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Preface
It is a well known wisdom that solving one problem creates another. In fact, often solving one problem
creates multiple other problems. This is something I did not really believe at first but since completing
this thesis project, I have been convinced of the contrary. For me, this also resulted in extra proof that
time is both man’s most valuable resource and also its worst enemy.

Heit en mem, ik wol jimme hiel graach betanke foar jimme stipe troch myn studintetiid hinne. Ik tink dat
ik feilich kin sizze dat it sûnder jimme net sa goed slagge soe wêze as it is.

W. Bouwmeester
Delft, January 2020
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Abstract
Mankind becomes ever more reliant on wireless technology like mobile communications, navigation
and radar. This development has resulted in more sensitive receivers, but this increased sensitivity
also has increased the susceptibility of these receivers to interference from external sources. One of
these sources that is known to disrupt terrestrial communications is the Sun.

The DISTURB project aims to provide the means to observe and study interference phenomena
generated by the Sun between frequencies of 10 MHz and 3 GHz. Furthermore, DISTURB stations
should provide the ability to observe the Sun from sunrise to sunset, at any location in the world and
thus require full hemispherical coverage.

This master thesis project is concerned with the design of a conformal phased array antenna for a
novel application in radio astronomy. The goal of this project is to provide an initial conformal array de
sign that is able to provide full hemispherical coverage in the 1500 MHz to 3 GHz band of the DISTURB
project.

A quasispherical array of radius 1.55 metres and with 343 crossed modified bowtie antenna el
ements, distributed using a novel geodesic topology, is proposed and found to satisfy DISTURB re
quirements in the frequency range of 1.3 to 3 GHz. Hence, the designed array is found to achieve a
fractional bandwidth of 79% and therefore even exceeds the initial design goal.

Finally, the designed array is compared to a parabolic reflector antenna, resulting in an insight in
the complexity of a conformal phased array antenna design and the advantages and disadvantages
such a conformal phased array antenna may bring to the DISTURB project.
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1
Introduction

This chapter aims to provide background on the research project as well as introducing the research
problem, approach and the final research objective. Next to this, this chapter will also provide an
overview of the current stateoftheart related to this thesis’ subject and the novel aspects of this thesis
work. Finally, an outline of the thesis is provided.

1.1. Background of the Research
As time progressed, man has become more and more dependent on technology. This has resulted
in society becoming increasingly reliant on wireless technologies such as, amongst others, wireless
communication, radar and navigation to name but a few. In order to improve the reliability and ca
pability of wireless services, a continuous effort is put into advancing the sensitivity and efficiency of
wireless systems. However, this makes wireless equipment also more sensitive to interference from
numerous external sources. One particularly strong source that is known to disrupt communication and
navigational services is the Sun.

Just like society has seen progressive use of wireless electronics, so have armed forces all around
the world. It should even be mentioned that most of the technologies like radar and the global posi
tioning system were developed for military applications in the first place. As electronic tools and more
advanced weaponry became more prevalent, also electronic countermeasures have found widespread
use. These electronic countermeasures range from jamming wireless communication systems to trick
ing radars into seeing false targets. This has lead to the desire of knowing whether interference is
related to space weather or generated by a potential adversary.

Space weather refers to the electromagnetic conditions in space near Earth. Space weather in
cludes for example factors like solar wind speeds, magnetic field strengths and energetic particle levels.
These factors are mostly controlled by the Sun and therefore, the Sun is the prime object with regards
to determining whether interference is manmade or related to space weather. [1]

Interference related to space weather may for example occur in power grids. Power grids nowadays
are large interconnected systems that are sensitive to largescale electric fields. A disturbance in these
fields can be caused by a disturbance in solar wind pressure that may compress the Earth’s magnetic
field. This field may subsequently induce large currents on power grids leading to potential blackouts.
[1]

The Sun can also effect satellites. This can for example happen due to charged particles resulting
from solar flares or coronal mass ejections impacting on microelectronics [2]. These charged particles
can cause bits in the memory of a satellite to flip, with a worst case scenario of rendering a satellite
inoperable due to a critical change of the satellite’s programming.

1.2. Research Problem
In order to gain a better understanding of radiation emitted by the Sun and the interference that it causes,
a new solar monitoring aperture array concept has been proposed by the Netherlands Institute for Radio
Astronomy, abbreviated ASTRON. This project has been codenamed DISTURB which is an acronym

1



2 1. Introduction

for Disturbancedetection by Intelligent Solar radio Telescope of (Un)perturbed Radio frequency Bands.
The primary purpose of this project is to continuously observe the Sun at frequencies ranging from 10
MHz to 3 GHz as many wireless services such as communications and navigation operate within this
band. Aperture array technology for radio astronomy has already been demonstrated in the frequency
range from 10 MHz to 1500 MHz by arrays such as LOFAR [3] and EMBRACE [4]. Therefore, a phased
antenna array design, operating between 1500 and 3000 MHz, is desired to realise the full potential of
DISTURB.

Next to the 2:1 operational bandwidth requirement, the antenna array must be able to look at the Sun
at any time of day, at any location in the world. Hence, the array should provide full upper hemispherical
coverage. Conventional planar arrays suffer from the fact that the beam widens the more the beam is
steered away from broadside and towards the horizon. This is due to a decreasing effective aperture
because of projection effect (i.e. the area of a planar array when looking at it from the side is much
smaller than when looking at it from the top) [5].

1.3. Research Objective
The main objective of this study is to provide a conceptual design of an antenna array that meets the
requirements listed in section 1.3.1 as well as possible. This research project is mainly set up to provide
a feasibility study for the final design used for the 1500 MHz to 3000 MHz frequency range of DISTURB.

1.3.1. Requirements
The main requirements for system are as follows.

• The halfpower beam width of the array must be larger than 2 degrees over the operational fre
quency range, for any scan angle in the upper hemisphere. Even though the Sun itself has an
angular size of about 0.5 degrees, its corona is larger than that. Since a spectrogram needs to
be taken of the Sun including the corona and other phenomena such as solar flare loops, the
halfpower beam width needs to be at least 2 degrees. Also, with a minimum of 2 degrees, the
pointing of the beam also can be less precise, which may reduce complexity of beam steering and
phase shifters involved. Phase shifters are often implemented in a discrete way and therefore
beams can only be steered in steps of for example 1 degree. The finer the steering step required,
the more complex the phaseshifters and beamforming network and hence, the more expensive
the array.

• The halfpower beam width of the array must be smaller than 15 degrees over the operational
frequency range, for any scan angle in the upper hemisphere. It is intended to calibrate the
antenna array using celestial sources. This can be reasonably done if the halfpower beam width
is smaller than 15 degrees. If the HPBWwould be larger than 15 degrees, multiple strong sources
may be within the beam and disturb the calibration process.

• The operational frequency range of the array must at least cover 1500 MHz to 3000 MHz. As
mentioned before, the DISTURB project aims to observe the Sun at frequencies between 10
MHz and 3 GHz. As the lower part of the band could potentially be covered by antenna arrays
like LOFAR, an antenna array that is able to cover the higher part of the band is considered in
this thesis project.

• The array must be able to receive both polarisations. Since sunlight is not polarised in a single
way, i.e. may consists both out of circular and linear polarised light, both of two orthogonal polar
isations need to be observed. Also, the polarisation of the solar emissions may reveal interesting
information about observed phenomena.

• The noise temperature of the antenna array must not exceed 100 K. The Sun is a very strong
signal source. Therefore, ultra low noise temperatures are not critical and a sensitivity of one solar
flux unit would already be sufficient. However, in order to improve observations and potentially
use the array to observe other astronomical objects, a receiver noise temperature of 100 K is
required.

• The array must not contain any movable parts. The DISTURB project needs to provide 24/7 ob
servation capability of the Sun and therefore the downtime needs to be kept as close as possible
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to 0%. Movable parts wear out over time and thus are a source of failure. This risk can be mit
igated by regular maintenance. However, DISTURB stations may be deployed at very remote
locations to make sure at least one station sees the Sun at any time. Dispatching maintenance
crews and equipment to these remote locations can be very costly and therefore performing reg
ular maintenance may be too expensive.

Furthermore, the desires of the ASTRON research personnel for the system are as follows.

1. The array should be able to cover as much of the 10 MHz  3000 MHz band as possible. Even
though the lower part of the frequency band of interest for DISTURB can be covered with arrays
like LOFAR, it is desirable that much of this range can be covered using one antenna system.
This reduces the need for the deployment of multiple different antenna systems at one DISTURB
station, thus potentially reducing project cost tremendously.

2. The shape of the main beam should be as circular as possible over all hemispherical scan angles.
If the shape of the beam is not circular, an observed signal from a target may change as the Earth
rotates. To reduce this effect and simplify observations, it is desired that the beam is as circular
as possible.

3. The array should have as little as possible total antenna elements to reduce costs of the array.
Each antenna element requires its own components like connectors, amplifiers, phaseshifters to
name a few and complicate signal processing. These components add costs as does processing
power. Hence, to keep costs down, it is desirable to have as little elements as possible.

4. The array should have as little as possible enabled antenna elements. The radiofrequency (RF)
frontend electronics can potentially be switched off to save on power consumption. Since pro
viding power to remote DISTURB stations probably requires custom infrastructure as it cannot be
simply connected to the grid, power generation is likely a significant factor in the costs of a station.
If the power requirements are kept to a minimum, less expensive power generation equipment
can potentially be used. This could leads to costs savings.

1.4. Overview of Stateoftheart
The ability to achieve hemispherical coverage with a phased array is subject that has been of interest
for a long time. Already written in 1965, [6] considers the problem of determining the optimal number
of faces a phased array should have to achieve hemispherical scan coverage. In current literature,
most papers that deal with achieving hemispherical coverage, take one of three approaches. The first
approach is extending the scan range of an planar array, the second approach is by making use of
dielectric lenses and the third is by using conformal arrays. These three approaches will be covered in
the following subsections.

1.4.1. WideAngle Scanning Planar Arrays
In recent years, there has been extensive research effort into extending the wideangle scanning ca
pabilities of planar arrays. One of the key applications that drives this research is providing broadband
mobile terminals for satellite communications [7–9]. These terminals are for example of interest to the
aeronautical sector to provide more elaborate inflight entertainment on airliners [7].

Increasing the wideangle scanning of a planar array can be achieved in a number of ways. The
array described in [10], on which the antenna array from [7] is based, makes use of a connected array
antenna where the mutual coupling is exploited to extend the scanning range. The final array is able
to scan to 60∘ from zenith in a frequency range from 10.7 GHz to 14.5 GHz [7].

In contrast, in [11] a wideangle scanning planar array is constructed out of antenna elements with
quasihemispherical radiation patterns that are combined with grounded decoupling cavities to reduce
mutual coupling. The final array of 16 by 16 active elements achieves a scan range of ±77∘ with a gain
variation of less than 5 dB [11].

Another approach to wideangle scanning is by making use of reconfigurable antenna arrays. One
of the earliest examples of this is a phased array antenna consisting of waveguide elements that are
shorted when scanning to the endfire direction. In this way the array transforms into a corrugated
surface wave antenna and a narrow beam towards endfire can be achieved [12].
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In [13], pattern reconfigurable antenna elements are used to extend the scanning range. The array
consists out of microstrip yagi antennas that can be reconfigured using PIN diodes as switches. An
other way to reconfigure the element radiation pattern is by using an antenna design that has different
radiation patterns based on the field mode present in the feed of the antenna [14]. Next to this, a multi
scale array concept which uses separate antenna elements for different bands can be used to extend
the scanning range of the array [15].

Also, the scanning range for an array can be extended by optimising beamforming algorithms, for
example by exploiting the position of the nulls in the radiation pattern [16].

1.4.2. Dielectric lenses
An alternative way to obtain good hemispherical scanning is to make use of dielectrics. Using di
electrics, lenses can be made that shape or deflect the beam generated by a phased array feed to
achieve hemispherical scanning.

One way of obtaining hemispherical coverage using dielectric lenses is by making use of a Luneburg
lens. This is a spherical lens that has a relative permittivity that varies along the radius of the lens [17]. A
Luneburg lens has the adventageous property that, due to its symmetry, the beam shape is independent
of the scan angle [18]. Such a Luneburg lens has been considered for use in the Square Kilometre
Array [19]. To save some material costs on the Luneburg lens, also a hemispherical lens with a ground
plane underneath the lens can be used [20]. However, this requires a mechanically movable feed if
hemispherical scanning is desired [21].

Another solution is by using a dielectric lens on top of a planar array as a beam deflector [22].
This deflector lens can have several shapes, ranging from pyramidal to spherical lenses and faceted
designs [22–24].

1.4.3. Conformal Arrays
Lastly, the hemispherical coverage problem can also be solved by using a conformal antenna array.
A conformal antenna array is defined by the IEEE as an antenna or an antenna array that conforms
to a surface whose shape is determined by considerations other than electromagnetic; for example,
aerodynamic or hydrodynamic. However, in common usage, the term conformal array is applicable
to any array that has some threedimensional shape, either smooth or faceted [25]. By this definition,
although the term conformal array is not mentioned, [6] is one of the earliest examples of using a
conformal array to achieve hemispherical coverage.

The structure proposed in [6] comprises four faces, each carrying a phased array that covers a
sector of 55∘, which is optimal from an minimum antenna element point of view. Furthermore, [6]
mentions the optimal number of faces is strongly dependent on the requirements of the final array.
This work has later been extended by [26] and revisited in [27]. The final conclusion of the two last
mentioned papers is that for their application, an array with four faces is optimal for both volume and
horizon scanning considering the revised criteria. Another paper that considers the optimisation of
the number of facets an array should have is [28]. Next to optimising the number of facets required,
[28] describes a way to optimise the elevation angles the facets should have in order to reduce the
maximum required scan angle per subarray. Furthermore, [28] states that among the pyramidal frusta
class of shapes, a frustum with six or seven facets requires the least elements. This design has been
put in practice by [29], in which the design of a pyramidal frustum with seven facets is described. Each
facet contains a subarray with seven stacked patch antennas, with a final resulting gain exceeding 10
dBi within 86.6% of the full upper hemisphere [29].

A more sophisticated faceted shape is presented in [30]. This array consist out of multiple different
angled facets: facets perpendicular to the ground, parallel to the ground and facets at an angle to close
the shape. The gain variation over the upper hemisphere is less than 2 dB for an array with 17 faces
[30]. This provides the hemispherical scanning capability required for telemetry, tracking and command
of satellites [30]. Next to this, [30] also describes a beamforming algorithm which is able to place a null
at the location of an interference source.

Besides shapes with facets, also continuous/smooth shapes can be used for arrays to provide
hemispherical coverage. One of the first examples of this is [31] in which an array of open ended
waveguides is placed on a cone. In the case of [31], the conical shape is not specifically selected
because of the radiation requirements, but because of aerodynamic reasons as the array is designed
for use as a nose cone for guided missiles. Another example of a conical array, that does use its shape
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for electromagnetic purposes, is presented in [32]. This array consists out of 24 subarrays of 6 patch
antennas each that are placed on a conical frustum. The array is able to achieve coverage between 0∘
to 62.3∘ in elevation and 360∘ in azimuth with a gain variation of 0.15 dB [32].

Another example that does utilise its shape for electromagnetic purposes, is the GPS antenna
design in [33]. A spherical cap shape is used to provide a better signal to noise and interference
ratio for GPS satellites at low elevation. Similarly, [34] also presents an conformal antenna array based
on a spherical cap for GPS purposes. However, instead of making the antenna elements conform to
the surface, the spherical cap is locally flattened so that a number of flat circular facets are created.
Each flattened facet carries a patch antenna. It is found that this array is indeed able to provide good
gain over the complete hemisphere and also is resonant in multiple frequency bands so that multiple
satellite navigation constellations can be supported [34].

Instead of spherical cap shaped antenna, full spherical antenna arrays can be used. The spherical
array in [35] is designed for use on a satellite. Spherical arrays have the potential to provide wide
angle scanning capability with near constant directivity which makes it very interesting for satellites in
lowearth orbit [35]. In [36], the problem of determining the best element radiation pattern for use in
this array is considered. It is concluded that an element with a cosine squared pattern is the most
desirable and this antenna element is subsequently realised with a quasitapered helix antenna [36].
Furthermore, a beamforming algorithm based on evolutionary techniques that could be used for this
type of spherical array is presented in [37]. Two other examples of spherical arrays are presented in
[38]. Firstly, a spherical array with monopole antenna elements is presented. However, it is found
that beamforming is very difficult since the monopoles have a radiation pattern that is distributed in a
band [38]. To make beamforming simpler, [38] presents a spherical array consisting of horn antennas.
It is found that this array is able to provide good uniform coverage of the upper hemisphere with a
gain variation 3 dB in the lower end of its frequency band and 6 dB in the upper part of its frequency
band [38]. Instead of a full sphere, [39] describes a hemispherical array. This array is designed for
satellite ground station applications, in which it is desirable to have higher gain near the horizon [39].
This hemispherical array, with a radius of approximately 57.8𝜆 and 82177 antenna elements, is able to
achieve a maximum gain of 46 dBi, which can be reduced by disabling elements if required [39].

Next to purely facet based and smooth shapes, there are also arrays that are faceted approximations
of smooth shapes. A prime example of this is the geodesic sphere phased array antenna described
in [40]. This array is a sphere that has been approximated by an icosahedron, with each of the facets
housing a subarray. This array has practically the same gain for every scan direction [40]. Also in [41],
a faceted approximation of a hemisphere is used with each facet carrying a microstrip patch antenna.
This array does not make use of phase shifters or circulators but instead only enables the patch antenna
which is facing the scan direction the best [41]. This has the potential to reduce the costs of the array
[41].

1.5. Research Approach
Although wideangle scanning capability of planar arrays is increasing slowly, full hemispherical cov
erage has not been achieved yet. The array from [10] is designed to scan up to angles of 60∘, but to
cover the full upper hemisphere, minor mechanical scanning is still required [10]. Next to this, planar
arrays suffer from projection effects which makes the antenna gain decrease by cos𝛼 𝜃𝑠 when scanning
towards the horizon, where 𝜃𝑠 is the scan angle measured from broadside [5].

Dielectric lenses also provide a possible solution to the hemispherical coverage problem, however
lenses have two important drawbacks. Firstly, lenses are generally large in terms of wavelength which
make them bulky in the frequency range required for DISTURB and makes them more applicable at
millimetre wave frequencies [42]. Secondly, dielectric lenses may be very difficult to manufacture,
especially in the case of a Luneburg lens where the dielectric constant needs to vary with radius within
the lens [43].

Alternatively, by designing an antenna array that conforms to a certain shape, the projection effect
can be circumvented. The shape of the beam is controlled by the shape of the conformal array and
therefore the shape of the array can be designed in such a way that scaninvariant patterns can be
achieved [44]. The fact that gain variation is minimal with scan direction is confirmed by the results
mentioned in section 1.4. As listed in section 1.3.1, this is the most important requirement. Next to
this, because conformal arrays can be designed in such a way that the whole upper hemisphere can
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be covered, such arrays also do not require any movable parts.
The before mentioned disadvantages of lenses and planar arrays and the advantages of conformal

arrays lead to the conclusion that conformal arrays provide the most potential to fulfil the requirements
for DISTURB. Therefore, this thesis seeks to achieve the research objective by means of a conformal
array.

Firstly, the advantages and disadvantages of certain conformal array geometries are studied. From
this comparison, the most advantageous shape is selected and an antenna element is designed for
use in the selected array. Lastly, a complete analysis of the array, including active element patterns
and therefore mutual coupling, is performed to find out of if the final array complies to or even exceeds
the requirements in section 1.3.1.

1.6. Novelty
Traditionally, radio astronomy has been conducted by means of large reflector antennas or other large
antenna such as the Holmdel horn antenna used by Penzias and Wilson to discover the cosmic mi
crowave background [45]. As technology progressed, also phased array antennas designed for radio
astronomy like LOFAR and EMBRACE were commissioned. However, all of these arrays are planar.

For the first time, a novel application of conformal arrays in radio astronomy is investigated in this
thesis project.

By using a method of analysis based on isotropic active element patterns, a significant reduction of
computational resources is achieved allowing for a novel comparison farfield properties of numerous
different array configurations.

The configurations considered include spherical arrays with new concepts for element topologies.
The first is a novel topology where the element positions are based on the vertices of a geodesic dome.
The second novel topology is based on a new application of the HEALPix grid which has originally been
developed for creating maps of spherical surfaces as alternative to for example a Mercator projection
which can introduce unacceptable distortion. For example, HEALPix is used to create maps of cosmic
microwave background radiation.

1.7. Thesis Outline
This first chapter of the thesis gives a description of the research problem, the approach and the final
research objective. Next to this, this chapter also provides an overview of the current stateoftheart
for large scan range phased arrays and the novelties of this thesis project.

The second chapter of the thesis gives a general introduction to conformal arrays and their theory
of operation. Furthermore, chapter 2 describes how the conformal arrays are analysed and how the
radiation patterns are calculated for a given array geometry.

The third chapter deals with the three dimensional shape of the conformal array and the distribution
of the elements on said three dimensional shape. The performance of the different conformal array
configurations will be discussed on compliance with the requirements given in section 1.3.1. A trade
off will be made and the most optimal configuration is selected. This configuration is then used in the
following chapters of the thesis.

Chapter 4 deals with the antenna element design to be used in the conformal array selected in
chapter 3.

The performance of the completed array is evaluated in chapter 5. Besides this, the conformal array
performance is compared to that of a parabolic reflector antenna.

Chapter 6 gives a conclusion on the achieved results. In addition, recommendations for further
research are made.



2
Conformal Array Analysis

This chapter deals with the analysis of generic conformal arrays. It will describe the theory of operation
of conformal arrays and analysis of radiation patterns of conformal arrays. For the details regarding
implementation of this analysis in MATLAB, the reader is referred to appendix A.

2.1. Reference System
Throughout this thesis, the reference system from figure 2.1 is used. The system features an ordinary
right handed Cartesian coordinate system. Next to this, also a spherical coordinate system is used. In
this system, the angle 𝜃 is measured from the 𝑧axis and the angle 𝜙 from the 𝑥axis. In some cases,
the 𝑧axis is also referred to as zenith.

x

y

z

(r, , )

r

Figure 2.1: The reference system used in this thesis. [46]

2.2. Operation Theory of Conformal Arrays
A conformal array has a few important differences with respect to ordinary planar arrays. Firstly, when
scanning to a particular direction, some elements may become obscured by the array itself due to its
three dimensional shape. This can be seen in figure 2.2 which displays an array with a hemispherical
shape. Only part of all of its elements is visible as the rest of the points is obscured and subsequently
left out of the plot.

Secondly, in a planar array, generally the broadside direction of all elements are oriented in the
same direction. However, in a conformal array, the antenna element broadside directions are generally
oriented in multiple different directions. This can also be seen in figure 2.2. In this figure, the element

7
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Figure 2.2: An conformal array with the active elements indicated with red circles for a maximum scan angle of 60∘ and a scan
angle of 𝜃𝑠 of 60∘ and 𝜙𝑠 of 45∘.

broadside directions are indicated by the element normal vectors, since the elements are all placed
normal to the surface of the conformal array. Because the orientations of the antenna elements are
different, the scan angle for each element is a different angle in its local coordinate system. Since the
radiation patterns of real antennas are nonisotropic and dependent on angle, effectively an amplitude
taper is generated. Such an amplitude taper causes the main beam to broaden [47].

In order to deal with these problems, only the elements that can see the scan angle within a certain
maximum angle from their broadside directions are activated. This angle is indicated by the (local)
maximum scan angle. Throughout this thesis, this angle is set to 60∘, since this scan angle is gener
ally considered to be achievable without too much difference in radiation intensity between the active
antenna elements.

2.3. Analysis of Conformal Array Radiation Patterns
In order to find an expression for the electric farfield of a (conformal) array, the first step is to derive the
electric farfield radiated by an antenna element in the array. This can be done by using the Green’s
functions. We recall that a Green’s function is the impulse response of an elementary current. There
fore, performing a convolution of an arbitrary element 𝑖 represented by an equivalent electric current 𝐽𝑒𝑞𝑖
and an equivalent magnetic current �⃗�𝑒𝑞𝑖 and the appropriate Green’s functions as shown in equation
2.1 gives the field radiated by the 𝑖th element �⃗�𝑖 [48]. It should further be noted that 𝑟 is the vector to
the observation location and the vector 𝑟′ indicates the location of the equivalent current sources.

�⃗�𝑖(𝑟) =∭
𝑉′
G𝐸,𝐽
𝑓𝑠
(𝑟 − 𝑟′) 𝐽𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ +∭

𝑉′
G𝐸,𝑀
𝑓𝑠

(𝑟 − 𝑟′) �⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.1)
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The Green’s functions are represented using dyadic functions, their full forms are given in equation 2.2
and 2.3 [48].

G𝐸,𝐽
𝑓𝑠
(𝑟 − 𝑟′) = −𝑗 𝜁𝑘

⎡
⎢
⎢
⎢
⎣

𝑘2 + 𝜕2
𝜕𝑥2

𝜕2
𝜕𝑥𝜕𝑦

𝜕2
𝜕𝑥𝜕𝑧

𝜕2
𝜕𝑥𝜕𝑦 𝑘2 + 𝜕2

𝜕𝑦2
𝜕2
𝜕𝑦𝜕𝑧

𝜕2
𝜕𝑥𝜕𝑧

𝜕2
𝜕𝑦𝜕𝑧 𝑘2 + 𝜕2

𝜕𝑧2

⎤
⎥
⎥
⎥
⎦

𝑒−𝑗𝑘|𝑟−𝑟′|
4𝜋|𝑟 − 𝑟′| (2.2)

G𝐸,𝑀
𝑓𝑠

(𝑟 − 𝑟′) = −
⎡
⎢
⎢
⎢
⎣

0 − 𝜕
𝜕𝑧

𝜕
𝜕𝑦

𝜕
𝜕𝑧 0 − 𝜕

𝜕𝑥
− 𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

⎤
⎥
⎥
⎥
⎦

𝑒−𝑗𝑘|𝑟−𝑟′|
4𝜋|𝑟 − 𝑟′| (2.3)

In equations 2.2 and 2.3 the free space impedance is represented by 𝜁 and the wave vector 𝑘 can be
found using equation 2.4.

𝑘 = 2𝜋𝑓
𝑐 = 2𝜋

𝜆 (2.4)

These dyadic expressions can also be written in a simpler form, first we introduce the scalar Green’s
function 𝐺0(𝑟) defined in equation 2.5.

𝐺0(𝑟 − 𝑟′) =
𝑒−𝑗𝑘|𝑟−𝑟′|
4𝜋|𝑟 − 𝑟′| (2.5)

By introducing the ∇∇ operator, which can be read as the multiplication of the gradient operator as
column vector with the gradient as row vector, equation 2.6 is found. In this equation I is an identity
matrix as dyad.

�⃗�𝑖(𝑟) =∭
𝑉′
−𝑗𝜔𝜇 (I+ 1

𝑘2∇∇)𝐺0 (𝑟 − 𝑟
′) 𝐽𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ −∭

𝑉′
(∇ × I)𝐺0 (𝑟 − 𝑟′) �⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.6)

Equation 2.6 is valid everywhere in the near and farfields but is not easily solvable since the equation
still contains derivatives. However, by making some approximations to limit the scope of equation 2.6
to the farfield, equation 2.6 loses its derivatives. First we introduce the vector �⃗� which is equal to 𝑟−𝑟′.
This can be alternatively written as 𝑅�̂�, with 𝑅 = |�⃗�|. In the same manner, 𝑟 can be written as 𝑟�̂� and 𝑟′
as 𝑟′�̂�′ with 𝑟 = |𝑟| and 𝑟′ = |𝑟′|. Because the observation point is in the farfield, 𝑟 ≫ 𝑟′ and because
of this, �̂� ≈ �̂�. Using this in equation 2.6, we find equation 2.7.

�⃗�𝑖(𝑟) =∭
𝑉′
−𝑗𝜔𝜇 (I+ 1

𝑘2∇∇)𝐺0 (�⃗�) 𝐽
𝑒𝑞
𝑖 (𝑟′) 𝑑𝑟′ −∭

𝑉′
(∇ × I)𝐺0 (�⃗�) �⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.7)

The gradient of the scalar Green’s function in radial coordinates can be found as shown in equation
2.8 [48].

∇𝐺0(�⃗�) = −(𝑗 +
1
𝑘𝑟 )𝑘𝐺0(�⃗�)�̂� (2.8)

If the assumption 𝑅 ≫ 1
𝑘 is made, the curl and ∇∇ operators change to vector operations as displayed

in equation 2.7. This is because the 1
𝑟 term becomes negligible and therefore the gradient of the scalar

Green’s function is approximately equal to a multiplication of the scalar Green’s function with −𝑗𝑘�̂�.
This results in an expression for the farfield with the radiative Green’s functions as shown in equation
2.9.

�⃗�𝐹𝐹𝑖 (𝑟) = −𝑗𝜔𝜇∭
𝑉′
(I− �̂��̂�) 𝐺0 (𝑟 − 𝑟′) 𝐽𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ + 𝑗𝑘∭

𝑉′
(�̂� × I)𝐺0 (𝑟 − 𝑟′) �⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.9)

Secondly, because the observation point is far away compared to the vector pointing to the source
integration points, it can be said that the vector from the origin to the observation point is parallel to
the vector from the integration point to the observation point. Therefore, �̂� ≈ �̂�. Since �̂� is no longer a
function of the integration variable �̂�′, it can be taken out of the integral resulting in equation 2.10.

�⃗�𝐹𝐹𝑖 (𝑟) = −𝑗𝜔𝜇 (I− �̂��̂�)∭
𝑉′
𝐺0 (𝑟 − 𝑟′) 𝐽𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ + 𝑗𝑘 (�̂� × I)∭

𝑉′
𝐺0 (𝑟 − 𝑟′) �⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.10)
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Now we notice the denominator of the scalar Green’s function as shown in equation 2.5. When con
sidering the farfield, 𝑟 ≫ 𝑟′ due to the fact that �̂�′ is very small in comparison to �̂�. Therefore, the
denominator of equation 2.5 can be approximated by 4𝜋𝑟, where 𝑟 is the distance to the observation
point. Therefore, the denominator of the scalar Green’s function is no longer dependent on 𝑟′ and thus
also can be taken outside of the integrals. This leads to equation 2.11.

�⃗�𝐹𝐹𝑖 (𝑟) = −𝑗𝜔𝜇4𝜋𝑟 (I− �̂��̂�)∭𝑉′
𝑒−𝑗𝑘|𝑟−𝑟′|𝐽𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ + 𝑗𝑘

4𝜋𝑟 (�̂� × I)∭𝑉′
𝑒−𝑗𝑘|𝑟−𝑟′|�⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.11)

Next, we consider the exponential phase term in the integral. This term cannot be easily approximated
by 𝑟 since the difference with |𝑟 − 𝑟′| may still be comparable to the wavelength 𝜆. If this is the case,
a significant phase shift can occur that leads to wrong results. To eliminate this possibility, a more
elaborate approximation is required. To derive this approximation, we first consider equation 2.12 [49].

|𝑟 − 𝑟′| = √(𝑟2𝑥 + 𝑟2𝑦 + 𝑟2𝑧 ) + (𝑟′2𝑥 + 𝑟′2𝑦 + 𝑟′2𝑧 ) − 2(𝑟𝑥𝑟′𝑥 + 𝑟𝑦𝑟′𝑦 + 𝑟𝑧𝑟′𝑧)

= √𝑟2 + 𝑟′2 + 2(𝑟 ⋅ 𝑟′)

= 𝑟√1 + 𝑟
′2

𝑟2 + 2
𝑟′
𝑟 (�̂� ⋅ �̂�

′) (2.12)

We notice that 2.12 is of the form 𝑟√1 + 𝑥 with 𝑥 = 𝑟′2
𝑟2 +2

𝑟′
𝑟 (�̂�⋅�̂�

′). The√1 + 𝑥 term can be approximated
by its Taylor series of which we consider the first three terms. This results in equation 2.13.

|𝑟 − 𝑟′| = 𝑟√1 + 𝑥

≈ 𝑟 (1 + 12𝑥 −
1
8𝑥

2)

≈ 𝑟 (1 − 𝑟
′

𝑟 (�̂� ⋅ �̂�
′) + 12 (

𝑟′
𝑟 )

2
(1 − (�̂� ⋅ �̂�′)2) + 12 (

𝑟′
𝑟 )

3
(�̂� ⋅ �̂�′) − 18 (

𝑟′
𝑟 )

4
) (2.13)

Since 𝑟 ≫ 𝑟′ in the farfield, the 𝑟 (1 − 𝑟′
𝑟 (�̂� ⋅ �̂�

′)) part is dominant in equation 2.13. Because this domi
nant term is the result of only the first order term of the Taylor series expansion of √1 + 𝑥 and the higher
order terms of the expansion result only in terms that vanish in the farfield, the final approximation in
equation 2.14 is found.

|𝑟 − 𝑟′| ≈ 𝑟 − 𝑟′ (�̂� ⋅ �̂�′) (2.14)

Now phase error 𝜙𝑒𝑟𝑟𝑜𝑟 of this approximation is calculated. This is shown in equation 2.15 [49].

𝜙𝑒𝑟𝑟𝑜𝑟 = 𝑘(|𝑟 − 𝑟′| − (𝑟 − 𝑟′(�̂� ⋅ �̂�′))) (2.15)

Since 2.14 is effectively the dominant term of the Taylor series expansion of |𝑟 − 𝑟′|, the phase error
is basically the nondominant terms of the expansion multiplied by 𝑘. Since we are considering the
farfield and therefore 𝑟 ≫ 𝑟′, the phase error is by approximation equivalent to the nextdominant term
multiplied by 𝑘 as shown in equation 2.16.

𝜙𝑒𝑟𝑟𝑜𝑟 ≈
𝑘𝑟′2
2𝑟 (1 − (�̂�

′�̂�)2 ) (2.16)

The phase error is largest in the case when 𝑟′ = 𝑟′𝑚𝑎𝑥 and �̂�′ and �̂� are orthogonal to each other. In this
case the dot product of �̂� and �̂�′ is 0. 𝑟′𝑚𝑎𝑥 indicates the largest dimension of the source. Therefore,
the worst case phase error is given by approximation 2.17.

𝜙𝑒𝑟𝑟𝑜𝑟,𝑤𝑜𝑟𝑠𝑡 ≈
𝑘
2
𝑟′2𝑚𝑎𝑥
𝑟 ≈ 𝜋

𝜆
𝑟′2𝑚𝑎𝑥
𝑟 (2.17)
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Now that an approximation for the phase error is known, it is now possible to assign an upper bound
on this error and calculate the region for which approximation 2.14 is valid. Using a value of 𝜋8 for this
upper bound of the phase error leads to equation 2.18.

𝜙𝑒𝑟𝑟𝑜𝑟,𝑤𝑜𝑟𝑠𝑡 ≤
𝜋
8

𝜋
𝜆
𝑟′2𝑚𝑎𝑥
𝑟 ≤ 𝜋

8

𝑟 ≥ 8𝑟′2𝑚𝑎𝑥
𝜆 (2.18)

When condition 2.18 is met, the observation point is located in the Fraunhofer region and in this region
approximation 2.14 is valid [49]. Using this approximation allows for taking out the 𝑟dependency of
the exponential term and leads to equation 2.19.

�⃗�𝐹𝐹𝑖 (𝑟) = −𝑗𝜔𝜇𝑒
−𝑗𝑘𝑟

4𝜋𝑟 (I− �̂��̂�)∭
𝑉′
𝑒𝑗𝑘𝑟′�̂�𝐽𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ + 𝑗𝑘𝑒

−𝑗𝑘𝑟

4𝜋𝑟 (�̂� × I)∭
𝑉′
𝑒𝑗𝑘𝑟′�̂��⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.19)

Introducing the wave vector �⃗� = 𝑘�̂� finally results in equation 2.20.

�⃗�𝐹𝐹𝑖 (𝑟) = −𝑗𝜔𝜇𝑒
−𝑗𝑘𝑟

4𝜋𝑟 (I− �̂��̂�)∭
𝑉′
𝑒𝑗�⃗�𝑟′𝐽𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ + 𝑗𝑘𝑒

−𝑗𝑘𝑟

4𝜋𝑟 (�̂� × I)∭
𝑉′
𝑒𝑗�⃗�𝑟′�⃗�𝑒𝑞𝑖 (𝑟′) 𝑑𝑟′ (2.20)

We recall that this derivation is valid under the conditions that 𝑟 ≫ 1
𝑘 , 𝑟 ≫ 𝑟′𝑚𝑎𝑥 and 𝑟 ≥

8𝑟′2𝑚𝑎𝑥
𝜆 . This

is clearly the case for solar observation at 10 MHz, since at this frequency 𝑘 = 0.21, 𝜆 = 30 metre and
the distance to the Sun is 149.6 million kilometres. In order for the Sun to be outside of the Fraunhofer
region, the array should be more than 748 km wide.

Subsequently, we look at what happens when the source is translated to a certain position in 3D
space, indicated by �⃗�𝑖. This can be done by replacing the argument 𝑟′ of the electric and magnetic
current distributions in equation 2.20 by 𝑟′ − �⃗�𝑖. This results in equation 2.21.

�⃗�𝐹𝐹𝑖,𝑡𝑟𝑎𝑛𝑠(𝑟) = − 𝑗𝜔𝜇
𝑒−𝑗𝑘𝑟
4𝜋𝑟 (I− �̂��̂�)∭

𝑉′
𝑒𝑗�⃗�𝑟′𝐽𝑒𝑞𝑖 (𝑟′ − �⃗�𝑖) 𝑑𝑟′+

𝑗𝑘𝑒
−𝑗𝑘𝑟

4𝜋𝑟 (�̂� × I)∭
𝑉′
𝑒𝑗�⃗�𝑟′�⃗�𝑒𝑞𝑖 (𝑟′ − �⃗�𝑖) 𝑑𝑟′ (2.21)

Applying a substitution of 𝑟″ = 𝑟′ − �⃗�𝑖 yields equation 2.22.

�⃗�𝐹𝐹𝑖,𝑡𝑟𝑎𝑛𝑠(𝑟) = − 𝑗𝜔𝜇
𝑒−𝑗𝑘𝑟
4𝜋𝑟 (I− �̂��̂�)∭

𝑉″
𝑒𝑗�⃗�𝑟″+�⃗�𝑖𝐽𝑒𝑞𝑖 (𝑟″) 𝑑𝑟″+

𝑗𝑘𝑒
−𝑗𝑘𝑟

4𝜋𝑟 (�̂� × I)∭
𝑉″
𝑒𝑗�⃗�𝑟″+�⃗�𝑖�⃗�𝑒𝑞𝑖 (𝑟″) 𝑑𝑟″ (2.22)

Now we take out the 𝑒𝑗�⃗��⃗�𝑖 term, resulting in equation 2.23.

�⃗�𝐹𝐹𝑖,𝑡𝑟𝑎𝑛𝑠(𝑟) =𝑒𝑗�⃗��⃗�𝑖 (−𝑗𝜔𝜇
𝑒−𝑗𝑘𝑟
4𝜋𝑟 (I− �̂��̂�)∭𝑉″

𝑒𝑗�⃗�𝑟″+�⃗�𝑖𝐽𝑒𝑞𝑖 (𝑟″) 𝑑𝑟″+

𝑗𝑘𝑒
−𝑗𝑘𝑟

4𝜋𝑟 (�̂� × I)∭
𝑉″
𝑒𝑗�⃗�𝑟″+�⃗�𝑖�⃗�𝑒𝑞𝑖 (𝑟″) 𝑑𝑟″) (2.23)

Lastly, we notice that because the domain of the integrals have translated with the same amount as
𝑟′ itself, the integrals are the same as the untranslated integrals. This finally results in equation 2.24,
which shows that a translation of the source corresponds with multiplication of 𝑒𝑗�⃗�𝑝𝑖 with the original
untranslated field.

�⃗�𝐹𝐹𝑖,𝑡𝑟𝑎𝑛𝑠(𝑟) = 𝑒𝑗�⃗��⃗�𝑖 �⃗�𝐹𝐹𝑖 (𝑟) (2.24)
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Next, the field for a number of sources is derived. Because of the superposition principle, the fields
of all sources can be added together to find the total field. However, when sources are placed in the
vicinity of each other, the sources start to influence each other by means of mutual coupling. This
mutual coupling influences the equivalent magnetic and electric current sources. Therefore, �⃗�𝐹𝐹𝑖 (𝑟) in
equation 2.24 is the active element pattern (AEP) of the 𝑖th element which includes mutual coupling
and thus should not be confused with the field that the source radiates when no other sources are
present. By using superposition, the total field of a total number 𝑁 antenna elements can thus be found
using equation 2.25, where �⃗�𝐹𝐹𝑖 (𝑟) is the AEP of the 𝑖th element.

�⃗�𝐹𝐹𝑡𝑜𝑡(𝑟) =
𝑁

∑
𝑖=1
�⃗�𝐹𝐹𝑖 (𝑟)𝑒𝑗�⃗��⃗�𝑖 (2.25)

To control the radiation pattern of the array, the active element pattern of the elements can be modified
by multiplying them with factor 𝐴𝑖𝑒𝑗𝛽𝑖 . This multiplication factor can be implemented by an attenuation
and a phase shift of the received fields by the elements. This results in equation 2.26.

�⃗�𝐹𝐹𝑡𝑜𝑡(𝑟) =
𝑁

∑
𝑖=1
𝐴𝑖𝑒𝑗𝛽𝑖 �⃗�𝐹𝐹𝑖 (𝑟)𝑒𝑗�⃗��⃗�𝑖 =

𝑁

∑
𝑖=1
𝐴𝑖�⃗�𝐹𝐹𝑖 (𝑟)𝑒𝑗(�⃗��⃗�𝑖+𝛽𝑖) (2.26)

The term 𝑒𝑗𝑥 has a maximum real value of 1, which occurs at 𝑥 = 0. Therefore, when (�⃗��⃗�𝑖 + 𝛽𝑖) in
equation 2.26 equals 0 for every element at the same observation angle, all the active element patterns
of the antenna elements will sum without attenuation of the exponent and maximum field strength is
achieved. As shown in equation 2.27, �⃗� is a function of the observation angle 𝜃 and 𝜙.

�⃗� = 𝑘�̂� = [
𝑘 sin(𝜃) cos(𝜙)
𝑘 sin(𝜃) sin(𝜙)

𝑘 cos(𝜃)
] [
�̂�
�̂�
�̂�
] (2.27)

Therefore, the phase compensation factor for each element 𝛽𝑖 can be set according to equation 2.28
so that the field strength is maximum at a scan angle of 𝜃𝑠 and 𝜙𝑠. By varying 𝜃𝑠 and 𝜙𝑠, the main beam
of the array can therefore effectively be steered. In equation 2.28, 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 indicate the location of
the 𝑖th element.

𝛽𝑖 = −�⃗�(𝜃𝑠 , 𝜙𝑠)𝑝𝑖 = −[
𝑘 sin(𝜃𝑠) cos(𝜙𝑠)
𝑘 sin(𝜃𝑠) sin(𝜙𝑠)

𝑘 cos(𝜃𝑠)
] ⋅ [

𝑥𝑖
𝑦𝑖
𝑧𝑖
] (2.28)

The amplitude factor 𝐴𝑖 in equation 2.26 can be used to enable or disable elements in the array by
setting 𝐴𝑖 to 1 or 0 respectively. Alternatively, 𝐴𝑖 can also be used to apply a taper to the array. This
taper can for example be exploited to reduce side lobes at the cost of a wider main beam.

Equation 2.26 is closely related to the array factor. Namely, if the active element patterns are
isotropic, the equation represents the array factor. To demonstrate this, the array factor of a planar
array is derived from equation 2.26. If the antenna elements are distributed in a rectangular pattern
with𝑀 elements with an interelement spacing of 𝑑𝑥 along �̂� and 𝑁 elements with a spacing of 𝑑𝑦 along
�̂� and a 𝑧coordinate of 0, the location of the 𝑚, 𝑛th element is defined by equation 2.29.

�⃗�𝑖 = [
(𝑚 − 1)𝑑𝑥
(𝑛 − 1)𝑑𝑦

0
] (2.29)

Using this position vector in accordance with the fact the �̂� and �̂� positions are not dependent on each
other, equation 2.30 is found.

𝐴𝐹 =
𝑁

∑
𝑛=1

𝐴𝑛1 (
𝑀

∑
𝑚=1

𝐴𝑚1𝑒𝑗(𝑚−1)(𝑘𝑑𝑥 sin𝜃 cos𝜙+𝛽𝑥))𝑒𝑗(𝑛−1)(𝑘𝑑𝑦 sin𝜃 sin𝜙+𝛽𝑦) (2.30)

This equation is effectively the same as found in [50], thus demonstrating the relation to the array factor.
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Finally, the power radiated as function of observation angle is derived. In the farfield, the electric
and magnetic fields are related as shown in equation 2.31.

�⃗�𝐹𝐹(𝑟) = 1
𝜁 �̂� × �⃗�

𝐹𝐹(𝑟) (2.31)

The power that is radiated in a certain direction can be found by using the Poynting vector. The time
averaged Poynting vector for electromagnetic radiation is defined in equation 2.32, where 𝐻∗ is the
complex conjugate of 𝐻.

𝑆 = 1
2�⃗� × �⃗�

∗ (2.32)

Substituting equation 2.31 in equation 2.32 leads to equation 2.33, in which 𝜁 is the free space impedance.

𝑆𝐹𝐹 = �⃗�𝐹𝐹 × (1𝜁 �̂� × �⃗�
𝐹𝐹)

∗

= 1
2𝜁 |�⃗�

𝐹𝐹|2�̂� (2.33)

Therefore, the normalised radiated power from a generic conformal array is given by equation 2.34 and
normalised in decibels in equation 2.35.

𝑆𝐹𝐹𝑛𝑜𝑟𝑚(𝜃, 𝜙) =
|�⃗�𝐹𝐹𝑡𝑜𝑡(𝑟)|2

max(|�⃗�𝐹𝐹𝑡𝑜𝑡(𝑟)|2)
(2.34)

𝑆𝐹𝐹𝑛𝑜𝑟𝑚,𝑑𝐵(𝜃, 𝜙) = 20 log(
|�⃗�𝐹𝐹𝑡𝑜𝑡(𝑟)|

max(|�⃗�𝐹𝐹𝑡𝑜𝑡(𝑟)|)
) (2.35)

From these equations, the halfpower beam width can simply be found by looking at the the angles
below and above the scan angle where the beam pattern first reaches a value of 12 in equation 2.34 or
3 dB in equation 2.35. The difference between these angles is the halfpower beam width.

2.4. Conclusions on Analysis
This chapter presented how conformal arrays are operated throughout this thesis project. Namely,
antenna elements are enabled when the angle between the scan direction vector and the antenna
normal vector is less than 60∘.

Based on the active elements, the radiation pattern of the conformal array can be calculated by
using superposition of the active element patterns of the antenna elements. By applying a phase shift
per element depending on its location, the fields of the elements can be made to sum in phase at a
specific scan angle. Hence, by this means, the beam can be steered.

In the next chapter, this method of analysis is used in accordance with isotropic active element pat
ters allowing for far faster computations of the farfields of conformal array configurations. This enables
the computation of farfields over scan angle for many different configurations instead of a only a few.
In this way a novel comparison can be performed between many different array configurations on their
halfpower beam widths so that best configuration for application in DISTURB can be selected. Be
sides this, fast computation of farfields also allow for determining general characteristics of conformal
phased array radiation patterns.





3
Comparative Analysis of Conformal

Array Configurations
This chapter describes how a suitable array configuration for application in the DISTURB project is se
lected. An array configuration is a combination of an array geometry and topology. The array geometry
refers to the threedimensional shape of the array and the array topology refers to the way elements
are distributed on the array geometry. First, a few general characteristics of conformal array radiation
patterns will be presented. Thereafter, numerous conformal array configurations are analysed. Finally,
a novel comparison of these configurations is performed and the most beneficial array configuration is
selected. The selected configuration is also the configuration that is used throughout the rest of this
thesis.

3.1. General Radiation PatternCharacteristics of Conformal Arrays
This section provides insight into some properties of the behaviour of radiation patterns of conformal
arrays. In order to make fair comparisons between several configurations, isotropic radiation patterns
are used even though isotropic radiators do not exist in reality. By using isotropic radiation patterns, no
accidental amplitude taper is generated by the mechanism explained in section 2.2 which may increase
the HPBW. In this way, array configurations can be purely compared on a basis of array factor. Next to
this, isotropic patterns also simplify the computational load, since the radiation patterns of the elements
do not have to be taken into account.

3.1.1. HalfPower Beam Width versus Frequency
First, the behaviour of the HPBW versus frequency is investigated. The array displayed in figure 3.1
is scanned to an angle of 𝜃𝑠 = 0∘ and 𝜙𝑠 = 0∘ and the radiation pattern is evaluated at frequencies of
1500 MHz, 2250 MHz and 3000 MHz. The 𝜙 = 0∘ cuts are shown in figure 3.2.

As seen from this figure, the beam width at 1500 MHz is approximately 6 degrees, at 2250 MHz
4 degrees and at 3000 MHz 3 degrees. In free space, 1500 MHz corresponds to a wavelength of 20
centimetres, 2250 MHz corresponds to 13.3 centimetres and 3000 MHz to 10 centimetres. It is noticed
that the wavelength at 1500 MHz is twice as long as the wavelength at 3000 MHz and the HPBW is also
twice as large, as can be seen in figure 3.2. The same is true for 2250 MHz, at which the frequency
is 1.3 times the wavelength at 3000 MHz and also the HPBW is 1.3 times as large. Therefore, the
equation 3.1 follows.

𝐻𝑃𝐵𝑊 ∝ 𝜆 ∝ 1𝑓 (3.1)

Combining this equation with the requirements on halfpower beam width from section 1.3.1, a
maximum possible operating frequency range can be found. At 3000 MHz the HPBW is minimum and
should have a value of 2 degrees. Since the maximum acceptable HPBW is 15 degrees, it can be found
that HPBW can grow by a factor of 15

∘

2∘ = 7.5. Therefore, the lowest possible operating frequency can

15
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Figure 3.1: The array geometry used for the beam width comparison in figure 3.2.
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Figure 3.2: Comparison of beam widths at 1500, 2250 and 3000 MHz for the array geometry displayed in figure 3.1.



3.1. General Radiation Pattern Characteristics of Conformal Arrays 17

Rectangular Array

-1

0

1 x [m]

-1

0

1
y [m]

-1

-0.5

0

0.5

1

z
 [
m

]

Passive Elements

Active Elements

Figure 3.3: Periodic rectangular array used for generating the radiation patterns in figure 3.4.

be found by dividing 3000 MHz by 7.5, resulting in 400 MHz. Thus, the maximum possible operating
frequency range spans from 400 MHz to 3000 MHz.

3.1.2. Grating Lobes in Conformal Arrays
In conformal arrays, grating lobes do not manifest themselves in the way that they do in regular planar
arrays. In planar arrays with a sparse element spacing, i.e. an element spacing large in comparison
with the wavelength, grating lobes tend to also sum in phase at observation angles other than the scan
direction. This leads to the radiation pattern reaching the same value as the main beam at undesired
angles. This in turn results in the fact that signals from a notofinterest source located in some other
direction are picked up with the same strength as the signals from the source of interest, thus potentially
causing severe interference.

The fact that regular periodic planar arrays do suffer from grating lobes and conformal arrays do not
can be understood as follows. Assume a periodic planar array, i.e. a rectangular array that consists of
eleven elements in along �̂� and eleven elements along �̂� with an element spacing of 20 centimetres as
displayed in figure 3.3. The corresponding radiation patterns at 1500 and 3000 MHz are displayed in
figure 3.4. From this radiation pattern it can be seen that at 1500 MHz, there is no grating lobe. This is
as expected since no grating lobe should appear for a scan angle of 𝜃𝑠 = 0∘ when the element spacing
is lower or equal to one 𝜆. However, at 3000 MHz, a grating lobe can be noticed at 𝜃 = 30∘ since the
element spacing is 2𝜆 at this frequency.

Next, this rectangular array is projected on a hemisphere with a radius of √2 metre, resulting in the
array configuration displayed in 3.5. This breaks the periodicity along �̂� and results in the grating lobes
disappearing and reemerging as side lobes, as can be seen in figure 3.6. To conclude, as long as
conformal arrays do not have any periodicity along all three axis, which for most conformal arrays is
true as their elements are projected on 3D shapes, they do not suffer from grating lobes. However, this
suppression of grating lobes may come at the price of an increased side lobe level as high side lobes
may originate from grating lobes. This origination results from the fact that the irregularity along �̂� may
be negligible locally.
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Figure 3.4: Comparison of the radiation patterns at 1500 and 3000 MHz for the array geometry displayed in figure 3.3.

Figure 3.5: Periodic rectangular array of figure 3.3 projected on a hemisphere with a radius of √2.
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Figure 3.6: Comparison of the radiation patterns at 1500 and 3000 MHz for the array geometry displayed in figure 3.5.

3.1.3. Array Topology
Lastly, the effects of array topology, i.e. the way the antenna elements are distributed on the array
geometry, are discussed. First, the effect of the density of the antenna elements is discussed and
secondly the effect of the lattice or pattern in which the elements are distributed is investigated.

As seen from section 3.1.2, most conformal arrays do not suffer from grating lobes. However, the
side lobe levels of these conformal arrays can be significantly large. These increased side lobe levels
may still be caused by large interelement spacing resulting in side lobes reminiscent of grating lobes.
The side lobe level may therefore potentially be reduced by increasing the density of an array topology,
just as with increasing the density of a planar array increases the upper frequency at which no grating
lobes are present. The radiation patterns in figure 3.7 belong to an array configuration as displayed in
3.5, but with an interelement spacing of 10 centimetres instead of 20 centimetres before projection.
Also, the outer dimensions of this array still span 2 metre, similar to the array from figure 3.5, thus
it can be said that the element density of the array has been increased. From figure 3.7, it can be
seen that the side lobe level indeed has decreased significantly compared to the side lobe level in
figure 3.5. Another advantage of an increaseddensity topology is that it may be possible to apply more
sophisticated amplitude tapers which could reduce the side lobe level even further. However, the effect
of mutual coupling becomes more severe.

Subsequently, the effect of array topology on HPBW is investigated. For this, the radiation patterns
and beam widths over scan angle are computed for three arrays with a hemispherical geometry and
different topologies. These topologies are the socalled arclength topology (figure 3.8a), the novel
geodesic topology (figure 3.8b) and the novel HEALPix topology (figure 3.8c). These three topologies
strive to distribute points as evenly as possible on a spherical geometry. The way in which these
topologies are generated is elaborated upon in section 3.2.

In figure 3.9, a comparison of the beam widths is presented. As can be seen, the beam widths of the
topologies are about equal. However, there is a small difference at scan angles near the horizon with
the arclength topology having a small advantage. This is explained by the fact that the effective aperture
is a bit larger due to some elements just being within 60 degrees from the scan angle whereas in the
other topologies, those elements are just outside. As the element density increases, this advantage
disappears. Therefore, it can be concluded that the topology has no significant influence on the beam
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Figure 3.7: Radiation patterns at 1500 and 3000 MHz for an array configuration similar to the one from figure 3.5 but with an
interelement spacing of 10 instead of 20 centimetres before projection on a hemisphere.

width.
Finally, the effect of topology on side lobe level is investigated when the elements are placed

densely. This is done by comparing two spherical arrays with the two novel geodesic and HEALPix
topolgies of the same size and the about the same number of elements. Both arrays have a radius
of 0.5 metres. The generated geodesic array has 812 elements and the HEALPix array has 768 ele
ments. The number of elements cannot be exactly the same for both configurations as the HEALPix
and geodesic grids cannot exist out of an arbitrary amount of elements, this is further elaborated upon in
section 3.2.12. Plots of the arrays for scanning to zenith are shown in figures 3.10a and 3.10b. A com
parison of the radiation patterns cuts at which the side lobe levels are highest for these two topologies
is shown in figure 3.11. From this figure, it can be seen that the side lobe levels are about 13.60 and
15.05 dB respectively for the geodesic and HEALPix spherical arrays. As expected, the halfpower
beam widths are the same for both arrays as they have the same diameter.

Besides scanning to zenith, also a scan angle of 𝜃𝑠 = 90∘ and 𝜙𝑠 = 30∘ is considered. Figures
3.12a and 3.12b show what the active apertures of both array topologies look like at this scan angle.
Figure 3.13 shows a comparison of the critical farfield cuts at which the side lobe level is maximum for
these two arrays for said scan angle. This figure shows that the side lobe level of the geodesic array
in this case is 15.62 dB while that of the HEALPix array is 14.62 dB.

Figures 3.11 and 3.13 show that when scanning to zenith, the HEALPix topology performs better
and when scanning to 𝜃𝑠 = 90∘ and 𝜙𝑠 = 30∘, the geodesic topology has a lower side lobe level.
Therefore, it can be concluded that the topology of the array has influence on the side lobe levels and
that the side lobe level is dependent on the scan angle as element lattices in the active aperture are
varying with scan angle.

As there are no requirements in 1.3.1 on side lobe levels, this factor is not taken into consideration
in the following sections.

3.2. Analysis of Conformal Array Configurations
As geometries of conformal arrays can have almost any threedimensional shape, the possibilities are
infinite. Therefore, not every possible array configuration can be considered and thus it is hard to



3.2. Analysis of Conformal Array Configurations 21

(a) (b)

(c)

Figure 3.8: (a) The arclength topology (b) The geodesic topology (c) the HEALPix topology.
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Figure 3.9: Comparison of the HPBW for several array topologies as function of scan angle.

(a) (b)

Figure 3.10: The geodesic (a) and the HEALPix (b) spherical arrays of radius 0.5 metres and 812 and 768 elements respectively
when scanning to zenith.
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Figure 3.11: Comparison of the radiation pattern cuts at which the side lobe level is maximum for the geodesic and HEALPix
spherical array topologies when scanning to zenith.

(a) (b)

Figure 3.12: The geodesic (a) and the HEALPix (b) spherical arrays of radius 0.5 metres and 812 and 768 elements respectively
when scanning to 𝜃𝑠 = 90∘ and 𝜙𝑠 = 30∘.
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Figure 3.13: Comparison of the radiation pattern cuts at which the side lobe level is maximum for the geodesic and HEALPix
spherical array topologies when scanning to 𝜃𝑠 = 90∘ and 𝜙𝑠 = 30∘.

say whether or not a specific array configuration is the global optimum. Nevertheless, a considerable
amount of different configurations have been analysed, of which the most important are presented in
this section.

Just as described in section 3.1, isotropic radiation patterns are used to make fair comparisons
and quick computations, enabling a novel comparison of all of these configurations regarding their
properties for application in the DISTURB project. Next to using isotropic radiation patterns for fair
comparisons, also the element density is set to be about the same for every configuration. The element
spacing is selected to be about 0.3 metres. With an interelement spacing of this amount, the number
of antenna elements is not extremely large and therefore computational loads are within reasonable
limits. Next to computational limitations, an interelement spacing of 0.3 metres, 1.5𝜆 at 1.5 GHz, also
results in less severe mutual coupling between the elements which decreases the difference between
array factor analysis performed in this section and full wave solutions.

Using the results from section 3.1, the reader can tune the array configuration to his or her needs.
For example, if the sidelobe level is found to be too high, the reader could elect to increase the element
density in his or her design.

3.2.1. Comparison Criteria
In this section, the array configurations are rated on several aspects which follow from the requirements
listed in section 1.3.1.

The first and most important aspect is the maximum operational bandwidth, which results from the
HPBW. The maximum operational bandwidth can be calculated by first finding the maximum HPBW
at 3 GHz which is dependent on scan angle. Using this found maximum beam width 𝐻𝑃𝐵𝑊𝑚𝑎𝑥, the
operational bandwidth can be calculated using equation 3.2.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = (1 −
𝐻𝑃𝐵𝑊𝑚𝑎𝑥

15∘ ) ⋅ 3 𝐺𝐻𝑧 (3.2)

Since the operational bandwidth is the most important performance characteristic of an array for DIS
TURB, all array geometries in subsequent sections are tuned in such a way that their minimum HPBW
is just above 2 degrees while their maximum HPBW is kept as low as possible.

Secondly, to provide a figure of merit for the shape of the main beam which should be as circular
as possible, the eccentricity 𝑒 of the beam is calculated. The higher the eccentricity, the more elliptical
the shape of the main beam. The eccentricity of the beam is found by using equation 3.3.

𝑒 = √1 − 𝐻𝑃𝐵𝑊2
𝑚𝑖𝑛

𝐻𝑃𝐵𝑊2𝑚𝑎𝑥
(3.3)
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As the shape of the active aperture of a conformal array can change depending on scan angle, so can
the shape of the main beam. Therefore, the maximum value of the eccentricity over all scan angles is
used to compare the different array configurations with each other.

Thirdly, the surface areas of the various array geometries are given. These areas provide an indi
cation of the total number of elements that are needed to populate the array which is independent of
the element density. For example, given two arrays with the same element density, the array with the
least surface area will have the least elements. The surface area is used instead of the total number of
elements because for most configurations in this thesis, the element density cannot be set to an exact
value but is approximated based on parameters provided to the configuration generation functions.

Lastly, the fraction of active elements𝑁𝑎𝑐𝑡𝑖𝑣𝑒 and total elements𝑁𝑡𝑜𝑡𝑎𝑙 multiplied by the array surface
area 𝐴 is used to provide an indication of the total active elements. This yields effectively a value for
the active aperture area. In equation form, the active aperture is given by equation 3.4.

𝐴𝑎𝑐𝑡𝑖𝑣𝑒 =
𝑁𝑎𝑐𝑡𝑖𝑣𝑒
𝑁𝑡𝑜𝑡𝑎𝑙

𝐴 (3.4)

The active aperture is dependent on scan angle and therefore themaximum value of this active aperture
is provided as to present the largest amount of elements that are active at the same time.
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3.2.2. Hemispherical Array  Arclength Topology

Figure 3.14: The hemispherical array geometry with an arclength topology of radius 1.45 m and an element spacing of 0.3 m.

The first geometry that springs to mind for providing hemispherical coverage, is a hemisphere.
Thus, this is also the first geometry that is considered. The hemispherical array configuration can be
generated using sphere_arclength(R, arclength, theta_max). The R argument indicates
the radius of the spherical array which is set to 1.45 metres and arclength indicates the topology
dimension parameter which is set to 0.3 metre and is further explained in the next paragraph. Lastly,
theta_max indicates the maximum angle of 𝜃 for which elements are present. The elements that
have a 𝜃coordinate larger than this value, are removed. Thus, by specifying theta_max to be 𝜋

2 , a
hemispherical array is generated. A plot of the resulting configuration is shown in figure 3.14.

This particular configuration uses the so called arclength topology. This topology is generated in the
following way. First, the number of rings parallel to the 𝑥𝑦plane, which are comparable to the parallels
on a globe indicating latitude, is calculated. This number is found by dividing the arclength along the
sphere from its north pole to the 𝑥𝑦plane by the topology density parameter. This density parameter
is set to 0.3 metres to achieve an inter element spacing of about 30 centimetres. The result from the
division is rounded to the nearest integer. Now that the number of parallels is known, the radius of
each parallel can be found. Next, the circumference of each parallel is calculated and divided by the
dimension parameter. In a similar manner as with the parallels, the result of the division is rounded
to find the number of elements per parallel. Finally, the parallels are populated with elements starting
from 𝜙 = 0∘. This means that first set of elements are located on the 𝜙 = 0∘ meridian. However, for any
other meridian, not all parallels will necessarily have an element at said meridian. This causes array
configurations with arclength topology to be asymmetric. This can be seen from figure 3.8a, where at
𝜙 = 0∘ all parallels have an element but only a few parallels have an element at 𝜙 = 180∘.

Figure 3.15 shows a plot of the minimum and maximum halfpower beam widths as function of
various scan angles. Since the shape of the beam can be elliptical, the minimum and maximum HPBW
at a particular scan angle can differ. TheminimumHPBW is found to be 2.08 degrees and themaximum
HPBW is found to be 3.93 degrees. Thus, the minimum HPBW is larger than 2 degrees for every scan
angle and therefore satisfies the requirement on minimumHPBW. It can also be seen that the maximum
HPBW grows as the beam is pointed more and more towards the horizon while the minimum HPBW
stays approximately the same. This can be explained as follows. As the beam is scanned towards the



3.2. Analysis of Conformal Array Configurations 27

0 10 20 30 40 50 60 70 80 90

s

2

2.5

3

3.5

4

H
P

B
W

 [
d
e
g
]

Max Beam Width @ F
c
 = 3 GHz for sphere_arclength(1.45, 0.3, 1.5708)

 = 0deg

 = 30deg

 = 60deg

 = 90deg

 = 180deg

0 10 20 30 40 50 60 70 80 90

s

2.1

2.15

2.2

2.25

2.3
H

P
B

W
 [
d
e
g
]

Min Beam Width @ F
c
 = 3 GHz for sphere_arclength(1.45, 0.3, 1.5708)

Figure 3.15: HPBW of the hemispherical array with an arclength topology as function of 𝜃𝑠 and 𝜙𝑠.

horizon, the active aperture reduces as less and less elements have an angle of less than 60 degrees
between their normal vector and the scan direction. The shape of the active aperture therefore changes
from a circular shape to half a circle when scanning towards the horizon as demonstrated in figure 3.16.
However, the minimum HPBW remains approximately the same since the active aperture along the �̂�
direction is approximately the same as it is when scanning towards zenith.

Figure 3.17 shows a plot of the eccentricity of the beam shape as function of scan angle. This result
agrees with the observations made in figure 3.18, where it can be seen that the active aperture is larger
along the 𝑦axis than along the 𝑧axis. The maximum eccentricity is found to be 0.84.

The surface area of spherical array can simply be calculated using equation 3.5, where 𝜃𝑚𝑎𝑥 is
specified by theta_max.

𝐴 = ∫
2𝜋

0
∫
𝜃𝑚𝑎𝑥

0
𝑅2 sin𝜃𝑑𝜃𝑑𝜙

= 2𝜋𝑅2(1 − cos𝜃𝑚𝑎𝑥) (3.5)

Using this equation with 𝜃𝑚𝑎𝑥 =
𝜋
2 results in a surface area of 13.21 m2. Furthermore, figure 3.18

shows a plot of the active aperture area of the hemispherical array. This plot shows that the active
aperture area decreases when 𝜃𝑠 increases, which agrees with the explanation given in the previous
paragraphs.

Table 3.1 provides an overview of the comparison criteria given in section 3.2.1.

Table 3.1: Comparison criteria of the hemispherical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2214 0.83 13.21 6.37
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Figure 3.16: Active aperture of the hemispherical array for a scan angle of 𝜃𝑠 = 90∘ and 𝜙𝑠 = 0∘.
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Figure 3.17: Eccentricity of the main beam versus scan angle for the hemispherical array configuration.
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Figure 3.18: Active aperture area of the hemispherical array as function of scan angle.
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3.2.3. QuasiSpherical Array  Arclength Topology

Figure 3.19: The quasispherical array geometry with an arclength topology of radius 1.5 m and an element spacing of 0.3 m.

As shown in section 3.2.2, the hemispherical array suffers from a reduction in active aperture area
when scanning towards the horizon. This results in a number of unwanted effects such as an increase
in maximum HPBW and a more elliptical beam shape.

In order to solve this problem, the hemisphere can be extended so that the active aperture is not
limited to the upper half of the sphere. Since the maximum scan angle 𝜃𝑠 is 90∘ and the fact that
elements are activated when the scan direction is within 60∘ of their normal vectors, it can be concluded
that the theta_max parameter should be set to 90∘+60∘ = 150∘ thus forming a quasispherical shape.
When 𝜃𝑚𝑎𝑥 is 150∘, the active aperture will remain approximately the same and becomes independent
of scan angle. Alternatively, this array configuration can be understood as a spherical array of which
the elements that are never active for all scan angles from zenith to horizon have been removed.

The quasispherical array can be generated using the sphere_arclength(R, arclength,
theta_max) function with R set to 1.5 metres, arclength set to 0.3 metres and theta_max set to
2.6180. The resulting configuration is displayed in figure 3.19. The minimum and maximum HPBW
resulting from this configuration are plotted in figure 3.20.

Since the active aperture is more constant, the eccentricity is also more constant. Also, since the
aperture has a shape that is approximately circular over the whole scan range, the eccentricity is in
general lower than the eccentricity of the hemispherical array. A plot of the eccentricity is displayed in
figure 3.21.

The surface area of the array can be found in the same way as with the hemispherical array by
using equation 3.5. This results in a surface area of 26.38 m2. A plot of the active aperture size is
shown in figure 3.22. A summary of the comparison criteria is shown in table 3.2.

Table 3.2: Comparison criteria of the quasispherical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2547 0.43 26.38 7.68
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Figure 3.20: Beam width for the quasispherical array with an arclength topology as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.21: Eccentricity of the main beam versus scan angle for the quasispherical array configuration.
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Figure 3.22: Active aperture area of the quasispherical array as function of scan angle.
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3.2.4. Conical Array  Arclength Topology

Figure 3.23: The conical array geometry with an arclength topology of radius 1.2 m, a height of 2 m and an element spacing of
0.3 m.

Besides spherical geometries, a conical array configuration is also of interest. A cone could poten
tially provide hemispherical coverage whilst having a smaller surface area than a spherical geometry.

The function cone_arclength(R, H, arclength, z_max) generates a conical geometry with
an arclength topology. In this function, R represents the radius at the base of the cone, H the height of
the cone, arclength the topology parameter and z_max the height at which the cone is truncated.
By setting z_max to some value that is larger than H, a full cone is created.

Similar to the generation of the hemispherical geometry, first the number of parallels is calculated.
Next, the circumference of each parallel is calculated and the number of points that fit on the respec
tive parallels is found by dividing and rounding the before mentioned circumferences by the topology
parameter.

A conical array with a radius of 1.2 metres and a height of 2 metres is found to maximise operational
bandwidth and is plotted in figure 3.23. The resulting halfpower beam width over the hemispherical
scan range at 3 GHz is shown in figure 3.24. From this figure can be concluded that in the transition
region from zenith to about 5 degrees from zenith the active aperture is reducing quickly due to fact
that the elements at the backside of the array are now pointing away from the scan direction.

Figure 3.26 shows the eccentricity of the beam shape. It can be seen that the beam shape becomes
significantly elliptic in the transition region. This is because the elements at the backside of the array
become inactive and the active aperture forms approximately half a circle when seen from above. When
𝜃𝑠 is increased, the cone is effectively seen more from the side. At an angle of approximately 30∘ to 45∘
of 𝜃𝑠, depending on 𝜙𝑠, the projection of the active aperture of the cone in the vertical direction is about
the same as the projection in the horizontal direction, as illustrated in figure 3.25. This decreases the
ellipticity and makes the beam more circular.

The surface area of the conical array configuration can be computed using equation 3.6.

𝐴 = 𝜋𝑅√𝑅2 + 𝐻2 (3.6)

The total area of the cone is found to be 8.79 m2. Figure 3.27 shows the active aperture versus scan
angle of the conical array. It can be seen that the conical array has very little surface area compared
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Figure 3.24: Beam width for a conical array with an arclength topology as function of 𝜃𝑠 and 𝜙𝑠.

Figure 3.25: Active aperture of the conical array for a scan direction of 𝜃𝑠 = 43∘ and 𝜙𝑠 = 180∘.
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Figure 3.26: Eccentricity of the main beam versus scan angle for the conical array configuration.

to the spherical geometries and therefore the amount of antenna elements is much smaller. However,
the maximum active aperture of the cone is equal to the surface area of the cone since all elements
are within 60∘ when scanning to zenith. This results in the maximum active aperture area of the cone
to even exceed the maximum active aperture areas of both spherical geometries.

Table 3.3 provides a summary of the comparison criteria of the conical array.

Table 3.3: Comparison criteria of the conical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2203 0.82 8.79 8.79
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Figure 3.27: Active aperture area of the conical array as function of scan angle.
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3.2.5. Cylindrical Array  Arclength Topology

Figure 3.28: The cylindrical array geometry with an arclength topology with a radius of 1 m, a height of 1.6 m, an element spacing
of 0.3 m and a keepout distance of 0.1 m.

The conical geometry can be extended to a cylindrical array. A cylinder has no doublycurved
surfaces, which results in more possibilities to distribute a regular grid on the array.

The cylindrical arclength configuration can be generated using the cylinder_arclength(R,
H, arclength, d_edge) function. Here R represents the radius of the cylinder, H the height of the
cylinder, arclength the topology distribution parameter and d_edge is the keepout distance from
the edges of the cylinder where no elements are to be placed. The generation of this configuration
comprises two steps. The first step is to generate the elements on the side of the cylinder. This is done
by using the generation function used for the cone arclength configuration, but with a height set to a
large number such as 1 km. All elements above the height parameter of the cone are removed.

The second part of the array configuration creation is to generate the elements on the top of the
cylinder. First the number of rings fitting on this cap is calculated by dividing the radius minus the
keepout distance of the cylinder by the topology parameter. Subsequently, the circumference of each
circle is calculated and the amount of points fitting on each of the circles is found. Lastly, the points are
distributed on the circles in such a way that all circles have an element on the positive 𝑥axis.

Figure 3.28 shows a cylindrical array with a height of 1 metre and a radius of 1.6 metres. The
HPBW for this configuration is shown in figure 3.29. Just as with the cone, a steep transition occurs
at certain scan angles. In the case of the cylinder, this transition happens at a 𝜃𝑠 of 30∘. This can be
explained by the fact that the elements on the side of the cylinder are suddenly within 60∘ from the scan
direction as their normal vectors are parallel to the 𝑥𝑦plane. This sudden increase in aperture reduces
the HPBW significantly. A similar transition but in opposite direction happens at 60∘. Here the top side
of the cylinder becomes inactive, thus reducing the active aperture.

The ellipticity of the beam over scan angle is displayed in figure 3.30. The beam starts out circular,
but becomes gradually more elliptical up to 30∘ from zenith as the side becomes active. This results in
the effective aperture becoming rectangular of shape, thus increasing the eccentricity. The same thing
in reverse happens at 60∘ as the top of the cylinder becomes inactive.

The area of the cylinder can be found using equation 3.7.

𝐴 = 𝜋𝑅2 + 2𝜋𝑅𝐻 (3.7)
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Figure 3.29: Beam width for a cylindrical array with an arclength topology as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.30: Eccentricity of the main beam versus scan angle for the cylindrical configuration.
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Figure 3.31: Active aperture area of the cylindrical array as function of scan angle.

The total area of the cylinder is 13.19 m2. A plot of the active aperture area is shown in figure 3.31.
This figure is in line with the previous conclusion by showing that the active aperture is significantly
larger in the region for 𝜃𝑠 between 30∘ and 60∘.

Lastly, table 3.4 provides an overview of the comparison criteria.

Table 3.4: Comparison criteria of the cylindrical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2291 0.82 13.19 6.71
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3.2.6. Ellipsoidal Array  Arclength Topology

Figure 3.32: The ellipsoidal array geometry with an arclength topology and a radius of 1.4 m, a height of 2 m and an element
spacing of 0.3 m.

A halfellipsoidal array geometry may be able to provide a compromise between a cylinder, cone
and sphere. Since it is desirable that the array has the same beam properties independent of scan
angle, the parameters of the ellipsoidal geometry are set in such a way that it becomes rotationally
symmetric. This type of ellipsoid is also called a spheroid. It should be noted that if the track of the Sun
at a certain geographic position of the array location is known, a true ellipsoidal instead of spheroidal
geometry could be utilised to provide better beam properties when scanning ontrack of the Sun than
offtrack. A spheroid can be defined by a radius and a height and an array with this geometry can
be created using the function ellipsoid_arclength(R, H, arclength). Here H specifies the
height of the ellipsoid and R the radius at the base of the ellipsoid.

The calculation of the arclength along the �̂� direction of an ellipsoid is more involved than for a
sphere or a cone. The arclength is given by equation 3.8. In this equation 𝐸(𝑚) is the complete elliptic
integral of the second kind with the parameter 𝑚.

𝑙 = 𝑅𝐸(1 − 𝐻2/𝑅2) (3.8)

The 𝑧coordinates for which the parallels are spaced at equal arclength from each other is not easily
solved analytically. Therefore, this is done in a numerical fashion instead.

It is found that an ellipsoidal array with a height of 2 metres and a width of 1.4 metres yields the best
results regarding operational bandwidth. The configuration is displayed in figure 3.32. The HPBW for
this configuration is displayed in figure 3.33. A plot of the eccentricity is shown in figure 3.34.

The area of the ellipsoid can be found by a complex expression involving elliptic integrals of the first
and second kind [51]. However, since the ellipsoidal geometry that is considered is also a halfspheroid,
the surface area can be found using equation 3.9 if 𝐻 > 𝑅 and equation 3.10 if 𝐻 < 𝑅, adapted from
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Figure 3.33: Beam width for an ellipsoidal array with an arclength topology as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.34: Eccentricity of the main beam versus scan angle for the ellipsoidal array configuration.
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Figure 3.35: Active aperture area of the ellipsoidal configuration as function of scan angle.

[52] and [53] respectively.

𝐴 = 𝜋𝑅2 + 𝜋𝑅𝐻2

√𝐻2 − 𝑅2
arcsin(√𝐻

2 − 𝑅2
𝐻 ) (3.9)

𝐴 = 𝜋𝑅2 − 𝑗𝜋𝑅𝐻2

√𝑅2 − 𝐻2
arccos(𝑅𝐻) (3.10)

The total area of the ellipsoidal configuration is found to be 15.95 m2. The active aperture area of the
array is displayed in figure 3.35.

As seen from figures 3.33 to 3.35, the ellipsoidal geometry seems to eliminate the sudden large
shifts in active aperture area that occur for the conical and cylindrical configurations. This reduces the
large variation in HPBW. The comparison criteria of the ellipsoidal array are shown in table 3.5.

Table 3.5: Comparison criteria of the ellipsoidal array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2453 0.59 15.95 6.37
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3.2.7. Faceted Conical Array

Figure 3.36: The faceted conical array with 7 facets, a radius of 1.3 m, a height of 1.7 m, an element spacing of 0.3 m and a
keepout distance of 0.15 m.

All previously considered geometries are more or less of continuous nature. This means that they
all exist out of single and/or doubly curved surfaces. However, these curved surfaces may not be easily
manufacturable and obtaining regular distributions of elements on these geometries is nontrivial.

Therefore, faceted versions of previously considered shapes may be of interest. The first of the
faceted geometries that is investigated, is the faceted cone. The faceted cone can be generated using
the MATLAB function cone_faces_tri(R, H, N_faces, dx, d_edge, z_max). Here, the
radius R is the largest distance from the centre of the cone to the corner of a face on the 𝑥𝑦plane.
As with the regular cone, H indicates the height, d_edge the keepout distance and z_max the height
for which all elements above said height should be removed. The N_faces argument determines
the number of faces the cone should be consisting of. For example, when N_faces is set to 3, a
tetrahedron is generated and when set to 4, a pyramid is created. Lastly, dx determines the spacing of
the elements parallel to the 𝑥𝑦plane. The elements are distributed in such a way that they are parallel
to the edges of the triangular facets of the faceted cone and thus results in a triangular grid.

A faceted conical array with 7 facets, a radius of 1.3 metres and a height of 1.7 metres is shown
in figure 3.36. Also, d_edge is set to 0.15 metres and dx is set to 0.3 metres. The HPBW for this
configuration is shown in figure 3.37. The eccentricity is shown in figure 3.38.

The total area of the faceted cone can be found by calculating the area of one facet, which is a
triangle, and multiplying that by the number of facets. The total area of the faceted conical array in this
section is calculated to be 8.15 m2. Figure 3.39 shows the active aperture area of the faceted conical
array. As is the case with the regular conical array, at a scan angle of 𝜃𝑠 = 0∘ all elements are active.
Furthermore, the angles at which facets become active can clearly be seen. Each step in figure 3.39
represents a facet that is switched off, revealing that for some angles of 𝜙𝑠 three facets are active and
at others two. This is due to the fact that when the 𝜙𝑠 angle coincides with one of the edges of the
array, only two facets are able to see the scan direction while when scanning head on to a facet, the
two neighbouring faces are also able to see the scan direction.

A summary of the comparison criteria is shown in table 3.6.
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Figure 3.37: Beam width for an faceted conical array as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.38: Eccentricity of the main beam versus scan angle for the faceted conical array.
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Table 3.6: Comparison criteria of the faceted conical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2088 0.83 8.15 8.15
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Figure 3.39: Active aperture area of the faceted conical array as function of scan angle.
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3.2.8. Faceted Cylindrical Array

Figure 3.40: The faceted cylindrical array with 5 facets with a radius of 1.3 m, a height of 1.8 m, an element spacing of 0.3 m, a
keepout distance of 0.15 m on the sides and 0.2 metres on the top.

Another configuration that is easily transformed to its faceted counterpart, is the cylinder. This
faceted cylindrical configuration can be generated using the function cylinder_faces(R, H, N_faces,
dx, dy, d_edge, d_edge_cap). The parameters for which the configuration is found to perform
best in terms of bandwidth is a radius of 1.3 metres, a height of 1.8 metres and 5 facets. The dx and
dy arguments, which represent the spacing of the elements when orthogonal to the facets, are both
set to 0.3 metres. The keepout for the elements on the side facets of the cylinder, represented by
d_edge is set to 0.15 metres and the keepout for the elements on top of the cylinder is specified to
be 0.2 metres and is specified using the d_edge_cap argument. The resulting configuration is shown
in figure 3.40. A plot of the beam width versus scan angle is shown in figure 3.41. The eccentricity is
shown in figure 3.42.

As with the faceted conical array, the surface area of the cylindrical array is calculated by adding
the areas of all individual facets. The total area of the cylindrical array is found to be 17.77 m2. A plot
of the active area is shown in figure 3.43. As with the faceted conical array, here also the discrete steps
of facets switching off can be seen.

Finally, table 3.7 provides an overview of the comparison criteria for the faceted cylindrical array.

Table 3.7: Comparison criteria of the faceted cylindrical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2253 0.78 17.77 10.63
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Figure 3.41: Beam width for an faceted cylindrical array as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.42: Eccentricity of the main beam versus scan angle for the faceted cylindrical array.
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Figure 3.43: Active aperture area of the faceted cylindrical array as function of scan angle.
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3.2.9. Faceted QuasiSpherical Array  2 Subdivisions

Figure 3.44: The faceted quasispherical array with 2 subdivisions and a radius of 1.5 m, an element spacing of 0.3 m and a
keepout distance of 0.15 m.

In contrast to the cone and the cylinder, the sphere is not easily translated to a faceted design. There
only exist 5 solids that represent faceted spheres which consist out of the same facets. This group
of geometries is called the Platonic solids. Two of these shapes are for example the dodecahedron
consisting out of 12 facets, where the facets are pentagrams and another example is the icosahedron,
which has 20 triangular facets.

In order to improve the approximation of a sphere by its faceted counterpart, one would like to
increase the number of facets. However, by doing this, one has to use differently shaped facets.
Generating a faceted sphere is implemented by subdividing the facets of an icosahedron into smaller
triangles using a number of specified subdivisions. For example, each edge of a facet can be divided
into two and drawing lines between the newly split points results in the facet now consisting of four
triangles as shown in figure 3.45. Instead of 2 subdivisions, an arbitrary number of divisions can be
done. For example, specifying 3 subdivisions, would result in dividing the edges of the triangle in three,
ultimately dividing each original facets into 9 equilateral triangles. Subsequently, all the subdivided
triangles are projected onto a sphere of radius R. Unfortunately, this projection breaks the congruency
of the triangles. The resulting shape is a geodesic polyhedron. Lastly, all facets are populated with
elements in a triangular lattice.

A faceted quasispherical configuration can be generated using the method described above by
the function sphere_faces(R, N_sub, d_x, d_edge, element_max_angle). Here, R is
used to specify the radius, N_sub the number of subdivisions, dx the spacing between the elements
along the base edge of the triangles, d_edge the keepout distance from the edges of the facets and
element_max_angle specifies the maximum scan angle of the elements which is used to remove the
facets with elements that are not able to see any scan angle in the upper hemisphere. It is found that a
2subdivision faceted sphere with a radius of 1.5 metres, an element spacing of 0.3 metres and a keep
out of 0.15 metres gives maximum bandwidth for said configuration type. A plot of the configuration is
shown in figure 3.44. Using these parameters results in a configuration that has 3 antenna elements
per facet. The HPBW is plotted in figure 3.46.

Figure 3.46 shows that the HPBW is relatively constant but the variation is a bit more in comparison
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Figure 3.45: Subdivided triangular facet of an icosahedron.
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Figure 3.46: Beam width for a faceted quasispherical array with 2 subdivisions as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.47: Eccentricity of the main beam versus scan angle for the 2subdivision faceted quasispherical array.

to the continuous quasispherical configuration. The eccentricity is displayed in figure 3.47. Figure
3.47 shows that also the eccentricity is relatively good but a bit worse than for the continuous case.

The total area of the array is calculated by calculating the area of each triangular facet and summing
all these facet areas. This results in an area of 24.25 m2. A plot of the active aperture is shown in figure
3.48. It can be seen from this figure that even though the HPBW and eccentricity are less optimal, the
active aperture area of faceted version is smaller compared to the continuous quasispherical config
uration. This means that a potential reduction in active elements and thus power consumption can be
achieved. Table 3.8 shows the comparison criteria for the 2subdivision quasispherical array.

Table 3.8: Comparison criteria of the 2subdivision faceted quasispherical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2491 0.57 24.25 7.21
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Figure 3.48: Active aperture area of the 2subdivision faceted quasispherical configuration as function of scan angle.



3.2. Analysis of Conformal Array Configurations 53

3.2.10. Faceted QuasiSpherical Array  4 Subdivisions

Figure 3.49: The 4subdivision faceted quasispherical array with a radius of 1.55 m, an element spacing of 0.3 m and a keepout
distance of 0.1 m.

As mentioned in the previous section, the performance of the 2subdivision faceted quasispherical
configuration is a bit worse than the continuous quasispherical array. An increase in the number of
facets increases the approximation of the continuous quasispherical array at the cost of less elements
per facets which may result in more complex beamforming networks as less elements have the same
normal vectors. Also, as the number of facets increases, the facets may become too small to house a
suitable antenna element.

The dimensions of the 4subdivision quasispherical array that are found to be ideal is a configuration
with a radius of 1.55 metres and a keepout distance of 0.1 metres. The configuration is displayed in
figure 3.49. The HPBW for this configuration is shown in figure 3.50. From this figure can be seen that
the HPBW is closer compared to the 2subdivision version to the nonfaceted quasispherical array
and is even able to exceed its performance. This is likely due to the fact that the radius of the faceted
quasispherical array could be made a bit larger before the the minimum HPBW would drop below 2
degrees.

A plot of the eccentricity is shown in figure 3.51. This figure also shows that the eccentricity is
better than the continuous version of the quasispherical array. This could be because the topology of
the elements is symmetrical along more axis than the arclength topology used for the regular quasi
spherical array.

The active aperture area is found to be 27.36 m2. A plot of the active aperture area is shown in figure
3.52. From this plot can be observed that the variation in the active aperture area is about the same
for both the continuous and faceted versions (except for the large variation for the continuous quasi
spherical array for 𝜃𝑠 < 3∘) even though the total area of the faceted array is larger. The comparison
criteria are shown in table 3.9.

Table 3.9: Comparison criteria of the 4subdivision faceted quasispherical array.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2562 0.36 27.36 7.77
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Figure 3.50: Beam width for a faceted quasispherical array with 4 subdivisions as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.51: Eccentricity of the main beam versus scan angle for the 4subdivision faceted quasispherical configuration.
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Figure 3.52: Active aperture area of the 4subdivision faceted quasispherical array as function of scan angle.
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3.2.11. QuasiSpherical Array  Geodesic Topology

Figure 3.53: The quasispherical array with a geodesic topology, a radius of 1.55 m and an element spacing of 0.3 m.

A preliminary comparison between the array configurations shows that the quasispherical con
figurations, continuous and faceted, seem to outperform other configurations regarding the two most
important comparison criteria, namely operational bandwidth and eccentricity.

As suggested by the results obtained for the 4subdivision quasispherical array and the results of
section 3.1.3, the topology of the elements could have a minor impact on the performance. Therefore,
two other variations on topology for the continuous quasispherical configuration are investigated.

Inspired by the results of the 4subdivision quasispherical array which outperforms the continuous
quasispherical array regarding bandwidth, the first novel topology has been developed. This topology
is named the geodesic topology. The geodesic topology shares a lot of similarities with the faceted
quasispherical arrays. The difference is that instead of distributing elements on the facets, the ver
tices of the facets are used as element locations instead. An array with quasispherical geometry and
geodesic topology can be created using the function sphere_geodesic(R, d, theta_max). Here,
R sets the radius of the sphere and d the desired spacing between the elements. The theta_max ar
gument indicates the elements that should be removed, just as with the quasispherical array with
arclength topology.

The number of subdivisions is calculated first by projecting an edge of the original icosahedral on a
sphere of the radius set by R and calculating the length of the resulting line. The found length is then
divided by the length set by d and rounded to the nearest integer. The resulting number is the number
of subdivisions.

It is found that the radius of the geodesictopology quasispherical configuration with an element
spacing of 0.3 metres for which the beam properties are best is 1.55 metres. Figure 3.53 displays this
configuration. The HPBW for before mentioned novel configuration is displayed in figure 3.54 and the
eccentricity is plotted in figure 3.55.

As with the other continuous spherical geometries, the surface area of the array can be found using
equation 3.5, resulting in a total area of 28.17 m2. A plot of the active aperture area is shown in figure
3.56. Finally, an overview of the comparison criteria for the configuration is given in table 3.10.
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Figure 3.54: Beam width for a quasispherical array with a geodesic topology as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.55: Eccentricity of the main beam versus scan angle for the quasispherical array with geodesic topology.
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Table 3.10: Comparison criteria of the quasispherical array with geodesic topology.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2564 0.38 28.17 7.72
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Figure 3.56: Active aperture area of the quasispherical array with geodesic topology as function of scan angle.
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3.2.12. QuasiSpherical Array  HEALPix Topology

Figure 3.57: The quasispherical array with the HEALPix topology, a radius of 1.5 m and an element spacing of 0.3 m.

The other novel variation of topology for the quasispherical geometry is the socalled Hierarchical
Equal Area isoLatitude Pixelisation (HEALPix) topology which is based on the HEALPix method of
pixelisation of data on a sphere. HEALPix has originally been developed for analysis of data from
cosmic microwave background experiments. [54]

The HEALPix algorithm distributes pixels on a sphere in such a way that each pixel comprises the
same area as the other elements. However, the centre points of the pixels can also be interpreted as
element locations, thus giving rise to a novel array topology.

A quasispherical array with the HEALPix topology can be generated using the function sphere_HEALPix(R,
arclength, theta_max). In this function, R indicates the radius of the sphere, arclength the de
sired spacing between the elements and theta_max the angle of 𝜃 for which elements beyond said
angle should be removed. The HEALPix grid itself is generated using the MEALPix framework, which
is a MATLAB version of the HEALPix software [55].

Unfortunately, HEALPix grids cannot comprise any arbitrary amount of points but need to consist
of a number of points following equation 3.11 where 𝑁 is an integer greater than zero [56].

𝑁𝑝𝑜𝑖𝑛𝑡𝑠 = 12 ⋅ 𝑁4 (3.11)

This is also true to a certain degree for the arclength and geodesic topologies, however the number of
points is much more flexible than in the HEALPix topology where the number of points needs to grow
by the fourth power. The number of points used in the HEALPix topology is selected in such a way that
the spacing between the elements is as close as possible to the value specified by the arclength
argument. The resulting configuration for a quasispherical array with a HEALPix topology of radius
1.5 meter is shown in figure 3.57. The HPBW for this configuration is shown in figure 3.58.

The eccentricity of the array is shown in figure 3.59.
The area of the array is calculated in the same way as for the other topologies. As expected, this

results in the same area as for the quasispherical array with arclength topology, namely 26.38 m2. The
active aperture area is shown in figure 3.60.

It is interesting that figures 3.58 to 3.60 only seem to show only two different lines. One of the two
lines is formed by 𝜙𝑠 = 0∘, 𝜙𝑠 = 90∘ and 𝜙𝑠 = 180∘ which are overlapping. The other line is formed by
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Figure 3.58: Beam width for a quasispherical array with a HEALPix topology as function of 𝜃𝑠 and 𝜙𝑠.
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Figure 3.60: Active aperture area versus scan angle for the quasispherical array with HEALPix topology.

the set of angles consisting of 𝜙𝑠 = 30∘, 𝜙𝑠 = 60∘. This overlapping is a result of the HEALPix topology
being highly symmetric.

To conclude, the comparison criteria for this configuration are displayed in table 3.11.

Table 3.11: Comparison criteria of the quasispherical array with HEALPix topology.

𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
2539 0.41 26.38 8.21
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3.3. Tradeoff of Conformal Array Configurations
In the previous section, numerous array configurations have been analysed. Subsequently, for the first
time, this much data can now be used for a novel comparison in order to select the array configuration
that is most suitable for application in DISTURB.

As described in section 3.2.1, the performance characteristics of interest of the arrays in order of
importance are the operational bandwidth, ellipticity of the beam, the total surface area and the active
aperture area. The comparison criteria as shown in the tables of the previous section, are compiled in
table 3.12.

Table 3.12: Compilation of the comparison criteria for the analysed arrays.

Configuration 𝐵𝑊𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 [𝑀𝐻𝑧] 𝑒𝑚𝑎𝑥 𝐴 [𝑚2] 𝐴𝑎𝑐𝑡𝑖𝑣𝑒,𝑚𝑎𝑥 [𝑚2]
Hemisphere 2214 0.83 13.21 6.37
Quasisphere 2547 0.43 26.38 7.68
Cone 2203 0.82 8.79 8.79
Cylinder 2291 0.82 13.19 6.71
Ellipsoid 2453 0.59 15.95 6.37
Faceted Cone 2088 0.83 8.15 8.15
Faceted Cylinder 2253 0.78 17.77 10.63
Faceted Quasisphere (2 subdivisions) 2491 0.57 24.25 7.21
Faceted Quasisphere (4 subdivisions) 2562 0.36 27.36 7.77
Geodesic quasisphere 2564 0.38 28.17 7.72
HEALPix quasisphere 2539 0.41 26.38 8.21

In this table, the best values for each criterion are printed in bold face. As can be seen from the
table, the quasispherical configuration with geodesic topology has the largest theoretical operational
bandwidth. However, the HEALPix quasispherical, faceted quasispherical with 4subdivisions and
the arclength quasispherical configurations are not far off.

Considering the eccentricity, the faceted quasispherical configuration with 4 subdivisions is the
best but as with the operational bandwidth, the other continuous quasispherical configuration are quite
close.

Table 3.12 also shows that the faceted conical array has the least amount of surface area, but also
has the worst operational bandwidth. The ellipsoidal configuration has the least active aperture area
but relatively good eccentricity and operational bandwidth.

Since operational bandwidth and eccentricity are more important than the other criteria, it becomes
clear that a quasispherical array geometry is the best choice. As the novel geodesic topology scores
better on bandwidth and eccentricity than the other continuous quasispherical arrays, the HEALPix
and arclength topologies can be eliminated especially since the differences in total and active surface
areas are not that large. Also, since the HEALPix topology has a number of elements following equation
3.11, it is also less flexible regarding element density than the geodesic topology.

Now that the HEALPix and arclength topologies have been eliminated, the choice remains between
the 4subdivision faceted and geodesic quasispherical arrays. From a practical standpoint, a faceted
array may be easier to manufacture. However, the larger the number of subdivisions, the number of
unique facets increases as well, thereby reducing the manufacturability benefit. Also regarding the
fact that a fullwave analysis is to be performed on the array configurations, a faceted quasispherical
array is geometrically more complex. Therefore, it is harder to setup this configuration in numerical
EM analysis software, thus requiring a larger investment of time.

This results in the fact that the quasispherical array configuration with geodesic topology is selected
as the best configuration to proceed with because of the interest of time and because the manufacturing
benefit is reduced at 4 subdivisions.

Lastly, it should be mentioned that if the surface area of the array had been a more important consid
eration, the ellipsoidal configuration would be best. This is due to the fact that operational bandwidth
and eccentricity are quite good in comparison with the configurations that have a similar or smaller
surface area. Therefore, the ellipsoidal array seems to provide the best eccentricity and operational
bandwidth per antenna element.
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3.4. Conclusions on Array Configuration
Using isotropic patterns for the active element patterns, a great reduction in required computational
resources is achieved. This allowed for an analysis of numerous array configurations to determine
their relation on general radiation pattern characteristics over scan angle and frequency. Here, the
array configuration comprises the geometry of an array, i.e. threedimensional shape, and topology,
i.e. the antenna element lattice.

It has been shown that the HPBW is inversely proportional to the frequency. Furthermore, it has
been demonstrated by the novel comparison that conformal arrays do not suffer from grating lobes
in the classical sense due to this class of array generally not having periodicity along the 𝑧direction.
However, these grating lobes appear as very strong side lobes. Also, it is concluded that the topology
of the array has no significant impact on the HPBW but has significant effect on side lobe levels when
the antenna elements are placed densely.

By using isotropic element patterns, for the first time many different array configurations could be
compared for their radiation patterns properties regarding operational bandwidth and beam eccentricity
over scan angle. In combination with the total array surface area and active aperture area, it is con
cluded from this novel comparison that a quasispherical array with a novel geodesic topology with a
radius of 1.55 metres and a 0.3 metreelement spacing, resulting in an array with 343 elements, is most
beneficial for the DISTURB project. This configuration has a theoretical operational bandwidth of 2564
MHz, a maximum beam eccentricity of 0.38, a surface area of 28.17 square metres and a maximum
active aperture area of 7.72 square metres.

In the next chapter, an element for this array is designed to achieve an ultimate performance that is
as close as possible to the theoretical maximum bandwidth computed in this chapter.





4
Antenna Element Design

This chapter presents the design of the antenna element to be used in the conformal array configuration
selected in chapter 3. Firstly, the properties of the ideal antenna for application in the quasispherical
conformal phased array are discussed. Subsequently, a number of potential antenna element designs
are investigated. Lastly, the most beneficial antenna element is selected in a tradeoff.

4.1. Ideal Antenna Element Properties
In order to be able to select the most suitable antenna element for use in the conformal phased array,
it is important to know what the properties of an ideal antenna element for this application should be.

For the DISTURB project, three antenna properties in particular are of importance. These are the
radiation pattern, the input impedance and the polarisation characteristics. The relevance and ideal
characteristics of these properties will be elaborated on in the following sections.

Since the antenna array considered in this thesis should be able to operate from 1.5 to 3 GHz,
the complexity of the design of the antenna element is increased. Namely, all the mentioned antenna
properties should be acceptable over the whole operational bandwidth of the array and if possible, even
exceed the 2:1 bandwidth requirement.

4.1.1. Radiation Pattern
From section 2.3, it is recalled that the active element radiation pattern of an antenna element is of great
importance when an element is used in an array configuration. Namely, the array radiation pattern is
the active element pattern multiplied by the array factor. Therefore, if one or multiple elements have
no radiation in the direction of an angle within the scan range, then the array radiation pattern pattern
of the array will also have a reduced amount of radiation toward that direction. Using the fact that
reciprocity holds, this also means that the antenna array will receive less radiation from that particular
direction. If all elements happen to have no radiation into a particular direction, the antenna array as a
whole will also not have any emissions towards that direction. This is also known as scan blindness as
the array is effectively blind when scanning in the direction at which scan blindness occurs. Avoiding
reduced gain and scan blindness is obviously key as the array needs to be able to observe the Sun at
all times when it is above the horizon. If the array would have insufficient capability to scan towards
certain directions, this needs to be compensated for by adding antenna arrays with another orientation,
thus adding significantly to the cost of the project.

As described in section 2.2, an element is active when a scan direction is within 60∘ from the element
normal vector. Therefore, it can be concluded that the antenna elements themselves do not need to
radiate any energy at angles beyond 60∘ from their normals. Furthermore, it is desirable that the
radiation patterns of the elements within 60∘ from their normal vector are as uniform as possible. This
is to not accidentally introduce an amplitude taper. Even though a taper may benefit the array radiation
pattern, this taper is different for each scan angle and therefore it is best that an accidental amplitude
taper is avoided.

The fact that an element shall only have radiation for angles of 𝜃 below 60∘ and that the radiation
pattern should be uniform in this range, leads to the conclusion that the ideal active element pattern
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Figure 4.1: The 𝜙 cut of the element radiation pattern for an ideal antenna element in the conformal array.

should follow equation 4.1, where 𝜃 is in degrees and 𝐻(𝑥) is the Heaviside step function.

�⃗�𝑓𝑓(𝜃, 𝜙) = 𝐻(60 − 𝜃) (4.1)

Figure 4.1 shows equation 4.1 in a graphical way. Alternatively, figure 4.2 shows the ideal radiation
pattern in a three dimensional fashion.

Unfortunately, this ideal pattern cannot exist in reality since it has a clear discontinuity at a 𝜃 angle
of 60 degrees. However the ideal pattern gives a guideline to what the active element pattern of an
element should look like. The more the final element radiation pattern approaches the ideal pattern,
the better the final radiation pattern of the antenna array will be.

4.1.2. Input Impedance
For antenna systems used for astronomical observation purposes, the noise figure is usually of great
importance. As the intended observation target of DISTURB is the Sun, which is a very strong signal
source, the requirement on noise temperature is not as stringent as may be the case for other high
end astronomy systems. The requirements from section 1.3.1 place a requirement on the maximum
receiver noise temperature, which is not to exceed 100 K. This maximum receiver noise temperature
places in turn a requirement on the input impedance of the antenna element which is dependent on
the used RF frontend components. The total noise factor of a cascade of RF components can be
calculated using equation 4.2 [57].

𝐹 = 𝐹1 +
𝐹2 − 1
𝐺1

+ 𝐹3 − 1𝐺1𝐺2
+⋯+ 𝐹𝑖 − 1

𝐺1𝐺2⋯𝐺𝑖−1
(4.2)

This equation shows that the first component in the cascade is the most important since the noise
of the subsequent components is divided by the gain of the first component. Therefore, if the first
component is a low noise amplifier (LNA) with sufficient gain, the noise caused by the components
following the LNA can be neglected.

As demonstrated by equation 4.2, the noise factor of the receiver is dependent on the specific LNA
that is used. Since the frontend RF printed circuit board design and component selection is outside
the scope of this thesis project, a LNA recommended by ASTRON is used. This LNA is the SAV541+
from Finicircuits [58].

The receiver noise factor can be calculated by equation 4.3 [59]. In this equation, 𝐹𝑚𝑖𝑛 is the mini
mum noise factor of the LNA, 𝑟𝑛 is the normalised noise resistance, Γ𝑜𝑝𝑡 is the optimum noise reflection
coefficient of the LNA and 𝑆11 is the reflection coefficient of the antenna.

𝐹 = 𝐹𝑚𝑖𝑛 + 4𝑟𝑛
|𝑆11 − Γ𝑜𝑝𝑡|2

(1 − |𝑆11|2) |1 + Γ𝑜𝑝𝑡|2
(4.3)
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Figure 4.2: Threedimensional plot of the ideal radiation pattern.

The noise factor can be easily converted to noise temperature using equation 4.4. In this equation, 𝑇0
is the reference temperature which is 290 K.

𝑇𝑛 = (𝐹 − 1)𝑇0 (4.4)

Equation 4.3 shows that the noise factor is equal to the minimum noise factor when the reflection
coefficient of the antenna is equal to the optimum noise reflection coefficient of the LNA. Equation
4.3 also shows that if there is a mismatch between the optimum noise reflection coefficient and the
antenna reflection coefficient, the severity of the increase in noise factor is determined by the normalised
equivalent noise resistance.

Using some algebraic manipulation, socalled noise circles can be found from equation 4.3. These
circles indicate the values of the antenna reflection coefficient for which the noise factor is equal to a
set value. The centre of the noise circle 𝑂𝑁 can be found using equation 4.6 and the radius 𝑅𝑁 can
be found using equation 4.7. In both equations, 𝑁 is defined in equation 4.5, which has been adapted
from [60].

𝑁 = 𝐹 − 𝐹𝑚𝑖𝑛
4𝑟𝑛

|1 + Γ𝑜𝑝𝑡|2 (4.5)

𝑂𝑁 =
Γ𝑜𝑝𝑡
1 + 𝑁 (4.6)

𝑅𝑁 =
1

1 + 𝑁√𝑁
2 + 𝑁 − 𝑁|Γ𝑜𝑝𝑡|2 (4.7)

From equation 4.4, the maximum noise factor can be calculated from the requirement in section
1.3.1 and is found to be 1.34. Subsequently, this noise factor can be used to set requirements on 𝑆11
by equations 4.6 and 4.7. Since the noise parameters of the LNA are frequency dependent, so are
the noise circles. A few of them have been plotted in figure 4.3. As long as the reflection coefficient
of the antenna is within the noise circle at the corresponding frequency for all frequencies, the noise
requirement is met.

The Smith chart from figure 4.3 has a reference impedance 𝑍0 of 50 Ω and is valid for the case when
the LNA is connected in a singleended manner. The singleended configuration has a balun connected
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Figure 4.3: Smith chart plot of the noise circles for the SAV541+ that is biased for minimum noise figure.

directly to the antenna to transform the differential output of both dipole arms to one groundreferenced
transmission line. This line is subsequently connected to the input of a LNA which is in turn connected
to a matched load. This load could be another amplifier, a mixer, ADC and so on.

Instead of using a singleended configuration, also a differential connection scheme can be con
sidered. In this scheme, both arms of a dipolelike antenna are each connected to an individual LNA.
The outputs of the LNA can then be connected to more differential RF components or transformed to
a singleended output by using a balun.

The differential configuration has the nice property that the characteristic impedance of the system
is multiplied by a factor of two [61]. Furthermore, under the condition of a differential system with same
signal path gains, the noise properties are the same for the singleended and differential configurations
and the noise circles and optimum noise reflection coefficients remain the same [62]. Therefore, an
tenna elements with a larger input impedance can be used without noiseincreasing matching networks.
Besides this potential benefit in input impedance, also the first component in the RFchain is the LNA
in contrast to the singleended case, where the first component is a balun. Thus, in the singleended
configuration the balun may add a nonnegligible amount of noise due to loss which directly translates
to noise figure whereas this is not occurring in the differential case.

In the ideal scenario, the antenna is perfectly matched to the optimum noise reflection coeffi
cient. The optimum noise reflection coefficient can subsequently be used to calculate the ideal input
impedance of the antenna elements in singleended and differential configurations using equation 4.8.
In this equation, 𝑍0 is the characteristic impedance which in the singleended case is 50Ω and in the
differential case 100Ω. The resulting input impedances are shown in figure 4.4.

𝑍𝑎𝑛𝑡𝑒𝑛𝑛𝑎 =
Γ𝑜𝑝𝑡 + 1
1 − Γ𝑜𝑝𝑡

𝑍0 (4.8)

4.1.3. Polarisation
The requirements in section 1.3.1 state that the antenna should be able to receive signal from the Sun
independent of polarisation. This can be achieved in two ways. The first of which is using an antenna
element that is sensitive to two orthogonal components of polarisation. This could for example be the 𝜃
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Figure 4.4: Ideal antenna input impedance for singleended and differential LNA configurations for the SAV541+ at minimum
noise factor biasing conditions.

and 𝜙 components, horizontal and verticalpolarisation in the LudwigIII reference system or left and
righthand circular polarisation. Alternatively, an antenna element could also be constructed out of two
subelements of which one is sensitive to one component of the polarisation and the other to the other
component.

The second option is preferable, since this approach allows the conformal antenna array also to be
utilised as a polarimeter. This comes at a cost of a doubling of the required RF frontend electronics.
However, the way that the emissions of the Sun are polarised may provide interesting data [63] and is
found to outweigh this disadvantage.

In order for an antenna element to be used as polarimeter effectively, the antenna must be as
sensitive as possible to one of the orthogonal polarisation directions and reject the other. If this is not
the case, the output of one subelement may become contaminated with signal which is polarised in
the other direction and therefore the estimation of the polarisation of the measured signal may contain
a significant error.

This leads to the conclusion that the isolation between the two orthogonal directions should be
at least more than 0 dB as below that value the crosspolarised component is stronger than the co
polarised one. In the ideal case, the ratio of co and crosspolarised components is infinite.

4.2. Comparative Study of Antenna Element Designs
The next step is to find an antenna element that approximates the ideal properties listed in the previous
section as well as possible. To this end, a number of antenna elements are evaluated and tuned for the
DISTURB frequency range using Computer Simulation Technology Studio Suite 2017, CST for short.

Since the element density of the chosen array configuration is quite sparse, the radiation patterns,
impedances and polarisation properties of the elements in isolation should not differ much from their
active element properties. Therefore, the isolated element properties already provide a good indication
of the performance of the antenna when used in the geodesic quasispherical array configuration.
Analysing the elements in isolation allows for a grand reduction in required computational resources
compared to performing fullwave analysis of the entire array.
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4.2.1. Crossed BowTie Antenna
A halfwavelength dipole possesses good qualities regarding polarisation. However, the halfwave
dipole is a very narrow band antenna. A dipolelike configuration that is able to achieve wide bandwidth
is the biconical antenna [64]. Here, both antenna arms are cones instead of wires. If these conical arms
are extended to infinity, the input impedance of the biconical antenna is independent of frequency and
can be controlled by the cone apex angle [64]. This makes that the bandwidth of the biconical antenna
is effectively infinite.

As a true biconical antenna is practically impossible to manufacture due to the infinite nature of the
cones, approximations can be made by using finite cones. In order for this approximation to provide
reasonable performance, the cones should be made long in terms of wavelength. Since these cones
may still be impractical and expensive to manufacture, this approximated biconical antenna can be
reduced to a planar slice along the length of the cones. This results in the bowtie antenna.

The radiation pattern of a bowtie antenna is close to that of a halfwavelength dipole. However,
as stated in section 4.1, radiation towards angles of 𝜃 of more than 60∘ is undesired. To help with
this, a ground plane is placed underneath the antenna. After a number of iterations, a bowtie antenna
with a radius of 4 centimetres, a flare angle of 80 degrees and a distance to the ground plane of 3.3
centimetres is found to perform best. The resulting receiver noise temperature is shown in figure 4.5.
This figure shows that the antenna element is able to provide a noise temperature lower than 100 K in
the band ranging from about 0.9 GHz to 3 GHz.

By using another bowtie antenna, rotated by 90∘, and overlaying that with the original bowtie
antenna, an antenna element is created that is capable of polarimetry. A picture of this antenna is
shown in figure 4.6.

Unfortunately, due to the small gap between the two subelements, the subelements seem to couple
with each other and change the impedance behaviour. This results in the antenna causing the receiver
to have a noise temperature above 100 K, as shown in figure 4.7. Therefore, the crossed bowtie
antenna does not adhere to the specifications. Performing a parametric study of the crossed bowtie
antenna improved the receiver noise temperature but unfortunately, the antenna still could not comply
with the specifications.

In order to deal with these problems, other antenna designs are considered. One of these designs
is a planar dipole antenna which consists out of two ellipses [65]. Antennas of this design can cover
almost two octaves and are well matched to 50Ω [65]. This impedance is about the same as the real
part of the ideal impedance for the differential LNA configuration. However, the downside of this design
is that the elements cannot be rotated by 90∘ and overlaid with each other, since they will intersect and
thus cause a short.

Therefore, in order to emulate the ellipticity of the dipole elements, exponential tapers are used
instead. The lines emanating from the centre of the antenna are defined by an exponential function
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Figure 4.5: The receiver noise temperature for a bowtie antenna connected to a SAV541+ LNA.
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Figure 4.6: Illustration of the crossed bowtie antenna.
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Figure 4.7: The receiver noise temperature for a crossed bowtie antenna connected to a SAV541+ LNA.
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Figure 4.8: Illustration of the crossed modified bowtie antenna.

of the form 𝐴𝑒𝑏𝑥 with 𝑥 indicating the 𝑥coordinate, which is copied, translated and rotated to form the
edges of the dipole flares. To be more specific, 𝐴 is 0.5 millimetres and 𝑏 is 90.27 metres. The flares
are completed using a spline which is defined in such a way that its derivative is as identical as possible
in the connecting points with the exponential taper. The completed antenna is shown in figure 4.8. This
antenna has a diameter of about 7 centimetres and is placed 3.3 centimetres above a ground plane.

The HPBW of the subelement itself in the Hplane is almost 60∘ at 3 GHz as can be seen from
figure 4.9. The beam width for higher frequencies is wider, this is ascribed to the fact that the antenna
becomes longer than half a wavelength at 3 GHz and thus the beam is split. This figure also shows
that the beam is much narrower in the Eplane with a HPBW close to 25∘. This is expected as a dipole
antenna also shows narrower beamwidth in the Eplane than in the Hplane, where it is omnidirectional.
The radiation pattern of both subelements is the same, but rotated since the antenna looks the same
as seen from the port of the first subelement as from the port of the second subelement.

The receiver noise temperature of the modified bowtie antenna is shown in figure 4.10. Due to
symmetry, both subelements have the same impedances. Therefore, the noise temperature is also
the same.

Lastly, the crosspolarisation isolation 𝑋𝑝𝑜𝑙 achieved by this antenna at 1.5 GHz is shown in figure
4.11. This crosspolarisation isolation is calculated using equation 4.9.

𝑋𝑝𝑜𝑙 = |
𝐸𝑐𝑜
𝐸𝑐𝑟𝑜𝑠𝑠

| (4.9)

It is found that the minimum value of the crosspolarisation isolation in the region of 𝜃 between 0∘ and
60∘ is about 4.7 dB. This occurs at a frequency of 1.5 GHz for large angles of 𝜃.

4.2.2. OpenEnded Square Waveguide
Instead of a planar element, one can also consider threedimensional antennas. One of the first an
tennas that comes to mind is a horn antenna. However, the flare of the horn antenna expands the
waveguide and increases the aperture of the antenna. This increases gain, which is undesirable given
the broad characteristics of the ideal far field. The simple solution to combat this effect is by leaving out
the horn altogether and use an openended waveguide as antenna element as was done with some
examples of early phased array antennas [12].

Since the antenna element should be capable of receiving both polarisations of the electric field with
the same properties, the waveguide should be of square shape. Using equation 4.10 [66], which gives
the cutoff frequency 𝑓𝑐𝑚𝑛 of the TE𝑚𝑛 mode, the dimensions of the waveguide can be determined.

𝑓𝑐𝑚𝑛 =
1

2𝜋√𝜇𝜖
√(𝑚𝜋𝑎 )

2
+ (𝑛𝜋𝑏 )

2
(4.10)
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Figure 4.9: Normalised far field of the crossed modified bowtie antenna in the E and Hplanes for several frequencies.
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Figure 4.10: Receiver noise temperature for the crossed modified bowtie antenna with a SAV541+ LNA.
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Figure 4.11: Crosspolarisation isolation in dB of the crossed modified bowtie antenna at 3 GHz.

In this equation 𝑎 is the width of the waveguide and 𝑏 is the height of the waveguide.
It is desired that only the fundamental mode is propagating in the waveguide, since this mode gives

good radiation patterns. Therefore, the cutoff frequency of the TE10 mode should be 1.5 GHz. Using
𝑚 = 1 and 𝑛 = 0 and 1.5 GHz as cutoff frequency, 𝑎 is calculated to be 10 centimetres, which is half
a wavelength at that frequency. Because of the fact that the waveguide is square, 𝑏 is equal to 𝑎 and it
can be seen that the orthogonally polarised mode TE01 unsurprisingly has the same cutoff frequency.

Now the first nonfundamental modes are considered. Theoretically, these are the TE11 and TM11
modes. The cutoff frequency of the transverse magnetic modes can also be found using equation
4.10. Since the width and the height of the waveguide is the same, these two modes have the same
cutoff frequency. This frequency is calculated to be about 2.12 GHz. Next to these two modes, the
TE20 and TE02 modes have a cutoff frequency of 3 GHz, which is also within the operational frequency
range.

To confirm the presented theory, a square waveguide of 10 by 10 centimetres fed with a waveguide
port is modelled in CST. The cutoff frequencies of the fundamental modes are found to be 1.50 GHz,
2.12 GHz for the TE11 and TM11 modes and 3.00 GHz for the TE20 and TE02 modes. This is in line
with the theoretical predictions. Some far field cuts of the different modes are shown in figure 4.12.

This figure shows that the fundamental modes have a maximum at 𝜃 = 0∘, however, the other
modes go to zero at said angle. This means that these modes will suffer from scan blindness and
potentially distort the overall radiation pattern.

Even if the unwanted modes can be suppressed, it can be seen that the HPBW of the fundamental
modes is significantly smaller than for the modified bowtie antenna. This could potentially be solved
by using an openended waveguide that is filled with a dielectric as it allows for reducing the aperture
size. However, dielectrics introduce losses which reduce noise performance.

Figure 4.13 shows the crosspolarisation isolation for the waveguide. This figure shows an isolation
which is comparable to or even worse than the crosspolarisation isolation of the modified bowtie
antenna.

As shown, the far field properties are less optimal than the far field properties of the crossedmodified
bowtie antenna and the nonfundamental modes may limit bandwidth significantly. Therefore, creat
ing a feeding structure for the square openended waveguide antenna and investigating the radiation
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Figure 4.12: Normalised far field cuts for the six propagating modes in the openended square waveguide at 3 GHz.

Figure 4.13: Crosspolarisation isolation in dB of the square openended waveguide antenna.
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Figure 4.14: Illustration of the crossed tapered slot antenna.

pattern improvement with the use of dielectrics are not further pursued.

4.2.3. Crossed Tapered Slot Antennas
Inspired by EMBRACE [4], a tapered slot antenna (TSA)may also satisfy the requirements. The tapered
slot antenna, also known as a Vivaldi antenna, is a planar antenna in which a slot has been cut out. The
shape of this slot is defined by a function of the form 𝐴𝑒𝑏𝑧 where 𝑧 indicates the position along 𝑧 and 𝐴
and 𝑏 are geometry parameters. The TSA can have impedance bandwidths of up to 10:1 [67]. Since
the TSA is linearly polarised, it can be used in a crossed configuration as with the crossed modified
bowtie antenna so it can be operated as a polarimeter.

The subelements of the crossed tapered slot antenna are 30 centimetres high and have a width of
20 centimetres. The feed gap is dimensioned to be 2 millimetres. Using these dimensions, the 𝐴 and
𝑏 parameters of the exponential taper can be found. Parameter 𝐴 is calculated to be 1 millimetre and
𝑏 is about 15.35. In order for the antenna to not pick up interference generated by the RF frontend
electronics and to shield the electronics from external interference, the tapered slot antenna is backed
by a ground plane at a distance of 2 centimetres from the base of the TSA. A picture of the resulting
crossed tapered slot antenna is shown in figure 4.14.

Subsequently, the receiver noise temperature is evaluated. The result is displayed in figure 4.15.
As can be seen, the crossed TSA is able to comfortably comply to the specification on receiver noise
temperature.

A number of cuts of the radiation patterns have been plotted in figure 4.16. It can be seen that the
HPBW in the Hplane (𝜙 = 0∘) is larger than in the Eplane (𝜙 = 90∘). However, there is quite some
variation in the beam within their halfpower beam width regions at some frequencies which may impact
the array beam shape adversely. Also, the beam width in the Eplane is quite narrow.

Figure 4.17 shows the cross polarisation isolation at the frequency at which it is best, namely
2.25 GHz. It can be seen that for small angles of 𝜃 the crosspolarisation isolation shows about
the same behaviour as the crossed modified bowtie. However, for scan angles above 30∘ in 𝜃, the
crosspolarisation isolation drops below 0 dB, meaning that the crosspolarised component is received
stronger than the copolarised component, which is undesirable.
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Figure 4.15: Receiver noise temperature for the crossed TSA with a SAV541+ LNA.
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Figure 4.16: Normalised far field cuts for the crossed tapered slot antenna at several frequencies.
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Figure 4.17: Crosspolarisation isolation in dB of the crossed TSA at a frequency of 2.25 GHz.

4.2.4. SelfComplementary Planar LogPeriodic Antenna
A very interesting class of antennas is the class of selfcomplementary antennas. Selfcomplementary
antennas are antennas of which the metallised geometry has the same shape as the slots in between
the metallised components. True selfcomplementary antennas have the remarkable property that
their impedances are independent of frequency [68]. However, true selfcomplementary antennas are
infinitely large. Therefore, in practice the selfcomplementary antennas are of course finite and thus
approximations, just as with the bowtie antenna.

The selfcomplementary property can be combined with a 4arm planar logperiodic antenna as
done in [69]. This may allow the antenna to start operating as a regular logperiodic antenna if the
selfcomplementary approximation is not holding due to for example the antenna being electrically too
short.

The base parameters that define the geometry of the selfcomplementary planar logperiodic an
tenna are shown in figure 4.18. In order to create the logperiodic nature of the antenna, the tooth
defined by radii 𝑅1 and 𝑅2 is scaled by a factor 𝑘. This is repeated 𝑁𝑟𝑒𝑝 times to create all teeth. In
order for the antenna to be selfcomplementary, the angle 𝛽 should be equal to 90 − 𝛼. Furthermore,
𝑅𝑓𝑒𝑒𝑑 indicates the radius of the feed gap.

The implemented antenna is shown in figure 4.19. This antenna has a feed radius of 0.5 millimetres,
𝑅1 is 2 millimetres, 𝑅2 is 2.2 millimetres, the repetition factor 𝑘 is set to 1.2 and the number of repetitions
𝑁𝑟𝑒𝑝 is 21, resulting in 44 teeth per arm. The angle 𝛼 is set to 15∘.

Figure 4.20 shows that the impedance of the selfcomplementary logperiodic antenna is indeed
very stable, but starts to vary a lot as the frequency becomes low. Since it is matched relatively well to
the optimum noise reflection coefficient, also the receiver noise temperature is wellbehaved as shown
in figure 4.21.

However, the selfcomplementary planar logperiodic antenna is sensitive to radiation from both
front and backside. This is not desirable since the antenna may pick up spurious signals generated by
the RF frontend electronics. Therefore, the antenna needs to be backed by a ground plane. Unfor
tunately, adding the ground plane breaks the selfcomplementary property of the antenna and makes
it operate with a dominant logperiodic characteristic. This can partly be mitigated by increasing the
distance between the antenna and the ground plane. However, increasing this distance also results
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Figure 4.18: Dimensions of the selfcomplementary planar logperiodic antenna.

Figure 4.19: Illustration of the selfcomplementary planar logperiodic antenna.
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Figure 4.20: Input impedance of the selfcomplementary planar logperiodic antenna.
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Figure 4.21: Receiver noise temperature for the selfcomplementary planar logperiodic antenna with a SAV541+ LNA.
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Figure 4.22: Receiver noise temperature for the selfcomplementary planar logperiodic antenna with a ground plane at 7 cen
timetres and a SAV541+ LNA.

in the fact that the radiation that is directly incident on the antenna starts destructively interfering with
the radiation scattered from the ground plane. This causes the radiation patterns of the antenna to be
suboptimal as gain reductions can now appear in the scan range. It is found that by using a ground
plane at a distance of 7 centimetres away from the antenna is able to just keep the receiver noise
temperature below 100 K.

Another option to mitigate the disadvantageous effect of the ground plane on impedance and beam
width is by using a RF absorber between the antenna and the ground plane. When the absorber
absorbs sufficiently, no radiation is reflected from the ground plane and therefore the antenna has
effectively the same properties as without ground plane. The big downside of this is that this absorber
will increase the noise temperature of the antenna and therefore this option has not been taken in
consideration.

Some cuts of the radiation pattern are shown in figure 4.23. As mentioned, destructive interference
occurs which negatively impacts the radiation patterns. Furthermore, since the antenna is not sym
metrical, the radiation patterns of the antenna are also asymmetrical in contrast to the crossed TSA
and the crossed modified bowtie antenna. From figure 4.23 it can also be seen that for a number of
frequencies, the main beam is not even directed towards zenith, i.e. the radiation pattern is not 0 dB at
𝜃 = 90∘ as the patterns have been normalised at each frequency with respect to all angles of 𝜃 and 𝜙.

A plot of the crosspolarisation isolation is shown in figure 4.24. It can be seen that the cross
polarisation isolation of the planar logperiodic antenna is low. This is probably due to the surface
currents running partly along the teeth and partly along the main beam of the antenna. Since these
directions are orthogonal, this likely lowers the crosspolarisation isolation significantly. Also, as with
the crossed TSA, the crosspolarisation drops below 0 dB at certain angles.

4.3. Antenna Element Tradeoff
In the previous section a number of antenna elements have been investigated. Now, the antenna
elements are compared on their receiver noise temperature, radiation patterns and crosspolarisation
isolation. This is done in a mostly qualitative manner as defining figures of merit for each property
would be quite involved.

As previously mentioned, due to the bandwidthlimiting multimode propagation of the openended
square waveguide, this antenna is not taken into consideration as the other elements are able to cover
larger bandwidth.

Table 4.1 lists the antenna elements and their properties. The receiver noise temperature is rated +
+ if it is lower than 100 K over the whole theoretical operating frequency range from 400 MHz to 3 GHz
and + if it is only able to cover the required frequency band from 1.5 to 3 GHz. The radiation patterns
and crosspolarisation isolation are rated in a more qualitative manner relative between the elements.
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Figure 4.23: Normalised far field cuts for the ground plane backed planar logperiodic antenna at several frequencies.

Figure 4.24: Crosspolarisation isolation in dB of the ground plane backed planar logperiodic antenna at a frequency of 1.5 GHz.
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Table 4.1: Comparison of antenna properties of the antennas of interest.

Antenna Receiver Noise Temperature Radiation Patterns CrossPolarisation Isolation
Crossed Modified BowTie + + +
Crossed Tapered Slot + +  
Planar LogPeriodic + +    
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Figure 4.25: Input impedance of the ground plane backed selfcomplementary planar logperiodic antenna.

Ratings can vary from + +, meaning far superior to the other antenna elements, to  , meaning far
inferior.

Table 4.1 shows that the crossed TSA and the selfcomplementary planar logperiodic antennas are
able to provide a good match to the LNA over the whole band. However, the radiation patterns at low
frequencies for the crossed TSA only start to become usable from 1 GHz onward, thus the operational
bandwidth is still limited.

The selfcomplementary planar logperiodic antenna has relatively good radiation patterns at fre
quencies below 1 GHz. Since the wavelength at the low frequencies is long, the electrical distance to
the ground plane is smaller which results in a more typical dipoleoverground radiation pattern. How
ever, the impedance at the lower frequencies changes dramatically as shown in figure 4.25. Therefore,
the fact that the antenna is able to meet the noise requirement is most likely made possible by the low
equivalent noise resistance of the LNA at those frequencies. Therefore, simply scaling the antenna
to obtain nicer radiation characteristics in the 1.5 to 3 GHz range is not easily possible since a large
change in impedance would drastically increase noise as the equivalent noise resistance of the LNA is
not so forgiving at higher frequencies.

In conclusion, the crossed modified bowtie antenna seems to be the best compromise regarding
receiver noise temperature, radiation patterns and crosspolarisation isolation. The lowest frequency at
which the receiver noise temperature is below 100 K, is about 1.3 GHz. At this frequency, the radiation
pattern of the antenna is also comparable to the patterns at the lower frequencies of the 1.5 to 3 GHz
range as can be seen in figure 4.9. Considering before mentioned reasons, the crossed modified bow
tie antenna is selected for use in the full final array configuration. An artist’s impression of this final
quasispherical geodesic array is shown in figure 4.26.

4.4. Conclusion on Antenna Elements
In order to approach the theoretical performance of the geodesic quasispherical array designed in
the previous chapter, the properties of an idealised antenna element that would obtain maximum per
formance is investigated. It is derived that this idealised antenna element has an isotropic radiation
pattern in the region from 60∘ from zenith. Furthermore, it has an input impedance which is perfectly
matched to the optimum noise reflection coefficient of the LNA. This leads to an ideal input impedance



84 4. Antenna Element Design

as shown in figure 4.4, which in differential configuration varies roughly between 85Ω and 20Ω for both
the real and imaginary parts. Also, the ideal antenna element should be sensitive to only one direction
of polarisation and reject the other completely, leading to a crosspolarisation isolation of infinity.

As this idealised antenna element does not exist in reality, a practical antenna element needs to
be designed to approach this idealised antenna as well as possible. Of the almost infinite number of
possible practical antenna element designs, four have been investigated. These are the crossed bow
tie antenna, openended waveguide, crossed tapered slot antenna and the selfcomplementary planar
logperiodic antenna.

From the investigation of these antennas, it is found that a modified version of the crossed bowtie
design is able to best approach the ideal antenna. The crossed modifiedbow tie antenna has an input
impedance resulting in a receiver noise temperature below 100 K from 1.3 GHz to the upper frequency
of 3 GHz. Furthermore, it is found that this antenna element has of all of the considered elements the
best crosspolarisation isolation and the radiation pattern that closest resembles that of the idealised
element.

In the next chapter, the crossed modified bowtie antenna is used in the novel geodesic quasi
spherical array configuration to estimate its performance in practice.

Figure 4.26: An artist’s impression of the quasispherical geodesic conformal array antenna.



5
Conformal Array Performance

This chapter treats the subject of evaluating the performance of the selected array configuration in
chapter 3 with the antenna element designed in chapter 4. Aspects of this include the effect of a spher
ical ground plane, the influence of mutual coupling on radiation patterns and active antenna impedance
and the impact of element orientation. Subsequently, the HPBW is computed over scan angle and over
frequency. Besides this, the isotropic active element assumption is revisited and checked for its validity
by comparing it to the results obtained for the completed array. Lastly, this chapter also presents the
comparison of the designed conformal array with a parabolic reflector antenna.

5.1. Full Wave Analysis of the QuasiSpherical Array
Now that the conformal array configuration and antenna element have been selected, the whole array
can be evaluated using a numerical solver. Instead of CST, Altair’s Feko™ is used for this purpose.
This is because CST mainly uses the finite element method when doing frequency domain simulation
and the finite integration technique when solving in time domain. These methods have the downside
that they also tend to mesh the whole computational domain, including the air around the antenna array.
In the case of the quasispherical array, a lot of the computational domain is air and therefore the mesh
may become too large resulting in a very heavy computational load.

In contrast to CST, Feko uses method of moments. With the method of moments, only the surfaces
of the antenna objects are meshed. This results in significantly less mesh cells overall which should
result in a reduced computational demand.

The full wave analysis using Feko is performed on a computer with two Intel® Xeon® CPU E52650
v2 running at 2.60 GHz and 125.7 GB of random access memory.

5.1.1. Effect of Spherical Ground Plane
The first difference with respect to the evaluation of the antenna elements in chapter 4, is the fact that
the ground plane is no longer a perfect flat plane but part of a sphere instead. In order to study the
effect of the ground plane shape, the radiation patterns and impedances are compared with each other.
It is interesting to know this effect so it can be distinguished from the influence of mutual coupling.

The two antenna geometries are set up as follows. The antenna element designed in chapter 4 is
converted to a STEP file by redrawing the element in Dassault Systèmes’ SolidWorks. Subsequently,
this STEP file is imported in Feko and the ports are added. For the flat ground plane scenario, an infinite
ground plane is created at a distance of 3.3 centimetres below the antenna element, as designed in
chapter 4.

For the spherical ground plane, the antenna element is imported in the same manner as with the
planar ground plane. Since the radius of the quasispherical array is 1.55 metres and the distance
from the element to the ground plane is 3.3 centimetres, the radius of the quasispherical ground plane
should be 1.517 metres. Since the antenna designed in chapter 4 is about 7 centimetres, the ratio
of the antenna versus ground plane is about 0.045. The quasispherical ground plane is then drawn
in SolidWorks, exported to STEP and imported in Feko. Subsequently, the imported ground plane
is translated to the correct position so that the distance between the element and the ground is 3.3

85
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Figure 5.1: The Feko simulation setup for a crossed modified bowtie antenna 3.3 centimetre above a spherical ground plane.

centimetres. Lastly, since the full ground plane is very large causing an unnecessary large mesh, a
cuboid is drawn of 50 by 50 centimetres and a few centimetres high which is intersected with the ground
plane. This results in a plate which follows the curvature of the original sphere which measures 50 by
50 centimetres when seen from above. A picture of the finalised geometry is shown in figure 5.1.

First, the difference in impedance is considered. A comparison of the input impedances of the
modified bowtie antennas above a flat and a spherical ground plane is shown in figure 5.2. It can be
seen from this figure that at the lower end of the maximum theoretical operational frequency range, the
impedance of the antenna with spherical ground plane is almost identical to that of the antenna with the
flat ground plane. However, at higher frequencies, the impedances of both antennas start to differ a
bit. This is probably because the curvature of the spherical ground plane becomes significant in terms
of wavelength at the high end of the frequency band.

Figure 5.3 shows a comparison of the far fields of both ground plane variations. This plot shows
that the fields are relatively comparable for angles close to zenith. However, when looking towards the
horizon, the modified bowtie antenna with a spherical ground plane seems to radiate stronger fields.
This could be explained by the fact that the spherical ground plane allows radiation for larger 𝜃 angles
before the ground plane blocks the line of sight. Also, the spherical ground plane configuration shows
some radiation in the nadir direction whereas the flat ground plane does not show this behaviour. This
backwards radiation can be explained by the fact that the spherical ground plane is not infinite whereas
the flat ground plane is. Therefore, in the flat ground plane scenario, no radiation can occur underneath
the ground plane whereas electromagnetic waves are diffracted by the edges of the spherical ground
plane.

Figures 5.2 and 5.3 show that the differences between the two ground plane configurations are
relatively small and therefore it can be concluded that the spherical ground plane has no significant
effect compared to the antenna properties as designed in chapter 4.

5.1.2. Influence of Mutual Coupling
When using antenna elements in an array configuration, the antenna elements may perform radically
different than when the element is used in isolation. When considering an antenna array in trans
mission, one radiating element can induce a current in another element which reradiates back to the
transmitter. This reradiated wave may subsequently interfere with the original emitted wave, thus
potentially influencing input impedance and radiation patterns.

Since reciprocity must hold, mutual coupling should also occur when the antenna array is used for
reception of signals. This can be explained as follows. When a wave is incident on the antenna array,
current is induced on all antenna elements. Thereafter, the current that is induced will also start re
emitting waves that may in turn start interfering with the signal that is directly incident on its neighbouring
elements. Therefore, this also results in mutual coupling as all elements detect a superposition of the
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Figure 5.2: Comparison of the input impedances for the modified bowtie antennas with flat and spherical ground planes.
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Figure 5.3: Comparison of the far fields for the modified bowtie antennas with flat and spherical ground planes.
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Figure 5.4: Feko setup for the quasispherical array scanning to zenith, reduced to 30∘.

directly incident wave plus the scattered waves from the other antenna elements.
Even though the orientation of the elements when scanning towards the horizon is almost the same,

the selected array configuration is expected to have weak mutual coupling between the elements due
to large inter element spacing as mentioned in chapter 3. Large distances between antenna elements
reduce mutual coupling since the strength of the scattered fields is inversely proportional to the distance
travelled.

In order to evaluate the effect of mutual coupling, full wave simulations are performed using Feko.
To avoid the time consuming task of adding all the antenna elements manually, a script is used to
import the antenna element STEP file, copy and translate the elements to the correct positions which
have been generated in MATLAB. The script also adds in the quasispherical ground plane from the
respective STEP file. Next to this, the script also makes sure that all the solution configurations are set
correctly so that all embedded element patterns are calculated.

However, when importing the full geodesic quasispherical array, it is found that the memory re
quirement is too large. Therefore, only part of the quasispherical array is evaluated. It is found that
when the configuration is discarded for 𝜃 angles beyond 40∘, the memory requirement is about 100 GB.
This can be handled successfully by the computer mentioned in the beginning of this section. How
ever, it is not guaranteed that this amount of memory is available as the computer also performs other
memory intensive tasks. Therefore, the array size is decreased to 30∘ instead of 40∘. The ground plane
is decreased to 35∘ to make sure the elements at the edge still are above sufficient ground plane. A
picture of the simulation setup for scanning to zenith is shown in figure 5.4.

In a first iteration, the antenna elements have been aligned via the �̂� and �̂� unit vectors. This means
that on the top of the array, the difference in orientation between neighbouring elements is generally
large and thus mutual coupling is reduced. However, when scanning to the horizon, the elements at the
side of the array are used. These elements are almost aligned perfectly with each other and therefore
stronger mutual coupling could potentially be observed. Because of this, both of these scan scenarios
must be evaluated separately.

Even though the orientation of the elements when scanning towards the horizon is almost the same,
the selected array configuration is expected to have weak mutual coupling between the elements due
to large inter element spacing as mentioned in chapter 3. Large distances between antenna elements
reduce mutual coupling since the strength of the scattered fields is inversely proportional to the distance
travelled.

In order to check the impact of mutual coupling, the radiation pattern of the element positioned in
the middle of the array is compared to the radiation pattern of the isolated element with a spherical
ground plane. This comparison is shown in figure 5.5.

Figure 5.5 shows that the radiation patterns of the centre element in array configuration and that of
the isolated element are approximately the same. Therefore, it can be concluded that at 1.5 GHz the
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Figure 5.5: Comparison of the centre element of the configuration in figure 5.4 and the isolated element with a spherical ground
plane as shown in figure 5.1.

mutual coupling is weak on the top of the array.
In order to investigate the possibility of some elements being impacted more severely by mutual

coupling due to for example a more similar orientation or smaller interelement spacing, the radiation
patterns of all elements on the top of the array are compared with each other. This is shown in figure
5.6. This figure shows that all radiation patterns are approximately the same and therefore it can be
concluded that the influence of mutual coupling is weak for all elements.

As mentioned earlier, the elements on the top of the array differ much in orientation compared to
the elements on the sides of the array. Therefore, the mutual coupling may also be stronger. Thus,
also the scenario for the array scanning to the horizon has to be taken in consideration, a picture of
this configuration is shown in figure 5.7. This is done in the same fashion as for scanning to zenith by
first comparing the radiation patterns and impedances for the centre element and the isolated element
and subsequently comparing the radiation patterns of all elements.

Figure 5.8 and figure 5.9 shows that the element radiation patterns are not influenced significantly
by mutual coupling.

The absence of severe mutual coupling leads to the fact that a useful and essential approximation
can be made in order to evaluate the performance of the quasispherical array. Namely, since the
antenna properties of all elements is approximately the same, the embedded pattern of one antenna
element can be used for the other elements as well. Instead of performing fullwave analysis, this
embedded element pattern can be used in the MATLAB framework to evaluate the performance of the
full array. This approximation is essential as the available computational resources are not sufficient to
solve a full active aperture which requires 60∘ from zenith instead of the maximum 40∘ possible.

Since the comparisons of radiation patterns in figures 5.6 and 5.9 are plotted for 1.5 GHz, it is of
importance to verify that the before mentioned approximation also holds at 3 GHz. This should be the
case because the electrical distance increases as the wavelength is halved with respect to a frequency
of 1.5 GHz and mutual coupling should therefore be less. This is confirmed by figure 5.10 which shows
a comparison of the radiation patterns for the configuration shown in figure 5.7 at 3 GHz.

Lastly, figures 5.11 and 5.12 show the active input impedance for the array configuration shown in
figure 5.7 for various scan angles. Of these scan angles, the scan angle 𝜃𝑠 = 90∘ and 𝜙𝑠 = 0∘ is the
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Figure 5.6: Comparison of embedded element patterns of the elements of the configuration shown in figure 5.4 at 1.5 GHz.

Figure 5.7: Feko setup for the quasispherical array scanning to horizon at an angle 𝜙 of 0∘.
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Figure 5.8: Comparison of the centre element of the configuration in figure 5.7 and the isolated element with a spherical ground
plane as shown in figure 5.1.
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Figure 5.9: Comparison of embedded element patterns of the elements of the configuration shown in figure 5.7 at 1.5 GHz.
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Figure 5.10: Comparison of embedded element patterns of the elements of the configuration shown in figure 5.7 at 3 GHz.

most important as the aperture changes with scan direction so that it is always normal with respect to
the desired scan direction. However, to demonstrate that mutual coupling is minimal, also some other
scan angles are considered for this specific array section.

Figure 5.12 shows that at 3 GHz, the active impedance is on average almost equal to the input
impedance of the isolated element. Also, the deviation from the isolated element input impedance is
relatively small. Therefore, the active input impedance can be approximated by the input impedance
of the isolated element. Thus, the active impedance at 3 GHz also shows that the mutual coupling is
weak.

Figure 5.11 shows that the effect of mutual coupling is more significant at 1.5 GHz as the imaginary
part of the average active impedance differs with that of the isolated input impedance. On the other
hand, the real part of the active impedance is close to the real part of the isolated input impedance.
This makes that although the effect of mutual coupling is stronger at 1.5 GHz than at 3 GHz, the active
impedance still can be reasonably approximated with the impedance of the isolated element. Despite
the slight increase in mutual coupling at 1.5 GHz, also the equivalent noise resistance of the LNA is
lower at that frequency. Therefore, the effect of the larger difference in impedance on receiver noise
temperature is diminished.

5.1.3. Element Orientation
The orientation of the elements on a conformal array is of great importance. This is not only due to
mutual coupling as explained in section 5.1.2. In fact, element orientation can have a much larger
impact on the radiation pattern of the resulting array than mutual coupling itself.

Consider for example the configuration displayed in figure 5.4. Since all elements are oriented
along �̂�, two opposing antenna elements, when drawing a line through the pole of the array, are rotated
180∘ with respect to each other. Also those elements are the same distance away from the pole due
to symmetry. This results in the fact that when scanning to zenith, the radiation of these sets of two
elements cancel out as they are 180∘ out of phase with each other at an observation angle 𝜃 of 0∘. The
resulting pattern is shown in figure 5.13.

For the case where the scan angle 𝜃𝑠 equals 0∘ this can be corrected without the need for elaborate
mathematical means. Namely, by adding a phase shift of 180∘ upon the phase compensation factor
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Figure 5.11: Comparison of active input impedance of the elements of the configuration shown in figure 5.7 at 1.5 GHz. The
circles indicate all combinations of 𝜃𝑠 is 30, 50, 70 and 90 degrees and 𝜙𝑠 0, 20 and 40 degrees, resulting in 12 circles per
element. The line indicates the input impedance of the isolated crossed modified bowtie.
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Figure 5.12: Comparison of active input impedance of the elements of the configuration shown in figure 5.7 at 3 GHz. The circles
indicate all combinations of 𝜃𝑠 is 30, 50, 70 and 90 degrees and 𝜙𝑠 0, 20 and 40 degrees, resulting in 12 circles per element.
The line indicates the input impedance of the isolated crossed modified bowtie.
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Figure 5.13: Total radiation pattern of the array configuration shown in figure 5.4 when scanning to zenith at 1.5 GHz.

𝛽𝑖 (equation 2.28) for one of a set of two opposing elements, the radiation is inphase and is interfer
ing constructively at the desired scan angle. However, it is important to make sure that the resultant
radiation from a set of two elements has the same polarity as the other sets.

The phase compensation strategy used is shown in figure 5.14. Here, an additional phase shift of
180∘ is applied to the elements in red. The resulting far field pattern is displayed in figure 5.15.

As proven by figure 5.15, this phase correction is effective and ensures that the main lobe is directed
towards zenith. Now the situation of the array scanning towards the horizon, as shown in figure 5.7, is
considered. Since the elements are all aligned along the �̂� unit vector, the orientation of the elements
is the same. Therefore, no polarity inversion needs to be applied. However, when the scan angle
𝜃𝑠 is somewhere between zenith and the horizon, the aperture is not symmetrical any more. This
complicates the phase correction process since it is nontrivial to conclude which elements need an
additional 180∘ phaseshift as not every element has an opposing element any longer.

The orientation of the elements also plays a significant role regarding polarisation. For example,
if the Sun is directly overhead, i.e. scanning to zenith, the subelements aligned with the �̂�axis will
receive an orthogonally polarised field with respect to the subelements aligned with the �̂�axis. There
fore, simply summing the outputs from all elements aligned with �̂� is not sufficient when the array is
desired to be operated as a polarimeter as both elements may receive components of the co and
crosspolarised radiation.

This effect can be corrected for since the subelements of the antenna elements are orthogonally
polarised with respect to each other as well. However, this correction is different for every scan angle
as the projection of the antenna elements on a plane normal to the scan direction is different. This is
even more complicated by the fact that the subelements do not have symmetrical isotropic radiation
patterns and therefore, the gain of the elements also needs to be taken into account. Due to time
constraints, it has been decided that the development of this correction is outside the scope of this
thesis project. The orientation correction could also be combined with a beamforming algorithm that
applies weights to each element which could potentially reduce side lobe level.

5.1.4. HPBW over Scan Angle
If the antenna array is to be used as a polarimeter, onewould like to know the radiation pattern properties
for both directions of polarisation. However, in order to find these exact patterns, a method to correct
polarisation has to be implemented too. This is because, for example when scanning to zenith, the
subelements aligned with the �̂�axis should be active and the subelements aligned with the �̂�axis
should be inactive when scanning for a specific polarisation.

As no such correction is available at the time of writing, the scenario of scanning to the horizon is
used to make a realistic estimation of the halfpower beam width. Since the aperture size is mostly
independent of the scan angle due to the quasispherical nature of the array, it is assumed that the
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Figure 5.14: Phase compensation strategy for the geodesic quasispherical array antenna when scanning to zenith.
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Figure 5.15: Radiation pattern of the total array shown in figure 5.4 with additional phase correction at 1.5 GHz.
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Figure 5.16: Threedimensional radiation pattern plot of the complete geodesic quasispherical array at 3 GHz when scanning
to the horizon with the �̂�oriented subelements.

HPBW for scanning to horizon is approximately the same as every other scan direction if orientation
correction were to be applied. It should be noted that even though most �̂� subelements are aligned
with �̂� and the �̂� subelements with �̂�, the elements at the edges of the aperture are rotated a bit with
respect to the aligned subelements. This makes that the far field properties of the array when scanning
to the horizon still differ a bit from a same array that is perfectly corrected for element orientation.

As mentioned in section 5.1.2, only a piece of 30∘ from zenith could be evaluated using full wave
analysis. However, as also described in section 5.1.2, the radiation patterns of the elements are about
the same and thus an approximation of the array far field pattern can be made in MATLAB by using
the same radiation pattern for each element. Next to this, if the crosspolarised component is assumed
to be negligible, a first order approximation of the copolarised array radiation pattern can be made
using the absolute value of the embedded radiation patterns. Figure 5.16 shows the radiation pattern
of the complete geodesic quasispherical array when scanning to the horizon with the �̂�oriented sub
elements at 3 GHz.

The minimumHPBW of the radiation pattern displayed in figure 5.16 is estimated to be 2.00 degrees
and the maximum HPBW is estimated at 2.16 degrees, thus satisfying the requirements. A plot of the
𝜙 = 0∘ cut of the radiation patterns for �̂� and �̂�oriented elements is shown in figure 5.17.

5.1.5. HPBW over Frequency
The embedded radiation patterns of the antenna elements are dependent on frequency. This makes
that the perfect relation between halfpower beam width and frequency as described in section 3.1 is
lost. With a similar procedure and assumptions as in section 5.1.4, the radiation pattern of the full quasi
spherical array scanning the �̂�oriented elements to the horizon is evaluated. A threedimensional plot
of this radiation pattern at 1.5 GHz is shown in figure 5.18.

Figure 5.19 shows the 𝜙 = 0∘ cut of the array radiation pattern generated by the �̂� and �̂�oriented el
ements. The minimumHPBW for scanning to the horizon is found to be 4.01 degrees and the maximum
HPBW is found to be 4.33 degrees.

Since the receiver noise temperature is below 100 K up to about 1.3 GHz as shown in figure 4.10,
also the array pattern at 1.3 GHz is calculated. A plot of this radiation pattern is shown in figure 5.20.
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Figure 5.17: Radiation pattern cut of the complete geodesic quasispherical array at 3 GHz when scanning to the horizon with
the �̂�oriented (blue) and �̂�oriented (red) subelements.

Figure 5.18: Threedimensional radiation pattern plot of the complete geodesic quasispherical array at 1.5 GHz when scanning
to the horizon with the �̂�oriented subelements.



98 5. Conformal Array Performance

0 20 40 60 80 100 120 140 160 180
-80

-70

-60

-50

-40

-30

-20

-10

0

F
a
r 

F
ie

ld
 [
d
B

]

Normalised  = 0 Far Field Cut

 sub-elements

 sub-elements

Figure 5.19: Radiation pattern cut of the complete geodesic quasispherical array at 1.5 GHz when scanning to the horizon with
the �̂�oriented (blue) and �̂�oriented (red) subelements.

The 𝜙 = 0∘ cut of this pattern is shown in figure 5.21. The minimum HPBW at 1.3 GHz is estimated to
be 4.62 degrees and the maximum HPBW is found to be 5.00 degrees.

Figures 5.16 to 5.21 show that the array successfully can cover frequencies from 1.3 GHz to 3 GHz
within the specifications listed in section 1.3.1, resulting in a fractional bandwidth of 79%.

5.1.6. Comparison of Far Fields using Isotropic Elements
To reflect on the accuracy of the design method, a comparison is made between the array patterns
obtained in chapter 3 using isotropic patterns and the patterns generated in section 5.1.4 and 5.1.5.
These comparisons at 1.5 and 3 GHz are shown in figures 5.22 and 5.23 respectively.

These figures show that the isotropic elements approximate the final pattern reasonably well. There
fore, it can be concluded that designing arrays with isotropic patterns is a powerful method to reduce
computational time while still providing reasonable results as long as the embedded element patterns
are locally isotropic. However, it should be mentioned that the 𝜙 = 180∘ cut will look significantly
different as the embedded radiation patterns show almost no radiated power toward their antinormal
directions whereas this is by definition not the case for isotropic elements.

5.2. Parabolic Reflector Performance
In order to put the performance of the conformal array in perspective, a comparison with a parabolic
reflector antenna is made. First, the analysis of the far field of a parabolic reflector antenna is presented.
Subsequently, the results obtained from this analysis are compared to the results of the conformal array.

5.2.1. Analysis of Parabolic Reflector
The far field of a parabolic reflector can be computed via a similar approach using Green’s functions
as in section 2.3. The computation is performed via the following steps.

First, it is assumed that the feed is in the far field with respect to the parabolic reflector. Using
physical optics (PO), the strength and phase of the electric field after reflection from the parabolic
reflector can be found at the equivalent aperture. The equivalent aperture is a circular domain which
results from a projection of the dish on a plane that is parallel to the dish and passes through the focus
at which the feed is located. The field at the equivalent aperture can subsequently be used to find the
equivalent current distribution using the equivalence principle together with the image theorem. Finally,
using the Green’s functions, the far field of this equivalent current distribution can be calculated. [47]

If maximum directivity is desired, the equivalent current distribution on the equivalent aperture
should be uniform [47]. The far field of such a distribution is an Airy pattern. The Airy pattern is
described by equation 5.1 which is contains a firstorder Bessel function, indicated by 𝐽1 [47]. In this
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Figure 5.20: Threedimensional radiation pattern plot of the complete geodesic quasispherical array at 1.3 GHz when scanning
to the horizon with the �̂�oriented subelements.
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Figure 5.21: Radiation pattern cut of the complete geodesic quasispherical array at 1.3 GHz when scanning to the horizon with
the �̂�oriented (blue) and �̂�oriented (red) subelements.
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Figure 5.22: Comparison of the 𝜙 = 0∘ cuts of the complete geodesic quasispherical array at 1.5 GHz when scanning to the
horizon with the �̂�oriented subelements and the same configuration with isotropic elements.

0 20 40 60 80 100 120 140 160 180
-60

-50

-40

-30

-20

-10

0

F
a
r 

F
ie

ld
 [
d
B

]

Normalised  = 0 Far Field Cut

Modified Bow-Tie

Isotropic

Figure 5.23: Comparison of the 𝜙 = 0∘ cuts of the complete geodesic quasispherical array at 3 GHz when scanning to the
horizon with the �̂�oriented subelements and the same configuration with isotropic elements.
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Figure 5.24: Normalised far field cut at 𝜙 = 0 of an ideal parabolic reflector when pointing to the horizon at 3 GHz.

equation, 𝑀0 is the magnitude of the equivalent magnetic current, 𝑎 is the radius of the equivalent
aperture, 𝑘 is the wave number and �̂� indicates the polarisation.

�⃗�𝐹𝐹(𝑟) = 2𝑀0
𝜋𝑎2𝐽1(𝑘𝑎 sin𝜃)

𝑘𝑎 sin𝜃 �̂� (5.1)

The halfpower beam width in degrees of the far field pattern of a uniformly distributed current on a
circular aperture can be found using equation 5.2 [70].

𝐻𝑃𝐵𝑊 = 29.2𝜆𝑎 (5.2)

Using a desired HPBW of 2∘, it can be found that the radius of the reflector should be equal to about
1.46 metres at 3 GHz.

Using this dish diameter, the radiation pattern of the dish antenna can be calculated. The resulting
pattern is shown in figure 5.24.

5.2.2. Note on Approximations
The parabolic reflector considered in section 5.2.1 is the ideal case. In reality, it is difficult or even im
possible to design a feed antenna for the reflector that is able to achieve an uniform current distribution
on the equivalent aperture.

Practical reflector antennas suffer from nonperfect feed efficiency, spillover efficiency and taper
efficiency. Feed efficiency is the amount of power radiated versus input power delivered to the feed.
Spillover efficiency indicates how much of the radiation of the feed antenna is incident on the reflector
and how much leaks past. Taper efficiency indicates how close the amplitude and phase distribution
of the feed field on the reflector are to the ideal distribution, i.e. the deviation from the Airy pattern.

Unfortunately, taper and spillover efficiency are related to each other. Increasing the taper efficiency
generally leads to a reduction in spillover efficiency and vice versa. For example, when the size of
the reflector is increased, more of the radiation from the feed is caught thus increasing the spillover
efficiency. However, the increased size of the reflector also leads to a less optimal taper efficiency
as the field that is now intercepted by the reflector generally has a less ideal amplitude and phase
distribution. [47]

Considering the mentioned efficiency factors, a dish with a radius of 1.46 metres will most likely
have a larger beam width than 2 degrees at 3 GHz. This can however simply be compensated for by
increasing the size of the dish to for example to a diameter of 3 metres.

5.2.3. Comparison of Conformal Phased Array and Reflector Antenna
Finally, the radiation patterns from the conformal geodesic quasispherical array and the parabolic
reflector are compared. Figure 5.25 shows an overlay of the radiation patterns of the parabolic reflector
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Figure 5.25: Comparison of normalised radiation patterns of the quasispherical array and a 2.92 metre diameter parabolic
reflector at 1.3 GHz.

and quasispherical array which are both scanning to the horizon at 1.3 GHz and figure 5.26 shows the
same comparison at 3 GHz.

From both figures, it can be seen that the side lobe level (SLL) of the conformal array is actually
better in the region ±30 degrees from 𝜃𝑠 at 1.3 GHz and in the region ±10 degrees from 𝜃𝑠 at 3 GHz.
This is probably due to the ideal nature of the Airy pattern where high directivity is achieved at the
cost of a higher side lobe level. An equivalent aperture current distribution of the quasispherical array
would likely not be uniform and thus trading HPBW for a reduced SLL.

However, the actual side lobe level of the array is higher due to the side lobes at about ±50 degrees
at 1.3 GHz and ±20, 45 and 65 degrees at 3 GHz from 𝜃𝑠 which are probably related to grating lobes.
Therefore, it is expected that the side lobe level of the conformal array can be made comparable or
better to that of the ideal parabolic reflector if the element density is increased.

That said, the SLL of the designed geodesic quasispherical array could potentially already be suf
ficient for the DISTURB application as the source of interest is very strong, namely the Sun. Therefore,
interference from weaker sources positioned at the side lobes of the array may be negligible. In addi
tion, DISTURB will consider broadband emissions, hence the positions of these increased side lobes
(grating lobes) will not coincide with local interfering sources over the entire observed frequency band.

Besides the comparison of radiation patterns of the quasispherical array and the parabolic reflector
antenna, some other aspects need to be addressed. Unlike the parabolic reflector, the quasispherical
array does not need any motors or other moving parts to steer the beam towards the Sun. These
moving mechanical components wear out over time and therefore require maintenance. Given the
fact that DISTURB should be able to monitor the Sun without interruption, a failing motor may lead to
downtime during which important events may happen. Furthermore, given the fact that the DISTURB
antennas may be placed at very remote locations, performing maintenance on the antennas is most
likely very costly.

It should bementioned althoughmaintaining remote parabolic reflector antennasmay be very costly,
so are the upfront costs of phased array antennas. The highmaintenance costs of the parabolic reflector
antennas could potentially be offset by placing multiple parabolic reflector antennas for the price of
one phased array antenna, thus implementing redundancy. If one parabolic reflector antenna were to
fail, another parabolic reflector can be engaged quickly thus keeping downtime low. Assuming each
parabolic reflector has the same time to failure on average, the lifetime of a station on average is
increased by a factor of the number of redundant antennas. The ultimate tradeoff between redundancy,
maintenance costs and upfront costs is left to the reader.

Lastly, conformal phased array antennas may provide some other benefits that are potentially not so
relevant to DISTURB but can be of importance for other applications. One such benefit is that phased
arrays may steer their main beams much quicker than parabolic reflector antennas since it is done
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Figure 5.26: Comparison of normalised radiation patterns of the quasispherical array and a 2.92 metre diameter parabolic
reflector at 3 GHz.

electronically instead of mechanically where the speed of redirection is limited by motors. This quick
beam steering property could potentially outweigh the negatives in an application such as satellite
communications with fastmoving satellites in low Earth orbit. Another application that benefits from
quick beam steering as well is radar, as fast moving targets such as missiles and aircraft may need to
be tracked. Also with faster beam steering, radar may be able to search a given volume more quickly.
Another advantage that phased array antennas could provide is creating multiple beams allowing for
the observation of multiple targets, which could be astronomical objects, satellites or aircraft. This is
could be interesting for radio astronomy, satellite communications and radar respectively.

5.3. Conclusions on Array Performance
In this chapter, the performance of the conformal quasispherical array with the crossed modified bow
tie antenna element has been studied.

The impact of the spherical ground plane is found to have a negligible effect in comparison with the
flat ground plane as used in chapter 4.

Due to the sparse nature of the selected geodesic quasispherical array it is found that the effect of
mutual coupling is also negligible when comparing with the isolated element with respect to radiation
patterns and active input impedances.

In contrast to the effect of the spherical ground plane and mutual coupling, it is shown that the effect
of element orientation is very important. Namely, if antenna elements are rotated 180∘ with respect to
each other, they can cancel each other out at certain angles. Also, from a polarimetric point of few,
it is very important to compensate for orientation as at one scan angle, the �̂�oriented subelement of
one modified crossed bowtie antenna and the �̂�oriented subelement of another crossed bowtie is
aligned with the desired polarisation direction at a specific scan angle whereas this may be inverted or
a combination of both subelements at other scan angles.

Since a fullwave analysis of the complete array is not possible due to computational limitations
and the fact that effect of mutual coupling is negligible, the radiation patterns of the isolated elements
were used to estimate the radiation pattern of the complete array. To eliminate the effect of element
orientation, the radiation patterns of the quasispherical array were evaluated for scanning to the horizon
which results in an active aperture where all elements are closely aligned to each other.

Using these approximations, it is concluded that the radiation pattern of the geodesic quasispherical
array of radius 1.55 metres and 343 elements has a minimum HPBW of 2∘ at 3 GHz and a maximum
HPBW of 5∘ at 1.3 GHz, thus satisfying the requirements on HPBW. Also, as the influence of mutual
coupling on the active input impedance of the antenna elements is found to be negligible, also the
receiver noise temperature is approximately the same as in the isolated case and thus lower than 100
K in the frequency range of 1.3 GHz to 3 GHz. This leads to the conclusion that the geodesic quasi



104 5. Conformal Array Performance

spherical with crossed modified bowtie antennas is able to achieve an operational frequency range of
1.3 GHz to 3 GHz, or a fractional bandwidth of 79%.

From a comparison of the final radiation pattern with the estimations based on isotropic active ele
ment patterns which enabled the novel comparison of many array configurations, it is shown that the
estimations of chapter 3 are valid.

A comparison of the geodesic quasispherical array with an ideal parabolic reflector antenna with
a diameter of 2.92 metres, shows that in the region of 20 degrees and 35 degrees at 1.3 and 3 GHz
respectively the side lobe level of the conformal array is better. However, outside this region, the side
lobe level is higher than that of the parabolic reflector due to the side lobes originating from grating
lobes. However, these higher side lobes may be acceptable for the DISTURB project as the Sun is a
very strong radio source.

It is concluded that although parabolic reflectors aremuch cheaper, it could be beneficial to select the
conformal array option asmaintenance costs and/or or redundant implementation of parabolic reflectors
may exceed the cost of a single conformal array. However, the exact costbenefit analysis is left up to
the reader.

It is also concluded that instead of the new application of conformal arrays in radio astronomy
presented in this thesis, the geodesic quasispherical array could be interesting in other applications.
Applications of interest are for example satellite communications and radar where fast beam steering
may be required at speeds which may not be easily achievable with reflector antennas.



6
Conclusions and Recommendations on

Future Research
In this thesis project, a feasibility study on the application of conformal phased array antennas in DIS
TURB has been presented. This research covers a full circle of a conformal antenna array design to
provide insight in the difficulties, tradeoff’s and impact of requirements involved with a novel application
of conformal array antennas for radio astronomy.

The goal of this thesis project was to design a phased array antenna that has a maximum HPBW
of 15 degrees and minimum HPBW of 2 degrees in the frequency band ranging from 1.5 to 3 GHz.
Furthermore, the antenna elements used in the array should have a receiver noise temperature of less
than 100 K in the mentioned frequency range. Next to this, the array must also be able to receive both
orthogonal directions of polarisation.

Firstly, a method of analysis of conformal phased arrays is presented. This method in combination
with isotropic embedded element patterns results in a significant reduction of required computational
resources compared to full wave solutions. It is also shown that this method still is able to provide a
relatively good approximation of the radiation pattern characteristics of a conformal array.

Using this method of analysis, for the first time, numerous conformal array configurations, compris
ing geometry, i.e. shape, and topology, i.e. the antenna element lattice, have been considered and
compared for application to radio astronomy. This resulted in the fact that of the considered configura
tions, an array with a quasispherical geometry and a novel geodesic topology is found to best comply
with the requirements for DISTURB.

Subsequently, the characteristics of an ideal antenna element for application in the geodesic quasi
spherical conformal array have been studied. This resulted in the requirement that the ideal antenna
for this array has an isotropic radiation pattern in the region of 60 degrees from zenith and no radiation
outside. The real part of the input impedance of the ideal antenna element is between about 90Ω and
40Ω and the imaginary part is between 80Ω and 20Ω. Furthermore, the cross polarisation isolation of
the ideal antenna element is infinity.

Thereafter, a number of different antenna element designs has been investigated in order to select
the design that is closest in performance to the ideal antenna element. This investigation resulted in
selection of the crossed modified bowtie antenna as it is closest in performance with respect to the
ideal antenna element. This antenna element is able to provide a receiver noise match such that the
receiver noise temperature is below 100 K over a frequency range of 1.3 to 3 GHz whilst providing a
sufficiently good radiation pattern with respect to the ideal antenna element.

Thereafter, the crossed modified bowtie antenna has been implemented in a partly geodesic quasi
spherical array configuration and evaluated using full wave methods. It was found that the embedded
element patterns of the antenna elements are approximately the same due to low mutual coupling
between the elements. Using this fact, the full array radiation pattern could be computed. It is found
that the designed array is able to comply with the requirements in an operational frequency band from
1.3 to 3 GHz.

Finally, the performance of the geodesic quasispherical array is compared to the performance of an
ideal parabolic reflector antenna. It is concluded that although an individual parabolic reflector antenna
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may be cheaper whilst also having a lower side lobe level, a conformal phased array antenna may be
a better option regarding maintenance costs as the DISTURB stations may be located very remotely.

The novel sparse geodesic quasispherical array with a radius of 1.55 metres and interelement
spacing of 0.3 metres yielding 343 elements designed in this thesis is able cover an operational fre
quency range from 1.3 to 3 GHz for all scan angles in the upper hemisphere. The requirements on
HPBW are met as well as those on receiver noise temperature and the reception of both directions of
polarisation in this band. Hence, the goal in this thesis has been achieved and even exceeded with an
achieved fractional bandwidth of 79%.

Recommendations on Future Research
Considering the feasibility study nature of this project and the complexity of an endtoend design of a
conformal phased array antenna, lots of opportunities for future research remain.

Firstly, a method of compensating for element rotation needs to be developed in order to provide
effective polarimetric capabilities and to provide estimations of radiation patterns for both orthogonal
polarisation directions at all scan angles.

Secondly, the RF frontend needs to be designed. Most importantly, the options regarding analogue
and digital beamforming and element orientation compensation need to be considered in the design of
the RF frontend.

Instead of using an offthe shelf lownoise amplifier, a custom LNA could be designed providing low
receiver noise temperatures over a larger bandwidth. This can be achieved by designing the LNA in
such a way that its optimum noise reflection coefficient is matched to an antenna element instead of
the other way around. This allows for more freedom in the antenna element design which potentially
results in better receiver noise temperatures and radiation pattern characteristics over a much larger
bandwidth.

Next to this, also other threedimensional antenna designs like cones or monopoles could be con
sidered, requiring a new approach to determining the active aperture as these elements do not have
radiation towards zenith.

Another interesting research topic may be to investigate the design of conformal array geometries
and/or topologies using for example evolutionary or particle swarm optimisation algorithms.

Also, the application of various digital beamforming strategies to the elements in a conformal array
configuration could be investigated. Applying amplitude tapers could improve the radiation charac
teristics of a conformal antenna array regarding for example side lobe levels or possibly provide the
capability of simultaneously observing multiple targets using multiple beams.



A
MATLAB Implementation

In order to compute and compare the performances of various conformal array configurations, the rele
vant formulas from section 2.3 are implemented in MATLAB. The MATLAB framework basic operation
consists out a few steps, of which the first is settingup the configuration/element locations of each array
configuration. Next, it calculates which elements are active depending on scan angle. Then, the MAT
LAB framework computes the radiation pattern of the conformal array based on these active elements
and calculates the HPBW of this radiation pattern. The calculation of the active elements, radiation
patterns and HPBW is repeated for a number of scan angles to see how the HPBW behaves when
scanning the entire hemisphere. A more detailed description of these steps is given in the following
sections.

A.1. Settingup Array Configuration
The first step in computing the performance of the array is by settingup the array configuration. The
configuration of an array consists out of two parts, namely the array geometry and the array topology.
Throughout this thesis, array geometry refers to the three dimensional shape of the array and topology
refers to the way the elements are distributed on the array geometry. For example, the geometry of
an conformal array could be a hemisphere (geometry) and the antenna elements could be distributed
along a spherical coordinate system (topology) or could be distributed as a rectangular grid which is
projected on to the hemisphere (another topology). The combination of an array geometry and topology
is referred to as an array configuration.

The MATLAB framework uses the same format for importing the locations of the antenna elements
and the normal vectors of the elements, which indicate their orientations. This format is displayed in
A.1. In this format, 𝑝𝑥1 indicates the 𝑥coordinate of the position of the first element, 𝑝𝑦𝑁 the 𝑦coordinate
of the 𝑁th element and so on. Similarly, �̂�𝑦2 represents the 𝑦component of the normal vector of the
second element, �̂�𝑧𝑁 represents the 𝑧component of the normal vector of the 𝑁th element and so on.

�⃗� = [
𝑝𝑥1 𝑝𝑥2 ⋯ 𝑝𝑥𝑁
𝑝𝑦1 𝑝𝑦2 ⋯ 𝑝𝑦𝑁
𝑝𝑧1 𝑝𝑧2 ⋯ 𝑝𝑧𝑁

] �̂� = [
�̂�𝑥1 �̂�𝑥2 ⋯ �̂�𝑥𝑁
�̂�𝑦1 �̂�𝑦2 ⋯ �̂�𝑦𝑁
�̂�𝑧1 �̂�𝑧2 ⋯ �̂�𝑧𝑁

] (A.1)

By using this standard format, dedicated functions can be written for generating array configurations
consisting out of the element locations and element normal vectors which are the vectors normal to the
surface of the array geometry at the element locations.

These functions aremostly named according to a <geometry name>_<topology name>() nam
ing scheme. For instance, the array from figure 2.2 can be generated using the function sphere_arclength(R,
arclength, theta_max). The radius parameter R of this function is set to 1.5, the arclength pa
rameter that determines the topology is set to 0.3 and the theta_max parameter is set to 1.5708, to
indicate that all elements below 𝜃 = 𝜋

2 should be removed and thus a hemispherical array is gener
ated. Next to the before mentioned naming scheme, there are also the faceted shapes that follow a
<geometry name>_faced_<optional details>() naming scheme. The optional details can for
example indicate a topology or whether or not a certain facet should be populated with elements.
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A.2. Active Element Computation
The next step is to compute which elements are active. From the scan angles 𝜃𝑠 and 𝜙𝑠, the scan
direction vector �̂�𝑠 can be calculated using equation A.2.

�̂�𝑠 = [
sin𝜃𝑠 cos𝜙𝑠
sin𝜃𝑠 sin𝜙𝑠

cos𝜃𝑠
] (A.2)

Using this scan direction vector, the angle 𝛼 between the element normal vector �̂�𝑖 can be computed
using the dot product as shown in equation A.3.

𝛼 = arccos (�̂�𝑖 ⋅ �̂�𝑠) (A.3)

When the angle 𝛼 exceeds the allowed maximum local scan angle, the excitation of that element is set
to 0. In the case that 𝛼 is lower than the maximum allowed scan angle, the excitation is set to 1. This is
implemented in MATLAB by the function active_elements(). This function first calculates the scan
direction vector as shown in equation A.2 and expands it with copies of the scan vector so that it has
the same amount of columns as element normal vectors. This is done by multiplying each of the three
rows of �̂�𝑠 with a column vector of ones that has the same amount of columns as there are antenna
elements. The angles can then be simply calculated by taking the arc cosine of the of the dot product
between these two vectors. Lastly, a check is performed to see which elements have a local scan angle
less than the maximum local scan angle. The function then returns only those element locations and
normal vectors that have passed the check. This reduced list of elements is then used to calculate the
radiation pattern of the array.

A.3. Radiation Pattern Calculation
Radiation pattern calculation is implemented in the function FF_conformal(). The first action this
function performs is calculating the phase correction factor 𝛽𝑖 for each element as shown in equation
2.28.

Next, the element AEPs are setup. The MATLAB framework supports two options for this. The
first option is to use isotropic patterns, this option provides the fastest calculation since the factor �⃗�𝐹𝐹𝑖
in equation 2.25 is always 1 independent of the scan angle.

The second option is to use nonisotropic patterns for the elements. The active element pattern of
the element can be specified via the single_element_FF argument of the FF_conformal() func
tion. However, these patterns are specified in the local coordinate system of the antenna elements
and therefore these radiation patterns need to be rotated so that these local coordinate systems line up
with the element normal vector �̂�𝑖. This rotation is performed by first calculating what the observation
vectors would be in the local grid of the element. Subsequently, the active element patterns are eval
uated at these apparent observation vectors and stored for later use in calculating the final radiation
patterns. In case the active element is given as a table of the pattern versus 𝜃 and 𝜙, the patterns are
interpolated to find a value at the exact apparent observation angles. The disadvantage of this is that
this interpolation is computationally demanding and slows down the overall radiation pattern calculation
significantly.

The next step is to compute the actual array radiation pattern following equation 2.26. The radiation
pattern calculation of conformal arrays is implemented in two different ways. The first method is an
iterative method. The advantage of this method is that it requires a smaller amount of memory, but is
slower in general. The second method is the matrix method. This method makes use of matrix math
and since MATLAB is optimised for this, this option is generally faster. The disadvantage of this method
is that it requires a large amount of memory when calculating radiation patterns for conformal arrays
with a large number of elements or when a large spatial domain with high spatial resolution is required.
If the memory requirement is too large, MATLAB starts writing parts of the memory to the hard disk
drive of the computer which slows down the calculation significantly.

The iterative method works by first calculating the wave vectors for all observation angles. There
after, the variable representing �⃗�𝐹𝐹𝑡𝑜𝑡 is set to 0. Then a loop is performed over all the elements and
during every iteration of the loop, the value of the factor 𝐴𝑖�⃗�𝐹𝐹𝑖 (𝑟)𝑒𝑗(�⃗��⃗�𝑖+𝛽𝑖) is added to the �⃗�𝐹𝐹𝑡𝑜𝑡 vari
able. Therefore, this results in the same operation as in equation 2.26.
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Alternatively, equation 2.26 can be implemented using matrix math. Firstly, the antenna element
position matrix P is formed as shown in A.4 where 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 indicate the position of the 𝑖th antenna
element. Also, the phase correction factor is included in this matrix.

P =
⎡
⎢
⎢
⎣

𝑥1 𝑦1 𝑧1 𝛽1
𝑥2 𝑦2 𝑧2 𝛽2
⋮ ⋮ ⋮ ⋮
𝑥𝑁 𝑦𝑁 𝑧𝑁 𝛽𝑁

⎤
⎥
⎥
⎦

(A.4)

Secondly, the matrix with the observation wave vectors K is set up as shown in A.5. To this, a row of
ones is added. In matrix K, 𝑘𝑥1 indicates the 𝑥component of the wave vector at the first observation
angle, 𝑘𝑦2 is the 𝑦component of the wave vector at the second observation angle and so on for all 𝑀
observation angles.

K =
⎡
⎢
⎢
⎣

𝑘𝑥1 𝑘𝑥2 ⋯ 𝑘𝑥𝑀
𝑘𝑦1 𝑘𝑦2 ⋯ 𝑘𝑦𝑀
𝑘𝑧1 𝑘𝑧2 ⋯ 𝑘𝑧𝑀
1 1 ⋯ 1

⎤
⎥
⎥
⎦

(A.5)

Multiplying the matrices from A.4 and A.5 leads to equation A.6.

PK =
⎡
⎢
⎢
⎣

𝑥1 𝑦1 𝑧1 𝛽1
𝑥2 𝑦2 𝑧2 𝛽2
⋮ ⋮ ⋮ ⋮
𝑥𝑁 𝑦𝑁 𝑧𝑁 𝛽𝑁

⎤
⎥
⎥
⎦
×
⎡
⎢
⎢
⎣

𝑘𝑥1 𝑘𝑥2 ⋯ 𝑘𝑥𝑀
𝑘𝑦1 𝑘𝑦2 ⋯ 𝑘𝑦𝑀
𝑘𝑧1 𝑘𝑧2 ⋯ 𝑘𝑧𝑀
1 1 ⋯ 1

⎤
⎥
⎥
⎦

= [
𝑥1𝑘𝑥1 + 𝑦1𝑘𝑦1 + 𝑧1𝑘𝑧1 + 𝛽1 ⋯ 𝑥1𝑘𝑥𝑀 + 𝑦1𝑘𝑦𝑀 + 𝑧1𝑘𝑧𝑀 + 𝛽1

⋮ ⋱ ⋮
𝑥𝑁𝑘𝑥1 + 𝑦𝑁𝑘𝑦1 + 𝑧𝑁𝑘𝑧1 + 𝛽𝑁 ⋯ 𝑥𝑁𝑘𝑥𝑀 + 𝑦𝑁𝑘𝑦𝑀 + 𝑧𝑁𝑘𝑧𝑀 + 𝛽𝑁

] (A.6)

Multiplying the result from A.6 with 𝑗 and computing the exponential of all the entries, gives the exponent
in equation 2.26. Subsequently, the resulting matrix can be point wise multiplied by the radiation pat
terns of the corresponding elements at the corresponding observation angles. The last step in finding
the total radiated field is summing along the rows of the matrix, thus implementing equation 2.26.

A.4. HalfPower Beam Width
The last step in evaluating the performance of an conformal array configuration is computing the half
power beam width. This is implemented in the MATLAB framework by first finding the point that is
closest above √2 for angles greater that the scan angle in a 𝜙 cut of the normalised Epattern. Then
it performs linear interpolation between this point and the next point to find the interpolated angle at
which the normalised Epattern is equal to √2. This process is then repeated for the √2 crossing at
the angle less than the scan angle. The halfpower beam width is subsequently found by taking the
difference between these angles.

This process is well suited for finding the halfpower beam width of conical beams, where the HPBW
can easily determined by using the angle along �̂�. However, it could also be the case that the beam is
oblate and widest along �̂�. This complicates the problem of finding the HPBW because the angles 𝜙
and 𝜃 cannot be compared directly. Consider a conical beam pointing towards the horizon. This beam
may occupy a few degrees along �̂� and the same amount of degrees along �̂�. However, when the
conical beam is pointing to zenith, this beam may occupy only a few degrees in 𝜃 but it occupies 360∘
in 𝜙. This is an effect of how spherical coordinates are defined.

To solve this problem and find a true value for the beam width, instead of doing involved transforms
to compensate the deformation in the spherical coordinate grid, the whole conformal array is rotated so
that the zenith lines up with the scan direction vector. This rotation for the element locations is done by
performing R�̂� and the element normal vectors are rotated by performing R�̂� where the rotation matrix
R is shown in equation A.7.

R = [
1 0 0
0 cos (−𝜃𝑠) − sin (𝜃𝑠)
0 sin (−𝜃𝑠) cos (−𝜃𝑠)

] [
cos (−𝜙𝑠 −

𝜋
2 ) − sin (−𝜙𝑠 −

𝜋
2 ) 0

sin (−𝜙𝑠 −
𝜋
2 ) cos (−𝜙𝑠 −

𝜋
2 ) 0

0 0 1
] (A.7)
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Figure A.1: Plot of a rotated hemispherical array configuration for a scan angle of 𝜃𝑠 = 90∘ and 𝜙𝑠 = 0∘.

In this way, the HPBW can reliably calculated along all 𝜙cuts to find the largest beam width. This
results in a halfpower beam width plot as shown in figure A.3 which corresponds to the rotated array
configuration in figure A.1. A plot of the radiation pattern at this scan angle is displayed in figure A.2.

Figure A.3 can be interpreted as following. The first observation from the upper plot in figure A.3
is that the HPBW increases when scanning towards the horizon. From the lower plot in figure A.3 the
limiting 𝜙cut can be seen, i.e. the cut at which the largest HPBW occurs as shown in the upper plot.
For a scan angle of 𝜃𝑠 = 90∘, it can be seen that 𝜙 = 90∘ is limiting. This can be understood by looking
at the radiation pattern computed at this scan angle in figure A.2, where it can easily be seen that the
beam is widest along the Vaxis, which is equal to 𝜙 = 90∘. This in turn can be explained by figure A.1,
where it can be seen that the active aperture of the array is smallest along the 𝑦axis. Therefore, if the
HPBW needs to be decreased at a scanning angle 𝜃𝑠 of 90∘, the size of the aperture along �̂� is limiting
and should be increased by for example increasing the height of the array.

The other observations that can be made from figure A.3 is that the behaviour of the HPBW versus
𝜃𝑠 is not smooth but shows small steps. This is due to the fact that elements are turning on and off
depending on scan angle which result in sudden changes of the active aperture of the array. Another
observation that can be made is that if the limiting 𝜙cut shows unstable behaviour, the crosssection
of the beam is most likely very close to a circle.
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Figure A.2: UVplot for observation angles 𝜃 ranging from 5 to 5 degrees and 𝜙 from 0 to 180 degrees of the normalised far
field pattern for the array configuration as displayed in figure A.1.
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Figure A.3: Plot of the HPBW as function of the scan angle 𝜃𝑠 of the array configuration shown in figure A.1. The upper plot
shows the value of the HPBW in degrees and the lower plot shows in which 𝜙cut this HPBW is maximum.





B
Verification of Numerical Results

Numerical solvers are a very useful tool in the evaluation of electromagnetic problems as nowadays no
analytical solution exists for most problems of interest. However, the results obtained with numerical
solvers are dependent on how the problem is digitised, i.e. meshed, and the employed solver algorithm.
Because of this, numerical solvers should be used carefully and the obtained results should be verified
and checked for physical correctness. Verification can be done by varying the mesh size to check the
convergence of the results. Furthermore, different solver algorithms can be used to increase confidence
in the results as this eliminates the uncertainty in the correctness or applicability of the algorithm itself.

This appendix presents the verification of the most important numerical results of this thesis. These
are the results of the modified crossed bowtie antenna and those of the section of the geodesic quasi
spherical array.

B.1. Crossed Modified BowTie Antenna
To increase the accuracy of the obtained results with minimal user effort, CST Studio Suite supports
adaptive meshing. With adaptive meshing, CST refines the mesh of the model and solves it for a
specified number of times or when a specified convergence criterion is met. This provides a first way
of verifying the convergence of the results. However, when using adaptive meshing, CST generally
decreases mesh cell size at the spots at which the electromagnetic fields change most. This may lead
to results that seem to have converged when in reality they may not have converged as the mesh cell
sizes needed to be decreased in at other spots as well. This could for example be because the antenna
edges far away from the antenna feed point could be meshed very coarsely, thus misrepresenting the
geometry of the antenna.

To this end, the first step that is taken to confirm the validity of the obtained simulation results of the
crossed modified bowtie antenna is increasing the fineness of the mesh. The solver algorithm used
in CST is the finite element method (FEM) which makes use of tetrahedral mesh cells. In CST’s mesh
settings, the maximum cell size is set to 𝜆/10, 𝜆/20 and 𝜆/30 which is subsequently refined by adaptive
meshing at locations where the difference in field strength is large to smaller sizes. Figure B.1 shows
a comparison of the found impedances of the antenna for these mesh sizes.

This figure shows that there is a small difference in impedance, which is relatively largest for the
imaginary part. As the number of mesh cells increases, the difference in impedance decreases as
well. It should be said that the mesh cell size decrease from the 𝜆/20 to 𝜆/30 is not the same factor
2 as from 𝜆/10 to 𝜆/20, however, it can still be concluded that the results converge. Ideally, instead
of a mesh cell size of 𝜆/30, a mesh cell size of 𝜆/40 should be considered but this mesh size is too
computationally demanding for a regular desktop PC with 8 GB of RAM and an Intel® Core™ i57500
CPU at 3.40 GHz.

Figure B.2 and B.3 show the convergence of the radiated far fields of the crossed modified bow
tie antenna at 1.5 and 3 GHz respectively. These figures show that the far field is less sensitive to
mesh size than the impedance. It can be concluded from these figures that the far field of the crossed
modified bowtie can be already be accurately computed with a maximum mesh cell size of 𝜆/10.

Lastly, to confirm that the FEM solver yields good results, the samemodel is solved in Feko using the
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Figure B.1: Comparison of input impedance of the crossed modified bowtie antenna for several mesh sizes.
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Figure B.2: Comparison of normalised far field cuts at 1.5 GHz of the crossed modified bowtie antenna for several mesh sizes.
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Figure B.3: Comparison of normalised far field cuts at 3 GHz of the crossed modified bowtie antenna for several mesh sizes.

method of moments (MoM). This solver algorithm uses triangles. The maximum size of these triangles
is set to 𝜆/30. The results of the impedance are compared to those obtained with CST with a maximum
cell size of 𝜆/30 in figure B.4.

Figure B.4 shows that although the obtained impedances are not exactly equal, they follow the same
behaviour. Next to the solver algorithm, further difference can be explained by the fact that mesh used
by CST is generated by adaptive meshing. This results in a much more irregular mesh with smaller
cells near the edges and feed point of the antenna than the mesh generated by Feko.

A comparison of the far fields obtained with Feko and CST is shown in figures B.5 and B.6. It can
be seen from these figures that patterns are almost equal for values of 𝜃 below 40 degrees in the 𝜙 = 0
cut at 3 GHz. At 1.5 GHz and the other cut at 3 GHz, the far field patterns are different but follow the
same behaviour. For example, both solvers show a splitting of the beam occurring around 3 GHz.

In this case, it is hard to tell which far field is more correct than the other. It may be the one pre
dicted by CST, the one predicted by Feko, somewhere in between or somewhere outside the obtained
solutions. However, it is most likely safe to assume that the behaviour of the far fields is about the
same as the obtained results as they are not wildly different.

B.2. Geodesic QuasiSpherical Array
Due to the large geometry of the 30∘ quasispherical array section, the model cannot simply be meshed
using the ”standard” option at 3 GHz in Feko. Namely, the mesh with ”standard” mesh cell size results
in a memory requirement above 125.7 GB. This is mostly because of the fact that the spherical ground
plane is a very large metal surface.

In order to still be able to evaluate a 30∘ quasispherical array section, the ground plane needs
to be meshed using the ”coarse” option whilst the meshing of the antenna element can be done us
ing the ”standard” option. However, the impact of this coarse mesh must be investigated. Since the
ground plane of the 30∘ quasispherical array section cannot be meshed with standard size, the se
lected approach to this problem is by comparing the results of an isolated crossed modified bowtie
antenna above a ground plane meshed using both ”coarse” and ”standard” options. Figure B.7 shows
a comparison of the input impedance of the coarse and standard options.
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Figure B.4: Comparison of input impedances obtained with MoM using Feko and FEM using CST for a maximum mesh size of
𝜆/30.
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Figure B.5: Comparison of normalised far field cuts at 1.5 GHz of results obtained using Feko and CST for the crossed modified
bowtie antenna at a maximum mesh size of 𝜆/30.
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Figure B.6: Comparison of normalised far field cuts at 3 GHz of results obtained using Feko and CST for the crossed modified
bowtie antenna at a maximum mesh size of 𝜆/30.

1.5 2 2.5 3

Frequency [Hz] 109

0

50

100

150

R
e
(I

n
p
u
t 
Im

p
e
d
a
n
c
e
) 

[
]

Real Part of Input Impedance

Standard

Coarse

1.5 2 2.5 3

Frequency [Hz] 109

20

40

60

80

100

Im
(I

n
p
u
t 
Im

p
e
d
a
n
c
e
) 

[
]

Imaginary Part of Input Impedance

Standard

Coarse

Figure B.7: Comparison of input impedances obtained with coarse and standard meshing options in Feko.
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Figure B.8: Comparison of normalised far field cuts at 1.5 GHz obtained using coarse and standard meshing options for the
spherical ground plane in Feko.

Figure B.7 shows that the results obtained with coarse and standard meshes are almost exactly
the same. Therefore, it can be concluded from an impedance standpoint that the coarse mesh can be
safely utilised.

To confirm that this is also the case with the far fields, comparisons of the 𝜙 = 0∘ and 𝜙 = 90∘ cuts
of the far fields at 1.5 and 3 GHz for standard and coarse meshes are shown in figures B.8 and B.9.

These figures show that also the far fields are almost exactly the same. Thus, it can be concluded
that also from a far field perspective coarse meshing can be safely applied to the spherical ground
plane.
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Figure B.9: Comparison of normalised far field cuts at 3 GHz obtained using coarse and standard meshing options for the
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C
Computer Scripts and Codes

In order to spare the environment, the code and scripts used for this thesis project can be found at:
https://github.com/wbouwmeester/thesis_code_base
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