}of{_}thin.html
https://www.schneier.com/essays/archives/2014/01/the{_}internet{_}of{_}thin.html
https://dl.acm.org/citation.cfm?id=515237
https://www.gartner.com/newsroom/id/3598917 https://www.gartner.com/newsroom/id/3598917{%}0Ahttps://www.gartner.com/newsroom/id/3165317{%}0Ahttp://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917 https://www.gartner.com/newsroom/id/3598917{%}0Ahttps://www.gartner.com/newsroom/id/3165317{%}0Ahttp://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917 https://www.gartner.com/newsroom/id/3598917{%}0Ahttps://www.gartner.com/newsroom/id/3165317{%}0Ahttp://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917 https://www.gartner.com/newsroom/id/3598917{%}0Ahttps://www.gartner.com/newsroom/id/3165317{%}0Ahttp://www.gartner.com/newsroom/id/3598917
http://docs.honeytrap.io/docs/concepts/overview/what-is-honeytrap/
http://docs.honeytrap.io/docs/concepts/overview/what-is-honeytrap/
http://ieeexplore.ieee.org/document/1633509/

	Introduction
	IoT malware
	Adversary motivation
	IoT threat research
	Research outline

	Background
	The Telnet protocol
	The Cyber Killchain
	Honeypot research
	Low-interaction honeypot
	High-interaction honeypot

	Requirements & Related work
	Honeypot research
	Honeypot evasion and detection
	Adversary behavior

	IoT honeypots
	IoTPot
	IoTCandyJar

	Available implementations
	Kippo, Cowrie and Kojoney2
	Malware-specific

	IoT botnet analysis
	Mirai
	Hajime

	Design Considerations
	Censys data analysis
	TU Delft Telescope
	Telnet metrics
	Interaction data
	Sandboxing
	Scaling high-interaction honeypots
	Persistence

	Honeytrack: Persistent IoT honeypot
	Listener
	Services
	Directors
	Data collection
	Honeytrack Additions
	Telnet Service
	Negotiation Module
	Authentication Module
	Interaction Module
	LXC Director
	Objectives

	Evaluation
	Honeypot Discovery
	Honeytrack deployment & strategies
	Connection statistics

	Telnet Negotiation
	Invalid Telnet responses
	Valid Telnet responses

	Telnet Banners
	Credentials
	Multi-password sessions
	Dictionaries
	Input delays
	Misconfigured hosts

	Installation
	Device selection
	Single-password strategy
	Braces strategy
	Hajime family
	Other strategies
	Decision patterns
	Honeypot detection

	Malware installation
	Base64 encoded payload

	Conclusions and Future Work
	LXC mounts file
	Variant Dictionary overlap
	Bibliography

