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Abstract

The ability to recognize faces is highly important in many areas of development.
Though the years, the evolving technologies, enabled this process to be adapted in
modern computer systems. These systems can be found in a wide variety of areas
that yield significant impact. Therefore, there is an increasing demand for fast and
accurate systems, able to perform facial recognition.
In this thesis, a face recognition implementation on a FPGA-based System on Chip
(SoC), is presented. This implementation utilizes Local Binary Patterns Histograms
to extract features from test face images and Manhattan Distance to retrieve the
correct match from the systems face database. The SoC utilized is a Zynq-7030.
The feature extraction and the distance computations, between the database, are
implemented on the FPGA. The ARM processor of the SoC is responsible for receiv-
ing the input stream and presenting the output result, using the acquired distances.
Real-time, high accuracy face recognition, with an execution time of 2.4 ms and
accuracy of 78%, is achieved through this implementation.
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Introduction 1
Facial Recognition is a subject that researchers have focused on for years. In the cur-
rent Master of Science thesis, a real-time facial recognition system will be implemented,
exploiting FPGA technology. This project was carried out in collaboration with TOPIC
Embedded Systems, that set the specifications of the project and provided all resources
needed to proceed with the implementation. In this chapter, in Section 1.1 the motiva-
tion around this project is stated, in Section 1.2 a description about the project and its
specifications are given, in Section 1.3 the goals of this project are stated and finally in
Section 1.4 the outline of the Thesis is described.

1.1 Motivation of Work

Humans mainly use faces to recognize individuals. In the past decades, the advances in
technology enabled this recognition to take place, similarly, in computing systems. The
first implementations [1], [2] could be characterized as semi-automated. The required
features for recognition, were located and marked manually and then compared by the
computer system. In the future years, completely automated simple geometrical models,
based on linear algebra models, were utilized to perform recognition. Such models are
described in Chapter 3 ([3], [4]). Nowadays, sophisticated models are utilized for the
same purpose. Those models utilize geometrical features of the face in combination with
advanced mathematical models ([5], [6], [7]), increasing this way the accuracy of the
process significantly.

Aside from the accuracy, execution time of facial recognition processes is also of high
importance. The newly introduced, complex, models demand intensive computations
that consume a notable amount of time. New technologies in the field of processors
made it possible to accelerate the facial recognition process, achieving, presently, real-
time demands ([8], [9], [10]).

This evolution in the field of facial recognition, enabled solutions in a number of
different sections varying from medical assistance to security systems. The introduction
of face recognition in these areas of interest, combined to the wide spreading into simple
industry solutions, highlighted the importance of the subject and its mandatory evolu-
tion. Thus, the bar for face recognition technologies is raised constantly, with a need on
implementing systems that are faster and of higher accuracy.

The current project aims to cope with those demanding needs and derive effective
solutions. Taking advantage of contemporary technology, FPGAs in specific, will be the
main aid towards this goal.

1



2 CHAPTER 1. INTRODUCTION

1.2 Project Definition

The present project is aiming on designing a facial recognition system, in an embedded
platform utilizing FPGA technology. The basic idea, is to utilize a camera and recognize
the face that is being recorded. A database that has been stored in the platform will be
used for this purpose.

In more detail, a camera recording at a rate of 60 fps will be used to import images.
Those images will first go through a face detection process, that has been already im-
plemented separately, and gives one or multiple faces as an output, in a specific image
size, 200x200 pixels.

After this process is complete, the current project part takes over. The face that has
been detected, must be recognized. An algorithm is first used to extract features out of
the recorded face. Then, the matching process can take place. A database of faces is
required for this. We should mention here that the creation of the database has been
done beforehand and the computation intensity to create it is not of our concern and
is not needed to be taken in consideration. The total number of faces in the database
will be 100, and a total of 20 different people(5 images per person), as specified for the
project. Also, as specified for this project, we assume that the face detected is of someone
included in the database and not an unknown individual. This way, the best match is
recognized as the recorded person. The last two specifications were set by Topic and are
derived by the final product needs. The overview of the project can be viewed in Figure
1.1

Figure 1.1: General overview of the project.

The embedded platform utilized includes a heterogeneous processor (Zynq-7030) con-
sisting of both a CPU and a FPGA. The implementation will exploit both features, but
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will focus on the FPGA processor in order to carry out the compute-intensive parts,
achieving this way a real-time system responding to the frame rate of the camera (60fps).

1.3 Project Goals

The main goal of this project is to implement a face recognition system utilizing FPGA
technology. Accuracy and execution time are the main aspects, that focus is needed on,
in order to achieve real-time, high accuracy face recognition. Real-time performance is
met, if the recognition is performed in less than 16 ms. This time is derived by the
frame rate of the camera. As 60 frames must be processed at 1 second, each frame must
be processed in less than 16 ms ( 1/60 = 0.016 seconds) . In addition, high-accuracy is
translated to a first rank accuracy percentage of higher than 75%, matching the accuracy
achieved by the state of the art models, that will be described in Chapter 3.

To achieve this, research regarding facial recognition algorithms and implementation
needs to be carried out. Through this research, an effective algorithm, that can provide
high accuracy in a manageable time, needs to be chosen to apply it on our system and
also identify how other completed implementations perform. Research is also needed
concerning the implementation process, this way the proper path for reaching our goal
effectively can be approximated and followed during our implementation design. The
goals of this project can be summarized to the following:

• Research on facial recognition algorithms and conclude on the most suitable for
our system.

• Research on other implementations of the algorithm and investigate on their per-
formance and efficiency.

• Analyze the algorithm and select the proper parameters for better efficiency.

• Examine the role of the FPGA, to efficiently accelerate the chosen model.

• Implement the design for the system specified.

• Achieve real-time face recognition, with an execution time below 16 ms.

• Obtain high-accuracy, which is equal or higher than 75%, analogous to the accuracy
of the state of the art recognition models.

1.4 Thesis Outline

The thesis is organized in the following way. Chapter 2, includes background information
regarding this project, helping with its comprehension. In Chapter 3, facial recognition
algorithms are presented and a comparison between them takes place in order to deter-
mine the most suitable one for our implementation. Next, other implementations of the
chosen algorithm on different platforms are presented and their performance is being
examined. In Chapter 4, an analysis of the algorithm development takes place. This
analysis regards the selection of the most appropriate models and parameters for the
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algorithm in order to achieve the best possible result. In Chapter 5, the implementa-
tion, itself, is being described thoroughly, from the implementation approach to the last
design details . Next, in Chapter 6, experimental results of the implemented design are
examined and compared to similar implementations. Finally, in Chapter 7, a summary
of our work is given and future work is proposed.
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Background information relevant to this work will be described in this chapter. The
main fields combined in this work are facial recognition and reconfigurable computing.
In Section 2.1 an introduction on the first field will be presented. Next, in Section 2.2
some basic concepts of reconfigurable computing will be described. In Section 2.3, the
platform utilized in this work, combining the two fields, will be introduced. In the end,
in Section 2.4, a conclusion concerning the background information will be presented.

2.1 Facial Recognition Systems

A facial recognition system is a computer application, that its purpose is identifying an
input face successfully. In Section 1.1, the evolution on the field has been presented,
leading to today’s complex, but efficient models. Those models, alongside with present
accelerated face recognition implementations, will be described, in more detail, in Chap-
ter 3.

Despite the differences (based-model, input form, etc.) every facial recognition sys-
tem is based on the same outline as follows: Import an input face, extract a set of facial
features, match those features to the system’s facial features database and finally recog-
nize the face according to the best matching. This procedure can be observed in Figure
2.1.

Figure 2.1: The procedure of face recognition.

In the first part of the system, the facial features, that are going to be extracted,
and the process of this extraction, need to be decided. Those features should lead
to accurate facial recognition, by being as unique as possible for every different face.

5
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For example, the size of the face is not a proper feature, as many faces may have the
same size. Moreover, these features should be tolerant to different conditions such as
environmental conditions, e.g. lighting, expressions, etc. The process for doing that
should be also designed carefully, in order to decrease complexity and maintain a high
performance.

Once the facial features, the system utilizes, are decided, a database is constructed.
This database consists of the facial features of a number of different persons. Those
persons are the ones intended to be identified through the system. The system’s memory
should be taken in account, so that the size of the database is within its limits.

Next, the matching phase should be designed. The facial features acquired by the
input face, need to be compared to all the facial features of the database. As those feature
are represented by values in computer applications, distance measures are utilized for
this purpose. At the end of this process, a distance is calculated between the test face
and each face of the database.The recognition is then finalized by returning the face
identification of the minimum distance, also called best match.

Concerning the input and the output of a facial recognition system, they are com-
pletely depended on the purpose of the system utilization. The input may vary from
continuous video frames, to face images imported from a large database. Same for the
output, where a face picture of the matching person or just an identity word (e.g. per-
son’s name) might be returned.

In conclusion, the same process is the basis behind every facial recognition systems.
Every step of this process differs between different application and should be examined
carefully depending on the systems specifications.

2.2 Reconfigurable Computing

The subject of reconfigurable computing will be examined in this section, as it is the
basis for the current system design.

In traditional computing, two ways are met for computing algorithms [11]: ASIC
(Application Specific Integrated Circuit) and software-programmed processors.

ASICs are used to perform the operations in hardware, that has been designed specif-
ically for the current algorithm. Because of this specific design, the execution time for
an algorithm reduces significantly, leading to faster implementations. Therefore, ASICs
are proven to be really efficient. The drawback of this determinate design, is that no
alteration is feasible after fabrication, making ASICs inflexible.

Processors on the other hand, are characterized by flexibility. The change of in-
structions leads to a different system functionality, on the same hardware. The cost of
this flexibility, though, is much slower execution. The processor must first read each
instruction from the memory, translate it, and only then proceed with its execution.
This process is resulting in a high execution overhead for each operation.

A need for systems that combine the flexibility of processors and the high performance
of ASICs is obvious. Reconfigurable computing is intended to merge those beneficial as-
pects together. Reconfigurable devices can be configured specifically to execute complex
combinational functions, like ASICs, and in addition, this configuration may be altered
later on time, providing flexibility, like processors.
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The most common reconfigurable devices are the Field-Programmable Gate Arrays
(FPGAs). Every FPGA consists of a finite number of predefined resources connected
with programmable interconnects to implement a reconfigurable digital circuit and I/O
blocks to allow the circuit to access the outside world [12], as seen in Figure 2.2.

Figure 2.2: FPGA overview. [12]

Logic blocks, also referred as configurable logic blocks (CLBs), are the basic logic
unit of the FPGAs. Those blocks are made up of two primary components: Flip-Flops
(FFs) and Look-Up Tables (LUTs). LUTs are a set of gates that are combined together
to create an entity of K inputs. This entity is able to perform any K-input function
effectively [13], and is therefore the prime unit on FPGA implementations.

FPGAs have evolved radically in the past years. More resources available for config-
uration are presently included in the FPGAs. Moreover, partial reconfiguration (recon-
figuring only a part of the FPGA while the rest is operating) is nowadays feasible. Aside
from that, FPGAs have been integrated into platforms and Systems on Chips (SoCs),
to exploit their performance, as the benefits derived from their utilization are more and
more needed in modern applications.

2.3 Topic Development Kit

The integration of FPGAs in complete platforms is common nowadays, as mentioned in
Section 2.2. A platform of this type will be utilized for the purposes of this project. This
platform is the Topic Development Kit [14] developed by Topic Embedded Systems.

The main component of the platform is the Miami System-on-Module (SoM) assem-
bled on the Florida carrier board, both developed by Topic Embedded Systems. The
specifications of the Miami SoM are the primary concern of the current project. The
Florida carrier aims on enabling the platform for multiple kinds of development, in-
cluding many communication interfaces. This is useful for creating practical interaction
extensions, but should not concern as in the present.

The Miami SoM includes a Z-7030 SoC from the Zynq R©-7000 series All Pro-
grammable SoCs [15]. Regarding other main features, a DDR3 memory of 512MB is
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available and 140 pins for interface connections such as UART, JTAG, etc. In more de-
tail, the Z-7030 includes an ARM Cortex-A9 with two cores at 800Mhz, and an FPGA,
Kintex R©-7. All specifications of the the Z-7030 are given in detail in Figure 2.3, for a
better overview of the platform. The available resources will be taken more carefully in
consideration, during the implementation stages, to achieve the best result. However,
in general the resources, as presented, indicate a powerful system that can help towards
the project goal of real-time face recognition. Most of those

Figure 2.3: Z-7030 specifications. [15]

2.4 Conclusion

In the current chapter, a brief introduction on the background information, needed to
comprehend our work, was presented. The basic outline of a facial recognition system
was described in Section 2.1. Next, the field of reconfigurable computing was presented
in 2.2 and in the end, in Section 2.3 our development kit is presented. The information
shared, although it is on an introductory level, is helpful for comprehending the work
carried out later.
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In the current chapter the background of facial recognition models and implementations
will be examined. Firstly, in Section 3.1, the most dominant algorithms for achieving
recognition, the basis of facial recognition systems, are presented and compared. This
way the most suitable algorithm will be chosen for our implementation. Second, in
Section 3.2, implementations of the selected algorithm in different platforms will be
shown and their performance will be discussed. Finally, in Section 3.3, conclusion for
the current chapter will be derived.

3.1 Facial Recognition Algorithms

The groundwork for any face recognition system is the algorithm that is responsible for
recognizing a face. As seen in Chapter 2.1, the process of recognizing a face is first
extract features from a probe face and then, use this features to match this face to a face
in the existing database. Therefore, we can distinguish two parts: features extraction
and matching. All the recognition algorithms focus on the first part, as the matching
can be done efficiently with presently existing distance measures for any of the features.
Different kind of features have been proposed for efficient face recognition, from simple
geometrical features, to high contrast values existence.

After a research around the subject a number of different algorithms that can be
utilized were found. The most dominant ones should be examined and compared in
order to conclude to the algorithm that our system is going to utilize. The algorithms
that were found to be the most promising and are going to be examined are: Eigenfaces,
Fisherfaces, Elastic Bunch Graph Matching (EBGM), Local Binary Patters Histograms
(LBPH), Scale Invariant Feature Transform (SIFT).

3.1.1 Eigenfaces

The eigenfaces method for recognizing faces was introduced in 1991 [3] and it is based
on principal component analysis (PCA) [16], where a set of possibly correlated values is
converted to set of linearly uncorrelated values. This way the amount of values needed is
decreased significantly. This method enabled for the first time reliable, automated, real-
time face recognition systems. The basic idea of the method is to utilize the eigenvectors
(eigenfaces) of faces, as the linearly uncorrelated values, to distinguish them.

More specifically, a number, K, of gray-scaled images of size MxN that will form the
database are needed. Each of these images will be represented as a vector, IK, of size
1x(MxN). Having all those images the mean image, AI, is calculated

AI =

∑K
k=1 Ik
K

9
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and also the deviance for each of the images.

IDK = IK −AI

Next, the all the vectors, IDK, are merged into matrix A of size Kx(MxN).Matrix C
is then calculated

C = AAT

and the eigenvectors and eigenvalues of the matrix are calculated. A number, i, of eigen-
vectors, corresponding to the highest eigenvalues, depending on the size of information
needed is maintained. Those eigenvectors, Ei, correspond to faces called eigenfaces. Such
eigenfaces can be viewed in Figure 3.1

Figure 3.1: Different eigenfaces corresponding to varying eigenvalues [17]

The eigenfaces, Ei, are then used to find a set of weights, wkifor each image.

wKi = IK ∗ Ei

These weights represent the contribution of each eigenface in forming the original image.
So in the end each image is described by a set of weights.

A probe image, IP, is then needed to be identified. The weights, wKP ,of this image are
calculated the same way. Finally, a distance measure is used (e.g. Euclidean Distance)
to find the distance between the probe image’s weights and the weights of each of the
database images. After the distances between all images have been calculated, the one
with the smaller number leads to the best face match and identification is completed.

The research indicates that 40 eigenfaces are enough to succeed with recognition.
This way the database has to consist of 40 eigenfaces and 40 weights for each of the
images that we want to include in. Also we can observe that for every probe image
the computations are simple to lead to recognition, with the matrix multiplications
being the most intensive part. Eigenfaces ,though, is not so effective under different
light conditions and expressions. Generally, it performs well under controlled conditions
which are difficult to get in everyday life environments.
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3.1.2 Fisherfaces

Fisherfaces [4] is another popular face recognition algorithm. It was developed in 1997
and it is based on Fisher’s Linear Discriminant [18], a method used to find a linear
combination of features that characterizes classes of objects. Many similarities can be
reported between Eigenfaces and Fisherfaces as both are based on linearly projecting.

More in detail, once again, a number, K, of gray-scaled images of size MxN, repre-
sented as vectors, IK, that will form the database are used. In addition we categorize
those images into a number of classes, c. This categorization is usually done by includ-
ing the images of the same person in the same class. With all those images the average
image, AI, is calculated

AI =

∑K
k=1 Ik
K

Also the average image, AIc for each class is calculated

AIc =

∑size
c=1 Ic
K

where size is the size of the class and Ic are the images included in the class. Each class’
mean image deviation from the mean image,CDc, can now be calculated.

CDc = AIc −AI

The deviation of the images inside a class from the class’ mean image, IDc , is also
calculated.

IDc = Ic −AI

Two merged matrices are then created, A which includes CDc for all classes and B which
includes IDc for all classes. Using A and B the relative eigenvectors, E and eigenvalues,
l, are calculated.

(AAT )E = l(BBT )E

From this point on we proceed as in eigenfaces. A number, i, of eigenvectors depend-
ing on the eigenvalues is maintained. Those eigenvectors correspond to images called
fisherfaces, Figure 3.2 shows such fisherface. The weights for each image are once more
calculated.

wKi = IK ∗ Ei

Whenever a probe image is inserted the same recognition procedure is followed as
in eigenfaces for calculating its weights and the image with the closest weight values is
marked as the best match,completing the identification process.

A problem that might be encountered while using fisherfaces, is when the classes
are more than the images. To override this issue, when fisherfaces is used, the sample
vectors are projected onto the PCA space used in eigenfaces and the fisherfaces are then
computed in this PCA.

A system utilizing fisherfaces will need the same size database as in eigenfaces, 40
fisherfaces and 40 weights per image in the database. Moreover, the recognition process
calculations are the exact same as in eigenfaces. Creating the database is the only part
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Figure 3.2: Fisherface derived from a face image in the Yale Database [4]

that requires more calculations, but as stated in Section 1.2, it should not concern the
current project.

Regarding, the accuracy of the algorithm, we can observe that fisherfaces enables
classification, which can improve accuracy noticeably. A database that includes a per-
son’s images under different lightning or expression conditions can make the algorithm
insensitive to those changes. More images of a person under different conditions lead
to better results. This way a probe image, taken in a random environment, can be
recognized correctly.

3.1.3 Elastic Bunch Graph

Elastic Bunch Graph Matching (EBGM) [5], developed in 1997, is a biologically inspired
algorithm utilized for recognition in the field of computer vision. This biological inspira-
tion [19] can be derived by ,first, the visual features used are based on Gabor wavelets,
which have been found to be a good model of early visual processing in the brain, more
precisely simple cells in primary visual cortex and second, the matching algorithm itself
is an algorithmic version of dynamic link matching (DLM) [20], which is a model of
invariant object recognition in the brain.

Regarding the functionality of the algorithm, a set of database images is needed.
Each image of the DB is represented with a graph of nodes and edges. The edges are
labeled with the distance in between the nodes and the nodes are labeled with jets, as
seen in Figure 3.3. A jet [5] describes a small patch of grey values in an image I(~x)
around a pixel ~x = (x, y). It is based on a wavelet transform, defined as a convolution

Jj(~x) =

∫
I(~x′)yj(~x− ~x′)d2~x′

with a family of Gabor Kernels yj . Those Gabor Kernels are employed for different
frequencies and orientations. This way, all kernels are being generated from one mother
wavelet by dilation and orientation.

The number and position of the nodes selection is done customarily, but is based on
covering key characteristics of the face. For example, as seen in Figure 3.4, four nodes
can be selected, two of them being positioned in the center of the eyes and the other
two in the edges of the mouth. For face recognition it is suggested that the nodes are
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Figure 3.3: An image graph with a jet seen on the left [5]

placed in the inner face and not in the outline, as the recognition is based mainly on
these features. The outline is used mainly for face detection.

Figure 3.4: Positioning four nodes and six edges applied in a face image.

When nodes and edges, which are of the same number for all images, have been
placed and labeled for every picture in the database, the average position of the nodes is
being calculated. A face bunch graph can be then created, as seen in Figure 3.5, where
the nodes are positioned in the average position and labeled with all images’ jets. The
set of jets in a node is called a bunch.

A probe image, to be recognized,is then inserted in the system. Initially the nodes
are placed in the average position calculated before. The exact correct position of the
nodes is then searched. To perform this, the jets for a region nxn around the given
positions are calculated. A similarity function, utilizing values distance, is then used to
define which jet position is more accurate. This way the right positions of the nodes are
found and the jets are being calculated. The identification of the image is then taking
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Figure 3.5: A face bunch graph.

place. The difference in the jets’ values between the probe image and the database image
is found and the smaller one is marked as a best match. Edges length can be also utilized
in case of more than one close match.

The database for such a system depends on the number of images and the number
of the nodes per image. Most researches select this number in the range 10-40. We can
see, this way, that the database takes up small size. The calculations, though, needed
to identify a probe image are of high number. This has to do, mainly, with finding the
accurate position of the nodes, as the jets have to be calculated for every pixel in a frame
nxn around each node. This increases significantly the calculations. Finally, the accuracy
of the algorithm depends directly on the variety of images of a person in the database.
Grids for different face rotations have to be included for the algorithm to be insensitive
to rotations, as seen in Figure 3.6. Also pictures of different environmental conditions
have to be included to effectively identify a probe image. This way the database size can
increase remarkably. However, if all these specifications are followed the algorithm can
achieve very high accuracy.

3.1.4 Local Binary Patterns Histograms

The Local Binary Patterns Histograms (LBPH), proposed in 2006 [6], is another algo-
rithm used for face recognition, that is based on the local binary operator [21]. It is a
very popular algorithm used widely because of its discriminative power and computation
simplicity [22].

In more detail, a number k of gray-scaled images, sized NxM , is used as the database.
First each image is split into sections. Usually the same size for splitting is used, in
both width and height, resulting in mxm sections. Then for each image a histogram is
calculated.

In each section the local binary operator is utilized. This operator, applied in images,
compares a pixel to its eight neighbors. This comparison checks if the neighbor pixel is
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Figure 3.6: Different grids for rotated faces.

higher than the current pixel and if so, is labeled with ’1’ otherwise is labeled with ’0’.
Applying this to all 8 neighbors we end up with 8 binary values. Merging those values
in a single number we have formed an 8-bit binary number that can be translated to
a decimal number in the range 0-255. This operation can be observed in Figure 3.7.
This process is done for every pixel in the section. Other variations of the algorithm,
perform the operator in more neighbors or even in different distance from the center
pixel, increasing in sometimes the accuracy.

Figure 3.7: LBP operator example.

The histogram for the current section is then created by calculating how many times
a value appears in this section. This way, the histogram for each section consists of 256
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bins. This can be summed up to the following equation

Hi =
∑
x,y

I{LBP (J(x, y)) = i}, i = 0, ..., 255

where Hi is the bin of value i, J(x, y) is the (x, y) pixel of the image and I is an if
operator returning ’1’ if the statement is true or ’0’ otherwise. When the histograms
for all sections have been calculated a single histogram is create by unifying all the
histograms for each section as seen in Figure 3.8. This final histogram will contain
256 ∗m ∗m bins and is defined as the feature vector of the image.

Figure 3.8: Process of creating the final histogram [22]

An image seeking recognition is now ready to enter our system. The same process is
followed for this image to derive its own histogram. Once the histogram is retrieved, it
is compared to the database’s histograms and the closest match is identified, finishing
the recognition process. Weights in different sections of the pictures can be added in this
process. Sections that include important features (e.g. eyes, mouth) should be taken in
more account when we try to find the closest match, and weights enable that.

An important extension of the algorithm is using classification. This way images of
the same person can be added in the same class. When the comparison between the
histograms of the database takes place, the distance from all the pictures in a class is
averaged.

∆n =

∑s
i=0 δi
s

, n = 0, ..., N

where δi is the difference between image’s i histogram, s = size of class and N = number
of classes. The probe image takes in account all pictures of a single person and not just
one. This way the algorithm becomes more robust in different environmental conditions.

Two other extensions that are often seen, reduce the bins used in the histograms.
The first one [23] , introduces the uniform patterns. Uniform patterns consist only of
the values with up to 2 spatial transitions (bit wise 0/1 changes) in the binary vector.
For example 00001100, 11110001 (2 transitions) are uniform patterns where 00110011
(4 transitions) and 01010111 (6 transitions) are not. Using only uniform patterns, the
histogram bins reduce from 2P to P (P − 1) + 2 for a P neighbor implementation. The
second implementation [24], reduces the feature vector by considering the values retrieved
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from the LBP operator and their complements as equal (e.g. 11110000 and 00001111).
This way the bins in each histogram reduce from 2P to 2P−1 + 1. Both implementations
are very useful when the feature vectors need to be of small size and in addition robustness
has been reported to environmental alterations in some cases.

Having said that, it is now obvious why this algorithm is preferred very often. The
calculations are simple consisting mostly of simple pixel comparison. Also the database is
small in size depending on number of sections per image and the number of images, size =
Images ∗ Sections ∗ 256 . Moreover, the LBP operator adds insensitivity to different
illumination increasing the accuracy rate. Finally, through classification robustness is
added to other conditions.

3.1.5 Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT) [7] is an algorithm developed in 1999 for ob-
ject recognition, but has been applied effectively for face recognition as well. Its main
functionality is point matching between different views of a 3-D scene and view-based
recognition. SIFT is invariant to translations, rotations and scaling transformations and
robust to moderate perspective transformations and illumination variations. Experi-
mentally, the SIFT descriptor has been proven to be very useful in practice for image
matching and object recognition under real-world conditions [25].

The algorithm can be divided into two parts. In the first part, keypoints of an image
are found. In the second part, feature vectors for this points are calculated. So, having
a database of images in our system the keypoints of the images are found first.

The keypoints need to be invariant with respect to image translation, scaling, and
rotation, and are minimally affected by noise and small distortions. The Gaussian kernels
and next the difference of Gaussian function (DOG) in scale space are applied for this
reason first, as they are the only smoothing kernels for scale space analysis [26]. For the
first scale, each image is convolved with the Gaussian function in both axis.

G(x, y; kσ) =
1

2πk2σ2
e(−x

2+y2)/(2k2σ2)

Four convolutions for k, k2, k3, k4 are performed in order to receive 3 DOGs. In this
space maxima and minima are found. This is done by selecting pixels that are smaller
or bigger than their 26 neighbors in the 3-D space. Those 26 neighbors are represented
in Figure 3.9.

Next the image is scaled down. Billinear Interpolation is used in this stage to achieve
correct scaling. Four convolutions with the Gaussian kernels are once more taking place
but with k2, k3, k4, k5 this time. The minima and maxima are found in this scale DOG
space as well. This process is repeated depending on how large the scale space needs to
be. An overview of the process to receive the DOGs is shown in Figure 3.10.

After all this process a number of key points, that can be represented as different size
blobs depending on the scale they correspond (Figure 3.11), has been found. An example
image with keypoints is presented in Figure 3.12.The second part of the algorithm, for
finding feature vectors for those key points, kicks in. For each keypoint, the magnitude
M and orientation R for each pixel in a 16x16 neighborhood (neighborhood size can be
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Figure 3.9: Neighbors of a pixel in the 3-D space [27]

extended depending on the design) are computed:

Mij =
√

(Aij −Ai+1,j)2 + (Aij −Ai,j+1)2

Rij = atan2(Aij −Ai+1,j , Ai,j+1 −Aij)

Figure 3.10: Process to reach DOGs in keypoint exploration [27]

By calculated magnitude and orientation, robustness in size and rotation is added.
Moreover with utilizing neighbor pixels the algorithm can be invariant to illumination
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Figure 3.11: Keypoints represented as different size bolbs depending on the scale [27]

Figure 3.12: Keypoints example of an image [25]

changes as well. Moving on, the 16x16 space is split into four 4x4 sections. In each of
these sections an 8 bin histogram is calculated. Each bin corresponds to one direction
0◦, 45◦, ..., 315◦ and the value of each bin is the addition of magnitudes for this orientation.
The directions used, therefore the bins, may be of a higher number depending on how
the algorithm is designed. The highest values direction is usually used to represent
the orientation of the keypoint. This way, for each keypoint four 8-bin histograms are
calculated (Figure 3.13). The unity of this histograms constitute the feature vector of
this keypoint.

When a test image is inserted in the system the keypoints and feature vectors of
the keypoints are calculated. The keypoints are then compared to the database images’
keypoints and the one with the most matching keypoints is identified as the best match.

The SIFT algorithm introduces invariance in many different levels making it a very
accurate recognition solution. A database for a system utilizing SIFT is small in size
and depends on the keypoints per image, the orientations we want to include in the
histograms and the images we will include. The computations, though, to recognize a
test image are exceeding by far the calculations needed by other recognition algorithms.
For extracting feature vectors, a series of convolutions, interpolations and summations
are needed, making the algorithm really intensive. Moreover, this level of invariance is
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Figure 3.13: Creating a histogram for a 16x16 neighborhood using magnitude and orientation
values [27]

not needed in face recognition, as rotation and size variations are inside a certain range,
contrary to object recognition. This way, the cost of the calculations is not reflected in
the results’ difference.

3.1.6 Algorithms Comparison

The most dominant algorithms for face recognition have been described in Sections 3.1.1-
3.1.5. Their main functionality was explained briefly in order to understand the needs of
each algorithm in calculations power, in database size, etc. Those algorithms have been
implemented in the past and experimental results have been retrieved. In this section a
comparison between them will be attempted in order to conclude to the algorithm that
is most suitable for our implementation.

A comparison between the first two algorithms Eigenfaces and Fisherfaces is pre-
sented first, as those two algorithm have lots of common ground. In the first introduction
of Fisherfaces [4], an extensive comparison between the two algorithms is reported. In
all of the experiments the fisherfaces outperforms eigenfaces. The error rate difference
is reaching even 30% in favor of fisherfaces, for complex image subsets. In Figure 3.14
the error rate for the algorithms is presented when the Yale face database is utilized,
which contains variation in facial expression and lighting. It is obvious through this
graph the difference between the two algorithms. Moreover, in [28], another comparison
between the two algorithms is presented. In this research, the two algorithms are tested
in different pose variations and the fisherfaces outperforms eigenfaces. Figure 3.15 shows
the accuracy rate for different pose angle for the two algorithms. It has been clear that
fisherfaces is a more accurate algorithm than eigenfaces. Also, the calculations needed
for recognizing a face are of the same exact number for both algorithms, consisting of
multiplying the probe image with the number of fisherfaces or eigenfaces. The database
also is of the same size for both of them.

EBGM is examined next. The algorithm’s accuracy was compared to different ver-
sions of eigenfaces and fisherfaces in the FERET Database which contains different sub-
sets. The accuracy rate is checked for different ranks. In this point we should define
rank as the number of best-matching images among which the correct answer is found.
Rank is used oftenly to evaluate face recognition systems. In all of those experiments
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Figure 3.14: Error rate of fisherfaces and eigenfaces in Yale Database [4]

Figure 3.15: Fisherface (LDA) and eigenface (PCA) accuracy rates for different pose angles [28]

EBGM outperforms the other algorithms. In Figure 3.16 we can see the results for the
fafb subset, images with alternative facial expression, and in Figure 3.17 the results for
the dup2 subset, images taken in different time under different conditions. In both cases
we observe the better accuracy of EBGM. Concerning the database needed for EBGM,
is at the same size as the other compared algorithms. The drawback of EBGM is the
heavy calculations needed for the probe image as described in Section 3.1.3 which may
lead to a huge lateness.

Next, LBPH is investigated. We will concentrate on Ahonen’s work [6], where an
extensive comparison to the already proposed algorithms is being performed. LBPH
is more accurate than the other algorithms in all of the experiments. Figure 3.18 we
can see the performance of LBPH, with and without weights added (see Section 3.1.4),
Eigenfaces, and EBGM optimal which is a better extension of EBGM. The experiments
performed in the Feret database for the fafb (images taken with different expressions), the
fafc (images taken with different illuminations), dup2 (images taken in different times
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Figure 3.16: EBGM, fisherfaces and eigenfaces comparison in Feret Database, fafb subset [29]

Figure 3.17: EBGM, fisherfaces and eigenfaces comparison in Feret Database, dup2 subset [29]

and conditions). For all subsets even the non weighted LBPH outperforms the other
algorithms. Compared to EBGM, weight LBPH can report differences up to 40% for
complex databases. Furthermore, the calculations needed for recognizing a test image
are much less compared to EBGM, while the databases of LBPH systems remain in the
same small size.

Finally, the SIFT algorithm is compared to the other models. As reported in Section
3.1.5 is a very accurate algorithm. Many researches, conducted through time, confirm
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Figure 3.18: LBPH, EBGM and Eigenfaces comparison in fafb,fafc and dup2 subsets [29]

this[30] [31]. SIFT achieves higher accuracy rates outperforming all the other algorithms.
In Figure 3.19 the accuracy rate for different image compression levels in an open uni-
verse environment are presented. SIFT results are better with a big difference compared
to fisherfaces and eigenfaces methods. In comparison to LPBH, although the difference
is much smaller with an average of 1.64%, SIFT is still returning better accuracy. Com-
paring the database size of SIFT utilizing systems to that of the other algorithms, similar
size is reported. SIFT calculations though for recognizing a probe image exceed those of
the other algorithms.

Below, Table 3.1 we give a brief estimate of the database size for the different models.
In the features column we present the parameters for which the calculations are done.
Those parameters are average approach and are used to have a general comparison. Also
the image size is MxM and N images are used in the database. Also for every feature
value we choose the 16 bits representation (2 bytes) as the range 0-65535 is adequate. In
Table 3.2, an example database size is given for 100 images of size 100x100. We observe
that the sizes range from 49kb to 800kb which are very small values. As reported in
Section 1.2, 100 images would be included in our database as well, making this example
very useful. Although there are variations between the different algorithms, the size
remains insignificant to affect directly our algorithm choice.

The calculations needed in average for each algorithm to extract the required features
are presented as well. This is a very important part, as we do not want the calculation
to be very complex in order to be translated to a low level logic effectively. Furthermore
less intensive algorithms are also preferable to reduce the lateness boundary. As seen in
Table 3.3 Eigenfaces, Fisherfaces and LBPH require the simplest and less calculcations
of all algorithms containing matrix multiplications, additions and substractions. EBGM
and SIFT need a large numbers of calculations which are also complex as convolutions
are needed. SIFT specifically requires a huge amount of calculations that exceed by far
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Figure 3.19: Eigenfaces, Fisherfaces, LBPH and SIFT comparison for images with different
compression level [30]

Table 3.1: Algorithms’ Database Size

Algorithm Parameters Database size (bytes)

Eigenfaces 10 Eigenfaces used 10∗MxM ∗2+N ∗10∗2

Fisherfaces 10 Fisherfaces used 10∗MxM ∗2+N ∗10∗2

EBGM 10 Nodes used and 5 orientations,5
frequencies used in the Gabor

Kernels

10 ∗ 5 ∗ 5 ∗N ∗ 2

LBPH 16 sections used 16 ∗ 256 ∗N ∗ 2

SIFT Average 20 keypoints, 4 neighbor
sections used

20 ∗ 4 ∗ 8 ∗N ∗ 2

the simple calculations of Eigenfaces, Fisherfaces and LBPH.

The distance calculations for matching the probe image are not presented as they

Table 3.2: Database size for 100 images of size 100x100

Algorithm Database size

Eigenfaces 197kb

Fisherfaces 197kb

EBGM 49kb

LBPH 800kb

SIFT 125kb
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Table 3.3: Calculations for extracting features from a 200x200 probe image

Algorithm Parameters Calculations

Eigenfaces 10 Eigenfaces 10 MxM Matrix Multiplications

Fisherfaces 10 Fisherfaces 10 MxM Matrix Multiplications

EBGM 10 Nodes, 5 orientations
and 5 frequencies in the

Gabor Kernels and a frame
3x3 for node positioning

10 ∗ 5 ∗ 5 ∗ 9 MxM Convolutions
and 3 ∗ 3 ∗ 10 ∗MxM Subtractions

LBPH 8 neighbors used MxM ∗ 8 Subtractions and MxM
Additions

SIFT 3 x.5-scales used, 4 4x4
neighbor sections, 20

keypoints

16 MxM Convolutions, 9 MxM
Subtractions, 3∗MxM

4 Interpolations
, 20*16*16 Tangent calculations,

2*20*16*16 additions

are the almost identical for every algorithm. Their only difference is relevant to the
number of features that are extracted from each algorithm, which depend mainly on the
parameters used in each implementation. With the utilization of similar size parameters,
the number of features remain almost the same for each model.

Depending on those facts, the proper algorithm should be chosen for our system
implementation. Regarding accuracy, SIFT returns the highest rates followed closely
by LBPH. Fisherface and EBGM are below LBPH and Eigenface comes last with a
very low accuracy rate, making it an insufficient algorithm for our system. Also SIFT
and LBPH support light invariance which is a very important aspect. For this reason,
alongside with the high accuracy rate, those two algorithms are the main candidates for
our system. The high and complex calculations, needed by SIFT to be applied on the
probe image, though, set a huge drawback for this algorithm. The average difference in
accuracy between LBPH and SIFT of 2% , as stated before, is not justified by the huge
difference in calculations needed. As mentioned in Section 3.1.5, this difference could be
reflected in a different subject implementation e.g. object-recognition, but not in face
recognition.

In conclusion, the above comparison results presented, lead to the decision to uti-
lize Local Binary Patterns Histogram (LBPH) for our system. Through this algorithm
comparison, one can comprehend effectively and verify the proneness of LBPH for the
current project implementation.

3.2 Local Binary Patterns Histograms Implementations

LBPH as mentioned before, is a very popular algorithm. Numerous systems utilize it for
their own purposes. In the previous section, we saw how the algorithm works. Although
the calculations needed by the algorithm are not many compared to other algorithms,
they still require a noticeable execution time. These number can also increase depending
on the size of the image and the parameters the algorithm is using (e.g. number of
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sectors). Solutions that try to reduce the execution time of LBPH, while maintaining
its accuracy have been investigated. As LBPH was introduced in 2006 [6], the first
researches on this subject lay only a few years back, denoting its novelty.

In 2010, an implementation of Local Binary Patters was implemented using SIMD
(Single Instruction Multiple Data) Instructions of CPU [9], in order to achieve acceler-
ation of the algorithm. This implementation aimed on object detection and focused on
the local binary operator only,as no histogram creation exists. The advantage of this
implementation is that no extra hardware is needed as an SSE supporting CPU is ad-
equate for it. Except from the SIMD instruction, in this work the number of memory
accesses are minimized. This is done by preprocessing the image. Through interleaved
convolution the needed data are extracted fast and are placed in the same block for each
feature examined, minimizing the number of accesses needed. After the preprocessing of
the image the SIMD is utilized for the LBP operator on the data. Figure 3.20 presents
an example of the LBP operation in a set of data. The SIMD enables these operations
presented to be done in parallel. This implementation was compared to the implemen-
tation with no optimizations that is referred as ’Plain C’. The results of the comparison
can be seen in Table 3.4. A large difference in frames per second process can be viewed.

Figure 3.20: Block diagram of SIMD LBP evaluation [9]

Another implementation of LBPH, applied specifically for face recognition, was in-
troduced in 2012 by Tek et. al [8]. In this work, CUDA is used to implement the
algorithm in GPU, in order to accelerate it. Two methods are approached to achieve
this. First, each thread block is responsible for retrieving the histogram for each region
of the image. During this process, each wrap calculates a part of the region and when
all wraps are finished the final histogram is constructed. A representation of this can
be viewed in Figure 3.21. Second, the matching process is parallelized. This way, each
block, and each wrap consequently, can perform the distance calculations between the
feature vectors in parallel, accelerating the process. In Table 3.5, the results of the GPU
are compared to the CPU implementation. Different region sizes, feature lengths and
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Table 3.4: Object detection in frames per second for two different target error rate a
classifiers.

a = 0.1 560x240px 720x576px 1280 x 720px

SIMD 61 22 10
PlainC 8 3.4 1.4

a = 0.2 560x240px 720x576px 1280 x 720px

SIMD 87 28 13
PlainC 12 4.5 1.9

Table 3.5: Feature extraction times of the GPU and CPU implementations for various
cases using a single stream [8]

LBP
Type

Region
Size

Feature
Length

GPU
[ms]

CPU
[ms]

(8, 2)u2 11x13 8496 0.17 4.25
(8, 2)u2 18x21 2891 0.17 3.85
(8, 2)u2 26x30 1475 0.17 4.01
(16, 2)u2 18x21 11907 0.18 7.45
(16, 2)u2 26x30 6075 0.18 7.86

LPB types are examined. We should mention that the format (e.g. (8, 2)u2 ) for the
LBP types reports the pixel neighbors used, the distance from the centre pixel and also
if an extension of LBP is used, u2 in this case corresponding to uniform extension. We
can observe that a noticeable speedup is achieved using the implementation proposed in
GPUs. The difference between the two execution times tends to become larger, when
the data processed are increasing.

Figure 3.21: Arrangement of the thread blocks for a sample image divided to 7 7 regions. Each
warp in a thread block constructs a per-warp histogram for a 32 pixel area in the corresponding
region as shown on the right side of the figure. [8]

An FPGA implementation of LBPH was introduced in 2012 [32], concentrating in
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Table 3.6: Detection results. Correct detections (CD), false detections (FD), missed
detections (MD), accuracy = CD/(CD+FD) [32]

CD FD MD Accuracy

Training dataset 613 0 0 100%
Test dataset 296 9 11 97%

Annotated video 496 99 140 83%

human detection. A video-stream of resolution 640x480@60fps was used as an input and
the system designed managed to detect humans in real time. Parallelizing many compu-
tations in the FPGA leads to a better execution time. The uniform and non-redundant
extensions of LBPH were utilized minimizing the feature vector size. The SVM clas-
sifier was also used for effective classification. In Figure 3.22 the system overview can
be viewed. All the modules presented where designed using VHDL and Verilog. The
implemented system was tested for accuracy. The results were very impressive and can
be seen in Table 3.6. Regarding the execution time, real time execution is reported as
achieved, but unfortunately no timing results are presented. Although this work ap-
proaches our project definition, only small feature vectors are used and this work is
limited to detection.

Figure 3.22: FPGA based system overview. [32]

In conclusion, through all the works presented, LBPH is returning good experimental
results. The researches carried out indicate that the algorithm can attain low execution
time if the right resources are utilized. GPUs , FPGAs or even CPUs can lead to this
result. Parallelization of the algorithm, or parts of it, is though needed in order to achieve
that. Different approaches have been presented in this section leading to the same goal
through different paths.

3.3 Conclusion

Through this chapter, a literature review on the field of facial recognition was performed.
In Section 3.1 the most popular and cutting-edge facial recognition algorithms were pre-
sented. The main points discussed were the functionality of each model, its efficiency
and its complexity. An algorithm comparison was also presented, in order to identify
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the most proper one for our implementation. Through this process the LBPH model
was selected. In Section 3.2, different modern implementations of LBPH were presented.
Those implementations utilize cutting-edge technology in order to accelerate the algo-
rithm and optimize its performance. Examining those implementations, the novelty of
our system can be pointed out, as it is the first time the LBPH algorithm will be designed
in an FPGA for face recognition purposes.
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Algorithm Development 4
In the current chapter, the process of developing the algorithm will be presented. The
Local Binary Patterns Histograms model is utilized for our system. The model structure
and functionality has been described in Section 3.1.4. Also in Section 3.1.6 a comparison
between other models has been presented, justifying our choice to utilize the LBPH
model.

The developing of the model includes writing the basis code for the complete algo-
rithm, choosing the proper parameters for maximum efficiency and testing the perfor-
mance. The parameters that are going to be examined are: the number of image regions
used in LBPH, the weight of the different regions, the distance measure that is going to
be utilized to compare the histograms and finally the use or not of classification. The
utility and effect of these parameters can be observed in Section 3.1.4.

Matlab will be utilized for prototyping the code. For testing the performance of the
algorithm, the Unconstrained Facial Images (UFI) [33] database will be utilized. A more
detailed description of this database will be provided later on in the document, as in the
current section this shall not be our concern. The database will consist of 100 images
and 100 images will be used for testing.

During the development of the algorithm our focus will be centered in the first rank
accuracy results, as those are depended solely from the parameters used. The perfor-
mance should not be our main concern at this point, as this will be the main aim during
the design and implementation of the model on the FPGA-based SoC will focus on the
performance aspect and apart from that the parameters effect it in a small percentage.

In the following sections the procedure of choosing the proper parameters is presented
in detail.

4.1 Number of Regions

In LBPH the image is divided into regions, as described in Section 3.1.4. For each
region, a unique histogram is formed from the region pixels’ LBP values. The complete
image histogram is created by merging all the regions’ histograms. Having said that, is
obvious that the more the regions, the larger the size of the histogram and the database.
However, the number of regions is affecting the accuracy of the recognition as well.The
research study presented in [34] shows that the dependency between the region number
and the accuracy is of concave and monotonously increasing form.

In the current work the effect of different region numbers is examined too. It should
be mentioned that as the input images, as defined in Section 1.2, are of size 200x200, the
division by the region number should return a zero remainder. Once the prototype code
has been developed (the chi-square distance measure and classification is used at this
point to compare the histograms), different region numbers have been tested. The graph
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Table 4.1: Distance between the best match and the second best match distance.

Region Numbers Distance

4x4 (16) 23.88

5x5 (25) 24.62

8x8 (64) 25.12

10x10 (100) 23.16

10x20 (200) 21.04

below, Figure 4.1 shows the accuracy for the different region numbers. The distance
between the best match distance and the second best match distance is also examined to
observe the robustness of the model. Those distances are presented in Table 4.1. Finally,
the size of the histogram for the different regions is presented in Figure 4.2.

Figure 4.1: Accuracy results for different region numbers. (X axis x Y axis)

The above presented results provide us a complete overview of the affects the different
region numbers have. The logarithmic-like form, mentioned before, between the accuracy
and the region numbers can be confirmed by the results in Figure 4.1. The accuracy
is increasing with a bigger rate in the lower region numbers and less as the numbers
increase. Between the 10x10 and the 10x20 region numbers only a 3% difference is
reported. Those two cases are the best candidates for our final model, as they provide
an acceptable accuracy rate.

The size of the each image histogram size for 10x10 and 10x20 regions is 50kb and
100kb respectively. Having in mind that the database will consist of numerous his-
tograms, the 10x20 regions case will always lead in a double size database, which might
be prohibitive in larger databases. Moreover the calculations needed to compare a test
image to the database will be doubled for the second case. This, double increase in both
the database size and the calculations is excessive for returning an only 3% improved
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Figure 4.2: Image Histogram size for different region numbers.

accuracy. Also, the better robustness reported, through the results in Table 4.1, for the
10x10 region size offsets in a small scale the lower accuracy percentage.

In conclusion, the 10x10 regions number (100 regions) is selected for our model. The
ratio of accuracy and robustness to database size and calculation operations was the main
criterion to lead to this decision. Through this selection a high accuracy is obtained for
our model.

4.2 Weights of Regions

The different regions of an image form a kind of an entity, as they include a unique
histogram. It is clear that some parts of an image (face) help to greater extent in
recognizing a face. Thus some regions play a more important role in face recognition
than some others, which are less significant.

In the current section the effect of region weights will be examined (the same code as
in Section 4.1 was used with 10x10 regions). The first set of weights utilized is derived
by [6], where an efficient weight set for a 7x7 regions image is presented. Because of the
different region number in the current model, 10x10, the weight set modified to match
the different regions dimensions. This modification, that leads to the first set of weights
utilized, can be observed in Figure 4.3.

The second set of weight was derived by a set of experiments based on the first
set of weights. During these experiments the variance between the different regions
was examined to identify important regions that may vary the first set. Based on this
variance, a sequence of modifications on the first set were applied and the accuracy was
tested. The final, most accurate, set of weights derived is presented in Figure 4.4. The
derived weights were initially 0.5, 1, 2, 4, but in order to avoid floating point operations
the weights utilized were doubled.
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Figure 4.3: 7x7 regions weights [6] modified for 10x10 regions (red squares indicate region weight
4.0, blue 2.0, white 1.0 and grey 0.0)

Figure 4.4: Proposed region weights (red squares indicate region weight 8.0, blue 4.0, white 2.0
and grey 1.0)

In Figure 4.5 a comparison between the different region weights is presented. The
proposed set of weights (second set) returns an 1% higher accuracy than the Ahonen
weights (first set). This improvement does not burden the performance of the algorithm
and therefore will be the set utilized in our model. It is observed that the overall
accuracy has been increased by 3% with the addition of proper weights, leading to an
overall accuracy of 78%. This rate for first rank indicates a high-accuracy model for face
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recognition.

Figure 4.5: Region weights comparison (No weights, Ahonen weights [6], Proposed weights)

4.3 Distance Measures

Up to this point, the experiments conducted for the development algorithm utilized
the chi-square statistic for the distance measure. In this section three more popular
distance calculation models will be examined to identify the most proper one for our im-
plementation. The four, in total, distance measures examined are Chi-Square, Euclidean
Distance, Manhattan Distance, Log-likelihood. The distances for each one are derived
by the following mathematical models:

• Chi-Squrare statistic [35]:

∆xy =

√
(x− y)2

x+ y

• Euclidean Distance:
∆xy =

√
(x− y)2

• Manhattan Distance [36]:
∆xy = |x− y|

• Log-likelihood :
∆xy = −x log y

The mathematical models presented have a wide range of utilization from simple
distance calculations to statistical methods. Moreover, their utilization has been reported
in the past for histogram comparisons [37]. Those four models are considered as the
distance measures candidates for our model. The algorithm developed so far (10x10
regions, proposed region weights) was used to evaluate the four models. The same test
experiments was conducted four times with a different model utilization each time for
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calculating the distance between the test histogram and databases histograms. The
accuracy results obtained are presented in Figure 4.6.

Figure 4.6: Accuracy of different distance calculation models

Through the graph in Figure 4.6, we can notice that the two most accurate models
are the Chi-Square and the Manhattan Distance with the same accuracy, 78%. The
decision of the distance measure for our implementation has to be made between those
two models. Although the same accuracy is returned, the Manhattan Distance consists
of much simpler operations. Even if the square root is removed from the chi-square,
as the distance differences will remain the same, a division operator is included in the
model. The implementation, as described before, will be accelerated using an FGPA,
which requires many clock cycles to perform the division operator and thus should be
avoided. In addition, the division in the model may lead to floating points, making this
way the whole design more complex. On the other hand, the Manhattan Distance is
a simple model requiring only an absolute value operator, which can be implemented
easily on the FPGA.

To sum up, the Manhattan distance is utilized to calculate the distance between the
histogram derived from the test image and the database histograms. This model returns
high accuracy recognition and is simple to implement on our system.

4.4 Classification

The prototyping of the code was based on classification utilization. In this section,
classification will be examined. As classification, we define the procedure of creating
classes of common database faces, in order to make the recognition more accurate.

The purpose of classification in recognition is to take in account all similar faces
before making a matching decision. This way, the recognition becomes robust to extreme
variations in a face image and the matching process is being normalized. Moreover, the
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faces included in a class are very important. If a class includes images that cover a
variety of conditions (expressions, poses, etc.), the recognition of a similar face is more
easily performed correctly. For example, a class containing a person’s images while he
is laughing or with closed eyes is more appropriate than a class with different images of
the same pose.

As the face recognition process aims on recognizing people, the classes are formed
including the same person’s face images. As described in Section 1.2, in the current
project, the database will include 100 faces of 20 different people, 5 images per person.
It is clear that the classification process will create 20 classes each one containing 5 face
images.

Through classification, the matching of a test face image takes place in the class level
and not in the separate face images level, as seen in Figure 4.7. However, this matching
process may vary and it is going to be examined in order to choose the most proper one.

Figure 4.7: Matching process with and without classification

As described in the previous section, the Manhattan Distance is used as the compar-
ison mean. Through this model and with the utilization of classes, we can define two
cases for the matching process that are going to be investigated. Those two cases, differ
on the distance calculation between the test image and the class and are defined by the
following models:

• Case 1:

∆tc =

∑N
i=1 |t− imi|

N

• Case 2:

∆tc = |t−
∑N
i=1 imi

N
|
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,where t is the test image histogram, imi are the face images’ histograms of the class
and N is the size of the class. In the first case the Manhattan Distance is calculated for
every image histogram of the class and then the average is found. In the second case, the
average histogram of the class is found and then the Manhattan Distance is calculated.
The second case, is considered as the average histogram of the class can be calculated
before hand and be included to the database. This way the database is reduced to the
number of classes ( reduction of 5 times in this project).

The matching process is performed by matching the test image to the closest distance
class, thus to the closest person. The two cases alongside with the no classification case,
where the closest distance test image is indicated as match, where tested. The accuracy
results can be seen in Figure 4.8

Figure 4.8: Classification cases accuracy results

As seen in the graph, the benefits of classification are observed. The robustness
added to the algorithm leads to better accuracy results. The classification enhanced the
accuracy by 3%. Also, we observe no difference in the accuracy between the two matching
cases. This makes the second case as the most proper matching case. As described before,
in the second case, the database size is reduced to the number of classes, which is crucial
for both the memory needed by the system and also the comparison calculations needed
and as there is no significant drawback on the accuracy this is the matching model that
will be utilized for our system.

Utilizing this model, the formation of the database of our system will be done by
finding the average histogram for each class. Through this process 20 histograms will be
calculated and imported to the memory of the system.Then, the test image’s histogram
distance from the classes will be calculated according to the case 2 mathematical model
described above. However, the average histogram calculated may contain floating values.
This is something we want to avoid for our system, in order to decrease its complexity.
To overcome this issue, the sum of the class images’ histograms is calculated instead and
imported to the system. The distance calculation, which has to remain accurate, is then
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performed by the following model:

∆tc = |N ∗ t−
N∑
i=1

imi|

Through classification, the system is benefiting on two different aspects. First, the
algorithm becomes more robust on face images conditions and therefore more accurate.
Second, the database sice, through the matching model, is reduced to the number of
classes, 5 times smaller database in the current system. Those conclusions justify our
decision to use classification in the first place and furthermore to utilize the second
matching case, presented, for our system.

4.5 Conclusion

The complete development of the algorithm has been presented in this chapter. This
process is mandatory before proceeding to the system implementation. The proper pa-
rameters and models for the system need to be examined, prior to the implementation, in
order to ensure the efficiency of our system. The finalized developed prototype algorithm
will set the basis and guidelines for the implementation.

The key aspects investigated included parameters of the LBPH algorithm and in-
cluded models. In Section 4.1, the number of regions of LBPH was decided, assuring
high accuracy and relatively small database. Section 4.2 describes the way the proper
region weights were chosen to further increase accuracy. Different distance measures,
needed for the histogram matching process, were presented in Section 4.3, and the most
appropriate one, Manhattan Distance model, was selected. Finally, the utilization of
classification and its benefits were described in Section 4.4.

In conclusion, through a set of experiments, the algorithm for our system was de-
veloped following the most appropriate path. This process’ goal was to maximize the
efficiency of the algorithm, always with respect to the project specifications. This goal
is confirmed by the final 78% first rank accuracy achieved and also by ensuring that the
model complexity is not burdened.
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Implementation 5
The process of the system implementation will be described in this chapter. This im-
plementation is based on the developed algorithm, Chapter 4, and with respect to the
project specifications, described in Section 1.2. The platform utilized is the Topic De-
velopment Kit (TDK), presented in Section 2.3, and the goal is to utilize successfully its
resources, to achieve an efficient design. In the following sections, 5.1 - 5.4, the whole
procedure of implementing the final system will be described extensivelly.

5.1 Design Approach

An investigation on the general implementation approach is initially required. The pur-
pose of this investigation is to examine which resources should be utilized, to achieve
our goals and in which way. We would like to repeat, in this point, that the main goal
of this implementation is to accelerate the algorithm, in order to achieve the real-time
target of 0.16 seconds. The other goals of this project, such as high-accuracy, have been
guaranteed through the algorithm development, leaving the execution time, as the only
concern for the current design implementation.

As the platform utilized is the TDK, the prototype Matlab code has to be written
in C, in order to examine its operation on the ARM processor. The developed code is
then profiled to have an insight on its performance. The parts of the code examined
were the Feature Extraction, utilizing LBPH, and the Histograms Comparison, utilizing
Manhattan Distance, which were grouped into two separate functions, to have a clear
overview. The input and output operations were not examined, as this is depending on
the different systems’ needs. The total execution time for those two functions, on the
bare-metal ARM, was summed to 1414.397 milliseconds (ms). The feature extraction
required 514.799 ms and the histograms comparison 899.598 ms. The ratio between
those two function can be seen in Figure 5.1.

The execution times are far from the goal of 16ms, as seen in Figure 5.2. The
processing units of the TDK are two ARM processors and an FPGA. Even if we managed
to perfectly parallelize the code to run in the two ARM processors concurrently, the
execution time would be reduced to half. This reduction is not enough to satisfy the real
time goal. Therefore the utilization of the FPGA is mandatory for implementing both
parts of the algorithm.

Two IP cores (Intellectual Property cores) need to be designed for the FPGA. One
for the LBPH, feature extraction, and one for the Manhattan Distance, histograms
comparison. The reason those two are separated and not designed in one IP, is for
maintaining a less complex design. Furthermore, the LBPH part would be the same in
every future system, while the Manhattan distance may differ depending on the database
size. Therefore, taking in account future systems development, is another reason for this
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Figure 5.1: Feature Extraction, Histograms Comparison ration

Figure 5.2: Real-Time execution compared to Feature Extraction and Histograms Comparison
time

design.

Another aspect, regarding the system’s universality, is the data transfers of the
FPGA. For both input and output, the data transfers, will be done through the DDR
of the system. This way, a wide range of data importing ways are supported, as saving
data to DDR is a simple task. The same applies to the output, as it will be stored in
the DDR. Through that, presenting the result in any wanted way (output to monitor,
to console etc.) is made easy.

The ARM processors will be utilized in the system for sub-tasks. Those tasks include
the data transfers from and to the DDR, managing FPGA interrupt signals and finally
initializing the memory access for the FPGA, through DMAs, which will be described
in more detail later.

The above described analysis, lead to the final system design. This overview of the
system can be seen in Figure 5.3. The main aspects that lead to this design are, first,
the system’s performance, that needs to meet the real-time goal, second, the system’s



5.2. FEATURE EXTRACTION IP CORE 43

simplicity and finally the availability for development differentiations.

Figure 5.3: System Overview [38]

5.2 Feature Extraction IP core

The feature extraction IP will be designed for the FPGA first. To develop the required
VHDL code, the Vivado and Vivado HLS tools will be utilized. The purpose of this
design is to create an IP to function as the developed algorithm, but perform much
faster than the original C code.

Initially, the baseline code for the core is written in VHDL. Many aspects have
been taken into consideration during this process. First, The input and output of the
block are designed based on the Advanced eXtensible Interface 4 (AXI4) protocol [39]
supported by Kintex-7. In specific, the AXI4-stream interface is utilized as the data will
be received in a stream from the DDR to increase the performance. Through AXI, high
speed transactions are enabled, which is mandatory for our system.

Second, block RAMs should be used for storing the input and the temporary output
data. This is necessary as the computations performed in the algorithm do not fetch the
pixels sequentially, but in a random-like way. For this reason, the whole set of pixels,
40000 (200x200), needs to be available during the whole process. The same applies for
the temporary output data, as the LBP values computed, match different, out of order,
bins on the histogram. Furthermore, the BRAM values of the temporary output need
to reset every time the core is utilized, to ensure correct functionality. The reset of
the input BRAM values is not needed, as they are replaced by the new input values
every time,in contrast to the temporary output values that are just increased and not
replaced. In order to avoid the reset of the whole BRAM IP, which is much complex
and time inefficient, the BRAM values will be reset internally, through the design, every
time the core is utilized.

The main parts of the IP core design are the following:

• Input and Output ports using the AXI4-Stream interface are designed. The input
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Table 5.1: Baseline design performance in clock cycles

Process Latency Iteration
Latency

Trip Count

1 40000 1 40000

2 25600 1 25600

3 880000 22 40000

4 51200 2 25600

Total 996800

should consist of the 40000 pixels of the input face and the output of the 25600
bins’ values of the face’s LBP histogram.

• Block RAMs utilized to store the input data and the temporary output, bin values.

• A process resetting the BRAM temporary output values every time the IP is uti-
lized. This is done by setting the values of the BRAM to ’0’ every time the core is
used.

• A main process for computing the LBP values and creating the histograms is
designed.

• A process of setting the temporary output values to the actual output is included.

Taking in consideration all the above, the baseline design is created and tested. A
total latency of 996800 clock cycles is reported. This can be translated to an execution
time of 9968000 nanoseconds(ns) for a 100Mhz frequency clock, which is the default
vale for the Programmable Logic (PL) Clock. This execution time is examined on four
internal sub-processes:

Process 1 : Storing the input data to BRAM.

Process 2 : Resetting the temporary output values.

Process 3 : Computing LBP values and creating the LBP histogram.

Process 4 : Setting the final output values.

As seen in Table 5.1, the main process of computing LBP values and creating the
histogram is taking the most time, as expected, with 880000 clock cycles in total. The
rest of the processes have the expected execution latency. Iteration latency of 1 clock
cycle for both the first two processes, as one clock cycle is required for writing to the
BRAM, and iteration latency of 2 clock cycles for setting the output, as two clock cycles
are needed to read from the BRAM the temporary output values. The trip count, as
observed, matches the number of pixels in the first and third process and the number of
bins in the second and fourth process.

In Table 5.2, we can also report the resources utilization. We observe that a very low
percentage of the resources is being utilized.
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Table 5.2: Baseline design resources utilization

BRAM FF LUT

Total 64 1319 1875

Available 530 157200 78600

Utilization 12% ∼ 0% 2%

The total execution latency, as mentioned above, is equivalent to 9.9 ms. A speedup
of 51.9x is reported, compared to the C code running on the ARM and the goal of
16ms is being met. However, further optimization of the IP will be examined, as the
low resources utilization allows further improvement in performance. In the sections
followed, a different set of optimizations will be examined, leading to the final design of
the IP.

5.2.1 Modulo Operation

In Table 5.1, we report that the 3rd process is primarily increasing the total latency of
the IP. This is a result of the iteration latency of 22 clock cycles. The third process has
the role of Computing LBP values and creating the LBP histogram.

First, the center pixel and the neighbor pixels are fetched by the BRAM containing
the input values. Next, a comparison between the center pixel and each one of the
neighbor pixels is performed. This comparison leads to 8 binary values in 8 registers, as
explained in 3.1.4. Those 8 registers are then combined to create an 8-bit value, LBP
value. This value belongs to the bin of a region of the histogram. Therefore, the pixel
region is initially located and alongside with the LBP value, the value of the correct
address of the BRAM, containing the temporary output values, is fetched. Finally, this
value is increased and stored back to the same address.

Through a more in-depth examination on the performance of the IP, the main source
of latency is found. This is locating the region, where a pixel belongs. To locate the
region, two conditional statements are used. The first conditional statement checks in
which group of 10 regions is the pixel found. Those groups are formed sequentially.
The first ten regions belong to the first group, the next ten to the next group, etc. This
grouping is shown in Figure 5.4, where the different groups are represented with different
colors.

Through the second conditional statement, the exact region where a pixel belongs,
inside a group, is located. As each region inside a group covers a unique range of x-axis
values, this range leads to the location of the exact region. A modulo operation is used
for this purpose. The modulo operation returns the remainder of the division of the pixel
index with 200 (number of pixels per row). This remainder leads to the exact region
inside a group. If is in the range 0-19 is in the first region, if it is in the range 20-39
to the second region, etc. The combination of the two conditional statements locate the
exact region of a pixel. The following pseudo-code presents an example of how the exact
region is found:

i= input number ;
i f i <4000:
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Figure 5.4: Grouping of fist conditional statement. (Same color regions belong to the same
group)

i f modulo ( i ,200)<20:
r eg i on =1;

e l s e i f . . .
e l s e i f . . .

Listing 5.1: Inspecting if i-pixel is located in the 1st region

After explaining how the locator is working, the source of the latency can be spotted.
The first conditional statement is a simple comparison, which is not a complex operation.
On the other hand, the modulo operation on the second conditional statement, is a
complex operation, on the FPGA, as it is requiring a division operand. The modulo
operation utilized is the default VHDL mod operand. The performance analysis on the
current block, showed that 19 clock cycles are needed for this operation.

To cope with this degradation of performance, resulting from the default modulo
operation, a more efficient modulo operation, specific for our case, will be designed. The
advantage of our model is that the upper and lower bounds of the pixel index are known,
ranging from 0 to 39999. This enables many simpler solutions. Our design proposal for
the modulo operation is as follows:

1. The 200-range group of the pixel index is found through a conditional statement.
The number of such ranges are 200( 0-199, 200-399 ... 38000-39999).

2. The pixel index is subtracted by all multiples of 200 up to 38000 and by 0.

3. A multiplexer is then utilized. The multiplexer drives the result of the subtraction
that matches the right range to the output.
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Table 5.3: Design performance in clock cycles with proposed modulo operation

Process Latency Iteration
Latency

Trip Count

1 40000 1 40000

2 25600 1 25600

3 480000 12 40000

4 51200 2 25600

Total 596800

The overview of the design described above can be seen in Figure 5.5. The range iden-
tifications and the subtractions can be all performed concurrently, making this proposal
really efficient. This design decreases the clock cycles needed to compute the modulo, to
two clock cycles.

Figure 5.5: Overview of the proposed modulo operation design.

After applying this proposed modulo operation to the design the overall performance
of the IP is increased. The total cycles needed, are now 596800, which is x1.5 times faster
than the baseline design. The performance, on the sub-processes level can be viewed in
Table 5.3. The resources utilization is also increased, as seen in Table 5.4, but remains
still on a low level.

Table 5.4: Design utilization with proposed modulo operation

BRAM FF LUT

Total 64 1614 6452

Available 530 157200 78600

Utilization 12% 1% 8%



48 CHAPTER 5. IMPLEMENTATION

5.2.2 Input and Output Size

An exploration on the input and output data size of the core will be done, in order to
optimize the its performance further. Currently, both the input and the output consist
of 32-bit words. This is a surplus form of data, as the pixels consist of up to 8 bit values
and the histogram values of up to 16 bit values. Therefore 24 bits in the input and 16
bits in the output are utilized for no reason. This mainly increases the transfer time of
the data from the DDR to the IP and vice versa. For this reason the input data port
can be set to 8-bit and the output data port to 16-bit.

Although this is an acceptable solution, it only allows the processing of one piece of
data (e.g. one pixel) per clock cycle. For this reason, we need an input and output data
size that allows the processing of as many as possible separate piece of data at one time.
The limit of the AXI interface [39], that we utilize, is 64 bits, which is the bus width.
This size is, thus, preferred for the input and output ports to maximize the piece of data
included. However, the output port that is connected to the DDR has a limitation of
32-bits, due to the DMA [40] interface which will be explained later on. The 32-bit size
word is consequently utilized for the output. Therefore, 8 pixels are contained in an
input word, as seen in Figure 5.6 and 2 histogram bin values in the output.

Figure 5.6: Input Word Data Organization

The new output and input sizes are applied in the block. The new performance is
presented in Table 5.5. We notice, that the trip count in process 1 and 4, has decreased 8
and 2 times respectively. This is the result of the data contained in each word. However,
the iteration latency is increased to 4 clock cycles in process 1, while it remains the same
in process 4. The explanation for this fact, is found in the design of the BRAM [41],
which has only 2 ports. Due to those specifications, only 2 words can be read or written
to and from the BRAM. That being the case, 4 clock cycles are needed to process 8
pixels. The iteration latency of process 4 remains the same, as the bin values to be
processed are just two, which can be performed concurrently by the dual-port BRAM.
The utilization percentage of the new design remains almost the same, with just a slight
increase in LUTs and FFs.

5.2.3 Block RAM Utilization

In the previous section, 5.2.2, the limitations of BRAM were reported. The main effects
of this limitation were observed in process 1, where the iteration latency was increased.
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Table 5.5: Core design performance in clock cycles with new input and output data size.

Process Latency Iteration
Latency

Trip Count

1 20000 4 5000

2 25600 1 25600

3 480000 12 40000

4 25600 2 12800

Total 551200

Another effect, has to do with the processes, that require multiple data, where slow
fetching of the data, degrades the performance. This is the case in process 3 and will
become more clear in later optimizations.

To overcome this issue, we increase the number of BRAMs utilized 1. This way, more
data can be read and written simultaneously, from and to the memory. The number of
block RAMs, utilized, has to be decided. It is clear, that the higher the number of
BRAMs, the more the data, that can be accessed at the same time. However, there is
a limitation on the number of BRAMs in our system, 530 different 18kb BRAMs. In
addition, indexing the data becomes more complex, when a high number of BRAMs are
utilized.

Finding the most proper number of BRAMs, we need to take in account the way our
model works. Initially, the number of BRAMs for input data will be examined. In order
to decrease the iteration latency of the first process ideally, 4 different BRAMs, at least,
need to be utilized. With 4 BRAMs, all 8 pixels contained in one word, can be stored
at once. Second, the LBP computation is taken in consideration. 9 pixels are needed for
the computation to be performed. The optimum would be for all of the 9 pixels to be
stored in different BRAMs and be fetched at one clock cycle. In order for this concurrent
fetching to be available in all the LBP values computation, and not just in specific cases,
600 BRAMs would be required (every pixel in three consecutive rows of the image to be
stored in different BRAMs), . This can be seen in Figure 5.7, where the LBP operation
can be applied at any pixel and the values needed can be fetched concurrently. However,
this optimum design is not possible, as it exceeds the number of the available BRAMs
(530 18kb BRAMs).

Another approach, close to the previous case, that would comply with the available
resources, is to store every pixel in each row at a different BRAM. We should take in
account, as the input data is imported in sets of eight, the number of the BRAMs used,
needs to be a multiple of 8. However, this design would unnecessarily utilize a large
number of BRAMs, as the same performance is assured through the current utilization
of 4 BRAMs, and also leads to complex indexing of the data. Hence, 4 different BRAMs
is a sufficient number for our design. Yet, the final number selected is 8 BRAMs, in order
to simplify the development process. Instead of keeping track of 2 addresses at the same

1 Basically, the number of the BRAMs utilized on the FPGA will remain the same, due to the data
size, but what is intended is to increase the BRAMs, as seen by the developer. BRAM partitioning would
be a more appropriate term, but we will stick to number of BRAMs for simplicity in explanation.
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Figure 5.7: Ideal BRAM number utilization (The different color implies the utilization of a
different BRAM)

BRAM, is preferable to keep track of 1 address at different BRAMs, from the developer’s
perspective. The same performance for the IP core is verified for this selection.

Concerning the number of the BRAMs utilized for the temporary output data, a
utilization of more BRAMs in not required. During the process of setting the output,
the maximum number of temporary output data, processed at the same time are two
and this can be performed efficiently by one BRAM.

The new number of BRAMs are applied to the design and the performance is ex-
amined. Observing Table 5.6, we notice that the iteration latency of the 1st process is
decreased to one clock cycle, as expected. Another remark, is that the iteration latency
of the 3rd process decreased by one cycle as well. This has to do with the concurrency
of data fetching, that is being enabled, as explained above.

An increase on the utilization resources is seen in Table 5.7. The bigger utilization
increase is reported on the LUTs, which is now 17%. We also observe, that the BRAM
number remains the same. As explained, this is expected as the number of different
BRAMs does not imply different BRAMs on the FPGA, but different BRAMs as entities
viewed by the developer. For example, if we would like to store 72kb on 2 different
BRAMs (36kb on the first BRAM and 36kb on the second BRAM) the number of
BRAMs used on the FPGA will be 4 and not 2 (4x18kb BRAMs). The same number
would be utilized on the FPGA if we store all the data in one BRAM. The difference is
situated in the perspective of the developer, where the concurrent fetching of data from
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Table 5.6: Block design performance in clock cycles with the proposed BRAMs utilization

Process Latency Iteration
Latency

Trip Count

1 5000 1 5000

2 25600 1 25600

3 440000 11 40000

4 25600 2 12800

Total 496200

the two BRAMs is assured only in the first case.

Table 5.7: Block design utilization with the proposed BRAMs utilization

BRAM FF LUT

Total 64 5014 14099

Available 530 157200 78600

Utilization 12% 3% 17%

5.2.4 Temporary Output Initialization

Process 2 is utilized to reset the temporary output values. This is done by setting the
values to ’0’ in the BRAM, every time the IP is used. Looking at the sub processes, we
note that process 2 executes, after process 1 is finished. However, the two process are
completely different, as they access different BRAMs. As a result, it is wise to execute
those two process concurrently to increase performance.

If the processes run concurrently, with their current performance, the execution la-
tency of the whole IP will be reduced by 5000 clock cycles, as process 2 will start at the
same time as process 1. Further improvement is possible, by optimizing process 2.

The execution latency of process 1 is optimized at the maximum level, as only one
64-bit word can be process per clock cycle. The goal is to alter process 2, in order to
achieve the same or less latency. This way, process 2 will not affect the system latency
at all, as it will be ”hidden” under the performance of process 1.

To achieve that, the trip count has to be reduced to at least 5000, while the iteration
latency remains the same. This means that 5.12 values need to be reset every clock
cycle, which is translated to 6 values. To access 6 different values at the same time, 3
BRAMs are needed. While the resources allow it, 4 BRAMs are utilized for convenience,
as 8 (4*2) is a divisor of 25600.

Through this modification, 8 values are reset in parallel. Every value needs 1 clock
cycle to be accessed, so every clock cycle, 8 values are reset. The trip count of the
process is now 25600/8 = 3200, which is also the latency of the process in clock cycles.
This value is less than the latency of process 1, 5000 clock cycles. As a result, through
their concurrent execution, the total latency is equal to the latency of process 1. The
new performance of the IP can be seen in Table 5.8. The total latency is reduced by
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Table 5.8: Design performance in clock cycles with the proposed reset design

Process Latency Iteration
Latency

Trip Count

1 (& 2) 5000 (3200) 1 (1) 5000 (3200)

3 440000 11 40000

4 25600 2 12800

Total 470600

25600 clock cycles and is presently 470600 clock cycles. This improves the previous
design performance by 5.5 p.p. and a total improvement by 111.8 p.p. compared to the
baseline design is reported.

5.2.5 Pipelining

Another major optimization, is to pipeline our design. Pipelining a process, allows each
iteration to start before the previous one is finished, while the needed resources are
available. Through that, a number of tasks run concurrently reducing the execution
time. A pipeline overview can be observed in Figure 5.8.

Figure 5.8: Two (right and left) examples of pipeline application. (The squares indicate tasks
and the different colors the different resources utilized)

The two examples show different utilization of resources. In the first one, the next
iteration is able to start after one clock cycle, while in the second, two clock cycles need
to pass, before starting the next iteration. Furthermore, we observe the decrease of total
latency by 3 clock cycles in the first example and by 2 clock cycles in the second. The
total latency after pipelining can be calculated by the following type:

L = (N − 1) ∗ IP + IL

, where L is the total latency, N is the number of Iterations (Trip Count), IP is
the latency intervened between two successive iterations, which will be called pipeline
latency from now on, and IL is the latency of an iteration.

The two processes, that pipelining can be applied, in the current core are process 3
and process 4. Process 3, consists of many tasks that require different resources. For
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Table 5.9: Core design performance in clock cycles with pipeline applied

Process Latency Iteration
Latency

Pipeline
Latency

Trip Count

1 5000 1 - 5000

3 160004 8 4 40000

4 12801 2 1 12800

Total 177805

example, once an LBP value is calculated, the computation of the next pixel’s LBP value
can start and does not have to wait for the increment of the appropriate histogram bin
to take place. In process 4, the pipeline is possible as a successive read operation can
start after the first cycle of its predecessor.

Pipeline is applied in both process 3 and 4. The performance is once more examined
and presented in Table 5.9. The total latency is decreased to 177808, which is an 164%
increase compared to the prior design. The pipeline latency of process 4 is 1 clock cycle,
as expected, and for process 3 is 4 clock cycles. This pipeline latency is a result of the
duration of the LBP value computation (fetching the data and computing the value)
which sums up to 4 clock cycles. Another remark, is the iteration latency of process 3
that decreased to 8 clock cycles. This is the result of the decrease in data fetching, as
through pipelining some data are directly available for the next iteration. The resource
utilization remains at the same levels, with unremarkable differences in LUTs and FFs.

5.2.6 Loop Unroll

The seek of further parallelization, led to this final optimization. We examine how many
entire processes 3, LBP and bin increment operations, can be computed completely in
parallel. Concerning the LBP operation, the limitation is found on the number of pixels,
required for the computations, that can be fetched simultaneously. Due to the BRAM
utilization, described in Section 5.2.3, in the same time the 9 pixels for one LBP operation
are fetched, 15 more pixels can be accessed. This total of 24 pixels allows 6 consecutive
LBP operations to be done in parallel. This number of LBP operations available is a
result of the data required overlap. An overlap of data can be seen in Figure 5.9 for
two consecutive LBP operations. As seen, 12 pixels are needed for two LBP operations.
Consequently, the LBP operation is available for 6 times more parallelization.

Once the LBP value is computed the right bin value of the histogram must be in-
creased. The parallelization of this part must be examined as well. Following the factor
of 6, mentioned above, we assume that the bin increment is parallelized by the same
factor. The bottleneck in this part, is that the bin which must be increased cannot be
predicted beforehand. Having said that, there is a possibility that all 6 bin values, that
must be increased, are located in the same BRAM and thus cannot be accessed at the
same time. Therefore, due to this limitation, the maximum parallelization factor allowed
is 2 for the entire process.

This parallelization, is similar to unrolling the loop of process 3 by 2 times. Before
proceeding with that, we need to take in account a critical case. When the bin value
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Figure 5.9: Data overlapping of two consecutive LBP operations (blue and red border lines
indicate the data for the first and second operation respectively

to be accessed by the two parallel processes is the same. In this case, there will be a
conflict, and possibly, the value will be increased just once. For this reason, we need to
examine if the bin to be accessed is the same by the two processes, in order to preserve
the right functionality. The design for this check operation is presented in Figure 5.10.
If the bin value is the same, the value is fetched once and increased two times.

Figure 5.10: Process to check the bin values accessed in the BRAM

This is the final optimization for the current IP core. The performance after this final
addition is presented in Table 5.10. The trip count is decreased to 20000 for process 3
as a result of this parallelization, resulting to a total latency of only 80004 clock cycles.
The total utilization, as seen in Table 5.11 is increased as well, as a result of the design
parallelization. Despite that, the utilization percentages remain on low levels, leaving
adequate resources for the rest of the system design.

The design of the Feature Extraction IP core is complete at this point. A set of
different optimizations, decreasing the execution latency, as seen in Figure 5.11, has
been applied leading to a final execution latency of 97804 clock cycles. The speedup of
the different optimizations compared to the baseline design is presented in Figure 5.12.
This execution latency corresponds to an execution time of 978040 ns ( 0.978 ms) for
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Table 5.10: Final IP core design performance in clock cycles (after further parallelization)

Process Latency Iteration
Latency

Pipeline
Latency

Trip Count

1 5000 1 - 5000

3 80004 8 4 20000

4 12801 2 1 12800

Total 97804

Table 5.11: Final IP core design utilization (after further parallelization)

BRAM FF LUT

Total 64 5714 22246

Available 530 157200 78600

Utilization 12% 3% 28%

the clock set to 100Mhz. This time is way under the 16 ms, which is the performance
goal of our system. In addition 15.022 are still available for the execution of the rest of
the application. Compared to the execution time of the feature extraction process in the
ARM as reported in Section 5.1, an acceleration of 525.38 p.p. has been achieved.

Figure 5.11: Execution Latency of different optimizations in clock cycles
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Figure 5.12: Speedup of different optimizations compared to baseline design.

5.3 Histograms Comparison IP core

Once the feature histogram of a test face image is generated, a comparison between the
database’s feature histograms needs to take place. The Feature Extraction IP core was
designed effectively, Section 5.2. The Histograms Comparison IP block needs now to be
designed, on the same path, to ensure high performance on the system.

As described in Section 4.3, the manhattan distance is the model this IP is based
on. Through manhattan distance, a distance between two histograms is being returned.
The model should be utilized to compute the distance between all 20 feature histograms
of the database. The minimum distance of those 20 is returned as the best match for
the test face.

To start with the design of the block, the VHDL code need to be written, based
on the Matlab code developed in 4. Once more, the Vivado and Vivado HLS tools are
utilized for this purpose. The main operations of the current core is first to store the
inputs in the BRAM and second to compute the distance.

The optimum design for the IP will be to have the database histograms stored on the
BRAM initially and from that point on, only the test faces histograms will be needed
by the core, as an input to compute the distances. Although, this would save a huge
amount of transactions between the RAM and the IP, it is not possible to be applied.
This has to do with the limitations on the size of the BRAM, which is 9.3Mb. The size
of the database together with one test face histogram sums up to 8.2Mb. As 12% of the
BRAM are already utilized by the feature extraction IP, that leaves 8.18Mb available.
Therefore this design approach is not possible. In addition, this approach wouldn’t allow
alterations in the database during run-time and limits the system’s available options.

The next strategy followed is to calculate the distance between the test face histogram
and one database histogram each time and store the result on the DDR. This way, 20
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distances will be stored on the DDR. Finding the minimum of those distances is a very
simple task and instead of designing an IP for this calculation, we could utilize the ARM.
Utilizing the ARM will not degrade the performance, as it is a very simple task and also
it would not complex our FPGA design further.

Another aspect that should be examined is the form of the input. One method will
be to merge the database histogram and the test histogram and import both of them as
one input. This would require only one transaction between the DDR and the FPGA,
benefiting the performance. However a copy of the test histogram in the DDR will be
needed before every transaction. An investigation on this copy operation, showed that
the time needed is about 6ms, which is a major addition on the execution time. For this
reason, two inputs are used in the IP, as the two transactions would be more efficient.
The two approaches described can be better comprehended by observing Figure 5.13.

Figure 5.13: Import input methods. (Left: One unified input, Right: Two inputs

The baseline design can now be implemented. The AXI interface is utilized again for
both the two input and the output. The inputs consist of 16-bit words and the output
of a 32-bit output. The baseline design is consisting of two main processes. The first
one is used to save the input data to the BRAM and the second one is using those data
to compute the distance. We shouldn’t forget the process of resetting the temporary
output result in every utilization, as the values are added on top of that. The same
process as in Feature Extraction block is followed, by setting the value to ’0’ at every IP
utilization. However, in this IP, this is a minor process as it regards only one value.

Concerning the distance calculation between two histograms, a number of iterations
is needed to cover all the bin values of the histograms. At every iteration, the two
different histogram values are loaded from the BRAM. Then, the Manhattan distance is
calculated and the proper region-weight is added. The new value is added to the total
distance. Finally, when the iteration is finished the total output is returned. This whole
process is presented in Figure 5.14.

The overall performance results of the baseline design can be viewed in Table 5.12.
We observe that the trip count of the first process is 25600, as two values are included at
every input word. The iteration latency of the second process is 4 clock cycles, composed
by fetching the two values needed, compute the distance with the applied weight and
add it to the total distance. The overall performance is 128000 clock cycles, translated to
153600 ns for the default frequency of the clock. As this process needs to be repeated 20
times for the whole database, the overall execution time adds up to 30.72 ms. Although
this is a significant improvement, compared to the execution time, 899.598 ms, of the C
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Figure 5.14: Overview of two histograms’ distance calculation

Table 5.12: Histograms Comparison core baseline design performance in clock cycles

Process Latency Iteration
Latency

Trip Count

Store Input Data 51200 1 51200

Reset Temporary Output 1 1 1

Distance Calculation 102400 4 25600

Total 153601

code in the ARM, it is not acceptable for our system as it exceeds the real-time goal of
16ms. Further optimization approaches are needed and will be explained in subsections
5.3.1-5.3.5. The low percentage of the resources utilization, presented in Table 5.13, gives
a large margin for the optimized design.

5.3.1 Input Data

The main optimization of our design is based on the idea described before, to include
the whole database in the BRAM. This would decrease the transactions of data between
the DDR and the IP and in addition, as more data will be available, parallelization
possibilities will be increased. Those benefits are desired for our design, but as this
implementation is not feasible, alterations should be made.

As the whole database size is exceeding the BRAM size, we proceed by dividing it
in two parts, composed by 10 histograms each. The size of each part is 3.9Mb, which
is less than half of the total BRAM size. As the size of every part allows its storage
on the BRAM, the core is designed to process the test histogram and one half of the
database. Therefore the inputs are now the 25600 values of the test histogram and the

Table 5.13: Histograms Comparison core baseline design resource utilization

BRAM FF LUT

Total 64 133 1005

Available 530 157200 78600

Utilization 12% ∼ 0% 1%
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Table 5.14: Design performance in clock cycles by importing the half database.

Process Latency Iteration
Latency

Trip Count

Store Input Data 281600 1 281600

Reset Temporary Output 10 1 10

Distance Calculation 1024000 4 256000

Minimum Distance Calculation 20 2 10

Total 1305630

256000 values of the 10 histograms of the one half of the database.

The first benefit from this implementation, is the transactions time needed. The
25600 values of the test histogram require now to be transferred only two times to the
IP. Those are 18 transactions less compared to the baseline design, improving this way
the performance of the system.

The distance between all 10 histograms is now calculated. 10 temporary output
values are now utilized that need to be reset as well at every IP utilization. Moreover,
as those distances are available on the core, we can also include in the design a process
to calculate the minimum one and return only one distance to the DDR. This process
is simple to design on the FPGA and will reduce the calculations needed by the ARM
in the end. The ARM’s operation is now limited to computing the minimum between
two distances, one from each half of the database, increasing further the performance.
Alongside with the minimum distance value, the index of the histogram corresponding
to that distance should be output, otherwise recognition would not be possible. Hence
the output of the core is now 2 32-bit words, one for the distance and one for the index.

The performance of the modified design is presented in Table 5.14. The increase
on the iterations number of the process is obvious and is a result of the increase of the
data. The total execution latency of the design is 1305630 clock cycles. This execution
latency multiplied by two, shows the total execution latency of the IP, as it is utilized two
times to cover the whole database. This latency is equal to 2611260 clock cycles. This
decrease is a result of the less BRAM store operations, needed for the test histogram.
The increase of the total system performance, due to the less number of transactions,
cannot be seen through those results, but will be seen when the IP is integrated in the
final system. The latency, which is corresponding to an execution time of 26.11 ms, is
still not acceptable for our system. Concerning the utilization, a large increase, reaching
58%, on the percentage of BRAM utilization is reported, as expected. The FF and LUT
utilization has slightly increased due to the introduction of new processes.

5.3.2 Input Size

The process of maximizing as much as possible the input size, as followed for the feature
extraction IP in Section 5.2.2, will be followed in the design of this core too. The output
data size is not concerning us in the current IP, as it consists of only 2 words. This
minor value cannot effect the performance of the core and thus the default output size
of 32-bit words is used.
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Table 5.15: IP design performance in clock cycles with new input size.

Process Latency Iteration
Latency

Trip Count

Store Input Data 140800 2 70400

Reset Temporary Output 10 1 10

Distance Calculation 1024000 4 256000

Minimum Distance Calculation 20 2 10

Total 1164830

In more detail about the input size, the maximum size that can be processed at once
is 64-bit words. The size of the bin values is 16 bit, which means that 4 values can be
included in on 64-bit words. This would be the size that is going to be used for both
two inputs. The format of the input is presented in Figure 5.15.

Figure 5.15: Input Format

The benefit of this optimization is seen in two parts of the system. The first one
is in the current IP and the fact that more data are available for processing per clock
cycle. The second part has to do with the transfer of data from the DDR, as through
this size, the transaction latency is decreased, due to the burst type transactions that
will be explained later. The new performance is presented in Table 5.15. The trip count
for the first process has been reduced by 4 times, as expected. However, the iteration
has been increased to 2 clock cycles as only two values can be stored at the BRAM at
one time.

5.3.3 Block RAM Utilization

In the previous subsection, 5.3.2, the limitation of using one BRAM was observed, as
only two values could be stored at once, although 4 values were available. This issue
can be resolved by utilizing more BRAMs as performed in the Feature Extraction core
described in, Section 5.2.3.

The number of BRAMs utilized is decided based on the solution of the mentioned
issue, of storing all the available data at one clock cycle. 2 BRAMs are adequate of storing
all the 4 values of the input words at one time. However, a utilization of 22 different
BRAMs is proposed. The reason for this utilization number is to store the different
histograms’ values in separate BRAMs. As the different histograms are 11 in total and
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Table 5.16: Core design performance in clock cycles with proposed BRAM utilization.

Process Latency Iteration
Latency

Trip Count

Store Input Data 64000 1 64000

Reset Temporary Output 10 1 10

Distance Calculation 102400 4 25600

Minimum Distance Calculation 20 2 10

Total 166430

Table 5.17: Core design utilization with proposed BRAM utilization.

BRAM FF LUT

Total 320 1951 7781

Available 530 157200 78600

Utilization 60% 1% 9%

2 BRAMS are required for each one to store the available input data concurrently, 22
BRAMs are needed.

Through this utilization, the parallelization of the distance calculation process is
being enabled. Instead of computing the distance between every histogram, one after
the other, all of the distances can be computed simultaneously as the different histogram
values can be accessed concurrently.

Furthermore, this utilization enables the storing of the test histogram at the same
time as the database histograms. Because of the two different input ports the data of the
test histogram are available separably. This separation of input data can now be exploited
as the values are stored in different BRAMs. The main result of this optimization is that
the execution latency of storing the test histogram values, is kept out of sight by the
latency of storing the database histograms, as those two processes happen concurrently.

We should mention, that the utilization of BRAM should not be considered for the
temporary output values for this IP. The temporary output utilized is consisting of 10
values. FPGA registers are utilized for storing those values instead of BRAM. This way
they can be accessed simpler and faster by the different processes.

The performance of the design after the addition of this modification is presented
in Table 5.16. We note that the iteration number of the first process has been reduced
to 64000 and iteration latency to 1 clock cycle, as desired initially. The major, though,
improvement noticed is the trip count decrease of the third process to 25600, maintaining
the same iteration latency. This leads to a total latency of 166430 clock cycles, conse-
quently to 332860 clock cycles for the whole utilization of the IP. The execution time
for this latency is 3.33ms, which is finally under the real-time performance limits. The
system performance requirements have been met at this point, however further optimiza-
tion would be examined as the low resource utilization, reported in Table 5.17 allows
it.
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5.3.4 Pipeline

The next optimization is to pipeline our design to raise further the performance. The
benefits of pipelining were described in Section 5.2.5, and a similar procedure is followed
in the current core. Moreover, as the operations required are simpler and more indepen-
dent, in terms of data required, we expect a higher increase in performance than in the
Feature Extraction IP.

In more detail, looking at the processes of the current design, the distance calculation
process is the one that can profit from pipelining. The store input data and reset
temporary output processes have already an iteration latency of 1 clock cycle and thus,
there is no point to pipeline them. The minimum distance calculation process, although
it can benefit from pipelining, it will lead to a maximum improvement by 10 clock cycles.
As this improvement is minor, we won’t pipeline the current process.

The distance calculation process, has a iteration latency of 4 clock cycles and a
considerable iteration number of 25600 iterations. Applying pipeline, could lead to a
notable improvement on the performance. Looking back to Section 5.3 and Figure 5.14,
we observe that in every iteration the two values to be compared are loaded, then the
distance is calculated and finally is added to the total distance. As the data to be loaded
at every iteration are completely different and as the computations are depending only on
these data, a pipeline latency of 1 clock cycle can be achieved. This way, every iteration
can start one clock cycle after its previous iteration. The pipeline process can be seen in
Figure 5.16, and we can comprehend how the execution latency is being reduced.

Figure 5.16: Distance Calculation Pipeline

The new performance after application of pipeline are presented in Table 5.18. The
process pipelined has now an execution latency of 25603 clock cycles, about 4 times less
than previously. The total execution latency is also reduced to 89633 clock cycles. This is
a x2 acceleration compared to the prior design. The utilization is not effected noticeably
by the pipeline design, as the same resources are utilized, and only slight differences in
number of LUTs and FFs are reported.

5.3.5 Loop Unroll

The final optimization is centered on parallelization. Through this optimization we
will examine the parallelization limits of the current IP, in order to reach the optimum
performance. This is done by executing more iterations per process at the same time
and thus is can also be defined as loop unroll optimization.

The process of store input data cannot be parallelized, as one word is available per
clock cycle and thus the next iteration cannot execute at the same time. The same
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Table 5.18: Design performance in clock cycles with pipeline applied

Process Latency Iteration
Latency

Pipeline
Latency

Trip Count

Store Input Data 64000 1 - 64000

Reset Temporary Output 10 1 - 10

Distance Calculation 25603 4 1 25600

Minimum Distance Calculation 20 2 - 10

Total 89633

applies for the Minimum Distance Calculation as every iteration requires the minimum
value calculated by the previous iteration. In order to parallelize this process, a new
design should be implemented, but as the total execution time, only 20 clock cycles, is
insignificant for the total execution time of the IP we will not deal with this process
more.

The loop unroll optimization will be first applied to the reset temporary output pro-
cess. This is done by just setting all the registers to ’0’ concurrently. The improvement
might be negligible, but as the implementation was simple and it does not complex the
design we went through with applying it.

Parallelization can be applied and improve significantly the distance calculation pro-
cess. In this process as mentioned before, Section 5.3.4, the data utilized in each iteration
are different and further more the computations do not depend on the other iterations.
Consequently, we will seek parallelization of as many iterations as possible. The main
limitation of the parallelization range is coming from the data that can be fetched for
the required computations simultaneously. The number of different BRAMs utilized per
histogram are 2. Hence 4 different values can be exported at the same time, leading to
the factor of parallelization of 4. The distance calculation iterations are this way reduced
to 6400. Also, we should mention that the iteration latency is now increased by 1 clock
cycle, as the 4 different distances calculated, need to be also added together to form
the total distance. However, this increase is not effecting the total execution, as the
pipeline latency is remaining to 1 clock cycle. By applying parallelization on the process
the execution latency of it is reduced to 6404 clock cycles, a four time improvement as
expected.

As seen in the previous paragraph, the main limitation of this optimization is a result
of the limited concurrent data access. To overcome this issue, the BRAM utilization,
described in Section 5.3.3 will be altered, so more data can be accessed at once. Initially,
we double the different BRAMs and accordingly the factor of parallelization. The process
latency is once more reduced to half, reaching 3204 clock cycles. The utilization of
FFs and LUTs is increased as the parallelization increases, and is now 5% and 24%
respectively.

As the resources allow it, we proceed to a further increase of the different BRAMs,
to 8 different ones. The factor of parallelization is now 16 leading to a process execution
latency of 1604 clock cycles. The resources utilization is increased again, with 9% of
FFs and 46% of LUTs. Although this is a big increase of utilization, there is margin for
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further optimization. For this reason, 16 different BRAMs are utilized next, increasing
the factor of parallelization to 32. The iteration latency is now 804 clock cycles. However,
by examining the resources utilization, the percentage of LUTs is presently 89%. This
is prohibitive for our system, as the LUTs utilization of the previous IP is 28%, leaving
a 72% available for the rest of the system. For this reason, we need to move back to
the parallelization factor of 16, as it is the one below the 72% boundary. The LUTs
utilization increase for the different factors are presented in Figure 5.17.

Figure 5.17: LUTs utilization for different parallelization factors.

The performance of the IP, after the applied parallelization, which is also the final
design of the block, is presented in Table 5.19. The final execution latency of the IP
is 65625 clock cycles and as the IP is utilized twice, to perform the total database his-
tograms comparison, the overall utilization latency is 131250 clock cycles. The execution
time of the Histograms Comparison block for a clock frequency of 100 Mhz is therefore
1.3 ms. This latency is way below the goal of 16 ms, ensuring this way real-time execu-
tion. Moreover, a 690.99% acceleration is reported, compared to the initial performance
of the histograms comparison function in the ARM.

The utilization of the IP is reported in Table 5.20. The resources were utilized to
the extent it was allowed to optimize the design as much as possible. The resources
utilization should also comply with the existing utilization of the Feature Extraction IP,
so that the combined utilization would not exceed the system available resources.

The process of designing the Histograms Comparison core leading to the final design
has been described extensively. The purpose of this design was to achieve real time
performance of the comparison process. A number of different optimizations were uti-
lized for this reason. The further optimization of the IP, beyond real-time execution,
was also searched for as the resources available allowed it. In Figure 5.18, we can ob-
serve the decrease of the execution latency through the application of a different set of
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Table 5.19: Final IP core design performance in clock cycles (loop unroll applied)

Process Latency Iteration
Latency

Pipeline
Latency

Trip Count

Store Input Data 64000 1 - 64000

Reset Temporary Output 1 1 - 1

Distance Calculation 1604 5 1 1600

Minimum Distance Calculation 20 2 - 10

Total 65625

Table 5.20: Final IP core design utilization with proposed BRAM utilization.

BRAM FF LUT

Total 320 15583 36534

Available 530 157200 78600

Utilization 60% 9% 46%

optimizations. The speedup achieved, compared to the baseline design, is presented in
Figure 5.19, showing the effectiveness of the optimizations. The final design of the core
is completed and ready to be integrated in the system.

Figure 5.18: Execution Latency in clock cycles for different optimizations.
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Figure 5.19: Speedup of different optimizations compared to baseline design.

5.4 Programmable Logic integration

The two cores essential for our system have been designed and described in Sections 5.2
and 5.3. Our system has now the ability to extract the feature histogram of a test face
image and compare it to the database histograms. However, a complete integration of
the cores in the FPGA is needed, in order to be functional in our system. The integration
of the IP cores into a functional FPGA design has been completed using Vivado.

The first step needed is to manage the signals mandatory for the IPs’ operation,
clock and reset. The clock signal of the two blocks is connected to the Programmable
Logic Fabric Clock of the Zynq. This port is found in the Zynq IP which is utilized in
our design. This IP is essential as it handles all the main signal of the Zynq and ensures
correct communication with the ARM. In addition, the reset signal is connected to the
general purpose reset signal of the Zynq. This way, the functional signals for the two
IPs are set.

Second, the connection of the cores with the memory needs to be established, in order
to access the data needed. As described above, the AXI interface is utilized for these
transactions. The AXI Direct Memory Access (DMA) [40] is utilized by our system to
handle the transactions and maintain high performance. The operation of the DMA is
depended on the ARM. The ARM instantiates a new DMA transaction (read or write) by
indicating a start address on the DDR and the size of bytes to be written. For the DMA
to work properly, though, an extra signal, TLAST, is needed for every word transferred.
This signal is needed in order to determine the last word of the transaction. If this
signal is missing the DMA will raise an error signal and halt his operation from that
point on. Therefore this signal is mandatory and should be included in our IP design.
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This adjustment is simple in our design by just adding one more port for the TLAST
signal. During the set of the output data, in the last word the TLAST signal is raised
and the DMA transaction can be successfully performed.

The DMA is connected through the High Performance bus with the DDR and the IP
cores. The ports used for that are the S2MM (Stream to Memory Mapped), to transfer
the output data of the IPs to the DDR, and the MM2S (Memory Mapped to Stream), to
import the data from the DDR to the IPs. Also, it is connected with the Zynq Master
GPO port. This connection is needed to indicate to the DMA about the transactions
to be performed. Furthermore, the DMA has a set of interrupt signals. Although, it is
not mandatory, those signals are connected to the Zynq Fabric Interrupt Ports. This
is done to have a complete overview of the DMA operations and be able to control the
functionality of our system better.

Three DMAs are utilized in our system. One responsible for the input and output
data of the Feature Extraction core, one for transferring the test feature histogram to
the comparison block and the last one for importing the DB feature histograms to the
comparison block, too, and sending the results to the DDR.

The other IPs utilized are the concat IP, which is used to merge the interrupt signals
of the DMAs into one, as the Zynq has only one interrupt port, a processor system reset
IP, that applies properly the reset signal retrieved from the Zynq to the other IPs and
finally two AXI Interconnect IPs. Those last two IPs are used as an interconnect to the
DDR and to the Zynq. The first one is used for the connection between the DMA and
the GP) port of the Zynq and the second one for the connection between the DMA and
the DDR. Our complete FPGA design is now finished. This design is presented in Figure
5.20.

Figure 5.20: FPGA design of our system

The FPGA design that can perform the operations needed for our system in now
complete. However, available optimizations on the design level will be investigated. The
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first one has to do with the operation of the DMA IP. The DMA performs burst-based
transactions. For every burst, some signals of the DMA are also modified, requiring 6 and
39 clock cycles for the MM2S channel and the S2MM respectively [40]. To improve the
performance, the burst size must be set to maximum, to reduce this latency operations
added to every burst. The maximum burst size allowed is 256 words per burst and
should be the optimal value for the DMA operation. However, the different DMA burst
sizes were tested to examine the performance. The results can be seen in Figure 5.21.
Through this test, we observe how the performance improves for the higher burst size.
The performance, though, reaches its peak for the 32 burst size and remains the same
for the higher burst sizes, while we expected a continuous increase. The explanation for
that is found on the specification of the AXI interconnects [42]. The maximum burst
size allowed for transactions with the DDR is 32 words and any higher value utilized will
be modified to 32 words size burst. Therefore, the burst size utilized is 32, as it ensures
the highest performance, almost 6 times higher than the size 2 burst.

Figure 5.21: Performance of different burst sizes.

The next optimization, is regarding the PL fabric clock. All the operations of the
IP and the DMAs are based on the clock signal. A clock signal of a smaller clock cycle
(higher frequency), would lead to more operations in less time, increasing therefore the
performance. However, there is a limitation on the increase of the frequency allowed. The
critical path of the design should be taken in account to estimate the minimum clock cycle
duration allowed. Through the Vivado analysis tools, we note that the estimated allowed
minimum duration of the clock cycle is 8.95 ns, which is corresponding to a frequency of
111Mhz. The available values for the clock frequency are discrete, and the option that
approaches more 111 Mhz, without exceeding it, is 109.09 Mhz. The implementation
of the design is implemented successfully for this frequency. As the allowed clock cycle
duration is based on an estimation, we will increase the clock frequency to the next
value, 114Mhz, and examine if the time constrains are met. The implementation is once
more successful and thus the next value, 120 Mhz, is examined well. The increase to 120
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Mhz is unsuccessful and therefore, we step back to the frequency of 114 Mhz. This is the
frequency selected for our clock, and as the the performance is depended linearly on the
increase of the frequency, an optimization of 14% is achieved for our system. We should
point out, that during synthesis and implementation on the Vivado, the post-place and
post-route physical optimization design options were enabled to make our design more
efficient.

The complete design on the FPGA, with the described parameters to achieve max-
imum performance, has been completed. Through this design, the face image stored
in the DDR is retrieved and after extracting its feature histogram and comparing it to
the database histograms, the two best matches for the two halves of the database are
returned in the DDR.

5.5 Operation of the ARM processor

The needed utility of the ARM has been mentioned above, many times. The main
operation of the ARM, regarding the system functionality, is computing the best match
from the two returned matches by the PL. This is a very simple function to develop on
the ARM and be executed effectively. The values in the DDR returned by the PL are two
distances and their corresponding indexes. A conditional statement checks the smaller
of the two distances and depending on the outcome the matching index is returned as
the best match.

Next, as described, the DMA transactions are initialized by the ARM. 8 different
transfers are performed, 5 from the DDR to the IP cores and 3 from the IPs to the
DDR. Those transactions are the following: transferring the face image data to the
feature extraction core, returning the feature histogram to the DDR, 2 transfers of the
feature histogram to the Comparison IP, 2 transfers of the half database histograms to
the same core and finally 2 transfers of the results of the Comparison core to the DDR.
Furthermore, the ARM manages the addresses accessed of the DDR to avoid access of
wrong addresses by the different transfers.

Except from those two essential operations, the ARM is used for a set of operations
that are required for the correct functionality of our system. The first one is to initialize
the whole platform at the start of the operation. A function is provided by Xilinx and
utilized for this reason. Related to that is the operation of cleaning up the platform and
the end of operation. A default function is utilized here too. Finally, before initializing
transactions, the DMA IPs need to be enabled. This is another operation performed by
the ARM, which basically writes to the control registers of the DMAs to enable them
and also enable interrupts.

5.6 Conclusion

In this chapter, the complete process of implementing our system has been described
extensively. In Section 5.1, our design approach was described, including the profiling of
the models. After that, the two IP cores needed for our system, Feature Extraction IP
and Histograms Comparison IP, were designed and optimized efficiently. The process of
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doing that for the two cores is described in Sections 5.2 and 5.3 respectively. Once the
IPs were completely designed, their integration on the PL of the system took place and
was described in Section 5.4. Finally, the role of the ARM processor on the operation of
the system, although limited, was presented in Section 5.5.

The final system designed, through this implementation, meets all the requirements
that were expected. High accuracy, real-time face recognition is expected from the
operation of the current system. The added latency of the two IP cores, that are the
main part of the system, indicate an execution time of approximately 2 ms for our system.
This way, a single face image can be recognized, through the database, in much less time
than the 16 ms, which was our initial real-time goal. The accuracy results presented in
the previous chapter, derived from the models utilized, are expected for our system too,
ensuring high accuracy.

The combination of high accuracy and real time execution, indicates the efficiency
and usefulness of this novel implementation. Through this proposed system, face recog-
nition utilizing LBPH, which is popular for its efficiency, has benefited from the FPGA
technology to achieve real-time performance.
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In this chapter, a set of experiments will be carried out, to derive results concerning the
operation of our system. The implemented system, described Chapter 5, needs to be
examined, in order to verify its correct functionality and evaluate its performance. In
Section 6.1 the experiments performed will be described. Then the detailed results will
be presented. Those results will concern execution time, Section 6.2, accuracy, Section
6.3, resource utilization, Section 6.4, and finally power consumption, Section 6.5.

6.1 Description of Experiments

The system needs a database in order to operate and also a set of test images, to evaluate
its operation. The Unconstrained Facial Images (UFI) Database [33] was utilized to
acquire a set of face images for our database and for testing. The UFI database is a
real-world database that contains images extracted from real photographs acquired by
reporters of the Czech News Agency. Therefore, the database contains images of people
with different expressions, at different time and with different environmental conditions.
This makes the recognition process more difficult and hence is a good evaluation choice
for our system.

Five images for 20 different people will be chosen from UFI to create our database.
For every person, the LBP Histograms will be extracted and added together, as needed
for our system. The added histograms for every person and will be stored in the DDR
of the system. An example of the images utilized for 4 people of the database can be
seen in Figure 6.1.

Once the database is imported, the test images should be used. The test images
should be from the same people in the database. Example test images, from the 4 exam-
ple faces seen in Figure 6.1, are presented in Figure 6.2. However, we would like to have
100 test images, an average of 20 per person, to have a wide range of results to evaluate
the system. UFI, though, does not contain that many photos per person. Therefore
some test images were created by editing existing images. This editing contained rota-
tion, contrast modification, edge sharpening, etc. An example of edited images through
one UFI image is seen in Figure 6.3. This way a set of test 100 images are utilized to
test our system.

Furthermore, to extend the evaluation, we repeat the same process two more times,
import a new database of 5 other people and utilize 100 other test images. In the end,
we have a set of experiments that test 300 images resulting in a better evaluation of the
system.

The input and output methods of the test experiments should be defined. The input
test images will be stored to the DDR through the SD card of the platform [14]. In our
test application, a loop will be used to load each image from the SD card to the DDR,

71
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Figure 6.1: Face images of 4 people used in the database [33]

Figure 6.2: Example Test Images [33]

forming this way our input stream. The issue here is that the images should be stored
in the SD card in the right format. As this is a bare metal application, there is not a
predefined function to read the pixel values from the image PNG format. Therefore, the
images should be converted to binary format, containing the pixel values, before being
stored in the SD card. A matlab function is developed for this reason and the test images
are converted to binary files. Concerning the output, a message will be printed in the
terminal console, indicating the best match for the current picture. The match will be
shown in a number, 1-20, matching one of the 20 people. An example of output in the
console can be seen in Figure 6.4.

The execution time, alongside with the accuracy, are the most important aspects
of our system. Although an insight of the performance has been given during the im-
plementation process, the actual system execution should be evaluated. This is done
by utilizing the interrupt signals from the DMAs and timing points in the code of our
application, to compute specific operations duration. The overall performance can be
examined correctly with those measures used.

The resource utilization of the system, together with the power consumption are not
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Figure 6.3: Editing of an UFI image [33]

Figure 6.4: Result Output

a primary concern for the defined project specifications. In spite of that, a brief summary
on those aspects will be presented as well, to have a spherical view of the implemented
system. The tools of Vivado will be used for this reason, as they can give a very good
estimation for these values.

6.2 Execution Time

The performance of the implemented system will be examined first. The DMA interrupt
signals are used to find the latency of the two programmable logic processes, feature
extraction and histograms comparison. Timing points in our code will indicate the
duration of the matching process on the ARM and the total execution of the application.

One test image is used for measuring the execution latency. After its importation
in the DDR, the execution time for recognition is presented in Table 6.1. This latency
matches the expected results, discussed in the implementation process (Chapter 5). We
can now confirm, the real-time facial recognition of our system. All of the processes report
small execution times, 0.9ms for feature extraction, 1.49 for histograms comparison, 0.04
for computing final result and add up to a real time latency of 2.43 ms.

The execution time of our system for a stream of multiple input images is linearly
depended to the single-image latency. Therefore, the latency (L) for a stream of N input

Table 6.1: System execution time

Process Latency (ms)

Feature Extraction 0.9

Histograms Comparison 1.49

Compute Final Result 0.04

Overall 2.43
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images can be found by the following function:

LN = N ∗ 2.43

Moreover, using this function we can compute the number of face images that can be
recognized in real-time, less than 16ms. After simple calculations, we conclude that 6
images can be recognized in the real-time boundary. This can be also seen in Figure
6.5. Although this is not important for the current system, as the specifications indicate
a stream of 60fps, it is helpful in comprehending the high performance of the system,
which might be useful in future implementations.

Figure 6.5: Execution time compared to real-time execution

In the experiment described in Section 6.1, the process of importing the test images
is added to the latency of the system. This latency, after testing, is found to be 14
ms. This latency is added to the execution time of recognition. So every new image is
imported and recognized in 16.43 ms. The total execution, for all input images, is seen
in Figure 6.6.

To evaluate better the performance of our system, it is compared to similar imple-
mentations. Although, such a comparison is not entirely accurate, as there are different
parameters utilized for every implementation (feature vector size, image size, etc.), it
is adequate to comprehend the level of performance. In Table 6.2, a comparison with
implementations that perform face recognition using LBPH, is presented. Those imple-
mentations are [8], [10] and the implementation referred as ARM, which is the imple-
mentation in the ARM, described in Section 5.1. The proposed implementation performs
much better than the other similar ones. The implementation that its performance ap-
proaches ours is GPU [8], but we should point out that is applied to smaller images of
size 130x150.

Furthermore, the proposed system is performing better than [9], which utilized LBP
for face detection, a similar but simpler task. The latency of that implementation is 16.3
ms, almost 14 ms higher than the proposed implementation. In [9], we find the execution
times of two more implementations in CUDA and in Plain C. The execution time for
those two is again worse than our system, with 11.4 ms and 125 ms respectively.
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Figure 6.6: Execution time for 100 images

Table 6.2: Different implementations comparison

Implemenation Latency (ms)

OpenCL [10] 25.6

GPU [8] 3.9

GPUX [8] 25.62

ANN [8] 104.69

ARM (5.1) 1414.39

Proposed System 2.43

6.3 Accuracy

The accuracy is the next important aspect of our system. In this section, it will be
evaluated for the proposed implementation, through a set of experiments described in
Section 6.1. As described, 3 sets of experiments will be performed. For each one of them,
5 images of 20 different people will be used to construct our database and 100 test images
will be used as an input for recognition. During these experiments, the recognition results
are examined and the correct recognitions (CR) are marked. The recognition accuracy
for the 3 sets of experiments are presented in Table 6.3. The accuracy for the three
different sets are 78%, 81% and 77% respectively, leading to an average accuracy of
78.6% for our system.

Those results regard first rank accuracy. To examine the different ranks’ accuracy
results, for better overview of our system, a modification on the design in needed. This
modification is necessary, as we need, depending on the rank, to observe more distances
than the minimum one. This way, we change the Comparison Histogram IP core, to
output all the calculated distances. This way we can observe the accuracy for different
ranks. This modification on the design was just applied for this experiment and was
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Table 6.3: Experiments’ Accuracy Results

Set Faces CR Accuracy (%)

1 100 78 78%

2 100 81 81%

3 100 77 77%

Total 300 236 78.6%

discarded after the end of it. The different rank accuracy results are presented in Figure
6.7. We observe that the increase of the rank leads to higher accuracy, with a smaller
difference between highest ranks. The current system is using first rank recognition, but
once more those results are presented to comprehend the systems efficiency better and
point out its possibilities for different implementations.

Figure 6.7: Accuracy for different ranks

If we refer to [29], which presents a wide range of different accuracy results for face
recognition, the high accuracy level of our system can be confirmed. In addition, a
comparison with the also high-performance implementation of LBPH in [10], shows that
a better accuracy is achieved. The accuracy of 74.75% in [10] is almost 4% worse, which
is a notable difference.

6.4 Resource Utilization

The utilization of our system in not a prime concern of our system, as the main goal was
to achieve a real-time, high accuracy face recognition system, regardless of the resources
utilization. However, the resources utilization is presented to give the reader a complete
description of our system.

Regarding the platform [14], one ARM processor is utilized for the system in addition
to the FPGA. The memory on the platform is of 512 MB, but the developed system
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Table 6.4: FPGA Resources Utilization

Resource Utilization Available Utilization (%)

FF 26834 157200 16.78

LUT 34887 78600 44.39

Memory LUT 228 26600 0.86

BRAM 198.5 265 74.91

BUFG 1 32 3.12

requires less than 1.5 MB for its operation. The SD card reader of the FLORIDA was
also utilized by our system, during the testing process. As different implementations, will
utilized different input means, though, the SD card may not be in need of the system.

The FPGA resources utilization should be examined further, as more important
information can be derived from that. The utilization of the main resources of the
FPGA, Flip Flops (FF), Look Up Tables (LUT), Memory Look Up Tables (Memory
LUT), Block Memory (BRAM) and Global Buffers (BUFG) are presented in Table 6.4.
This utilization is also, better, observed through the graph in Figure 6.8. The utilization
can be characterized as low, while many resources are still available. On the other hand,
compared to the rest of the resources, the BRAM reports a high utilization of 75%. This
consents to the fact that the BRAM utilization was a limitation, we came across, many
times during the implementation.

Figure 6.8: Resource Utilization Percentage

The utilization of the FPGA resources, can be observed also through the device
diagram picture, which is available through Vivado. This overview is presented in Figure
6.9. The programmable logic fabric is delimited by the different color lines and the
resources utilized by the light blue-colored areas. We notice that the utilized resources
are concentrated in close areas. This is done to minimize the length of the paths that
are used.

The resources utilization agrees with the expected estimates presented during the
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Figure 6.9: FPGA overview

implementation. The utilization can be taken in account for future extensions of the
current system. An addition of a process in the programmable logic of the system,
required by a future implementation, should comply with the available resources and
thus should be based on the results presented in this section.

6.5 Power Consumption

The power consumption of our system was not taken into consideration, at any part of
the implementation, as there was no limitation on the project specifications. From our
point of view, the platform maximum power consumption could be reached, if it was
necessary to achieve the necessary performance.

Nevertheless, the power consumption information of a system is very important,
especially when we are talking about embedded systems, where power efficiency is some
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Table 6.5: Power Consumption Information

Total On-Chip Power (W) 2.536

Dynamic (W) 2.353

Device Static (W) 0.183

Max Ambient (C) 76.6

Junction Temperature (C) 33.4

times mandatory. The proposed implementation, here, may not have been designed with
power consumption boundaries, but a future utilization of it in a different, wider, system,
which has to comply with power limits, is possible. Hence, we present the basic power
consumption information in Table 6.5 and Figure 6.10, acquired by Vivado concerning
the FPGA.

Figure 6.10: On chip power consumption

Observing, those results we can notice the low power consumption of the system,
mainly when we compare to the other accelerated implementations of LBPH for face
recognition [8], [10]. Those implementations utilized GPUs for that purpose, where the
power consumption, according to [43], ranges from 50W to 100W. This way, although
it was not designed with this aim, in overall, our system falls under the category of a
power efficient system.

6.6 Conclusion

The evaluation of our system took place in the current chapter. This evaluation was
performed through a set of extensive experiments described in Section 6.1. The results
derived from those experiments were examined to verify the efficiency of our system.

The main aim of the implemented system was to achieve real-time, high accuracy
face recognition. This goal was achieved successfully with a low execution time and a
high accuracy percentage. This can be verified by the results presented in Sections 6.2
and 6.3. Concerning the performance, the system’s execution time for recognizing a
single face is 2.43 ms. This time is way below the real-time execution of 16ms and also
outperforms similar implementations. Regarding the accuracy, a percentage of 78.6% is
reported. This is a high accuracy value, especially when we are talking about first rank
recognition.
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Except from the prime concerns of the system, information regarding other aspects
of the system are provided as well. In Sections 6.4 and 6.5 insight on the resources
utilization and power consumption, respectively, is provided. The current utilization
leaves a notable margin of available resources with only the BRAM resources being
almost completely used. In the power consumption part, the approximately 2.5 W
required by our system is a low value, which is also lower than similar implementations.

In conclusion, the results presented in this chapter suggest a system that is capable
of performing face recognition real-time, with high accuracy and low power consump-
tion. In addition, the remaining available resources allow further extensions and design
differentiations for altered system specifications.
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The main goal of this work, as described in the Introduction, was to implement a system
that can perform real-time, high accuracy face recognition. This target was achieved
effectively, with the current system meeting those requirements. In addition, this novel
system managed to outperform similar implementations and can be characterized, there-
fore, as a remarkable contribution in the field of facial recognition.

The main conclusions drawn from this work are described in Section 7.1. The main
contributions of the current thesis are presented in Section 7.2 and finally, in Section 7.3,
recommendations for future research, regarding the current work, are proposed.

7.1 Summary

The thesis is organized in 7 chapters. Excluding the current one and the first chapter
which is an introduction to the work carried out, every other chapter is centered on a
different aspect of the thesis.

In Chapter 2, background information, essential for comprehending the work car-
ried out, is presented. Basic information on the field of facial recognition is provided.
Where is facial recognition used and how a face recognition system works is presented.
Furthermore, information concerning reconfigurable computing is given in Chapter 2.
As our system is based on reconfigurable computing, basic concepts on the field should
be explained. Finally, the platform utilized for our system, Topic Development Kit, is
presented and all of its features, that are important to our system, are described.

Chapter 3 consists of a literature review on facial recognition models and similar im-
plementations. Initially, the most popular algorithms that are utilized for face recogni-
tion are presented. Those algorithms are: Eigenfaces, Fisherfaces, Elastic Bunch Graph,
Local Binary Patterns Histograms and Scale Invariant Feature Transform. The way each
algorithm functions and performs recognition, is described. In addition the efficiency and
performance of all the algorithms is compared in order to select the most proper one for
our system. Through this process, LBPH is chosen for our implementation. Next, also
in Chapter 3, implementations that utilize LBPH are presented. Those implementations
have a similar aim, as our project, and this is to increase the performance of LBPH
utilization. Examining those implementations, we have reported that our system is a
novel design, as LBPH was never implemented in the past to perform face recognition
by utilizing an FPGA. Also, the other implementations provided a comparison measure,
regarding performance, for our implementation.

The complete development of the algorithm has been presented in this Chapter 4.
This process was mandatory before proceeding to the system implementation. The
proper parameters and models for the system needed to be examined, prior to the im-
plementation, in order to ensure the efficiency of our system. The finalized developed
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prototype algorithm set the basis and guidelines for the implementation. The key as-
pects investigated included parameters of the LBPH algorithm and included models. In
Section 4.1, the number of regions of LBPH was decided, assuring high accuracy and
relatively small database. Section 4.2 describes the way the proper region weights were
chosen to further increase accuracy. Different distance measures, needed for the his-
togram matching process, were presented in Section 4.3, and the most appropriate one,
Manhattan Distance model, was selected. Finally, the utilization of classification and
its benefits were described in Section 4.4. To sum up, through a set of experiments,
the algorithm for our system was developed following the most appropriate path. This
process’ goal was to maximize the efficiency of the algorithm, always with respect to
the project specifications. This goal is confirmed by the final 78% first rank accuracy
achieved and also by ensuring that the model complexity is not burdened.

In Chapter 5, the complete process of implementing our system has been described
extensively. In Section 5.1, our design approach was described, including the profiling of
the models. After that, the two IP cores needed for our system, Feature Extraction IP
and Histograms Comparison IP, were designed and optimized efficiently. The process of
doing that for the two cores is desribed in Sections 5.2 and 5.3 respectively. Once the
IPs were completely designed, their integration on the PL of the system took place and
was described in Section 5.4. Finally, the role of the ARM processor on the operation of
the system, although limited, was presented in Section 5.5. The final system designed,
through this implementation, met all the requirements that were expected, high accuracy,
real-time face recognition.

Finally, the evaluation of our system took place in Chapter 6. This evaluation was
performed through a set of extensive experiments described in Section 6.1. The results
derived from those experiments were examined to verify the efficiency of our system.
The main aim of the implemented system was to achieve real-time, high accuracy face
recognition. This goal was achieved successfully with a low execution time and a high
accuracy percentage. This can be verified by the results presented in Sections 6.2 and
6.3. Concerning the performance, the system’s execution time for recognizing a single
face is 2.43 ms. This time is way below the real-time execution of 16 ms and also
outperforms similar implementations. Regarding the accuracy, a percentage of 78.6% is
reported. This is a high accuracy value, especially when we are talking about first rank
recognition. Except from the prime concerns of the system, information regarding other
aspects of the system are provided as well. In Sections 6.4 and 6.5 insight on the resources
utilization and power consumption, respectively, is provided. The current utilization
leaves a notable margin of available resources with only the BRAM resources being almost
completely used. In the power consumption part, the approximately 2.5 W required by
our system is a low value, which is also lower than similar implementations. To conclude,
the results presented in Chapter 6 suggest a system that is capable of performing face
recognition real-time, with high accuracy and low power consumption. In addition,
the remaining available resources allow further extensions and design differentiations for
altered system specifications.
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7.2 Main Contributions

The design of this system was carried out with respect to the project specifications,
described in Section 1.2. Based on those specifications and through the implementation
process an eminent system was developed. The main contributions of this thesis are:

• A system that performs real-time, high accuracy face recognition was implemented.
In addition, the performance and accuracy achieved exceed the initial project re-
quirements.

• This thesis presents a novel system for face recognition. It is the first time, as
known to the author, that LBPH was implemented on an FPGA to perform face
recognition.

• Complete face recognition, with an execution time of 2.43 ms, was achieved. This
time meets the requirements, of a real-time execution, which corresponds to less
than 16 ms as described in Section 1.3. In addition, this performance outmatches
similar implementations on high performance facial recognition.

• The accuracy of the system is higher than 78%. This percentage is congruent with
the the first rank accuracy of the most often utilized, high-accuracy, models. Also,
the accuracy reported is higher, even up to 4 p.p., than other accelerated face
recognition implementations.

• The proposed system requires a power consumption of 2.536 W. Therefore, the pro-
posed system is power efficient, especially when it is compared to face recognition
systems, that utilize different means for acceleration, such as GPUs [43].

• The system does not utilize all the available resources of the FPGA platform.
83% of the total FFs, 56% of the total LUTs and 25% of the total BRAM, remain
available for utilization. This gives the ability of functional additions in the system,
through the utilization of the available resources. Another possibility is to utilize
an earlier FPGA model, that can still meet the utilization demands, which would
be cost-effective.

• The proposed system is simple in its operation and also allows its utilization for
different project specifications easily. As mentioned before, the input and output
methods can be simply modified according to the system requirements. Storing
the image on the memory of the platform is the only obligation for utilizing the
current design, which is easily accessed.

• A product that directly addresses the interests of Topic Embedded Systems’ clients
was developed. Furthermore, the IP cores designed for the FPGA are now in the
possession of the company, for future applications and for further development.

7.3 Future Work

In the current section, proposals for future research are made. Although, this novel
proposed system is characterized by its high performance and efficiency, some of its
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aspects could be researched further, to improve it more and also to take in account
the evolution of technology and FPGAs, in specific. The future work proposals are the
following:

• Defined input and output implementations should be investigated. This way, the
transfer time of input and output data, could be reduced significantly. For example,
a system that utilizes a camera for importing face images (frames), shall now
transfer the data to the memory first, while the import of the data directly to the
FPGA would be more time-efficient. The Topic Development Kit offers a range
of different ports that could be utilized for different input and output methods.
Hence, an implementation that can be easily adjusted to utilize them efficiently
could be researched in the future.

• The system developed, as described, is running on bare-metal. A future research
could focus on booting an operating system on the platform and run the designed
application on top of it. The modifications on the implementation should be in-
vestigated and the benefits that can come out of it should be highlighted.

• As the technology evolves rapidly, new solutions are available. Concerning the
current system, presently manufactured FPGAs offer more resources that can be
utilized. A future work could examine the dependency between the performance
and the resources available. This way, the current design could be migrated easily
and efficiently to brand new hardware.

• Another future research that is interesting, regards the accuracy of our model.
Currently, the new recognized images do not interfere with the database. However,
the correctly recognized images could be integrated in the database and increase
the robustness of recognition. The ratio of accuracy increase to the latency of such
a process and in addition how could this be implemented efficiently on the FPGA
should be examined.

• Last, modifications on our implementation, focusing on power efficiency, could
be researched in the future. The performance of the proposed system is much
higher than the real-time goal. Therefore, the available margin in performance
degradation, could be exploited to reduce the power consumption. Many systems’
main concern is power efficiency and hence, a research on altering the current
design towards that goal could be useful.
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