Minimalisering restlading "Volvox Terranova"

Eindrapport

TU Delft
Technische Universiteit Delft

Van Oord ACZ
Minimaliseren restlading

"Volvox Terranova"

J. Bruinsma

Afstudeercommissie:

voorzitter: prof. ir. K. d'Angremond TU - Delft
ir. W.H. Tutuarima TU - Delft
ir. W. van Kesteren WL | Delft Hydraulics
ir. K. Peerkamp Van Oord ACZ

Specialisatie Algemene Waterbouwkunde,
Sectie Waterbouwkunde en Geotechniek,
Faculteit der Civiele Techniek en Geowetenschappen, TU-Delft. februari 2001

In verband met bedrijfsgevoelige informatie zijn enkele onderdelen uit het verslag verwijderd.
Samenvatting

De sleeppopperzuiger "Volvox Terranova" is eigendom van Van Oord ACZ en heeft een laadcapaciteit van 20.000 m³. Na het walpersen van de lading blijft een restlading over van ca. --- m³. Het doel van dit onderzoek is een voorstel tot aanpassing van de "Volvox Terranova" te presenteren om de restlading te minimaliseren, zonder de leegzuigproductie negatief te beïnvloeden. Om dit te bereiken is een analyse uitgevoerd van het ontwerp van het schip, de leegzuigvolgorde, de processen in het beun, de verschijningsvorm van de restlading en het huidige jetsysteem. Tevens is in een schaalmodel de effectiviteit van een nieuwe leegzuigdeur beproefd.

In een beunsectie is na het leegzuigen van het beun ca. --- à --- m³ zand (restlading) aanwezig. De hoeveelheid restlading in een beunsectie wordt met name beïnvloed door de positie van de leegzuigdeur en het functioneren van het jetsysteem. Om de hoeveelheid restlading te verminderen zal in de opschoonslag, -de laatste fase van het leegzuigen-, geconcentreerd en zo laag mogelijk per beunsectie afgezogen moeten worden. Op dit moment wordt in het schip in twee beunsecties tegelijk op een hoogte van --- meter boven het laagste gedeelte van het beun afgezogen. Door het aanbrengen van een nieuwe leegzuigdeur wordt het afzuippunt verlaagd en zal het afzuigdebit tot één sectie worden beperkt en daardoor verdubbelen. Het jetsysteem zal aangepast dienen te worden aan de situatie met een nieuwe leegzuigdeur.

In een proevenserie is de effectiviteit van een nieuwe leegzuigdeur getest. De hoeveelheid restlading was bij de proeven met de nieuwe leegzuigdeur ongeveer ---% van de restlading die gemeten werd bij de proeven met de bestaande leegzuigdeuren.

Tijdens het leegzuigen wordt door het jetwater uit het jetsysteem de korrels spanningen in het zandpakket gereduceerd, zodat het zand ten gevolge van de zwaartekracht gemakkelijker in de richting van de leegzuigdeur afschuift. Het jetdebit dat nodig is om de korrelspanning te verminderen is met name afhankelijk van de korrediameter van het zand. Voordat de jets voldoende water spuiten zal de jet met behulp van een hogere jetdruk moeten opstarten.

In de laatste fase van het leegzuigproces zal de evenwichtshelling van het zand bereikt worden en zal het zand moeten worden weggespoeld door de jets. De erosieve werking van een jet is afhankelijk van de uitstroomsnelheid en de invloedsafstand van deze jet. De uitstroomsnelheid wordt met name bepaald door het verschil in jetdruk over een jet. De invloedsafstand van de jet en het debiet uit de jet nemen toe als de diameter van de nozzle wordt vergroot.

In de proeven is geconstateerd dat bij het vergroten van het jetvermogen de afzuigconcentratie wordt verhoogd. Tevens is vastgesteld dat het vergroten van de nozzle diameter de effectiviteit van een jet vergroot en de restlading vermindert.

Op grond van de uitkomsten van het theoretisch onderzoek en de resultaten van de proeven wordt geadviseerd om in de "Volvox Terranova" per beunsectie een nieuwe leegzuigdeur aan te brengen en de nozzle diameters in het beun te vergroten.

Minimaliseren restlading "Volvox Terranova"
Samenvatting
Inhoudsopgave

Samenvatting

Symbolen lijst

Verklarende woordenlijst

H1 Inleiding 1

H2 De problematiek van de restlading 2
 2.1 Achtergrond 2
 2.2 Probleemstelling 2
 2.3 Doelstelling 3
 2.4 Plan van aanpak 3

H3 Analyse van het leegzuigproces 4
 3.1 Beschrijving van het schip 4
 3.1.1 Indeling van het beun 4
 3.1.2 Het jetsysteem 6
 3.2 Leegzuigprocedure 9
 3.2.1 Losvolgorde van de beunsecties 9
 3.2.2 Fenomenologische beschrijving 12
 3.3 Analyse van de restlading 15
 3.3.1 Vorm en hoeveelheid restlading 15
 3.3.2 Invloedsfactoren op de hoeveelheid restlading 16
 3.3.3 Voorstel tot vermindering van de hoeveelheid restlading 19

H4 Het jetsysteem 21
 4.1 Eigenschappen van het jetsysteem 21
 4.1.1 Verliescoëfficiënten van een nozzle ten gevolge van de nozzlevorm 21
 4.1.2 Schematisatie van het jetsysteem 23
 4.1.3 Beschrijving van het spreadsheet programma 24
 4.1.4 Resultaten uit de berekeningen met het spreadsheet programma 26
 4.1.5 Conclusies uit de berekeningen met het spreadsheet programma 30

Minimaliseren restlading “Volvox Terranova”
Inhoudsopgave
4.2 Functies van een jet in het beun
4.2.1 Analyse van het gehele leegzuigsysteem
4.2.2 Gebruik van de zee-afsluiter
4.2.3 Mogelijke complicaties tijdens het leegzuigen
4.2.4 Overzicht van de functies van een jet

4.3 Processen in het beun tijdens het leegzuigen
4.3.1 Het bereik van een jet spuitend in water
4.3.2 Fluidisatie in 1 dimensie en het bezinken van zand
4.3.3 Fluidisatie in meerdere dimensies

4.4 Opstarten van een jet
4.4.1 Literatuurstudie ‘opstarten van een jet’
4.4.2 Analytische afleiding van de water - en de korrelspanningen om een holte
4.4.3 Analytische afleiding van het bezijkmechanisme
4.4.4 Hydraulic fracturing
4.4.5 Conclusie opstartdruk en proces bij het opstarten van een jet

H5 Bepaling ordegroutte variabelen in het leegzuigsysteem
5.1 Plaats, afmetingen en oriëntatie van de leegzuigopening
5.2 Het jetdebit
5.2.1 Het totaal benodigde jetdebit tijdens het leegzuigen
5.2.2 Het jetdebit ten behoeve van het verminderen van de korrelspanningen

5.3 De benodigde jetdruk
5.3.1 De benodigde jetdruk in de opstart fase van het leegzuigproces
5.3.2 De benodigde jetdruk tijdens het leegzuigen
5.3.3 De benodigde jetdruk tijdens het schoonspoelen van het beun

5.4 Het aantal jets en de spuitrichting van de jets
5.4.1 Het aantal jets
5.4.2 De positie van de jets in het beun
5.4.3 De spuitrichting van de jets

5.5 Bepaling van de nozzel diameters in een beunsectie
5.5.1 Voorbeeld berekening jetsysteem

5.6 Conclusie voor het leegzuigsysteem

H6 Proevenprogramma van het restlading onderzoek
6.1 Het proefonderzoek
6.1.1 Doel van de proef
6.1.2 Motivatie voor een schaalproef
6.1.3 Schaal van de proefopstelling

6.2 Opbouw van de proefopstelling
6.2.1 Elementen in de proefopstelling
6.2.2 Verschil tussen model en werkelijkheid
Symbolenlijst

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Definitie</th>
<th>eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Concentratie</td>
<td>[-]</td>
</tr>
<tr>
<td>C_e</td>
<td>Contractie coëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>C_d</td>
<td>Drag coëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>C_v</td>
<td>Verlies coëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>d</td>
<td>Bol- of korrel diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>d_{eq}</td>
<td>Equivalent korrel diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>d_{m}</td>
<td>Mediane korrel diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>d_n</td>
<td>Diameter nozzle</td>
<td>[-]</td>
</tr>
<tr>
<td>D_r</td>
<td>Relatieve dichtheid</td>
<td>[-]</td>
</tr>
<tr>
<td>E</td>
<td>Elasticiteitsmodulus</td>
<td>[kN/m² = kPa]</td>
</tr>
<tr>
<td>e</td>
<td>Volume rek</td>
<td>[-]</td>
</tr>
<tr>
<td>e_{cr}</td>
<td>Volumeverandering van in-situ dichtheid naar kritieke dichtheid</td>
<td>[%]</td>
</tr>
<tr>
<td>F</td>
<td>Kracht</td>
<td>[kN]</td>
</tr>
<tr>
<td>G</td>
<td>Glijmodulus</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>g</td>
<td>Gravitatieversnelling</td>
<td>[m/s²]</td>
</tr>
<tr>
<td>I</td>
<td>Impuls van de jetstraal</td>
<td>[kgm/s]</td>
</tr>
<tr>
<td>i</td>
<td>Verhang in zandpakket</td>
<td>[-]</td>
</tr>
<tr>
<td>K</td>
<td>Compressiemodulus</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>k</td>
<td>Verzadigde doorlatendheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>K_o</td>
<td>Spanningscoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>n_o</td>
<td>In situ poriëngehalte</td>
<td>[%]</td>
</tr>
<tr>
<td>n_{max}</td>
<td>Maximale poriëngehalte</td>
<td>[%]</td>
</tr>
<tr>
<td>n_{min}</td>
<td>Minimale poriëngehalte</td>
<td>[%]</td>
</tr>
<tr>
<td>p</td>
<td>Deviator spanning</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>p</td>
<td>Jetdruk</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>P</td>
<td>Jetvermogen</td>
<td>[kW]</td>
</tr>
<tr>
<td>p</td>
<td>Spanning op holtewand</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>p_{cr}</td>
<td>Druk waarbij aan de gatwand de kritieke dichtheid is bereikt</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>p_{ap}</td>
<td>Radiale spanning op de overgang elastisch-plastisch</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>p_t</td>
<td>Druk waarbij het eerste plastisch vervormen optreedt</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>p_l</td>
<td>Limiedruk</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>Q</td>
<td>Debiet</td>
<td>[m³/s]</td>
</tr>
<tr>
<td>q</td>
<td>Isotrope spanning</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>U_r</td>
<td>Oppervlakesnelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>r</td>
<td>Straal bezopen</td>
<td>[m]</td>
</tr>
<tr>
<td>r_0</td>
<td>Initiële holtstraal</td>
<td>[m]</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds getal</td>
<td>[-]</td>
</tr>
<tr>
<td>r_{ap}</td>
<td>Straal op de overgang elastisch-plastisch</td>
<td>[m]</td>
</tr>
<tr>
<td>U_{n}</td>
<td>Uitstroomsnelheid uit de jet</td>
<td>[m/s]</td>
</tr>
<tr>
<td>u_r</td>
<td>Verplaatsing in radiale richting</td>
<td>[m]</td>
</tr>
<tr>
<td>v_s</td>
<td>Relatieve valsnelheid van korrels ten opzichte van water</td>
<td>[m/s]</td>
</tr>
<tr>
<td>w</td>
<td>Waterspanning</td>
<td>[kN/m²]</td>
</tr>
<tr>
<td>w_0</td>
<td>Valsnelheid van een enkele korrel</td>
<td>[m/s]</td>
</tr>
<tr>
<td>w_s</td>
<td>Valsnelheid als gevolg van 'hindered settling'</td>
<td>[m/s]</td>
</tr>
</tbody>
</table>

Minimaliseren restlading "Volvox Terranova"

Symbolenlijst
Verklarende woordenlijst

Beun
Laadruim van een sleepopperzuiger.

Bressen
Afglijden van zand in een kuil. Dit treedt op wanneer de
hellingshoek (onder water) groter is dan de
evenwichtshallingshoek van het zandpakket.

Dilatantie
Het gedrag van korrels dat bij vervormen van het korrelskelet het
volume van het skelet toeneemt.

Fluidisatie
Het proces waarbij in een zandpakket de zandkorrels geen
contact meer met elkaar hebben, korrelspanningen nul zijn. En
waarbij het zandpakket minimaal de kritieke dichtheid heeft, zodat
het zandwater mengsel zich als een vloeistof gedraagt.

Jet
Spuitmond waaruit met hoge druk water wordt geperst.

Jetsysteem
De jetpomp, jetleidingen en jets op een sleepopperzuiger.

Kalf
Fysieke scheiding om het beun in beunsecties te verdelen.

Kippekooi
Constructie element met driehoekige vorm in de lengterichting van
het beun, dat de ‘ruggegraat’ van het schip vormt.

Kritieke dichtheid
De dichtheid van een zandpakket waarbij vervorming geen
volume verandering van het zandpakket oplevert.

Nozzle
Spuitstuk aan een jet.

Oppervlakte snelheid
Het debiet per vierkante meter oppervlakte door een zandpakket

Fluidisatie snelheid
Het debiet per vierkante meter oppervlakte door een zandpakket
bij het fluidisatie proces.

Minimale fluidisatie-
snelheid
De minimale fluidisatie snelheid waarbij de korrelspanningen
theoretisch worden opgeheven.

Minimaliseren restlading “Volvox Terranova”
Symbolenlijst en Verklarende woordenlijst
H1 Inleiding

Het afstudeerverslag behandelt de verbetering van de prestaties van de sleeppopperzuiger "Volvox Terranova" (20.000 m³), in eigendom van het bedrijf Van Oord ACZ. Deze verbetering betreft met name het reduceren van de restlading tijdens het leegzuigproces.

![Schets van de "Volvox Terranova"](image)

Figuur 1.1. Schets van de "Volvox Terranova".

Na het leegzuigen van het beun blijft in de "Volvox Terranova" een aanzienlijke hoeveelheid zand achter (ca. --- m³). Deze hoeveelheid zand (restlading) is loze ballast. Door deze hoeveelheid te verminderen zal de capaciteit van de cyclusproductie vergroot worden. De leegzuigproductie en de hoeveelheid restlading zijn afhankelijk van de volgende onderdelen:

a. De beuvorm.

b. De plaats en afmetingen van de leegzuigdeuren in het beun.

c. Het jetsysteem (de jetpomp, het leidingwerk en de waterjets in het beun).

Om de cyclusproductie te optimaliseren zullen de afmetingen en eigenschappen van deze 3 onderdelen goed op elkaar afgestemd moeten zijn.

Om de restlading te verminderen zullen in dit rapport eerst de invloedsfactoren op de hoeveelheid restlading worden vastgesteld. Ook zal een analyse van de werking van het jetsysteem worden uitgevoerd, omdat de eigenschappen en de effectiviteit van het huidige jetsysteem niet goed bekend zijn. Het ontwerp van het jetsysteem is vooral gebaseerd op ervaringscijfers en wensen uit de praktijk. Een theoretische onderbouwing voor een goed ontwerp is niet voorhanden. Dit wordt veroorzaakt doordat niet voldoende bekend is welke processen plaatsvinden in het beun en op welke wijze deze processen beïnvloed worden door het jetsysteem.

Om de hoeveelheid restlading te verminderen is door Van Oord ACZ een voorstel gedaan om de plaats van afzuigen in het beun te wijzigen. Hiervoor moeten extra leegzuigdeuren in het beun geplaatst worden. De invloed en de effectiviteit van deze deuren is niet voldoende bekend. Om hier inzicht in te krijgen is een schaalmmodel van een gedeelte van het beun van de "Volvox Terranova" op de werf van Van Oord ACZ gebouwd. In dit schaalmmodel is het leegzuigproces van de "Volvox Terranova" gesimuleerd. Met de resultaten uit de schaalmproeven en de genoemde analyses zal een voorstel tot aanpassing van de "Volvox Terranova" gegeven worden.

Minimaliseren restlading "Volvox Terranova"
H2 De problematiek van de restlading

2.1 Achtergrond

Het ontwerp van de “Volvox Terranova” is een opschaling van de eerder gebouwde “Volvox Iberia” (1993). De opbouw en inrichting is ongeveer hetzelfde, maar de “Volvox Terranova” is qua beuninhoud ongeveer een factor drie groter. De “Volvox Iberia” is een sleeppopperzuiger met een beuninhoud van ca. 6000 m³. De restlading in de “Volvox Iberia” is na het walpersen --- procent van de laadcapaciteit. De restlading van de “Volvox Terranova” is procentueel even groot als de restlading van de “Volvox Iberia”. In absolute hoeveelheden is de restlading van de “Volvox Terranova” ca. --- m³ tegenover een restlading van --- m³ bij de “Volvox Iberia”.

Bij grote sleeppopperzuigers is het zinvol te investeren in het minimaliseren van de restlading. De vaartijd van deze sleeppopperzuigers is in de regel groot ten opzichte van de laad- en lostijd. Bij het vergroten van de effectieve laadcapaciteit, door het minimaliseren van de hoeveelheid restlading, neemt de cyclustijd relatief maar weinig toe.

Om de hoeveelheid restlading in de “Volvox Terranova” te verkleinen is in het jaar 1999 het jetsysteem uitgebreid. Hierdoor komt er meer water in het beun, met de verwachting dat de restlading zou verminderen. In de praktijk is de vermindering van de restlading echter minimaal gebleken.

Tijdens het walpersen is men in principe tevreden met de behaalde uurproducties. De restlading na het walpersen is echter te groot.

Om de restlading te minimaliseren was reeds een nieuwe leegzuigdeur ontworpen. De effectiviteit van deze deur is in een schaalmodel getest alvorens tot de werkelijke inbouw is overgegaan. De effectiviteit van de leegzuigdeur is in sterke mate afhankelijk van het functioneren van het jetsysteem. Tegelijkertijd met het onderzoek naar de effectiviteit van de nieuwe leegzuigdeur zijn de eigenschappen van het jetsysteem in het beun en de eventuele wijzigingen van dit jetsysteem die nodig zijn onderzocht. In dit rapport worden deze onderzoeken beschreven.

2.2 Probleemstelling

De “Volvox Terranova” is sinds het jaar 1998 in de vaart en heeft sindsdien een te grote restlading na het walpersen.
2.3 Doelstelling

De doelstelling van dit onderzoek is om een voorstel te presenteren voor het aanpassen van de "Volvox Terranova" ten einde de restlading te minimaliseren, zonder dat de leegzuigproductie negatief wordt beïnvloed. Hierbij is uitgegaan van de huidige (bestaande) pompcapaciteiten op de "Volvox Terranova".

Het verrichte onderzoek is verdeeld in de volgende onderdelen:
 a. Beschrijving van het schip en de leegzuigvolgorde en een analyse van de restlading.
 b. Theoretisch onderzoek om inzicht te krijgen in de processen in het beun.
 c. Analyse van het huidige jetsysteem ontwerp.
 d. Bepalen van de effectiviteit van de nieuwe leegzuigdeur in een schaalmodel.

2.4 Plan van aanpak

De problematiek van de restlading wordt beschreven in hoofdstuk 3. In dit hoofdstuk is de indeling van het schip en de leegzuigvolgorde van het beun beschreven. Ook is een analyse gemaakt van de processen in het beun en de vorm van en de invloedsfactoren op de hoeveelheid restlading.

De eigenschappen van het huidige jetsysteem worden in hoofdstuk 4 afgeleid en beschreven. Tevens wordt het fluidisatieproces en het opstarten van een jet in een zandpakket theoretisch geanalyseerd.

De kennis uit hoofdstuk 3 en 4 wordt in hoofdstuk 5 gebruikt om de variabelen in het leegzuigsysteem te kwantificeren. Hierbij wordt de optimale plaats en oriëntatie van een leegzuigopening in een beunsectie afgeleid. Van het jetsysteem wordt een indruk verkregen van de benodigde jetdruk, het jetdebiet en de verdeling van de jets.

De proefopstelling en het proevenprogramma van de schaalmodelproeven worden in hoofdstuk 6 beschreven. In de proevenserie is met name de effectiviteit van de nieuwe leegzuigdeur getest. Tevens worden de gebruikte schaalregels en de te verwachten schaaleffecten besproken. Het proevenprogramma is niet direct afgeleid van de theoretische kennis die samengevat is in hoofdstuk 5. De proeven werden uitgevoerd, voordat deze kennis volledig bekend was.

In hoofdstuk 7 worden de resultaten van de proeven gepresenteerd. Een voorstel tot aanpassing van de "Volvox Terranova" wordt in hoofdstuk 8 afgeleid. De conclusies en aanbevelingen van dit rapport zijn in hoofdstuk 9 beschreven.
H3 Analyse van het leegzuigproces

In dit hoofdstuk zal de leegzuigvolgorde van het schip beschreven worden, nadat de indeling van het schip beschreven is. Vervolgens zal een fenomenologische beschrijving gegeven worden van de processen in het beun tijdens het leegzuigen. Hierdoor is het mogelijk om de invloedsfactoren op de hoeveelheid restlading te bepalen.

3.1 Beschrijving van het schip

3.1.1 Indeling van het beun

Het beun van de “Volvox Terranova” is 73,2 meter lang en 18,9 meter breed. Een vol beun bevat ongeveer 18000 m³ zand met een hoogte van ca. 15 meter boven de bodemdeur. Het beun is verdeeld in 7 beunsecties, gescheiden door een zogenaamde kalf van 5,85 meter hoogte, zie figuur 3.1 en 3.2.

![Diagram van de indeling van het beun](image1)

Figuur 3.1. Bovenaanzicht met indeling van het beun.

![Diagram van de dwarsdoorsnede beun](image2)

Figuur 3.2. Dwarsdoorsnede beun “Volvox Terranova”.

Minimaliseren restlading “Volvox Terranova”
H3 Analyse van het leegzuigproces
Het zand wordt tegelijkertijd door twee leegzuigkanalen, via de leegzuigdeuren, uit het beun weggezogen. Een leegzuigdeur, --- bij --- meter, is precies onder de kalf gesitueerd aan de bovenzijde van het leegzuigkanaal. Door het openen van een leegzuigdeur wordt in twee aangrenzende beunsecties tegelijk afgezogen. Tijdens het leegzuigen stroomt door een enkel leegzuigkanaal met een oppervlakte van ca. --- m², een debiet van --- m³/s. De bodemdeuren zijn 6 bij 5 meter en bevinden zich gedeeltelijk onder het leegzuigkanaal. Bij verzanden van het leegzuigkanaal kan het gedeponeerde zand gemakkelijk afgevoerd worden door het openen van de bodemdeur. De leegzuigopening, die afgesloten wordt met de leegzuigdeur, bevindt zich aan de bovenzijde van het leegzuigkanaal, ca. --- meter boven de bodemdeur. Zie ook figuur 3.2.
3.1.2 Het jetsysteem

Huidig jetsysteem

Om het leegzuigproces te vergemakkelijken, wordt water onder hoge druk in het zand gespoten. Hierdoor worden de korrelspanningen in het zandpakket verlaagd, waardoor het zand gemakkelijker in de richting van de leegzuigdeuren "vloeit". Tevens wordt het water gebruikt om het zand te eroderen en zo in de richting van de leegzuigdeur te spoelen.

De "Volvox Terranova" heeft 4 jetsecties die afzonderlijk bediend kunnen worden, met voor en achterin het beun een op afstand bestuurbaar jetkanon, zie figuur 3.3 en 3.4. Drie van de vier jetsecties spuiten in twee beunsecties tegelijk. De jetpomp heeft een maximaal vermogen van ---- kW. Hierdoor kan maximaal met 2 jetsecties tegelijk gejet worden, of met één jetsectie en het jetkanon. Binnen een jetsectie zijn de waterjets niet afzonderlijk te bedienen.

![Diagram van jetsysteem](image)

Figuur 3.3. Bovenaanzicht met plaats van jetsecties en jetkanon.

De twee jetkanonnen (A en B) hebben elk een uitstroomdiameter van --- cm en zijn boven het beun gesitueerd. Ze zijn in het jaar 1999 in het schip ingebouwd om het zand tijdens het leegzuigen van het beun richting de leegzuigdeuren te spuiten. De effectiviteit van de jetkanonnen is het grootst als ze direct op het zand spuiten.

![Fotografie van jetkanon](image)

Figuur 3.4. Foto jetkanon op de “Volvox Terranova”.
De jets in een beunsectie zijn als volgt ingedeeld, zie ook figuur 3.5 en 3.6:

Jetpositie | A | 6 jets met een nozzle diameter van --- mm spuiten vanaf de top van de kippekooi.
| B | 4 jets met een nozzle diameter van --- mm spuiten in de richting van de leegzuigdeur.
| C | 16 jets met een nozzle diameter van --- mm spuiten in het laagste gedeelte van het beun.

De indeling en de spuitrichting van de jets is in onderstaande figuren aangegeven:

Figuur 3.5. Bovenaanzicht beunsectie met de plaats en de spuitrichting van de waterjets.

Doorsnede A
| hartijn schip |

Doorsnede B
| hartijn schip |

_Figuur 3.6-a. Lengtedoorsnede A, met de plaats en de spuitrichting van de waterjets.
Figuur 3.6-b. Dwarsdoorsnede B, met de plaats en de spuitrichting van de waterjets._

Gemiddeld is 1 jet aanwezig per 7 m² beunoppervlak.
Het jetsysteem direct na oplevering van het schip

Om de restlading van de “Volvox Terranova” te verminderen is in het jaar 1999 het jetsysteem ’op gevoel’ uitgebreid tot het huidige jetsysteem. Door deze uitbreiding is meer jetwater in een beunsectie beschikbaar. De uitbreiding bestond uit het aanbrengen van 14 extra jets met een diameter van —— mm per beunsectie in het lager gelegen gedeelte van het beun, positie C. Tevens werd de middelste jet op de kippekooi verlengd en gesplitst in twee nieuwe jets met een diameter van —— mm, zie figuur 3.7.

Door het bijplaatsen van de extra jets is de hoeveelheid restlading nauwelijks verminderd. Blijkbaar is de invloed van de jets te klein om het zand in de richting van de leegzuigdeuren te transporteren. Bovendien raken de nieuwe jets in het laagste gedeelte van het beun regelmatig verzand.
3.2 Leegzuigprocedure

3.2.1 Losvolgorde van de beunsecties

Onderstaand wordt een beschrijving gegeven van de losvolgorde van de beunsecties van de ”Volvox Terranova”, zoals deze werd toegepast op een landaanwinningss project te Singapore.

Bij het walpersen uit een hoperzuiger wordt eerst een bulkslag uitgevoerd. In deze bulkslag wordt ongeveer 75% van de lading gelost. In de ”Volvox Terranova” is na de bulkslag nog ongeveer 5000 m³ zand aanwezig, verdeeld over 7 beunsecties. In de praktijk betekent dit, dat de bovenkant van het zandpakket ongeveer op gelijke hoogte ligt met de bovenkant van de kippekooi.

![Diagram](image)

Figuur 3.8. Overzicht nummering jetsecties, leegzuigdeuren en beunsecties.

![Diagram](image)

Bulkslag

In de bulkslag wordt door twee leegzuigkanalen tegelijk afgezogen via deur 4, zie figuur 3.9. Hierdoor wordt het zand uit beunsectie 4 en 5 gelost. Tevens tracht men al het zand dat boven de kalven ligt in beunsectie 1, 2, en 3 door middel van een eroderende stroom naar deur 4 te spoelen.

Minimaliseren restlading ”Volvox Terranova”

H3 Analyse van het leegzuigproces
In eerste instantie werkt men met jetsectie 2 en 3. Door het jetten met jetsectie 2 wordt het zand in beunsectie 4 en 5 gefluidiseerd, zodat het leegzuig proces op gang kan komen. Door het jetten met jetsectie 2 wordt het afbressen van het zand boven beunsectie 2 en 3 in de richting van de naastliggende beunsectie (4) bevorderd. Hierdoor ontstaat dus een bres over de breedte van het beun.

Tevens ontstaat een bres in de lengterichting van het beun ter plaatse van de kippekooi. In deze 'geul' stroomt water uit de bovenste nozzle's op de kippekooi, die het in de 'geul' afbressende zand afvoert. De nozzle's op de kippekooi jetten met een redelijk hoog debiet, doordat de tegendruk van het zandpakket relatief klein is.

Als dit bresgedrag goed op gang is gekomen, wordt jetsectie 1 geopend en jetsectie 3 gesloten. In combinatie met het gebruik van het jetkanon wordt al het zand boven jetsectie 1, 2 en 3 in de richting van deur 4 afgevoerd. Hierbij geldt dat een zo hoog mogelijke bres een zo hoog mogelijke mengselconcentratie geeft aan de teen van de bres. Door de hoge mengselconcentratie is de erosie capaciteit minder, waardoor de transporthelling afneemt. Door de kleine transporthelling kan het mengsel over een grote lengte in de richting van deur 4 stromen, zie figuur 3.10. Het transport in deze richting wordt hierbij gaande gehouden door de jets op de kippekooi.

![Figuur 3.10. Schematische weergave bres en mengseltransport.](image)

In de bulk slag is het gunstig om alleen met deur 4 af te zuigen, in plaats van met deur 5 of 6. Doordat het schip naar achteren helt wordt het leegzuigproces sterk bevorderd.

In de bulk slag wordt enkel afgezogen door deur 4 en niet door deur 1, 2 of 3. Dit wordt onder andere veroorzaakt doordat leegzuigdeur 2 (beunsectie 2 en 3) gesloten moet blijven om in de opschoonslag beunsectie 1 te kunnen leegzuigen. Is beunsectie 2 namelijk al bijna leeggerezen, dan zal bij het openen van deur 1 in de opschoonslag alleen water uit beunsectie 2 worden aangezogen. Hierdoor is het zeer moeilijk om beunsectie 1 leeg te zuigen.

Opschoonslag
Voordat met de opschoonslag wordt begonnen, wordt leegzuigdeur 4 gesloten, zodat alle deuren weer gesloten zijn. Daarna wordt het leegzuigkanaal schoon gespoeld met water uit de zee-afsluiter.

De opschoonslag wordt begonnen in het vak dat het verst van de pomp afligt, namelijk beunsectie 1, zie figuur 3.9. De zuigcapaciteit is dan nog relatief het grootst, door de kleinere lekverliezen. Tevens zal het schip verder naar achter hellen, waardoor het afzuigen vergemakkelijkt wordt.
Volgorde opschoonslag:

- Openen leegzuigdeur 1, jetsectie 1 en het voorste jetkanon (B) actief.
- Openen leegzuigdeur 2, jetsectie 1 + 2 actief.
- Openen leegzuigdeur 3, jetsectie 2 + 3 actief.
- Openen leegzuigdeur 4, jetsectie 3 en het achterste jetkanon (A) actief.
- Openen leegzuigdeur 5, jetsectie 3 + 4 actief.
- Openen leegzuigdeur 6, jetsectie 4 en het achterste jetkanon (A) actief.

Vervolgens worden de deuren in tegengestelde volgorde weer gesloten, eerst deur 6, daarna deur 5 tot en met deur 1.

Concentratie verloop
In onderstaande figuur is de leegzuigprocedure nogmaals aangegeven in combinatie met de afgezogen mengseldichtheden. De periode waarover de betreffende leegzuigdeur geopend is in kleur weergegeven.

Figuur 3.11. Overzicht afgezogen concentraties trip 759.

Het leegzuigen van het beun duurt ongeveer 5 kwartier. Ongeveer de helft van de tijd is nodig voor de bulkslag en de andere helft van de tijd wordt gebruikt voor de opschoonslag.

Uit de figuur blijkt dat er in de bulkslag een mengsel wordt afgezogen met een dichtheid van 1.6 – 1.9 ton/m³. In de opschoonslag zijn de dichtheden iets minder en variëren sterker, maar zijn nog steeds aan de (goede) hoge kant. Het leegzuigproces is, op de restlading problematiek na, goed onder controle. Dit blijkt uit het feit dat er geen extreme (lage) dichtheden voorkomen tijdens het walpersen.
3.2.2 Fenomenologische beschrijving

Om inzicht te krijgen in de werking van het leegzuig systeem zal een fenomenologische beschrijving gegeven worden van de processen in het beun, met name in de opsoo nooslag. Door deze analyse wordt meer inzicht verkregen in de verschijningsvorm van de restlading.

Doordat slechts van boven op het beun gekeken kan worden, is het onmogelijk waar te nemen welke processen plaatsvinden ter plaatse van de leegzuigdeuren. Het enige dat je waarnemt is dat het zandpakket plaatselijk wegzakt en dat via de ontstane scheuren water omhoog komt. Bij het gebruik van het jetkanon (bovenwater) ontstaat zo'n complexe kolkende watermassa, dat het zeer moeilijk is om nog aparte processen waar te nemen.

Om toch inzicht hierin te krijgen, is een denkmodel opgezet van de processen die zich afspe len in het beun. Dit model is mede gebaseerd op waarnemingen tijdens de proeven serie en een excursie naar de hopperzuiger “Volvox Atalanta”.

Het leegzuigproces is opgedeeld in 4 fasen. Deze fasen worden gekenmerkt door de specifieke processen die binnen deze fase dominant zijn.

De fasen die worden onderscheiden zijn, zie ook figuur 3.12:

- 0. Vol beun.
- 1. Jetten in zandpakket, waarbij er niet wordt afgezogen.
- 2. Beginfase afzuigen, afzuigen zandwater mengsel met een redelijk constante (hoge) concentratie.
- 3. Overgangsfase, afzuigen zandwater mengsel met een dalende concentratie.
- 4. Eindfase, afzuigen zandwater mengsel tot evenwichtssituatie of einde leegzuigen van het beun.

![Diagram](image)

Minimaliseren restlading "Volvox Terranova"
H3 Analyse van het leegzuigproces
Beschrijving van de fases

ad fase 1 Jetten in zandpakket, waarbij niet wordt afgezogen
Door het aanzetten van de jets zal er een druk opgebouwd worden vóór de jet. Door het
druk verschil zal het water gaan stromen naar een plaats met een lagere druk. Hierdoor
ontstaat een opwaartse waterstroom. Het jetdebiet en de waterdruk zorgen ervoor dat
de korrelspanningen verminderen.

Bij een voldoende hoge jetdruk ontstaat een drukgradiënt in de richting van het
zandoppervlak, waardoor het zandpakket opgetild wordt en lokaal bezwijkt. Hierdoor
ontstaat een kortsluiting van de jet in de richting van het zandoppervlak en verminderd
de tegendruk van de jet, zodat het jetdebiet toeneemt. In de praktijk zie je scheuren in
het zandoppervlak ontstaan, waardoor jetwater naar boven komt.

Door het toenemen van het jetdebiet, en daardoor van de uitstroomsnelheid, zullen er
voor de jet erosieprocessen plaatsvinden. Ter plaatse van de scheur zullen de korrels in
suspensie komen door het langsstromende water. Als de korrelspanningen weg zijn en
het zandpakket de kritieke dichtheid heeft bereikt, is het zandpakket geëffusieerd,
waardoor het zich gedraagt als een ‘zware’ vloeistof. In eerste instantie zal zich voor de
jet en bovenin het zandpakket een geëffusieerde zone ontwikkelen. Vervolgens zal dit
proces zich uitbreiden tot een geëffusieerde kolom boven de jet. De ontwikkeling tot een
volledig geëffusieerde zandkolom kost zoveel tijd, dat voordat dit zich heeft kunnen
instellen, er al een zandwater mengsel afgezogen wordt.

In hoofdstuk 4 zal het fluidisatieproces en het opstarten van een jet nader beschreven
worden.

ad fase 2 Beginfase afzuigen, afzuigen zandwater mengsel met een redelijk
constante concentratie
Door het openen van de leegzuigdeur wordt een volume zandwater mengsel voor de
opening afgezogen. Door het afzuigen van dit mengsel valt de steundruk onder het
bovenliggende zand weg, waardoor het in de ruimte van deze holte zal vallen/glijden.
Hierdoor zakt het zandpakket lokaal in. De wanden van de zo ontstane kuil zijn instabiel
en zullen afbressen of in z’n geheel afschuiven. Bij een lagere korrelspanning en een
groot uitstredend verhang zal de bresproductie toenemen.

Doordat er ten gevolge van de zwaartekracht zeer veel en gemakkelijk zand kan worden
aangevoerd, zal de concentratie van het mengsel ook hoog zijn. Het schuift als het ware
als een dikke pudding in het leegzuigkanaal.
ad fase 3
Overgangsfase, afzuigen zandwater mengsel met een dalende concentratie

Op een gegeven moment zal de concentratie van het afgezogen mengsel lager worden. Het zandpakket is niet onmiddellijk afgebroed of afgeschoven. Dit proces heeft enige tijd nodig voordat het gehele talud in de omgeving van de afzuigklep de evenwichtshelling heeft bereikt. Ondertussen zal er meer bovenwater of jetwater afgezogen worden en zorgt dit voor een lagere concentratie. Door de geringere tendens voor de jets zal het debiet van de jets ook toenemen.

ad fase 4
Eindfase, afzuigen zandwater mengsel tot evenwichtsituatie of einde leegzuigen beun.

Nadat het afschuiven/afbressen van het zandpakket is gestopt, zal het resterende zand door de opgewekte stromingen afgevoerd dienen te worden. Het wateriveau in het beun zal dalen, doordat de waterjets in een beunsectie een kleiner debiet inbrengen dan het debiet dat door de grondpomp wordt afgezogen.

Door de geringere zandaanvoer zal de concentratie afnemen en de invloedsafstand van de jet toenemen. Hierdoor kan door (hoge) snelheidserosie de restlading nog verder verkleind worden.

Stoppen afzuigproces

Er mag geen lucht in de pompen komen. Dit betekent dat het afzuigen gestopt zal worden als het wateriveau in het beun te laag wordt. Dit moment kan worden uitgesteld door extra water in het beun te brengen en hierdoor het proces nog enige tijd door te kunnen laten gaan, om de restlading verder te minimaliseren.

In de praktijk wordt in de regel bij een concentratie van 1.2 ton/m³ gestopt met afzuigen of wordt overgestapt naar een volgende beunsectie.
3.3 Analyse van de restlading

3.3.1 Vorm en hoeveelheid restlading

In het beun ligt na het afzuigen nog ongeveer --- m³ zand. Per beunsectie verschilt de hoeveelheid restlading aanzienlijk. In de eerste en laatste beunsectie ligt meer restlading dan in de overige beunsecties. Dit wordt verklaard door de afwijkende vorm en afmetingen van deze secties. In de middelste secties ligt ca. --- tot --- m³ zand.

Figuur 3.13. Foto's van restlading "Volvox Terranova".

In bovenstaande figuur is de restlading in twee verschillende beunsecties gefotografeerd, stuurboord 2 en 5. Het beeld van de restlading, zoals gefotografeerd in beide secties, komt in grote lijnen overeen met het beeld van de restlading van de overige beunsecties, zie ook bijlage N (foto's restlading).

Plaats en vorm restlading

Op de linker foto, figuur 3.13, is te zien dat het zandniveau niet lager is dan de hoogte van de afzuigopening. Tevens is op deze foto te zien dat zand in de hoek van de hopperwand – kalf en in het midden ter plaatse van de hydraulische cilinder, die de bodemdeur bedient, ligt.

Op de foto rechts ligt in het midden van de beunsectie een grote rug met zand. Het zandniveau ter plaatse van de leegzuigdeuren is niet goed vast te stellen doordat daar nog zandwater mengsel aanwezig is. Het lijkt erop dat ook hier het zandniveau niet lager is dan de hoogte van de afzuigopening.

Op beide foto's is te zien dat de jetleidingen richting de jets in de buurt van de hopperwand in het zandpakket steken. Hierdoor zullen deze jets niet bijdragen aan het wegspoelen van het zand in de laatste fase van het leegzuigproces. Opvallend is dat de jets aan de 'vork' bij de foto rechts begraven zijn en bij de foto links niet. Hierdoor dragen deze jets ook niet bij aan het leegspoelen van de beunsectie. Dit beeld is in meerdere beunsecties waargenomen. Het zand boven deze jets wordt niet goed gefluidiseerd, doordat de jets wellicht verzand zijn. Hierdoor brest het zandpakket te langzaam af richting de leegzuigopening, waardoor de afzuigconcentratie laag is en naar een volgende beunsectie wordt overgestapt.
In onderstaande schets is de vorm en hoeveelheid restlading, o.a. afgeleid uit de foto's, gegeven.

3.3.2 Invloedsfactoren op de hoeveelheid restlading

Doordat de constructievorm van het schip bekend is, kan een indruk verkregen worden van de factoren die invloed hebben op de hoeveelheid restlading. De hoeveelheid restlading wordt bepaald door de processen in een enkele beunsectie en door de interactie tussen verschillende beunsecties. De effectiviteit van het leegzuigproces in een beunsectie wordt bepaald door de inrichting van een beunsectie, zoals de plaats van de leegzuigopening en het functioneren van het jetsysteem.

De effectiviteit van het leegzuigproces wordt ook beïnvloed door interactie tussen verschillende beunsecties. Als in de ene beunsectie wordt afgezogen is het niet de bedoeling dat in een eerder afgezogen sectie zand wordt gemorst.

De hoeveelheid restlading wordt beïnvloed door:

a. De hoogte van de leegzuigdeur ten opzichte van het laagste punt in het beun.
b. Functioneren van het jetsysteem (o.a. het aantal jets dat verzand is).
c. De plaats van de leegzuigdeur precies onder de kalven.
d. Mors via gaten in de kalven of over de kalven.
e. Twee leegzuigkanalen tegelijk afzuigen.
f. Het tijdstip van overstappen naar de volgende beunsectie.
Onderstaand worden de genoemde punten toegelicht:

Hoogte van de leegzuigdeur en het functioneren van het jetsysteem

Het moment van stoppen van het leegzuigproces, doordat de afgezogen concentratie onrendabel laag is geworden, bepaalt de hoeveelheid restlading. In de regel zal het zand gemakkelijk in de richting van de afzuigopening schuiven/glijden, als de hoek van afschuiving groter is dan de natuurlijke afschuifhoek van het zand. Deze natuurlijke afschuifhoek is voor zand dat niet gefluidiseerd is, in de ordegrootte van 30° à 40°. Door volledige fluidisatie kan deze hoek afnemen tot enkele graden.

\[
\alpha = \varphi - \arcsin \left(\frac{-l \sin \varphi}{\Delta (1 - n_0)} \right)
\]

Voor zand kan deze formule vereenvoudigd worden tot:

\[
\frac{\sin \alpha}{\cos \alpha - l} < \tan \varphi
\]

Voor een stabiel talud. \hspace{1cm} 3.2

Met een hoek van inwendige wrijving [\(\varphi = 30^\circ\)] van het zand volgt:

<table>
<thead>
<tr>
<th>evenwichtshelling talud</th>
</tr>
</thead>
<tbody>
<tr>
<td>evenwichtshoek talud [°]</td>
</tr>
<tr>
<td>uittredend water verhang [l/l]</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

Duidelijk is te zien dat de evenwichtshelling bijna rechtlijnig afneemt met de grote van het uittredend verhang.

Nadat de evenwichtshelling is bereikt, moet het zand weggespoeld worden met behulp van de waterjets. Deze dienen dat op een zo efficiënt mogelijke manier te doen. Het wegspoelen van zand verlaagt de mengselconcentratie aanzienlijk. Er is relatief veel water nodig om een kleine hoeveelheid zand weg te spoelen.

Hieruit kan geconcludeerd worden dat de afzuigopening in het zandpakket zo laag mogelijk en in het midden van het beun dient te zijn. Dit minimaliseert namelijk de hoeveelheid weg te spoelen zand. Door volledige fluidisatie van het zand in deze regio, zal de hoeveelheid nog weg te spoelen zand nagenoeg nihil zijn. Hiervoor dienen de jets dan zo laag mogelijk in het beun aanwezig te zijn. Is deze fluidisatie niet goed mogelijk, dan moeten de jets zo geplaatst worden dat ze zo efficiënt mogelijk het zand wegspoelen.

Bij een goede inrichting van het jetsysteem wordt het zand in het beun homogeen gefluidiseerd en het laatste zand in een beunsectie zo effectief mogelijk weggespoeld.
Plaats van de leegzuigdeur en de gaten in de kalven

Een leegzuigdeur zorgt in twee beunsecties af. Uit welke beunsectie daadwerkelijk wordt afgezogen hangt sterk af van de condities van het zandpakket. Het mengsel dat het makkelijkst in het leegzuigkanaal komt, zal meestal het eerst worden afgezogen. Tevens blijkt uit de praktijk dat vooral aan de pompzijde van de leegzuigdeur wordt afgezogen en dat de zuigkracht aan de andere zijde minder is.

Dit blijkt ook uit de wijze van afzuigen van beunsectie 1 in de opschoonslag. De leegzuigdeur wordt geopend, maar slechts jetsectie 1 is actief, terwijl de halve leegzuigdeur zich ook in beunsectie 2 bevindt. Dit betekent dat het zandpakket in beunsectie 2 met rust wordt gelaten terwijl het zandpakket in beunsectie 1 fluidiseert. Hierdoor wordt vooral mengsel uit beunsectie 1 afgezogen.

Daarom is het niet mogelijk om geconcentreerd uit een enkele beunsectie af te zuigen. Dit wordt nog versterkt doordat de jetsecties in twee beunsecties tegelijk spuiten.

Tevens kan er tijdens het afzuigen mors optreden via de grote leegzuigdeuren, --- m², en de gaten in de kalven naar de voorgaand afgezogen beunsectie, zie onderstaande principe schets:

Afzuigen door twee leegzuigkanalen tegelijk

Uit de foto’s blijkt dat in een enkele beunsectie aan twee zijden niet hetzelfde patroon van de restlading ligt. Het is alsof uit de ene helft, dus door het ene leegzuigkanaal, beter wordt afgezogen dan door het andere.

Dit kan worden verklaard doordat het leegzuigen door twee leegzuigkanalen een instabiliteit systeem is. Bij een gedeeltelijke verandering van het ene kanaal wordt de verdeling van het debiet verstoord. Het zandwater mengsel kiest de weg van de minste weerstand en zal door het ‘open’ leegzuigkanaal stromen. Hierdoor vermindert het debiet in het andere leegzuigkanaal en daarmee de stroomsnelheid, waardoor het verzanden toeneemt. Dit proces is te vergelijken met het verzanden van een rivier met een splitsing naar 2 riviertakken. Bij een kleine verstoring van het systeem zal één tak van de rivier dichtsliben.

In de praktijk wordt getracht het verzanden van het leegzuigkanaal te voorkomen door actief de stand van de afsluiter richting de grondpomp te variëren, zodat de weerstand in de leegzuigkanalen hetzelfde blijft en er geen verschil optreedt in het afzuigdebiet.
3.3.3 Voorstel tot vermindering van de hoeveelheid restlading

Om de hoeveelheid restlading te verminderen zal een nieuwe leegzuigdeur in elke beunsectie moeten worden geplaatst. De gaten in de kalven zullen gedicht moeten worden om mors naar belendende beunsecties te voorkomen. Hierdoor is het mogelijk om het afzuigen in de opschoonslag per beunsectie te concentreren. Hiervoor zullen ook de jetsecties verkleind moeten worden, zodat het mogelijk wordt om specifiek per beunsectie te jetten.

Door de nieuwe deur zal het afzuigdebit tot één sectie worden beperkt en dus verdubbelen. Het jetsysteem zal hierop aangepast dienen te worden om optimaal te kunnen functioneren bij de nieuwe leegzuigdeur.

Nieuwe leegzuigdeur
De nieuwe leegzuigdeur is ontworpen door de Technische Dienst [TD] van Van Oord ACZ. Het functioneren van de ontworpen nieuwe leegzuigdeur is in een schaalmodel getest. De grootte van de leegzuigdeur is in principe ontworpen voor de opschoonslag. De oppervlakte van de leegzuigdeur is ongeveer gelijk aan de oppervlakte van het leegzuigkanaal (--- m²).

Nieuwe leegzuigdeur --- m² p/st.
Huidige leegzuigdeur --- m² p/st.

Door de gekozen afmetingen van de nieuwe leegzuigdeur zullen de instroomsnelheden in het leegzuigkanaal ongeveer gelijk zijn aan de snelheden in het leegzuigkanaal. Hoogstwaarschijnlijk zal door het variëren van de afmeting nog een betere productie bereikt kunnen worden. In de proevenserie is deze optimalisatieslag niet gemaakt.

Boven de nieuwe leegzuigdeur is een luifel ontworpen. Deze luifel dient om het leegzuigen van bovenaf te voorkomen en om het zuigoppervlak verder te verlagen tot op de bodemdeur. In de proevenserie zijn proeven met en proeven zonder luifel uitgevoerd.

Figuur 3.16. Dwarsdoorsnede nieuwe leegzuigdeur met luifel.
De volgende afweging dient gemaakt te worden bij de bepaling van de afmetingen van de leegzuigdeur:

Relatief te kleine leegzuigopening
- Kans op verstopping in het beun buiten de leegzuigdeur
- Onvolledige benutting van de leegzuigcapaciteit van het leegzuigkanaal.

De kans op verstopping buiten de leegzuigdeur kan verkleind worden, door in de directe omgeving van de deur een jet te plaatsen die brugvorming om de leegzuigdeur voorkomt. De leegzuigcapaciteit wordt niet ten volle benut, doordat er bij de leegzuigdeur te sterk geknepen wordt in het systeem en daardoor eerder het vacuüm als limiet wordt bereikt.

Relatief te grote leegzuigdeur
- Kans op verzanding van het leegzuigkanaal
- Niet uniform verdeelde aanzuigkracht en een lagere aanzuigkracht in het beun

Bij een te grote leegzuigdeur zal het leegzuigkanaal door bijvoorbeeld bresgedrag vollopen en stoppen.

De optimale deurafmetingen voor de grootste productie zal ook van de zandsoort afhankelijk zijn. Hierdoor zal er altijd naar een compromis gezocht moeten worden. In principe zal getracht moeten worden om de stroomsnelheden in de doorstroomopening gelijk te houden aan de stroomsnelheden in het leegzuigkanaal om zo min mogelijk stromingsverliezen te creëren.

Aanpassing jetsysteem

Ten behoeve van de aanpassing van het jetsysteem aan de situatie met een nieuwe leegzuigdeur, worden in dit rapport de volgende analyses uitgevoerd:

- Bepalen van de huidige eigenschappen van het jetsysteem, H 4.1.
- Bepalen van de functies van een jet in het leegzuig systeem, H 4.2.
- Creëren van inzicht in de processen in het beun, met name het fluidisatieproces, H 4.3.
- Bepalen van de benodigde jetdruk om een jet te laten spuiten in de eerste fase van het leegzuigproces, H 4.4.
- Effect van zand in een jet, Bijlage P.

Met behulp van deze analyses zal het huidig jetsysteem beoordeeld worden en een voorstel tot aanpassing worden gedaan.
H4 Het jetsysteem

Om het jetsysteem aan de situatie met een nieuwe leegzuigdeur aan te passen, wordt eerst de werking van het huidige jetsysteem geanalyseerd, zodat een indruk wordt verkregen van het jetdebiet en de jetdruk per jet in een beunsectie. Met behulp van deze analyse is het mogelijk om de invloed van een nozzle diameter wijziging door te rekenen. In hoofdstuk 4.2 worden de functies van een jet op verschillende posities in een beun geïnventariseerd.

Om inzicht te krijgen in het benodigde jetdebiet en de benodigde jetdruk in een beunsectie worden in hoofdstuk 4.3 de processen in het beun nader beschouwd. Hierbij zal aandacht besteed worden aan de invloedsafstand van een jet spuitend in water en het fluidisatieproces. Het proces bij het opstarten van een jet wordt behandeld in hoofdstuk 4.4. De invloed en de oorzaak van het verzanden van een jet is te vinden in bijlage P.

4.1 Eigenschappen van het jetsysteem

Om inzicht te krijgen in de verdeling van het jetwater in het beun is een jetsectie geanalyseerd. De jetsectie is geschematiseerd om, via een spreadsheets programma, het werk punt van de jetpomp te berekenen. Met het spreadsheets programma is het tevens mogelijk om de invloed van bijvoorbeeld een nozzle diameter wijziging te analyseren.

4.1.1 Verliescoëfficiënten van een nozzle ten gevolge van de nozzlevorm

In principe is een nozzle een vernauwde uitstroomopening, waarvan de vorm erg belangrijk is. Onderstaand zullen drie verschillende nozzle vormen worden toegelicht. De drie vormen die onderscheiden worden, zijn afgeleid uit Nortier (1993) en Battjes (1996):

1. in de jetleiding
2. in de nozzle
3. buiten de nozzle

<table>
<thead>
<tr>
<th>#</th>
<th>noizzle met een scherpe rand</th>
</tr>
</thead>
<tbody>
<tr>
<td># 2</td>
<td>noizzle met verlengde uitstroomopening</td>
</tr>
<tr>
<td># 3</td>
<td>noizzle met een afgeronde instroomopening</td>
</tr>
</tbody>
</table>

Figuur 4.1. Principe schets van de nozzle vorm.
Als er een scherpe rand in de uitstroomopening van de nozzle zit, kan de stroming de rand niet volgen en treedt er losslating op. Dit is het geval bij nozzle #1 in figuur 4.1. Hierdoor zal de straal insnoeren en zal de effectieve diameter van de straal verkleinen. De verhouding tussen het ingesnoerde oppervlak en het oppervlak van de uitstroomopening wordt uitgedrukt in de contractie coëfficiënt (C_c).

In nozzle #2 treedt deze contractie in de nozzle op, waardoor de stroom in de nozzle versneld om vervolgens te vertragen. Hierdoor wordt energie gedissipeerd. Deze energieafname wordt uitgedrukt in een verliescoëfficiënt (C_v), die afhankelijk is van de interne contractie in de nozzle, zie ook bijlage O.

De uitstroomsnelheid en debiet uit een nozzle worden als volgt uitgedrukt:

$$Q_n = A_n \cdot C_v \cdot C_c \cdot \frac{2 \cdot (p_1 - p_s)}{\rho_w}$$
$$U_n = U_s = C_v \cdot \sqrt{\frac{2 \cdot (p_1 - p_s)}{\rho_w}}$$

waarin:

- C_c contractiecoëfficiënt
- C_v verliescoëfficiënt

Een ordegrootte van de coëfficiënten is gegeven in onderstaande tabel (Battjes 1996).

<table>
<thead>
<tr>
<th>Nozzle vorm 1</th>
<th>Nozzle vorm 2</th>
<th>Nozzle vorm 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_c = 0.60$</td>
<td>$C_c = 1.00$</td>
<td>$C_c = 1.00$</td>
</tr>
<tr>
<td>$C_v = 0.98$</td>
<td>$C_v = 0.83$</td>
<td>$C_v = 0.98$</td>
</tr>
</tbody>
</table>

Een goede nozzle heeft een zo klein mogelijke verliescoëfficiënt C_v. De waarde van C_c is van ondergeschikt belang. Deze coëfficiënt geeft de contractie buiten de nozzle weer. Door te variëren met de nozzle diameter kan de invloed van deze coëfficiënt op het jetdebiet verdisconteerd worden. Hieruit volgt dat nozzle #1 en #3 beide goed zijn. Nozzle #1 zal wel sterker slijten door de scherpe rand.
4.1.2 Schematisatie van het jetsysteem

Om inzicht te krijgen in de invloed van het aantal jets en de nozzle diameter is een halve jetsectie met 26 jets spuitend in 1 beunsectie van de “Volvox Terranova” geschematiseerd. De geschematiseerde halve jetsectie is in een spreadsheet programma doorgerekend. Momenteel wordt in de praktijk gewerkt met jetsecties die groter zijn en in twee beunsecties tegelijk spuiten (52 jets). Bij het overstappen van de ene naar de andere jetsecties wordt er kortstondig met 2 grote jetsecties tegelijk gejet (104 jets).

Schema leidingen en nozzle's

![Schema leidingen en nozzle's](image)

Figuur 4.2. Schematisatie van een halve jetsectie met 26 jets spuitend in 1 beunsectie.

In bovenstaande figuur is een beunsectie met de inrichting van het jetsysteem weergegeven. Het jetwater wordt via een “ringleiding” op de kippekooi en de kalven naar de jets gevoerd. In de kippekooi ligt de hoofdanaoefleiding, waarop de verschillende jetsecties zijn aangesloten.

Het hoogteverschil tussen de jets op de “ringleiding” (jetpositie A) en de jets ter plaatse van de bodemdure (jetpositie C) is ongeveer 3,75 meter.
4.1.3 Beschrijving van het spreadsheet programma

De 26 jets van een halve jetsectie zijn in een spreadsheet programma ingevoerd. Bij het uitstromen uit de nozzle wordt de wet van Bernoulli toegepast. De nozzle eigenschappen kunnen worden ingevoerd met een contractie- en een verliescoëfficiënt, zie formule 4.1 en 4.2. In elk splitsingspunt van de leidingen is het instromende debiet gelijk aan de som van het uitstromend debiet per aftakking. De jetdruk in een knooppunt is gelijk aan de jetdruk in de leiding met het instromende debiet. Per knooppunt zijn echter wel energieverliezen in rekening gebracht ten gevolge van turbulentie in de splitsingspunten, zie ook bijlage Q.

\[Q_{in} = Q_{ut1} + Q_{ut2} \]
\[P_{in} > P_{ut1} > P_{ut2} \] ten gevolge van aftakkingsverliezen
\[A_{in} = A_{ut1} > A_{ut2} \]

Figuur 4.3. Schets knooppunt in jetleiding met een aftakking.

De volgende energieverliezen zijn in rekening gebracht:

- Wrijving - en bochtverliezen in de leidingen
- Energie verliezen ter plaatse van aftakkings
- Energie verliezen bij de nozzle

Tabel 4.2 en 4.3 geven respectievelijk een overzicht van de aangehouden wrijvings- en bochtverliezen en de aftakkingsverliezen in vermenigvuldigingscoëfficiënten \(\xi \) van de snelheidshoogte \(\sqrt{\nu_{in}} / (2 \cdot g) \) (volgens respectievelijk Nortier, 1993 en Idel'cek, 1960).

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>Verlies coëfficiënt (\xi) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>wandwrijving</td>
<td>(0.01 \cdot L / D = \Lambda \cdot L / D)</td>
</tr>
<tr>
<td>bochtstuk 90° en 70°</td>
<td>0.09</td>
</tr>
<tr>
<td>bochtstuk 45°</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Tabel 4.2. Verliescoëfficiënt per onderdeel.

<table>
<thead>
<tr>
<th>(A_{ut2} / A_{in})</th>
<th>(Q_{ut2} / Q_{in})</th>
<th>(Q_{ut2} / Q_{in})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.80 4.50 6.00 7.88 9.40 11.1 13.0 15.8 20.0 24.7</td>
<td>Verlies coëfficiënt (\xi) [-]</td>
</tr>
<tr>
<td>0.19</td>
<td>1.41 2.00 2.50 3.20 3.97 4.95 6.00 8.45 10.8 13.3</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>1.37 1.81 2.30 2.83 3.40 4.07 4.80 6.00 7.18 8.90</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>1.10 1.54 1.90 2.35 2.73 3.22 3.80 4.32 5.28 6.53</td>
<td></td>
</tr>
<tr>
<td>0.44</td>
<td>1.22 1.45 1.67 1.89 2.11 2.38 2.58 3.04 3.84 4.75</td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>1.09 1.20 1.40 1.59 1.65 1.77 1.94 2.20 2.68 3.30</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.90 1.00 1.13 1.20 1.40 1.50 1.60 1.80 2.06 2.30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A_{ut} / A_{in})</th>
<th>(Q_{ut} / Q_{in})</th>
<th>(Q_{ut} / Q_{in})</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle</td>
<td>0.70 0.64 0.60 0.57 0.55 0.51 0.49 0.55 0.62 0.70</td>
<td>Verlies coëfficiënt (\xi) [-]</td>
</tr>
</tbody>
</table>

Tabel 4.3. Aftakkingsverliescoëfficiënten.
De aftakkingsverliezen in het programma zijn afgelezen uit bovenstaande tabel, waarbij de verdeling van het debiet per knooppunt geschat is. Bij symmetrische splitsingen is een verliescoëfficiënt van 1.1 aangehouden (Idel'cek, 1960).

\[Q_{ul,2} \quad \Box \quad Q_{ul,1} \]

\[Q_i = Q_{ul,1} + Q_{ul,2} \text{ en } Q_{ul,1} = Q_{ul,2} \]

Figuur 4.4. Principeschets knooppunt bij splitsing van de jetleiding.

In de praktijk zijn de nozzle's conisch van vorm, zie onderstaande figuur:

Figuur 4.5. Schets van de nozzle gebruikt op de "Volvox Terranova"

Voor de berekening is een contractiecoëfficiënt van 1.0 aangehouden en een verliescoëfficiënt van 0.98.

In het programma kan de waterstand in het beun worden ingevoerd, zodat de omgevingsdruk in rekening wordt gebracht. In principe is er enkel gerekend met water in het beun en niet met zand in het beun. Door het invoeren van een hogere waterstand in het beun kan de invloed van de tegendruk van het zand grofweg worden bepaald.

In de berekening voor de jetpomp is uitgegaan van:

- De huidige pompkromme van de jetpomp. Bij de berekeningen wordt het werkpunt bepaald bij het hoge en het lage toerental.
- Gesteld wordt dat de waterstand buiten het schip hetzelfde niveau heeft als de jetleiding op de kippekoel. In werkelijkheid zal de waterstand iets hoger zijn, zodat de manometrische opvoerhoogte van de pomp hoger komt te liggen.
- Geen aanzuigverliezen voor de jetpomp.
- Verwaarlozing van debietverliezen ten gevolge van het schoonsoepelen van cilinders e.d.

In de berekening voor het leidingwerk is uitgegaan van:

- De hoofdaanvoerleiding is geschematiseerd tot een leiding met een lengte van 60 meter, een diameter van 1 meter en een bochtstuk van 90°.
- Het niet gebruiken van het jetkanon.
- Een evenredige verdeling van het jetdebiet bij gelijkwaardige splitsingen in het leidingwerk.
- De onderlinge uitstroomhoogte van een jet ten opzichte van de hoofdleiding.
4.1.4 Resultaten uit de berekeningen met het spreadsheet programma

Voor de huidige nozzle diameter verdeling in het beun is de berekening uitgevoerd met de in voorgaande paragraaf genoemde verliescoëfficiënten. Hierbij is aangenomen dat 26 jets (halve jetsectie) in één lege beunsectie spuiten, zie figuur 3.8.

\[Q - H \text{ Terranova} \]

\[\text{druk [mwk]} \]

\[\text{pompkromme:} \]
\[\text{hoog toerental} \]
\[\text{laag toerental} \]

\[\text{debiet m}^3/\text{s} \]

\[\text{Figuur 4.6. Resultaat berekening voor een} \ 1/2 \ \text{jetsectie met} \ 26 \ \text{jets en de huidige nozzle diameter verdeling.} \]

Uit de grafiek blijkt dat het werk punt van de jetpomp bij het lage toerental ligt bij een jetdruk ca. --- mwk. Hierbij is het totale jetdebit door de 26 jets ca. --- m\(^3\)/s. De uitstroomsnelheid uit de nozzle’s bij het lage toerental van de jetpomp varieert van --- m/s voor de nozzle’s in de buurt van het instroompunt tot --- m/s voor de nozzle’s die het verst van het instroompunt afliggen. Dit betekent dat het jetdebit per jet met name wordt bepaald door de diameter van de nozzle. De jetdruk achter de jets is ca. --- tot --- mwk ten gevolge van de energieverliezen. Door het hoogteverschil van de jets in het beun is een jetdruk verschil achter de jets aanwezig van ca. --- mwk. Na het verhogen van de ‘waterstand’ in het beun tot 30 meter (ca. 15 meter zand) is het jetdebit nog ca. --- m\(^3\)/s.
Invloed van de weerstand in de jetleidingen:
De leidingen zullen in de loop van de tijd ruwer worden ten gevolge van 'pokken' aangroeit. Hierdoor neemt de weerstand in het systeem toe. Uitgegaan is van redelijk gladde wanden. Bij ruwe wanden neemt de coefficient λ toe tot ca. 0,1. Om de invloed van de weerstand in de leidingen te onderzoeken is een berekening uitgevoerd met een wandwrijvingscoëfficiënt $[\lambda]$ van 0,1 in plaats van 0,01.

\[
\begin{align*}
Q &- H \text{ Terranova} \\
\lambda & = 0,1 \quad \lambda = 0,01
\end{align*}
\]

\(\text{druk [mwek]} \quad \text{pompkromme: hoog toerental} \quad \text{laag toerental} \)

\(\text{debiet m3/s} \quad \text{debiet m3/s} \)

Figuur 4.7. Vergelijk van de resultaten van het spreadsheet programma voor verschillende leidingweerstanden (26 jets).

Uit de figuur blijkt duidelijk dat de invloed van de weerstand in de jetleidingen beperkt is. Het jetdebiet neemt iets af tot ca. --- m3/s.

Calibratie resultaten
Om de resultaten uit de berekening te calibreren zijn de resultaten vergeleken met twee weerstandskrommen van IHC (leverancier “Volvox Terranova”). De weerstandskrommen van IHC zijn berekend voor 26 jets met elk een nozzle diameter van 60 en 72 mm.

\[
\begin{align*}
Q &- H \text{ Terranova} \\
\text{60 mm} & \quad \text{72 mm} & \quad \text{nozzle diameter} \quad \text{debiet m3/s}
\end{align*}
\]

\(\text{druk [mwek]} \quad \text{pompkromme: hoog toerental} \quad \text{laag toerental} \quad \text{----- Berekening spreadsheet (A)} \quad \text{----- IHC (B)} \quad \text{debiet m3/s} \quad \text{debiet m3/s} \)

Figuur 4.8. Vergelijk van de resultaten van het spreadsheet programma met de gegevens van IHC (26 jets).

Uit de figuur blijkt dat de resultaten redelijk overeenkomen. Bij de jets met een nozzle diameter van 60 mm is het verschil in berekend jetdebiet tussen het spreadsheet programma en de berekening van IHC ongeveer 0.08 m3/s (3.5%). Bij de jets met een nozzle diameter van 72 mm is het verschil nog kleiner. Hieruit wordt geconcludeerd dat het verschil in debiet bij kleinere nozzle diameter toeneemt.
Om dit verschil te compenseren kan bijvoorbeeld gemanipuleerd worden met de verlies- en contractiecoëfficiënt in het spreadsheetprogramma. Een kleinere contractiecoëfficiënt heeft enkel invloed op het jetdebiet en niet op de uitstroomsnelheid. Een kleinere verliescoëfficiënt heeft invloed op de uitstroomsnelheid en het jetdebiet, zie ook formule 4.1 en 4.2.

De resultaten van het spreadsheet programma en de berekening van IHC komen goed overeen als de aftakkingsverliezen worden genegeerd, als voor de verliescoëfficiënt een waarde van 0,9 wordt aangehouden en als voor de contractiecoëfficiënt een waarde van 0,95 wordt aangehouden, zie figuur 4.9. Met deze waarden van de verlies- en contractiecoëfficiënt wordt dus ook het genegeerde energieverlies in de aftakkingen verrekkend. Bij nieuwe berekeningen zullen de gewijzigde verlies- en contractiecoëfficiënt worden aangehouden.

\[Q - H\text{ Terranova} \]

<table>
<thead>
<tr>
<th>60 mm</th>
<th>72 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>pompkromme: hoge toerental</td>
<td></td>
</tr>
<tr>
<td>lage toerental</td>
<td></td>
</tr>
<tr>
<td>debrug (m³/s)</td>
<td></td>
</tr>
</tbody>
</table>

Aftakkingsverliezen genegeerd, verliescoëfficiënt nozzle 0,90, contractiecoëfficiënt nozzle 0,95

Figuur 4.9. Vergelijking van de resultaten van het gekalibreerde spreadsheet programma met de gegevens van IHC (26 jets).

Berekende weerstandskrommen met het spreadsheet programma

Momenteel spuit een jetsectie in twee buunsecties. In de spreadsheet berekening is bij het jetten in meerdere buunsecties het jetdebiet evenredig vergroot en is alleen de extra weerstand in de hoofdaanvoerleiding in rekening gebracht. De huidige nozzle diameter verdeling in het buin is doorgerekend met één jetsectie in gebruik (52 jets) en met 2 jetsecties in gebruik (104 jets). Tevens zijn berekeningen uitgevoerd waarbij de nozzle diameter is gewijzigd. De berekening is uitgevoerd voor een jetsectie met nozzle diameters van 45, 60 en 72 mm.

De resultaten van de berekening zijn weergegeven in grafiek 4.10. In de grafiek is ook het te leveren jetvermogen uitgezet.
Figuur 4.10. Resultaten berekening met een gekalibreerd spreadsheet programma.
4.1.5 Conclusies uit de berekeningen met het spreadsheet programma

Uit de berekeningen volgt:

a. De druk voor de jets is nagenoeg gelijk (drukverschil van maximaal ca. --- mwk ten gevolge van de energieverliezen en --- mwk ten gevolge van het hoogteverschil van de jets). Hierbij is uitgegaan van de huidige nozzle diameter verdeling spuitend in één lege beunsectie.

b. De uitstroom snelheid uit de jets is hierdoor bijna overal gelijk, ordegrootte --- m/s en --- m/s bij respectievelijk het lage en het hoge toerental en een atmosferische tegendruk.

c. De energieverliezen in het jetsysteem ten gevolge van wrijving en aftakkingsverliezen is ongeveer --- mwk zijn (--- --- mwk), zie figuur 4.6.

d. Het verhogen van de wrijving in de jetleidingen heeft weinig invloed op het totale jetdebit in een beunsectie, zie figuur 4.7.

e. Bij het vergroten van de nozzle diameter zal het debiet toenemen en de uitstroom snelheid iets afnemen. Dit wordt veroorzaakt door een toename van de energieverliezen en een daling van de pompkromme bij grotere debieten.

f. Er is voldoende pompcapaciteit aanwezig om met 52 jets tegelijkertijd te werken (1 jetsectie) in het hoge en het lage toerental. Tevens is er voldoende pompcapaciteit (--- kW) aanwezig om in het Lage toerental met 104 jets (2 jetsecties) te werken.

g. De verschillen tussen het jetten met 26, 52 of 104 jets tegelijk zijn klein wat betreft het uitstroomdebit en jetdruk per jet. Dit komt door de redelijk vlakke pompkromme.

h. In het huidige ontwerp zitten de jets met een kleine nozzle diameter onder in het beun. Deze geven relatief minder debiet.

i. Bij een vol beun zal de tegendruk bij een jet groter zijn. Hierdoor is de weerstand in het systeem groter. Het werk punt zal nu bij een hogere jetdruk en een lager jetdebit komen te liggen. Dit betekent dat het gevraagd jetvermogen ook zal afnemen.

j. Bij het huidige werk punt van de jetpomp varieert het jetdebit zonder tegendruk en met een tegendruk van 30 mwk (= ca. 15 meter zand) van --- m³/s (A) tot --- m³/s (B), zie figuur 4.10.

Toelichting

In de praktijk zal de omgevingsdruk voor elke jet sterk verschillen. Deze druk wordt bepaald door de hoogte van de jet t.o.v. het zand (in rust), zandwater mengsel of water-niveau. Tijdens het leegzuigen zal de omgevingsdruk voor elke jet veranderen en per jet verschillend zijn. Hierdoor zal de uitstroomsnelheid gedurende het afzuigproces per jet variëren.
4.2 Functies van een jet in een beun

Om de functies van een jet te definiëren wordt gebruik gemaakt van de fenomenologische beschrijving en de leegzuigprocedure beschreven in het vorige hoofdstuk. In deze paragraaf wordt eerst een analyse gemaakt van het gehele leegzuigsysteem en mogelijke complicaties tijdens het leegzuigproces. Vervolgens zal per jetpositie aangegeven worden wat de voornaamste functie is van deze jet tijdens het leegzuigen van het beun.

4.2.1 Analyse van het gehele leegzuigsysteem

Voorafgaand aan het walpersen en tijdens het walpersen wordt het zand in het beun gefluidiseerd. Het zandwater mengsel dat zo ontstaat, wordt via het leegzuigkanaal en via de grondpomp, naar de wal geperst. In onderstaande figuur zijn de onderdelen die invloed hebben op dit proces schematisch weergegeven. Hierbij is uitgegaan van een enkele beunsectie.

![Diagram van het leegzuigsysteem]

Het gehele leegzuigsysteem bestaat uit twee subsystemen, het jetsysteem en de leegzuiginrichting, en een beunsectie als centraal onderdeel.

Doel bij het walpersen
Het doel bij het walpersen is om in zo’n kort mogelijke tijd het zand uit het beun te zuigen, zodat de zandproductie maximaal is. Om het doel te bereiken moet het mengsel met een zo hoog mogelijke snelheid en concentratie uit de persleiding geperst worden. Getracht wordt om dit met een zo constant mogelijke perssnelheid en concentratie te doen. Bij het leger worden van het beun dient de concentratie zo lang mogelijk zo hoog mogelijk te zijn en pas af te nemen als het beun nagenoeg leeg is.

Sturingsmogelijkheden tijdens het walpersen
De sturingsmogelijkheden om het leegzuigproces tijdens het walpersen te beïnvloeden zijn beperkt. Men kan de toevoer van het jetwater variëren door een jetsectie aan of uit te schakelen of door gebruik te maken van bovenwater. Hierdoor wordt het mengselvormingsproces in het beun direct beïnvloed. Door de waterniveautekening te variëren met behulp van de zee-afsluiter of door het verkleinen van de leegzuigopening wordt de mengselconcentratie in het leegzuigkanaal en de walpersleiding beïnvloed. Tevens kan gevarieerd worden met de beunsectie die afgezogen wordt.

Minimaliseren restlading “Volvox Terranova”
H4 Het jetsysteem
4.2.2 Gebruik van de zee-afsluiter

Voordat het leegguiten begint wordt de zee-afsluiter geopend om een waterstroom te creëren door het leegzuigkanaal en de pomp. Bij het openen van de leegzuigdeuren mengt het zandwater mengsel uit het beun zich met het stromende water. Hierdoor start het leegzuiproces geleidelijk en is de kans op verzanden van het leegzuigkanaal kleiner. Vervolgens wordt de zee-afsluiter afgeknoepen en afgesloten, zodat volledig via het beun afgezogen wordt.

De zee-afsluiter wordt hierdoor gebruikt om:

- Het leegzuiproces op te starten
- De mengselconcentratie te verlagen

Het gebruik van de zee-afsluiter tijdens het leegzuiproces heeft de volgende negatieve consequenties.

- Het aanzuig vermogen van de grondpomp wordt niet volledig benut
- Er ontstaat een open verbinding tussen beun en buitenwater

Door de open verbinding tussen het beun en het buitenwater zakt het waterniveau in de hopper automatisch mee met de buitenwaterspiegel. Veel belangrijker is het feit dat bij structureel gebruik van de zee-afsluiter het risico van zandverlies via het leegzuigkanaal bestaat. Dit wordt veroorzaakt door het drukverschil tussen het mengsel in het beun en het water buiten het schip, zie figuur 4.12.

Om zandverlies richting zee en verzanding van het leegzuigkanaal te voorkomen zal bij een mengselconcentratie in het beun van ca. 1.9 ton/m³ de buitenwaterstand ten opzichte van het leegzuigkanaal ongeveer 2 keer zo groot moeten zijn als de mengsel hoogte in het beun. De druk in het leegzuigkanaal is te beïnvloeden door de stroomsnelheden te veranderen. De invloed hiervan is echter zeer gering. Om een kleine verandering in de druk te bewerkstelligen, zijn hele grote snelheidsveranderingen nodig.

In feite wordt bij het gebruik van de zee-afsluiter de leegzuigproductie aangepast aan het geïnstalleerde jetvermogen. Hierdoor wordt niet het volledige vermogen van de grondpomp gebruikt.
4.2.3 Mogelijke complicaties tijdens het leegzuigen

Niet of moeilijk opgang komen van het leegzuigproces

Bij vacuüm zuigen ontstaat een zandoog over de leegzuigdeur en komt het proces niet opgang. Door het zuigen worden de korrels tegen elkaar gedrukt en het water eruit geperst. Hierdoor wordt het pakket steeds vaster en is het lastiger om de boog te verbreken.

Figuur 4.13. Principe schets zandoog voor leegzuigdeur.

De kans op een boog voor de leegzuigdeur is afhankelijk van de oriëntatie van de leegzuigdeur. De kans op boogwerking is bij een verticaal georiënteerde (verscholen) deur groter dan bij een horizontaal georiënteerde deur. Dit wordt veroorzaakt doordat in de regel de lengte van de boog bij een verticaal georiënteerde deur kleiner is dan bij een horizontaal georiënteerde deur, waardoor brugvorming gemakkelijker optreedt. Tevens valt bij een horizontale deur het zand gemakkelijker in het gat zodat het leegzuigproces als nog opgang kan komen. Bij een verticaal georiënteerde deur gebeurt dit minder.

Een kortsluiting ontstaat door grondbreuk van de jet tot de leegzuigdeur, waardoor een kanaal ontstaat door het zandpakket van jet tot leegzuigdeur. Hierdoor wordt enkel jetwater afgezogen. Dit gebeurt met name als de afstand tussen de jet en de afzuigdeur zeer gering is.

Verzanden leegzuigleiding
Het verzanden van het leegzuigkanaal wordt veroorzaakt doordat de stroomsnelheid in het kanaal lager is dan de kritieke snelheid. De kans op verzanden wordt vergroot door:

- Afzuigen door twee leegzuigkanalen tegelijk (met een instabiel systeem tot gevolg).
- Niet homogeen mengseltransport.
- Een relatief te hoge dichtheid ten opzichte van de kritieke stroomsnelheid.

Door het gebruik van de zee-afsluiter wordt de mengselconcentratie lager en de kans op verzanden geringer. Het beste is om bij het ontwerp van het fluidisatiesysteem te zorgen dat het zand homogeen en voldoende verdund instroomt. In de opstartfase van het leegzuigproces is het belangrijk om de leegzuigdeur langzaam te openen en te zorgen dat het zand al voldoende verdund is. In de proeven is geconstateerd dat met name in deze fase van het leegzuigproces verzanding van het leegzuigkanaal optreedt. Het leegzuigkanaal is in de proevenserie tweemaal bijna verzand. In deze proeven was het jetdebiet zeer laag en wellicht het zand voor de leegzuigdeur onvoldoende verdund.

Brugvorming tijdens het leegzuigen
Niet enkel tijdens het opstarten kan zich een zandrug vormen over de leegzuigopening. Tijdens het leegzuigen kan dit bijvoorbeeld ook op grotere schaal gebeuren over de gehele kippekooi. Het schuine vlak van de kippekooi in combinatie met de hopperrand vormen een goed steunpunt. Jets op de kippekooi verbreken deze brugvorming en verkleinen zo de kans op brugvorming. Bij een goede fluidisatie van het zandpakket in het beun zal deze vorm van zandbrugvorming niet optreden.

Concentratiepieken
Tijdens het afzuigen kunnen grote variaties in de mengselconcentratie ontstaan door afschuivende schollen zand. Deze schollen verhogen tijdelijk de concentratie, waarna de concentratie verlaagt. Dit wordt veroorzaakt doordat het zand lokaal ondermijnd wordt, waarna het als een brok afschuift. Met name slecht doorlatende en niet gefluidiseerde zanden schuiven in schollen af.

Te lage of te hoge zandconcentratie
Een te lage concentratie treedt met name op aan het einde van het afzuigproces. Hierbij wordt het zandpakket wegespoeld, waarbij zeer veel water nodig is om een relatief kleine hoeveelheid zand te eroderen. Als tijdens het afzuigen te lage concentraties worden aangezogen, dan is de hoeveelheid toegevoerd water te hoog, met name ter plaatse van de afzuigdeur. Het water uit verder weg gelegene nozzle’s zal ook naar boven stromen en het bovenwater voeden. Een andere mogelijkheid is dat het zandpakket niet goed gefluidiseerd is, waardoor het afbrennen richting de leegzuigdeur te langzaam gaat en daardoor te weinig zand wordt aangevoerd.

Te hoge concentraties kunnen worden aangeland door gebruik te maken van de zee-afsluiter. Zoals reeds beschreven is verdient deze methode niet de voorkeur. Om de mengsel concentratie te verlagen zullen met name de jets in de directe omgeving van de leegzuigopening een groter jetdebiet moeten leveren. Een optimale situatie zou ontstaan wanneer het jetdebiet van deze jets regelbaar is, afhankelijk van de concentratie van het mengsel.
4.2.4 Overzicht van de functies van een jet

De functies van een jet kunnen gedestilleerd worden uit voorgaande paragraaf en de fenomenologische beschrijving (3.2.2). De fenomenologische beschrijving tijdens de opschoonslag kan worden samengevat in onderstaand diagram:

![Diagram](image)

Figuur 4.15. Schema leegzuigen beun.

Uit dit diagram blijkt dat de waterjets invloed hebben op bijna alle processen van het leegzuigproces. In onderstaand overzicht zijn de verschillende functies van een jet gegeven. Tevens is de jetpositie aangegeven waarvoor de functie met name geldt. Voor de jetposities is een onderscheid gemaakt tussen de jets op de kippekooi (A), de jets in de directe omgeving van de leegzuigdeur (B) en de overige jets in het beun (C).

a. Fluidiseren, opheffen of verlagen van de korrelspanningen, A, B en C.
b. Stimuleren van het bresgedrag, A, B en C.
c. Stimuleren van het instroomgedrag bij de leegzuigdeur, B.
d. Verdunnen van het zandpakket tot een verpompbaar mengsel met name ter plaatse van de leegzuigdeur, B.
e. Opwekken van turbulentie om de erosiekracht van water te vergroten en het beun "schoon te spuiten/spoelen", A en C.
f. Het voorkomen van brugvorming in een beunsectie op de kippekooi of direct voor de leegzuigdeur, A en B.
g. In stand houden van 'afstromgeulen' van de mengselstroom in de bulkstal, A.

Tijdens het leegzuigen wordt het zandpakket niveau (in rust of gefluidiseerd) steeds lager. Dit betekent dat jets die zich in eerste instantie onder het zandpakket niveau bevinden, tijdens het leegzuigproces boven het niveau kunnen komen. Hierdoor verandert ook de functie van deze jet. Deze jet zal op een gegeven moment in het bovenwater spuiten. In de praktijk gebeurt dit in de laatste fase van het leegzuigproces. Bij het ontwerp van het jetsysteem is het zeer lastig vast te stellen welke functie kritiek is binnen het afzuigproces. Uit bovenstaand overzicht kan geconcludeerd worden dat de voornaamste functie van een jet is om de korrelspanningen van het zandpakket te verminderen om zo het afschuifgedrag van het zandpakket richting het afzuipvleit te stimuleren.

Het gehele jetsysteem bepaalt het werk punt van de jetpomp. Deze varieert tijdens het leegzuigen. Door het werk punt is de jetdruk en het jetdebiet voor het gehele jetsysteem bekend. Per jetpositie kan dan nog gevarieerd worden met de nozzle diameter (debiet) en de spuitrichting, om het proces plaatselijk te sturen.
4.3 Processen in het beun tijdens het leegzuigen

4.3.1 Het bereik van een jet spuitend in water

Bij het spuiten van water in water zal de straal vertragen en verspreiden. Door het snelheidsverschil met het omringende water zal er "entrainment" optreden. Dit wil zeggen dat stilstaand water, op het scheidingsvlak van stilstaand en stromend water, versneld (meegesleurd) zal worden door het stromende water. Hierdoor ontstaat een turbulente grenslaag die zich uitbreidt. In deze turbulente grenslaag wordt de energie van de waterstraal gedissipeerd.

Het vermogen van een waterstraal wordt uitgedrukt in de massa per tijdseenheid (debiet) maal de drukval over de spuitmond:

\[P_{straal} = Q_n \cdot (p_1 - p_3) \approx \left(\frac{\pi}{4} \cdot d_n^2 \cdot C_e \cdot U_n \right) \cdot \frac{1}{2} \cdot \rho_w \cdot U_n^2 = \rho_w \cdot \frac{\pi}{8} \cdot d_n^2 \cdot C_e \cdot U_n^3 \quad (4.1) \]

De hoeveelheid impuls per tijdseenheid wordt uitgedrukt in de massa per tijdseenheid (debiet) maal de uitstroomsnelheid:

\[I = Q \cdot U_n = \frac{\pi}{4} \cdot d_n^2 \cdot \rho_w \cdot U_n^2 \cdot C_e \quad (4.2) \]

Bovenstaande formules kunnen gecombineerd worden tot:

\[I \approx \frac{2 \cdot P_{straal}}{U_n} \quad (4.3) \]

Dit betekent dat bij een constant geïnstalleerd vermogen de impulskracht afneemt als de uitstroomsnelheid uit de jet toeneemt. De uitstroomsnelheid wordt groter bij een grotere drukval over de nozzle.
Om inzicht te krijgen in de invloedsafstand van een waterstraal wordt de schuifspanning die de straal ondervindt ten opzicht van het omringende water beschouwd. Een maat voor de schuifspanning, die op de straal wordt uitgeoefend, is de grootte van de snelheidsgradient tussen het stromende en stilstaande water. In formulevorm geldt het volgende verband voor de schuifspanning:

$$\tau :: \frac{dU}{dy}$$ \hspace{2cm} (4.4)

Aangenomen wordt dat de dikte van de grenslaag ongeveer constant is, zodat geldt:

$$\tau :: U_n \Rightarrow \tau :: (p_1 - p_1)^{\frac{1}{2}}$$ \hspace{2cm} (4.5)

Volgens de hoofdwet van Newton geldt $F = m \cdot a$, waaruit voor de vertraging van de straal volgt:

$$a :: \frac{F}{ massa \cdot \pi \cdot d_{straal}^2} \Rightarrow a :: \frac{U_{straal}}{d_{straal}}$$ \hspace{2cm} (4.6)

Hieruit blijkt dat de vertraging van een jetstraal recht evenredig is met de snelheid. Of te wel bij een twee keer zo grote uitstroomsnelheid is de vertraging ook twee keer zo groot zodat de invloedsafstand gelijk blijft. Het omgekeerde geldt voor de straaldiameter. Dit betekent dat bij een constant geïnstalleerd jetvermogen de invloedsafstand van een jetstraal groter wordt als de uitstroomsnelheid kleiner wordt en de straaldiameter groter.

Voor een ronde straal en een spleetvormige straal, uitstromend in zijn eigen medium, is empirisch vastgesteld dat (Van Rhee, 1986):

$$\frac{u_{max}}{U_n} = 6 \cdot \frac{D_n}{x} \quad \text{ronde stralen} \quad \frac{u_{max}}{U_n} = 5.2 \cdot \sqrt{\frac{D_n}{x}} \quad \text{spleetvormige stralen} \quad \text{(4.7, 4.8)}$$

Deze formules zijn geldig voor $x > 6 D_n$. Tot $x = x_o$ is een kegel aanwezig waarbinnen het water niet vertraagd wordt. Binnen deze kegel is de snelheid constant en bedraagt deze snelheid de uitstroomsnelheid uit de nozzle. Uit experimenten is gebleken dat de lengte van deze kegel ca. 6 maal de uitstroomdiameter van de nozzle bedraagt.

Door formule 4.3 met 4.9 te combineren, ontstaat de volgende een uitdrukking voor u_{max} met de afstand:

$$u_{max(x)} = \frac{8 P_{straal}}{\pi \sqrt{2 \rho_w (p_1 - p_3)}} \cdot \frac{6}{x}$$ \hspace{2cm} (4.9)

Dit verband is uitgewerkt in figuur 4.17. Hierbij is de invloedsafstand van een nozzle bij een gelijk blijvend jetvermogen en verschillende combinaties van jetdruk en nozzle diameter gegeven.

Minimaliseren restlading "Volvox Terranova"
H4 Het jetsysteem
Duidelijk te zien is dat het effect van een hogedruk jetstraal beperkt blijft tot een korte zone voor de nozzle. Het vlakke gedeelte in de grafiek wordt veroorzaakt door de veronderstelling dat de snelheid niet verandert tot ongeveer 6 maal de straaldiameter.

In plaats van een hoge jetdruk en een laag debiet kan bij een gegeven vermogen van de jetpomp beter gewerkt worden met een lage druk en een hoog debiet. Op die manier kan de invloedsafstand en daarmee de effectiviteit van een jet namelijk vergroot worden.

Spreidingshoek van een jetstraal

Volgens Breuser en Raudkivi (1991) geldt voor de snelheidsverdeling \(u \) in een ronde straal onder water ten opzichte van de snelheid \(u_{\text{max}} \) in het hart van de straal:

\[
\frac{u}{u_{\text{max}}} = e^{-k \left(\frac{r}{x} \right)^2}
\]

(4.10)

In deze formule is de afstand uit het hart van de jetstraal \(r \) en de afstand tot de nozzle \(x \). \(u_{\text{max}} \) is de maximale stroomsnelheid van de jetstraal op de afstand \(x \) uit de nozzle. De entrainment coëfficiënt \(k \) is experimenteel vastgesteld en bedraagt ca. 72. De snelheidsverdeling van de jetstraal wordt als een Gaussische verdeling voorgesteld.

De spreidingshoek van een jetstraal onder water is tussen de 12 en 14°. Hierbij geldt dat binnen deze hoek de snelheid van de straal groter is dan 1/3 van de stroomsnelheid in het hart van de straal.
4.3.2 **Fluidisatie in 1 dimensie en het bezinken van zand**

Bij de beschrijving van de fenomenologische beschrijving is verondersteld dat de zandproduktie richting de leegzuigdeur vergroot wordt als het bresproces beter gaat. Om het bresproces te stimuleren kan een uittredend verhang uit het zandpakket gecreëerd worden. Hiervoor is een wateroverdruk in het zandpakket nodig ten opzichte van de hydrostatische waterdrukken. Door deze wateroverdruk worden de korrels spanningen in het zandpakket minder, waardoor de stabiliteit van het zandpakket afneemt. Door het verhang zo groot te maken dat de korrels ‘opgetild’ worden is er totaal geen stabiliteit meer in het zandpakket. Hierdoor gedraagt het zandpakket zich als een ‘dikke’ ‘zware’ vloeistof die gemakkelijk afgezogen kan worden. Dit is het zogenaamde fluidisatieproces.

Definitie fluidiseren

Fluidisatie is het proces waarbij een loskorrelig cohesieloos pakket over gaat van een situatie met vaste stof eigenschappen naar een situatie met vloeistof eigenschappen. Een situatie met vloeistof eigenschappen wordt verkregen als de korrels “vrij” kunnen bewegen in het medium waarbinnen ze zich bevinden. Dit betekent dat de korrels spanningen nul zijn en het zandpakket minimaal de kritieke dichtheid heeft. De vloeistof eigenschappen kunnen gecreëerd worden door een gas- of vloeistof stroom door het pakket te creëren.

Bij een lage stroom snelheid zal de stroom zich concentreren door de poriën in het pakket. Door de weerstand die de vloeistof ondervindt ten gevolge van de stroom langs de korrels ontstaat er een drukval in de stroomrichting van de vloeistof. Bij toenemende stroom snelheid zal de drukval ook toenemen. De drukval kan toenemen totdat ze gelijk is aan het gewicht van de korrels onderwater. Op dat moment beginnen de korrels onderling contact te verliezen en zweven ze in het pakket.

Bij nog verder toenemen van de stroom snelheid kunnen de gesuspendeerde korrels, door de beperkte massa die ze bezitten, niet meer weerstand bieden. In plaats daarvan zal de grotere stroom de korrels uit elkaar duwen, zodat er voor deze stroom ruimte ontstaat. Hierbij zal een expansie van het bed plaatsvinden en de dichtheid van het mengsel afnemen. De drukval blijft daarbij constant en gelijk aan het gewicht van de korrels onder water.

Om deze relatie te beschrijven wordt het debiet benodigd, om de korrels spanningen te verlagen, gekoppeld aan de eigenschappen van een bezinkend mengsel. Bij het bezinken bewegen de korrels ten opzichte van het water en bij het verlagen van de korrels spanningen beweegt het jetwater ten opzichte van de korrels. Door deze koppeling te maken wordt inzicht verkregen in de relatie tussen de concentratie van het mengsel en het jetdebit door dit mengsel.

In de boeken is veel literatuur te vinden over fluidisatie in een vat. Vooral in de chemische technologie wordt fluidisatie in omsloten ruimten toegepast voor het mengen en transporteren van loskorrelige materialen. Hierbij wordt de vloeistof gelijkmattig verdeeld over de bodem van het bed ingebracht. In een hopper is het niet mogelijk om het water via talloze openingen verspreid over de bodem in te brengen. Dit betekent dat er een beperkt aantal jets zijn die in het zandpakket spuiten. Hierdoor ontstaan fluidisatiekuilen in de buurt van de jets. In de literatuur is over dit onderwerp veel minder gepubliceerd.

Minimaliseren restlading "Volvox Terranova" 39

H4 Het jetsysteem
Een uitgebreide beschouwing en presentatie van de literatuur is als Hoofdstuk I Literatuurstudie Fluidisatie toegevoegd. In paragraaf 4.3.4. zullen de belangrijkste resultaten gepresenteerd worden.

De weerstand van een waterstroom door een zandpakket

Het verhang (i) in een zandpakket kan beschreven worden met de Ergun vergelijking (Davidson, 1985). Deze vergelijking is theoretisch afgeleid (Oliemans, 1997) en bevat experimentele correctiefactoren:

\[
\frac{\partial P}{\partial L} = 72 \cdot \alpha \cdot \frac{(1 - \varepsilon)^2}{\varepsilon^3} \cdot \frac{\mu_m \cdot U}{(\varphi \cdot d_m)^2} + 3\beta \cdot \frac{(1 - \varepsilon)}{\varepsilon^3} \cdot \frac{\rho_m \cdot U^2}{\varphi \cdot d_m} + \frac{1}{\rho_w \cdot g} \cdot \frac{\partial P}{\partial L}
\]

Ergun heeft experimenteel vastgesteld dat voor verschillende korrelgroottes en vloeistoffen geldt:

\[72 \alpha = 150 \text{ en } 3\beta = 1,75\]

Een zandpakket is in evenwicht als het drukverschil over het bed gelijk is aan het gewicht van het bed. Hierbij zijn de korreelspanningen gelijk aan nul. Dit is het geval als de drukval in het bed gelijk is aan het ondergedompelde gewicht van de korrels, zie figuur 4.18. In formule vorm geldt:

\[\frac{\Delta P}{L} = (1 - \varepsilon) \cdot (\rho_k - \rho_w) \cdot g\]

Dit is de theoretische fluidisatie voorwaarde (Oliemans, 1997). Hierbij is de totale waterdrukgradiënt gelijk aan het gewicht van het mengsel.
In een 1-dimensionale situatie zal de drukgradiënt groter worden bij het toenemen van de oppervlakte snelheid [U] (4.6) totdat deze gradiënt gelijk is aan de theoretische fluidisatie voorwaarde (4.8). Bij verder toenemen van de oppervlakte snelheid moet gelden dat vergelijking (4.8) en (4.6) aan elkaar gelijk blijven. Hierdoor zal bij het toenemen van de oppervlakte snelheid het poriënpercentage ook toenemen. In onderstaande formules is dit aangegeven:

\[
\frac{\partial p}{\partial L} < (1 - \varepsilon_0) \cdot (\rho_k - \rho_w) \cdot g \quad \text{geldt:}
\]

\[
\frac{\partial p}{\partial L} = 72 \cdot \alpha \cdot \frac{(1 - \varepsilon_0)^2}{\varepsilon_0^3} \cdot \frac{\mu_w \cdot U}{(\varphi \cdot d_m)^2} + 2 \cdot \beta \cdot \frac{(1 - \varepsilon_0)}{\varepsilon_0^3} \cdot \frac{\rho_w \cdot U^2}{\varphi \cdot d_m}
\]

(4.14)

voor \[\frac{\partial p}{\partial L} = (1 - \varepsilon) \cdot (\rho_k - \rho_w) \cdot g \quad \text{geldt:}
\]

\[
\frac{\partial p}{\partial L} = (1 - \varepsilon) \cdot (\rho_k - \rho_w) \cdot g = 72 \cdot 4 \cdot \frac{(1 - \varepsilon)^2}{\varepsilon^3} \cdot \frac{\mu_w \cdot U}{(\varphi \cdot d_m)^2} + 2 \cdot \beta \cdot \frac{(1 - \varepsilon)}{\varepsilon^3} \cdot \frac{\rho_w \cdot U^2}{\varphi \cdot d_m}
\]

(4.15)

Door het verlagen van het poriënpercentage wordt de dichtheid van het zandpakket verlaagd en expandeert het zandpakket. Als de dichtheid van het zandpakket lager is dan de kritieke dichtheid, is het bed volledig gefluidiseerd en gedraagt het zich als een vloeistof. Als het zandbed niet de mogelijkheid heeft om te expanderen zal de drukgradiënt in het zandpakket vergroten en het poriënpercentage gelijk blijven.

Beziniken van zand in een zandwater mengsel

De bezinkssnelheid van korrels is in de literatuur uitvoerig beschreven. In hoofdstuk I Literatuurstudie Fluidisatie worden hiervoor verschillende formules gepresenteerd. In deze beschouwing is uitgegaan van de volgende vergelijkingen:

\[
w_0 = \frac{4 \cdot g \cdot \Delta \cdot d}{3 \cdot C_d} \quad \text{met:} \quad \Delta = \frac{(\rho_k - \rho_w)}{\rho_w} \quad \text{relatieve dichtheid}
\]

(4.16)

De sleepeëfficiënt C_d is afhankelijk van het Reynoldsgetal, gedefinieerd als:

\[
Re = \frac{w_0 \cdot d}{v}
\]

(4.17)

Voor de beschrijving van de valsnelheid van een korrel worden drie verschillende gebieden onderscheiden (Vlasblom en Miedema).

- laminair gebied: \(d < 100 \mu m \), \(Re < ca. 1 \)
- overgangsgebied: \(100 \mu m < d < 4 \text{ mm} \), \(1 < Re < 2000 \)
- turbulent gebied: \(d > 4 \text{ mm} \), \(Re > 2000 \)
Voor de sleepcoëfficiënt geldt per gebied:

- laminair gebied: \(C_d = \frac{24}{\text{Re}} \)
- overgangsgebied: \(C_d = \frac{24}{\text{Re}} + \frac{3}{\sqrt{\text{Re}}} + 0.34 \)
- turbulent gebied: \(C_d = 0.4 \)

In figuur 4.19 is de valsnelheid voor verschillende korrelafmetingen uitgezet bij een viscositeit van het water bij 20 \((1.0 \times 10^{-6} \text{ m}^2/\text{s}) \).

![valsnelheid korrel](image)

Figuur 4.19. Valsnelheid van een korrel bij 20

Koppeling van het fluïdisatie proces met de valsnelheid van korrels

De weerstand (het verhang), die een waterstroom ondervindt tijdens het stromen door een zandpakket, kan berekend worden met de Ergun-vergelijking. Op een gegeven moment ‘tilt’ de stroom het korrelskelet op. Als het korrelskelet vrij kan expanderen zal bij een groter debiet het holle ruimte percentage toenemen en het verhang gelijk blijven aan de dichtheid van het mengsel gedeeld door de dichtheid van het water.

\[
i = \frac{\rho_m}{\rho_w}
\]

(4.18)

Door het toenemen van het holle ruimte percentage neemt de dichtheid van het mengsel verder af.

De valsnelheid van een korrel wordt berekend bij een porositeit van 100%. Voor lagere porositeiten zijn door Richardson en Zaki (1954) correctiefactoren gevonden voor de valsnelheid van een zandkorrel, zie Hoofdstuk 1 Literatuurstudie Fluidisatie. De valsnelheid van de korrels wordt ten gevolge van een hogere concentratie lager. Dit wordt veroorzaakt door ‘hindered settling’ en een relatieve toename van de watersnelheid om de korrels.
In onderstaande grafiek is voor verschillende boldiameters de oppervlakte snelheid uitgezet tegen de porositeit. Voor de porositeit tot 80% is uitgegaan van de Ergun vergelijking gekoppeld aan de theoretische fluidisatievoorwaarde (4.10). Voor de porositeit vanaf 60% is uitgegaan van de formule van Richardson en Zaki. Om de vergelijkingen aan elkaar te fitten is een geschat verloop van de relatie aangegeven. Hierdoor wordt een indruk verkregen van de porositeit bij verschillende oppervlakte snelheden (debieten) door het zandpakket.

Figuur 4.20-a. Relatie tussen de oppervlaktesnelheid en de porositeit voor verschillende boldiameters.

Figuur 4.20-b. Relatie tussen de oppervlaktesnelheid en de porositeit voor verschillende boldiameters.

In bovenstaande grafiek is uitgegaan van bollen. Door de grotere weerstand van zandkorrels ten opzichte van bollen is de benodigde oppervlakte snelheid om de
korrelspanningen op te heffen kleiner. Daarom wordt een reductiecoëfficiënt op de korreldiameter in rekening gebracht om de bijbehorende boldiameter te berekenen. Een gebruikelijke waarde voor (φ) is 80%. In de grafiek kan dan de waarde afgelezen worden voor de gereduceerde korreldiameter (=boldiameter). In de vergelijkingen is geen rekening gehouden met de korrelverdeling van een zandpakket.

Uit grafiek 4.20 b blijkt dat de benodigde oppervlakte snelheid voor fluidisatie zeer sterk afhankelijk is van de zandkorreldiameter. Voor een zandpakket met korrels met een diameter van 200 μm en een porositeit van 40% is een oppervlaktesnelheid van ca. 0.04 cm/s nodig om de korreldspanningen op te heffen. Voor een zandpakket met korrels met een diameter van 500 μm is dit ca. 0.3 cm/s. Dit scheelt een factor 7.5 in het benodigd debiet om de korreldspanningen in het zandpakket op te heffen.

4.3.3 Fluidisatie in meerdere dimensies

Bij het plaatselijk jetten in een zandpakket zal de jetdruk spreiden in alle richtingen en zal daardoor niet uniform (1-dimensionaal) naar boven gericht zijn. Door deze spreiding is een hogere jetdruk en debiet nodig om het fluidisatieproces te initieeren. Is eenmaal een fluidisatiekuil ontwikkeld dan is het potentiële verloop in deze kuil horizontaal. Hierdoor is een kleinere jetdruk en jetdebiet nodig om het zand in gefluidiseerde vorm te behouden (Weisman et al., 1988).

\[n_0 = 39\% \text{, de schaal van de potentiëllijn varieert} \]
\[Q_{\text{a}, b, c, d, e, \eta} = \text{resp.} \, 0.009, \, 0.019, \, 0.034, \, 0.041, \, 2.16, \, 3.60 \, \text{L/s-m} \]

Figuur 4.21. Potentiëllijnen in een gefluidiseerd en ongefluidiseerd pakket.

Figuur 4.22. Schematische weergave van vorm fluidisatie kuil en interne stroming.

In figuur 4.21 zijn de potentiëllijnen te zien bij een begraven pijp, 25 cm, met zeer veel jets, zodat een 2-dimensionale situatie gecreëerd is. In onderdeel a t/m e is duidelijk het cilindrisch verloop van de potentiële lijnen te zien in de directe omgeving van de jet. Bij onderdeel 4.21-e en 4.21-f zijn de horizontale potentiaal lijnen in de gefluidiseerde zone te zien. In de rechter figuur (4.22) wordt het stroombeeld van de jets weergegeven.

Minimaliseren restlading "Volvox Terranova"
H4 Het jetsysteem

44
In de apart bijgevoegde literatuurstudie, hoofdstuk I, zijn de resultaten van drie verschillende experimentele onderzoeken geanalyseerd. In twee van de drie schaaldonderzoeken werd een zandbedhoogte van ca. 50 cm gebruikt. In het laatste onderzoek werd een zandbedhoogte van ca. 2 meter gebruikt. Dit onderzoek was redelijk grof en niet erg uitgebreid, waardoor maar een beperkte hoeveelheid resultaten beschikbaar is met een beperkte betrouwbaarheid. De conclusies van de drie onderzochte experimenten komen redelijk overeen. De resultaten van de literatuurstudie zijn onderstaand op een rijtje gezet. De nummers geven het experimentele onderzoek in kwestie aan.

a. Wanneer het zandpakket met behulp van jets wordt gefluidiseerd, zal zich op een gegeven moment een evenwichtssituatie ontstaan (1,2,3).

b. De grootste gefluidiseerde zone wordt bereikt met horizontaal spuitende jets (1).

c. De afmetingen van het gefluidiseerde gebied lijken in grote mate afhankelijk van het jetdebiet en de doorlatendheid van het zandpakket (1,2,3).

d. De zandpakkethoogte, hart op hart afstand van de jets, nozzle diameter en jetdruk hebben weinig invloed op de afmetingen van het gefluidiseerde gebied (1,2,3).

e. De oppervlakte van de gefluidiseerde zone is ongeveer rechtlijnig afhankelijk met het jetdebiet, als het zand niet verwijderd wordt. Bij een grotere pakkethoogte wordt het lekverlies groter en de gefluidiseerde oppervlakte kleiner (1,2).

f. In de gefluidiseerde zone is de filtersnelheid in het zandpakket ca. vijf maal de doorlatendheid \(k_0 \) (2). Bijna het gehele debiet gaat door de gefluidiseerde zone. Het lekverlies uit de fluidisatie kuil, in figuur 4.17, is maar een paar procent.

g. Hoe kleiner de nozzle diameter, des te groter de benodigde druk om het fluidisatie proces te handhaven. Dit wordt met name veroorzaakt door de relatief grote drukval over de nozzle bij kleine nozzlediameters (1, 2).

h. Het debiet dat nodig is bij het begin van fluidisatie is groter dan het debiet dat nodig is om een toestand van volledige fluidisatie te handhaven. Bij een grotere zandpakkethoogte neemt dit verschil toe (1).

i. Het debiet benodigd om fluidisatie te initiëren is met name afhankelijk van de diepte van de jet in het zandpakket, van de doorlatendheid en in mindere mate van de afmetingen van het totaal gebied (1).

j. De benodigde jetdruk tijdens het fluidisatieproces is met name afhankelijk van de bedhoogte en de jetdruk benodigd om fluidisatie te initiëren. Deze laatste jetdruk is in de regel maatgevend.

k. Bij grotere hart op hart afstanden van de jets neemt de druk om fluidisatie te initiëren enorm toe (1).

l. Bij het verwijderen van het gefluidiseerde zand is de breedte van de kuil met name afhankelijk van de hoek van inwendige wrijving van het zandpakket. Bij jetdebieten, groter dan het drempel debiet, neemt de breedte toe. Dit wordt veroorzaakt door de erosie kracht van de jets (1).
m. De tijdsduur van het fluïdisatieproces is redelijk groot. Het duurde ongeveer 15 minuten totdat de evenwichtssituatie bereikt was (2,3).

n. Voor het fluidiseren van een zandpakket met minimaal vermogen dient de jetdruk zo laag mogelijk te zijn. Dit kost de minste energie per m² gefluidiseerd oppervlak (2,3).

o. De theorie omtrent het fluidisatie proces in een vrij domein is beperkt. De conclusies zijn in grote mate proefondervindelijk bepaald. Met name de kennis omtrent de jetdruk benodigd om fluidisatie te initiëren is beperkt.

Toelichting punt f, voor een goede fluidisatie geldt: \(q = 5 \cdot k_o\)

Met deze vergelijking is de oppervlakte van de gefluidiseerde zone te berekenen als het jetdebit bekend is. De eis dat voor een goede fluidisatie het debiet 5 maal de doorlatendheid moet zijn, kan gekoppeld worden aan de oppervlaktesnelheid-porositeit relatie (figuur 4.20). Gesteld wordt dat de Ergun vergelijking bij een verhang van 1 de doorlatendheid weergeeft. Voor kleine korrels, laminaire stroming, klopt dit nagenoeg exact met de formule voor de doorlatendheid afgeleid door Den Adel (in: Mastbergen, 1991).

\[
\text{fluidisatiesnelheid - porositeit relatie (indicatief)}
\]

\[
\text{ Fluidisatie eis (GeoDelft)}
\]

\[
\begin{array}{cccccccccc}
0.1 & 0.2 & 0.5 & 1 & 2 & 5 & 10 & \text{mm boldiameters} \\
\hline
0.1 & 0.9 & 0.8 & 0.7 & 0.6 & 0.5 & 0.4 \text{ porositeit} \\
0.01 & 0.1 & 1 & 10 & 100 & \text{oppervlakte snelheid [cm/s]} \\
\end{array}
\]

Figuur 4.23. Relatie tussen fluidisatiesnelheid en porositeit voor verschillende boldiameters, fig. 4.18- b, inclusief fluidisatie eis volgens GeoDelft.

In bovenstaande figuur is verwerkt dat voor een goede fluidisatie het debiet 5 maal de doorlatendheid moet zijn. Hierbij is uitgegaan van een initiële porositeit van 40%. Uit de berekening volgt dat de porositeit 60% (1650 kg/m³) moet zijn voor een goede fluidisatie bij kleine korrels. Voor grotere korrels wordt naar mijn mening het benodigd jetdebiet voor een goede fluidisatie overschat. In de praktijk worden in de regel geen korrels met een mediane korreldiameter groter dan 2 mm opgezogen.

Voor een porositeit van 60%, in gefluidiseerde toestand, is voor korrels met een mediane diameter van 1 mm een coëfficiënt van 3,15 maal de doorlatendheid nodig. Voor korrels met een diameter van 2 mm is deze coëfficiënt 2,3.

In de figuren is uitgegaan van bolvormige korrels met een eenduidige diameter. Bij zandkorrels zal de benodigde oppervlaktesnelheid om de korrelspanning op te heffen of te fluidiseren lager liggen ten gevolge van de korrelvorm. De doorlatendheid zal ook kleiner zijn door de korrelverdeling. Aangenomen wordt dat deze twee effecten elkaar in de grafiek compenseren met betrekking tot de optredende porositeit bij een gegeven oppervlakte snelheid.

Minimaliseren restlading "Volvox Terranova"

H4 Het jetsysteem

46
4.4 Opstarten van een jet

In paragraaf 4.1.2 zijn enkele complicaties tijdens het leegzuigproces genoemd. Een probleem kan bijvoorbeeld zijn dat het leegzuigproces moeilijk of niet opstart door zandboogvorming voor de leegzuigdeur.

Zandboogwerking zal bij een verticaal georiënteerde leegzuigdeur minder snel optreden dan bij een horizontaal georiënteerde leegzuigdeur. Met name als deze horizontaal georiënteerde deur verscholen ligt achter een luifel. Hierdoor is in de praktijk het opstarten van het leegzuigproces zelden een probleem. Bij de nieuwe leegzuigdeur is dit nog niet bekend. In de proevenserie, hoofdstuk 7, zijn complicaties opgetreden tijdens het starten van het proces bij een proef met de nieuwe leegzuigdeur. Bij deze proef waren de jetdebieten zeer klein.

Gesteld wordt dat door het creëren van een zandwater mengsel voor de leegzuigdeur, voor het openen van deze deur, dit probleem zich niet voor zal doen. Dit zandwater mengsel zal dan maximaal de kritieke dichtheid mogen bezitten om zonder volumeverandering te kunnen vervormen. Om de volumeverandering van de in situ dichtheid naar de kritieke dichtheid te krijgen zal een volume vergroting moeten plaatsvinden. Hiervoor moet het zandpakket deformeren. Het verlagen van de dichtheid van 20 kN/m³ naar 19 kN/m³ geeft een volumevergroting van 11%.

Er moet eenpreferent kanaal ontsaan van de jet naar de oppervlakte van het zandpakket, zodat lokaal zand kan eroderen en het zandpakket kan deformeren naar de kritieke dichtheid. Zo ontstaat een gefluidiseerde zone voor de jet. In deze paragraaf zal de benodigde jetdruk om een preferent kanaal te creëren onderzocht worden.
Proces opstarten van een jet
In Hoofdstuk I Literatuurstudie Fluidisatie is bij twee onderzoeken de opstartfase van het fluidisatieproces beschreven. Hieronder worden deze beschrijvingen samengevat weergegeven:

Design of fluidizer systems for Coastal Environment (Weisman 1994)
Het proces om gesedimenteerd zand in een geul te verwijderen wordt als volgt voorgesteld. Het proces is opgedeeld in 5 fasen, zie figuur 4.24.

![Diagram](image)

Figuur 4.24. De 5 fasen van het erosie proces met een fluidisatiepijp.

a. Na het aanzetten van de pomp zal het water uit de jets in het zandpakket stromen. Bij een laag debiet wordt het zandpakket niet verstoord. Tot aan het begin van fluidisatie is de wet van Darcy geldig.

b. Bij het toenemen van het debiet stromen geïsoleerde pakketjes verstoord zand omhoog door het zandpakket. Bij het begin van fluidisatie ontstaat langs het verzwakte pad van de jet tot aan de bovenkant van het zandpakket een sputter (fonteintje). In deze fase is nog niet het gehele gebied boven de fluidisatiepijp gefluidiseerd.

c. Het debiet door de sputter neemt toe en boven de pijp ontwikkelt zich een gefluidiseerde zone. In de gefluidiseerde zone neemt het poriënpercentage toe, zodat ook het volume van het zandpakket wordt vergroot. Hierdoor stroomt zand uit de fluidisatiekuil en veroorzaakt zo bermen aan de rand van de kuil. De breedte van de gefluidiseerde zone is beperkt.

d. Nu kan het gefluidiseerde zand gemakkelijk worden weggepompt en/of via de zwaartekracht weggevoerd. Bij dit wegvoeren worden de wanden van de kuil instabiel en schuiven in de gefluidiseerde zone.

e. De breedte van de gefluidiseerde zone neemt toe tot de evenwichtshelling van het zandpakket wordt bereikt.
Beunfluïdisatie Geopotes 14 (Maas 1992)
De procesgang bij de fluidisatieproeven van Maas (1992) is:

a. Na het starten van de jets werd, bij een voldoende groot debiet, ter plaatse van de jet een klein gefluidiseerd gebied zichtbaar. Hierbij kwam de bovenzijde van het zandpakket omhoog (!).

b. Het gefluidiseerde gebied breidde zich in de meeste proeven vrij snel uit en al gauw ontstond een preferent kanaal door het zandpakket.

c. Na het uitbreken van de jetvloeistof werd de indringdiepte in het verlengde van de jet sterk vergroot. Dit proces ging sneller dan het afbressen van het zand in de gefluidiseerde zone, zie figuur 4.25.

Figuur 4.25. Uitbreken van een jet en vorming van een fluidisatiekuil.
4.4.1 Literatuurstudie ‘Opstarten van een jet’

In deze paragraaf zal een samenvatting weergegeven worden van hoofdstuk II Literatuurstudie ‘Opstarten van een jet’. De jetdruk, benodigd om een jet een preferent kanaal naar de oppervlakte te laten creëren, is niet bekend. In het fluidisatie onderzoek van Weisman (1994) wordt de jetdruk, benodigd om fluidisatie te bewerkstelligen, op een discutabiele wijze bepaald. De fluidisatiepijp met jets wordt geschematiseerd tot een buis met een sleuf, zodat een 2-dimensional situatie ontstaat. Gesteld wordt dat op een bepaalde afstand van de jets het verhang van dat punt tot het zandpakket oppervlak gelijk aan 1 moet zijn. Deze eis is vervolgens 3-dimensionaal doorgerekend. Uit deze nieuwe berekening volgde dat de jetdrukken [mk] zeer hoog zouden moeten worden, namelijk 9 à 14 keer de zandpakkethoogte om het fluidisatieproces te starten (zie ook Hoofdstuk I, literatuurstudie 1, paragraaf jetdruk).

Vervolgens is de eis om de benodigde jetdruk uit te rekenen gewijzigd. Nu wordt er gesteld dat over een bepaald oppervlakte zandpakket, het gemiddelde verhang van de fluidisatiepijp tot het zandoppervlak gelijk is aan 1. De berekende benodigde jetwateroverdruk om het fluidisatieproces op te starten is 4 à 5 keer de bedhoogte. Dit resultaat komt redelijk overeen met de metingen in de schaalproeven. De uitgevoerde berekening is moeilijk te vertalen naar een situatie met enkele jet op de schaal zoals deze wordt toegepast in de baggerpraktijk. In paragraaf 4.4.3 zal de jetdruk die nodig is om het zand volledig homogeen te fluidiseren worden berekend.

Het literatuuronderzoek is uitgebreid met literatuur afkomstig uit de boortunnelbouw en de mijnbouw.

Het WL | delft hydraulics is een meerjarig onderzoek begonnen naar de processen die plaatsvinden bij het boren van tunnels. In deze onderzoekeren eerts is o.a. onderzoek gedaan naar de processen die plaatsvinden tijdens een blow-out. Bij een blow-out breekt de boorvloeiostof door de ondergrond naar de oppervlakte. Hierdoor kan er geen druk meer worden opgebouwd voor het boorschil, zodat het boorproces stilvalt.

In de schaalproeven, BTL 21, is geconstateerd dat bij een blow-out in een zandpakket twee bezwijkmekanisme kunnen worden onderscheiden:

- ongelimiteerde cilinder of bolexpansie
- scheurvorming (=hydraulic fracturing)

In BTL rapport 41, 1998 wordt een case behandeld van een boortunnel van 1 meter diameter, 10 meter onder het maaiveld in een zandlaag. Voor deze situatie wordt via zes verschillende methoden de uitbreekdruk berekend. In het rapport wordt gesteld dat er niet tot een conclusie gekomen kan worden met betrekking tot de druk benodigd om het zandpakket te laten bezwijken.

Ook is de analytische bolexpansie theorie volgens Luger geanalyseerd. In deze theorie werkt de druk in een holte direct op de holtewand. Bij jetwater is dit niet het geval. Uit de berekeningen volgt dat de holtegroei verwaarloosbaar is totdat het zandpakket bezwijkt. Het bezwijken (ongelimiteerde holte groei) treedt op bij een relatief hoge druk in de holte. Naar analogie van deze berekeningen is analytisch de invloed van jetwater in de holte berekend, zie paragraaf 4.4.2.
4.4.2 Analytische afleiding van de water- en de korrelspanningen om een holte

Om inzicht te krijgen in het verloop van de waterspanningen en korrelspanningen om een holte wordt, naar analogie van de afleidingen van Vesic, het spanningsverloop om een holte bepaald. Hierbij wordt uitgegaan van een homogeen, oneindig groot zandpakket met isotrope spanningen, zie figuur 4.26. In alle vergelijkingen wordt de invloed van de hydrostatische waterdruk niet meegenomen. Deze dient bij de te gebruiken jetdruk nog opgeteld te worden. In de afleidingen wordt gesteld dat voor de jet zich een perfect holle bolsymmetrische holte bevindt.

Verloop waterspanningen in een niet gedeformeerd zandpakket

Bij een verzande of niet stromende nozzle deformeert het zandpakket voor de nozzle niet. Hierdoor zal het water door de holtewand voor de nozzle afstromen. Voor een bolvormige holte in een homogeen medium geld volgens de wet van Darcy de volgende vergelijking voor het verloop van de waterspanningen in het zandpakket:

\[
W = \gamma_w \cdot \varphi = \gamma_w \left[\frac{\varphi_0 - \frac{\varphi_0 - \varphi_2}{r_1 - r_0}}{r_0} \right] \\
\frac{\frac{r_0}{r} - 1}{r_1 - r_0}
\]

(4.19)

Voor een grote verhouding van \(r_1 \) tot \(r_0 \) reduceert deze formule tot:

\[
W = \gamma_w \cdot \varphi = \gamma_w \left[\varphi_\infty + \left(\frac{\varphi_0 - \varphi_\infty}{r_0} \right) \frac{r_0}{r} \right]
\]

(4.20)
In onderstaande figuur worden voor verschillende waarden het verloop van de wateroverspanningen gegeven in de radiale richting vanuit de holte:

![Waterspanningen](image)

Figuur 4.27. Verloop van de waterspanningen bij verschillende wateroverspanningen in de holte.

Uit de grafiek blijkt duidelijk dat het invloedsgebied van de nozzle beperkt is. Op een afstand van twee maal de holtestraal is de wateroverspanning gehalveerd. Op 10 maal de holtestraal is de wateroverspanning gedecimeerd.

Debieten bij een niet gedeformeerd zandpakket
Doordat het verloop van de wateroverspanningen bekend is kan het jetdebiet ook berekend worden. Hierbij wordt uitgegaan van de wet van Darcy en een doorstroom oppervlakte van een halve bol, zie figuur 4.28.

![Schematische weergave uitstroom jetwater uit nozzle](image)

Figuur 4.28. Schematische weergave uitstroom jetwater uit nozzle.

In formule vorm geldt:

\[
q = -k \frac{\partial \varphi}{\partial x} \quad \Rightarrow \quad Q = qA = -\frac{1}{2} 4\pi r_{holle}^2 k \left(\frac{\varphi_{holte, overdruk}}{r_{holte}} \right)
\] \hspace{1cm} (4.21)

Voor een wateroverspanning van 2.5 bar \(\varphi_{holte, overdruk} = 25\) mwk en een doorlatendheid \(k\) van ca. \(10^{-9}\) m/s volgt een debiet uit een nozzle van 6 cm van 4.7 \(\times 10^{-2}\) liter/s. Dit is zeer gering en daardoor is de invloed op het leegzuigproces te verwaarlozen.

Men mag niet stellen dat waar de wateroverspanningen groter zijn dan de oorspronkelijke korrelspanningen het zand gefluidiseerd is. De wateroverspanningen worden namelijk overgedragen aan de korrelspanningen, zodat deze ook toenemen.

Conclusie verloop wateroverspanningen
Uit deze beschouwing blijkt dat de invloedsafstand van de wateroverspanningen zeer gering is. Op 10 maal de nozzlediameter is de wateroverspanning gedecimeerd. Tevens
is het jetdebet zeer beperkt, zodat het nagenoeg geen invloed heeft op het leegzuigproces. Hiermee wordt de aannamer dat de jets moeten spuiten om de invloedsafstand te vergroten bevestigd.

Analytische beschrijving verloop korrelspanningen in de buurt van een holte

Om inzicht te krijgen in het verloop van de korrelspanningen om een holte zijn vier situaties beschouwd. Hierbij is wederom uitgegaan van een oneindig groot homogen medium, waarin zich een bolsymmetrische holte bevindt, zie figuur 4.28. Met deze analyse wordt inzicht verkregen in de afmetingen van de gefluidiseerde zone bij het opvoeren van de jetdruk.

De vier beschouwde situaties zijn:

a. Initiële korrelspanningen om een holte (elastische oplossing).

b. Initiële korrelspanningen om een holte (elasto-plastische oplossing).

c. Korrelspanningen om een holte bij een wateroverspanning in een holte (elastische oplossing).

d. Korrelspanningen om een holte bij een wateroverspanning in een holte (elasto-plastische oplossing).

Voor het elastische gedeelte in de afleidingen is uitgegaan van de wet van Hooke. Voor het bezwijkcriterium is het Mohr-Coulomb criterium gebruikt. Als randvoorwaarde is gesteld dat de radiale korrelspanningen aan de holtewand nul zijn en in het oneindige gelijk aan de isotrope spanning [q]. Tevens is in deze afleidingen enkel het spanningsverloop radiaal en tangentieel uitgerekt. Het verloop van de holtegroei is buiten beschouwing gelaten vanwege de geringe omvang en de complexiteit, zie hiervoor Luger (1982).

De afleidingen en gebruikte formules zijn in bijlage A tot en met D uitgewerkt.

ad a.b. Initiële korrelspanningen om een holte

Voor een zandpakket met een isotrope korrelspanning van 100 kPa (ca. 15 m zand) is in onderstaande figuur de elastische en de elasto-plastische oplossing weergegeven. De straal van de holte is op 1 gesteld en de hoek van inwendige wijziging op 30°. Voor grotere holten neemt de invloedsafstand rechtop aan.

Elastische oplossing (1)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>tangentiele korrelspanningen</td>
<td>radial korrelspanningen</td>
</tr>
</tbody>
</table>

Elasto-plastische oplossing (2)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>met een plastische zone tot ca. 2.5 cm</td>
<td></td>
</tr>
</tbody>
</table>

Figuur 4.29-a. Verloop van de korrelspanningen bij de elastische oplossing.
Figuur 4.29-b. Verloop van de korrelspanningen bij de elastisch-plastische oplossing.
Uit de oplossing blijkt dat voor een holte met een straal van 3 cm het invloedsgebied op de korrelspanningen ongeveer 20 cm is. Tevens blijkt dat de tangentiele korrelspanning groter is dan de radiale spanning. Bij de elastische oplossing geldt dat de maximale ringspanning (tangentiële spanning) 150 kPa is. Dit reduceert bij de elasto-plastische oplossing tot 130 kPa.

ad c.d. Korrelspanningen om een holte met een toenemende jetdruk

Bij de afleidingen met de wateroverspanningen is uitgegaan van de elastische oplossing. Door het opvoeren van de waterspanningen verlaagd aan de holte wand de tangentiële spanning. Bij een wateroverspanning van 150 kPa is de tangentiële spanning om de holtewand nul. Dit betekent dat de binnenste korrelspanningsvrij liggen en enkel "gedragen" worden door de spanningsgradiënten.

Vervolgens is aangenomen dat de grond lokaal bezwijkt en dat de tangentiële en radiale spanningen aan de holtewand gelijk aan nul zijn. Bij het verder opvoeren van de waterspanningen groeit de plastische zone, zie figuur 4.30 a-h (volgende pagina). De plastische zone is duidelijk zichtbaar bij de oplossing met de elasto-plastische berekening. In de figuren is het verloop van de waterspanningen, de radiale – en de tangentiële effectieve korrelspanningen en de totale grondspanningen aangegeven.

Conclusie verloop korrelspanningen

Bij een exact bolsymmetrische benadering vanuit een holte blijkt dat er bij het aanzetten van de jet effectieve korrelspanningen om de holte blijven bestaan onafhankelijk van de jetdruk. Dit betekent dat er geen fluidisatie optreedt in de directe omgeving van de jet. Alle waterspanningen worden vergedragen op de korrelspanningen, zodat deze niet gelijk aan nul kunnen worden.

In de praktijk zal de bezweken zone een voorkeursrichting naar boven hebben en dus niet mooi bolvormig zijn. Dit wordt verklaard door de voorkeursrichting van het water en de zwaartekracht, waardoor de korrelspanningen naar de diepere toe groter worden. Tevens hebben de korrelspanningen een vaste horizontale en verticale component en zijn dus niet isotroop. Deze invloeden kunnen in een numeriek pakket worden geanalyseerd.

De plastische zone is zeer beperkt van omvang bij een jetdruk van 800 kPa heeft de plastische zone een straal van ca. 40 cm. De waterspanningen zijn bij deze straal al afgenomen tot 60 kPa. Dit betekent dat het invloedsgebied van het jetwater zeer beperkt is op de korrelspanningen en waterspanningen.

Met deze berekeningen wordt de aannname bevestigd dat de jets uit moeten uitbreken om het fluidisatieproces in gang te zetten. Na het uitbreken van de jets zal de invloedsafstand van de jets ook vergroot worden door erosieprocessen, zie figuur 4.25.
Elastische oplossing (holte straal 3 cm)(a):

a) wateroverspanning 0 kPa

b) wateroverspanning 50 kPa

c) wateroverspanning 150 kPa

d) wateroverspanning 200 kPa (onmogelijke oplossing door tangentiele trekspanningen)

Elasto-plastische oplossing (d):

e) wateroverspanning 200 kPa

f) wateroverspanning 300 kPa

g) wateroverspanning 400 kPa

h) wateroverspanning 800 kPa

A tangentiele korrelspanningen, B radiale korrelspanningen, C waterspanningen, D isotope grondspanning

Figuur 4.30 a-h. Verloop water en korrelspanningen om een holte bij een toenemende jetdruk.
4.4.3 Analytische afleiding van het bezwijkmechanisme

In deze paragraaf zullen met de afgeleide vergelijkingen uit paragraaf 4.2 verschillende bezwijkmechanismen worden doorgerekend. De volgende bezwijkmechanismen worden onderscheiden:

a. Optreden van fluidisatie in het gehele zandpakket.
 b. Optreden van grondbreuk in het zandpakket.
 c. Optillen van het gehele zandpakket ten gevolge van de jets.

In principe zijn de afgeleide water en korrelspanningen in paragraaf 4.2 voor een homogene, oneindig, isotroop belast materiaal. Deze situatie wordt vertaald naar het beun door te stellen dat de isotrope spanning gelijk is aan de isotrope spanning in het beun. Het verschil in deviatorspanningen wordt verwaarloosd.

Door deze analyses wordt inzicht verkregen in de invloed van verschillende parameters in het ontwerp van een jetsysteem in het beun. Lokaal bezwijken door middel van scheurvorming in het zandpakket wordt in deze beschouwing niet meegenomen.

ad a. Analytische afleiding benodigde jetdruk voor fluidisatie

Gesteld wordt dat elke puntbron (jet) in een denkbeeldig verticale cilinder sput. Deze cilinder heeft een equivalent oppervlakte afhankelijk van het aantal jets in het beun.

Het stroombeeld in de denkbeeldige cilinder wordt als volgt voorgesteld, zie figuur 4.31:

1. Een rechtlijnig stromend gedeelte, \(z > h' \).
2. Een bilsymmetrisch stromend gedeelte, \(l > r > p \).
3. Een rechtlijnig stromend gedeelte, \(h'' > z > 0 \).

In bijlage E wordt de volgende formulering afgeleid om de drukval over het zandpakket te berekenen.

\[
\Delta \phi_{\text{tot}} = -\frac{Q}{\pi l^2 k} (\text{b.k. zandpakket}) - \frac{7Q}{6 \pi k} \left(\frac{1}{p} - \frac{1}{l} \right)
\]

(4.22)

Minimiseren restlading “Volvox Terranova”

56
H4 Het jetsysteem
De straal p kan de equivalente straal zijn van de bel die ontstaat voor de nozzle. De jetdruk bij de opening is de effectieve jetdruk die in de holte heerst. Deze druk is lager dan de uitstroomdruk voor de nozzle door energie dissipatie in de holte door het in beweging houden van het mengsel in de holte. De toename van de holtestraal, ten gevolge van de jetdruk, is wederom verwaarloosd.

In deze analyse is ervan uit gegaan dat er geen preferente kanalen of inhomogeniteiten in het zandpakket aanwezig zijn.

In het bovenste deel van de beschouwde cilinder met rechte stroomlijnen treedt fluidisatie op als het verhang gelijk is aan het ondergedompelde gewicht van de korrels.

\[Q = q A = -\pi l^2 k \frac{\partial \varphi}{\partial z} = -\pi l^2 k 1 \] \hspace{1cm} (4.23)

Deze eis kan ingevuld worden in vergelijking 4.14:

\[\Delta \varphi_{tot} = b.k. zandpakket + \frac{7}{6} \left(\frac{l^2}{\rho} - l \right) \] \hspace{1cm} (4.24)

Uit deze vergelijking volgt duidelijk de invloed van de puntbron ten opzichte van de 1-dimensionale fluidisatie eis, paragraaf 4.3.3. In de 1-dimensionale fluidisatie eis wordt gesteld dat de overdruk van het water ongeveer gelijk is aan de pakkethoogte.

Voor de volgende gegevens is de benodigde jetdruk uitgerekend om de korrelspanningen in het bovenste gedeelte van de cilinder op te heffen en daarmee fluidisatie te initiëren:

<table>
<thead>
<tr>
<th>straal nozzle [p]</th>
<th>0.03 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equivalent straal [l]</td>
<td>7 m² => straal [l] 1.5 m</td>
</tr>
<tr>
<td>Zandpakket hoogte</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Dit betekent een wateroverdruk van:

\[\Delta \varphi_{tot} = 15 + \frac{7}{6} \left(\frac{1.5^2}{0.03} - 1.5 \right) \approx 100 \text{ mwk} \approx 10 \text{ bar} \] \hspace{1cm} (4.25)

Bij een verhouding van $l/p >$ ca. 10 kan bovenstaande formule vereenvoudigd worden tot:

\[\Delta \varphi_{tot} = H + \frac{7l}{6} \left(\frac{l}{p} \right) = 15 + \frac{7}{6} \left(\frac{1.5^2}{0.03} \right) \approx 100 \text{ mwk} \approx 10 \text{ bar} \] \hspace{1cm} (4.18)

Bij deze wateroverdruk zal in het zandpakket fluidisatie ontstaan doordat het verhang in het bovenste gedeelte van de cilinder gelijk is aan het gewicht van de korrels.

Minimaliseren restlading "Volvox Terranova"
H4 Het jetsysteem
In grafieken, figuur 4.32, is voor verscheidene verhoudingen tussen nozzle diameter en equivalente oppervlakte en voor verscheidene zandpakkehooftgen de benodigde jetdruk voor fluidisatie aangegeven:

Uit de figuur blijkt duidelijk dat bij verdubbeling van de effectieve diameter van de nozzle (van verhouding 75 naar 37.5) de benodigde druk voor fluidisatie halveert. Dit geldt ook bij een verdubbeling van het aantal jets in een beun, zodat de equivalente oppervlakte halveert. Tevens blijkt dat de invloed van een wijziging in de zandpakket hoogte een beperkte invloed heeft op de benodigde jetdruk.

ad b. Analytische afleiding uitbreken nozzle door grondbreuk
De druk van de nozzle kan zo groot zijn dat er grondbreuk kan optreden. Hiervoor wordt gesteld dat een kokkervormige moot grond verticaal uit het zandpakket getild wordt. Deze moot grond wordt opgetild ten gevolge van de jetdruk onder de moot grond. De weerstand van deze cilinder wordt gevormd door het eigen gewicht en de wandwrijving met het overige zand.

Gesteld wordt dat de wrijving in de zandkolom een factor is van de horizontale korrelspanningen. Om deze factor te bepalen wordt het Mohr-Coulomb criterium gebruikt. De horizontale korrelspanningen zijn afhankelijk van de K₀-factor en het verhang in het zandpakket. Hoe groter het verhang hoe kleiner de effectieve korrelspanningen, zie ook de voorgaande paragraaf.

Voor de belasting ten gevolge van de jetdruk is de analytische afleiding voor de korrelspanningen geïntegreerd over de straal. Hierbij is wederom aangenomen dat de holtegroei te verwaarlozen is.

De diameter van de cilinder is variabel. Door voor verschillende stralen [r] het evenwicht te berekenen kan de kritieke straal berekend worden.

Voor evenwicht geldt:

\[G_{gewicht(r)} + W_{wrijving(r)} = F_{korrel(r)} + F_{water(r)} \] \hspace{1cm} (4.26)

Minimaliseren restlading "Volvox Terranova"
H4 Het jetsysteem
58
In bijlage F worden de gebruikte formules afgeleid.

Voor de volgende situatie is de uitbreekdruk bepaald:

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Grootheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>zandpakket hoogte</td>
<td>H</td>
</tr>
<tr>
<td>initiële holtestraal</td>
<td>r₀ (p)</td>
</tr>
<tr>
<td>hoek van inwendige wrijving</td>
<td>Φ</td>
</tr>
<tr>
<td>volumieke massa</td>
<td>(Y_{sat} - Y_{w})</td>
</tr>
<tr>
<td>equivalente straal</td>
<td></td>
</tr>
<tr>
<td>straal van uitebreken</td>
<td>r</td>
</tr>
</tbody>
</table>

Table 4.3. Dimensies van verschillende grootheden bij grondbreuk.

De resultaten van de berekening zijn weergegeven in onderstaande grafieken. Hierbij is wederom gevarieerd met de zandpakkethoogte en de equivalente oppervlak van een nozzle.

![Jetdruk benodigd voor grondbreuk](grafiek1.png)

Figuur 4.33. Benodigde jetdruk voor grondbreuk.

Uit de berekening volgt dat de wrijving langs de cilinder wand een orde 100 groter is dan de overige grootheden. De wrijving is afhankelijk van de effectieve korrelspanningen. Hierdoor bezwijkt de kolom pas als het verhang in het zandpakket groot is, zodat de effectieve korrelspanningen sterk reduceren. Dit betekent dat grondbreuk optreedt als het zandpakket bijna gefluidiseerd is. Hierdoor is de invloed van de zandpakket hoogte wederom gering.

ad c. Optillen gehele zandpakket

Het optillen van het gehele zandpakket met enkele nozzle is een zeer onwaarschijnlijke gebeurtenis. Dit kan verklaard worden uit de vorige paragrafen. Hierin wordt gesteld dat als de wrijving nagenoeg nul is een zandkolom kan worden opgetild. Hierbij wordt een kolom met een straal van ordegrootte 25 cm opgetild. De spanningen in de omgeving van de holte nemen radiaal zeer sterk af, terwijl de spanning ten gevolge van het gewicht radiaal constant is. Hierdoor is het optillen van het zandpakket een onmogelijk bezwijkcriteria. Dit geldt ook bij lagere zandpakket hoogten.

Conclusie analyse bezwijkmechanisme homogene fluidisatie

De benodigde jetdruk berekend met voorgaande schematisaties is zeer hoog. Uit de berekeningen volgt dat een jetdruk van ongeveer 10 bar plus 1.5 bar hydrostatische druk benodigd is om fluidisatie te initiëren. Deze waarden gelden ongeveer voor de huidige situatie in de “Volvox Terranova”. Dit betekent dat er een jetdruk nodig is van ca. 7.5 maal de zandpakket hoogte (15m).

Uit de berekeningen kan geconcludeerd worden dat de volgende parameters veel of weinig invloed hebben op de jetdruk benodigd voor homogene fluidisatie of grondbreuk. Uit de schematisatie van het fluidisatieprobleem volgt dat,

<table>
<thead>
<tr>
<th>Grootheid</th>
<th>Invloed op benodigde jetdruk</th>
</tr>
</thead>
<tbody>
<tr>
<td>zandpakket hoogte</td>
<td>minimaal</td>
</tr>
<tr>
<td>aantal jets</td>
<td>zeer sterk</td>
</tr>
<tr>
<td>afmetingen holte voor jet</td>
<td>zeer sterk</td>
</tr>
<tr>
<td>pakking (doorlatendheid)</td>
<td>minimaal</td>
</tr>
<tr>
<td>zandkorrel diameter (doorlatendheid)</td>
<td>minimaal</td>
</tr>
</tbody>
</table>

Tabel 4.4. Invloed van diverse grootheden op jetdruk.

Uit de analyse volgt dat het aantal jets zeer belangrijk is. Het aantal jets bepaald de equivalente oppervlakte per jet. Doordat de wateroverspanningen bolsymmetrisch sterk afnemen is de equivalente oppervlakte van de jet het maatgevende criterium.

In de afleiding van de benodigde jetdruk voor fluidisatie zijn de afmetingen van de holte voor de jet ook belangrijk. Met een bolsymmetrische analytische afleiding is gesteld dat de groei van de holte ten gevolge van de jetdruk verwaarloosbaar is. Andere processen worden echter buiten beschouwing gelaten. Er kan bijvoorbeeld lokale scheurvorming in de hollewand optreden, waardoor de afmetingen van de holte toenemen. De vorming van kleine scheuren zorgt voor een preferent kanaal door het zandpakket. In de praktijk worden deze preferente kanalen ook waargenomen. Dit proces is minder afhankelijk van de onderlinge afstand van de jets.

Door het buiten beschouwing laten van deze processen wordt gesteld dat de berekenende jetdruk aan de hoge kant is. Om exact inzicht te krijgen in de werkelijk benodigde jetdruk wordt geadviseerd om dit per praktijk situatie te onderzoeken of op laboratorium schaal dit verder te analyseren.

De invloed van de doorlatendheid is niet zo groot doordat gesteld wordt dat de gebruikte nozzle diameters in het beun relatief groot zijn, zodat het benodigde debiet om fluidisatie te initiëren makkelijk gejet kan worden.
4.4.4 Hydraulic fracturing

Scheurvorming in het zandpakket kan vergeleken worden met scheurvorming in staal of klei. Echter in het geval van een zandpakket zijn de korrel diameters van dezelfde orde grootte als de afmetingen van de scheurtip. Hierdoor is een continuüm benadering met een homogeën materiaal discutabel. Tevens is zand een non-cohesief materiaal. Door deze complicaties zijn de rekenmodellen ontwikkeld voor klei en staal niet zonder meer toe te passen op zand.

In Van Kesteren et al. (1998) wordt een uitgebreide uiteenzetting van scheurvorming in metaal en klei gegeven. Hierbij worden verschillende theorieën over scheurvorming beschreven.

In het algemeen wordt een scherpe scheur voorgesteld met aan de voorzijde een plastische, bezweken zone. De groeisnelheid van de scheur is met name afhankelijk van het consolidatiegedrag van het materiaal. De mate van toestromen van water richting de scheurtip en de bezweken, plastische zone voor de scheurtip bepalen de groeisnelheid van de scheur.

![Diagram](image)

Figuur 4.34. Scheurtip met plastische zone.

Door de complexiteit van de theorie en de geringe kennis omtrent de scheur vorming in zand zal in dit verslag niet verder op dit onderwerp worden ingegaan.

Gesteld wordt dat er scheur vorming kan optreden nadat de effectieve korrelspanningen op de holtewand gelijk aan nul zijn. Bij een jetdruk ongeveer gelijk aan de bedhoogte is dit het geval, zie figuur 4.30-c. Treedt er scheur vorming op door lokale verstoringen dan zijn voorgaande theorieën niet meer representatief. In het geval dat er scheur vorming optreedt wordt de bolsymmetrische aanname van het verloop van de waterspanningen verstoord. Hierdoor is het mogelijk dat er wel holtegroei plaatsvindt.
4.4.5 Conclusie opstartdruk en proces bij het opstarten van een jet

In deze paragraaf is via een bolsymmetrische analytische berekening vastgesteld dat de invloedsafstand van een jet zeer beperkt is als het zandpakket voor de jet niet bezwijkt, omdat:

- De waterspanningen voor de jet omgekeerd evenredig afnemen met de afstand.
- Bij het toenemen van de waterspanningen in een holte de effectieve korrelspanningen aan de holtewand reduceren tot nul, maar in de directe omgeving van de holte niet afnemen tot nul (geen fluidisatie).
- De holtegroeit bij het toenemen van de waterspanning in een holte verwaarloosbaar is.
- Het jetdebit hierdoor ook verwaarloosbaar is.

De volgende bezwijkmechanismen van de grond zijn te onderscheiden:

a. Bewerkstelligen van homogeneous fluidisatie of grondbreuk in het zandpakket.
 b. Scheurvorming vanuit de holte (=hydraulic fracturing).

ad a Homogene fluidisatie of grondbreuk

Voor homogeneous fluidisatie is een totale jetdruk berekend van ca. 11.5 bar. Hierbij is uitgegaan van een situatie zoals deze op de “Volvox Terranova” voorkomt; een zandpakkethoogte van 15 m, nozzle diameter van 6 cm en een equivalente jet oppervlakte van 7 m². Dit betekent een jetdruk – zandpakket hoogte verhouding van 7.5. In de proeven (Weisman 1994) is voor een 2-dimensionale situatie de jetdruk – zandpakket hoogte verhouding 4 à 5. De berekende jetdruk is ten gevolge van de bolsymmetrische benadering met name afhankelijk van:

- De onderlinge afstand van de jets.
- De lokale holte groei voor de jet.

ad b Hydraulic fracturing

Uit de analytische berekening van het korrelspanningsverloop om een holte volgt dat vanaf een totale jetdruk [mwk] van 2 maal de zandpakkethoogte de korrels aan de holtewand voor de nozzle gedragen worden door de spanningsgradiënten. Vanaf deze jetdruk kan, via inhomogeniteiten in het zandpakket, scheurvorming richting het zandoppervlak optreden.

Concluderend kan gesteld worden dat de jetdruk om een jet op te starten niet goed berekend kan worden. Vanaf een totale jetdruk van 2 maal de zandpakkethoogte (ondergrens) kan scheurvorming optreden en vanaf 11.5 bar bezwijkt het gehele zandpakket (bovengrens).
Leegzuigproces in beun
Na de vorming van een preferent kanaal door het zand pakket zal het fluidisatieproces in de buurt van de leegzuigdeur op gang komen. Op dit moment kan begonnen worden met het afzuigen van het gevormde zandwater mengsel. Door het afschuiven van het zandpakket richting de leegzuigdeur zal de doorgang in het preferente kanaal verstoord worden, zodat in het zandpakket op verschillende plaatsen 'verstoppingen' ontstaan. Hierdoor wordt in het zandpakket op verschillende plaatsen een jetdruk opgebouwd die de korrelspanningen verlagen en bijdragen aan het afschuiven en fluidiseren van het zandpakket.

Proces opstarten leegzuigproces (bulkslag)

A (ongewenst) B (gewenst)

![Diagram](attachment:diagram.png)

Figuur 4.35. Opstarten leegzuigproces.
H5 Bepaling ordegrootte variabelen in het leegzuigsysteem

Per onderdeel van het leegzuigsysteem zal een benadering gegeven worden van de functionele eisen en de benodigde afmetingen. Eerst zal de plaats en de oriëntatie van de leegzuigopening worden afgeleid. Vervolgens wordt met behulp van de analyse in het vorige hoofdstuk een idee verkregen van de benodigde debieten en jetdrukken tijdens het leegzuigen. Om de diameter van de nozzle’s te bepalen wordt een fictieve pompkromme voorgesteld, waaruit afgeleid kan worden hoe de verdeling van de nozzle diameters in een beun eruit kan zien. De gebruikte oppervlak van het beun, afzuigdebit en de hoogte van het zandpakket zijn vergelijkbaar met de situatie op de “Volvox Terranova”.

5.1 Plaats, afmetingen en oriëntatie van de leegzuigopening

De plaats van de leegzuigopening in een beunsectie
Per beunsectie dient een leegzuigopening aanwezig te zijn. Bij meerdere leegzuigopeningen zal de zuigkracht zich concentreren op de dichtst bij de pomp gelegen opening. Hierdoor is het beter, en voldoende, om met een leegzuigopening per beunsectie af te zuigen. Gesteld wordt dat het meer energie en jetwater kost om zand weg te spoelen dan zand, ten gevolge van de zwaartekracht, af te laten schuiven in de richting van de leegzuigopening. Om de hoeveelheid weg te spoelen zand te minimaliseren zal de deur zich in het midden van de beunsectie moeten bevinden en zo laag mogelijk moeten liggen.

De afmetingen van de leegzuigopening
Gesteld wordt dat het zandwater mengsel met zo min mogelijk verstoring in het leegzuigkanaal dient te stromen. Om de stroomlijnen zo vloeiend mogelijk te laten verlopen zal de oppervlakte van de leegzuigopening iets groter dienen te zijn dan de doorstroom oppervlakte van het leegzuigkanaal, in verband met de contractie die optreedt bij het naar binnen stromen van het mengsel. De doorstroom oppervlakte, en daarmee de mengsel snelheid, dient zo te zijn dat het zand niet bezinkt.

Opgezegmerkt dient te worden dat ten gevolge van turbulentie het zandwater mengsel in een homogenere suspensie wordt gebracht. Voldoende turbulentie is dus met name gewenst als het instromende mengsel niet homogeen is.

De oriëntatie van de leegzuigopening

In principe dient de restlading zo laag mogelijk te zijn, omdat dit loze ballast is. Uit de proevenserie blijkt dat een horizontaal georiënteerde leegzuigopening goed functioneert.

Afhankelijk van overige ontwerpeisen zal een voorkeur voor een van beide opties blijken. Bij een omlaag georiënteerde leegzuigopening, bijvoorbeeld een buis, hoeft de bedieningsklep niet direct achter de opening gesitueerd te zijn. Bij een horizontaal georiënteerde leegzuigopening is dit wel nodig, in verband met de kans op verzurende.

5.2 Het jetdebiet

5.2.1 Het totaal benodigde jetdebiet tijdens het leegzuigen

Tijdens het afzuigen wordt het zandpakket verdund tot een verpompbaar mengsel. De jets zullen voldoende debiet moeten spuiten om deze verdunning te bewerkstelligen.

Gesteld wordt dat het zand afshuift of afbrest in de richting van de leegzuigdeur met een dichtheid in de buurt van de kritieke dichtheid. Door in de buurt van de leegzuigdeur te jetsen, ontstaat voor de deur een homogeen zandwater mengsel dat goed verpompbaar is voor de grondpomp. Met name in het begin van het leegzuigproces zal het afschuivende zand een hoge dichtheid hebben. In deze fase is het belangrijk om lokaal te verdunnen, in een later stadium is de concentratie lager en hoeven deze jets in principe niet meer te spuiten.

De overige jets zijn nodig om de korrelspanningen te verkleinen. Dit betekent dat deze jets in principe een klein debiet hoeven te leveren. Dit is maar ten dele waar. Het zand wordt uit het beun gezogen, waardoor het zandniveau verlaagt. Door dit volume met water aan te vullen kan de pomp met minder energie het beun leegzuigen. Hierdoor heeft de grondpomp een grotere perscapaciteit. Nog belangrijker is dat door het aanvullen van het beun met jetwater de kans op het aanzuigen van lucht wordt voorkomen. Als dit gebeurt kan de grondpomp stilvallen, zodat de gehele zuig- en persleiding verzandt.
In de regel zal, voor het afzuigen, het zand in het beun niet volledig gefluïdeerd zijn. Dit komt doordat het proces tot volledige fluidisatie lang duurt en er een grote volume-vergroting optreedt. Een zandbed met een hoogte van 15 meter en een porositeit van 40% heeft in een volledig gefluïdeerde vorm een hoogte van ca. 22.5 meter en een porositeit van 60%. Gesteld wordt dat, voorafgaand aan het afzuigen, het toegevoerde debiet ten behoeve van de verdunning verwaarloosbaar is. Hierdoor moet er gelden dat de verandering van het volume vaste stof (zonder poriën) in het beun, gelijk is aan het volume vaste stof (zonder poriën) dat door de pomp stroomt per tijdseenheid:

\[
\frac{\Delta V}{\Delta t} = C_{\text{beun}} = C_{\text{mengsel}} \cdot Q_{\text{pomp}}
\]

(5.1)

Stel dat de kritieke dichtheid van het zand in het beun 1.9 ton/m³ \([\rho_n]\) is. Dit betekent een volume concentratie van het zand van \(C_{\text{beun}} = 54.5\%\).

Indien de transportfactor in de leiding op 1 gesteld wordt, kan de volgende berekening gemaakt worden:

De transportfactor verrekenen de aanwezige/gemeten concentratie in een leiding met de werkelijk afgevoerde concentratie. In de praktijk treedt er namelijk een vertraging op van de zandkorrelsnelheid ten opzichte van de waterstroomsnelheid.

\[
\frac{\Delta V}{\Delta t} \text{ bestaat voor } (1-C_{\text{beun}}) \cdot 100\% \text{ uit water, terwijl } Q_{\text{pomp}} \text{ voor } (1-C_{\text{mengsel}}) \cdot 100\% \text{ aan water bevat. Het verschil moet worden toegevoegd als jetwater.}
\]

\[
Q_{\text{jet}} = \left(1 - \frac{C_{\text{mengsel}}}{C_{\text{beun}}}\right) \cdot Q_{\text{pomp}}
\]

(5.2)

Voor verschillende mengselconcentraties kan nu de verhouding tussen jetdebit en pompdebiet berekend worden.

<table>
<thead>
<tr>
<th>(p_m) [ton/m³]</th>
<th>(C_{\text{mengsel}}) [%]</th>
<th>water [ton/m³]</th>
<th>zand [ton/m³]</th>
<th>(Q_{\text{jet}} / Q_{\text{pomp}})</th>
<th>(Q_{bw} / Q_{\text{pomp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>24.2</td>
<td>758</td>
<td>641</td>
<td>0.55</td>
<td>0.44</td>
</tr>
<tr>
<td>1.5</td>
<td>30.3</td>
<td>697</td>
<td>803</td>
<td>0.44</td>
<td>0.55</td>
</tr>
<tr>
<td>1.6</td>
<td>36.4</td>
<td>636</td>
<td>964</td>
<td>0.33</td>
<td>0.66</td>
</tr>
<tr>
<td>1.7</td>
<td>42.4</td>
<td>576</td>
<td>1124</td>
<td>0.22</td>
<td>0.77</td>
</tr>
<tr>
<td>1.8</td>
<td>48.5</td>
<td>515</td>
<td>1285</td>
<td>0.11</td>
<td>0.88</td>
</tr>
<tr>
<td>1.9</td>
<td>54.5</td>
<td>455</td>
<td>1445</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Gesteld wordt dat de jets in de directe omgeving van de leegzuigdeur in het debiet ten behoeve van verdunning moeten voorzien.
Bij een afzuigdebiet van \(3 \text{ m}^3/\text{s}\) kan het benodigde jetdebiet berekend worden. De kritieke dichtheid wordt gesteld op 1900 \(\text{kg/m}^3\). Bij een afzuigdebiet van 1800 \(\text{kg/m}^3\) betekent dit een lokaal benodigd jetdebiet van ca. \(3 \text{ m}^3/\text{s}\). Als het zand met een lagere dichtheid toestroomt zal de concentratie van het verpompbare mengsel ook lager zijn.

Een andere oplossing is om te kiezen voor een kleiner debiet in de buurt van de leegzuigoening en een reguleerbaar debiet in het leegzuigkanaal. Het debiet in de buurt van de leegzuigdeur hoeft dan alleen te zorgen dat het mengsel homogeen in suspensie blijft. Vervolgens kan door de jets in het leegzuigkanaal het mengsel verdund worden tot de gewenste dichtheid. Door de jets in het leegzuigkanaal hoeft geen gebruik gemaakt te worden van de zeeafsluiter, zodat er een gesloten systeem blijft waarin jetdruk opgebouwd kan worden (geen zandverliezen).

Alternatieve plaats inbreng jetwater

-zandwater mengsel in beun \(\approx 1.9 \text{ ton/m}^3\)
-jetwater inbreng met gewenste jetdruk

Figuur 5.1. Alternatieve plaats inbreng jetwater ten behoeve van verdunnen zandwater mengsel.

Het totale debiet benodigd om het water niveau in het beun constant te houden is \(3 \text{ m}^3/\text{s}\). Dit kan ingebracht worden via de jets of via een alternatieve methode.
5.2.2 Het jetdebiet ten behoeve van het verminderen van de korrelspanningen

Om de korrelspanningen te verminderen wordt een stroom gecreëerd door het zandpakket. Als de korrelspanningen in zijn geheel zijn opgeheven is het zandpakket gefluidiseerd. In hoofdstuk 4, paragraaf 3.4, is gesteld dat voor een goede fluidisatie een debiet van 5 maal de waarde van de doorlatendheid nodig is. Voor fluidisatie, tot een porositeit van 60 % en 45%, is voor bolvormige korrels met een diameter van 200 en 1000 μm het jetdebiet bepaald, zie ook figuur 4.16 en 5.2.

<table>
<thead>
<tr>
<th>korreldiameter</th>
<th>oppervlakte snelheid [cm/s]</th>
<th>jetdebiet beunsectie [m³/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 μm</td>
<td>1000 μm</td>
<td></td>
</tr>
<tr>
<td>0.06 cm/s</td>
<td>1.4 cm/s</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 5.2. Berekend jetdebiet per beunsectie.

![Figuur 5.2. Jetdebiet per beunsectie voor het verlagen van de korrelspanningen.](image)

Het blijkt dat het benodigd jetdebiet voor fluidisatie sterk afhankelijk is van de zandsoort en de korreldiameter. Hierdoor dient in principe een grote variatie mogelijk te zijn van het jetdebiet voor de fluidisatie.

In een beun is de verdeling van de jets en de nozzle diameter van die jets niet variabel. Hierdoor is het sturen van het debiet alleen mogelijk via een wijziging in de jetdruk. Dit betekent dat bij verschillende zanden het beste met verschillende jetdrukken (=toerentalen) gewerkt kan worden.

Het theoretisch minimale jetdebiet om fluidisatie te bereiken, is het debiet waarbij de dichtheid van het zandpakket de kritieke dichtheid heeft (porositeit ca. 45%). In Singapore wordt een zand opgezogen met een D₅₀ van ca. 600 tot 1000 μm. Afhankelijk van de vormfactor van de korrels kan de diameter van het zand omgerekend worden naar bolvormige korreldiameters. In de praktijk wordt voor de vormfactor vaak een waarde van 0,8 gebruikt (Van der Schrieck 1999). Hierdoor is het theoretisch minimale jetdebiet om fluidisatie te bereiken --- m³/s tot --- m³/s (Dₖorrel = 480 en 800 μm), zie ook figuur 5.2.
5.3 De benodigde jetdruk

5.3.1 De benodigde jetdruk in de opstart fase van het leegzuigproces

In de beginfase is een zeer hoge jetdruk nodig om het fluidisatie proces op te starten. Niet elke jet hoefde deze hoge jetdruk te hebben. Alleen de jets in de buurt van de leegzuigopening. Zij dienen te sputten om in de beginfase van het leegzuigproces de kans op complicaties te verkleinen.

De jets buiten de directe omgeving van de leegzuigdeur hoeven slechts de korrelspanningen op te heffen. Dit betekent dat de jets in principe een klein debiet hoeven te leveren. Maar, zoals gesteld in de vorige paragraaf moeten de jets wel water geven om het fluidisatie proces in gang te zetten en om het bovenwater te genereren.

In hoofdstuk 4, paragraaf 4.4.3 is via een schematisatie berekend dat een jetdruk in de orde van 11.5 bar nodig is. Tevens wordt gesteld dat deze jetdruk hoogstwaarschijnlijk hoger is dan de werkelijk benodigde jetdruk. Door meer jets in het beun te plaatsen zal de jetdruk benodigd voor het goed opstarten van het leegzuigproces sterk afnemen. In de praktijk wordt ook wel een vuistregel van ca. 4 maal de bedhoogte aangehouden. Dit betekent een jetdruk van 4 maal 15 meter is 60 [mwk] of 6 bar. Deze vuistregel is bepaald door de 1-dimensionale fluidisatie voorwaarde te vermenigvuldigen met een veiligheidscoëfficiënt van twee.

5.3.2 De benodigde jetdruk tijdens het leegzuigen

In hoofdstuk 4, paragraaf fluidisatie, is afgeleid dat de jetdruk tijdens het leegzuigen minimaal dient te zijn. Hierdoor wordt met zo min mogelijk vermogen het effectiefst gefluidiseerd en de korrelspanningen opgeheven.

Tijdens het leegzuigen verlaagt het zandniveau van 15 meter naar nul meter zand. Hierdoor wijzigt ook de tegendruk voor de jet van ca. 3 bar tot 1,5 bar bij een beun vol met een zandwater mengsel met een dichtheid van 1,9 tot 1,0 ton/m³, en 0 bar bij een volkomen leeg beun. Door deze afname van de jetdruk zal de effectieve jetdruk toenemen en daarmee ook de uitstroomsnelheid en het jetdebiet.

In ogenschouw moet genomen worden dat in de beginfase van het afzuigen het zand relatief gemakkelijk in de leegzuigopening stroomt. Bij een lager zandniveau wordt het belangrijker dat het zandpakket goed gefluidiseerd is of dat de korrelspanningen sterk verlaagd zijn, zodat het zand gemakkelijk in de richting van de leegzuigdeur schuift/stroomt.

Arbitrair wordt gesteld dat een overdracht van 1 bar voldoende is om het fluidisatieproces in gang te houden. Bij deze overdracht moet dan wel een voldoende debiet geleverd worden. Dit betekent dat de jetdruk tijdens het proces dient af te nemen van ca. 4 bar tot ca. 1,5 bar (beun met 5 meter water)

5.3.3 De benodigde jetdruk tijdens het schoonspoelen van het beun

Aan het einde van het leegzuigproces dient de laatste hoeveelheid zand weggespoeld te worden. Hiervoor is een zekere mate van turbulentie in het beun gewenst. Door hogere stroomsnelheden in het beun te creëren zal het erosieproces sneller verlopen. Bij
grote stroomsnelheden, > 1m/s, is de erosiesnelheid lineair evenredig met de stroomsnelheid van het water (Van der Schrieck, 1999). Voor een uitstroomsnelheid uit de jet van ca. 20 m/s is een overdruk van ca. 2 bar nodig. Dit betekent, met 5 meter water in het beun, een jetdruk achter de nozzle van minimaal ca. 2,5 bar.

5.4 Het aantal jets en de spuitrichting van de jets

5.4.1 Het aantal jets

Uit de analyse van de benodigde jetdruk in de opstartfase blijkt dat deze druk sterk afhankelijk is van het aantal jets per m² beun. Hoe meer jets, hoe sterker het fluidisatieproces 1-dimensionaal wordt, des te lager is de benodigde jetdruk in de opstart fase. Hieruit kan geconcludeerd worden dat het beter is om veel jets in het beun te plaatsen. Hierdoor worden de korrelspanningen homogener verlaagd.

Hoe meer jets in het beun hoe kleiner de nozzle diameter zal worden om eenzelfde totaaldebiet te jetten. Bij kleinere diameters nemen de uitstroomverliezen toe en is er relatief weer meer vermogen nodig om een bepaalde invloedsafstand of uitstroomsnelheid te creëren.

Als er zeer veel jets in het beun geplaatst zijn zal er ook meer leiding werk en meer sturingsmogelijkheden in het beun aangelegd moeten worden. Het meest voordelige aantal jets zal doorgaans op gevoel, kostenniveau en met praktijkervaring bepaald dienen te worden.

5.4.2 De positie van de jets in het beun

De jets dienen zo laag mogelijk in het beun geplaatst te worden. Dit lijkt triviaal doordat het zand onder de jets niet geïnduseerd zal worden. Zijn de jets hoger in het beun geplaatst dan zullen de jets bij het verlagen van het zandniveau in het ruim spuiten en zo turbulente stromingen boven het zandpakket veroorzaken. Dit is in principe ongewenst doordat hierdoor zand in suspensie komt boven het afschuivende zandpakket.

De jets op de kippekooi dienen om brugvorming over de kippekooi te voorkomen en het zand van de kippekooi af te spoelen. In de bulkslag zijn deze jets belangrijk om het breeproces te stimuleren door het verlagen van de korrelspanningen en het afvoeren van het zand. Doordat deze jets hoger geplaatst zijn, is de effectiviteit in de opschoonslag minder. Door met name de schoonspelfunctie in deze fase kan voor een nozzle met een brede uitstroomopening gekozen worden. Het zand glijt door de schuine vorm van de kippekooi toch al makkelijker af richting de leegzuigdeur.

De verdeling van de jets zal zo gelijkmatig mogelijk dienen te zijn om zo homogeen mogelijke de korrelspanningen te verminderen. In de buurt van de leegzuigopening zullen jets geplaatst moeten worden om het afschuivende zand te verdunnen tot een verpompbare mengsel.

5.4.3 De spuitrichting van de jets

De spuitrichting is in principe in de laatste fase van het leegzuigproces belangrijk. In deze fase wordt de invloed van de zandafstand vergroot. Hierbij moet de spuitrichting zo zijn dat ze het zand dat ver van de leegzuigopening ligt wegvloei en. Dit betekent in de praktijk dat de jets laag evenwijdig met de hopperwand en de kalven dienen te spuiten; in combinatie met jets die in de richting van de leegzuigopening spuiten en zo het opgewervelde zand afvoeren.

De jets in de buurt van de leegzuigopening moeten zo geplaatst zijn dat ze niet direct in de leegzuigopening spuiten, doordat zo de kans op kortsluiting in de opstartfase, vergroot wordt.

De jets op de kippekoel dienen uiteraard zo geplaatst te zijn dat ze het zand richting de leegzuigopening spoelen.

5.5 Bepaling van de nozzle diameters in een beunsectie

Voorgaand zijn per fase in het leegzuig proces een benodigd jetdebiet en jetdruk indicatief afgeleid. In een leegzuiginrichting moeten deze eisen verstaan worden naar een jetsysteem. Dit jetsysteem heeft een jetpomp met een vaste pompprommers, een vast aantal jets en een vaste nozzle diameter per jet. Tevens is de korrel diameter van de zandsoort dat het schip vervoert variabel. Dit betekent dat er gezocht moet worden naar een oplossing, waarin met de achtergrond van de afgeleide grootte rekening wordt gehouden. Uiteraard is hierbij praktische ervaring zeer gewenst.

In onderstaande figuur zijn voor enkele nozzle diameters de jetdruk- debiet relatie en uitstroomsnelheid gegeven. De insnoerings- en energieverlies coëfficiënten zijn op 1 gesteld.

![Uitstroom snelheid en debiet](image)

Jetdebiet berekend voor een nozzle diameter van 100 (a), 75 (b), 60 (c), 45 mm (d)

Figuur 5.3. Relatie jetdruk, uitstroomsnelheid en debiet.

Minimaliseren restlading "Volvox Terranova"
H 5 Bepaling ordegrootte variabelen in een leegzuigsysteem 71
Het minimale jetdebiet om de korrelspanningen op te heffen en de kritieke dichtheid te bereiken is in grote mate afhankelijk van de korreldiameter, zie paragraaf 5.2.2. Om een indicatie te krijgen van het benodigde jetdebiet is voor bolvormige korrels met een diameter van 700 μm het jetdebiet berekend. Het minimaal benodigde jetdebiet is voor deze korreldiameter ca. --- m³/s.

De jets bij de leegzuigopening 'verdunnen' het zand. De invloedsafstand van het spuitende jetwater, 1 ton/m³, in een zandwater mengsel met een dichtheid van 1.9 ton/m³ is beperkt. Het spuiten van water in een zandwater mengsel kan vergeleken worden met het spuiten van lucht in water. Voor het verdunnen van het zand van de kritieke dichtheid tot een verpompaar mengsel (1,8 ton/m³) is ongeveer --- m³/s nodig, zie paragraaf 5.2.1.

In de beginfase van het afzuigen dient --- m³/s plus --- m³/s, ten behoeve van het verlagen van de korreldspanningen, gejet te worden. Bij het ledigen van het beun zal vanwege de lagere tegendruk voor de jet het jetdebiet toenemen.

Tevens wordt gesteld dat het water ten behoeve van het constant houden van de waterstand in het beun ook op een alternatieve wijze ingebracht kan worden. Hierbij wordt gedacht aan een belendende jetsecties of een aparte pomp voor het bovenwater.

5.5.1 Voorbeeld berekening jetsysteem

Gesteld wordt dat met een booster pomp de hoge jetdruk in de opstart fase van het leegzuigproces gegenerereerd wordt. Vervolgens wordt de volgende pompkrommme achter de nozzle aangenomen. Deze pompkrommme komt niet overeen met de pompkrommme van de jetpomp op de "Volvox Terranova". De jetdruk van de aangenomen pomp is lager en komt overeen met de jetdruk die in paragraaf 5.3.2 en 5.3.3 is afgeleid. Door de lagere jetdruk zullen de nozzle diameters groter zijn om eenzelfde jetdebiet te jetten. Er wordt slechts per enkele beunsectie tegelijk afgezogen.

![Voorbeeld pompkrommme](image)

In het begin van het afzuigproces wordt gesteld dat de tegendruk voor de nozzle ca. 3 bar is (15 meter zand). Aan het eind van het leegzuigproces wordt gesteld dat er nog ca. 5 meter water in het beun staat met een tegendruk voor de nozzle van 0,5 bar.
Jets in de buurt van de leegzuigopening

De effectieve jetdruk in de beginfase is ca. 1 bar (4 - 3 bar). Dit betekent een uitstroomsnelheid van ca. 15 m/s, zie figuur 5.3. Met 6 jets met een nozzle diameter van --- mm wordt een debiet van --- m³/s gejet. In de eindfase is de effectieve jetdruk ca. 2,5 bar. Dit betekent een uitstroomsnelheid van ca. 22 m/s, zie figuur 5.3. Met 6 nozzle's met een nozzle diameter van --- mm betekent dit een jetdebiet van --- m³/s.

Overige jets in het beun

De effectieve jetdruk in de beginfase is ca. 1 bar (4 - 3 bar). Dit betekent een uitstroomsnelheid van ca. 15 m/s, zie figuur 5.3. Om een jetdebiet van ca. --- m³/s te jetten is een totaal oppervlak van de nozzle's nodig van --- m². Verschillende combinaties van het aantal jets en de nozzle diameter hebben een totale oppervlakte van --- m².

<table>
<thead>
<tr>
<th>Nozzle diameter</th>
<th>Nozzle oppervlakte</th>
<th>Aantal jets</th>
<th>Totale nozzle oppervlakte</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 mm</td>
<td>0.00159 m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 mm</td>
<td>0.00283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 mm</td>
<td>0.00332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 mm</td>
<td>0.00385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 mm</td>
<td>0.00503</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 5.3. Totaal nozzle oppervlak voor een verschillend aantal jets en nozzle diameter van de jets.

Gekozen wordt voor --- jets met een diameter van --- mm. Het jetdebiet van deze jets bij een leeg beun is dan ca. --- m³/s.

5.6 Conclusie voor het leegzuig systeem

Uit de vorige paragrafen is gebleken dat zowel de jetdruk als het jetdebiet van belang zijn in het leegzuigproces. Het denkmodel voor het berekenen van het jetdebiet en de nozzle diameters is in de proeven niet geverifieerd. In de proeven is met name aandacht besteed aan de effectiviteit van de nieuwe leegzuigdeur.

Uit de theorie van dit hoofdstuk volgt dat de leegzuigopening van het leegzuigkanaal zich zo laag mogelijk in het midden van een beunsectie moet bevinden.

Jetdebiet

Voor een vergelijkbare beunsectie als op de "Volvox Terranova" is het theoretische benodigde jetdebiet uitgemak. Het jetdebiet is hiervoor opgesplitst in drie delen.

- Verdunnen van het zandwater mengsel in de buurt van de leegzuigopening.
- Verlagen van de korrelspanningen van het zandpakket in de gehele beunsectie.
- Het op peil houden van de waterstand in het beun.

Om het zandwater mengsel in de buurt van de leegzuigopening te ‘verdunnen’ van de kritieke dichtheid (ca. 1900 kg/m³) tot een verpompaar mengsel, 1800 kg/m³ is, bij een afzuigdebiet van --- m³/s, een lokaal jetdebiet nodig van --- m³/s.

Voor het verlagen van de korrelspanningen in een beunsectie (- - m²) is het jetdebiet berekend. Het jetdebiet is in grote mate afhankelijk van de korreddiameter van het zand.
Het minimale jetdebiet om bolvormige zandkorrels met een diameter van 200 en 1000 μm theoretisch te fluidiseren tot een porositeit van 45% is per beunsectie een jetdebiet van --- en --- m²/s. Voor bolvormige korrels met een diameter van 700 μm is het minimale jetdebiet ca. --- m²/s.
Voor het op peil houden van de waterstand in het beun is een totaal jetdebiet nodig, dat even groot is als het afzuigdebiet, --- m²/s. In de situaties waarbij de waterstand constant moet blijven zal het jetwater op een alternatieve manier moeten worden ingebracht, bijvoorbeeld via andere jetsecties.

Jetdruk
Voor het bepalen van de benodigde jetdruk is onderscheid gemaakt in drie verschillende situaties:

- De jetdruk om het proces op te starten.
- De jetdruk tijdens het leegzuigen.
- De jetdruk in de eindfase.

Om via fluidisatie het jetproces op te starten is een theoretisch benodigde jetdruk berekend van ca. 10 bar.
Voor het verminderen van de korrelspanningen tijdens het leegzuigen is met name het jetdebiet belangrijk. Hierdoor kan de jetdruk veel lager zijn. Gesteld is dat een overdruk van 1 bar voldoende is om het fluidisatieproces in gang te houden. Bij deze overdruk moet dan wel een voldoende jetdebiet geleverd worden. Dit betekent dat theoretisch de jetdruk tijdens het leegzuigproces dient af te nemen van ca. 4 bar tot ca 1,5 bar (van een vol beun tot een beun met 5 meter water).
Voor het schoonspoelen van het beun in de laatste fase van het leegzuigproces dient de erosieve werking van de jets zo groot mogelijk te zijn. De erosiesnelheid van het zand is ongeveer lineair afhankelijk met de stroomsnelheid van het water. Voor een uitstroomsnelheid uit de jet van ca. 20 m/s is een overdruk van ca. 2 bar nodig. Dit betekent met 5 meter water in het beun een jetdruk achter de nozzle van minimaal ca. 2,5 bar.

Het aantal en de spuitrichting van de jets
De verdeling van de jets zal zo gelijkmatig mogelijk dienen te zijn om zo homogeen mogelijk de korrelspanningen te verminderen. In de buurt van de leegzuigopening zullen jets geplaatst moeten worden om het afschuivende zand te verdunnen tot een vervormbaar mengsel. De spuitrichting is in principe in de laatste fase van het leegzuigproces belangrijk. In deze fase wordt de invloedsafstand vergroot. Hierbij zal de spuitrichting in de hoeken en evenwijdig met de kalven dienen te zijn om het zand zoveel mogelijk weg te spoelen.

De nozzle diameters van de jets
Uit het benodigd jetdebiet voor bolvormige korrels met een diameter van 700 μm, de jetdruk en een fictieve pompkromme zijn de benodigde nozzle diameters berekend. Gesteld wordt dat met een booster pomp de hoge jetdruk in de opstart fase van het leegzuigproces gegeneerd wordt. De fictieve pompkromme heeft een effectieve jetdruk achter de jets van 4,5 tot 3 bar. Voor een voldoende jetdebiet zijn in een beunsectie --- jets met een diameter van --- mm nodig; En in de buurt van de leegzuigopening --- jets met een diameter van --- mm. Hierbij varieert het jetdebiet tijdens het leegzuigen van --- tot --- m²/s. Op de “Volvox Terranova” is een hogere jetdruk aanwezig, zodat de nozzle diameters kleiner kunnen zijn.

Minimaliseren restlading “Volvox Terranova” 74
H 5 Bepaling ordegrootte variabelen in een leegzuigsysteem
H6 Proevenprogramma van het restlading onderzoek

In het kader van het restlading onderzoek is een proefopstelling gebouwd op de werf van Van Oord te Zuilichem. In dit hoofdstuk zal de opbouw van de proefopstelling en het proevenprogramma beschreven worden. Tevens wordt aandacht besteed aan de gebruikte schaalregels en schaaleffecten.

6.1 Het proefonderzoek

6.1.1 Doel van de proef

Het doel van deze proef is om inzicht te krijgen in de invloed van een nieuwe leegzuigdeur en gewijzigde nozzle configuratie op de hoeveelheid restlading.

6.1.2 Motivatie voor een schaalproef

Er is gekozen om de invloed en de effectiviteit van een nieuwe leegzuigdeur in een schaalmode te testen. De volgende onderzoeksopties zijn beschouwd maar vielen om verschillende redenen af:

a. Het berekenen van de invloed van een nieuwe leegzuigdeur is te complex.

b. Verschillende proeven nemen in het schip is onmogelijk.

Tevens heeft Van Oord ACZ geen praktijk ervaring met een ander schip met een leegzuigdeur op de positie, zoals deze getest zal worden in het schaalmode.

\textit{ad a}

Een berekening van de invloed van een nieuwe leegzuigdeur in een numeriek model is niet mogelijk, doordat er geen rekenmodel beschikbaar is.

\textit{ad b}

In principe kan de invloed van een nieuwe leegzuigdeur het beste in een prototype model worden uitgevoerd. Hierdoor kunnen er geen schaaleffecten optreden. Dit is echter te kostbaar door de afmetingen van de leegzuigdeur en het productie verlies van het schip tijdens het inbouwen en uitvoeren van de tests. Men zou tijdens een dokking een klepvak kunnen wijzigen en de ervaringen die hiermee worden opgedaan in een vervolgstadium toepassen op alle andere klepvakken. Door deze werkwijze zal het schip voorlopig nog met restlading moeten varen in de overige klepvakken, zodat het productie verlies voorlopig nog zal bestaan.

6.1.3 Schaal van de proefopstelling

Voor de toe te passen schaal is de volgende afweging gemaakt. Hoe groter de schaal hoe minder schaaleffecten er optreden maar hoe duurder de proefopstelling wordt. Het model is opgebouwd in een proefbak. De proefbak is 3 bij 3 meter en ongeveer 2 meter hoog. Er is gekozen voor een zo groot mogelijke schaal van een enkel klepvak in de proefbak (1:3,2) om zo min mogelijk schaaleffecten te krijgen.
6.2 De opbouw van de proefopstelling

6.2.1 Elementen in de proefopstelling

De volgende onderdelen dienen aanwezig te zijn om het walpersen te simuleren in een model:

a. Grondpomp.
b. Jetpomp.
c. Proefbak.
d. Jetsysteem.
e. Watervoorraadcontainer met afsluiters.
f. Bedienings-, meetunit.
g. Stort (opvangbak voor het zand).

ad a Grond- en jetpomp
Er is gekozen voor een pompcontainer waarin de jetpomp en de grondpomp zich bevinden. De beide pompen worden afzonderlijk hydraulisch aangedreven via een enkele dieselmotor. Hierdoor is het toerental van beide pompen afzonderlijk regelbaar. Dit betekent dat de druk – debiet verhouding van de pomp niet vastligt maar geregeld kan worden. Hierdoor is het mogelijk om het werkpunt van de grond – en jetpomp op de "Volvox Terranova" via verschaling op te leggen aan de grond - en jetpomp in de proefopstelling.

De zuigzijde van de grondpomp is aangesloten aan het leegzuigkanaal van het model. De leiding aan de perszijde van de pomp loopt naar de mengsel opvangbak.

De zuigzijde van de jetpomp is aangesloten op het water in de haven. Dit betekent dat het jetwater extern wordt aangezogen. De perszijde van de jetpomp is aangesloten op een jetwaterdeelvat.

Figuur 6.1. Pompcontainer, met jet- en grond pomp.
ad b Proefbak
In de proefbak is een model gebouwd van een klepvak. De afmetingen van alle onderdelen zijn rechtstreeks verschaald van de huidige afmetingen op de "Volvox Terranova". Het leegzuigkanaal wordt aan de ene zijde aangesloten op een grondleiding en aan de andere zijde op een leiding die dienst doet als zeeafsluiter.

De wanden van de proefbak zijn respectievelijk de kalven en de hopperwand van de "Volvox Terranova", zie figuur 6.2. De andere zijde in het model is de kippekooi. De leegzuigdeuren in het model hebben op dezelfde plaats de scharnierpunten als de leegzuigdeuren op de "Volvox Terranova", zodat ze op dezelfde manier openen. De deuren in het model worden van bovenaf bediend met spindels (niet aangegeven in figuur 6.2).

ad b Jetsysteem
Het jetleidingensysteem, zoals dat aanwezig is op de "Volvox Terranova", is niet exact verschaald. Er is gekozen om alle jets met flexibele slangen aan te sluiten op een jetwaterverdeelvat. Dit verdeelvat is via een jetleiding aangesloten op de jetpomp.

Overzicht afmetingen onderdelen jetsysteem en leegzuigsysteem

<table>
<thead>
<tr>
<th>Onderdeel</th>
<th>Lengte</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jetwaterleiding perszijde</td>
<td>ca. 5 m</td>
<td>0,20 m</td>
</tr>
<tr>
<td>Jetwaterleiding zuigzijde</td>
<td>ca. 6 m</td>
<td>0,25 m</td>
</tr>
<tr>
<td>Grondleiding zuigzijde</td>
<td>ca. 4 m</td>
<td>0,20 m</td>
</tr>
<tr>
<td>Grondleiding perszijde</td>
<td>ca. 50 m</td>
<td>0,25 m</td>
</tr>
<tr>
<td>Verdeelvat jetwater</td>
<td>2 m</td>
<td>0,20 m</td>
</tr>
<tr>
<td>Jetleiding vat - jet</td>
<td>5 m</td>
<td>0,05 m</td>
</tr>
<tr>
<td>Nozzle's (spuulddiameter)</td>
<td></td>
<td>---, --- en --- mm</td>
</tr>
</tbody>
</table>

Tabel 6.1. Overzicht afmetingen onderdelen in proefopstelling
De uitstroomdiameter van de nozzle's is verschaald van de nozzle's die aanwezig zijn op de "Volvox Terranova" (---, --- en --- mm). Van binnen loopt de nozzle conisch toe met aan de spuitopening een gedeelte met een constante diameter, zie ook hoofdstuk 4.2, Eigenschappen huidig jetsysteem.

Figuur 6.3. (Foto links) Proefbak, bij het begin van de proef gevuld met zand. Bovenop ligt het jetwaterverdeelvat waaraan via de groene slangen alle jets zijn verbonden.

Op de achtergrond is de container te zien met de jet – en de grondpomp.

Figuur 6.4. (Foto rechts) Een lege proefbak na de proef.

Op de achtergrond is de watervoorraadcontainer te zien, die gebruikt werd als zee-afsluiter.

ad c Watervoorraadcontainer met afsluiter
In de proefopstelling is een watervoorraadcontainer aanwezig. Deze container is via een leiding met een afsluiter aangesloten op het leegzuigkanaal van de proefbak. Deze afsluiter heeft dezelfde functie als de zee-afsluiter op de "Volvox Terranova". De afsluiter wordt gebruikt om een waterstroom door het leegzuigkanaal te creëren voordat de leegzuigdeuren geopend worden. Na het openen van de leegzuigdeuren wordt de afsluiter in de regel weer gesloten. Bij een te hoge concentratie wordt de afsluiter geopend om 'extern' water aan te zuigen, zodat het zandwater mengsel uit de proefbak verpompbaar blijft.

In het schip bevindt het leegzuigkanaal zich onder het zeewaterniveau. Hierdoor zal bij het openen van de zee-afsluiter het leegzuigkanaal en de jetpomp zich vullen met water, waardoor het afzuigen opgestart kan worden. In de proefopstelling is een open zee container (watervoorraadcontainer) geplaatst naast de proefbak, zie figuur 6.4. Het waterniveau in deze container was voldoende hoog om het leegzuigproces op te starten.

ad d Bedienings-, meetunit
De pompen worden bediend in een aparte bedieningsunit. Deze unit is bovenop een container geplaatst naast de proefbak om een goed overzicht op de proeven te hebben. Tevens staat in deze bedieningsunit de computer die de verschillende meetsignalen registreerde.

ad e Stort, opvangbak mengsel
Het afgezogen mengsel wordt opgevangen in een ponton om het zand te kunnen hergebruiken.
6.2.2 Verschil tussen model en werkelijkheid

De volgende verschillen tussen werkelijkheid en model zijn aanwezig:

- Een leegzuigdeur is verdeeld over twee klepvakken.
- Kalven hebben gaten.
- Inrichting van de jetleidingen naar de jets.
- Helling van het schip varieert tijdens het walpersen.
- Beperkte zandpakket hoogte.
- Geen jetkanon aanwezig.

ad a Een leegzuigdeur is verdeeld over twee klepvakken

In de praktijk wordt er bij het openen van een leegzuigdeuren afgezogen op twee klepvakken. Dit is in dit model niet te simuleren. Ten eerste omdat niet goed bekend is hoe de afzuigkracht varieert en verdeeld is over de twee klepvakken tijdens het leegzuigen. Ten tweede als dat bekend is, is het moeilijk om die zuigkracht variaties na te bootsen in het model. In de proeven is aangenomen dat het afzuigdebit gelijk verdeeld is over de twee klepvakken.

ad b Kalven hebben gaten

Tijdens de dokking van oktober 2000 worden de gaten in de kalven gedicht. Hierdoor komt het model overeen met de toekomstige werkelijkheid.

ad c Inrichting van de jetleidingen naar de jets

Op de "Volvox Terranova" zijn de jets aangesloten op een verzamelleiding die op de kalven ligt. In het model zijn de jets via flexibele slangen direct aangesloten op een jetwaterverdeel vat. Dit is geen probleem, omdat de leidingweerstanden bijna verwaarloosbaar zijn. Hierdoor is de jetdruk van alle jets ongeveer gelijk. De variatie in jetdruk ontstaat door de hoogte van de jet ten opzichte van het jetwaterverteel vat.

ad d Helling van het schip varieert tijdens het walpersen

De helling van het schip varieert tijdens het walpersen. De invloed van de helling van het schip op de processen in een enkele klepvak zijn gering. Het water heeft de neiging om naar het laagste punt (leegzuigdeur) te stromen. Dit is ook te zien op de foto's van de restlading op de "Volvox Terranova", bijlage N. In het model wordt geen rekening gehouden met de helling van het schip.

ad e Beperkte zandpakket hoogte

Tijdens het afzuigen van de bulk is de zandpakket hoogte groter dan verschraald in het model. In het model wordt in principe de op schoonslag gesimuleerd. Hierdoor is niet bekend of dat er complicaties optreden bij gebruik van de nieuwe leegzuigdeur in de bulkslag, waarbij de zandpakkethoogte een factor 4 groter is.

ad f Aanwezigheid jetkanon ontbreekt

In het model wordt het gebruik van het jetkanon achterwege gelaten. Het jetkanon spuit o.a. de laatste restjes restlading voor zover mogelijk weg. Het is in de proeven niet de bedoeling om dit te simuleren, maar om de noodzaak van het gebruik ervan te elimineren.
6.3 Verschaling

6.3.1 Verschalingsparameters

Om de proefresultaten goed te kunnen interpreteren is het belangrijk dat de processen in het schaalmodel overeen komen met de processen zoals ze optreden in het beun. Om een goede verschaling te maken moeten de processen in het beun bekend zijn. Het is van belang te weten welke parameters deze processen beïnvloeden. Hierdoor is het mogelijk om verantwoord bepaalde parameters te verschalen. In bijlage G is de afleiding voor de verschalingsparameters opgenomen. De resultaten van deze afleiding zijn:

<table>
<thead>
<tr>
<th>Grootheid</th>
<th>Dimensie</th>
<th>Toelichting</th>
<th>Verschalingsfactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>lengtematen</td>
<td>m</td>
<td>hoogte, breedte, lengte</td>
<td>3.2</td>
</tr>
<tr>
<td>snelheden</td>
<td>m/s</td>
<td>uitstroomsnelheid nozzle’s, stroom snelheid in leidingen</td>
<td>√3.2 = 1.78</td>
</tr>
<tr>
<td>drukken</td>
<td>Pa</td>
<td>jetdruk, gronddruk</td>
<td>3.2</td>
</tr>
<tr>
<td>tijd</td>
<td>s</td>
<td>afzuigtijd, jettijd</td>
<td>√3.2 = 1.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Afgeleide grootheden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hoeveelheden</td>
<td>m³</td>
</tr>
<tr>
<td>debiet</td>
<td>m³/s</td>
</tr>
<tr>
<td>vermogen</td>
<td>W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algemene onverschaalde grootheden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>gravitatie</td>
<td>m/s²</td>
</tr>
<tr>
<td>dichtheden</td>
<td>kg/m³</td>
</tr>
<tr>
<td>atmosfeer</td>
<td>Pa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uitgangspunten verschaling eigenschappen zand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>porositeit</td>
<td>-</td>
</tr>
<tr>
<td>verhang</td>
<td>-</td>
</tr>
<tr>
<td>concentratie</td>
<td>-</td>
</tr>
</tbody>
</table>

In de proeven is met bovenstaande verschalingsparameters gewerkt. De verschaling van het zand is hierin niet opgenomen. Voor het zandpakket en de korrel diameter is geen uniforme verschalingsfactor te bepalen, zie onderstaande toelichting. Gekozen is om de verschalingsregels voor het fluidisatie proces gelijk te stellen aan de verschalingsregels die afgeleid zijn voor de valsnelheid van de ongestoorde korrel in water.

Tabel 6.2. Overzicht met verschalingsparameters voor verschillende grootheden.
Schaalregels valsnelheid korrels en 'fluïdisatie proces'

De schaalregels voor de korreldiameter uitgedrukt in de lengteschaal bij beschouwing van de valsnelheid van de korrels in water is, zie ook bijlage G:

- **Fijn zand**
 - $d < 200 \, \mu m$:
 - $n_d = n_u^{1/2} = n_L^{1/4} = 1.34$ (6.1)
 - *Middelfijn zand*
 - $200 \, \mu m < d < 400 \, \mu m$:
 - $n_d = n_u^{1} = n_L^{1/2} = 1.78$ (6.2)
 - *Grof zand*
 - $d > 400 \, \mu m$:
 - $n_d = n_u^{2} = n_L = 3.2$ (6.3)

Schaalregels voor de erosieprocessen

Voor de erosie processen is het dilatantie gedrag belangrijk. Dit betekent dat de doorlatendheid van het zandpakket belangrijk is en goed verschaald dient te worden. Hieruit volgt de volgende schaalregel voor de erosiesnelheid en de doorlatendheid van het zandpakket, zie ook bijlage G.:

$$n_{ve} = n_{k0}$$ (6.4)

Voor kinematische gelijkvormigheid moet gelden:

$$n_{ve} = n_u = n_L^{1/2} = 1.78$$ (6.5)

Doordat de doorlatendheid afhankelijk is van de korreldiameter ontstaan er tegenstrijdigheden in de verschaling. De verschaling voor de doorlatendheid heeft 1 verschalingsfactor, de verschaling voor de valsnelheid is verdeeld in 3 schaalregels.

Via de formule van den Adel (in: Mastbergen, 1991) is de volgende schaalregel voor de doorlatendheid in een zandpakket afgeleid:

$$n_{k0}^{1/2} = n_{d15}$$ (6.6)

Vergelijk schaalregels valsnelheden van een korrel en erosieprocessen

Bij de verschaling van de valsnelheid in water van kleine korrels ($d < 200 \, \mu m$) en de doorlatendheid sluiten deze afleidingen op elkaar aan ($n_{k0}^{1/2} = n_{d15} = n_u^{1/2} = n_L^{1/4} = 1.34$).

Dit betekent dat de verschaling voor het erosieproces en de valsnelheid van een korrel in water (of het suspensietransport) goed verschaald kan worden als er enkel met fijne korrels wordt gewerkt. Ook is de doorlatendheid van een zandpakket met name afhankelijk van de fijnere fracties (d_{15}). Dit betekent dat de verschaling voor iets grotere korrels ook nog goed gaat. Voor grovere zandoorten is er in principe geen goede verschaling mogelijk als het erosie proces en de valsnelheid tegelijkertijd in een model voorkomen.
6.3.2 Het zand gebruikt in de proevenserie

Het zand dat de “Volvox Terranova” vervoert, heeft in de regel een D_{50} van 200 μm en groter. Bij de grovere zandsorten is de restlading groter. Hierdoor is in de proeven ook relatief grof zand gebruikt.

In de proef is er gewerkt met twee soorten zand, een zand met een D_{50} van 320 μm en met zand met een D_{50} van 520 en 620 μm, zie bijlage M. In het vervolg worden deze twee zanden uitgedrukt als fijn en grof zand. Dit betekent dat het zand niet verschalkd is uit de praktijk. Om de resultaten goed te vergelijken met de praktijk gegevens zal het gebruikte zand met behulp van de schaalregels teruggeschaald moeten worden naar praktijk zand. Voor grovere zanden blijkt dat de schaalregels voor de doorlatendheid en de valsnelheid onder water niet overeen.

Hierdoor is het niet mogelijk om exact aan te geven met welk zand het gebruikte zand overeenkomt in de praktijk. Bij verschaling via de doorlatendheid is dit ca. resp, 600 en 1000 μm. Als deze waarden voor het praktijk zand worden aangehouden dan zijn de resultaten van de proeven aan de conservatieve kant. Dit wordt veroorzaakt doordat dit zand relatief minder in gewicht wordt verschalkd, zodat het suspensie transport relatief minder is.

In de proeven ging het voornamelijk om de grovere lijn van de processen. In het algemeen is dit uit de proeven naar voren gekomen dat de gebruikte korreldiameter geen significante invloed heeft op de hoeveelheid restlading. Ter indicatie is de hoeveelheid restlading in de proeven terug geschalkd naar de praktijk.

6.3.3 Schaal-effecten

Het fluidisatieproces kan redelijk verschalkd worden door het proces gelijk te stellen aan de bezinkingsheden van ongestoorde korrels. Maar in principe is tijdens en voor fluidisatie de doorlatendheid van het pakket ook belangrijk, zie bijvoorbeeld de Ergun-vergelijking. Het erosie proces is nog niet voor 100% begrepen en is voor een belangrijk gedeelte gesteld op empirische relaties. Dit betekent dat er geïnterpolatie is om data om een goede relatie te vinden. De schaalregels uit deze relatie zijn niet zonder meer bruikbaar (Bischop, 1992). Uit deze vergelijkingen volgt dat bij grotere stromingsheden, bij eenzelfde korreldiameter, de erosiesnelheid van het zandpakket rechtevenredig is met de stroomsnelheid van het water.

Door dat de doorlatendheid verschalkd voor grovere korrels ($D_{50} > 200 \mu$m) niet overeenkomt met de verschalkd van de valsnelheid van de korrels, zal bij verschalkd volgens de doorlatendheid relatief te sterk verkleind worden.

 Dit betekent dat bijvoorbeeld het dilatantie effect, bij bressen van het zandpakket en erosieve stromen in het model, te groot wordt weergegeven. Hierdoor zal het grovere zand relatief minder snel afbressen of via HSE-eroderen. Ook zal de stroomweerstand door het zandpakket relatief te groot zijn. Dit betekent bijvoorbeeld dat er een groter verhang aanwezig is in het zandpakket.

Bij de verschalking van het zand is aangenomen dat het holle ruimte percentage niet veranderd. Deze is afhankelijk van de gradering. Door de gradering te veranderen kan de doorlatendheid worden gevarieerd. Hierdoor wordt echter ook het holle ruimte percentage beïnvloed en de verschalking van de valsnelheid van de korrels.
6.4 Opbouw van de proevenserie

6.4.1 Proefprocedure

In 15 proeven is de effectiviteit van de nieuwe leegzuigdeur getest. Er zijn 5 proeven uitgevoerd, waarbij met de bestaande leegzuigdeuren is afgezogen. Het doel van deze 5 proeven was om de bestaande situatie te simuleren en na te gaan of dat de restlading significant te verminderen is door te variëren in afzuijtijd, nozzle diameter gebruik en jetdruk en -debiet. Vervolgens is 1 proef uitgevoerd met het gebruik van beide deuren. De overige 9 proeven zijn uitgevoerd met de nieuwe leegzuigdeur.

Per proef is de volgende procedure aangehouden

Voorbereiding per proef

- Bepalen nozzle diameter verdeling en aanbrengen in de proefbak.
- Bepalen aan te houden jetdebiet of jetdruk in de proeven.
- Bepalen welke leegzuigdeuren geopend worden.
- Zand aanbrengen in de proefbak (met behulp van een kraan).
- Zandpakket inwateren en vervolgens een tijd laten rusten (ca ½ uur).

Opstarten en eindigen proef

- Starten grondpomp.
- Water pompen door leegzuigkanaal van de proefbak.
- Starten jetpomp en aanzetten jets (ca. --- min. voor openen leegzuigdeur).
- Langzaam openen van de juiste leegzuigdeur.
- Afsluiten vervolgens geheel of gedeeltelijk dichtdraaien (afhankelijk van het verloop proef).
- Na een vaste tijd de proef stoppen (bij een enkele proef bij een bepaalde minimale concentratie) door uitzetten van de jets.
- Vervolgens de proefbak en de watervoorraadcontainer gedeeltelijk leegzuigen.
- Met een klokpomp de laatste hoeveelheid water uit de proefbak zuigen.
- Met behulp van pellingen in de proefbak de hoeveelheid en vorm van de restlading meten.

Opmerking:
Bij het openen van de huidige leegzuigdeuren was de procedure: langzaam openen van de verst van de pomp gelegen deur (deur A), sluiten afsluiter, openen andere deur (deur B), sluiten deur B, sluiten deur A.
6.4.2 Instelparameters tijdens de proeven

Tijdens de proef kan het proces gestuurd worden door het jetdebet en afzuigdebet te variëren in combinatie met het afsluiten van de afsluiter en de leegzuigdeuren. Bij aanvang van de proef is een instelparameter voor de grond – en jetpomp in combinatie met de proefduur bepaald. De deuren worden in principe langzaam geheel geopend. De afsluiter wordt vervolgens enkel gebruikt voor het ‘verdunnen’ van het mengsel. De gebruikte instelparameters worden hieronder toegelicht:

Grondpomp
Het geleverde vermogen van de grondpomp kon tijdens de proeven gecorrigeerd worden door het toerental te wijzigen. In principe werd het toerental zo ingesteld dat met een vast debiet afgezogen werd. Dit debiet is voor alle proeven hetzelfde.

\[Q_{\text{pomp}} \times \frac{1}{4} \times (1/\text{verschalingsparameter}) = \text{--- m}^3/\text{s} \times \frac{1}{4} \times 3.2^{2.5} = \text{--- liter/s} \]

Met de factor \(\frac{1}{4} \) wordt verrekend dat er in werkelijkheid met de bestaande leegzuigdeuren in 2 zuinsecties tegelijk wordt afgezogen en in dit model in een \(\frac{1}{2} \) zuinsectie. Door het afzuigdebet voor alle proeven constant te houden heeft dit geen invloed op het resultaat. Op de “Volvox Terranova” zal het afzuigdebet uit een zuinsectie bij het gebruik van de nieuwe leegzuigdeur twee maal zo groot zijn als bij het afzuigen via de bestaande leegzuigdeuren, omdat er dan in één zuinsectie tegelijk wordt afgezogen in plaats van uit twee zuinsecties.

Tijdens de proeven varieerde het afzuigdebet door een veranderende dichtheid van het mengsel en de gevoeligheid van de pomp voor de toerenregeling.

Jetpomp
Het vermogen van de jetpomp werd ook via een toerental ingesteld. Tijdens de proeven zijn twee verschillende instelparameters hiervoor gebruikt:

- Het jetdebet, 9 proeven.
- Jetdruk, 2 proeven of toerental van de pomp, 4 proeven.

Het aan te houden debiet van de jetpomp werd vastgesteld door in het spreadsheet programma de gebruikte nozzle configuratie door te rekenen bij een leeg beun. Tijdens de proeven was dit jetdebet de richtwaarde.

\[Q_{\text{jet}} \times \frac{1}{4} \times (1/\text{verschalingsparameter}) = \text{--- m}^3/\text{s} \times \frac{1}{4} \times 3.2^{2.5} = \text{--- liter/s} \]

Bij de huidige jet configuratie, spuitend met 52 jets, is het jetdebet \(\text{--- m}^3/\text{s} \), werkpunkt A in figuur 4.13. De factor \(\frac{1}{4} \) verrekend het aantal jets in het model (13 stuks).

Dit is helaas niet de juiste benadering gebleken, doordat het debiet tijdens de proeven toeneemt en de tegendruk voor de jets afneemt. Hierdoor werd in het begin relatief te veel vermogen van de jetpomp gevraagd. In de praktijk kan de jetpomp dit vermogen ook niet leveren.

De aangehouden jetdruk is verschaald van de manometrische opvoerhoogte van de jetpomp van de “Volvox Terranova” tijdens het jetten met 52 jets, \(3.2^{-1} \times \text{--- kPa} = \text{--- kPa} \). Bij de laatste 4 proeven werd het toerental van de jetpomp constant gehouden. De pompkrzemme in het gebruikte werkgebied is vrijwel horizontaal. Tijdens de proeven bleef de jetdruk dan ook vrijwel constant.
Tijdsstad
Tijdens de proeven werd zoveel mogelijk een vast tijdsstad aangehouden. Dit tijdsstad is vastgesteld in de referentieproef (proef 3). De leegzuigtijd is gesteld op 4.5 minuten, 270 sec. of 6½ min, 405 sec, afhankelijk van het jetdebit. Verschaald naar de zuigtijden op de “Volvox Terranova” is dit een afzuigtijd per klepvak van ca. 8 en 12 min, 3,2½ * T.

6.4.3 Variabelen in de proevenserie

In de 15 proeven van de proevenserie is gevarieerd met:

a. Jetdruk.
b. Nozzle diameter verdeling (2 opties).
c. Gebruik van de huidige leegzuigdeur of de nieuwe leegzuigdeur.
d. Zandsoort (2 soorten).
e. Afzuigtijd.

ad a Jetdruk
Het variëren van de jetdruk verhoogt de uitstroomsnelheid uit de jets en ook het debiet en vermogen. Tijdens de proeven zijn 3 jetdrukken vergeleken. Eén hoger dan de verschaalde jetdruk, de verschaalde jetdruk en een te lage jetdruk. De gedachte hierachter is dat de restlading nog verlaagd kan worden met het verhogen van de jetdruk. Tevens zal door een hogere jetdruk de korrelspanningen tijdens de ‘bulkslag’ meer worden verminderd, zodat het zandpakket makkelijker ‘vloeit’.

ad b Nozzle diameter verdeling
Om een indicatie te krijgen van de invloed van de nozzle diameter zijn twee nozzle diameter configuraties gebruikt. De configuratie van de nozzle diameters zoals deze nu in het bui aanwezig is en een gewijzigde nozzle configuratie. Bij de gewijzigde configuratie zijn de twee gebruikte nozzle diameters (--- en --- mm) verwisseld. Dit betekent dat de acht jets onderin de proefbak (positie C) een diameter van --- mm hebben en de 5 jets bovenin (positie A en B) een diameter --- mm, zie voor de posities figuur 3.4. De gedachte hierachter is dat door de grotere diameter de impuls van de jet groter wordt en daarmee de invloedsafstand, zie paragraaf 4.3.1.

ad c Gebruik van de huidige leegzuigdeur of nieuwe leegzuigdeur
De invloed van de nieuwe leegzuigdeur is onderzocht.

ad d Zandsoort
Om een indicatie van de invloed van de zanddiameter te krijgen zijn twee zandsoorten gebruikt. Onderzocht is of het fijnere zand (D50 320 μm) complicaties gaf tijdens het leegzuigen.

ad e Afzuigtijd
Door de afzuigtijd te verlengen krijgt men een indruk of er een evenwichtssituatie in de proefbak ontstaat of dat al het zand uit de proefbak wordt gespoeld.
6.4.4 Proevenprogramma

In onderstaande tabel is een overzicht gegeven van de uitgevoerde proeven.

<table>
<thead>
<tr>
<th>proef nr.</th>
<th>jetten</th>
<th>afzuigen</th>
<th>leegzuigdeur</th>
<th>nozzle diameter</th>
<th>zandsoort</th>
<th>zuigtijd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>var.</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>ca. ---</td>
<td>770</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>ca. ---</td>
<td>770</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>ca. ---</td>
<td>770</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>ca. ---</td>
<td>770</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

*Tabel 6.3. Overzicht van proefresultaten.

De hoeveelheid zand per proef is gemiddeld 8.9 m³. Dit is verschaald naar de "Volvox Terranova" een zandbed hoogte van ca. 5 meter.

Toelichting proevenprogramma

- **Proef 1** "speel" proef, inzicht krijgen in werking model
- **Proef 2** zo lang mogelijk jetten => inzicht in proces tijd
- **Proef 3** vaststellen principe leegzuigtijd (ref. proef)
- **Proef 4** wijzigen nozzle configuratie

Bij de volgende proeven is de invloed van de variabelen vastgesteld.

- **Proef 5** gebruik alle deuren met gewijzigde nozzle configuratie
- **Proef 6** gebruik enkel nieuwe leegzuigdeur met gewijzigde nozzle configuratie
- **Proef 7** gebruik enkel nieuwe leegzuigdeur met bestaande nozzle configuratie
- **Proef 8** gebruik enkel nieuwe leegzuigdeur met nieuwe luidel
- **Proef 9** gebruik enkel nieuwe leegzuigdeur met verdicht zandpakket
- **Proef 10** gebruik enkel nieuwe leegzuigdeur met gereduceerde jetdruk
- **Proef 11** gebruik enkel nieuwe leegzuigdeur met gered. jetdruk en fijner zand
- **Proef 12** gebruik enkel nieuwe leegzuigdeur met extra gered. jetdruk en fijner zand
- **Proef 13** gebruik bestaande leegzuigdeuren met extra gered. jetdruk
- **Proef 14** gebruik enkel nieuwe leegzuigdeur met extra gered. jetdruk
- **Proef 15** gebruik enkel nieuwe leegzuigdeur met extra gered. jetdruk en gewijz. nozzle configuratie

De instelparameters bij proef 10 en 11 zijn (verschaald) typerend voor de capaciteiten van de pompen op de "Volvox Terranova".
6.4.5 Meetapparatuur en metingen

Tijdens de proeven zijn vier parameters gemeten:

- De snelheid in de jetleiding.
- De snelheid in de grondeleiding.
- De dichtheid in de grondeleiding.
- De jetdruk op het verdeelvat.

Tevens is voor en na de proef de hoeveelheid zand in het model gemeten.

Met deze metingen kan de algemene procesgang tijdens het leegzuigen geanalyseerd worden. De metingen dienen om de procesgang tussen de proeven onderling en op de "Volvox Terranova" te vergelijken. Helaas zijn er geen metingen in de proefbak uitgevoerd, druk -, dichtheids -, stroomsnelheid metingen enz, waarmee het inzicht in de processen tijdens het afzuigen in het beun vergroot kan worden. Tevens is de mate van verdichting van het zandpakket niet gemeten. Er is gesteld dat door het altijd op dezelfde wijze aanbrengen van het zand, de resultaten niet beïnvloed zullen worden door het verschil in pakking.

Meetapparatuur

De grondpomp heeft een vaste snelheidsmeter en dichtheidsmeter op de grondeleiding voor de pomp. De snelheidsmeter op de jetleiding is gehuurd en meet de stroomsnelheid akoestisch. De drukmeter is via een kort pijpje bevestigd aan de bovenkant van het jetwaterverdeelvat. De hoeveelheid zand na de proef in de proefbak is berekend door in een vast rooster met behulp van een duimstok de diepte te peilen. Per proef zijn 33 peilingen (h.o.h. ca. 25 cm) uitgevoerd in het laagste deel van de proefbak. Op de 'kippekooi' van het model is de zandhoeveelheid geschat.

Ijking van de meetapparatuur

De snelheidsmeter op de jetleiding is officieel geikt. Deze meter is in serie bevestigd met de snelheidsmeter op de grondeleiding. Uit de vergelijkende metingen kwam naar voren dat het verschil tussen de twee meters schommelde tot ca 20 %. Doordat de meters via een verschillend principe meten zal er een faseverschuiving in de meet resultaten. De snelheidsmeter van de grondeleiding is gecorrigeerd. De beide snelheidsmeters zijn na de proevenserie nogmaals geikt door het model te vullen met water en de vul- en ledigingstijd en het totaal ingebracht volume water te meten. De resultaten van deze meting zijn bijgevoegd in bijlage H. Uit deze metingen bleek dat de snelheidsmeter op de jetleiding een fout van nog geen 3% aangaf. Dit is acceptabel en hier is niet meer voor gecorrigeerd. De snelheidsmeter op de grondeleiding daar en tegen had een meetfout van 12 %. De metingen zijn na de proevenserie voor deze meetfout gecorrigeerd. De drukmeter en dichtheidsmeter zijn tijdens de proevenserie niet geikt. De dichtheidsmeter is na de metingen gecorrigeerd met een vaste waarde van 0.5 ton/m³. Deze correctie waarde is bepaald in een iking in een andere proeven serie. Deze proeven serie is met dezelfde pompopstelling uitgevoerd. De resultaten van de drukmeter op het jetwaterverdeelvat zijn ca. 0.5 mwk lager dan van de drukmeter bij de pomp. Het hoogste verschil is ongeveer 1.5 meter. De weerstand in de jetleiding is te verwaarlozen. Dit betekent dat de meters een verschil aangeven van ca. 1 mwk. In de uitwerking van de proeven is gerekend met de meetwaarde van de drukmeter op het jetwaterverdeelvat.

Minimaliseren restlading "Volvox Terranova"
H6 Proevenprogramma van het restlading onderzoek
H7 Interpretatie van de proefresultaten

Bij de uitwerking van de proeven is een beschouwing gemaakt over de invloed van de variabelen op de hoeveelheid restlading en op de leegzuigproductie. Het verminderen van de restlading is het primaire doel van de proeven. Tevens wordt een beschouwing gemaakt van de druk – debiet relatie tijdens de proeven en van de nozzles eigenschappen. Deze resultaten worden gebruikt om tot een voorstel tot aanpassing van de "Volvox Terranova" te komen.

7.1 Algemene beschrijving van de procesgang van de proef

Na het vullen van de proefbak met zand werd het zand ingewaterd. Toen het water boven het zandniveau uit kwam, werd ca. een half uur gewacht tot het water was weggezakt en het zandpakket stevig was. Deze procedure is bij elke proef herhaald.

Voordat de leegzuigdeuren werden geopend was ongeveer 1.5 à 2 minuten gejet. Verschaald naar de praktijk is dit ca. 3 minuten. Door te jetten voordat de leegzuigdeuren werden geopend, ontstond bovenop het zand in de proefbak een laag water. In de meeste proeven was duidelijk te zien dat er een preferent kanaal ontstond waaruit het jetwater kwam. Dit gebeurde het eerst bij de jets op de kippekooi (jetpositie A) en vervolgens ter plaatse van de jets bij de huidige leegzuigdeuren (jetpositie B).

Vervolgens kon de procesgang niet meer zichtbaar gevolgd worden door het water bovenop het zandpakket. Enkel turbulente stromingen en een dikke laag slibrijk schuim waren zichtbaar, zie figuur 7.1-rechts. De hoeveelheid schuim was zo groot dat bij enkele proeven de bak over liep. Hierdoor moest de proef volledig gestuurd worden op de metingen.

Figuur 7.1. (Foto links) Na het vullen van de bak werd het zandpakket ingewaterd.
(Foto rechts) Na het opstarten van de jets kwam 'schuim' op het zandpakket.

Het verloop van de concentratie was de belangrijkste parameter om vast te stellen hoe de processen in het beun verliepen en hoe "leeg" de proefbak was. Het verloop van de concentratie (dichtheid van het mengsel) was in alle proeven ongeveer hetzelfde. Vlak na het openen van de leegzuigdeur liep de afzuigdichtheid sterk op om vervolgens ca. -- - minuten constant te blijven. Hierna daaldde de dichtheid bijna lineair tot het nulniveau, zie figuur 7.3. In de proeven met de huidige leegzuigdeuren zijn pieken te
onderscheiden wanneer een van beide leegzuigdeuren werd geopend of gesloten. Dit is te zien in de grafiek van het verloop van de dichtheid (zie bijlage I, proef 13). Het verloop van het jetdebit wordt in paragraaf 7.4 beschreven. Opvallend is dat het verloop van het jetdebit per proef aanzienlijk verschilt.

![Foto van de proefopstelling tijdens het leegpompen van de proefbak.](image)

Figuur 7.2. Foto van de proefopstelling tijdens het leegpompen van de proefbak.
Figuur 7.3. Voorbeeld van het kenmerkend verloop van de dichtheid tijdens de proef.

Na het verstrijken van de proeftijd werden de jets uitgezet. Vervolgens werd het water uit de proefbak en de voorraadcontainer gezogen met behulp van de grondpomp. Doordat de watervoorraadcontainer een communicerend systeem vormde met de proefbak moest deze ook na elke proef leeg zijn. Het laatste restje water werd met een klokomp uit de proefbak gezogen om de vorm van de restlading niet te verstoren, zie figuur 7.2. Op het zand lag toen een laag slierbrijk schuim. Dit werd met een bezem verwijderd, zodat de hoeveelheid restlading en de verdeling hiervan in de proefbak zichtbaar werd. Vervolgens werd de hoeveelheid restlading volgens een vast patroon gepeeld. Per proef werden 33 peilingen uitgevoerd met een hart op hart afstand van ca. 25 cm.

7.1.1 Bijzonderheden per proef

Algemene bijzonderheden

In de proeven heeft één jet op de kippekooi (jetpositie B) gedeeltelijk tegen de spindel van de huidige leegzuigdeur gejet. De jetkracht van deze waterjet werd gereduceerd. Hierdoor is de vorm van de restlading in de twee hoeken van de 'hopperwand'-'kalf' verschillend, zie figuur 7.4.

![Bovenaanzicht van de proefbak met jetposities en de plaats van de spindel.](image)

Figuur 7.4. Bovenaanzicht van de proefbak met jetposities en de plaats van de spindel.
Bij de proeven is ervoor gekozen om alltijd met ongeveer hetzelfde debiet de proefbak leeg te zuigen. Dit betekent dat de proefbak bij de proeven met de nieuwe leegzuigdeur met hetzelfde debiet werd leeggezogen als bij de proeven met de huidige leegzuigdeuren. In de praktijk zal het leegzuigdebediat relatief verdubbelen bij het gebruik van de nieuwe leegzuigdeur. Er wordt namelijk uit één beunsectie tegelijk afgezogen in plaats van uit twee.

Hieronder worden de bijzonderheden per proef toegelicht:

Proef 1
Bij de eerste proef dreigde de persleiding te verzanden. Bij het openen van de eerste leegzuigdeur ging de leegzuigconcentratie zeer stellig omhoog. Dit kon de perspomp niet verwerken, zodat de leegzuig snelheid verminderde tot bijna nul. Uit de leiding kwam een dikke worst zand. Om dit te voorkomen zijn de leegzuigdeur(en) bij de volgende proeven gelijkmatiger geopend en is er langer van tevoren gejet (ca. 1.5 à 2 min.).

Proef 5
Tijdens proef 5 bleken 5 van de 13 jets verzand te zijn. Deze zijn schoon gemaakt door ze er na de proef af te draaien. De oorzaak van het verzanden is niet achterhaald. Hoogstwaarschijnlijk is het een combinatie van vuil in de leiding en in het jetwaterandeelt, en van het vollopen van de jets met zand tijdens het vullen van de proefbak. Hierdoor is de hoeveelheid restlading groter en ligt met name in één van de twee hoeken 'hopperwand'-'kalf' veel meer zand (zie ook bijlage I, Proefresultaten).

Proef 6
Tijdens proef 6 is de slang naar de jet in één hoek 'hopperwand'-'kalf' losgegaan. Hierdoor is de hoeveelheid restlading groter en ligt met name in die hoek van de proefbak meer zand dan in de andere hoek (zie ook bijlage I, Proefresultaten).

Proef 13
In proef 13 werd met de lage jetdruk (--- bar) gejet en er werd door de huidige leegzuigdeuren afgezogen. Het jetdebediet was zeer klein, zie paragraaf 7.4. Hierdoor was het zand niet goed 'gefluïseerd' en werd waargenomen dat schollen zand langzaam richting de leegzuigdeur afschoven. Hierdoor was de zandstroom richting de leegzuigopening lager. Om het leegzuigproces in evenwicht te houden en geen lucht aan te zuigen is het afzuigdebediet verminderd.

Proef 14
In proef 14 werd ook met de lage jetdruk (--- bar) gejet en door de nieuwe leegzuigdeur afgezogen. In deze proef veranderde de leegzuigleiding twee keer bijna. Dit betekende dat de dichtheid naar 2 ton/m3 ging en de snelheid in de leiding sterk reduceerde. Door het openen van de 'zee-afsluiter' werd de concentratie verlaagd en de stroomsnelheid in de leiding weer verhoogd. In deze proef was het jetdebediet iets groter dan in proef 13, maar door het afzuigen door de nieuwe leegzuigdeur was het zand voor de leegzuigdeur hoogstwaarschijnlijk niet in suspensie. Tijdens de eerste fase van het leegzuigproces bleef het jetdebediet eveneens zeer laag.

De overige proeven zijn volgens plan verlopen.
7.2 Hoeveelheid en vorm van de restlading

7.2.1 Algemene kenmerken van de hoeveelheid en vorm van de restlading

Na elke proef met de huidige leegzuigdeuren was er nog een aanzienlijke hoeveelheid zand in de proefbak, zie tabel 7.1. Bij gebruik van de nieuwe leegzuigdeur was de proefbak na elke proef nagenoeg leeg. Alleen in de hoeken lag nog een beetje zand en op de bodem nog een klein laagje slib.

In onderstaande tabel is de hoeveelheid restlading per proef weergegeven. In bijlage I, Proefresultaten, is per proef de vorm en hoeveelheid restlading gegeven.

<table>
<thead>
<tr>
<th>P nr.</th>
<th>leegzuigdeur</th>
<th>klepvak</th>
<th>totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>huidig</td>
<td>nieuw</td>
<td>proef</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

excl. de hoeveelheid zand op de kippekooi (gemiddeld ca. --- m³ per proef, omgerekend naar de werkelijkheid is dit ca. --- m³ per klepvak). De factor --- verrekent de lengte van het gehele beun.

Tabel 7.1. Hoeveelheid restlading per proef.

De hoeveelheid restlading is berekend door de peilingen te interpoleren tot een grid met 280 punten en per punt de afstand tot de bodem van de proefbak te berekenen. In figuur 7.5 en 7.7 en bijlage I is de afstand van de bovenkant van de proefbak tot het zandniveau (max. 211 cm) gegeven.

De gemiddelde restlading bij de proeven met de huidige leegzuigdeuren was --- m³ (excl. de hoeveelheid zand op de kippekooi, ca. --- m³). De gemiddelde restlading bij het afzuigen met de nieuwe leegzuigdeur was ca. --- m³. Omgerekend naar de praktijk zijn deze hoeveelheden:

\[
\left(--- + ---\right) \times 3.2^3 = --- m^3 \text{ per klepvak} \quad \Rightarrow \text{totaal (---) = --- m}^3
\]

\[
--- \times 3.2^3 = --- m^3 \text{ per klepvak.} \quad \Rightarrow \text{totaal (---) = --- m}^3
\]

Hieruit blijkt dat de restlading bij het gebruik van de nieuwe leegzuigdeur ca. 20 % is van de restlading bij het gebruik van de huidige leegzuigdeuren.
In onderstaande figuren is de restlading, die afgezogen is met de huidige en met de nieuwe leegzuigdeur weergegeven. Het verschil in zandniveau is duidelijk te zien. In proef 3 en 9 zijn identieke instelparameters gebruikt.

Figuur 7.5. Restlading met gebruik van de huidige (links) en de nieuwe leegzuigdeur (rechts).

![restlading figuur](image)

huidige leegzuigdeur

![restlading figuur](image)

Figuur 7.6. Foto's van de met gebruik van de huidige (links) en de nieuwe leegzuigdeur (rechts).

Vorm van de restlading bij gebruik van de huidige leegzuigdeuren
De vorm van de restlading is bij elke proef met de huidige leegzuigdeuren ongeveer hetzelfde. Deze vorm is te vergelijken met de algemene vorm in de praktijk, zie paragraaf 3.3, Analyse restlading.

Wat betreft de vorm van de restlading kan het volgende gesteld worden, zie ook de nummers in figuur 7.5. en 7.6:

1. Ter plaatse van de leegzuigdeuren is het zand niveau het laagst.
2. In het midden van de proefbak ligt een rug zand van de 'hopperwand' tot op de 'kippekoel'.
3. In de twee hoeken 'hopperwand'-`kalf' staat een rug zand.
Vorm van de restlading bij gebruik nieuwe leegzuigdeur
De verschijningsvorm van de restlading kan over het algemeen als volgt getypeerd worden, zie ook de nummers in figuur 7.5. en 7.6.:

4. Slib ligt op de bodem en voornamelijk in de directe omgeving van de nieuwe leegzuigdeur (laagste punt).
5. In de twee hoeken ‘hopperwand’-‘kalf’ staat een rug zand.
6. Grover materiaal in combinatie met zand ligt in een rug tegen de ‘hopperwand’.

Het slib op de bodem bezinkt hoogstwaarschijnlijk direct nadat de jets zijn uitgezet en er rustig met een klokkop wordt afgezogen. De hoeveelheid slib die bezinkt nadat de jets zijn uitgezet is, afhankelijk van de mate van turbulentie en het tijdstip van stoppen van de proef. Bij de proeven was de sliblaag 1 à 2 cm dik.

De rug in de hoek ‘hopperwand’-‘kalf’ bestaat uit zand. De jet op die positie steekt door deze rug heen, zie (a) figuur 7.6. Het zand in de hoek wordt voornamelijk weggespoten door de twee jets in de buurt van de huidige leegzuigdeur (positie B). De straal uit één van deze twee jets werd verstoord door de stang van de spindel die de huidige leegzuigdeur opent en sluit. Hierdoor is de effectiviteit van deze straal kleiner en is de zandhoeveelheid in de rechter ‘hopperwand’-‘kalf’ hoek groter dan in de andere hoek, zie (5) in figuur 7.5.

De ruggen zand tegen de wanden van de proefbak moeten blijkbaar worden weggejet. De huidige jets spuiten voornamelijk in de proefbak, evenwijdig aan de ‘kalven’ en niet evenwijdig aan de ‘hopperwand’. Voor een effectieve verwijdering van de zandruggen zullen de jets evenwijdig aan de wanden van de proefbak of een beunsectie dienen te spuiten.

7.2.2 Invloed van de parameters op de hoeveelheid en de vorm van de restlading

Bij de proeven is gevorderd met verschillende parameters, zie paragraaf 6.4.3. Bij de uitwerking van de invloed van deze parameters is een onderscheid gemaakt in de proeven met de huidige leegzuigdeuren en de proeven met de nieuwe leegzuigdeur.

Invloed van de parameters bij gebruik van de huidige leegzuigdeuren:

Bij het gebruik van de huidige leegzuigdeuren is gevorderd met de afzuingtijd (proef 2), de nozzle configuratie (proef 4) en is gevorderd met de jetdruk (proef 13).

Wijzigen nozzle configuratie (proef 4)

Bij het wijzigen van de nozzle configuratie zijn enkel de nozzle diameters veranderd. De diameter van de nozzle’s op de kippekooi (plaats A en B, 5st.) zijn verkleind en de diameter van de overige nozzle’s is vergroot (plaats C, 8 st.). Het wijzigen van de nozzle configuratie heeft geen invloed op de hoeveelheid restlading bij gebruik van de huidige leegzuigdeuren.

De vorm van de restlading was echter wel veranderd. In de hoeken was meer zand aanwezig en boven de bodemdeur was minder zand aanwezig dan in proef 3. Het volume zand in de hoeken is hoogstwaarschijnlijk groter, doordat de jets in de buurt van de huidige leegzuigdeuren (jetpositie B) een kleinere diameter hebben. Hierdoor is het jetdebiet van deze jets kleiner en de effectieve afstand ook. Door de grotere diameter van de dieper gelegen jets (jetpositie C) is het jetdebiet in het lager gedeelte van de
proefbak groter. Waarschijnlijk is de evenwichtshelling van het zand verkleind door het grotere jetdebet, waardoor het algemene zandniveau lager is.

Afzuigtijd (proef 2)

Langer jetten verlaagt de hoeveelheid restlading, maar de vermindering is beperkt. De restlading van proef 2 is \(---\) m\(^3\). Dit is \(---\) % van de gemiddelde hoeveelheid restlading die afgezogen is met de huidige leegzuigdeuren. In de praktijk is dit resultaat niet te realiseren, omdat er dan per klepvak ca. 15 min. moet worden afgezogen.

Jetdruk (proef 13)

Door de jetdruk te variëren is aangetoond dat de hoeveelheid restlading beïnvloed wordt. In proef 3 en 4 werd met een relatief hoge jetdruk, namelijk tot ca. 3 bar en dus met veel jetvermogen gejet. In proef 13 is met een relatief lage jetdruk gejet (--- bar) en daardoor met weinig jetvermogen. Verschaald naar het model is de jetdruk waarmee de "Volvox Terranova" jet ca. --- bar. Er is geen proef uitgevoerd met de huidige leegzuigdeuren en een jetdruk van --- bar. De hoeveelheid restlading van proef 3 en 4 en proef 13 verschilt aanzienlijk, resp. --- m\(^3\) en --- m\(^3\) (excl. zand op de kippekool). De vorm van de restlading was wederom ongeveer hetzelfde, bij proef 13 lag er echter nog meer zand in de ‘hopperwand’- ‘kalf’ hoeken en was het gemiddeld zandniveau ook hoger.

Invloed van de parameters bij gebruik van de nieuwe leegzuigdeuren:

Bij de proeven met gebruik van de nieuwe leegzuigdeur is gevarieerd met de jetdruk (proef 9, 10 en 14), zandsort (proef 11, 12 en 15) en nozzle configuratie (proef 6 en 15). Bij alle proeven is de hoeveelheid restlading zeer laag en er is weinig verschil in hoeveelheid restlading (min --- m\(^3\), max. --- m\(^3\)). De resultaten zijn weergegeven in bijlage I, Proefresultaten.

Wijziging van de nozzle configuratie (proef 6 en 15)

Door het wijzigen van de nozzle configuratie is het jetdebet groter en daardoor is er meer turbulentie in het beun. De nozzle diameter van de jet op jetpositie B is verkleind. Deze jet sputt in de hoek ‘hopperwand’- ‘kalf’. Bij de proeven is gebleken dat er meer zand in de hoeken ‘hopperwand’-‘kalf’ lag, zie figuur 7.7 ten gevolge van de kleinere nozzle diameter. Door de nozzle diameters te veranderen, ligt er wel minder zand in het laagste gedeelte van de proefbak. Dit is in de spuitrichting van de jets met een vergrote nozzle diameter (jetpositie C).

Figuur 7.7. Restlading bij proef 6 en 7 met respectievelijk de gewijzigde en de huidige nozzle configuratie.
Bij de proeven met de lagere jetdruk (proef 12 tot en met 15) zijn de verschillen in de vorm van de restlading ten gevolge van de nozzle diameter wijziging kleiner. Dit wordt veroorzaakt, doordat de proefduur groter is. Concluderend kan gesteld worden dat de nozzle diameter verdeling een grote invloed heeft op de vorm van de restlading. Door de nozzle diameter te vergroten wordt de invloedsafstand en het jetdebiet van een jet vergroot.

Zandsoort (proef 11 en 14)
De zandsoort had nagenoeg geen effect op de hoeveelheid restlading. Vergelijk proef 10 (groot) en 11(fijn) met respectievelijk --- m³ en --- m³ restlading. Of vergelijk proef 12 (groot) en 14 (fijn) met respectievelijk --- m³ en --- m³ restlading. De bressnelheid en de mate van fluidisatie zijn sterk afhankelijk van de mediane korrel diameter. Dit betekent dat deze processen weinig invloed hebben op de hoeveelheid restlading bij gebruik van de nieuwe leegzuigdeur. De invloed van de zandsoort is niet onderzocht voor de proeven met de huidige leegzuigdeuren.

Leegzuigtijd
Door de leegzuigtijd te verlengen wordt de restlading verkleind. De proeven met de lagere jetdruk (10 t/m 15) hadden een langere leegzuigtijd dan de proeven met een hoge jetdruk (1 t/m 9). De gemiddelde restlading van proef 6 t/m 9 (korte leegzuigtijd, hoge jetdruk) is --- m³ en de gemiddelde restlading van proef 10 t/m 15 met uitzondering van proef 13 (langere proeftijd, lage jetdruk) --- m³ restlading. Het is niet bekend of deze hoeveelheid (--- m³) nog sterker verminderd zou kunnen worden langer af te zuigen. Hoogstwaarschijnlijk zal de proefbak langzaam schoonspoelen.

Jetdruk (proef 10, 11, 12 en 14)
De invloed van de jetdruk op de hoeveelheid restlading is moeilijk te bepalen. De jetdruk bepaalt de uitstroomsnelheid uit de jet en daardoor het jetdebiet en de reikwijdte van de jet. In proef 10 en 11 (ca. --- bar) is de jetdruk ca. 1.5 maal de druk in proef 14 en 12 (ca. --- bar). De afzuigtijd van de proef is echter zo lang, dat de invloed op de hoeveelheid restlading niet meer te onderscheiden is. Het verloop van de concentratie geeft ook geen indicatie van de invloed van de jetdruk.

Uit de analyse van de nozzle configuratie blijkt dat de diameter invloed heeft op de hoeveelheid restlading. Hierdoor is het aannemelijk dat de druk ook invloed zal hebben op de hoeveelheid restlading. Bij gebruik van de nieuwe leegzuigdeur is dit echter niet vastgesteld.

7.2.3 Conclusie
Bij gebruik van de huidige leegzuigdeuren had het wijzigen van de nozzle configuratie wel invloed op de vorm van de restlading, maar helaas te weinig invloed op de hoeveelheid restlading. Door in jetpositie B en C met grotere nozzle diameters te jetten, zou de hoeveelheid restlading wel een beetje kunnen afnemen, maar niet voldoende.

Het opvoeren van het jetvermogen had wel invloed op de hoeveelheid restlading. Om de restlading aanzienlijk te verminderen moet dit echter zo excessief gebeuren, dat het in de praktijk onmogelijk is. Het langer doorgaan met leegzuigen vermindert de hoeveelheid restlading ook. Helaas is dit economisch niet rendabel ten gevolge van de zeer lage afzuigconcentraties (1.05 ton/m³).

Minimaliseren restlading "Volvox Terranova" 95
H 7 Interpretatie van de proefresultaten
De nieuwe leegzuigdeur geeft een aanzienlijke reductie van de hoeveelheid restlading en het gebruik ervan vormt een goede methode om de hoeveelheid restlading te verkleinen. In combinatie met een goede nozzle configuratie is een nog positiever resultaat te bereiken. Aangenomen mag worden dat het verhogen van het jetvermogen de restlading nog verder verkleint door de grotere invloedsafstand van een jet. De gebruikte zandsoorten hadden nagenoeg geen effect op de hoeveelheid restlading.

De hoeveelheid restlading wordt dus met name bepaald door:

- De plaats van afzuigen
- De spuitrichting en invloedsafstand van de jets

7.3 Leegzuigproductie

Ook de leegzuigproductie is geanalyseerd in de eerste fase van het afzuigproces. De leegzuigproductie is in deze fase maximaal en net als bij de proeven wordt ook in de grootste hoeveelheid zand afgevoerd in deze fase. Bij de proeven werd de concentratie van het mengsel verlaagd als deze te hoog dreigde te worden. Hierdoor zijn de resultaten bij een hoge leegzuigproductie niet goed te vergelijken.

In figuur 7.8 is het gebruikte jetvermogen uitgezet tegen de gemiddelde leegzuigconcentratie. Deze parameters zijn bepaald over een proeftijdperiode van 15 tot 120 s. Het jetvermogen is berekend door de gemiddelde jetdruk en het gemiddeld debiet over deze periode met elkaar te vermenigvuldigen.

![Leegzuigproductie proeven](image)

y = 0,0175x + 1,505

Jet vermogen [kW]

Driehoek huidige leegzuigdeur
Vierkant nieuwe leegzuigdeur

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>grof zand</td>
<td>fijn zand</td>
</tr>
</tbody>
</table>

Figuur 7.8. Leegzuigproductie voor verschillende proeven.

Mineraliseren restlading “Volvox Terranova”
H 7 Interpretatie van de proefresultaten
De proeven 1 en 14 zijn niet in de figuur opgenomen, omdat de persleiding dreigde te verzanden bij deze proeven. Het gearceerde gebied is het gebied waarbij de leegzuigconcentratie geknepen werd door de leegzuigdeur langzamer te openen. Ter indicatie is in de figuur het jetvermogen aangegeven dat de jetpomp van de “Volvox Terranova” verschlaald kan leveren.

\[
\text{Max. vermogen} \times \frac{1}{4} \times \text{verschalingsparameter} \times \text{rendement pomp} \quad (7.1)
\]

\[--- \times \frac{1}{4} \times 3.2^{-3.5} \times 80\% = --- \text{kW} \]

Uit de figuur blijkt dat over het algemeen geldt dat de leegzuigproductie hoger is naarmate het jetvermogen hoger is. Bij de proeven werd een hoger jetvermogen gecreëerd door de jetdruk te verhogen.

Invloed van de parameters bij gebruik van de huidige leegzuigdeuren:
Duidelijk te zien is, dat bij een laag jetvermogen de leegzuigproductie afneemt (proef 13).
Het wijzigen van de nozzle diameters zorgt voor een verlaging van het jetvermogen tijdens het leegzuigen van de ‘bulk’ bij gebruik van de huidige leegzuigdeuren. Dit wordt veroorzaakt, doordat de nozzle’s bovenop de ‘kippekoel’ (positie A) kleiner zijn na wijziging van de nozzle diameters en daardoor het jetdebiet ook. De jets onderin de proefbak (positie C) spuiten pas in een later stadium. Doordat beide nozzle configuraties de leegzuigproductie hoog is, is de invloed van de nozzle diameter wijziging op de leegzuigproductie klein.

Invloed van de parameters bij gebruik van de nieuwe leegzuigdeuren:
Uit figuur 7.8 blijkt wederom dat de leegzuigproductie toeneemt bij een groter jetvermogen. Bij de proeven met de lagere jetdrukken blijkt dat de nozzle wijziging effectief is als fijn zand wordt gebruikt (proef 12 en 15). Ook blijkt uit de figuur dat de leegzuigproductie bij het grovere zand groter is dan bij het finere zand (proef 10 en 11). Hieruit kan geconcludeerd worden dat erosie- en liquidatieprocessen invloed hebben op de leegzuigproductie. Bij grover zand is de bresproductie groter. Bij een groter jetdebiet zijn de effectieve korrelspanningen kleiner, waardoor het zand makkelijker afschuift. Bij beide proeven is de verdeling van het jetdebiet in de proefbak niet bekend, zie paragraaf 7.4.

7.3.1 Conclusie

Uit de proeven blijkt duidelijk dat de leegzuigproductie wordt verhoogd door het opvoeren van het jetvermogen. Bij een vermogen vanaf ca. --- kW is de dichtheid hoog en zijn de effecten van de verschillende variabelen niet meer te onderscheiden. Wel blijkt dat de nozzle wijziging effectief (groter jetdebiet) is en dat de productie afhankelijk is van de zandkorrel diameter bij lagere jetdrukken en gebruik van de nieuwe leegzuigdeur.

Uit de proeven is niet duidelijk af te leiden of het verhogen van het jetdebiet effectiever is dan het verhogen van de jetdruk.
7.4 Debiet – druk relatie met het aantal spuitende jets

Bij de proeven kwam een zeer merkwaardig fenomeen naar voren. Het jetdebiet dat door de jets stroomt was niet te regelen. Bij sommige proeven werd met een zeer hoge jetdruk een klein debiet gejet en in andere proeven werd met een zeer lage jetdruk een groot debiet gejet. Tijdens de proeven nam het jetdebiet in ‘stapjes’ toe. Dit verschijnsel is met behulp van onderstaande figuur toegelicht. Hierbij geeft de groene lijn het verloop van het jetdebiet aan en de rode lijn geeft het verloop van de jetdruk aan.

![Graphs showing jet flow and pressure over time for tests 3, 4, 11, and 15](image)

Figuur 7.9. Verloop van het jetdebiet, het jetvermogen, de druk en de dichtheid tijdens de proeven.

Om meer inzicht te krijgen in de verhouding van het jetdebiet en de jetdruk is het verloop van deze grootheden tijdens de proef geanalyseerd. Met behulp van een correctiefactor is uit de jetdrukmeting het theoretische jetdebiet berekend. Dit jetdebiet is vergeleken met het gemeten jetdebiet. Hiervoor is de jetdrukmeting gekoppeld aan de debietmeting door bij de laatste 20 seconden van de proef een relatie te bepalen. Bij 9 van de 15 proeven kwam het berekende debiet overeen met het gemeten jetdebiet, als de volgende relatie gebruikt werd:

\[
Q_{\text{jetdebiet, berekend}} = A_{\text{nozzle, total}} \cdot \sqrt{(P_{\text{jetdruk, gemeten}} + C_{11}) + H_{meling-waterstand}} \cdot 2g \cdot C_{12} \text{ [m}^3\text{/s]} \quad (7.2)
\]

Voor de correctiefactoren is in de formule een waarde van twee maal 0.9 gebruikt. In de formule zijn de volgende aannamen aanwezig:

- Geen lekverliezen in het jetsysteem.
- Hoogteverschil tussen de drukmeter en de waterstand in de proefbak is 1 meter.
- De energieverliezen t.g.v. de weerstand en de in- en uitstroom verliezen worden gecompenseerd door de correctiefactoren toe te passen.
- De druk in het jetwaterdeelvat is gelijk aan de energiehoogte in het vat.
- Alle jets bevinden zich onder water.

Minimaliseren restlading “Volvox Terranova”

H 7 Interpretatie van de proefresultaten
Met dezelfde formule is ook het jetdebiet berekend voordat de leegzuigdeuren geopend werden. Hierbij is voor het hoogteverschil tussen de drukmeter en de waterstand in de proefbak 0 meter aangehouden, in verband met de tegendruk van het zandpakket in de proefbak. Door dit berekende jetdebiet te vergelijken met het gemeten jetdebiet wordt een indruk verkregen van het aantal spuitende jets.

De resultaten van deze berekening zijn in onderstaande grafiek weergegeven:

Figuur 7.10. Verhouding van het theoretisch berekend en het gemeten jetdebiet per proef.

Om een indruk te krijgen van het aantal spuitende jets zijn de debiet verhoudingen vertaald naar het aantal spuitende jets. Het aantal actieve jets is berekend aan de hand van de verhouding van het jetdebiet in figuur 7.10. Het kan zo zijn dat twee of meer jets met een klein debiet spuiten en samen opgeteld worden tot een enkele spuitende jet.

Figuur 7.11. Aantal spuitende jets weergegeven per proef (zie figuur 7.10 voor de legenda).

Actieve jets in de eindfase van de proef
In proef 5 waren 5 jets verzand en in proef 6 was een slang losgegaan. Dit is in de grafiek terug te vinden. Bij gebruik van de nieuwe leegzuigdeur zijn alle jets actief aan het eind van de proef. Bij gebruik van de huidige leegzuigdeuren is dit niet altijd het geval. Bij 4 van de 5 proeven met de huidige leegzuigdeuren komt het gemeten debiet niet overeen met het berekende jetdebiet. Hieruit kan geconcludeerd worden dat een aantal jets niet gespoten hebben bij deze proeven.
Bij de proeven met de huidige leegzuigdeuren lijkt het zand van de restlading over het algemeen ongeroerd. Aan het zandoppervlak is geen duidelijke verstoring in de zandgrading waargenomen. Behalve bij de twee jets in de buurt van de leegzuigdeur, zie (b) figuur 7.6. Na proef 4 is de jet in de hoek ‘hopperwand’-‘kalf’ uitgegraven. Tot in de directe omgeving van de jet was geen verstoring in de zandgrading waargenomen. Hieruit kan geconcludeerd worden dat het jetdebiet klein is geweest. Hoogstwaarschijnlijk zal er maar een beperkt debiet door de 4 ‘begraven’ jets spuiten, zie ook figuur 7.10.

Actieve jets vóór het begin van het afzuigen

Aan het begin van de proef zijn vaak niet alle jets actief. Zoals uit de grafiek blijkt, ligt dit niet aan de jetdruk. De hoeveelheid zand is ook niet van invloed. Opmerkelijk is dat bij het gebruik van het fijnere zand en een lage jetdruk (proef 12 en 15) alle jets aan het begin van de proef actief zijn en bij een hogere druk niet (proef 11).

Uit de proeven is geen relatie af te leiden tussen de begin jetdruk, de zandhoeveelheid en het aantal actieve jets. De tijdsduur van het jetten is wellicht wel van invloed, maar dit is niet in een bepaalde relatie uit te drukken. Kortom, het is niet duidelijk waarom alle jets het in de ene proef wel deden en in een andere proef niet. Uit visuele waarneming bleek dat de bovenste drie jets (jetpositie A) en nog 2 tot 4 jets die zich op de kippekooi bevonden regelmatig spoten. In bijna de helft van de proeven (6 st.) waren in het begin 5 tot 7 jets actief, zie figuur 7.10.

Bij de proeven met een verzande leegzuigleiding was het jetdebiet zeer klein. In de praktijk zal dit zeker voorkomen moeten worden. Bij het uitvoeren van de proeven is gebleken dat het opvoeren van de jetdruk niet de juiste oplossing is. Bij de proeven waren de jets onbeschermd. Het zou kunnen dat deze jets tijdens het vullen van de proefbak gedeeltelijk verzand zijn.

Wellicht is het zinvol zijn om de verhouding tussen de jetdruk, het jetdebiet, de zandsoort en de zandpakkethoogte voor een begraven jet te onderzoeken in een laboratorium.
7.4.1 Nozzle eigenschappen van de jets

Om inzicht in de verliescoëfficiënt van de nozzle te krijgen is een kleine proef opgezet. Hierbij werd het jetdebiet door de nozzle bepaald door gedurende een vaste tijd in een drumvat te spuiten. Tevens werd het drukverschil over de nozzle bepaald.

In de nozzle is de uitstroomdiameter over een lengte van ongeveer één centimeter constant. Daarom is gesteld dat de stroom na de vernauwing (= na het conische gedeelte) weer kan aanliggen. Dit betekent dat er geen insnoering van de jetstraal zal plaatsvinden.

<table>
<thead>
<tr>
<th></th>
<th>Nozzle --- mm</th>
<th>Nozzle --- mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debiet (gemeten) [l/s]</td>
<td>2.291</td>
<td>2.584</td>
</tr>
<tr>
<td>Druk voor de nozzle (gemeten) [bar]</td>
<td>1.18</td>
<td>1.48</td>
</tr>
<tr>
<td>Energiehoogte voor de nozzle (ber. uit de druk en debiet) [kPa]</td>
<td>118.6</td>
<td>148.8</td>
</tr>
<tr>
<td>Snelheidshoogte na de nozzle (ber. uit debiet) [kPa]</td>
<td>110.7</td>
<td>140.9</td>
</tr>
<tr>
<td>Energieverliescoëfficiënt (berekend, µ)</td>
<td>1 - 0.934</td>
<td>1 - 0.947</td>
</tr>
<tr>
<td>Verliescoëfficiënt (berekend, Cv)</td>
<td>0.966</td>
<td>0.973</td>
</tr>
</tbody>
</table>

Tabel 7.2. Nozzle eigenschappen voor nozzle diameters van 14 en 19 mm.

Uit tabel 7.2 volgt dat de energieverliescoëfficiënt ongeveer 6% is. Door de uitstroom openingslengte te verkorten zal de stroom niet meer aanliggen en zal de coëfficiënt nog verlaagd worden. Uit de theorie volgt

\[U_s = C_v \cdot \sqrt{\frac{2 \cdot (p_n - p_{am})}{\rho_w}} \]

(7.3)

Uit de berekening volgt dat de verliescoëfficiënt ca. 97% is. Deze resultaten komen overeen met de waarde uit de theorie, hoofdstuk 4 paragraaf 4.2.

Minimaliseren restlading "Volvox Terranova"

H 7 Interpretatie van de proefresultaten
7.4.2 Conclusies uit de proeven

De resultaten van de proeven kunnen worden samengevat in onderstaande tabel:

<table>
<thead>
<tr>
<th>Leegzuigproductie</th>
<th>Restlading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nieuwe leegzuigdeur</td>
<td>X</td>
</tr>
<tr>
<td>Hoger jetvermogen</td>
<td>X</td>
</tr>
<tr>
<td>Nozzle wijziging</td>
<td>X</td>
</tr>
<tr>
<td>Fijner zand</td>
<td>X</td>
</tr>
<tr>
<td>Langere tijd afzuigen</td>
<td>X</td>
</tr>
</tbody>
</table>

Tabel 7.3. Effect van de verschillende maatregelen op de restlading en de leegzuigproductie.

Uit de tabel blijkt dat de leegzuigdeur een goede oplossing is voor de restlading, vooral als dit gepaard gaat met een nozzle wijziging. Het jetvermogen en dan met name de jetdruk, is vooral bepalend voor de leegzuigproductie. Dit komt maar gedeeltelijk overeen met de theorie, waarbij gesteld werd dat het verhogen van het debiet relatief minder energie kost dan het verhogen van de jetdruk. Bij de proeven met lagere jetdrukken bleek wel dat het vergroten van het debiet een gunstige invloed had op de leegzuigproductie.

Voor een goede nozzle wijziging zal goed naar de vorm van de restlading en de leegzuigproductie in de praktijk gekeken moeten worden. Aan de hand van de daaruit volgende conclusie zou een verandering van de nozzle diameters doorgevoerd kunnen worden. Blijft een zandrug staan dan zal de nozzle diameter vergroot moeten worden. De zandrug tegen de achterwand en in de hoeken kan misschien nog effectiever verwijderd worden door een nozzle evenwijdig aan de ‘hopperwand’ te laten spuiten.

In principe is de tendens om een zo groot mogelijk jetvermogen te creëren. Hierbij wordt de leegzuigproductie vergroot en de restlading verkleind. Bij de proeven werd met relatief zeer grof zand gewerkt, omgerekend naar de praktijk namelijk ca. 1000 μm. Hiervoor is het opvoeren van het jetvermogen blijkbaar zeer effectief.

Verder is gebleken dat het verloop van het jetdebet per proef sterk verschilden. Er is geen correlatie gevonden tussen de jetdruk, de zandsoort, de zandbedhoogte en de nozzle diameter tijdens het opstarten van het leegzuigproces. Het bleek wel belangrijk te zijn dat de jets aan het begin van de proef spuiten, want anders is de kans groot dat de grondleiding zal verzanden.

Bij de proeven is volledig uitgegaan van de situatie in de opschoonslag en dus niet in de bulkslag. Tevens is het afzuigdebet in de proeven (verschaald) de helft van het afzuigdebet dat zich in de praktijk zal voordoen. De invloed hiervan op het leegzuigproces is niet bekend.
H8 Voorstel tot aanpassing van de “Volvox Terranova”

Om de restlading van de “Volvox Terranova” te verminderen zal in dit hoofdstuk een voorstel tot aanpassing worden afgeleid gebaseerd op de resultaten zoals die in de vorige hoofdstukken zijn gegeven. De restlading van de “Volvox Terranova” zal aanzienlijk verminderen als:

- Per beunsectie een nieuwe leegzuigdeur aan gebracht wordt.
- In de opschoonslag het leegzuigen geconcentreerd wordt per beunsectie.
- Het jetsysteem aangepast wordt.

In de proeven is een nieuwe leegzuigdeur naar tevredenheid getest. Onderstaand zal het ontwerp van de nieuwe deur nader beschouwd worden. Vervolgens zal ingegaan worden op de leegzuigvolgorde van de beunsecties en een voorstel tot aanpassing van het jetsysteem worden afgeleid.

8.1 Overwegingen bij het inbouwen van de nieuwe leegzuigdeur

Uit de proeven en de theoretische analyse blijkt dat het inbouwen van de nieuwe leegzuigdeur nodig is om de restlading aanzienlijk te verminderen. Door het verlagen van de leegzuigopening zal de hoeveelheid restlading verminderen tot ca. ---% van de huidige hoeveelheid restlading. Onderstaand wordt de vormgeving van de nieuwe leegzuigdeur nader geanalyseerd.

Figuur 8.1. Schematische weergave nieuwe leegzuigdeur.

Afmetingen leegzuigopening en constructie vorm.

De leegzuigopening van de nieuwe leegzuigdeur is --- m². De grootte van deze opening sluit redelijk goed aan op de oppervlakte van het leegzuigkanaal (--- m²). Gesteld wordt dat de instroomsnelheid ongeveer even groot dient te zijn als de stroomsnelheid in het leegzuigkanaal. Hierdoor zijn de stromingsverliezen minimaal, doordat het mengsel niet meer vertraagd. De stroomsnelheid door de opening zal door contractie iets groter zijn dan in het leegzuigkanaal.

De leegzuigdeur opent naar binnen, omdat buiten de deur het zand ligt. De openingshoek van de deur is echter beperkt (---). Dit betekent dat de leegzuigopening van de nieuwe leegzuigdeur geknepen wordt door de openingshoek van de deur. De bruto-afzuigoppervlakte langs de deur, in het leegzuigkanaal, is aan de onderzijde van de deur --- m² en aan de zijkanten elk --- m². Doordat de mengselstroom 1 richting op stroomt in het leegzuigkanaal wordt gesteld dat één van beide zij-openingen effectief gebruikt wordt tijdens het afzuigen.
Hierdoor wordt de totale bruto-afzuigoppervlakte --- m². Door contractie zal deze oppervlakte nog verkleinen. Dit betekent dat de afzuigoppervlakte direct na de deur klein is ten opzichte van de gewenste leegzuigopening.

In de praktijk kan de constructievorm van de leegzuigdeur problemen veroorzaken, maar bij de proeven is dit niet vastgesteld. Dit wordt verklaard doordat in de praktijk:

- De constructie vorm van de leegzuigdeur verschilt met de constructievorm van de deur in de proeven. De leegzuigdeur in de proeven bestond uit een vlakke plaat, waardoor de afzuigoppervlakte relatief groter was.
- Het leegzuigdebit in de proeven is verschaald de helft van het toekomstige leegzuigdebit in de "Volvox Terranova". In de praktijk zal door het geconcentreerd afzuigen per beunsectie het afzuigdebit per beunsectie verdubbelen.

Door de genoemde verschillen kan eerder een vacuümlimiet worden bereikt of kan de instroom van het zandwater mengsel worden belemmerd, waardoor zandbrugvorming voor de leegzuigdeur optreedt.

Luifel en kans op verstopping door zandbrugvorming

Voor de nieuwe leegzuigdeur wordt een luifel aangebracht. Deze luifel wordt aangebracht met de gedachte om het afzuigpunt verder te verlagen en om het aanzuigen van lucht te voorkomen. Door deze luifel zal de stroomweerstand toenemen, omdat de mengselstroom een extra "bocht" dient te maken om langs de luifel te stromen. In de praktijk moet blijken of dat het effect van de lagere leegzuigopening opweegt tegen de extra veroorzaakte stroomweerstand. In de proeven is niet vastgesteld dat de luifel invloed heeft op de hoeveelheid restlading of de leegzuigproductie. Door de driehoek-vormige zij-openingen onder de luifel is de kans reëel dat zandbrugvorming voor de opening kan ontstaan, mede doordat de opening relatief klein is.

Slijtage

Door de geringe openingsstand van de deur zal de stroom volledig langs de deur stromen en zorgen voor een aanzienlijke slijtage. Tevens zal de stroom voornamelijk langs de zij-opening van de deur stromen omdat dat de zuigrichting in het leegzuigkanaal is. Dit betekent dat er voornamelijk slijtage zal optreden aan deze zijde van de nieuwe leegzuigdeur.

Voorstel alternatieve constructievorm nieuwe leegzuigdeur

Om de instroom van het zandwater mengsel geleidelijker te laten verlopen wordt voorgesteld om het scharnierpunt van de deur te verplaatsen, zodat een "huis-, tuin- en keukendeur" ontstaat. Hierdoor geleidt de deur de zandwater mengselstroom en is er geen "driehoek" meer waar de stroom zich langs moet wurmen. Deze deur is niet getest in de proevenserie en zal niet in de "Volvox Terranova" worden ingebouwd.

Figuur 8.2. Alternatieve constructievorm nieuwe leegzuigdeur, bovenaanzicht (links) en vooraanzicht (rechts).
8.2 Leegzuigvolgorde van de beunsecties

In hoofdstuk 3 is afgeleid dat de bulkslag momenteel naar tevredenheid verloopt. Daarom is het niet noodzakelijk om de leegzuigprocedure tijdens de bulkslag te wijzigen. Voor de nieuwe leegzuigdeur geldt dat:

- Door de constructievorm van de deur is de kans op complicaties tijdens het opstarten en het leegzuigen groter.
- De netto doorstroom opening door de constructie vorm is gering.

Hierdoor heeft de nieuwe leegzuigdeur geen toegevoegde waarde in de bulkslag ten opzichte van de huidige leegzuigdeuren. De bestaande leegzuigdeuren die in de bulkslag gebruikt worden blijven hierdoor noodzakelijk. De leegzuigvolgorde in de opschoonslag zal ook niet hoeven te worden gewijzigd. In principe kan gewoon per beunsectie worden afgezogen van voor naar achter in het beun.

8.3 Voorstel tot aanpassing van het jetsysteem

Om het leegzuigen per beunsectie te concentreren zullen de gaten in de kalven dicht gemaakt moeten worden en dienen de 4 jetssecties opgesplitst te worden in 7 afzonderlijk bedienbare secties met elk --- tot --- jets.

Plaats en spuitrichting van de jets in het beun

Op dit moment is de verdeling van de jets, zoals aangegeven in hoofdstuk 3 en in figuur 8.3.

Figuur 8.3. Bovenaanzicht beunsectie met de plaats en de spuitrichting van de waterjets.

De volgende posities van de jets worden onderscheiden:

- Jets die de kippekooi schoonspoelen (jetpositie A).
- Jets spuitend in de richting van de huidige leegzuigdeur (jetpositie B).
- Jets spuitend in het laagste gedeelte van het beun (jetpositie C).
Bij de proevenserie is niet gebleken dat het verstandig is om het aantal jets uit te breiden of de positie van de jets te veranderen. De verdeling van de jets binnen een beunsectie kan hierdoor gehandhaafd blijven. Bij de proeven met de nieuwe leegzuigdeur bleek dat de hoeveelheid restlading klein was. Het zand dat nog achterbleef lag in de twee hoeken ‘hopperwand’-‘kalf’ en in een zandrug tegen de ‘hopperwand’. Door de spuitrichting van de jets iets te corrigeren zal dit nog verder reduceren.

Om verandering in het leegzuigkanaal en brugvorming voor de nieuwe leegzuigdeur te voorkomen zullen jets in de directe omgeving van de nieuwe leegzuigdeur moeten zijn gepositioneerd.

In onderstaande figuur is een voorstel tot wijziging van de spuitrichting gegeven. De wijzigingen betreffen:

- Het beter spuiten in de hoek ‘hopperwand’-‘kalf’ en langs de ‘hopperwand’ (1,2).
- Het direct in de buurt spuiten van de nieuwe leegzuigdeur (3).

![Figuur 8.4: Bovenaanzicht beunsectie met gewijzigde spuitrichting jets.](image)

Benodigde jetdebiet en nozzle diameters in het beun

Er is geen methode aanwezig om de juiste jetdruk, jetdebiet en nozzle diameter verdeling te berekenen in een beunsectie, maar door de kennis uit de theorie te koppelen aan de ervaringen met de proeven kan een indruk gegeven worden van een zinvolle wijziging van de nozzle diameters.

De pompkrumme van de jetpomp bepaalt in grote mate de jetdruk voor de jets. Het jetdebiet wordt bepaald door de nozzle diameters en het drukverschil over de jets.

Om een indruk te krijgen van het benodigd jetdebiet in een beunsectie is een denkmodel opgezet. Hiervoor is gesteld dat het minimaal benodigde jetdebiet tijdens het afzuigen is opgesplitst in een jetdebiet voor het verlagen van de korrelspanningen en in een jetdebiet voor het verdunnen van het mengsel van de kritieke dichtheid tot een goed verpompbare dichtheid.
Het jetdeebiet om de korrelspanningen op te heffen is afhankelijk van de korreldiameter van het zand. In onderstaande figuur is het jetdeebiet in een beunsectie afhankelijk van de bolvormige korreldiameter gegeven, zie ook figuur 8.5. Hiervoor is gesteld dat de korrelspanningen worden opgeheven en het zand de kritieke dichtheid heeft [ca. 1.9 ton/m³].

Het jetdeebiet om het mengsel te verdunnen is afhankelijk van het afzuigdeebiet. Om het mengsel te verdunnen van 1900 kg/m³ tot 1800 kg/m³ is bij een afzuigdeebiet van --- m³/s een jetdeebiet nodig van --- m³/s.

Jetdeebiet per beunsectie
t.b.v. verlagen korrelspanningen en 'verdunnen' mengsel [0,5 m³/s]
totaal jetdeebiet
tot porositeit 45%
1,9 ton/m³

Figuur 8.5. Bereken jetdeebiet per beunsectie afhankelijk van de zandkorreldiameter.

Uit de pompkromme van de jetpomp en het benodigde jetdeebiet is de totale oppervlakte van de nozzle’s te berekenen. Tijdens het spuiten van de jets in de bulk slag is de tegendruk voor de jets ca. 30 mwk, 15 meter zand. Bij het begin van de opschoonslag is dit gereduceerd tot ca. 12 mwk, 6 meter zand. In onderstaande figuren is met behulp van het spreadsheet programma de relatie gegeven voor de nozzle diameter in het beun en het jetdeebiet bij drie verschillende ‘waterstanden’ in het beun (0, 12 en 30 m).

Jetdeebiet in beunsectie per nozzle diameter
lage toerental jetpomp
en 3 verschillende 'waterstanden' in het beun (0, 12 en 30 m)

Figuur 8.6. Bereken jetdeebiet per beunsectie afhankelijk van de nozzle diameter.
Voor zand met een ‘bol’diameter van 700 µm (representatief voor zand in Singapore) is een theoretisch jetdebiet nodig van ca. --- m³/s, zie figuur 8.5. Dit debiet wordt bij het begin van de opschoonslag gejet voor nozzle’s met respectievelijk een diameter van --- mm en --- mm voor het lage en het hoge toerental van de jetpomp, zie figuur 8.6. Momenteel is de gemiddelde nozzle diameter in het beun --- mm.

In de proeven is gevarieerd met een nozzle diameter van --- en --- millimeter (verschaald --- en --- mm). Uit de schaalproeven is geconcludeerd dat de restlading het minste is als alle jets met een nozzle diameter van --- mm worden uitgevoerd.

In hoofdstuk 4.1.3 is gesteld dat de jets op de kippekooi, jetpositie A, sterk bijdragen bij het zandtransport tijdens de bulk slag. Momenteel hebben deze jets een nozzle diameter van --- mm. In de nieuwe situatie kan dit gewoon gehandhaafd blijven.

De jets spuitend in de richting van de huidige leegzuigdeur, jetpositie B, hebben momenteel een nozzle diameter van --- mm. Deze jets ‘verdunnen’ het zand water mengsel tijdens de bulk slag. Tevens blijken deze jets sterk bij te dragen aan het reduceren van de hoeveelheid restlading in de hoek ‘hopperwand’-‘kalf’. De diameter van deze jets (jetpositie B) kunnen hierdoor --- mm blijven.

Om het zandwater mengsel te ‘verdunnen’ en kans op verzanding te verminderen is geadviseerd om de uitstroomopening van de twee jets aan de ‘vork’ op de kippekooi te verplaatsen tot dichtbij de nieuwe leegzuigdeur, zie figuur 8.4 (3). Geadviseerd wordt om de diameter van deze jets gelijk te houden met de huidige diameter van de jets ter plaatse van de huidige leegzuigdeur (jetpositie B). Dit lijkt gerechtvaardigd, doordat momenteel ook twee jets, in twee verschillende beunsecties, per huidige leegzuigdeur aanwezig zijn.

Uit deze kwalitatieve analyse volgt dat het zinvol is om alle jets in een beunsectie met een nozzle diameter van --- mm uit te voeren. Dit geeft een toename van het jetdebiet in een beunsectie van ca. ---%. Als blijkt dat in de praktijk restlading blijft liggen dan kan de nozzle diameter van de jet die in de richting van de restlading spuit vergroot worden.

Benodigde jetdruk in het beun

In de praktijk is het niet mogelijk om het toerental van de jetpomp aan te passen zonder het leegzuigproces tijdelijk te stoppen. De jetpomp kan met het hoge toerental (ca. --- bar) of met het lage toerental (ca. --- bar) jetten.

Uit het literatuuronderzoek volgt dat, voor het met zo min mogelijk jetvermogen fluidiseren van zand het beter is om met een lage jetdruk en een groot debiet te jetten dan andersom. Hierdoor is het theoretisch logisch om met een hoge jetdruk het jetten te starten totdat alle jets spuiten om vervolgens over te stappen op een lagere jetdruk. Om door middel van fluidisatie het jetproces te starten is een theoretische jetdruk berekend van ca. 9 bar. In de praktijk wordt de benodigde jetdruk om de jets te starten grofweg geschat op 4 maal de zandpakkethoogte (4 maal 6 meter is 2,4 bar). In de proeven bleek dat de benodigde jetdruk om de jets te laten spuiten aanzienlijk verschilde per proef en dat er geen duidelijke correlatie is tussen de jetdruk en het aantal spuitende jets.

Als de jets spuiten kan theoretisch met het lage toerental worden gejet, maar in de proeven is vastgesteld dat het verhogen van de jetdruk positief is voor de afzuigconcentratie. De proeven zijn echter uitgevoerd voor relatief grof zand.

In de praktijk kan men jetten met het lage toerental en als de jets niet goed spuiten of de afzuigconcentratie te laag is overgaan op het hoge toerental.
8.5 Overzicht van de voorstellen

De voorstellen tot wijziging van de "Volvox Terranova" om de restlading te minimaliseren zonder de leegzuigproductie in de bulkslag te verkleinen zijn onderstaand samengevat:

a. Een nieuwe leegzuigdeur zo laag mogelijk in het beun en in het midden van elke beunsectie aan te brengen.
b. De jetsecties te splitsen in 7 afzonderlijk bedienbare secties.
c. De gaten in de kalven te dichten.
d. De leegzuigvolgorde van het schip niet te wijzigen tijdens de bulk- en de opschoonslag.
e. Tijdens de bulkslag de bestaande leegzuigdeuren te gebruiken.
f. De spuitrichting van enkele jets te wijzigen (12 van de 26 stuks), zodat meer in de hoeken en langs de wanden van de beunsectie wordt gejet en ook dichter in de buurt van de nieuwe leegzuigdeur, zie figuur 8.4.

g.
h. In de regel met het lage toerental te jetten en als de afzuigconcentratie te laag is of als niet alle jets spuiten over te stappen op het hoge toerental van de jetpomp.

In de proeven is aangetoond dat een nieuwe leegzuigdeur de hoeveelheid restlading tot circa --- % van de huidige restlading reduceert. In de proevenserie is een deur getest, ontworpen bij Van Oord ACZ, zoals aangegeven in figuur 8.2. Om de volgende redenen wordt een alternatief ontwerp voorgesteld overeenkomstig figuur 8.3. Dit ontwerp is niet getest in een schaalmodel of ingebouwd in de "Volvox Terranova":

- Grotere netto doorstroom oppervlakte --- m² tegen over ca. --- m².
- Betere geleiding van de zandwater mengselstroom.
- Minder kans op zandverlies bij gebruik van de zee-afsluiter.

Figuur 8.7. Nieuwe leegzuigdeur met garseerd zijdoortocht, zijaanzicht (links).
Figuur 8.8. Voorstel alternatieve constructievorm nieuwe leegzuigdeur, bovenaanzicht (rechts).
H9 Conclusies en aanbevelingen

9.1 Overzicht van de conclusies

Het uitgevoerde onderzoek leidt tot de volgende conclusies:

a. In een beunsectie is na het leegzuigen van het beun ca. --- á --- m\(^3\) zand (restlading) aanwezig. Om de hoeveelheid restlading te verminderen zal in de opsoonslag geconcentreerd per beunsectie en zo laag mogelijk in een beunsectie afgezogen moeten worden. Hiervoor zal per beunsectie een nieuwe leegzuigdeur moeten worden aangebracht. Door de nieuwe leegzuigdeur zal het afzuigdebit tot één sectie worden beperkt en daardoor verdubbelen. Het jetsysteem zal aangepast dienen te worden aan de situatie met een nieuwe leegzuigdeur.

b. Het huidige jetsysteem is geschematiseerd om het met een spreadsheet programma door te rekenen. Uit de berekeningen volgt dat ten gevolge van energieverlies in het jetleidingen systeem de jetdruk voor alle jets nagenoeg gelijk is. (-De mogelijke verschillen in jetdruk zijn het gevolg van de plaatshoogte van de jet in het beun.-) De uitstroomnelheid uit alle jets is ongeveer gelijk, waardoor het jetdebit per jet met name bepaald wordt door de nozzle diameter. De energieverlies in het jetsysteem zijn ongeveer --- mW. Door de redelijk vlakke pompkromme is het verschil in jetdruk en uitstroomdebit per jet, tijdens het jetten met ---, --- of --- jets tegelijk, gering.

c. De voornaamste functie van een jet in het beun is het verlagen van de korrelspanningen tijdens het leegzuigen van het beun, zodat het zand makkelijker 'afschuift' in de richting van de leegzuigdeur. In de buurt van de leegzuigdeur zal het 'afschuivende' zand 'verdund' worden tot een verpompbaar zandwater mengsel. Aan het einde van het leegzuigproces zullen de jets een beunsectie zo effectief mogelijk moeten 'schoenspoelen'.

d. Door de korrelspanningen totaal op te heffen en de dichtheid van het zandpakket te verminderen tot de kritieke dichtheid, krijgt het zandpakket de eigenschappen van een vloeistof (fluidisatieproces). De afmetingen van een gefluïdeerd gebied zijn in grote mate afhankelijk van het jetdebit en de doorlatendheid van het zandpakket. De voor het fluidisatieproces benodigde jetdruk is met name afhankelijk van de hoogte van het bovenliggende zandpakket. Voor het fluidiseren van een zandpakket met minimaal jetvermogen dient de jetdruk zo laag mogelijk te zijn. Dit kost de minste energie per m\(^2\) gefluïdeerd oppervlak. De jetdruk die nodig is voor initiatie van het fluidisatieproces (uitbreken) is niet voldoende bekend.

e. Via een bolsymmetrische analytische berekening is vastgesteld dat de invloedshoofd van een jet zeer beperkt is als het zandpakket voor de jet niet bezwijkt. De waterspanningen voor de jet nemen omgekeerd evenredig af met de afstand. Bij het toenemen van de jetdruk reduceren eerst de effectieve korrelspanningen in de omgeving van de holte om vervolgens weer te vergroten. De effectieve korrelspanningen worden echter niet opgeheven, behalve direct aan de holtewand. De holtegroei bij het toenemen van de waterspanning in een holte is verwaarloosbaar. Het jetdebit is hierdoor ook verwaarloosbaar. Het zandpakket zal lokaal (via hydraulic fracturing) moeten bezwijken om een positieve bijdrage te leveren aan het leegzuigproces. De benodigde jetdruk hiervoor is onbekend.
f. In een schaalmodel is de werking van de nieuwe leegzuigdeur getest. Uit dit onderzoek blijkt dat de hoeveelheid restlading sterk wordt gereduceerd door met de nieuwe leegzuigdeur af te zuigen en de nozzle diameter van de jets te vergroten. In de proeven bleek de leegzuigproductie te verbeteren als het jetvermogen wordt vergroot. In de beginfase van het afzuigen blijkt de correlatie tussen de jetdruk en het jetdebet gering te zijn.

Uit bovenstaande conclusies is een voorstel tot wijziging van de “Volvox Terranova” afgeleid. Onderstaand zijn deze voorstellen weergegeven:

a. Aanbrengen van een nieuwe leegzuigdeur zo laag mogelijk in het beun en in het midden van elke beunsectie.

b. Splitsen van de jetsecties in 7 afzonderlijk bedienbare secties.

c. Dichten van de gaten in de kalven.

d. De leegzuigvolgorde van het schip niet te wijzigen tijdens de bulk- en de opschoonslag.

e. Tijdens de bulkslag de bestaande leegzuigdeuren te gebruiken.

f. De spuitrichting van enkele jets te wijzigen (--- van de --- stuks), zodat meer in de hoeken en langs de wanden van de beunsectie wordt gejet en ook dichter in de buurt van de nieuwe leegzuigdeur.

g.

h. In de regel met het lage toerental te jetten en als de afzuigconcentratie te laag is of als niet alle jets spuiten over te stappen op het hoge toerental van de jettgomp.

In de proeven is aangetoond dat een nieuwe leegzuigdeur de hoeveelheid restlading tot circa --- % van de huidige hoeveelheid restlading reduceert.

De volgende inrichting van de jets wordt voorgesteld (½ beunsectie):

Figuur 8.4. Bovenaanzicht halve beunsectie met gewijzigde nozzle configuratie.
9.2 Aanbevelingen

Op grond van het verrichte onderzoek worden de volgende aanbevelingen gedaan:

Onderzoeken van de jetdruk benodigd om een jet op te starten

Ontwikkelen van meer kennis omtrent de processen in het beun tijdens het leegzuigen

Voorkomen van verzanding van de jets

Vormgeving van de nieuwe leegzuigdeur
Nwoord
Referenties

Lijst met figuren

Figuur 1.1. Schets van de “Volvox Terranova”.

Figuur 3.1. Bovenaanzicht met indeling van het beun.
Figuur 3.2. Dwarsoorsnede beun “Volvox Terranova”.
Figuur 3.3. Bovenaanzicht met plaats van jetsecties en jetkanon.
Figuur 3.4. Foto jetkanon op de “Volvox Terranova”.
Figuur 3.5. Bovenaanzicht beunsectie met de plaats en de spuitrichting van de waterjets.
Figuur 3.6-a. Lengtedoorsnede A, met de plaats en de spuitrichting van de waterjets.
Figuur 3.6-b. Dwarsoorsnede B, met de plaats en de spuitrichting van de waterjets.
Figuur 3.7. Oude en nieuwe jet indeling weergegeven per klepvak.
Figuur 3.8. Overzicht nummering jetsecties, leegzuigdeuren en beunsecties.
Figuur 3.10. Schematische weergave bres en mengseltransport.
Figuur 3.11. Overzicht afgezogen concentraties trip 759.
Figuur 3.13. Foto's van restlading “Volvox Terranova”.
Figuur 3.15. Schematische weergave van verlies door deuren en kalven.
Figuur 3.16. Dwarsoorsnede nieuwe leegzuigdeur met luifel.

Figuur 4.1. Principe schets van de nozzle vorm.
Figuur 4.2. Schematisatie van een halve jetsectie met 26 jets spuitend in 1 beunsectie.
Figuur 4.3. Prinsipeschets knooppunt in jetleiding.
Figuur 4.4. Prinsipeschets knooppunt bij splitsing van de jetleiding.
Figuur 4.5. Schets van de nozzle gebruikt op de “Volvox Terranova”.
Figuur 4.6. Resultaat berekening voor een ½ jetsectie met 26 jets en de huidige nozzle diameter verdeling.
Figuur 4.7. Vergelijk van de resultaten van het spreadsheet programma voor verschillende leidingweerstanden (26 jets).
Figuur 4.8. Vergelijk van de resultaten van het spreadsheet programma met de gegevens van IHC (26 jets).
Figuur 4.9. Vergelijk van de resultaten van het gekalibreerde spreadsheet programma met de gegevens van IHC (26 jets).
Figuur 4.10. Resultaten berekening met een gekalibreerd spreadsheet programma.
Figuur 4.11. Schema walpersen.
Figuur 4.13. Principe schets zandboog voor leegzuigdeur.
Figuur 4.15. Schema leegzuigen beun.
Figuur 4.16. Theoretische schematisatie van een waterstraal spuitend in water.
Figuur 4.17. Verband tussen de maximale snelheid en de afstand van een jetstraal.
Figuur 4.18. Principe schets theoretische fluidisatie.
Figuur 4.20-a. Relatie tussen de oppervlaktesnelheid en de porositeit voor verschillende boldiameters.
Figuur 4.20-b. Relatie tussen de oppervlaktesnelheid en de porositeit voor verschillende boldiameters.
Figuur 4.22. Schematische weergave van vorm fluidisatie kuil en interne stroming.
Figuur 4.23. Relatie tussen fluidisatiesnelheid en porositeit voor verschillende boldiameters, fig. 4.18- b, inclusief fluidisatie eis volgens GeoDelft.
Figuur 4.24. De 5 fasen van het erosie proces met een fluidisatiepijp.
Figuur 4.25. Uitbreken van een jet en vorming van een fluidisatiekuil.
Figuur 4.27. Verloop van de waterspanningen bij verschillende wateroverspanningen in de holte.
Figuur 4.28. Schematische weergave uitstroom jetwater uit nozzle.
Figuur 4.29-a. Verloop van de korrelspanningen bij de elastische oplossing.
Figuur 4.29-b. Verloop van de korrelspanningen bij de elastisch-plastische oplossing.
Figuur 4.30 a-h. Verloop water en korrelspanningen om een holte bij een toenemende jetdruk .
Figuur 4.31. Schematisatie van de cilinder en de puntbron.
Figuur 4.32. Benodigde jetdruk voor fluidisatie.
Figuur 4.33. Benodigde jetdruk voor grondbreuk.
Figuur 4.34. Scheurtip met plastische zone.

Figuur 5.1. Alternatieve plaats inbreng jetwater ten behoeve van verdunnen zandwater mengsel.
Figuur 5.2. Jetdebiet per beunsectie voor het verlagen van de korrelspanningen.
Figuur 5.3. Relatie jetdruk, uitstroomsnelheid en debiet.
Figuur 5.4 Veronderstelde jetpompkromme.

Figuur 6.1. Pompcontainer, met jet- en grond pomp.
Figuur 6.2. Principe schets proefbak.
Figuur 6.3. (Foto links) Proefbak, bij het begin van de proef gevuld met zand. Bovenop ligt het verdeelvat waarana, via de groene slang, alle jets zijn verbonden. Op de achtergrond is de pompcontainer te zien.
Figuur 6.4. Een lege proefbak na de proef met overal schuim resten. Op de achtergrond is de voorraadcontainer met water te zien, deze werd gebruikt als zee-afsluiter.

Figuur 7.1. (Foto links) Na het vullen van de bak werd het zandpakket ingewaterd. (Foto rechts) Na het opstarten van de jets kwam 'schuim' op het zandpakket.
Figuur 7.2. Foto van proefopstelling tijdens het leegpompen van de proefbak.
Figuur 7.3. Voorbeeld van kenmerkend verloop van de dichtheid tijdens proef.
Figuur 7.4. Bovenaanzicht proefbak met jetposities en plaats spindel.
Figuur 7.5. Restlading met gebruik bestaande (links) en nieuwe leegzuigdeuren.
Figuur 7.6. Foto's restlading met huidige (links) en met nieuwe leegzuigdeur(en) (rechts).

Minimaliseren restlading "Volvox Terranova"
Lijst met figuren
Figuur 7.7. Restlading proef 6 en 7 met respectievelijk gewijzigde en bestaande nozzle configuratie.

Figuur 7.8. Leegzuigproductie voor verschillende proeven.

Figuur 7.10. Verloop van jetdebiet, jetvermogen, druk en dichtheid tijdens verschillende proeven.

Figuur 7.11. Aantal spuitende nozzle’s weergegeven per proef.

Figuur 8.1. Schematische weergave nieuwe leegzuigdeur.

Figuur 8.2. Voorstel alternatieve constructievorm nieuwe leegzuigdeur, bovenaanzicht.

Figuur 8.3. Bovenaanzicht beunsectie met de plaats en de spuitrichting van de waterjets.

Figuur 8.4. Bovenaanzicht beunsectie met gewijzigde spuitrichting jets.

Figuur 8.5. Berekend jetdebiet per beunsectie afhankelijk van de zandkorrel diameter.

Figuur 8.6. Berekend jetdebiet per beunsectie afhankelijk van de nozzle diameter.

Figuur 8.7. Nieuwe leegzuigdeur met garseerd zijdoorocht, zijaanzicht (links).

Figuur 8.8. Voorstel alternatieve constructievorm nieuwe leegzuigdeur, bovenaanzicht (rechts).
Lijst met tabellen

Tabel 4.2. Verliescoëfficient per onderdeel.
Tabel 4.3. Aftakkingsverliescoëfficienten.
Tabel 4.4. Invloed van diverse grootheden op jetdruk.

Tabel 5.2. Berekend jetdebiet per buissectie.
Tabel 5.3. Totaal nozzle oppervlak voor een verschillend aantal jets en nozzle diameter van de jets.

Tabel 6.1. Overzicht afmetingen onderdelen in proefopstelling
Tabel 6.2. Overzicht met verschalingsparameters voor verschillende grootheden.
Tabel 6.3. Overzicht van proefresultaten.

Tabel 7.1. Hoeveelheid restlading per proef.
Tabel 7.2. Nozzle eigenschappen voor nozzle diameters van 14 en 19 mm.
Tabel 7.3. Effect van verschillende maatregelen op restlading en leegzuigproductie.
Minimalisering restlading “Volvox Terranova”

Bijlagen
Inhoud bijlagen

<table>
<thead>
<tr>
<th>I</th>
<th>Literatuurstudie Fluïdisatie</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.a</td>
<td>Inleiding</td>
<td>1</td>
</tr>
<tr>
<td>I.b</td>
<td>Bezinken van zandkorrels in water</td>
<td>1</td>
</tr>
<tr>
<td>I.b.1</td>
<td>Ongestoorde valsnelheid van een enkele korrel</td>
<td>1</td>
</tr>
<tr>
<td>I.b.2</td>
<td>Invloed van concentratie op de valsnelheid van een korrel</td>
<td>4</td>
</tr>
<tr>
<td>I.c</td>
<td>Fluïdisatie 1-dimensionaal</td>
<td>6</td>
</tr>
<tr>
<td>I.c.1</td>
<td>Druikval in een gefluidiseerde kolom</td>
<td>6</td>
</tr>
<tr>
<td>I.c.2</td>
<td>Forchheimer vergelijking, Ergun vergelijking en de wet van Darcy</td>
<td>7</td>
</tr>
<tr>
<td>I.c.3</td>
<td>Begin van fluïdisatie</td>
<td>8</td>
</tr>
<tr>
<td>I.c.4</td>
<td>Toename watersnelheid in bed</td>
<td>10</td>
</tr>
<tr>
<td>I.c.5</td>
<td>Vergelijk van Ergun vergelijking met bezinksnelheid volgens Richardson en Zaki</td>
<td>11</td>
</tr>
<tr>
<td>I.c.6</td>
<td>Maximale oppervlakte snelheid in gefluidiseerd bed</td>
<td>12</td>
</tr>
<tr>
<td>I.d</td>
<td>Fluïdisatie in een vrij domein</td>
<td>13</td>
</tr>
<tr>
<td>I.d.1</td>
<td>Literatuuronderzoek 1</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Design of fluidizer systems for Coastal Environment (Weisman en Lennon, 1994)</td>
<td></td>
</tr>
<tr>
<td>I.d.2</td>
<td>Literatuuronderzoek 2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Beunfluidisatie Geopotes 14 (Maas, 1992)</td>
<td></td>
</tr>
<tr>
<td>I.d.3</td>
<td>Literatuuronderzoek 3</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Fluidisatieproeven (Niwas, 1989)</td>
<td></td>
</tr>
<tr>
<td>I.d.4</td>
<td>Resultaten literatuuronderzoek fluïdisatie in een vrij domein</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II</th>
<th>Literatuurstudie Uitbreken van een jet</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.a</td>
<td>Literatuuronderzoek 1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Boren tunnels en leidingen (Hergarderen, 1998)</td>
<td></td>
</tr>
<tr>
<td>II.b</td>
<td>Literatuuronderzoek 2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Bolexpansie volgens Vesic en Luger, Bagt 347</td>
<td></td>
</tr>
<tr>
<td>II.c</td>
<td>Conclusie literatuurstudie</td>
<td>30</td>
</tr>
</tbody>
</table>
Inhoud bijlagen (vervolg)

Bijlage A Afleiding spanningen om een holte met de elastische oplossing, zonder waterspanningsgradiënten

Bijlage B Afleiding spanningen om een holte met de elasto-plastische oplossing, zonder waterspanningsgradiënten

Bijlage C Afleiding spanningen om een holte met de elastische oplossing, met waterspanningsgradienten

Bijlage D Afleiding spanningen om een holte met de elasto-plastische oplossing, met waterspanningsgradienten

Bijlage E Afleiding waterspanningen in een cilinder gevoed door een puntbron

Bijlage F Afleiding evenwicht cilinder ten gevolge van grondbreuk

Bijlage G Verschaling processen in “Volvox Terranova”, tijdens het leegzuigen

Bijlage H Ijking snelheidsmeters

Bijlage I Proefresultaten

Bijlage J Formules afgeleid door Vesic en Luger voor bolexpansie van zand in een oneindig medium

Bijlage K Algemene modellering van de stroom door een korrelig pakket

Bijlage L Eigenschappen (Nederlands) zand

Bijlage M Zandkromme van het zand in de proevenserie

Bijlage N Foto’s van de restlading in de “Volvox Terranova”

Bijlage O Afleiding jetdebiet en uitstroomsnelheid uit een nozzle met behulp van de wet van Bernoulli

Bijlage P Verzande nozzle’s

Bijlage Q Formules rekenschema jetsysteem

Lijst met figuren

Lijst met tabellen

Minimaliseren restlading “Volvox Terranova”
Inhoud bijlagen
Lijst met figuren, H1 en HII

Figuur I.1. Valsnelheden van zand in water en lucht.
Figuur I.2. Valsnelheid van een enkele korrel.
Figuur I.3. Stroomlijnen rond korrels voor kleine en grote (rechts) concentratie.
Figuur I.4. Minimale oppervlakte snelheid voor fluidisatie.
Figuur I.5. Druklag in een bed.
Figuur I.7. Vergelijk van Ergun vergelijking met valsnelheid korrels.
Figuur I.10. De 5 fasen van erosie proces bij fluidisatiepijp.
Figuur I.11. Potentiaallijnen in een gefluidiseerd en ongefluidiseerd pakket.
Figuur I.17. Tijd-oppervlak relatie en zijaanzicht proef.

Figuur II.1. Relatie holtestraal-jetdruk bij belasten op holtewand.

Lijst met tabellen, H1 en HII

Tabel I.2. Proefresultaten proef 32 t/m 35.
Tabel I.3. Proefresultaten proef 1 t/m 7.

Tabel II.1. Waarde van verschillende grootheden berekend voor los en vast gepakt zand.
HI Literatuurstudie Fluidisatie

I.a Inleiding

Om het zand te transporteren wordt het gefluidiseerd. Dit betekent dat het zand "vloeistof eigenschappen" krijgt en overgaat van een vaste vorm naar een gesuspendeerde verschijningsvorm. Dit fluidiseren gebeurt door met jets in het zandpakket te spuiten. Om het gedrag van het zand in het water te beschrijven wordt het bezinken van zandkorrels gekoppeld aan het fluidiseren van zand. Bij het bezinken bewegen de korrels ten opzichte van het water en bij het fluidiseren beweegt het water ten opzichte van de korrels. Door deze koppeling wordt inzicht verkregen in de stroomsnelheid van het water ten opzichte van de korrels bij een oplopende concentratie.

Eerst zal het bezinkproces van een enkele korrel beschreven worden. Vervolgens het bezinkproces van meerdere zandkorrels.

Het fluidisatieproces zal theoretisch behandeld worden voor een 1-dimensionale situatie. Bij een 3-dimensionale situatie zijn enkel experimentele onderzoeksresultaten beschikbaar. De koppeling van het bezinkproces met het fluidisatieproces wordt beschreven voor de 1-dimensionale situatie.

Met de genoemde beschouwingen wordt meer inzicht verkregen in het fluidisatieproces. Dit inzicht wordt gebruikt om het ontwerp van het jetsysteem te analyseren.

I.b Bezinken van zandkorrels in water

Eerst zal de valsnelheid van een enkele korrel in water beschreven worden. Vervolgens zal de invloed van de concentratie meegenomen worden. Bij hogere concentraties "voelen" de korrels elkaar, waardoor de bezinksnelheid reduceert. (hindered settling).

I.b.1 Ongestoorde valsnelheid van een enkele korrel

De ongestoorde valsnelheid van een individuele korrel in water kan bepaald worden door het krachtenevenwicht van de korrel te beschouwen. De krachten die werken op de korrel zijn: de zwaartekracht, de opdrijvende kracht en de weerstandskracht. De korrel wordt beschouwd als een ronde bol zonder hoeken en vorminvloeden.

\[
\frac{\pi}{6} \cdot d^3 \cdot g \cdot \rho_z - \frac{\pi}{6} \cdot d^3 \cdot g \cdot \rho_w - \frac{\pi}{4} \cdot d^2 \cdot C_d \cdot \frac{1}{2} \cdot \rho_w \cdot w_0^2 = 0 \tag{1.1}
\]

Hieruit volgt voor de bezinksnelheid van een enkele korrel:

\[
w_0 = \sqrt{\frac{4 \cdot g \cdot \Delta \cdot d}{3 \cdot C_d}} \text{ met: } \Delta = \frac{\rho_z - \rho_w}{\rho_w} \text{ relatieve dichtheid} \tag{1.2}
\]
De sleepcoëfficiënt C_d hangt af van het Reynoldsgetal, gedefinieerd als:

$$Re = \frac{w_0 d}{\nu}$$ \hspace{1cm} (I.3)

In figuur I.1 is de vensnelheid van een korrel in lucht en water weergegeven (Vanoni, 1977). Vooral bij kleine korrels is de temperatuur van het water van invloed op de vensnelheid. De temperatuur beïnvloed de kinematische viscositeit $[\nu]$ en zo de vensnelheid van de korrels.

![Diagram](image)

Figuur I.1. Vensnelheden van zand in water en lucht.

Voor de beschrijving van de vensnelheid van een korrel worden drie verschillende gebieden onderscheiden.

- laminair gebied: $d < 100$ mu, $Re < ca. 1$
- overgangsgebied: 100 mu $< d < 4$ mm, $1 < Re < 2000$
- turbulent gebied: $d > 4$ mm, $Re > 2000$

Voor de sleepcoëfficiënten geldt per gebied:

- laminair gebied: $C_d = \frac{24}{Re}$
- overgangsgebied: $C_d = \frac{24}{Re} + \frac{3}{\sqrt{Re}} + 0.34$
- turbulent gebied: $C_d = 0.4$

Voor het overgangsgebied zijn meerdere beschrijvingen van C_d beschikbaar. Om de invloed van de korrelvorm in te voeren is een vormfactor φ van een korrel gedefinieerd. Deze factor geeft de verhouding van het oppervlak van een bol met hetzelfde volume als de betreffende korrel weer.
\[\varphi = \frac{d_{eq}}{\sqrt{a \cdot b}} \]

met:

\[d_{eq} = \sqrt{\frac{6 \cdot V_k}{\pi}} \quad \text{equivalente korrel diameter} \]

a, b \quad \text{langste resp. kortste lengte van de korrel}

Door de diameter van een korrel met de vormfactor te vermenigvuldigen kan de invloed van de korrelvorm worden meegenomen. In de praktijk wordt voor de vormfactor \(\varphi \) vaak een waarde van ca. 0.8 gebruikt. (Van der Schriek, 1999).

In Bagt 471 en 510 [rapporten geschreven door WL | Delft Hydraulics] worden de valsnelheden van enkele korrels beschreven. Hierbij wordt onderstaande verdeling voor de valsnelheid per korrel diameter gebruikt. In deze rapporten wordt is de vormfactor van de korrels al verwerkt.

\[
\begin{align*}
\text{d < 100 \mu m:} & \quad w_o = \frac{1}{18} \Delta g \frac{d^2}{\nu} \\
\text{100 \mu m < d < 1 mm:} & \quad w_o = \frac{10 \nu}{d} \left\{ \sqrt{1 + \Delta g \frac{d^3}{100 \nu^2}} - 1 \right\} \\
\text{1 mm < d < 3 mm} & \quad w_o = 1.1 \sqrt{g \cdot \Delta \cdot d}
\end{align*}
\]

semi-empirische formule van van Rijn

In bovenstaande figuur is de theoretische valsnelheid en de valsnelheid zoals die gebruikt wordt door WL | Delft Hydraulics tegen elkaar uitgezet. In de grafiek worden de korrels als bollen voorgesteld [\(\varphi = 1 \)]. Bij grotere korrelafmetingen wordt het verschil in valsnelheid blijkbaar duidelijk beïnvloed door de korrelvorm. De "bollen" hebben een significant hogere valsnelheid bij grotere diameters dan natuurlijke zandkorrels.

Minimaliseren restlading “Volvox Terranova”

HI Literatuurstudie Fluidisatie
I.b.2 Invloed van de concentratie op de valsnelheid van een korrel

Als een korrel in suspensie is, heeft de concentratie invloed op de bezinkingssnelheid. De valsnelheid van een enkele korrel is kleiner door de invloed van de korrels in de directe omgeving. Dit verschijnsel heet 'hindered settling'. De volgende processen veroorzaken 'hindered settling'.

- De bezinkende korrels veroorzaken een opwaartse stroming van het verplaatste volume water. Hierdoor neemt de stroming van het water langs de korrel toe.
- Door de toename van de dichtheid van het mengsel neemt de verticale drukgradiënt toe, waardoor de opwaartse kracht op de korrel toeneemt.
- Door dat het opwaarts stromende water bij een toenemende concentratie door een steeds kleiner oppervlak moet stromen nemen de snelheidsgradiënten toe, waardoor de schuifspanningen en dus de weerstand toenemen. In figuur 1.3 is te zien dat door toename van de concentratie de stroomlijnen dichter bij elkaar worden "geduwd". Hierdoor nemen de snelheidsgradiënten toe bij toenemende concentratie.

![Stroomlijnen rond korrels voor kleine en grote (rechts) concentratie.](image)

De eerste twee fenomenen kunnen worden opgenomen in de evenwichtsvergelijking.

\[
\frac{\pi}{6} \cdot d^3 \cdot g \cdot \rho_s - \frac{\pi}{6} \cdot d^3 \cdot g \cdot \rho_m - \frac{\pi}{4} \cdot d^2 \cdot C_d \cdot \frac{1}{2} \cdot \rho_w \cdot v_s^2 = 0
\] (1.5)

waarin: \(v_s \) relatieve valsnelheid korrel t.o.v. het water

De dichtheid van het mengsel kan geschreven worden in het poriënpercentage [\(\varepsilon \)] of de concentratie [C].

\[
\rho_m = C \cdot \rho_s + (1-C) \cdot \rho_w \quad \text{of} \quad \rho_m = (1-\varepsilon) \cdot \rho_s + \varepsilon \cdot \rho_w
\] (1.6)

waarin: \(C \) volume concentratie korrels in het mengsel \(C = \frac{V_{sand}}{V_{sand} + V_{water}} \)

Nu kan de valsnelheid van de korrel ten opzichte van het water geschreven worden als:

\[
v_s^2 = \frac{4 \cdot g \cdot \Delta \cdot d}{3 \cdot C_d} \cdot (1-C)
\] (1.7)
Deze vergelijking kan uitgedrukt worden in de ongestoorde valsnelheid w_0.

$$v_s = w_0 \cdot (1-C)^{0.5}$$ (I.8)

Volgens de continuïteitswetten moet het naar boven stromende watervolume gelijk zijn aan het naar beneden vallende volume korrels.

$$u_w \cdot (1-C) = w \cdot C$$ (I.9)

waarin: u_w snelheid van het water ten opzichte van een vast punt

w valsnelheid van de korrels ten opzichte van een vast punt

De relatieve snelheid is de som van de twee snelheden ten opzichte van het vaste punt is:

$$v_s = w + u_w$$ (I.10)

Door het combineren van vergelijking I.8, I.9 en I.10 kan de valsnelheid van de korrels in suspensie uitgedrukt worden in de valsnelheid van de ongestoorde korrel en de concentratie.

$$w = w_0 \cdot (1-C)^{1.5}$$ (I.11)

In experimenteel onderzoek is hetzelfde verband gevonden. Echter de macht die de invloed van de concentratie in rekening brengt is in de experimenten te laag gebleken. Dit is te verklaren doordat de toename van de snelheidsgradiënten, die ontstaan doordat het water door een kleiner oppervlak moet stromen, niet is meegenomen in de beschouwing. Hierdoor zijn de schuifspanningen in werkelijkheid groter en de bezinsnelheden van de korrels kleiner (Richardson, en Zaki, 1954).

Richardson en Zaki (1954) hebben experimenteel de volgende relatie gevonden voor de gereduceerde valsnelheid van een korrel ten gevolge van 'hindered settling'. Deze relatie is geldig voor $0,05 < C < 0,65$ en $0,000185 < Re < 7150$:

$$w_s = w_0 \cdot (1-C)^n$$ (I.12)

Zij vonden dat de macht n afhankelijk is van het Reynoldsgetal volgens de volgende relatie:

- $Re < 0,2 \quad n = 4,65$
- $0,2 < Re < 1 \quad n = 4,35 \cdot Re^{-0,03}$
- $1 < Re < 200 \quad n = 4,45 \cdot Re^{-0,1}$
- $200 > Re \quad n = 2,39$

In de Bagt rapporten wordt in de regel de volgende vereenvoudigde formule gebruikt:

$$w_s = w_0 \cdot (1-C)^{n}$$ (I.13)

De korrelgradatie en de stroomsnelheid van het water hebben ook invloed op de valsnelheid van de korrels maar zullen niet worden behandeld.
I.c. Fluidisatie 1-dimensionaal

Fluidisatie is het proces waarbij een loskorrelig cohesieloos pakket over gaat van een situatie met vaste stof eigenschappen naar een situatie met vloeistof eigenschappen. Een situatie met vloeistof eigenschappen wordt verkregen als de korrels "vrij" kunnen bewegen in het medium waarbinnen ze zich bevinden. Deze vloeistof eigenschappen kunnen gecreëerd worden door een gas- of vloeistof stroom door het pakket te creëren.

Bij een lage stroomsnelheid zal de stroom zich concentreren door de poriën in het pakket. Door de weerstand die de vloeistof ondervindt ten gevolge van de stroom langs de korrels ontstaat er een drukval in de stroomrichting van de vloeistof. Bij toenemende stroomsnelheid zal de drukval ook toenemen. De drukval kan toenemen totdat ze gelijk is aan het gewicht van de korrels onderwater. Op dat moment beginnen de korrels onderling contact te verliezen en zweven ze in het pakket.

Bij nog verder toenemen van de stroomsnelheid kunnen de gesuspendeerde korrels, door de beperkte massa die ze bezitten, niet meer weerstand bieden. In plaats daarvan zal de grotere stroom de korrels uit elkaar duwen. Zodat er ruimte ontstaat voor deze stroom. Hierbij zal een expansie van het bed plaatsvinden. De drukval blijft daarbij constant en gelijk aan het gewicht van de korrels onder water. Wordt de watersnelheid langs de korrels groter dan de valsnelheid van de korrels in water, dan is er sprake van hydraulisch transport. De korrels zullen nu uit het bed gespoeld worden.

In de boeken is veel literatuur te vinden over fluidisatie in een vat. Vooral in de chemische technologie wordt fluidisatie in omsloten ruimten toegepast voor het mengen en transporteren van loskorrelige materialen. Hierbij wordt de vloeistof gelijkmatig verdeeld over de bodem van het bed ingebracht. In een hopper is het niet mogelijk om het water via talloze openingen verspreid over de bodem in te brengen. Dit betekent dat er een beperkt aantal jets zijn die in het zandpakket spuiten. Hierdoor ontstaan fluidisatiekuilen in de buurt van de jets. In de literatuur is over dit onderwerp veel minder gepubliceerd.

I.c.1. Drukval in een gefluidiseerde kolom

Verscheidene onderzoekers hebben onderzoek gedaan naar een relatie die de potentiaal stroming kan beschrijven. De wet van Darcy beschrijft deze potentiaalstroom als enkel laminaire stromingen plaatsvinden tussen de korreltjes. Dit is het geval bij grondwater stromingen. Forchheimer heeft een algemene vergelijking gevonden voor potentiaalstromingen in ondergronden met grovere korrels en dynamische stromingen (Schiereking, 1998). De vergelijking van Ergun heeft vooral betrekking op het fluidisatie proces in een zandpakket. In de vergelijking van Ergun wordt rekening gehouden met de korrelvorm en de korrelverdeling. In bijlage K wordt de vergelijking van Ergun afgeleid.

De vergelijking voor het verhang wordt, incl. een vormfactor φ voor niet bolvormige korrels:

\[
\frac{\partial p}{\partial L} = 72\cdot \alpha \cdot \frac{1-e}{e^3} \cdot \frac{\mu_w \cdot U}{(\phi \cdot d_m)^3} + \frac{3}{4} \cdot \beta \cdot \frac{\rho_w \cdot U^2}{\phi \cdot d_m}
\]

(1.14)
Ergun heeft experimenteel vastgesteld dat voor verschillende korrelgroottes en vloeistoffen geldt:

\[72 \alpha = 150 \text{ en } 3/4 \beta = 1,75 \]

Voor kleine (korrel) Reynolds getallen (< ca. 1, lage stroomsnelheden en kleine korrels) zijn de kinetische energie verliezen ten gevolge van turbulentie verwaarloosbaar. Voor deze lage Reynoldsgetallen geldt dat \(72 \alpha = 180 \) en \(3/4 \beta = 0 \) (vervalt). Bij een (korrel) Reynolds getal van 1.2 sluit de vergelijking exact aan voor de verschillende experimentele coëfficiënten.

(korrel) Reynoldsgetal: \(\text{Re}' = \frac{U \cdot d_m}{(1-\varepsilon) \cdot \nu_w} \) (l.15)

\(\text{Re}' < 1 \)
- laminair (eerste term dominant)

\(1 < \text{Re}' < 1000 \)
- overgangsgebied

\(\text{Re}' > 1000 \)
- turbulent (tweede term dominant)

Resumerend geldt voor de Ergun vergelijking (Oliemans, 1997):

\[\frac{\partial p}{\partial L} = 180 \cdot \frac{(1-\varepsilon)^2 \cdot \mu_w \cdot U}{\varepsilon^3 \cdot (\varphi \cdot d_m)^2} \] (l.16)

\[\frac{\partial p}{\partial L} = 150 \cdot \frac{(1-\varepsilon)^2 \cdot \mu_w \cdot U}{\varepsilon^3 \cdot (\varphi \cdot d_m)^2} + 1,75 \cdot \frac{(1-\varepsilon)^2 \cdot \rho_w \cdot U^2}{\varepsilon^3 \cdot \varphi \cdot d_m} \] (l.17)

I.c.2 Forchheimer vergelijking, Ergun vergelijking en de wet van Darcy

Waterstromingen in korrelige materialen worden in het algemeen ook beschreven met de Forchheimer vergelijking. Deze vergelijking is afgeleid voor stromingsproblemen waarbij versnellingen en vertragingen een rol spelen. Een voorbeeld hiervan is de waterstrooming door een golfbreker als er een golf overheen stroomt.

De vergelijking van Forchheimer (Schiereck, 1998) wordt in het algemeen als volgt geschreven:

\[\frac{1}{\rho g} \frac{\partial p}{\partial L} = i = au_f + bu_f \left| u_f \right| + c \frac{\partial u_f}{\partial t} \] (l.18)

met: \(a = \alpha \frac{(1-n)^2}{n^3} \frac{\nu}{g d_{50}^2} \) en \(b = \beta \frac{(1-n)}{n^3} \frac{1}{g d_{50}} \) Forchheimer

De kinematische viscositeit (\(\nu \)) kan worden beschreven door:

\[\nu = \frac{40 \times 10^{-6}}{20 + T} \] met: \(T = \) de temperatuur [\(^\circ \text{C} \)] en \[\nu = \frac{\mu_w}{\rho_w} \] (l.19)

Een eerste grove schatting voor \(\alpha \) en \(\beta \) is: \(\alpha \approx 1000 \) en \(\beta \approx 1,1 \)
De termen in het rechter lid bestaan uit een laminaire stromingsterm, een turbulente stromingsterm en een versnellende stromingsterm. Bij een stationaire stroom door een pakket wordt deze laatste term nul en kan daardoor verwaarloosd worden (zie Ergun vergelijking). De opbouw van de eerste twee termen aan de rechterzijde van formule 1.18 zijn exact hetzelfde als de termen van de Ergun vergelijking. De Forchheimer vergelijking heeft andere experimentele constanten en het houdt geen rekening met de korrelvorm.

Als de turbulente stromingsterm ook verwaarloosd wordt ontstaat de wet van Darcy. De wet van Darcy (1.20) is geldig bij grondwaterstroom in een ondergrond met een fijne textuur en lage stroomsnelheden. Normaal gesproken is bij grondwaterstroom door zand (tot $d_{50} = 5$ mm) sprake van laminaire stroom. In het beun kunnen de stroomgradiënten zeer groot zijn en zullen door het fluidisatie proces de poriën volumes ook toenemen (tot n = 65%). Dit heeft tot gevolg dat de turbulente term bij kleinere korreldiameters niet zomaar verwaarloosd kan worden.

$$q = k i \quad \text{[m/s]} \quad \text{wet van Darcy} \quad (1.20)$$

Door vergelijking 1.20 te combineren met de Ergun vergelijking kan er een relatie gevonden worden voor de doorlatendheid $[k]$. Deze formule heet de Kozency – Carmen relatie (1.21). De termen in deze vergelijking kunnen wederom theoretisch worden afgeleid met behulp van de wet van Stokes.

$$k = e \frac{g d_{50}^2 n^3}{v (1-n)^2} \quad \text{met: } c = \text{Constant} \quad (1.21)$$

Door Den Adel is deze vergelijking aangepast. Hij heeft in plaats van de d_{50} een relatie gevonden voor de d_{15}. Dit lijkt logischer omdat de doorlatendheid vooral bepaald wordt door de fijnere fracties binnen een korrelsketel. Volgens Den Adel geldt:

$$k = \frac{g d_{15}^2 n^3}{160 v (1-n)^2} \quad (1.22)$$

I.c.3 Begin van fluidisatie

Door de Ergun vergelijking gelijk te stellen aan de theoretische fluidisatie voorwaarde kan de minimale oppervlakte snelheid berekend worden om de korrelspanningen op te heffen. Voor fluidisatie zal dan het bed nog moeten expanderen, zodat de korrels zonder volume verandering kunnen deformeren. Als er van uitgegaan wordt dat het bed zonder weerstand kan expanderen kan de theoretische fluidisatieformule gelijk gesteld worden met de drukverlies in het bed, zie hoofdstuk 4:

$$\frac{\partial p}{\partial L} = 72 \cdot \alpha \cdot \frac{(1 - \varepsilon)^3}{\varepsilon^3} \cdot \mu_w \cdot \frac{U}{(\varphi \cdot d_m)^2} + \frac{3}{4} \cdot \beta \cdot \frac{(1 - \varepsilon)}{\varepsilon} \cdot \rho_w \cdot \frac{U^2}{\varphi \cdot d_m} = (1 - \varepsilon) \cdot (\rho_k - \rho_w) \cdot g \quad (1.23)$$

Uit de vergelijking blijkt dat de minimale fluidisatie snelheid $[U, \text{oppervlakte snelheid water}]$ om de korrelspanningen op te heffen zeer gevoelig is voor ε via de termen...
\[
\frac{(1-\varepsilon)^2}{\varepsilon^3} \quad \text{en} \quad \frac{(1-\varepsilon)}{\varepsilon^3}
\]
Bij verder toenemen van [U] zal, zie ook vergelijking 1.23, het porièngehalte van het skelet moeten toenemen. Voor de volgende waarden is de theoretische minimale fluidisatie snelheid [U] uitgerekend:

\[\varepsilon_0 = 0.42, \quad \rho_k = 2650 \text{ kg/m}^3, \quad \rho_w = 1000 \text{ kg/m}^3, \quad \mu_w = 1000 \times 10^{-3} \text{ kg/ms}, \quad \varphi = 1\]

De resultaten zijn geplot in onderstaande grafiek:

minimale fluidisatie snelheid

Figuur 1.4. Minimale oppervlakte snelheid voor fluidisatie.

In figuur 1.5 is schematisch de drukval door het bed uitgezet tegen de oppervlaktesnelheid van het water [U]. In het ideale geval (ronde korrels met een bepaalde verdelingsfunctie) loopt deze vloeiend op tot de drukval benodigd voor homogene fluidisatie is bereikt. In de figuur is ook de lijn weergegeven voor de drukval door een bed onregelmatig gevormde korrels. Verder is aangegeven dat bij een bepaalde snelheid \(U_{fr} \) de fluidisatie begint (voor de kleinste korrels) en volledig is bij snelheid \(U_r \) (alle korrels gefluidiseerd).

Figuur 1.5. Drukveld in een bed.
Het fenomeen van de interlocking van de korrels of in het algemeen de 'activating energy' die benodigd is om het bed te fluidiseren bepaald in sterke mate of dat er fluidisatie zal optreden.

I.c.4 Toename watersnelheid in bed

Nadat fluidisatie is bereikt kan de oppervlakte watersnelheid verder worden opgevoerd. Zoals reeds is opgemerkt zal dan het poriënvolume toeneemen. Is het bed eenmaal geïntegreerd dan gedraagt het zich als een viskeuze vloeistof. De dynamische viscositeit van een net geïntegreerd bed is zeer hoog en bedraagt ongeveer \(\mu_b \approx 1 \text{ kg/ms} \). Dit is een factor 1000 groter dan de dynamische viscositeit van water.

Het proces van fluidisatie kan gezien worden als een speciaal geval van bezinken, waarbij de snelheid van het omhoog tredende water gelijk is aan de bezinsknelheid van de korrels. Bij toenemende concentratie treedt er 'hindered settling' op.

In een grafiek is voor verschillende poriën percentages de fluidisatiesnelheid tegen de korrel diameter uitgezet. De overige parameters zijn gelijk gehouden aan figuur I.4. Hieruit is af te leiden hoe de oppervlakte snelheid, bij dezelfde korrel diameter, het poriënpercentage toeneemt. Dit gebruik van de Ergun vergelijking is buiten het geldigheidsgebied. Het geeft wel een indicatie van het verloop van de porositeit bij toenemende oppervlakte snelheid.

oppervlakte snelheid-porositeit relatie

![Oppervlakte snelheid-porositeit relatie](image)

Figuur I.6. Oppervlaktesnelheid [U] porositeitsrelatie.

Uit de grafiek blijkt duidelijk dat de relatieve toename van U (oppervlakte snelheid) veel groter is bij fijne dan bij grovere korrels. Dit kan verklard worden door het stromingsregime dat optreedt om de korrels.

Bij de grotere korrels (d > 4 mm): \(\varepsilon^3 \sim U^2 \)
Bij de kleine korrels (d < 0.2 mm) \(\varepsilon^3/(1-\varepsilon) = \varepsilon^4 \cdot U\)

I.c.5 Vergelijk van Ergun vergelijking met bezinksnelheid volgens Richardson en Zaki

Zoals gesteld is de extrapolatie buiten het geldigheidsgebied van de formule van Ergun. Om inzicht te krijgen in de extrapolatie fout wordt de Ergun vergelijking vergeleken met de bezinksnelheid van een korrel. In de grafiek is de valsnelheid van een enkele korrel geplot in combinatie met de bezinksnelheid van een zand water mengsel met een concentratie van 20% (= porositeit van 80%).

Fluidisatiesnelheid

![Fluidisatiesnelheid grafiek](image)

Figuur I.7. Vergelijk van Ergun vergelijking met valsnelheid korrels.

Uit de grafiek volgt dat de lijnen, voor \(n = 0.8\) en \(C = 0.2\), bij de grotere korrels en bij de kleine korrels nagenoeg parallel lopen. Dit betekent dat de relatie tussen de korreldiameter en de oppervlakte snelheid in beide vergelijkingen dezelfde structuur hebben.

Voor kleine korrels, \(d < 0.2\ mm\), geldt het volgende. Ondanks dat de Ergun vergelijking buiten zijn toepassingsgebied gebruikt wordt blijkt dat de fout voor kleine korrels minimaal is tot een porositeit van 80%. Voor grotere porositieën, \(n = 0.9\), valt de lijn samen met de valsnelheid van een enkele korrel. Blijkbaar overschat de Ergun vergelijking vanaf een porositeit van 80% de oppervlakte snelheid.

Voor grote korrels, \(d > 4\ mm\), geldt het volgende. Bij grote korrels onderschat Ergun de oppervlakte snelheid van een bed met een zeer hoge porositeit. In de grafiek liggen namelijk de lijnen van Ergun porositeit 0.8 en de lijn met \(C = 0.2\) een factor twee van elkaar. Hieruit kan geconcludeerd worden dat de Ergun vergelijking de oppervlakte snelheid bij grotere korrels onderschat.

De evenredigheid in de vergelijking van Ergun tussen de porositeit en de oppervlakte snelheid is in paragraaf 5.3.5 aangegeven. Deze evenredigheid blijkt dus bij extrapolatie
een discrepantie te veroorzaken met de valsnelheid van de korrels, par. 5.3.6. Duidelijk is de evenredigheid te klein voor de grotere korrels.

In onderstaande grafiek is voor verschillende boldiameters de oppervlakte snelheid uitgezet tegen de porositeit. Voor de porositeit tot 80% is uitgegaan van de Ergun vergelijking gekoppeld aan de theoretische fluidisatievoorwaarde (4.10). Voor de porositeit vanaf 60% is uitgegaan van de formule van Richardson en Zaki. Om de vergelijkingen aan elkaar te fitten is een geschat verloop van de relatie aangegeven. Hierdoor wordt een indruk verkregen van de porositeit bij verschillende oppervlakte snelheden (debieten) door het zandpakket.

\[\text{fluidisatiesnelheid - porositeit relatie} \]

\[(\text{indicatief}) \]

\[\begin{align*}
\text{porositeit} & \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1 \\
\text{oppervlakte snelheid [cm/s]} & \quad 0.01 \quad 0.1 \quad 1 \quad 10 \quad 100 \\
\end{align*} \]

------- Richardson en Zaki (A), ------ Ergun (B), ---- Geschat verloop

I.c.6 Maximale oppervlakte snelheid in gefluidiseerd bed

Als de watersnelheid in het bed te groot wordt, zullen de deeltjes uit het bed treden. De korrels hebben in de praktijk bijna altijd een bepaalde korrel verdeling. Hierdoor zal er bij fluidisatie stratificatie optreden. Dit betekent dat er in het bed lagen te onderscheiden zijn met daarin korrels met ongeveer dezelfde korreldiameters. De fijne deeltjes zullen zich in het bed in het bovenste gedeelte bevinden, omdat de valsnelheid van een klein deeltje kleiner is dan van een groter deeltje.

Als het fluidisatiewater bovenaan het bed weer uit de poriën stroomt neemt de snelheid weer af tot de oppervlakte snelheid. Door inhomogeniteiten in het bed zullen lokaal grotere stroomsnelheden optreden. Hier zal dan uittreding van fijn materiaal plaatsvinden.
I.d Fluïdisatie in een vrij domein

Uit de vorige paragraaf blijkt dat het fluïdisatie proces in een afgesloten vat, 1 dimensionaal, goed te beschrijven is. In de bagerpraktijk is het fluïdisatieproces in de regel 3-dimensionaal. Dit wordt veroorzaakt doordat de jets in een beun uit elkaar liggen en elkaar hierdoor minder beïnvloeden.

Voor deze situatie zijn (nog) geen theoretische beschrijvingen aanwezig. Er is wel onderzoek naar gedaan. Dit onderzoek is, in de regel, experimenteel. Uit dit onderzoek zijn enkele ontwerpregels gevonden. In de volgende paragrafen zullen drie onderzoeken beschreven worden.

Deze onderzoeken hebben plaatsgevonden voor respectievelijk onderhoudsbaggerwerk in een geul bij de kust, waarbij met een begraven fluidisatie systeem het onderhoudsbaggerwerk wordt uitgevoerd. Het tweede onderzoek dat behandelt zal worden is een experimenteel onderzoek op kleine schaal naar de afmetingen van fluidisatiekuilen. Dit afstudeeronderzoek is uitgevoerd ten behoeve van het fluidisатiesysteem op de Geopotes 14 van de HAM. Het derde onderzoek dat beschreven zal worden, is uitgevoerd ten behoeve van de Maesland kering door het Waterloopkundig Laboratorium. Het openen van een gedeeltelijk gesedimenteerde deur is nagenoeg onmogelijk. Om de schuifweerstand van het zand te verminderen zijn verschillende ontwerpen van een fluidisatiesysteem onderzocht.

I.d.1 Literatuuronderzoek 1
Design of fluidizer systems for Coastal Environment. (Weisman en Lennon, 1994).

In dit artikel zijn ontwerp regels gepresenteerd voor het ontwerp van een fluidisatiesysteem op de zeebodem. Dit fluidisatiesysteem heeft tot doel om een gebaggerde trench in de zeebodem op diepte te houden. Met name bij haven ingangen worden geulen gegraven die snel sedimenteren. Met dit systeem kan direct op een wijziging in de diepte van de geul worden geanticipeerd en hoeft er niet meer periodiek baggeronderhoud gepleegd te worden met bijvoorbeeld hopperzuigers.

Achtergrond van het onderzoek
De ontwerpregels zijn voornamelijk gebaseerd op laboratorium - en analytisch onderzoek, gedurende 15 jaar, naar fluïdisatie gedrag in 2 en 3 dimensies. Tevens is gebruik gemaakt van veldresultaten van 2 projecten, geulonderhoud van de haven van Anna Maria, Florida en sand by-passing aan de kust van Californië.

Definitieschets van het ontwerp
In de zeebodem wordt een pijp begraven. Deze pijp is aan weerszijden voorzien van rijn nozzle's. Boven deze pijp wordt het zand gefluidiseerd waarna het weggepompt of onder vrij verval weg kan stromen. Hierdoor ontstaat een trench met een bovenbreedte [T] van:

\[T = \frac{2d_a}{\tan \varphi} + B \]

(I.25)
De breedte $[B]$ is afhankelijk van de pijpbreedte en de invloedsafstand van de jets. De hoek $[\varphi]$ is de hoek van inwendige wrijving van het zandpakket.

Fluidisatieproces
Het erosie proces van het gesedimenteerde zand wordt als volgt voorgesteld. Het proces is opgedeeld in 5 fasen.

1. Het aanzetten van de pomp zal het water uit de nozzles in het zand stromen. Bij een laag debiet wordt het zandpakket niet verstoord (a). Tot aan het begin van fluidisatie is de wet van Darcy geldig. Dit komt door de lage stroomsnelheden en de relatief kleine korrel diameters (tot 500 μm gemiddeld) die aanwezig zijn in de buurt van tidal inlets. Bij het toenemen van het debiet stromen geïsoleerde pakketjes verstoord zand omhoog door het zandpakket (b). Bij het begin van fluidisatie ontstaat, langs het verzwalte pad van pijp tot aan zandpakket, een sputter (fontein). In deze fase is nog niet het gehele gebied boven de boven de pijp gefluidiseerd.

2. Door de sputter door het zandpakket neemt het debiet toe en ontwikkeld zich boven de pijp een gefluidiseerde zone. In de gefluidiseerde zone neemt het poriënpercentage toe, zodat ook het volume van de zandpakket wordt vergroot. Hierdoor stroomt zand uit de fluidisatiekuil en veroorzaakt zo bermen aan de rand van de kuil (c). De breedte van de gefluidiseerde zone is beperkt.
Nu kan het gefluidiseerde zand makkelijk worden weggepompt of via de zwaartekracht weggetrokken. Bij dit weggetrekken worden de wanden van de kuil instabiel en schuiven in de gefluidiseerde zone (d). Hierdoor neemt de breedte van de gefluidiseerde zone toe tot de evenwichtshelling van het zandpakket wordt bereikt (e).

Nozzle afstand, spuitrichting en diameter.

De experimenten zijn uitgevoerd met twee zand diameters, $D_{50} = 150$ en $450 \mu m$, twee bedhoogten, 25.4 en 42.0 cm, vier nozzle diameters, $1.6, 3.17, 4.8$ en 6.35 mm hart op hart 5 cm, en vier hart op hart afstanden, $2.5, 5.1, 7.6$ en 10.2, met een nozzle van 3.17 mm.

De resultaten van deze experimenten zijn gepresenteerd in onderstaande tabellen:

TABLE 1. Reults of Experiments Using Various Hole Sizes, Holes Spacings on Apert.

<table>
<thead>
<tr>
<th>Hole size nm</th>
<th>Sand depth mm</th>
<th>Sand size mm</th>
<th>Initiation flow rate Q_i</th>
<th>Full fluidization flow rate Q_f</th>
<th>Pressure head in pipe mm</th>
<th>Hole spacing mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.587</td>
<td>25.4</td>
<td>0.15</td>
<td>1.24×10^{-10}</td>
<td>5.30×10^{-10}</td>
<td>4.3</td>
<td>5.28</td>
</tr>
<tr>
<td>3.175</td>
<td>25.4</td>
<td>0.15</td>
<td>0.75×10^{-10}</td>
<td>8.77×10^{-10}</td>
<td>11.6</td>
<td>8.06</td>
</tr>
<tr>
<td>4.762</td>
<td>25.4</td>
<td>0.15</td>
<td>0.85×10^{-10}</td>
<td>19.69×10^{-10}</td>
<td>23.0</td>
<td>18.06</td>
</tr>
<tr>
<td>6.350</td>
<td>25.4</td>
<td>0.15</td>
<td>0.72×10^{-10}</td>
<td>9.85×10^{-10}</td>
<td>16.8</td>
<td>18.06</td>
</tr>
</tbody>
</table>

TABLE 2. Results of Experiments Using Various Hole Spacings, Holes Spacing on Apert.

<table>
<thead>
<tr>
<th>Hole size nm</th>
<th>Sand depth mm</th>
<th>Sand size mm</th>
<th>Initiation flow rate Q_i</th>
<th>Full fluidization flow rate Q_f</th>
<th>Pressure head in pipe mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.587</td>
<td>25.4</td>
<td>0.15</td>
<td>1.24×10^{-10}</td>
<td>5.30×10^{-10}</td>
<td>4.3</td>
</tr>
<tr>
<td>3.175</td>
<td>25.4</td>
<td>0.15</td>
<td>0.75×10^{-10}</td>
<td>8.77×10^{-10}</td>
<td>11.6</td>
</tr>
<tr>
<td>4.762</td>
<td>25.4</td>
<td>0.15</td>
<td>0.85×10^{-10}</td>
<td>19.69×10^{-10}</td>
<td>23.0</td>
</tr>
<tr>
<td>6.350</td>
<td>25.4</td>
<td>0.15</td>
<td>0.72×10^{-10}</td>
<td>9.85×10^{-10}</td>
<td>16.8</td>
</tr>
</tbody>
</table>

*At full fluidization flow rate.

Tabel 1.1 en 1.2. Resultaten van onderzoek Weisman en Lennon (1994).

Uit de proeven kan geconcludeerd worden dat met name de zandbedhoogte en de zanddiameter (doorlatendheid) van invloed zijn op het debiet dat nodig is om fluidisatie te initieër en om fluidisatie te handhaven. Dit in tegenstelling tot de nozzle diameter en de hart op hart afstand van de jets.

Tevens blijkt uit de proefresultaten (1) dat er een grote spreiding aanwezig in de debietfactor [F]. Dit komt onder meer in uiting in de spreiding van het debiet dat is benodigd voor fluidisatie te initiëren. In tabel 2 varieert het debiet [Q] 10-40% met vergelijkbare omstandigheden in tabel 1.1; (2) Het debiet voor volledige fluidisatie is niet gevoelig voor de bedhoogte(?), hart op hart afstand van de nozzle’s of de nozzle

*At full fluidization flow rate.

Minimaliseren reslating "Volvox Terranova" HI Literatuurstudie Fluidisatie
diameter; (3) de factor [F] is ongeveer 2 voor grof zand en voor het fijner zand gemiddeld 4.3, zie tabel I.2.

In dit artikel wordt de spreiding in de factoren verklaard doordat in de test de invloed van de korrelspreiding, gepaktheid en de mate van toename van het debiet niet zijn meegenomen.

Uit het experimentele onderzoek is geconcludeerd dat een nozzle diameter van 3.17 tot 4.7 mm en een hart op hart van 2.5 tot 5.1 cm het beste resultaat opleveren. Deze configuratie wordt aangeraden voor het ontwerp van de fluidisatiepijp. Onderstaand zal dit worden toegelicht aan de hand van het benodigd debiet en druk

Toezichting benodigd jetdebiert

Uit de tabellen blijkt dat het debiet benodigd om fluidisatie te initiëren en om fluidisatie te handhaven verschillend is. De verhouding wordt uitgedrukt in de factor [F], zie ook tabel I.1 en I.2. Dit wordt verklaard door het verschil in stromingspatroon door het zandpakket voor en na het begin van fluidisatie. zie ook onderstaande figuren uit experiment (Weisman et al., 1988).

\[n_0 = 39\%, \]
\[Q_{(a, b, c, d, e)} = \text{resp. 0.009, 0.019, 0.034, 0.041, 2.16, 3.60 L/s-m} \]

Figuur I.11. Potentiaallijnen in een gefluidiseerd en ongefluidiseerd pakket.
Figuur I.12. Schematische weergave van vorm fluidisatie kuil en interne stroming.

Uit deze proeven bleek; (1) de breedte van de gefluidiseerde zone is lineair evenredig met het debiet per strekkende meter; (2) de potentiaallijnen in de fluidisatiediepte zijn horizontaal; (3) het lekkverlies van de gefluidiseerde naar de ongefluidiseerde zone is zeer gering, < 5% van het jetdebiert; (4) de zand concentratie in de fluidisatiekuil neemt af met een toenemend jetdebiet.

Uit dit onderzoek blijkt dat er geen theoretische beschrijving is voor het benodigde debiet, om fluidisatie te initiëren. Om ontwerprules te creëren is een numeriek computermodel, afgeleid van deze proefresultaten, opgesteld. Hierbij is uitgegaan van de wet van Darcy.
De uitgangspunten van dit computermodel zijn discutabel. Er wordt gesteld dat er begin van fluidisatie optreedt als er een bepaalde afstand van de nozzle een gemiddeld verhang van 1 aanwezig is tussen het beschouwde punt en het zandoppervlak. Dit is de empirie in het computermodel.

Tevens is het model 2-dimensionaal. In de buurt van de nozzle is de stroming echter sterk 3-dimensionaal. Dit heeft met name invloed op de benodigde jetdruk. In het computermodel is met name de invloed van de grote van de ruimte waarin de jets aanwezig zijn bepaald. Dit is van belang voor het potentiaalverloop en daarmee het lekverlies tijdens en voor fluidisatie. In het model wordt de volgende ontwerpformule gebruikt in combinatie met figuur I.13.

\[
Q_{\text{initie}} = X_{\text{flow rate factor}} \cdot k_0 \cdot d_{\text{buried}} \quad (I.26)
\]

Hierbij is [X] de flow rate factor afhankelijk van het domein waarin de pijp begraven is. In onderstaande grafiek zijn de afmetingen van het domein in de breedte (x-richting) en diepte (y-richting) dimensieloos gemaakt door ze te delen door de diameter van de aanvoerling (\(d_h\)). Uit de figuur kan dan het debiet om fluidisatie te initiëren uitgerekend worden als de doorlatendheid en de diepte van de pijp bekend zijn.

\[
\begin{align*}
Q & \leq Q_{\text{initie}} \\
Q_{\text{initie}} & = 2.5 \\
Q & = 3.0 \\
Q & = 3.5 \\
Q & = 4.0 \\
Q & = 4.5 \\
Q & = 5.0 \\
Q & = 5.5 \\
Q & = 6.0 \\
Q & = 6.5 \\
Q & = 7.0
\end{align*}
\]

RELATIVE BURIAL DEPTH, \(d_h/D \)

Als het domein groter is dan het maximaal aangegeven domein dan kan de bovenste lijn uit de grafiek I.13 gebruikt worden.

Toelichting benodigde jetdruk

In dit artikel wordt gesteld dat de benodigde jetdruk de som is van de energieverliezen door het uitstromende water uit de nozzle en de energieverliezen van het stromende water door het zandbed. Bij kleine nozzle's zijn de eerste energieverliezen veruit het grootst, zie tabel I.1. De benodigde jetdruk bij een gefluidiseerd mengsel is ongeveer 1 per meter zandbed. Zie ook paragraaf I.c, 1-D fluidisatie.
De benodigde druk om fluidisatie te initiëren is veel groter. Voor een 1 dimensionale situatie is een verhang van 1 benodigd. In 2- of 3-dimensionale situaties neemt dit sterk toe. Dit wordt met name veroorzaakt door de grote drukval in de directe omgeving van de nozzle.

Uit het hiervoor beschreven 2-dimensionale model, met de daarbij behorende fluidisatie voorwaarde kwamen relatief veel te lage jetdruk eisen om fluidisatie te initiëren. Voor het voorgestelde fluidisatiepijp ontwerp werd gesteld dat een jetdruk van ca. 2 à 3 maal de bedhoogte nodig was. In een later stadium is door P. Lennon (1995) een drie dimensionaal model ontwikkeld. Hierbij werd de berekende benodigde jetdruk (9 à 14 * bedhoogte!) met dezelfde fluidisatie voorwaarde.

Hierop is gekozen om een andere voorwaarde voor het begin van fluidisatie te definiëren. Gesteld werd dat er begin van fluidisatie optrad als over een regio van 5 cm² een gemiddeld verhang van 1 optreed van de bovenkant van de nozzle tot het zandoppervlak (?!). Deze oppervlakte was in de proeven de oppervlakte van de spuitert in de opstartfase van het fluidisatieproces.

Dit laatste criterium is gebruikt in dit artikel. Hieruit volgt dan dat de benodigde jetdruk 5 keer de bedhoogte is voor een ondiep bed en 4 keer de bedhoogte voor een dieper begraven fluidisatiepijp. Deze eis geldt voor een pijp met nozzle's met een diameter van 3.17 mm en een hart op hart afstand van 5 cm.

Door de heer N. Weisman, werkzaam aan de Lehigh University USA, is geen verder onderzoek gedaan naar dit onderwerp. Hierdoor zijn er geen nieuwe inzichten verkregen over de benodigde jetdruk om het fluidisatie proces te initiëren.
I.d.2 Literatuuronderzoek 2
Beunfluidisatie Geopotes 14. (Maas, 1992)

Bij het fluidiseren van de zandlading in de Geopotes 14 traden enkele problemen op. Bij het zuigen ontstonden onderdrukken in het zandpakket en jetstralen braken door het zandpakket, zodat het zogenaamde 'piping'-verschijnsel optrad.

In het verslag wordt niet aangegeven waarom dit 'piping'-verschijnsel een probleem is. Het lijkt onlogisch doordat het een onderdeel is van het fluidisatieproces. In de regel ontstaat eerst een sputter of pijp door het pakket, waarna deze sputter zich ontwikkeld tot een fluidisatiekuil, zie ook foto's van figuur I.15.

Het doel van het afstudieerwerk was om meer inzicht te krijgen in het fluidisatieproces, zodat het leegzuigen van de Geopotes 14 geoptimaliseerd kan worden. Hiervoor is een literatuurstudie uitgevoerd, zijn er op kleine schaal modellproeven uitgevoerd met een enkele jet en is een computer programmatie geschreven dat het potentiaalverloop in een (gefluidiseerd) zandpakket uitrekt.

Schaalproeven enkele jet in een zandpakket
Met name de proeven zijn interessant omdat deze zijn uitgevoerd achter glas, zodat het fluidisatieproces visueel inzichtelijk wordt. Helaas is de schaal van de proeven gering, zodat er geen inzicht is verkregen in schalingseffecten.

In totaal zijn er ongeveer 100 jetproeven uitgevoerd met een enkele jet in een bak van 1.2 * 1.9 * 0.6 m (h * l * b). In de proeven zijn met name 2 jetdiameters gebruikt, van 4 en 12 mm, een zandpakket hoogte boven de nozzle van 60 à 70 cm en zand met een D50 van 125 μm.

In de proeven is gevarieerd met de proeftijd en de jetdruk en in mindere mate met de verdichtingsgraad. Door het variëren met de jetdruk werd het debiet gevarieerd en door het variëren met de verdichtingsgraad werd de doorlatendheid van het zandpakket beïnvloed.

Helaas wordt in het onderzoek het verloop van het debiet en de jetdruk niet weergegeven. Hierdoor is het niet mogelijk inzicht te krijgen in de opstart verschijnselen waarin in het vorige onderzoek wel veel aandacht is besteedt.

Fluidisatieproces
Nadat het jetten was gestart werd, bij een voldoende groot debiet, ter plaatse van de jet een kleine gefluidiseerd gebied zichtbaar. Hierbij kwam de bovenzijde van het zandpakket omhoog(!). Het gefluidiseerde gebied breidde zich in de meeste gevallen vrij snel uit en al gauw brak de vloeistof ter plaatse van de jet door het zandpakket heen.

Na het uitbreken van de jetvloeistof werd de indringdiepte in het verlengde van de jet sterk vergroot. Dit proces ging sneller dan het afbrennen van het zand in de gefluidiseerde zone. Op een bepaald moment werd de maximale indringdiepte bereikt, waarna het afbrennen nog enige tijd doorging. Hierbij werd de indringdiepte van de jet iets gereduceerd. Op een gegeven moment was er een evenwichtssituatie bereikt.

Minimaliseren restlading "Volvox Terranova"
HI Literatuurstudie Fluidisatie
Proef resultaten

Jetdebiet
De belangrijkste conclusie uit dit onderzoek is dat vooral het jetdebiet bepalend is voor de fluidisatie van een zandpakket, de jetdruk is van secundair belang. De oppervlakte van het gefluidiseerde gebied is in grote mate afhankelijk van het jetdebiet. In figuur 1.16 worden de gevonden resultaten uitgezet. Duidelijk is de trend waarnembaar dat bij een groter debiet de gefluidiseerde oppervlakte ook bijna evenredig toeneemt.
Bij een goede spreiding van het jetwater over de oppervlakte van het beun kan volledige fluidisatie bereikt worden. Gedoeld ontwikkelde de eis dat voor een goede fluidisatie de filtersnelheid in het zandpakket minimaal vijf maal de doorlatendheid dient te zijn.

Dit betekent dat het benodigd debiet voor een goede fluidisatie ca. vijf maal groter is, dan het theoretisch debiet dat benodigd is om fluidisatie te initiëren. Blijkbaar wordt in het pakket eerst het poriënvolume vergroot, voordat de fluidisatie zo danig is, dat het voor praktische doeleinden gebruikt kan worden. De eis dat het debiet minimaal vijf maal de doorlatendheid dient te zijn, wordt in de proevenreeks bevestigd.

Invloed porositeit

Uit de proeven bleek dat de invloed van de porositeit beperkt is. Een porositeit van resp. 44% en 50% (minimum en maximaal getest) geeft een variatie in de fluidisatiekuil oppervlak van 1.00 naar 0.92 m² bij vergelijkbare overige omstandigheden. Dit is een verschil in oppervlak van ca. 8%.

Tijdsduur van de proef

Uit de proeven blijkt dat de tijd benodigd tot het bereiken van de evenwichtssituatie aanzienlijk is (1800 sec. = 30 min.). In het begin gaat het groeien van de geëxpanderde oppervlakte zeer snel. Na 900 sec. (15 min.) is al ongeveer 90% van de totale evenwichtoppervlakte bereikt.

In de proeven met de 12 millimeter nozzle gaat het proces sneller. Na ca. 450 sec. (7.5 min.) is ca. 90% van de totale evenwichtoppervlakte bereikt, zie ook tabel I.2. Maar in principe blijft het een relatief langzaam proces. Aangenomen wordt dat het proces in de praktijk nog langer kan duren door de grotere verhouding van bedhoogte tot de nozzle diameter in de praktijk, ca 250 tot 150 en 50 in de proeven. De invloed van meerdere jets is in deze aannames niet meegerekend.

![Graph](image)

Figuur I.17. Tijd-oppervlak relatie en zijanzicht proef.
Jetdruk

Zoals gesteld wordt in het verslag niet ingegaan op de benodigde debieten en drukken om fluidisatie te initiëren. In de tabel I.2 zijn de resultaten van 4 proeven met de 12 millimeter nozzle weergegeven. Hieruit blijkt dat de verhouding van de jetdruk met de bedhoogte varieert van 2.5 tot 11.4.

Duidelijk blijkt dat bij een relatief grotere jetdruk de benodigde energie [N] onevenredig groter wordt per m² fluidisatie. Hieruit blijkt dat het verstandig, minimaal vermogen per m² fluidisatie, is om met een zo laag mogelijke druk en een relatief zo groot mogelijke nozzle diameter toe te passen om een bepaald debiet te jetten. Hierbij moet uiteraard voldoende jetdruk aanwezig zijn om het fluidisatie proces te initiëren.

<table>
<thead>
<tr>
<th>proef</th>
<th>H [m]</th>
<th>p [bar]</th>
<th>Q [l/s]</th>
<th>P [W]</th>
<th>A (1800 s) [m²]</th>
<th>A' (450 s) [m²]</th>
<th>qₘₖ₀</th>
<th>p/H [-]</th>
<th>P/A [W/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.603</td>
<td>0.15</td>
<td>0.338</td>
<td>1.368</td>
<td>0.3315</td>
<td>0.3383</td>
<td>4.16</td>
<td>2.5</td>
<td>4.13</td>
</tr>
<tr>
<td>35</td>
<td>0.606</td>
<td>0.27</td>
<td>0.530</td>
<td>8.504</td>
<td>0.5166</td>
<td>0.5391</td>
<td>4.02</td>
<td>4.5</td>
<td>16.5</td>
</tr>
<tr>
<td>34</td>
<td>0.590</td>
<td>0.48</td>
<td>0.844</td>
<td>31.326</td>
<td>0.8246</td>
<td>0.7908</td>
<td>4.15</td>
<td>8.1</td>
<td>37.99</td>
</tr>
<tr>
<td>33</td>
<td>0.594</td>
<td>0.68</td>
<td>1.029</td>
<td>58.736</td>
<td>0.9749</td>
<td>0.8360</td>
<td>4.15</td>
<td>11.4</td>
<td>60.25</td>
</tr>
</tbody>
</table>

*gefluidiseerde oppervlakte na 450 s, resultaten uit andere proeven serie met vergelijkbare invoerparameters proeftijd 1800 sec., 12 mm nozzle, k = 2.5 * 10⁻⁴ [m/s], jetvermogen [P] is ΔPₙozzle * Q

Tabel I.2. Proefresultaten proef 32 t/m 35.
I.d.3 Literatuuronderzoek 3
Fluidisatieproeven (Niwas 1989)

In dit rapport worden fluidisatieproeven beschreven, uitgevoerd in de baggergoot van het WL | delft hydraulics. De proeven zijn uitgevoerd ten behoeve van de bouw van de stormvloedkering in de Nieuwe waterweg. Gesteld wordt dat de deur van deze kering 2.5 meter ingezand kan raken met zand, D₅₀ van 125-250 µm, in de gesloten toestand. Door een fluidisatie systeem aan te brengen kan dit zand gefluidiseerd worden, waarna de deur relatief vrijvingsloos weer kan openen.

In de proeven is een deursegment begraven in een zandpakket (D₅₀ = 225 µm) van 1.80 meter hoog en 2.2 meter breed. In de deur zijn verschillende nozle configuraties aangebracht. In totaal zijn 7 proeven uitgevoerd met een jetdruk variërend van 0.3 tot 2.0 bar, een hart op hart afstand van 0.22 tot 0.80 m en een nozzle diameter van 10 en 14 mm.

Fluidisatieproces
Na het starten van de proef duurde het ongeveer 5 minuten voordat er aan de bovenkant van het zandpakket iets zichtbaar werd en na een 15 minuten was de evenwichtsituatie bereikt. Hierna werd de grote van het gefluidiseerde gebied gemeten met behulp van peilen.

Proef resultaten
Uit de proeven bleek (1) dat alle nozzle configuraties geleid hebben tot een gebied met gefluidiseerd zand over de gehele lengte van de deur. (2) Tevens bleek dat de uiteindelijke uitkomst niet sterk afhankelijk is van de begincondities, met name de gepaktheid van het zandpakket. (3) In de begin situatie had het zand een porositeit van ca. 40%. Na fluidisatie wordt deze bij alle proeven ca. 65% (pₚ = 1600 kg/m³).

![Graph](image-url)
De resultaten van de bruikbare proeven zijn in onderstaande tabel weergegeven. De cursieve waarden in de tabel zijn zelf bepaalde grootheden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/10/0.22</td>
<td>0.8</td>
<td>6.3</td>
<td>353</td>
<td>1.76</td>
<td>200</td>
<td>7.2</td>
<td>4.4</td>
</tr>
<tr>
<td>4a</td>
<td>5/14/0.45</td>
<td>0.8</td>
<td>7?</td>
<td>392</td>
<td>1.32*</td>
<td>297*</td>
<td>10.6</td>
<td>4.4</td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td>1.7</td>
<td>10</td>
<td>1460</td>
<td>3.30</td>
<td>442</td>
<td>6.1</td>
<td>9.4</td>
</tr>
<tr>
<td>5a</td>
<td>5/14/0.45</td>
<td>0.8</td>
<td>7</td>
<td>392</td>
<td>2.42</td>
<td>162</td>
<td>5.8</td>
<td>4.4</td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td>1.7</td>
<td>10.5</td>
<td>1533</td>
<td>3.30</td>
<td>465</td>
<td>6.4</td>
<td>9.4</td>
</tr>
<tr>
<td>7a</td>
<td>9/10/0.22</td>
<td>0.5</td>
<td>3.5</td>
<td>91</td>
<td>0.55</td>
<td>165</td>
<td>12.7</td>
<td>2.8</td>
</tr>
<tr>
<td>7b</td>
<td></td>
<td>0.8</td>
<td>7</td>
<td>392</td>
<td>1.76</td>
<td>231</td>
<td>8.0</td>
<td>4.4</td>
</tr>
<tr>
<td>7c</td>
<td></td>
<td>1.4</td>
<td>9.5</td>
<td>1102</td>
<td>2.64</td>
<td>417</td>
<td>7.2</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Opmerking: *zeer onbetrouwbaar k 5 * 10⁻⁴ [m/s] (groot berekend)
De gemeten waarden zijn onzuiver en enkel indicatief.

Tabel 1.3 Proefresultaten proef 1 t/m 7.

Uit het debiet verloop bleek duidelijk dat bij enkele proeven het proces zeer langzaam op gang kwam en verschillend per zijde. In proef 4 is er 30 minuten gejet voordat er aan een zijde van de deur een debiet groter dan 1l/s gespoten werd.

Ondanks dat de resultaten zeer onnauwkeurig zijn kan, uit proef 4,5 en 7, geconcludeerd worden dat bij een grotere druk relatief meer energie nodig is om een m² te fluidiseren.

De totale uitstroom oppervlakte van de nozzle’s in de proeven is gelijk. Het lijkt dat de nozzleconfiguratie met de 14 mm nozzle’s iets gunstiger is qua specifieke energie. Bij deze configuratie zijn de ruggetjes tussen de nozzle’s echter iets groter.

Tevens is het debiet door de gefluidiseerde zone gemiddeld ca. 1.6 maal groter dan in de proeven van literatuuronderzoek 2 (8 i.p.v. 5). Hierbij dient wederom opgemerkt te worden dat deze waarde een zeer lage betrouwbaarheid en een grote spreiding hebben.
I.d.4 Resultaten literatuuronderzoek fluidisatie in een vrij domein

De resultaten uit het literatuuronderzoek zijn redelijk conform met elkaar. Uit de studies wordt geconcludeerd:

1. Wanneer het zandpakket met behulp van jets wordt gefluidiseerd, zal zich op een gegeven moment een evenwichtssituatie instellen. (1,2,3).

2. De grootste gefluidiseerde zone wordt bereikt met horizontaal spuitende jets (1).

3. De grote van het gefluidiseerde gebied lijkt in grote mate afhankelijk van het jetdebiet en de doorlatendheid van het zandpakket (1,2,3).

4. De invloed van de zandpakkethoogte, pakking, hart op hart afstand, nozzle diameter en jetdruk zijn beperkt op de afmetingen van het gefluidiseerde gebied. (1,2,3).

5. De oppervlakte van de gefluidiseerde zone is ongeveer rechtlijnig afhankelijk met het jetdebiet, als het zand niet verwijderd wordt. Bij een grotere pakkethoogte wordt het lekverlies groter en de gefluidiseerde oppervlakte kleiner. (1,2).

6. In de gefluidiseerde zone is de filtersnelheid in het zandpakket ca. vijf maal de doorlatendheid (k_b) (2).

7. Hoe kleiner de nozzle diameter, hoe groter de benodigde druk is om het fluidisatie proces te handhaven. Dit wordt met name veroorzaakt door de relatief grote drukval over de nozzle bij kleine nozzlediameters (1,2).

8. Het debiet dat nodig is bij het begin van fluidisatie is groter dan het debiet dat nodig is om een toestand van volledige fluidisatie te handhaven. Bij een grotere zandpakkethoogte neemt dit verschil toe (1).

9. Het debiet benodigd om fluidisatie te initiëren is met name afhankelijk van de diepte van de jet en de doorlatendheid en in mindere mate van de afmetingen van het gebied (1).

10. De benodigde jetdruk tijdens het fluidisatieproces is met name afhankelijk van de bedhoogte en de jetdruk benodigd om fluidisatie te initiëren. Deze laatste jetdruk is in de regel maatgevend.

11. Bij grotere hart op hart afstanden van de jets neemt de druk om fluidisatie te initiëren enorm toe (1).

12. De tijdsduur van het fluidisatieproces is redelijk groot. De proeven duurde ongeveer 15 minuten tot de evenwichtssituatie bereikt was (2,3).

13. Bij het verwijderen van het gefluidiseerde zand is de breedte van de kuil, met name afhankelijk van de hoek van inwendige wijding van het zandpakket. Bij grotere debieten, groter dan het drempel debiet, neemt de breedte toe. Dit wordt veroorzaakt door de erosie kracht van de jets (1).
14. Voor het met minimaal vermogen fluïdiseren van een zandpakket dient de jetdruk zo laag mogelijk te zijn. Dit kost de minste energie per m² gefluïdiserd oppervlak. (2,3).

15. De theorie omtrent het fluidisatie proces in een vrij domein is beperkt. De conclusies zijn in grote mate proefondervindelijk bepaald. Met name de kennis omtrent de jetdruk voor begin van fluidisatie is beperkt.

Toelichting punt 6, voor een goede fluidisatie geldt: \(q = 5 \times k_e \)
Met deze vergelijking is de oppervlakte van de gefluïdiserde zone te berekenen als het jetdebit bekend is. De eis dat voor een goede fluidisatie het debiet 5 maal de doorlatendheid moet zijn, kan gekoppeld worden aan de oppervlaktesnelheid – porositeit relatie zoals deze indicatief is afgeleid in figuur 4.13. Gesteld wordt dat de Ergun vergelijking bij een verhaging van een de doorlatendheid weergeeft. Voor kleine korrels, laminairestroming, klopt dit nagenoeg exact met de formule voor de doorlatendheid afgeleid door Den Adel (in: BAGT 471), ook laminaire stroming.

![Fluidisatiesnelheid - Porositeit Relatie](image)

In bovenstaande figuur is de eis, dat voor een goede fluidisatie het debiet 5 maal de doorlatendheid is, verwerkt voor een initiële porositeit van 40%. Voor kleine korrels komt de aannemelijke porositeit van 60% (1650 kg/m³) voor een goede fluidisatie uit de berekening. Voor grotere korrels wordt naar mijn mening het benodigd jet debiet, voor een goede fluidisatie, overschat. Dit kan verklaard worden, doordat in de uitgevoerde proeven in de regel met fijn zand gewerkt wordt. In de praktijk worden in de regel geen korrels met een mediane korreldiameter groter dan 2 mm opgezogen.

Voor een porositeit van 60%, in gefluïdiseerde toestand, is een coëfficiënt van 3,15 maal de doorlatendheid, voor korrels met een mediane diameter van 1 mm, nodig en 2,3 voor korrels met een diameter van 2 mm.

In de figuren is uitgegaan van een vlakke korrelverdeling en bolvormige korrels. In de werkelijkheid zal de benodigde oppervlaktesnelheid lager liggen ten gevolge van de korrelvorm. De doorlatendheid zal ook kleiner zijn ten gevolge van de korrelverdeling. Aangenomen wordt dat deze effecten elkaar, in de grafiek, compenseren met betrekking tot de porositeit.
HIILiteratuurstudie Opstarten van een jet

Op verschillende vakgebieden is literatuuronderzoek gepleegd om het proces van een uitbrekende jet te analyseren. De literatuur is afkomstig uit de boortunnelbouw en de mijnbouw.
Tijdens het boren van een tunnel is er een overdruk aanwezig ter plaatse van het boorschild. Wordt deze druk te groot dan kan er een blow-out optreden.
In de mijnbouw wordt met behulp van water de olie naar bepaalde plaatsen geperst. Tevens worden er met behulp van hydraulic fracturing scheuren in het gesteente gecreëerd die vervolgens gevuld worden met zand, zodat de olie makkelijker naar de winput kan stromen.
Na gesprekken met de Dhr. de Pater verbonden aan de faculteit mijnbouwkunde van de TU-Delft en de heer Mastbergen verbonden aan het WL | delft hydraulics is gebleken dat er momenteel geen methode is om de uitbreekdruk van een nozzle te bepalen. Op het moment wordt er door Geodelft wel onderzoek naar gepleegd maar de resultaten zijn nog niet beschikbaar. In dit hoofdstuk zullen twee onderzoeken beschreven worden.

II.aLiteratuuronderzoek 1
Boren tunnels en leidingen (Hergarderen, 1998)

Door het WL | delft hydraulics is een meerjarig onderzoek begonnen naar de processen die plaatsvinden bij het boren van tunnels. In deze onderzoekenreeks is o.a. onderzoek gepleegd naar de processen die plaatsvinden tijdens een blow-out. Bij een blow-out breekt de boorvloeistof door de ondergrond naar de oppervlakte. Hierdoor kan er geen druk meer worden opgebouwd voor het boorschild, zodat het boorproces stilvalt.

De analogie tussen het uitbreken van een jet(opstarten) en een blow-out is groot. Enkel bij een blow-out zijn de boorgatdiameters groter en bestaat de boorvloeistof in de regel uit een bentonietspoeling. In schaalproeven, BTL 21, wordt geconstateerd dat scheurvorming in het zand een reële bekwijkvorm is.

Bij een blow-out worden twee bezwijkmechanisme onderscheiden:
- ongelimiteerde cilinder of bolexpansie
- scheurvorming (=hydraulic fracturing)

In BTL rapport 41, 1998 wordt een case behandeld van een boortunnel van 1 meter diameter 10 meter onder het maaiveld in een zandlaag. Deze zandlaag wordt afgedekt door een kleilaag van 7 meter. Van deze case wordt de limietdruk via de beschikbare rekenmethoden doorgerekend. Deze limietdruk is de druk, waarbij het pakket bezwijkt en er een blow-out plaatsvindt.
De gebruikte rekenmethoden in het rapport zijn:
- de cilinderexpansie theorie van Vesic, aangepast door Luger, 1982.
- het eindige elementen computerprogramma, PLAXIS.
- met 4 analytische hydraulic fracturing modellen, ontwikkeld voor klei.
 gebruikte hydraulic fracturing rekenmethode zijn: Bjerrum et al, Andersen et
 al, Konak Panah/Yanagiasawa en Overy/Dean.

De berekende limietdrukken zijn, incl. de hydrostatische waterspanningen:
- 7.86 bar cilinderexpansie, ongelimiteerde plastische zone (9.5)
- 7.30 bar Plaxis berekening met ongelimiteerde plastische zone (8.75)
- 3.30 – 4.00 bar Plaxis ber. met een plastische zone enkel in het zand (3.2-4.2)
- 1.34 – 2.55 bar hydraulic fracturing modellen (0.5-2.15)

Tussen haakjes staat de factor van de limietdruk met de effectieve verticale
korrelsspanningen.

Uit dit rapport blijkt dat de met behulp van de cilinderexpansie theorie berekende
limietdruk aanzienlijk hoger is dan de overig berekende limietdrukken. De ontwikkelde
rekenmethoden voor hydraulic fracturing zijn opgezet voor kleiachtige ondergrond. Door
de kleimodellen op zand toe te passen worden (onrealistische) waarden gevonden,
waaraan geen conclusies zijn te verbinden.

In het rapport wordt gesteld dat uit de gevonden resultaten helaas geen conclusie is te
verbinden met betrekking tot de druk benodigd om het zandpakket te laten bezwijken.

II.b Literatuuronderzoek 2
Bolexpansie volgens Vesic en Luger, Bagt 347

In dit onderzoek wordt analytisch het gedrag van grond beschreven bij een groeiende
bel in een oneindige, homogene ondergrond. De bel is voor te stellen als een ballon die
opgeblazen wordt in een holte. De spanningen van de bel [p] worden direct op de korrels
van de holtewand overgedragen. Bij water in een holte is dit uiteraard niet het geval.

In de afleiding wordt het elastisch gedrag, volgens de wet van Hooke, en het plastisch
gedrag volgens de wet van Rowe beschreven. De overgang van elastisch naar plastisch
gedrag wordt bereikt bij overschrijding van het Mohr-Coulomb criterium. In dit criterium
wo7rdt plastisch materiaal gedrag bereikt bij een bepaalde verhouding tussen de
spanningen in de hoofdrichtingen.

De wet van Rowe beschrijft het plastisch materiaalgedrag door een kinematische relatie
voor de vervormingen. In de plastische zone blijft de verhouding tussen de spanningen
constant. De vervormingen worden nu beschreven volgens de spanningsdilatantie wet
van Rowe. Gesteld wordt dat de vervormingen een relatie hebben met het verloop van
dichtheid en daarmee met het volume. De verhouding tussen deze incremen'nten is
afhankelijk van de dilatantiehoek, zie ook bijlage L grondgedrag.

Bij het toenemen van de spanningen zal er elastisch gedrag optreden totdat de
verhouding tussen de radiale en de tangentiele spanningen te groot wordt. Hierbij gaat
de holtewand over in de plastische bezwijktoestand.
Bij het toenemen van de druk in de holte zal de plastische bezwijkzone groeien. In de plastische zone zal volumeverandering plaatsvinden totdat de kritieke dichtheid wordt bereikt. Bij het bereiken van de kritieke dichtheid, tweede plastische zone, kan het zand zonder volume verandering afschuiven. Hierdoor is het zand in deze zone volledig bezweken. Bij het bereiken van de limiedruk, is het gehele zandpakket bezweken en neemt de holte diameter ongelimiteerd toe.

De formules zoals deze zijn afgeleid door Vesic en Luger en gebruikt voor de voorbeeld berekening zijn in bijlage J weergegeven. Voor een los- en dichtgepakt zandpakket is deze limiedruk berekend waarbij de holte straal ongelimiteerd toeneemt. Voor het zand zijn de volgende eigenschappen aangehouden:

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Grootheid</th>
<th>Los gepakt zand</th>
<th>Vast gepakt zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>isotrope korrelspanning</td>
<td>q</td>
<td>100 kPa</td>
<td>100 kPa</td>
</tr>
<tr>
<td>(ca. 15 m zand)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initiële holtestraal</td>
<td>r₀</td>
<td>0,03 m</td>
<td>0,03 m</td>
</tr>
<tr>
<td>Glijdingsmodulus</td>
<td>G</td>
<td>7,5 mPa</td>
<td>15 mPa</td>
</tr>
<tr>
<td>hoek van inwendige</td>
<td>φ</td>
<td>30°</td>
<td>40°</td>
</tr>
<tr>
<td>wijving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>volume verandering tot</td>
<td>e ort of</td>
<td>0 %</td>
<td>5 %</td>
</tr>
<tr>
<td>kritieke dichtheid</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dilatantiehoek</td>
<td>v<sub>d</sub></td>
<td>1<sup>°</sup></td>
<td>10<sup>°</sup></td>
</tr>
<tr>
<td>Limiedruk</td>
<td>P<sub>L</sub></td>
<td>1,5 mPa ≈ 15 bar</td>
<td>5,5 mPa ≈ 55 bar</td>
</tr>
</tbody>
</table>

Tabel II.1. Waarde van verschillende grootheden berekend voor los en vast gepakt zand.

Duidelijk is te zien dat de benodigde holtedrukken exorbitant zijn. Hoogstwaarschijnlijk zal er al een andere bezwijkvorm optreden, voordat deze druk wordt bereikt. De holtegroei voor deze twee zandpakket eigenschappen is in onderstaande figuur aangegeven:

![relatie holtestraal - holtedruk](image)

--- losgepakt zand (a), --- vastgepakt zand (b), ---- en --- straal plastische zone

Figuur II.1. Relatie holtestraal-jetdruk bij belasting op holtewand.

Duidelijk is in de figuur te zien dat de holtestraal bijna niet toeneemt totdat de limiedruk bereikt wordt.

Minimaliseren restlading "Volvox Terranova"
HII Literatuurstudie Opstarten van een jet
II.c Conclusie literatuurstudie

Uit het literatuuronderzoek blijkt dat er geen eenduidige formulering is om de uitbreekdruk van een jet te bepalen. De analytische oplossing, Vesic, uit literatuuronderzoek 1 en 2 geeft een zeer grote limietdruk.

Hoogstwaarschijnlijk treden er al andere bezwijkmechanismen op, voordat deze limietdruk bereikt is. De hoge berekende limietdrukken worden onder andere verklaard door de aannemen dat het bezwijkgedrag exact bolsymmetrisch is. In de werkelijkheid zijn de spanningen in het zandpakket niet volledig isotroop maar hebben in verschillende richtingen verschillende waarden. Met een eindige elementen程式ma (Plaxis) worden lagere limietdrukken berekend doordat er rekening wordt gehouden met de invloed van de zwaartekracht.

In deze analytische vergelijkingen is wel duidelijk de invloed van de pakking en sterkte van het pakket verwerkt. De limietdruk tussen een vast- en losgepakt zand varieert in deze methode ongeveer een factor 3.

In deze vergelijkingen wordt ervan uitgegaan dat de jetdruk op de korrels van de holthewand wordt overgedragen. In het beun zal de waterdruk uit de jets niet gelijk op de holthewand werken, maar geleidelijk met het afnemen van de wateroverspanningen.

Uit het boortunnel onderzoek komt naar voren dat de hydraulic-fracturing formuleringen niet zonder meer toegepast kunnen worden op een zandlichaam. Dit komt doordat deze vergelijkingen uitgaan van een hoeveelheid cohesie in de ondergrond. In deze rapporten wordt wel geconstateerd dat scheurvorming in zand een reële bezwijkmechanisme is.
Bijlage A

Afleiding spanningen om een holte met de elastische oplossing, zonder waterspanningsgradiënten

In een oneindig groot homogeen medium wordt een holte voorgesteld. Om deze holte wordt het evenwicht beschreven met de evenwichtsvergelijkingen om een bol. In het medium wordt geen rekening gehouden met de zwaartekracht. In het medium wordt gesteld dat initieel in het gehele medium dezelfde isotrope korrelspanningen heersen (Verruijt, 2000).
Per infinitesimaal volume deeltje om een bol geldt de volgende evenwichtsvergelijking voor de korrelspanningen (definitie):
\[
\frac{\partial \sigma'_r}{\partial r} + \frac{2(\sigma'_r - \sigma'_t)}{r} = 0
\]
(a1)

De korrelspanningen kunnen gerelateerd worden aan de elastische vergelijking voor de grondeigenschappen volgens de wet van Hooke:
\[
\begin{align*}
\sigma'_r &= \lambda \varepsilon_r + 2 \mu \varepsilon_r \\
\sigma'_t &= \lambda \varepsilon_t + 2 \mu \varepsilon_t \\
\sigma'_r &= (\lambda + 2 \mu) \varepsilon_r + 2 \lambda \varepsilon_r \\
\sigma'_t &= \lambda \varepsilon_t + 2 (\mu + \lambda) \varepsilon_t
\end{align*}
\]
(a2, a3)

\(e \) is de totale volume rek: \(e = \varepsilon_r + 2 \varepsilon_t \)
(a4)

\(\lambda \) en \(\mu \) zijn de elastische coëfficiënten (Lamé constanten):
\[
\lambda = \frac{vE}{(1+v)(1-2v)} \quad \mu = \frac{E}{2(1+v)} \quad \text{(glijmodulus, G)}
\]
(a5, a6)

De radiale en tangentieel rekken kunnen gerelateerd worden aan de radiale verplaatsing \((u_r) \) volgens:
\[
\varepsilon_r = \frac{\partial u_r}{\partial r} \quad \varepsilon_t = \frac{u_r}{r}
\]
(a7, a8)

Verplaatsingen zijn positief in de \(r \)-richting en verkortingen ook.
Nu kan de volume rek geschreven worden als (a7 en a8 invullen in a4):
\[
e = -\frac{\partial u_r}{\partial r} \quad \frac{2u_r}{r}
\]
(a9)

Hieruit volgt de basis differentiaal vergelijking voor bol symmetrische elastische deformaties:
\[
\frac{\partial^2 u_r}{\partial r^2} + \frac{2}{r} \frac{\partial u_r}{\partial r} - \frac{2u_r}{r^2} = 0
\]
(a10)

De algemene oplossing van deze vergelijking is:
\[
u_r = A r^{-2} + Br
\]
(a11)

Door a11 in a9 in te vullen volgt dat de volumerek gelijk is aan: \(e = 3A \)
Hieruit blijkt dat de volume rekken onafhankelijk zijn van \(r \) en dus overal gelijk in het oneindig grote medium. Met behulp van bovenstaande vergelijking kan de spanningsrek relaties volgens Hooke verder worden uitgewerkt tot:
\[
\begin{align*}
\sigma'_r &= 4 \mu \frac{A}{r^3} - (3 \lambda + 2 \mu) B \\
\sigma'_t &= -2 \mu \frac{A}{r^3} - (3 \lambda + 2 \mu) B \\
\varepsilon_r &= 2A r^{-3} - B \\
\varepsilon_t &= -A r^{-3} - B
\end{align*}
\]
(a12, a13, a14, a15)
Holle bolvormige ruimte

Afhankelijk van de randvoorwaarden kunnen nu deze vergelijkingen worden opgelost. Voor een holle ruimte in het beschouwde medium geldt:

\[r = r_0 : \sigma_r = 0 \quad \text{en} \quad r = b \quad \text{of} \quad \sigma_r = q \quad \text{(isotrope spanning)} \]

Nu kunnen de constanten A en B bepaald worden (bijv. met \(r_0 = \)) en daarna de spanningen:

\[\sigma'_r (t_0) = q - q r_0^3 / r^3 \quad \sigma'_t (t_0) = q + \frac{1}{2} q r_0^3 / r^3 \]

Hieruit blijkt dat de tangentiele spanningen op de rand van de bel \([r = r_0] 1.5 q\) zijn.

Holle bolvormige ruimte, belast op de korrels met spanning p

Als de korrels op de holte wand belast worden dan gelden de volgende randvoorwaarden:

\[r = r_0 : \sigma_r = p \quad \text{en} \quad r = b \quad \text{of} \quad \sigma_r = q \quad \text{(isotrope spanning)} \]

Nu kunnen de constanten A en B bepaald worden (bijv. met \(r_0 = \)) en daarna de spanningen:

\[\sigma'_r (t_0) = q + (p - q) r_0^3 / r^3 \quad \sigma'_t (t_0) = q - \frac{1}{2} (p - q) r_0^3 / r^3 \]

Hieruit blijkt dat de tangentiele spanningen op de rand van de bel \((1.5 q - 0.5 p)\) zijn.
Bijlage B

Afleiding spanningen om een holte met de elasto-plastische oplossing, zonder waterspanningsgradiënten

Bij een te grote verhouding tussen de tangentiele en radiale spanningen treedt er plastisch bezwijken op. Dit wordt bijvoorbeeld beschreven met het Mohr-Coulomb criterium. Overgaande relaties kunnen hieraan toepast worden.

Voor het plastic gebied gelden de volgende relaties.
Onbelaste holte:

\[
\frac{\sigma'_r}{\sigma'_t} < \frac{1 - \sin \varphi}{1 + \sin \varphi} = X = ca. \sqrt{2} \text{ voor } \sigma_r < \sigma_t
\]

(b1)

Voldoende belaste holte;

\[
\frac{\sigma'_r}{\sigma'_t} > \frac{1 + \sin \varphi}{1 - \sin \varphi} = X = ca. 3 \text{ voor } \sigma_r > \sigma_t
\]

(b2)

Het Mohr-Coulomb criterium kan in de evenwichtsvergelijking (a1) verwerkt worden tot de volgende differentiaalvergelijking in de plastische zone:

\[
\frac{\partial \sigma'_r}{\partial r} + \frac{\sigma'_t}{r} \left(\pm \frac{4 \sin \phi}{1 \pm \sin \phi} \right) = 0
\]

(b3)

De - geldt voor \(\sigma_r < \sigma_t \) of te weinig spanning aan de holte wand dan in het oneindige. De + geldt voor \(\sigma_r > \sigma_t \).

De algemene oplossing van deze vergelijking is zonder rekening te houden met de waterspanningsgradiënten:

\[
\sigma'_r = C \left(\frac{D}{r} \right)^{\frac{4 \sin \phi}{1 \pm \sin \phi}}
\]

(b4)

Holle bolvormige ruimte, onbelast op de korrels van de holte wand

Aan de rand van de bel geldt dat \(\sigma_r = 0 \). Uit het MC-criterium volgt dan ook dat \(\sigma_t = 0 \). Dit betekent dat er geen spanningen zijn aan de rand van de holte.

Als op de holterand moet gelden \(\sigma'_r = 0 \), dan is C of D gelijk aan 0 en is de oplossing niet te bepalen.

Een alternatieve methode om vergelijking (b4) op te lossen is om \(\sigma'_r = k \) (heel klein) te stellen, bv 1kPa. De oplossing wordt nu voor het plastisch gebied:

\[
\sigma'_t = k \left(\frac{r_0}{r} \right)^{\frac{4 \sin \phi}{1 \pm \sin \phi}} \text{ plastisch gebied}
\]

(b5)

Er kan geen sprong in de radiale spanningen zitten. Hierdoor wordt gesteld dat voor de elastische oplossing geldt dat op \(r \) is \(\sigma'_r \) elastisch-plastisch de verhouding van de radiale spanning en tangentiele spanning \(X \) is. Deze eis kan in vergelijking (a18) en (a19) ingevuld worden:

\[
\sigma'_r = q + \left(p_{ep} - q \right) \frac{r_0^2}{r^3} \text{ elastisch gebied}
\]

(b6)
\[\sigma'_t = q - \frac{1}{2}(\rho_{ep} - q)\frac{r_{ep}^3}{r^3} \]

Door \(\sigma'_t \) te delen door \(\sigma'_t \), op \(r = r_{ep} \) en gelijk te stellen aan \(X \) (ca. 1/3) volgt:

\[\rho_{ep} = \frac{3Xq}{2+X} \]

voor \(\sigma'_t \geq \sigma_r \) (onbelaste holte) (b7)

Als \(\rho_{ep} \) op de holtwand kleiner wordt dan bovenstaande waarde, treedt er plastisch bezierven op.

Nu kan (b5) gelijk worden gesteld aan (b7). Hierdoor wordt een uitdrukking gevonden voor de grote van de plastische zone \(r_{ep} \):

\[\frac{r_{ep}}{r_0} = \left(\frac{3Xq}{(2+X)k} \right)^{1-m/\varphi \tan \varphi} \approx 2.56 \] (b8)

De vergelijkingen worden nu:
plastisch gebied voor \(r_0 < r < r_{ep} \):

\[\sigma'_r = k\left(\frac{r_0}{r} \right)^{1-m/\varphi \tan \varphi} \]

\[\sigma'_t = \frac{1}{X} \sigma'_r \]

(b9, b10)

elastisch gebied voor \(r > r_{ep} \):

\[\sigma'_r = q + (\rho_{ep} - q)\left(\frac{3Xq}{(2+X)k} \right)^{1-m/\varphi \tan \varphi} \frac{r_0^3}{r^3} \]

(b11)

\[\sigma'_t = q - \frac{1}{2}(\rho_{ep} - q)\left(\frac{3Xq}{(2+X)k} \right)^{1-m/\varphi \tan \varphi} \frac{r_0^3}{r^3} \]

(b12)

straal van de plastische zone:

\[\frac{r_{ep}}{r_0} = \left(\frac{3Xq}{(2+X)k} \right)^{1-m/\varphi \tan \varphi} \] (b13)

In onderstaande grafiek zijn de vergelijkingen grafisch weergegeven voor

\(q = 100 \) kPa, \(r_0 = 1 \) cm en \(\varphi = 30^\circ \)

Bijlage C

Afleiding spanningen om een holte met de elastische oplossing, met waterspanningsgradienten

In principe wordt dezelfde afleiding gevolgd als in bijlage A met dezelfde aannamen en uitgangspunten. In deze bijlage wordt echter ook de term van het verloop van de wateroverspanningen toegevoegd.

Voor de uitwerking wordt het spanningenevenwicht omgeschreven in een differentiaal vergelijking met de verplaatsingen. De verplaatsingen zijn via de rekincrementen verbonden met de spanningen. De differentiaal vergelijking van de verplaatsingen wordt opgelost, waarna de spanningen, via de rekken, weer worden geïntroduceerd.

Per infinitesimaal volume deeltje geldt de volgende evenwichtsvergelijking (definitie):
\[
\frac{\partial \sigma'_r}{\partial r} + \frac{2}{r} \left(\sigma'_r - \sigma'_i \right) + \frac{\partial w}{\partial r} = 0
\]

(1)

De spanningen kunnen gerelateerd worden aan de elastische vergelijking van Hooke voor de grondeigenschappen:

\[
\sigma'_r = \lambda \varepsilon + 2\mu \varepsilon_r, \quad \sigma'_i = \lambda \varepsilon + 2\mu \varepsilon_i
\]

(2, 3)

e is de totale volume rek: \(\varepsilon = \varepsilon_r + 2\varepsilon_i \)

(4)

Nu kunnen de korrelspanningen ook uitgeschreven worden in de rekken:

\[
\sigma'_r = \left(\lambda + 2\mu \right) \varepsilon_r + 2\lambda \varepsilon_i, \quad \sigma'_i = \lambda \varepsilon_r + 2\left(\mu + \lambda \right) \varepsilon_i
\]

(5, 6)

waarin \(\lambda \) en \(\mu \) de elastische coëfficiënten (Lamé constanten) zijn:

\[
\lambda = \frac{E}{\left(1+\nu\right)\left(1-2\nu\right)}, \quad \mu = \frac{E}{2\left(1+\nu\right)} \ 	ext{ (glijdingsmodulus, G)}
\]

(7, 8)

De radiale en tangentiële rekken kunnen gerelateerd worden aan de radiale verplaatsing (\(u_r \)) volgens:

\[
\varepsilon_r = -\frac{\partial u_r}{\partial r}, \quad \varepsilon_i = -\frac{u_r}{r}
\]

(9, 10)

Verplaatsingen zijn positief in de \(r \)-richting en verkortingen ook. Door (7) en (8) in te vullen in (4) kan nu de volume rek geschreven worden als:

\[
e = -\frac{\partial u_r}{\partial r} - \frac{2u_r}{r}
\]

(11)

Deze vergelijking kan nu worden uitgedrukt in de korrelspanningen door in te vullen in (5) en (6):

\[
\sigma'_r = -\left(\lambda + 2\mu \right) \frac{\partial u_r}{\partial r} - 2\lambda \frac{u_r}{r}, \quad \sigma'_i = -\lambda \frac{\partial u_r}{\partial r} - 2\left(\mu + \lambda \right) \frac{u_r}{r}
\]

(12, 13)

Deze uitdrukkingen voor de korrelspanningen worden in de evenwichtsvergelijking (1) uitgeschreven tot:

\[
\frac{\partial^2 u_r}{\partial r^2} + \frac{2u_r}{r} - \frac{2u_r}{r^2} - \frac{1}{\lambda + 2\mu} \frac{\partial w}{\partial r} = 0
\]

(14)

De integraal van vergelijking (14) kan direct bepaald worden, naar analogie van Bijlage A:
\[
\frac{\partial u_r}{\partial r} + \frac{2u_r}{r} \frac{1}{\lambda + 2\mu} w = A \quad \Rightarrow \quad \frac{\partial u_r}{\partial r} + \frac{2u_r}{r} = A + \frac{1}{\lambda + 2\mu} w
\]
(c15)

De hulpgrootheid A is de integatieconstante.

De waterspanningen worden als volgt uitgeschreven:

\[
w = \gamma_w \cdot \varphi = \gamma_w \left[\varphi_0 - \varphi_0 \cdot \frac{r_0}{r_1 - r_0} \cdot \frac{r_0}{r} - 1 \right]
\]
(c16)

Bij een grens op een grote afstand kan r1 oneindig gesteld worden, zodat c16 reduceert tot:

\[
w = \gamma_w \cdot \varphi = \gamma_w \left[\varphi_\infty + \left(\varphi_0 - \varphi_\infty \right) \frac{r_0}{r} \right]
\]
(c17)

Deze vergelijking kan in (c15) uitgeschreven worden tot:

\[
\frac{\partial u_r}{\partial r} + \frac{2u_r}{r} = A + \frac{\gamma_w}{\lambda + 2\mu} \left[\varphi_\infty + \left(\varphi_0 - \varphi_\infty \right) \frac{r_0}{r} \right]
\]
(c18)

Voor het verder uitwerken van deze vergelijking worden de hulpgrootheden B en C geïntroduceerd:

\[
\frac{\partial u_r}{\partial r} + \frac{2u_r}{r} = B + \frac{C}{r}
\]
(c19)

\[
B = A + \frac{\gamma_w \varphi_\infty}{\lambda + 2\mu} \quad \quad C = \frac{\gamma_w \left(\varphi_0 - \varphi_\infty \right) r_0}{\lambda + 2\mu}
\]

met:

De algemene oplossing van deze differentiaal vergelijking is:

\[
u_r = \gamma_2 B r + \gamma_2 C + \frac{D}{r^2}
\]
(c20)

De hulpgrootheid D is de tweede integatieconstante.

Vergelijking c20 uitgeschreven met de hulpgrootheden B en C geeft:

\[
\frac{u_r}{r} = \gamma_2 A + \frac{\gamma_w}{2(\lambda + 2\mu)} \left(r - \frac{\gamma_2 \varphi_\infty}{r} + \frac{D}{r^3} \right)
\]
(c21)

Hieruit kunnen dan \(\varepsilon_r \) en \(\varepsilon_i \) berekend worden door c21 in te vullen in c9 en c10:

\[
\varepsilon_r = -\frac{\partial u_r}{\partial r} \quad \varepsilon_i = \frac{u_r}{r} \quad (c9, c10)
\]

\[
\varepsilon_r = -\gamma_2 A - \frac{\gamma_w \varphi_\infty}{3(\lambda + 2\mu)} + \frac{2}{r^3} \frac{D}{r^3}
\]
(c22)

\[
\varepsilon_i = -\gamma_2 A - \frac{\gamma_w}{2(\lambda + 2\mu)} \left(r - \gamma_2 \varphi_\infty \right) - \frac{D}{r^3}
\]
(c23)

Hieruit kunnen de spanningen worden afgeleid:

\[
\sigma'_r = (\lambda + 2\mu) \varepsilon_r + 2\lambda \varepsilon_i \quad \sigma'_i = \lambda \varepsilon_r + 2(\mu + \lambda) \varepsilon_i
\]
(c5, c6)

\[
\sigma'_r = -(\lambda + 2\mu) A - \frac{2\mu}{3(\lambda + 2\mu)} \gamma_w \varphi_\infty - \frac{\lambda}{(\lambda + 2\mu)} \gamma_w \varphi_\infty + \frac{4\mu}{(\lambda + 2\mu)} \frac{D}{r^3}
\]
(c24)

Minimaliseren restlading "Volvox Terranova"

Bijlage C
\[\sigma' = -(\lambda + \frac{2}{3} \mu)A + \frac{\mu Y_w \phi_0}{3(\lambda + 2 \mu)} \left(\frac{\lambda + \mu}{\lambda + 2 \mu} \right) \frac{Y_w \phi}{r^3} - 2 \mu \frac{D}{r^3} \]

(c25)

Holle bolvormige ruimte, met waterspanningen in de holte, zonder korrelsprengingen op de houtwand.

De integratieconstanten A en D kunnen worden opgelost met behulp van de randvoorwaarden:

\[\sigma_0 = 0 \text{ op } r = r_0 \text{ en } \sigma = q \text{ op } r = r \]

volgt:

\[D = \frac{r_0^3}{4 \mu} \left(-q - \frac{\lambda Y_w}{(\lambda + 2 \mu)} (\phi_0 - \phi_0) \right) \]

\[A = \frac{1}{(\lambda + \frac{2}{3} \mu)} \left(-q - \frac{\lambda Y_w}{(\lambda + 2 \mu)} (\phi_0 - \phi_0) \right) \]

Deze waarden invullen voor de algemene vergelijking van \(\sigma_r \), en c24 en c25, geeft:

\[\sigma_r = q - \frac{\lambda Y_w}{(\lambda + 2 \mu)} (\phi_0 - \phi_0) \frac{r_0^3}{r^3} \frac{\lambda Y_w}{(\lambda + 2 \mu)} (\phi_0 - \phi_0) r_0 \]

\[\sigma_{i1} = q + \frac{1}{2} \frac{\lambda Y_w}{(\lambda + 2 \mu)} (\phi_0 - \phi_0) \frac{r_0^3}{r^3} \frac{\lambda + \mu Y_w}{(\lambda + 2 \mu)} (\phi_0 - \phi_0) r_0 \]

De lamé constanten kunnen worden omgeschreven in uitdrukkingen met de poissonratio.

Elastische oplossing (holte straal 3 cm):

wateroverspanning 0 kPa

wateroverspanning 50 kPa

A tangentiele korrelsprengingen, B radiale korrelsprengingen, C waterspanningen, D isotrope grondspanning
Holle bolvormige ruimte, met waterspanningen in de holte en korrelspanningen op de holtewand.

De integratieconstanten A en D kunnen worden opgelost met behulp van de nieuwe randvoorwaarden:

$$\sigma_0 = p \text{ op } r = r_0 \text{ en } \sigma = q \text{ op } r = r$$

volgt:

$$D = \frac{r_0^3}{4 \mu} \left[-q + p - \frac{\lambda \gamma_w}{(\lambda + 2 \mu)} (\phi_w - \phi_w) \right]$$

$$A = \frac{1}{(\lambda + 2 \mu)} \left[-q - \frac{\left(\frac{\mu}{\lambda} + \lambda\right) \gamma_w \phi_w}{(\lambda + 2 \mu)} \right]$$

(c30)

(c31)

Deze waarden invullen voor de algemene vergelijking van \(\sigma\), en c24 en c25, geeft:

$$\sigma^*_r = q - \left[q - p - \frac{\lambda \gamma_w}{(\lambda + 2 \mu)} (\phi_w - \phi_w) \right] r_0^3 \frac{\lambda \gamma_w}{(\lambda + 2 \mu)} (\phi_w - \phi_w) \frac{r_0}{r}$$

$$\sigma^*_t = q + \frac{1}{2} \left[q - p - \frac{\lambda \gamma_w}{(\lambda + 2 \mu)} (\phi_w - \phi_w) \right] \frac{r_0^3}{(\lambda + 2 \mu)} \frac{\lambda \gamma_w}{(\lambda + 2 \mu)} (\phi_w - \phi_w) \frac{r_0}{r}$$

(c32)

(c33)

De lamé constanten kunnen worden omgeschreven in uitdrukkingen met de poissonratio.

$$\frac{\lambda}{(\lambda + 2 \mu)} = \frac{1}{2(1-\nu)}$$

$$\frac{2 \mu}{(\lambda + 2 \mu)} = \frac{1-2\nu}{2(1-\nu)}$$

Hierdoor worden de vergelijkingen voor het verloop van de korrelspanningen uitgedrukt met behulp van de poissonratio:

$$\sigma^*_r = q - \left[q - p - \frac{\nu \gamma_w}{(1-\nu)} (\phi_w - \phi_w) \right] r_0^3 \frac{\nu \gamma_w}{(1-\nu)} (\phi_w - \phi_w) \frac{r_0}{r}$$

$$\sigma^*_t = q + \frac{1}{2} \left[q - p - \frac{\nu \gamma_w}{(1-\nu)} (\phi_w - \phi_w) \right] r_0^3 \frac{\nu \gamma_w}{2(1-\nu)} (\phi_w - \phi_w) \frac{r_0}{r}$$

(c34)

(c35)
Bijlage D

Afleiding spanningen om een holte met de elasto-plastische oplossing, met waterspanningsgradienten

Bij een te grote verhouding tussen de tangentiele en radiale spanningen treedt er plastisch bezwijk gedrag op. Dit wordt bijvoorbeeld beschreven met het Mohr-Coulomb criterium. De voorgaande relaties kunnen hieraan getoetst worden.

Voor het plastisch gebied gelden de volgende vergelijkingen:

: belaste holte)

\[
\frac{\sigma'_r}{\sigma'_t} < \frac{1-\sin \varphi}{1+\sin \varphi} = \chi = ca. 0.7 \text{ voor } \sigma_t < \sigma_t
\]

Voldoende belaste holte:

\[
\frac{\sigma'_r}{\sigma'_t} > \frac{1+\sin \varphi}{1-\sin \varphi} = \chi = ca. 3 \text{ voor } \sigma_r > \sigma_t
\]

Het Mohr-Coulomb criterium kan in de evenwichtsvergelijking (a1) verwerkt worden tot de volgende differentiaalvergelijking in de plastische zone:

\[
\frac{\partial \sigma'_r}{\partial r} + \frac{\sigma'_r}{r} \left(\frac{4 \sin \varphi}{1+\sin \varphi} \right) + \frac{\partial w}{\partial r} = 0
\]

De - geldt voor \(\sigma_r < \sigma_t \); of te wel een kleinere spanning aan de holte wand dan in het oneindige. De + geldt voor \(\sigma_r > \sigma_t \).

Voor de waterspanningsgradiënten geldt:

\[
\frac{\partial w}{\partial r} = -\gamma \left(\varphi_0 - \varphi_m \right) \frac{r_0}{r^2}
\]

De algemene oplossing van deze vergelijking wordt:

\[
\sigma'_r = C \left(\frac{D}{r} \right)^{\left(\frac{1+\sin \varphi}{1-\sin \varphi} \right)} + \gamma \left(\varphi_0 - \varphi_m \right) \frac{r_0}{r} \frac{1-\sin \varphi}{1-5\sin \varphi} \text{ voor } \sigma_r < \sigma_t
\]

\[
\sigma'_r = C \left(\frac{D}{r} \right)^{\left(\frac{1+\sin \varphi}{1-\sin \varphi} \right)} + \gamma \left(\varphi_0 - \varphi_m \right) \frac{r_0}{r} \frac{1+\sin \varphi}{3\sin \varphi -1} \text{ voor } \sigma_r > \sigma_t
\]

De grootthen C en D kunnen bepaald worden met behulp van de randvoorwaarden op de holte wand, \(\sigma'_r = 0 \) op \(r_0 \).

\[
D = r_0
\]

\[
C = -\gamma \left(\varphi_0 - \varphi_m \right) \frac{1-\sin \varphi}{1-5\sin \varphi} \text{ voor } \sigma_r < \sigma_t
\]

\[
C = -\gamma \left(\varphi_0 - \varphi_m \right) \frac{1+\sin \varphi}{3\sin \varphi -1} \text{ voor } \sigma_r > \sigma_t
\]
Uit de vergelijking volgt dat deze wederom onbepaald is als er geen wateroverspanningen aanwezig zijn. Voor deze situatie reduceert deze formule tot formule b4 uit bijlage B.

Hieruit volgt voor het verloop van σ′, in de plastische zone:

\[
\sigma'_{r} = -\gamma_{w} \left(\phi_{0} - \phi_{\infty} \right) \frac{1 - \sin \phi}{1 - 5 \sin \phi} \left(\frac{r_{0}}{r} \right)^{\left(1 - \sin \phi / 5 \sin \phi \right)} + \gamma_{w} \left(\phi_{0} - \phi_{\infty} \right) \frac{r_{0}}{r} \frac{1 - \sin \phi}{1 - 5 \sin \phi} \quad \text{voor } \sigma_{r} < \sigma_{t} \tag{d10}
\]

\[
\sigma'_{r} = -\gamma_{w} \left(\phi_{0} - \phi_{\infty} \right) \frac{1 + \sin \phi}{3 \sin \phi - 1} \left(\frac{r_{0}}{r} \right)^{\left(1 + \sin \phi / 3 \sin \phi - 1 \right)} + \gamma_{w} \left(\phi_{0} - \phi_{\infty} \right) \frac{r_{0}}{r} \frac{1 + \sin \phi}{3 \sin \phi - 1} \quad \text{voor } \sigma_{r} > \sigma_{t} \tag{d11}
\]

De beschikbare vergelijkingen voor de elastische en plastische zone zijn nu bekend.

plastisch gebied:

\[
\sigma'_{r} = \gamma_{w} \left(\phi_{0} - \phi_{\infty} \right) \frac{1 - \sin \phi}{1 - 5 \sin \phi} \left[\frac{r_{0}}{r} - \left(\frac{r_{0}}{r} \right)^{\left(1 - \sin \phi / 5 \sin \phi \right)} \right] \quad \text{voor } \sigma_{r} < \sigma_{t} \tag{d12}
\]

\[
\sigma'_{r} = \gamma_{w} \left(\phi_{0} - \phi_{\infty} \right) \frac{1 + \sin \phi}{3 \sin \phi - 1} \left[\frac{r_{0}}{r} - \left(\frac{r_{0}}{r} \right)^{\left(1 + \sin \phi / 3 \sin \phi - 1 \right)} \right] \quad \text{voor } \sigma_{r} > \sigma_{t} \tag{d13}
\]

\[
\sigma'_{t} = \sqrt{X} \sigma'_{r} \quad \text{voor } \sigma_{r} < \sigma_{t} \text{ en } \sigma_{r} > \sigma_{t} \tag{d14}
\]

elastisch gebied voor } \sigma_{r} < \sigma_{t} \text{ en } \sigma_{r} > \sigma_{t}:

\[
\sigma'_{r} = q - \frac{\lambda \gamma_{w}}{(\lambda + 2 \mu)} (\phi_{0} - \phi_{\infty}) \left(\frac{r_{0}}{r} \right)^{3} - \frac{\lambda \gamma_{w}}{(\lambda + 2 \mu)} (\phi_{0} - \phi_{\infty}) \frac{r_{0}}{r} \tag{d15}
\]

\[
\sigma'_{t} = q + \frac{1}{2} \left[q - \frac{\lambda \gamma_{w}}{(\lambda + 2 \mu)} (\phi_{0} - \phi_{\infty}) \right] \left(\frac{r_{0}}{r} \right)^{3} - \frac{\lambda \mu \gamma_{w}}{(\lambda + 2 \mu)} (\phi_{0} - \phi_{\infty}) \frac{r_{0}}{r} \tag{d16}
\]

Er kan geen sprong in de radiale spanningen zitten. Hierdoor wordt gesteld dat voor de elastische oplossing geldt dat op r is relastisch-plastisch de verhouding van de radiale spanning en tangentiële spanning X is. Om deze eis in de elastische vergelijkingen te verwerken wordt een nieuwe holte voorgesteld met straal \(r_{ep} (r_{0}) \) en een belasting op de holtewand van \(p_{ep} \) en \(\phi_{ep} \). Door, voor deze waarden, de radiale spanningen te delen door de tangentiële en gelijk te stellen aan X (Mohr-Coulomb bezwijkcriterium) wordt een uitdrukking voor \(p_{ep} \) gevonden op de holtewand.

\[
\sigma'_{r} = q - \left[q - p_{ep} - A \phi_{ep} \right] \frac{r_{ep}^{3}}{r_{ep}^{3}} + A \phi_{ep} \frac{r_{ep}}{r_{ep}} = X \sigma'_{t} = X \left[q + \frac{1}{2} \left(q - p_{ep} - A \phi_{ep} \right) \right] \frac{r_{ep}^{3}}{r_{ep}^{3}} - B \phi_{ep} \frac{r_{ep}}{r_{ep}}
\]

Minimaliseren restlading "Volvox Terranova"

Bijlage D
met: \[A = \frac{\lambda \gamma_w}{\lambda + 2\mu} = 5 \quad B = \frac{(\lambda + \mu) \gamma_w}{\lambda + 2\mu} = 7.5 \quad \varphi = 0 \quad \varphi_{ep} = \varphi_0 \frac{r_0}{r_{ep}} \] (d17)

\[p_{ep} = \frac{X}{1 + \frac{1}{2}X} \left(\frac{3}{2} q - \varphi_{ep} \left(\frac{1}{2} A + B \right) \right) = D \left(\frac{3}{2} q - \varphi_{ep} \left(\frac{1}{2} A + B \right) \right) \] (d18)

met: \[D = \frac{X}{1 + \frac{1}{2}X} \approx 1.2(X = 3) \text{ of } 2/ (X = 1/3) \]

Door de belasting op de holtewand \([p_{ep}]\) gelijk te stellen aan de radiale spanning in de plastische zone kan \(r_{ep}\) bepaald worden. Dit is gedaan voor \(\sigma_r > \sigma_t\) (belaste holte).

\[p_{ep} = \sigma' = \gamma_w \left(\varphi_0 - \varphi_\alpha \right) \frac{1 + \sin \phi}{3 \sin \phi - 1} \left[\frac{r_0}{r_{ep}} - \left(\frac{r_0}{r_{ep}} \right)^{e/ \gamma_{enr}} \right] = \varphi_0 C \left[\frac{r_0}{r_{ep}} - \left(\frac{r_0}{r_{ep}} \right)^F \right] \]

met: \[C = \gamma_w \frac{1 + \sin \phi}{3 \sin \phi - 1} \approx 30 \quad F = \frac{4 \sin \phi / (3 \sin \phi)}{4/3} \] voor \(\sigma_r > \sigma_t\) (d19)

Door uitdrukking d18 en d19 aan elkaar gelijk te stellen wordt een directe relatie tussen de straal van de plastische zone \([r_{ep}]\) en de wateroverspanningen in de initiele holte \([\varphi_0]\) gevonden.

\[\varphi_0 = \frac{3D q}{2 \left(\frac{1}{2} AD + BD + C \right) r_0 - C \left(\frac{r_0}{r_{ep}} \right)^F} \] voor \(\sigma_r > \sigma_t\) (d20)

Bij een bepaalde wateroverspanning in de holte kan iteratief de plastische straal berekend worden. In deze vergelijkingen is geen rekening gehouden met de groei van de holte ten gevolge van de waterspanningen. Deze invloed zal op een kwalitatieve wijze verwerkt dienen te worden door een bepaalde holte groei aan te nemen. Dit kan bijvoorbeeld de holte groei met de formules van Vesić zijn.
Nu is de oplossing bepaald en kan worden samengevat in de volgende vergelijkingen voor een op waterspanningen belaste holte, met $\varphi = 0$:

In de plastische zone van $r_0 < r < r_{ep}$:

$$\sigma'_r = \gamma' w \varphi_0 \frac{1 + \sin \phi}{3 \sin \phi - 1} \left[\frac{r_0}{r} \left(\frac{r_0}{r} \right)^{(\lambda + \mu)/2} \right]$$

voor $\sigma_r > \sigma_t$ \hspace{1cm} (d21)

$$\sigma'_t = \frac{1}{2} \sigma'_r,$$ \hspace{1cm} (d22)

In de elastische zone voor $r > r_{ep}$:

$$\sigma'_r = q - \frac{\lambda \gamma' w}{\frac{1}{2} (\lambda + 2\mu)} \varphi_0 \frac{r_0}{r_{ep}}$$

$$\sigma'_t = q + \frac{1}{2} \left(q - p_{ep} - \frac{\lambda \gamma' w}{\frac{1}{2} (\lambda + 2\mu)} \varphi_0 \frac{r_0}{r_{ep}} \right)$$

overgang plastische naar elastische zone:

$$\varphi_0 = \frac{3Dq}{2 \left(\frac{1}{2} AD + BD + C \right) \frac{r_0}{r_{ep}} - C \left(\frac{r_0}{r_{ep}} \right)^2}$$ \hspace{1cm} (d20)

Elasto-plastische oplossing (holte straal 3 cm):

A tangentieele korrelspanningen, B radiale korrelspanningen, C waterspanningen, D isotrope grondspanning

\textit{Figuur D.1. Oplossingen met elasto-plastische vergelijkingen.}
Bijlage E

Afleiding waterspanningen in een cilinder gevoed door een puntbron

![Diagram](image)

Figuur E.1. Schematisatie stroombeeld in een cilindrische zandkolom.

Het stroombeeld wordt als volgt voorgesteld:

1. een rechtlijnig stromend gedeelte, \(z > h' \)
2. een bolsymmetrisch stromend gedeelte, \(l > r > p \)
3. een rechtlijnig stromend gedeelte, \(h'' > z > 0 \)

ad 1. een rechtlijnig stromend gedeelte, \(z > h' \)

rechtlijnig stromend gedeelte over een lengte van \(z = b.k. \) zandpakket tot \(z = h' \) over een oppervlakte van \(\pi l^2 \).

Stel de potentiaal op \(h' = \varphi_1 \)

Stel de potentiaal op b.k. zandpakket = 0

\[
\text{Darcy: } q = -k \frac{\partial \varphi}{\partial z} \quad \Rightarrow \quad Q = q A = -\pi l^2 k \frac{\partial \varphi}{\partial z}
\]

\[
\frac{\partial \varphi}{\pi l^2} = \frac{Q}{\partial z} \quad \Rightarrow \quad \Delta \varphi = -\frac{Q}{\pi l^2 k} (\text{b.k. zandpakket} - h') \quad (e1)
\]

ad 2. een bolsymmetrisch stromend gedeelte, \(l > r > p \)

bolsymmetrische stroming van \(r = l \) tot \(r = p \), Stel \(l = r_1 \) en \(p = r_0 \)

\[
\text{Darcy: } q = -k \frac{\partial \varphi}{\partial r} \quad \Rightarrow \quad Q = q A = -2\pi r^2 k \frac{\partial \varphi}{\partial r}
\]

\[
\frac{\partial \varphi}{r^2} = \frac{Q}{2\pi k} \left(\frac{1}{r} + C \right) \quad (e2)
\]

C is een integratie constante. Deze kan bepaald worden door de randvoorwaarden:

op \(r = l \) (\(= r_1 \)) is de potentiaal \(\varphi_1 \), en op \(r = p \) (\(= r_0 \)) is de potentiaal \(\varphi_0 \) aanwezig.

\[
\varphi_0 = \varphi_1 - \frac{Q}{2\pi k} \left(\frac{1}{r_1} - \frac{1}{r_0} \right) \quad (e3)
\]

Na enig herleiden kan hieruit de waterspanningsvergelijking verkregen worden met:

\[
\text{met: } C = \varphi_0 \frac{2\pi k}{Q} \frac{1}{r_0} \quad \text{en} \quad \frac{Q}{2\pi k} = \frac{r_0 r_1 (\varphi_1 - \varphi_0)}{(r_0 - r_1)}
\]

Minimaliseren restlading "Volvox Terranova"

Bijlage E
\[
\varphi_{(r)} = \varphi_0 - \frac{\varphi_1 - \varphi_0}{r_1 - r_0} \cdot r_1 \cdot \left(\frac{r_0}{r} - 1 \right)
\]

(e6)

ad 3 een rechtlijnig stromend gedeelte, \(h'' > z > 0\)
rechtlijnig stromend gedeelte over een lengte van \(z = h''\) tot \(z = 0\) over een opp. van \(\pi p^2\).

Darcy: \(q = -k \frac{\partial \varphi}{\partial z}\) \(\Rightarrow Q = q A = -\pi p^2 k \frac{\partial \varphi}{\partial z}\) (e7)

\[
\frac{\partial \varphi}{\partial z} = -\frac{Q}{\pi p^2 k} \Rightarrow \varphi = -\frac{Q}{\pi p^2 k} (z + C)
\]

op \(z = h''\) is de potentiële \(\varphi_0\) en op \(z = 0\) is de potentiële \(\varphi_2\) \(\Rightarrow\)

\[
\Delta \varphi = -\frac{Q}{\pi p^2 k} h''
\]

(e9)

Hierdoor is het systeem bepaald en kan met behulp van de randvoorwaarde bij het gat en aan de oppervlakte het systeem opgelost worden. Tevens kan gevarieerd worden met de verhouding van \(l\) en \(p\).

Het totale potentiële verloop is.

\[
\Delta \varphi_{tot} = -\frac{Q}{\pi l^2 k} (b.k. zandpakket - h') - \frac{Q}{2\pi k} \left(\frac{1}{p} - \frac{1}{l} \right) - \frac{Q}{\pi p^2 k} h''
\]

(e10)

Als gesteld wordt dat het volume van de bol even groot moet zijn als de inhoud van resp. \(l'\) \(h'\) en \(p'\) \(h''\) kunnen de hoogten uitgedrukt worden in de stralen:

\(h' = 2/3 l\) en \(h'' = 2/3 p\)

zodat het potentiële verloop geschreven wordt als:

\[
\Delta \varphi_{tot} = -\frac{Q}{\pi l^2 k} (b.k. zandpakket - 2/3 l) - \frac{Q}{2\pi k} \left(\frac{1}{p} - \frac{1}{l} \right) - \frac{2Q}{3 \pi p k}
\]

(e11)

\[
\Delta \varphi_{tot} = -\frac{Q}{\pi l^2 k} (b.k. zandpakket) - \frac{7Q}{6\pi k} \left(\frac{1}{p} - \frac{1}{l} \right)
\]

(e12)
Afleiding evenwicht cilinder ten gevolge van grondbreuk

De hydrostatische waterspanningen zijn niet van invloed op de stabiliteit.

Gewicht van de grond, onder water:
\[G_{(r)} = H \gamma_s r^2 \pi \left(\gamma_s - \gamma_w \right) \pi r^2 [kPa] \]
(f1)

De wijking is afhankelijk van het verhang in de cilinder, uit bijlage F volgt:
\[\Delta \varphi_{tot} = \frac{Q}{\pi l^2 k} (H + \frac{7l^2}{6} \left(\frac{1}{1-p} \right)) \]
(f2)

\[Q = \pi l^2 k \frac{\partial \varphi}{\partial z} \]

De totale overdruk is de jetoverdruk van de nozzle, zodat het verhang in de kolom wordt.
\[\frac{\partial \varphi}{\partial z} = \frac{\varphi_0}{(H + \frac{7l^2}{6} \left(\frac{1}{1-p} \right))} \]
(f3)

Hierdoor wordt de wijking aan de cilinderwand:
\[W_{(r)} = H^2 K_0 X \left(\gamma_s - \gamma_w \right) \pi r \]
(f4)

\[X = \frac{1 + \sin \phi}{1 - \sin \phi} \]
(MC-criterium)

De druk aan de onderzijde tegen de cilinder bestaat uit de oppervlakte maal de waterspanningen plus de korrelspanningen. Uitgezocht is dat de verticale spanningen tegen de onderkant van de cilinder het grootst zijn als de onderkant gelijk genomen wordt aan het hart van de holte. De verticale korrelspanningen zijn dan de tangentiele spanningen uit bijlage D.

De integraal van deze korrelspanningen van \(r_0 \) tot \(r \) is:
\[F_{\text{korela}} = B \int \frac{r_0}{r} - (r_0^2 - r^2) \pi r dr \]
met: \[B = \gamma_w \varphi_0 \left(\frac{1 + \sin \phi}{3 \sin \phi - 1} \right) \]
\[C = \frac{4 \sin \phi}{1 + \sin \phi} \]
(f5)

Uitgeschreven wordt dit:
\[F_{\text{korela}} = 2 \pi B \left(r_0 - r_0^2 - r^2 \frac{1}{2 - C} \right) - \left(r_0^2 - C r_0^2 \right) \]
(f6)

Voor de kracht ten gevolge van de waterspanningen geldt:
\[F_{\text{water}} = \gamma_w \varphi_0 \pi r_0^2 \frac{r}{r} \]
\[+ \int \frac{\gamma_w \varphi_0 r_0}{r} 2 \pi r dr \]
(f7)

Uitgeschreven wordt dit:
\[F_{\text{water}} = \gamma_w \varphi_0 \pi r_0^2 + 2 \pi \gamma_w \varphi_0 r_0 (r - r_0) \]
(f8)

Voor evenwicht geldt:
\[G_{(r)} + W_{(r)} = F_{\text{korela}}(r) + F_{\text{water}}(r) \]
(f9)
Bijlage G

Verschaling processen in “Volvox Terranova”, tijdens het leegzuigen

De parameters die voorkomen in het beun/model zijn geïnventariseerd:

<table>
<thead>
<tr>
<th>Dimensies van het beun en eigenschappen zandpakket</th>
</tr>
</thead>
<tbody>
<tr>
<td>hoogte zandpakket – beun</td>
</tr>
<tr>
<td>breedte zandpakket – beun – leegzuigdeuren</td>
</tr>
<tr>
<td>lengte zandpakket – beun – leegzuigdeuren</td>
</tr>
<tr>
<td>korreldiameter zandpakket</td>
</tr>
<tr>
<td>doorlatendheid zandpakket</td>
</tr>
<tr>
<td>poriengehalte zandpakket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensies van het jetsysteem</th>
</tr>
</thead>
<tbody>
<tr>
<td>jetdebiet</td>
</tr>
<tr>
<td>jetdruk</td>
</tr>
<tr>
<td>nozzle diameter</td>
</tr>
<tr>
<td>afzuig debiet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algemene grootheden</th>
</tr>
</thead>
<tbody>
<tr>
<td>omgevings luchtdruk</td>
</tr>
<tr>
<td>dichtheid zand</td>
</tr>
<tr>
<td>dichtheid water</td>
</tr>
<tr>
<td>viscositeit water</td>
</tr>
<tr>
<td>gravitatie</td>
</tr>
</tbody>
</table>

Er is gekozen om de algemene grootheden niet te verschalen. Dit betekent dat de proeven met water en zand zullen worden uitgevoerd in de buitenlucht. De parameters uit de bovenste twee tabellen kunnen verschaald worden.

Om deze parameters juist te verschalen is inzicht nodig in de processen zoals ze optreden in het beun. Hieruit kan de relatie/afhankelijk tussen de parameters bepaald worden. Als deze relaties bekend zijn kan op verantwoorde wijze een keuze gemaakt worden voor de verschaling van de parameters. Bij verschillende processen komen tegenstrijdige relaties tussen de parameters voor. Dit betekent dat er een schalingskeuze gemaakt dient te worden. Hiervoor is inzicht in de fysische processen nodig omdat er dan schaaleffecten zullen optreden in het model. Deze fysische processen worden vaak uitgedrukt in een dimensieloos kengetal. Om geen schaaleffecten te krijgen dienen deze kengetallen in het model en het prototype dezelfde waarde te bezitten.

Voor een goede verschaling dient er geometrische en kinematische gelijkvormigheid te zijn. Dit betekent dat alle lengte maten met dezelfde schaal verschraald dienen te worden en dat alle stroomsnelheden met dezelfde schaal verschraald dienen te worden. Deze twee schalen zijn niet per definitie gelijk.
Geometrie

De geometrie wordt verschaald met een factor 3.2 (gegeven). Dit betekent dat alle lengte, breedte en hoogte maten met een factor 3.2 verschaald worden. De hoeken en hellingen in het model blijven even groot als in het prototype. De verschalingsfactor wordt geschreven als \(n_L = 3.2 \times \frac{\text{lengte prototype}}{\text{lengte model}} \).

Stroomsnelheden

Om kinematische gelijkvormigheid te krijgen moeten alle snelheden met dezelfde factor verschaald worden.

Voor de volgende processen worden de verschalings parameters bepaald:

a. Leidingsysteem
b. uitstromen jet water en jet druk in beun
c. water verhangen in het zandpakket, fluidisatie processen
d. (HSE,Hoge Snelheids Erosie) - proces door waterstroomen en jetkracht
e. turbulentie
f. bresgedrag en dichtheidsstromen
g. suspensie transport en 'hindered settling'
h. pompvermogen

\textit{ad a} Leidingsysteem

Drukval over een bepaalde lengte leiding is:

\[
\Delta p = \lambda \times \frac{L}{D} \times \frac{u^2}{2g}
\]

Bij het verschalen van de geometrie veranderd de diameter en lengte van een buis evenredig. Dit betekent dat de verschaling van de geometrie geen invloed heeft op de drukval. De volgende schaalregel volgt uit bovenstaande vergelijking:

\[
\frac{n_p}{v} = \frac{n_u^2}{u^2}
\]

Conclusie in het leidingsysteem zijn de verschalingsparameters voor druk en stroomsnelheid aan elkaar gerelateerd, maar de verschalingsparameter voor de geometrie kan vrij gekozen worden.

\textit{ad b} Uitstromen jet water en jet druk

Dit proces wordt met de Bernoulli vergelijking, een omgeschreven impulsvergelijking, beschreven \((p_i + \frac{1}{2} \rho \cdot U_i^2 = \text{const})\). Als de dichtheid van water niet verschaald worden, volgt hieruit de schaalregel:

\[
\frac{n_p}{v} = \frac{n_u^2}{u^2}
\]

De uitstroomsnelheid uit een jet wordt o.a. bepaald door de tegendruk van het mengsel \((p = \rho \cdot g \cdot h)\).

Als de gravitatie en dichtheid niet verschaald worden, volgt hieruit de schaalregel:

\[
\frac{n_p}{v} = n_L
\]
ad c Water verhangen in het zandpakket, fluidisatie processen
poriënwaterstroming ontstaat door een verschil van piezometrisch niveau (stijghoogte) tussen twee punten, het zogenaamde verhang [j].

\[i = \frac{\Delta h}{L} = \frac{p}{\rho_w g L} \] \hspace{1cm} (g5)

Als de gravitatie en dichtheid niet verschaald worden, volgt hieruit de schaalregel:
\[n_p = n_L \] \hspace{1cm} (g6)

Het fluidisatie proces kan beschreven worden met de Ergun vergelijking of de Forchheimer vergelijking.

\[\frac{1}{\rho g} \frac{\partial p}{\partial L} = i = au_f + bu_f \left| u_f \right| + c \frac{\partial u_f}{\partial t} \] \hspace{1cm} (g7)

met:
\[a = \alpha \left(\frac{1-n}{n^3} \right) \frac{\nu}{g d_{so}^2} \quad b = \beta \left(\frac{1-n}{n^3} \right) \frac{1}{g d_{so}} \]

Uit deze formule volgt dat het fluidisatie proces niet eenduidig verschaald kan worden.

De volgende opmerkingen kunnen gemaakt worden:
Bij lage stroomsnelheden en kleine korrels is de eerste term in de vergelijking dominant (laminaire poniënstroming)
Als de gravitatie, viscositeit, pakking (percentage holle ruimte) en dichtheid niet verschaald worden, volgt hieruit de schaalregel:
\[n_p / n_L = n_u / n_{d50}^2 \] \hspace{1cm} (g8)

Bij hogere stroomsnelheden en grovere korrels is de tweede term in de vergelijking dominant (turbulente poniënstroming)
Als de gravitatie, viscositeit, pakking (percentage holle ruimte) en dichtheid niet verschaald worden, volgt hieruit de schaalregel:
\[n_p / n_L = n_u^2 / n_{d50} \] \hspace{1cm} (g9)

De derde term is de versnellingsterm van het water. Uit deze term volgt de schaalregel:
\[n_u = n_t \] \hspace{1cm} (g10)

Een andere benadering is om de Forchheimer vergelijking om te schrijven in de wet van Darcy met verwaarlozing van de versnellingsterm. Hierdoor wordt de doorlatendheid van de grond als variabele ingevoerd. Waarbij bedacht moet worden dat de doorlatendheid niet universeel verschaald kan worden.

Wet van Darcy:
\[q = k i = u \] \hspace{1cm} (g11)

Forchheimer:
\[i = u_f \left(a + bu_f \right) \] \hspace{1cm} (g12)

gecombineerd:
\[i = \frac{u}{k} \quad \text{met} \quad k = \frac{1}{a + bu_f} \] \hspace{1cm} (g13)

Als de gravitatie en dichtheid niet verschaald worden, volgt hieruit de schaalregel:
\[n_p / n_L = n_u / n_k \] \hspace{1cm} (g14)
ad d (HSE)-erosie proces door waterstroomen en jetkracht
Door Delft-Hydraulics zijn semi-emperische vergelijkingen opgesteld voor hoge
snelheidserosie ten gevolge van waterstroomen over een zandpakket. Bijvoorbeeld de
semi-emperische erosie formule van Van Mastbergen en van Rhee (1993, in: Van der
Schriek, 1999).
Hierin komt het dilatantie-effect terug dat bij grote stroomsnelheden, > 1 m/s, optreedt.
Het water uit de jets heeft in de regel een uitstroomsnelheid van meer dan 10 m/s.

Toelichting dilatantie-effect:
Stel een stroom over een zandbed heeft een bepaalde erosie capaciteit. Dit zand bed
heeft een gemiddelde nominale korreldiameter.

Bij een vergroting van de korreldiameter, tot bijvoorbeeld grindkorrels, zal de erosie
capaciteit afnemen door de toename van het gewicht van de korrels.
Bij een verkleining van de korreldiameter, tot bijvoorbeeld bijna (cohesieloze) kleikorrels,
zal de erosie capaciteit ook afnemen. Dit wordt veroorzaakt door het zogenoemde
dilatantie effect. Dit effect houdt in dat als er een korrel erodeert er water toe moet
stromen om het volume van deze korrel te vullen met water. Bij kleine korrels is door de
geringe doorlatendheid hier een grote drukgraadiënt voor nodig. Deze drukgraadiënt zorgt
ervoor dat de effectieve erosie capaciteit zal afnemen.

Dit dilatantie-effect (vooral belangrijk bij grote stroomsnelheden en fijne korrels) wordt
met name bepaald door de volgende grootheid.

\[\frac{v \cdot \Delta n}{k_i} = \text{const.} \approx \frac{v}{17k_0} \]
(g15)

Deze grootheid geeft het verhang of drukgraadiënt ten gevolge van het uittreeproces van
de korrels aan. Dit verhang belemmert het erosieproces bij grotere stroomsnelheden.

Hieruit volgt de schaalregel: \(n_{ve} = n_{k0} \)
(g16)

De porositeit van een zandpakket kan beschreven worden met de formule van Den Adel:

\[k = \frac{g d_{15}^2 n^3}{160v \left(1-n\right)^2} \]
(g17)

Deze formule geldt enkel bij lage stroomsnelheden, laminaire stroming.

Als de gravitatie, viscositeit en pakking (percentage holle ruimte) niet verschaald
worden, volgt hieruit de schaalregel:

\[n_{ve} = n_{k0} = n_{d15}^2 \]
(g18)

ad e Turbulentie
Een maat voor de turbulentie is het Reynoldsgetal \(\left[u \cdot L / v \right] \). Dit is vooral van belang bij
de overgang van laminaire naar turbulente stroming. In het model is de stroming
voornamelijk turbulent. Bij een goede verschaling van de energie in het water
(impulsbalans) betekent dit dat de verschaling van de turbulentie geen grote problemen
veroorzaakt. Hiervoor is een goede verschaling van het stromingsbeeld noodzakelijk.
Ad f Bresgedrag en dichtheidsstromen

Bresgedrag wordt beschreven tussen de hellingshoek van een talud in relatie tot het instromend verhang in dat talud. Een algemene beschrijving, waarbij een moottje grond wordt beschouwd, is:

\[
\frac{u_r}{k} = n_0 \cdot \Delta z \left(\sin \beta \cdot \cot \phi - \cos \beta \right)
\]

(g19)

De hellingshoeken in model en prototype komen overeen. De hoek van inwendige wrijving [Φ] kan niet bewust verschraald worden en wordt aangenomen als constant. Als de porositeit en dichtheden niet verschraald worden, volgt hieruit de schaalregel:

\[
\frac{n_u}{n_k} = \frac{1}{n}
\]

(g20)

Langs de wanden van een bres en in de richting van de leegzuigdeur kan een dichtheidsstroom ontstaan. Dit fenomeen wordt sterker bij hogere bressen.

De turbulente menging wordt geremd als er sprake is van een stabiele dichtheidsstroom. De stabiliteit van een dichtheidsstroom wordt bepaald door de aanwezige snelheids- en dichtheidsgradienten in en boven de laag. De grootte wordt gekwantificeerd met het Richardsonsgetal en moet in model en prototype dezelfde waarde hebben:

\[
Ri = \frac{-g \frac{\partial \rho}{\partial z}}{\rho \left(\frac{\partial u}{\partial z} \right)^2}
\]

(g21)

Dit getal is een maat voor de demping van turbulentie in de mengsel laag. Als de gravitatie, concentratie en mengseldichtheid niet verschraald worden, volgt hieruit de schaalregel:

\[
\frac{n_{Ri}}{n_u} = \frac{n_k}{n_u} = 1 \quad \Rightarrow \quad n_{Ri} = n_u^2
\]

(g22)

Bij het afstromen van het zand-water mengsel als dichtheidsstroom ten gevolge van de zwaartekracht is het interne Froude getal van belang.

\[
Fr = \frac{u}{\sqrt{\left(\epsilon \cdot g \cdot h \right)}}
\]

(g23) met \(\epsilon \) is het relatieve dichtheidsverschil \(\epsilon = \frac{\rho_m - \rho_s}{\rho_m} \)

h is de laag dikte

Als de gravitatie en concentratie (=mengseldichtheid) niet verschraald worden, volgt hieruit de schaalregel:

\[
\frac{n_{Fr}}{n_u} = \frac{n_k}{n_u} = 1 \quad \Rightarrow \quad n_{Fr} = n_u^2 \quad \text{Froude regel}
\]

(g24)

Hoe sterker de menging door turbulentie diffusie in het model, ten gevolge van de jets, hoe zwakker het dichtheidsstromingen gedrag van het zand-water mengsel is.

ad g Suspensie transport en ‘hindered settling’

Om het zand-water mengsel als dichtheidsstroom met een hogere dichtheid dan water te beschouwen dient het mengsel homogeen in suspensie te zijn. In een turbulente stroming blijven de korrels in suspensie als het verticale opwaartse transport ten gevolge van turbulentie tenminste gelijk is aan de bezinsnelheid van de korrels in het mengsel ten gevolge van de zwaartekracht en hindered settling.

Minimaliseren restlading “Volvox Terranova”

Bijlage G
De verspreiding van zand in een turbulente stroming is afhankelijk van de concentratiegradient, de mengweglengte en de snelheidsgradient. Een karakteristiek kental voor dit fenomeen is het suspensiegetal.

\[Z = -\frac{w_s}{\kappa \cdot u} \quad (g25) \]

met: \(w_s \) effectieve vensnelheid, incl. hindered settling
\(\kappa \) van Karman constant
\(u \) schuifspanningssnelheid

De schuifspanningssnelheid is evenredig met de stroomsnelheid. Hieruit volgt de schaalregel voor kinematische gelijkvormigheid.

\[n_{ws} = n_u \quad (g26) \]

De effectieve snelheid wordt via de formule van Richardson en Zaki uitgedrukt in de concentratie en de ongestoorde vensnelheid voor de korrels.

\[w_s = w_0 \cdot (1-C)^x \quad (g27) \]

Als de concentratie (= mengseldichtheid) niet verschaald wordt, volgt hieruit de schaalregel:

\[n_{ws} = n_{w0} \text{ kinematische gelijkvormigheid} \quad (g28) \]

De ongestoorde vensnelheid van een korrel wordt, afhankelijk van de korreldiameter, beschreven in drie verschillende relaties.

\[d < 100 \mu m: \quad w_0 = \frac{1}{18} \Delta g \frac{d^2}{v} \quad (g29) \]

\[100 \mu m < d < 1 \text{ mm}: \quad w_0 = \frac{10v}{d} \left\{ \sqrt{1 + \Delta g \frac{d^3}{100v^2}} - 1 \right\} \quad (g30) \]

semi-empirische formule van van Rijn

\[1 \text{ mm} < d < 3 \text{ mm} \quad w_0 = 1.1 \cdot \sqrt{g \cdot \Delta \cdot d} \quad (g31) \]

Hieruit volgen dan drie schaalregels voor de verschaling van de korreldiameters, indien de gravitatie, dichtheid en viscositeit niet verschaald worden:

\[d < 100 \mu m: \quad n_{w0} = n_{d50}^2 \quad (g32) \]
\[100 \mu m < d < 1 \text{ mm}: \quad \text{variabel} \]
\[d > 1 \text{ mm} \quad n_{w0} = n_{d50}^{1/2} \quad (g33) \]

Voor korreldiameters 100 \(\mu m < d < 1 \text{ mm} \) is de macht voor de verschaling van de korreldiameter ten opzichte van de vensnelheid niet eenduidig. Globaal kan voor deze korreldiameters de volgende relatie worden aangehouden:

\[100 \mu m < d < 200 \mu m: \quad n_{w0} = n_{d50}^2 \quad (g34) \]
\[200 \mu m < d < 400 \mu m: \quad n_{w0} = n_{d50}^{1/2} \quad (g35) \]
\[400 \mu m < d < 1 \text{ mm}: \quad n_{w0} = n_{d50}^{1/2} \quad (g36) \]

Minimaliseren restlading "Volvox Terranova"
Bijlage G
Het uitzakken van korrels in een zand-water mengsel is een fenomeen dat in het beun zeker kan optreden. Dit wordt verduidelijkt door de verblijftijd van een korrel in het beun te vergelijken met de uitzaktijd van deze korrel. Na het loswoelen van een zandkorrel is de verblijftijd in de orde-grootte van:

\[t = \frac{V}{Q} = \frac{5 \cdot 10^3 \cdot 10}{1.5} = \text{ca.} 330 \text{s} \]

(g37)

De bezinktijd van een losgewoelde korrel is orde-grootte:

\[t = \frac{h}{w_t} = \frac{5}{0.1} = \text{ca.} 50 \text{s} \]

(g38)

Doordat de bezinktijd orde-grootte 6 maal kleiner is dan de verblijftijd kan ontmenging tijdens het transport van het zand voorkomen. Dit betekent dat de schaalregels afgeleid uit het suspensiegetal niet verwaarloosd mogen worden.

ad h Pomпvermogen
Het ingebracht pompvermogen wordt beschreven met de volgende formule:

\[P_{\text{pomp}} = \Delta p \cdot Q = \Delta p \cdot L^2 \cdot u \]

(g39)

Hieruit volgen de schaalregels:

\[n_p = n_p \cdot n_l^2 \cdot n_u \quad \text{en} \quad n_Q = n_l^2 \cdot n_u \]

(g40)
Overzicht schaalregels

Onderstaand worden de afgeleide schaalregels gecombineerd en voor zover mogelijk uitgedrukt in de, gegeven, lengte verschaling. Voor de snelheden, lengte maten en tijd komen de verschalingsfactoren overeen met de verschaling volgens het kental van Froude.

\[
Fr = \frac{u}{\sqrt{(g \cdot L)}} = 1
\] \hspace{1cm} (g41)

Om alle processen goed weer te geven moet gelden:

lengte maten	\(n_b = n_h = n_i = n_L = 3.2 \)	geometrische gelijkvormigheid
snelheden, tijd	\(n_u = n_t = n_L^{1/2} = 3.2 = 1.78 \)	
drukken	\(n_p = n_L = 3.2 \)	
pompvermogen	\(n_p = n_p^* n_L^2 \cdot n_u^* = 3.2^{3.5} \cdot 58.62 \)	
zandhoeveelheden	\(n_{kubus} = n_L^3 = 3.2^3 = 32.77 \)	
debiet	\(n_q = n_L^2 \cdot n_u = 3.2^{2.5} = 18.32 \)	
snelheden	\(n_u = n_{ve} = n_{ws} = n_L^{1/2} = 3.2 = 1.78 \) kinematische gelijkvormigheid	
Algemeen	\(n_c = n_{no} = n_{pm} = n_{pw} = n_{ps} = n_g = n_v = n_{p0} = n_i = 1 \)	

Voor het zandpakket en de korreldiameter is geen uniforme verschalingsfactor te bepalen. Gekozen is om de verschalingsregels voor het fluidisatie proces gelijk te stellen aan de verschalingsregels die afgeleid zijn voor de valsnelheid van de ongestoorde korrel. Zoals eerder vermeld zijn de processen vergelijkbaar. In eerste instantie wordt de relatie voor de verschaling van de doorlatendheid los beschouwd van de verschaling van de korrel diameter.

Hierdoor worden de schaalregels voor de korrel diameter uitgedrukt in de lengteschaal:

fijn zand
\(d < 200 \mu m: \) \(n_u = n_u^{1/2} = n_L^{1/4} = 1.34 \)

middelfijn zand
\(200 \mu m < d < 400 \mu m: \) \(n_u = n_u^1 = n_L^{1/2} = 1.78 \)

grof zand
\(d > 400 \mu m: \) \(n_u = n_u^2 = n_L = 3.2 \)

Voor de erosie processen is het dilatant gedrag belangrijk. Dit betekent dat de doorlatendheid van het pakket belangrijk is. Hiervoor geldt de volgende schaalregel:

erosiesnelheid
\(n_{ve} = n_{ko} \)
\(n_{ve} = n_u = n_L^{1/2} = 1.78 \) kinematische gelijkvormigheid
Doordat de doorlatendheid afhankelijk is van de korreldiameter ontstaan er tegenstrijdigheden in de verschaling. De verschaling voor de doorlatendheid heeft 1 verschalingsfactor de verschaling voor de valsnelheid is verdeeld in 3 schaalregels.

Door den Adel is de volgende schaalregel voor de doorlatendheid afgeleid:

\[
\frac{n_{k0}}{n_{d15}} = \frac{n_u}{n_L} = 1.34
\]

Deze komt overeen voor kleine korrels (d< 200 μm). Hieruit blijkt dat de verschaling redelijk goed gaat als er enkel met fijne korrels wordt gewerkt. Ook is de doorlatendheid van een zandpakket voornamelijk afhankelijk van de fijnerse fracties (d_{15}). Dit betekent dat het verschalen over een iets groter gebied goed gaat. Echter voor grovere zandsoorten is er dus in principe geen goede verschaling mogelijk als het erosie proces en de valsnelheid tegelijkertijd in een model voorkomen.
Bijlage H

IJking snelheidsmeters

IJking snelheidsmeter op jetleiding
Dimensies jetleiding

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>oppervlakte</td>
<td>0.0331127084 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wanddikte</td>
<td>8.00 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uitwendige diameter</td>
<td>221.33 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inwendige diameter</td>
<td>205.33 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proef</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>toerental ca.</td>
<td>700</td>
<td>700</td>
<td>800</td>
<td>1020</td>
</tr>
<tr>
<td>vultijd [s]</td>
<td>211</td>
<td>211</td>
<td>174</td>
<td>128</td>
</tr>
<tr>
<td>volume [m³]</td>
<td>6.9001</td>
<td>6.9001</td>
<td>6.9001</td>
<td>6.9001</td>
</tr>
<tr>
<td>druk [afgelezen, bar]</td>
<td>1.1</td>
<td>1.1</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td>snelheid gemeten</td>
<td>0.96</td>
<td>0.96</td>
<td>1.17</td>
<td>1.53</td>
</tr>
<tr>
<td>snelheid berekend</td>
<td>0.99</td>
<td>0.99</td>
<td>1.20</td>
<td>1.63</td>
</tr>
<tr>
<td>fout</td>
<td>3.1 %</td>
<td>3.1 %</td>
<td>2.6 %</td>
<td>6.5 %</td>
</tr>
</tbody>
</table>

regressieline geeft: berekening = 1.044 maal gemeten waarde
regressieline zonder proef 4 geeft: berekening = 1.029 maal gem. waarde

Tabel H.1. Overzicht calibratie snelheidsmeter jetleiding.

![calibratie jetleiding](image)

Figuur H.1. Calibratie snelheidsmeter jetleiding.
IJKING SNELHEIDSMETER GRONDELEIDING

DIMENSIES PERSLEIDING

<table>
<thead>
<tr>
<th>oppervlakte</th>
<th>0.033 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>inwendige diameter</td>
<td>205 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proef</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>toerental ca.</td>
<td>210</td>
<td>120</td>
<td>66</td>
<td>120</td>
</tr>
<tr>
<td>vultijd [s]</td>
<td>10.728</td>
<td>9.143</td>
<td>8.478</td>
<td>7.909</td>
</tr>
<tr>
<td>druk [afgelezen, bar]</td>
<td>1.38</td>
<td>2.10</td>
<td>3.40</td>
<td>1.86</td>
</tr>
<tr>
<td>snelheid gemeten</td>
<td>1.55</td>
<td>2.31</td>
<td>3.89</td>
<td>2.00</td>
</tr>
<tr>
<td>snelheid berekend</td>
<td>12.3%</td>
<td>10.0%</td>
<td>14.4%</td>
<td>7.5%</td>
</tr>
<tr>
<td>fout</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

regressielijn geeft berekening = 1.122 maal gemeten waarde

Tabel H.2. Overzicht calibratie snelheidsmeter grondeleiding.

![Calibratie grondeleiding](image)

Figuur H.2. Calibratie snelheidsmeter grondeleiding.
Bijlage J

Formules afgeleid door Vescic en Luger voor bolexpansie van zand in een oneindig medium

Door Luger en Vescic zijn de volgende formules afgeleid voor bolexpansie in zand. De druk in, en straal van, de holte met elastisch materiaal gedrag aan de holtewand:

\[r_{\text{gat}} = r_0 \left(1 - \frac{3(p-q)}{4G} \right)^{\frac{3}{4}} \text{ voor } p < p_f = q \frac{3+3\sin\phi}{3-\sin\phi} \] \hspace{1cm} (J1)

Bij druk \(p_f \) treedt de eerste plastische zone op, bij druk \(p_{\text{cr}} \) treedt de tweede plastische zone op.

Voor drukken in de holte tussen \(p_f \) en \(p_{\text{cr}} \) (enkel eerste plastische zone aanwezig) geldt:

\[r_{\text{gat}} = r_0 \left(1-3Q \right)^{\frac{n+2}{3(n-1)}} \left[1-3Q \frac{p\frac{3-\sin\phi}{q\left(3+3\sin\phi\right)}}{F} \right]^{\frac{1}{n-1}} \] \hspace{1cm} (J2)

met:

\[Q = \frac{q\sin\phi}{G\left(3-\sin\phi\right)} \quad n = \frac{2\left(\sin^2\nu_d + 1 - \sin\nu_d \sqrt{\sin^2\nu_d + 3}\right)}{\sin^2\nu_d - 1} \quad F = \frac{4\sin\phi}{1+\sin\phi} \]

voor \(p_f < p < p_{\text{cr}} = q \left(3+3\sin\phi\right)\left(3Q\right)^{\frac{1}{n-1}} \left[1-(1-3Q)(1+e_{\text{cr}})\right]^{\frac{1}{n-1}} \] \hspace{1cm} (J3)

Voor drukken in de holte groter dan \(p_{\text{cr}} \) (twee soorten plastische zone aanwezig) geldt voor de gatstraal:

\[r_{\text{gat}} = r_0 \left(1+e_{\text{cr}}\right)^{\frac{3}{4}} \left[1-3Q \frac{1}{3Q} \frac{1-3Q}{3Q} \left(1+e_{\text{cr}}\right)^{\frac{n+2}{3(n-1)}} \left(3Q\right)^{\frac{1}{n-1}} \right] \] \hspace{1cm} (J4)

Bij het bereiken van de limietdruk in de holte is het gehele medium in de tweede plastische bezwijkzone.

\[p_L = q \left(3+3\sin\phi\right)\left(3Q\right)^{\frac{1}{n-1}} \left[1-(1-3Q)(1+e_{\text{cr}})\right]^{\frac{n+2}{3(n-1)}} \] \hspace{1cm} (J5)

In een situatie met meerdere jets kan gesteld worden dat de plastische zone niet tot het oneindige hoeft te reiken, of te wel de limietdruk is een absolute bovengrens.

De straal van de plastische zone wordt gegeven door:

\[r_{\text{plastisch}} = r_{\text{gat}} \left(\frac{p}{q\left(\sin\phi+1\right)} \right)^{\frac{1}{n-1}} \] \hspace{1cm} (J6)

Deze vergelijking kan gekoppeld worden aan de voorgaande, zodat voor een bepaalde plastische zone de gatdruk berekend kan worden.

Minimaliseren restlading "Volvox Terranova"
Bijlage J
Bijlage I

Proefresultaten

<table>
<thead>
<tr>
<th>PROEF 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>zandsoort</td>
<td>grof zand [520 mu]</td>
</tr>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>8.20 m³ / 267 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>bestaande leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>---- m³ / ---- m³ (totaal ---- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>n.v.t door bijna dichtdraaien persleiding opm.</td>
</tr>
</tbody>
</table>

proef 1

![Diagram showing proef 1 results]

Restlading Proef 1

![Diagram showing restlading results]

Minimaliseren restlading "Volvox Terranova"

Bijlage I
<table>
<thead>
<tr>
<th>PROEF 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zandsoort</td>
<td>grof zand [520 mu]</td>
</tr>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>9.17 m³ / 300 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>bestaande leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>opm. extra lange afzuigtijd</td>
<td></td>
</tr>
</tbody>
</table>

proef 2

Restlading proef 2

Minimaliseren restlading “Volvox Terranova”
Bijlage I
PROEF 3

<table>
<thead>
<tr>
<th>zandsoort</th>
<th>grof zand [520 nu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>8.39 m³ / 293 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>bestaande leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per kleipvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per kleipvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>opm. referentie proef tijdsduur</td>
<td></td>
</tr>
</tbody>
</table>

Minimaliseren restlading "Volvox Terranova"
Bijlage I
PROEF 4

<table>
<thead>
<tr>
<th>zandsoort</th>
<th>grof zand [520 mu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per kleipvak</td>
<td>10.28 m³ / 337 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>bestaande leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>gewijzigd [--- " --- mm en --- " --- mm]</td>
</tr>
<tr>
<td>Restlading model / werkelijk per kleipvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per kleipvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>opm. jetdruk loopt zeer hoog op in vergelijking met jetdebit</td>
<td></td>
</tr>
</tbody>
</table>

Minimaliseren restlading "Volvox Terranova"
Bijlage 1
PROEF 5

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Inhoud</th>
<th>Lading</th>
<th>Nozzle Configuratie</th>
<th>Restlading Model / Werkelijk per Klepvak</th>
<th>Bulkproductie Model / Werkelijk per Klepvak</th>
<th>Opm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zandsoort</td>
<td>grof zand [520 mu]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhoud model / werkelijk per kleipvak</td>
<td>9.11 m3 / 299 m3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>bestaande en nieuwe leegguijdeur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>gewijzigd [--- " --- mm en --- " --- mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restlading model / werkelijk per kleipvak</td>
<td>--- m3 / --- m3 (totaal --- m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per kleipvak</td>
<td>--- m3/uur / --- m3/uur [met n = 0%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>opm. --- nozzle's verstop (--- boven, --- bij best. lgzd, --- laag), geen luifel aanwezig voor nieuwe leegguijdeur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimaliseren restlading “Volvox Terranova”
Bijlage I
PROEF 6

<table>
<thead>
<tr>
<th>Zandsoort</th>
<th>Grof zand [520 mu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>9.11 m³ / 299 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>Nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>Gewijzigd [-- mm en -- mm]</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>---- m³ / ---- m³ (totaal ---- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>---- m³/uur / ---- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>Opm.</td>
<td>Slang losgeschoten --- rechts laag, geen luifel aanwezig voor nieuwe lgzd</td>
</tr>
</tbody>
</table>

proef 6

Restlading proef 6

Minimaliseren restlading "Volvox Terranova"

Bijlage I
PROEF 7

<table>
<thead>
<tr>
<th>Zandsoort</th>
<th>Grof zand [520 mu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>9.34 m³ / 306 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>Nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>Bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>Opm. geen luifel voor nieuwe leegzuigdeur</td>
<td>---</td>
</tr>
</tbody>
</table>

PROEF 7

Restlading PROEF 7

Minimaliseren restlading "Volvox Terranova"

Bijlage I
PROEF 8

<table>
<thead>
<tr>
<th>zandsoort</th>
<th>grof zand [520 mu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>9.74 m³ / 319 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>—— m³ / —— m³ (totaal —— m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>—— m³/uur / —— m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>opm.</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image1.png)

proef 8

![Graph](image2.png)

Restlading proef 8 met luifel

![Image](image3.png)

kippekoot zijde

Minimaliseren restlading "Volvox Terranova"

Bijlage I
PROEF 9

<table>
<thead>
<tr>
<th>Zandsoort</th>
<th>Grof zand [520 mu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>9.07 m³ / 297 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>Nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>Bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
</tbody>
</table>

Opm. verdicht zandpakket

proef 9

![Graph](image)

Restlading proef 9

met luffel/verdicht

Kippekooi zijde

Minimaliseren restlading "Volvox Terranova"

Bijlage I
PROEF 10

<table>
<thead>
<tr>
<th>Zandsoort</th>
<th>Grof zand [520 mu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>9.14 m³ / 299 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>Nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>Bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
</tbody>
</table>

opm.

proef 10

![Diagram](image)

Restlading proef 10

met luifel/lagere druk

kippekooi zijde

Minimaliseren restlading "Volvox Terranova"

Bijlage I
PROEF 11

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Specificatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zandsoort</td>
<td>Fijn zand [320 mu]</td>
</tr>
<tr>
<td>inhoud model / werkelijk per kleipvak</td>
<td>8.33 m³ / 273 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>Nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>Bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per kleipvak</td>
<td>--- m³/ --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per kleipvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>opm. verdicht zandpakket, te lang doorgegaan zonder direct aanwijsbare reden</td>
<td></td>
</tr>
</tbody>
</table>

proef 11

Restlading proef 11

met luifel/lagere druk

Minimaliseren restlading "Volvox Terranova"
Bijlage I
PROEF 12

<table>
<thead>
<tr>
<th>Zandsoort</th>
<th>Fijn zand [320 mu]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>8.53 m³ / 280 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>Nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>Bestaande nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>Opm. verdicht zandpakket, proef eerder gestopt door lage concentratie</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)

PROEF 12

![Diagram](image)

Restlading proef 12

met luidel/lagere druk

Minimaliseren restlading "Volvox Terranova"

Bijlage I
<table>
<thead>
<tr>
<th>PROEF 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>zandsoort</td>
</tr>
<tr>
<td>inhoud model / werkelijk per klepvak</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
</tr>
</tbody>
</table>

opm.

proef 13

![Graph showing parameters over time](attachment:graph.png)

Restlading proef 13

![3D diagram showing restlading](attachment:3d_diagram.png)

Minimaliseren restlading "Volvox Terranova"

Bijlage I
<table>
<thead>
<tr>
<th>PROEFL 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>zandsoort</td>
</tr>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk</td>
</tr>
<tr>
<td>opm.</td>
</tr>
</tbody>
</table>

Proef 14

![Graph of power (W), discharge (liters/sec), pressure (bar), density (ton/m³) vs. time.](image-url)

Restlading proef 14

met luifel/lagere druk

![Diagram showing restlading pattern with labels: 0, 50, 100, 150, 200, 250, 300, kippekooi zijde.](image-url)
PROEF 15

<table>
<thead>
<tr>
<th>zandsoort</th>
<th>Fijn zand [320 µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhoud model / werkelijk per klepvak</td>
<td>8.93 m³ / 293 m³</td>
</tr>
<tr>
<td>Lading afgezogen door</td>
<td>nieuwe leegzuigdeur</td>
</tr>
<tr>
<td>Nozzle configuratie</td>
<td>gewijzigd [--- * --- mm en --- * --- mm]</td>
</tr>
<tr>
<td>Restlading model / werkelijk per klepvak</td>
<td>--- m³ / --- m³ (totaal --- m³)</td>
</tr>
<tr>
<td>Bulkproductie model / werkelijk per klepvak</td>
<td>--- m³/uur / --- m³/uur [met n = 0%]</td>
</tr>
<tr>
<td>opm. eerder proef gestopt i.v.m. lage afzuigdichtheid</td>
<td></td>
</tr>
</tbody>
</table>

![Graph of proef 15](image)

Restlading proef 15
met luifel/lagere druk

kippekooi zijde

Minimaliseren restlading “Volvox Terranova”
Bijlage I
Bijlage K

Algemene modellering van de stroom door een korrelig pakket

Afleiding Ergun vergelijking

De stroom kan gemodelleerd worden door alle poriën te beschouwen als buisjes. Er wordt verondersteld dat deze buisjes een constante diameter hebben en parallel lopen door het pakket. Met de parameters wordt het effect van de simplificatie gecompenseerd. Namelijk in het echte pakket lopen de buisjes niet parallel maar kronkelen en de buisdiameter is ook niet constant. De grootte en aantal van de buisjes wordt zodanig gekozen dat het volume in de buisjes overeenstemt met het volume in het pakket. Ook is het oppervlak van de buisjes hetzelfde als het poriënoppervlak in het pakket.

De drukval bestaat uit twee effecten: visceuze schuifspanningen (\(\cdot u\)) en kinetische energie verliezen (\(\cdot u^2\)).

Door de onderzoekers wordt deze algemene vorm van de vergelijkingen gebruikt:

\[
\frac{\partial p}{\partial x} = \alpha \cdot a \cdot v + \beta \cdot b \cdot \rho_w \cdot v^2
\]

(k1)

De coëfficiënten \((a\ en \beta)\) zijn experimentele factoren om de vereenvoudiging van de schematisatie te verrekenen.

De coëfficiënten \((a\ en b)\) kunnen verder uitgewerkt worden.

De vloestofsnellheid door de buisjes/poriën is \([v]\)

\[
v = \frac{U}{\varepsilon}
\]

(k2)

Hierin is \(U\) de oppervlakte snelheid van het water, het fluidisatie water-debiet gedeeld door het oppervlak van de fluidisatiekolom.

Factor a kan verder uitgewerkt worden met behulp van de Poiseuille vergelijking voor laminaire stroming door een rechte buis (Battjes ,1996).

\[
\frac{\Delta P}{L} = 32 \cdot \mu_w \cdot \frac{v}{D^2}
\]

waarin:

- \(\mu_w\) dynamische viscositeit van water
- \(D\) diameter van de buis
- \(v\) snelheid van de vlooiesto in de buis

Factor b kan verder uitgewerkt worden door de drukval in rekening te brengen van de dissipatie van kinetische energie door wervelingen en turbulentie.

\[
\frac{\Delta P}{L} = \frac{1}{2} \cdot \rho_w \cdot f \cdot \frac{v^2}{D}
\]

waarin:

- \(f\) een wrijvingsfactor (b.v. van Darcy-weisbach)

(k4)

Voor grotere stroomsnelheden met turbulente condities is deze factor constant en afhankelijk van de relatieve wandruwheid \((k/D)\).

Dit betekent dat de algemene drukval formule als volgt kan worden uitgeschreven.

\[
\frac{\partial p}{\partial x} = \alpha \cdot 32 \cdot \mu_w \cdot \frac{v}{D^2} + \beta \cdot \frac{1}{2} \cdot \rho_w \cdot \frac{v^2}{D}
\]

(k5)
Door het bed te beschouwen als een opbouw van N parallele buisjes met een constante diameter, kunnen korrel oppervlakte en volume van het bed worden uitgedrukt in de Lengte L en de diameter D van deze buisjes.

volume van een buisje: \[V_{buis} = \pi \cdot \frac{D^2}{4} \cdot L \] (k6)

oppervlakte van een buisje: \[A_{buis} = \pi \cdot D \cdot L \] (k7)

Hieruit volgt dat: \[\frac{V_{buis}}{A_{buis}} = \frac{D}{4} \] (k8)

Dit moet gelijk gesteld worden aan het poriënvolume gedeeld door de korreloppervlakte. volume korrels in een controle volume: \[\sum (n \cdot V_{korrel}) = (1 - \varepsilon) \cdot A \cdot L \] (k9)

volume poriën in een controle volume: \[\varepsilon \cdot A \cdot L = \frac{\varepsilon}{1 - \varepsilon} \sum (n \cdot V_{korrel}) \] (k10)

oppervlakte van deze korrels is: \[\sum (n \cdot A_{korrel}) \] (k11)

Worden de korrels voorgesteld als bollen dan volgt hieruit:

\[\frac{Volume_{poriën}}{Oppervlakte_{korrels}} = \frac{\frac{\varepsilon}{1 - \varepsilon} \sum \left(n \cdot \frac{1}{6} \cdot \pi \cdot d_m^3\right)}{\sum (n \cdot \pi \cdot d_m^2)} = \frac{\frac{\varepsilon}{1 - \varepsilon} \cdot d_m}{\frac{1}{6} \cdot \varepsilon} \] (k12)

Door deze verhouding gelijk te stellen aan de verhouding van de buisjes kan de buisdiameter uitgedrukt worden in de korrel diameter.

Buisdiameter: \[D = \frac{2}{\frac{3}{\varepsilon} \cdot 1 - \varepsilon} \cdot d_m \] (k13)

Door dit in te vullen in de vergelijking voor de drukval in combinatie met de oppervlakte snelheid [U] krijgt men:

\[\frac{\partial p}{\partial L} = 72 \cdot \alpha \cdot \frac{(1 - \varepsilon)^2}{\varepsilon^3} \cdot \frac{\mu_w \cdot U}{d_m^2} + 2 \cdot 4 \cdot \beta \cdot \frac{(1 - \varepsilon) \cdot \rho_w \cdot U^2}{\varepsilon^3} \cdot \frac{d_m}{d_m} \] (k14)

Ergun heeft experimenteel vastgesteld dat voor verschillende korrelgroottes en vloeistoffen geldt:

\[72 \alpha = 150 \text{ en } \frac{3}{4} \beta = 1.75 \]

De vergelijking kan aangepast worden voor niet bolvormige korrels door de vormfactor \(\varphi \) in te voeren.

\[\frac{\partial p}{\partial L} = 72 \cdot \alpha \cdot \frac{(1 - \varepsilon)^2}{\varepsilon^3} \cdot \frac{\mu_w \cdot U}{(\varphi \cdot d_m)^2} + 2 \cdot 4 \cdot \beta \cdot \frac{(1 - \varepsilon) \cdot \rho_w \cdot U^2}{\varepsilon^3} \cdot \frac{d_m}{\varphi \cdot d_m} \] (k15)

Deze vergelijking geldt algemeen als de Ergun vergelijking.

Voor kleine (korrel) Reynolds getallen (< ca. 1, lage stroomsnelheden en kleine korrels) zijn de kinetische energie verliezen ten gevolge van turbulentie verwaarloosbaar. Voor deze lage Reynoldsgetallen geldt dat \(72 \alpha = 180 \text{ en } \frac{3}{4} \beta = 0 \) (vervalt). Om de formules op elkaar aan te sluiten zal de grens van het (korrel) Reynolds getal op 1.2 worden gesteld.

Minimaliseren restlading “Volvox Terranova”

Bijlage K
(korrel) Reynoldsgetal: \[\text{Re'} = \frac{U \cdot d_m}{(1 - \varepsilon) \cdot \nu_w} \] (k16)

- \(\text{Re'} < 1 \) laminair (eerste term dominant)
- \(1 < \text{Re'} < 1000 \) overgangsgebied
- \(\text{Re'} > 1000 \) turbulent (tweede term dominant)

Resumerend geldt voor de Ergun vergelijking:

\[\frac{\partial p}{\partial L} = \begin{cases}
180 \cdot \frac{(1 - \varepsilon)^2}{\varepsilon^3} \cdot \frac{\mu_w \cdot U}{(\sigma \cdot d_m)^2} & \text{Re'} < 1.2 \\
150 \cdot \frac{(1 - \varepsilon)^2}{\varepsilon^3} \cdot \frac{\mu_w \cdot U}{(\sigma \cdot d_m)^2} + 1.75 \cdot \frac{(1 - \varepsilon) \cdot \rho_w \cdot U^2}{\varepsilon^3 \cdot \sigma \cdot d_m} & \text{Re'} > 1.2
\end{cases} \] (k17) (k18)
Bijlage L

Eigenschappen (Nederlands) zand

Verticale en horizontale spanningen
De verticale grondspanningen in een zandpakket zijn afhankelijk van het bovenliggende gewicht. Lokaal kunnen deze variëren, maar algemeen niet. De horizontale spanningen in de grond zijn een factor van de verticale korrelspanningen. Deze factor is afhankelijk van de hoek van inwendige wijking.

De verticale grondspanningen:
\[\sigma_{g,v} = \sigma_w + \sigma^*_{k} \quad \text{met} \quad \sigma_w = \rho_w g H_1 \]
(11)
\[\sigma^*_{k} = \rho_{sat} g H_1 + \rho_d g H_2 \]
(12)
De horizontale grondspanningen:
\[\sigma_{g,h} = \sigma_w + \sigma^*_{k} K_0 \quad \text{met} \quad K_0 = 1 - \sin \varphi \]
(13)
De korrelspanningen worden in het algemeen met een (') beschreven.

Isotrope - en deviatorspanningen
De isotrope spanning in de grond is de grond of korrelspanning die in alle richtingen even groot is. De deviator spanning is de afschuifspanning in de grond. Dit zijn de hoofdspanningen in de cirkel van Mohr.

\[\rho' = \frac{1}{2} (\sigma_v' + 2 \sigma_h') \quad q' = |\sigma_v' - \sigma_h'| \]
(14)

Bezwijkgedrag zand (Sitters, 1998)

Bij het evenredig belasten van grond in alle drie de spanningsrichtingen zal het zandpakket ingedrukt worden en elastisch verdichten. De weerstand van de zandkorrels is enorm door de geringe elasticiteit. Bij het in 1 richting belasten van het zandpakket, bijvoorbeeld een triaxiaal proef, zal het pakket bezwijken. Dit wordt veroorzaakt door het vergroten van het spanningsverschil in verscheidene richtingen.

\[q = s_1 - s_3 \]

I elastisch gedrag
II elastisch - plastisch gedrag: hardening
III elastisch - plastisch gedrag: softening

Minimaliseren restlading “Volvox Terranova”
Bijlage L
ad 1 **Elastisch gedrag**
Bij het belasten van de grond zal over een zeer klein traject elastisch gedrag aanwezig zijn. Bij het ontlasten van de grond zal de grond weer terugveren naar zijn oorspronkelijke afmetingen. Tijdens deze fase vindt een kleine heroriëntatie van enkele korrels plaats.

ad 2 **Elastisch – plastisch gedrag: hardening**

ad 3 **Elastisch – plastisch gedrag: softening**
In het derde traject bezwijkt het pakket. Hierbij zal het pakket niet meer homogeen bezwijken maar lokaal. Bij een triaxiaalproef ontwikkelt zich uit een lokale deformatie een volledig ontwikkeld afschuifvlak. In deze fase is er geen directe spannings-rek relatie niet meer.

Dilatantie en contractie in een ingesloten medium
In een ingesloten medium zal bij het deformeren van het pakket een volume vergroting (dilatantie) of verkleining (compactie) optreden afhankelijk van de initiële dichtheid. Op een gegeven moment wordt de *kritieke dichtheid* bereikt. Bij de kritieke dichtheid kan het pakket lokaal deformeren zonder dat er volume veranderingen plaatsvinden. Voor het verder dformeren van het pakket is geen extra spanning meer nodig. Hierdoor is het pakket bezweken.

Minimaliseren restlading "Volvox Terranova"
Bijlage L
In formule vorm geldt voor de dilantantie hoek:

\[\tan \varphi = \frac{\delta y}{\delta x} \] \((15) \)

Voor een contractant materiaal geldt dat de dilantantiehoek negatief wordt. Deze eigenschappen van de grond worden als volgt geschematiseerd.

\[q = s_1' - s_3 \]

\[e_0 \]

\[-\varepsilon_1 \]

Uit deze schematisatie volgt dus:

- **E**: de elasticiteits modulus
- **\(\nu \)**: poisson's ratio
- **\(\Phi \)**: dilantantiehoek
- **\(\varphi \)**: hoek van inwendige wrijving

De interne wrijvingshoek van zand is indicatief aangegeven in onderstaande tabel:

<table>
<thead>
<tr>
<th>vorm en gradering</th>
<th>losse pakking</th>
<th>dichte pakking</th>
</tr>
</thead>
<tbody>
<tr>
<td>rond, uniform</td>
<td>(\varphi = 30^\circ)</td>
<td>(\varphi = 37^\circ)</td>
</tr>
<tr>
<td>rond, sterk gegradeerd</td>
<td>(\varphi = 34^\circ)</td>
<td>(\varphi = 40^\circ)</td>
</tr>
<tr>
<td>hoekig, uniform</td>
<td>(\varphi = 35^\circ)</td>
<td>(\varphi = 43^\circ)</td>
</tr>
<tr>
<td>hoekig, sterk gegradeerd</td>
<td>(\varphi = 39^\circ)</td>
<td>(\varphi = 45^\circ)</td>
</tr>
</tbody>
</table>

Tabel L.1. Interne wrijvingshoek.

Poisson's ratio

De waarde van de poisson's ratio ligt in de regel tussen 0.3 à 0.4 (Sitters, Material models for soil and rock (6)). De poisson's ratio is via de spanningscoefficient \(K_0 \) gerelateerd aan de interne wrijvingshoek.
\[\nu = \frac{K_0}{1 + K_0} = \frac{1 - \sin \varphi}{2 - \sin \varphi}\]
\[(16)\]

Glij-, compressie- en elasticiteitsmoduli

De glij-, compressiemodulus en elasticiteitsmodulus zijn via de poisson’s ratio gekoppeld. Deze relaties volgen na uitwerken van de wet van Hooke.

\[E = 3K(1 - 2\nu)\quad E = 2G(1 + \nu)\]
\[(17)\]

Een indicatie voor G is:

\[G^{50} = G^{ref} \left(\frac{\rho}{\rho^{ref}}\right)^m\]
\[(18)\]

met \(\rho^{ref} = 100\ \text{kPa}\)

<table>
<thead>
<tr>
<th>Zandsoort</th>
<th>(G^{ref}) [kPa]</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>losgepakt met veel silt</td>
<td>5000</td>
<td>0.5</td>
</tr>
<tr>
<td>dichtgepakt</td>
<td>15000</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tabel L.2. Glijmoduli voor zand.

Dilatantie hoek \(\Phi\)

Voor de dilatantie hoek \(\Phi\) geldt grofweg: \(\Phi = \varphi - 30^\circ\)

Relatieve en kritieke dichtheid (Van der Schriek, 1999)

Bij zanden ligt de kritieke dichtheid ongeveer bij 20 à 50% relatieve dichtheid (\(D_r\)).

De relatieve dichtheid wordt bepaald uit de minimale en maximale poriëngehalte.

\[D_r = \frac{n_{max} - n}{n_{max} - n_{min}} \times 100\%\]
\[(19)\]

Minimale dichtheid is maximale poriëngehalte is 0% relatieve dichtheid.

Maximale dichtheid is minimale poriëngehalte is 100% relatieve dichtheid.

Een indicatie van de maximale en minimale poriëngehalte wordt gegeven in onderstaande grafiek.
De gemiddelde maximale – en minimale poriëngehalte voor het Nederlands zand zijn resp. 45 en 30% (1.45 ton/m³ tot 1.85 ton/m³, drooggewicht). Met deze percentages wordt voor de kritieke dichtheid een poriëngehalte gevonden van 42 tot 37.5% (1.95 ton/m³ tot 2.03 ton/m³, verzadigd zand).

In een beuven ligt het zand met een relatieve dichtheid van ca. 40%. Met de gemiddelde waarden van maximale – en minimale poriëngehalte geeft dit een poriëngehalte in het beuven van ca. 39% (2.01 ton/m³ verzadigd zand).

In het beuven van de "Volvox Terranova" wordt ongeveer een dichtheid gemeten van 1.95 ton/m³ (verzadigd zand). Dit zand heeft een poriëngehalte van 42%.

Opvallend is dat de dichtheid in het beuven ongeveer overeenkomt met de kritieke dichtheid. Dit betekent dat de plastische weerstand van het zand zeer gering is.
Bijlage N

Foto's van de restlading in de "Volvox Terranova"

Foto restlading klepvak stuurboord 1 Foto restlading klepvak stuurboord 3

Foto restlading klepvak stuurboord 4 Foto restlading klepvak stuurboord 6

Foto restlading klepvak stuurboord 7
Bijlage O

Afleiding jetdebiet en uitstroomsnelheid uit nozzle met behulp van de wet van Bernoulli:

In de figuur is een nozzle weergegeven met een verlengde uitstroomopening.

Uitgaande van deze nozzle kan, met verwaarlozing van de wrijvingsverliezen, de theorie van Bernoulli toegepast worden. De verhouding tussen het ingesnoerde oppervlak en het oppervlak van de uitstroomopening wordt uitgedrukt in de interne contractie coëfficiënt $[\xi_i]$.

In het versnellingsgebied, van punt 1 naar 2 en het vertragingsgebied van 2 naar 3, geldt:

versnellingsgebied

\[
p_1 + \frac{1}{2} \cdot \rho_w \cdot U_1^2 = p_2 + \frac{1}{2} \cdot \rho_w \cdot U_2^2
\]

vertragingsgebied

\[
p_2 + \frac{1}{2} \cdot \rho_w \cdot U_z^2 = p_3 + \frac{1}{2} \cdot \rho_w \cdot U_3^2 + \frac{1}{2} \cdot \rho_w \cdot (U_2 - U_3)^2
\]

(01) (02)

De laatste term in de vergelijking is het vertragingsverlies volgens Carnot. Dit verlies geldt enkel bij een trapsgewijze vernauwing niet voor een conische vernauwing. Hiervoor zijn de energieverliezen veel geringer.

Combineren van de vergelijking 01 en 02 geeft:

\[
p_1 + \frac{1}{2} \cdot \rho_w \cdot U_1^2 = p_3 + \frac{1}{2} \cdot \rho_w \cdot \left[U_3^2 + \left(\frac{U_3}{\xi_i} - U_3 \right)^2 \right]
\]

(03)

Deze vergelijking kan omgeschreven worden tot:

\[
\frac{1}{2} \cdot \rho_w \cdot U_3^2 = (1 - \mu) \left(p_1 - p_3 + \frac{1}{2} \cdot \rho_w \cdot U_2^2 \right)
\]

(04)

In de meeste gevallen is de instroomsnelheid $[U_1]$ (snelheidshoogte) te verwaarlozen ten opzichte van de drukken (drukhoogte). De waarde van $[\mu]$ is een maat voor het energieverlies in de nozzle en wordt bepaald door de interne contractie coëfficiënt.

\[
\mu = \frac{\left(\frac{1}{\xi_i} - 1 \right)^2}{1 + \left(\frac{1}{\xi_i} - 1 \right)^2}
\]

(05)
Met behulp van vergelijking (04) kan het jetdebiet van de nozzle berekend worden:

$$Q_n = U_3 \cdot A_3 = A_3 \cdot \sqrt{(1-\mu)} \cdot \sqrt{\frac{2 \cdot (p_1 - p_3)}{\rho_w}} \cdot \sqrt{\frac{A_1^2}{A_3^2 - A_1^2 \cdot (1-\mu)}}$$

(06)

De laatste term aan de rechterzijde stelt de invloed van de snelheidshoogte ten gevolge van de instroomsnelheid voor. Bij een voldoende grote verhouding tussen A_1 en A_3 kan deze term verwaarloosd worden.

Deze vergelijking kan worden uitgedrukt in de nozzle oppervlakte. Hierdoor wordt de algemeen geldende uitdrukking van het jetdebiet door een nozzle verkregen.

jet debiet:

$$Q_n = A_3 \cdot C_v \cdot C_c \cdot \sqrt{\frac{2 \cdot (p_1 - p_3)}{\rho_w}}$$

uitgangssnelheid:

$$U_3 = U_3 = C_v \cdot \sqrt{\frac{2 \cdot (p_1 - p_3)}{\rho_w}}$$

waarin: $C_v = \sqrt{(1-\mu)}$ verliescoëfficiënt

$C_c = \zeta_c$ contractiecoëfficiënt

met: $\xi_n =$ externe contractiecoëfficiënt, de contractie buiten de nozzle.
Bijlage P

Verzande nozzle’s

Theoretische beschouwing

De aanleiding om dit onderwerp te behandelen is het feit dat in het beun van de “Volvox Terranova” regelmatig verzande nozzle’s voorkomen. In deze paragraaf zal de invloed van zand in de nozzle op de benodigde jetdruk behandeld worden. Tevens zal aandacht besteed worden aan de constructievorm van het schip waardoor de kans op verzanden van de nozzle groter of kleiner wordt.

Duidelijk is dat als de nozzle bijna verzand is het zeer veel energie kost om de nozzle met jetwater weer zandvrij te persen. Ten eerste zal door de zandprop de effectieve waterspanning voor de jet afnemen. Hierdoor wordt het effect van de jet sterk gereduceerd en zal minder snel fluidisatie voor de jet optreden. Ten tweede zal om de zandprop in de jet te bergen een volume gecreëerd moeten worden voor de jet.

Om de jet te laten spuiten tijdens het leegzuigen van het beun zal met de gereduceerde jetdruk voor de jet een preferent kanaal gecreëerd moeten worden. Hierdoor is het mogelijk om het zand in de jet af te voeren.

Waterspanningen in een verzande nozzle

Bij het jetten met een met zand gevulde nozzle zullen de waterspanningen in de zandprop afnemen. Deze drukafname kan volgens de wet van Darcy gekoppeld worden aan het debiet.

\[q = -k \frac{\partial \varphi}{\partial x} \quad \Rightarrow \quad Q = q A_{nozzle} \]

(p1)

Deze relatie kan gekoppeld worden aan de relatie met waterstroming uit een holte (4.13). Hieruit krijgt men:

\[Q = -k \frac{\varphi_{holte,overdruk} - \varphi_{nozzle,overdruk}}{\partial x} A_{nozzle} = \varphi_{holte,overdruk} k \varphi_{holte,overdruk} = \pi D_{holte} k \varphi_{holte,overdruk} \]

(p2)

Stel \(x \) (verzande afstand in de nozzle) wordt uitgedrukt in \(X \) maal de nozzle diameter en \(D_{holte} \) is gelijk aan de nozzle diameter. Door combineren van de vergelijkingen krijgt men.

\[Q = \frac{k \pi D_{nozzle} \varphi_{nozzle,overdruk}}{4 (X + 1)} \quad \text{en} \quad \varphi_{holte,overdruk} = \frac{\varphi_{nozzle,overdruk}}{4 (X + 1)} \]

(p3)
Voor verschillende waarden van \(X\ [0, 1, 2\) en 3\] wordt het verloop van de wateroverspanningen gegeven:

![Diagram](image)

Figuur P1. Invloed met zand gevulde nozzle op waterspanningsverloop.

Aangenomen is dat enkel de nozzle gevuld is met zand en niet de holte voor de nozzle. Hierdoor is over deze afstand het potentiële verloop horizontaal.

De invloed van zand in de nozzle is duidelijk zichtbaar. Het blijkt dat de invloed van een met zand gevulde nozzle op het potentiële verloop groot is. Tevens is aangenomen dat de doorlatendheid niet varieert. In werkelijkheid zal door de waterdruk het zand in de nozzle verdichten en daarmee het poriëngehalte en de doorlatendheid verlagen, zodat de effectieve jetdruk voor de nozzle nog verder wordt gereduceerd.

Korrelspanning verloop bij een verzande nozzle

In de verzande nozzle zal de waterdruk in de nozzle overdag worden op het zand in de nozzle. Door de korrelspanningen in de nozzle zal er een wrijvingskracht op de nozzle wand worden uitgeoefend. Dit verloop van de wrijving kan uitgeschreven worden.

Aangenomen wordt dat de waterspanningen lineair afnemen over de verzande afstand. Hierdoor is de som in principe onbeperkt, omdat in het laatste moeilijke zand, ter plaatse van B, een waterdradiekeu aanwezig zal zijn. Deze waterdradiekeu kan niet doormiddel van wrijving worden opgenomen, omdat de korrelspanningen nul moeten zijn, zie figuur 4.35. De wrijving is ongeveer de helft van de spanning werkend loodrecht op de nozzlewand.

![Diagram](image)

Figuur P2. Schematische weergave evenwicht moeilijke zand.

Minimaliseren restlading "Volvox Terranova"
Bijlage P
In formule vorm geldt voor evenwicht van een mootje zand:

\[
\Delta \sigma_w \cdot \frac{4\pi D_{\text{nozzle}}^2}{X_{\text{nozzle}}} + \Delta \sigma_{\text{korrel}} \cdot \frac{4\pi D_{\text{nozzle}}^2}{X_{\text{nozzle}}} + \sigma_{\text{gem.}} \cdot \Delta x \cdot K_0 \cdot \frac{\pi D_{\text{nozzle}}}{X_{\text{nozzle}}} = 0 \quad \Rightarrow \quad (p4)
\]

\[
\frac{(\psi_{\text{a overdruk}} - \psi_{\text{B overdruk}})P_w g}{X D_{\text{nozzle}}} = \text{constant} = \frac{\Delta \sigma_{\text{korrel}}}{\Delta x} + \frac{2\sigma_{\text{gem.}} K_0}{D_{\text{nozzle}}} \quad \Rightarrow \quad (p5)
\]

Vanaf een zandproplengte van drie maal de nozzle diameter geldt dat de wijving langs de nozzlewand in evenwicht is met de watergradiënt in de nozzle. Of te wel, het verschil in waterspanningen in een mootje zand is dan gelijk aan de wandweerstand van het mootje zand. Om evenwicht te maken dienen nu enkel de korrels spanningen aan het eind van de nozzle, positie B, opgenomen te worden, zie figuur 4.36.

Verloop spanningen in verzande nozzle

<table>
<thead>
<tr>
<th>verzande lengte [X * D_{\text{nozzle}}]</th>
<th>spanning [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

verzande lengte: \(5 * D_{\text{nozzle}}\)
jetdruk voor nozzle: 10 mwk

Figuur P3. Verloop water – en korrelspanningen in een verzande nozzle

A ----- verloop effectieve korrelspanning, B ----- verloop waterspanning

Gesteld wordt dat een conisch gevormde nozzle verzand is, als er over een lengte van iets meer dan 3 maal de nozzle diameter zand in zit. Hierbij wordt aangenomen dat de korrels spanningen om evenwicht te maken door de nozzle vorm worden opgenomen.

Conclusie

Verzande nozzle’s moeten ten alle tijden voorkomen worden. Door verzanding wordt de effectiviteit van een nozzle sterk gereduceerd. Een verzanding over een afstand van één maal de nozzle diameter reduceert de effectieve jetdruk voor de nozzle al tot 20%. Door het gebruik van kapjes kan het vollopen van nozzle’s met zand gereduceerd worden. Door in het ontwerp te zorgen dat het zand dat in de nozzle kan stromen minimaal is wordt de kans op verzanden verder gereduceerd.

Bij een nozzle gevuld met zand over een lengte van 3 maal de nozzle diameter is een nozzle volledig verzand. Het verder opvoeren van de jetdruk heeft nagenoeg geen invloed, doordat de wijving tegen de nozzlewand ook vergroot wordt.
Constructievorm jetsysteem op schip

De lager gelegen nozzle's in het beun van de “Volvox Terranova” zijn regelmatig verzand. Door dit verzanden dragen ze geheel niet bij in het leegzuigproces. De constructie vorm van het jetsysteem is ook bepalend voor de hoeveel zandwatermengsel dat eventueel naar binnen kan stromen tijdens het vullen van het beun. Onderstaand (figuur 4.37) worden twee constructie vormen, A en B, vergeleken. Bij het linker jetsysteem (A) zijn de jets onderling op elkaar aangesloten en spuiten op verschillende hoogten in het beun. Hierdoor ontstaat een ‘communicerend’ systeem. Deze constructievorm is afgeleid van de situatie op de “Volvox Terranova”. Bij de rechter constructievorm (B) zijn de jets aangesloten op een ringleiding die afgesloten is. De aangesloten jets bevinden zich ook op hetzelfde hoogte niveau.

Tijdens het vullen van het beun kan een bepaalde tijd het zandwater mengsel vloeibaar de nozzle instromen. In de constructievorm A zal meer mengsel naar binnen stromen dan in constructievorm B. Het zand uit het zandwater mengsel zal bezinken. In constructievorm A zal hierdoor meer zand bezinken dan in constructie vorm B. Tevens zal het zand in constructievorm A voornamelijk voor de nozzle opening bezinken en in B in de aanvoerleiding. Hierdoor is de kans van een verzande nozzle bij constructievorm A veel groter dan bij constructievorm B.

Het zand uit constructievorm B zal bij een groot jetdebit uit de aanvoerleiding moeten spoelen om geen verzanding in een later stadium te krijgen.
Bijlage Q

Formules rekenschema jetsysteem

Voor 1 knooppunt is de rekenprocedure uitgeschreven.

Algemene gegevens:

a. Leiding 1 en 2 is de doorgaande jetleiding,
b. Leiding 3 is de aftakkende jetleiding naar de jet,
c. De energiehoogte (H) wordt uitgedrukt in een aantal meter waterkolom
d. De energiehoogte (H) bepaalt de uitstroom snelheid uit de jet

Rekenschema:

Input: Debiet (Q₁,begin) en energiehoogte (H₁,begin) t.p.v. begin leidingstelsel.
Output: Debiet en energiehoogte ter plaats van de jets.

\[H_{1,e} = H_{1,b} - \xi_{weerstand} \frac{Q^2}{A^2} 2g \]
\[=> \text{Energiehoogte t.p.v. eind leiding 1} \]

\[H_{3,b} = H_{te} - \xi_{aftakking,3} \frac{Q^2}{A^2} 2g \]
\[=> \text{Energiehoogte t.p.v. begin aftakkende leiding 3} \]

\[H_{2,b} = H_{te} - \xi_{aftakking,2} \frac{Q^2}{A^2} 2g \]
\[=> \text{Energiehoogte t.p.v. begin leiding 2} \]

\[H_{3,e} = \left(-Z \cdot \xi_{weerstand} \frac{A^2}{A^2_{\text{jet, effectief}}} + H_{3,b} \right) \frac{A^2_{\text{jet, effectief}}}{A^2} \]
\[=> \text{Energiehoogte t.p.v. eind aftakkende leiding 3} \]

Met (z) is de verticale afstand van de jet tot het referentieniveau (+ = hoger)

\[Q_3 = \sqrt{(H_{3,e} + z)2g \cdot A_{\text{jet, effectief}}} \]
\[=> \text{Debiet in aftakkende leiding (3)} \]

\[Q_2 = Q_1 - Q_3 \]
\[=> \text{Debiet in doorgaande leiding (2)} \]

Met deze rekenmethode kan de berekening doorgerekend worden voor het gehele jetsysteem. Uiteindelijk zal het jetdebiet uit elke jet bekend zijn. Het totaal van het jetdebiet per jet moet gelijk zijn aan het instromende jetdebiet. Door variatie van de energiehoogte in het begin van het leidingsysteem kan dit bereikt worden (iteratief proces).

Minimaliseren restlading “Volvox Terranova”
Bijlage Q