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test, the AGV was calibrated manually. This shows that manual calibration of the electronic actuators 

is not sufficient and above that a time consuming process. 
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method should be proposed. This calibration method must be based on available literature which can  
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particular interest: 
 Which methods are available for the automatic calibration of AGV’s? 

 How can this be integrated with the current AGV laboratory setup? 
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model, experimenting with AGVs in the laboratory, presenting solid conclusions and recommendations 
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Preface

After completing the literature study on container terminals, my interest in port op-
erations remained. As luck would have it, the department Transport Engineering and
Logistics (TEL) at that time had recently purchased a motion capture systems for the
Automated Guided Vehicle (AGV) laboratory. With the purchasing of this system, sev-
eral new research assignments became available. One of the assignments, the calibration
of AGVs with a motion capture system triggered my interest.

The final deliverable of the research assignment, the report you are reading, contains
the proceedings and conclusion to the calibration of model AGVs. The first part of this
research investigates what has been written on calibration of mobile robots in literature.
This is then used to determine which approach will be used for the calibration of model
AGVs. The implementation of this approach is then discussed, after which tests are
performed to determine the feasibility of calibration on the AGVs.

As a final comment, I would like to express my gratitude to Ir. M.B. Duinkerken and
N.P. Schoorl for their time. Mr. Duinkerken has thoughtfully read this report and
commented on parts that could be added or improved. During the assignment, Nick and
I have had many discussions about the subject. Without our discussions, this research
would not be as comprehensive as it currently is. With this preface, I would like to
express my gratitude to both Nick and Mr. Duinkerken for their help and insights.

Ted Bentvelsen
June 21, 2015
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Abstract

The research of which this is the final report, focusses on the calibration of model AGVs.
In previous assignments it is observed that there is a deviation between the desired and
actual trajectory of AGVs. As the positioning of AGVs is preferably estimated with data
from its sensors, the deviation between the servo input and output must be minimized.
This can be achieved with calibration.

From literature is obtained that calibration of mobile robots with an external observer
is best performed by establishing a kinematic model. The kinematic model of AGVs can
be approximated with a bicycle model as is stated in Wang and Qi (2001). With the use
of several equations and observations by a motion capture system, the input and output
for the steering angle and the velocity can be related.

After performing several tests with an AGV having been calibrated and uncalibrated,
the results showed that in most cases the accuracy of the AGV improved. In some
cases however, the calibrated AGV was slightly less accurate than uncalibrated AGV.
This is an unexpected result and there is no conclusion as to why this happens. One
hypothesis which may explain this behaviour is that the servo controller works at a
specific frequency and thus not always performs a command instantaneous.

It is recommended to have this new hypothesis investigated further. Also, during the
testing of model AGVs it appeared that there sometimes is a large spread between the
results of individual tests. It is suspected that this is caused by a cumulative tolerance
between different parts. It would be of interest to investigate the effect of tolerance
reduction on the spread of the results.
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Abstract (Dutch)

Het gedane onderzoek waarvan dit het afrondende rapport is, kijkt naar de kalibratie
van model AGVs. In voorafgaande opdrachten is opgevallen dat er een afwijking bestaat
tussen de gewenste en gerealiseerde trajecten van AGVs. Sinds de positie bepaling van
AGVs bij voorkeur wordt gedaan op basis van sensor data, kan de afwijking tussen de
actuator invoer en uitvoer heb beste worden geminimaliseerd. Dit kan worden bereikt
door middel van kalibratie.

Uit literatuur is verkregen dat kalibratie van mobiele robots aan de hand van een ex-
tern observatie systeem het beste kan worden gedaan met een kinematisch model. Het
kinematische model van AGVs kan worden benaderd met het fiets model, zoals wordt
aangegeven in Wang and Qi (2001). Door gebruik te maken van enkele vergelijkingen,
kan de invoer en uitvoer voor zowel de stuur hoek als de snelheid aan elkaar worden
gerelateerd.

Na het doen van enkele tests met een AGV in gekalibreerde en ongekalibreerde toes-
tand, toonden de resultaten dat in de meeste gevallen de gekalibreerde AGV een grotere
nauwkeurigheid gaf. In enkele gevallen gaf kalibratie een slechter resultaat. Dit is een
onverwacht resultaat en er is geen conclusie over de oorzaak hiervan. Een hypothese
voor dit gedrag kan zijn dat de controller op een specifieke frequentie werkt en zo dus
niet altijd meteen een commando zal uitvoeren.

Het wordt aangeraden om deze nieuwe hypothese verder te onderzoeken. Daarnaast
werd tijdens het testen van de AGV een grote spreiding tussen de resultaten van in-
dividuele testen geobserveerd. De verwachting is dat dit wordt veroorzaakt door een
cumulatieve speling van verschillende onderdelen in de AGV. Het is daarom interessant
om te onderzoeken welk effect deze tolerantie op de resultaten heeft.

Research assignment T.J.W. Bentvelsen



Nomenclature

AGV Automated Guided Vehicle
COM Center Of Mass
DEM Discrete Elements Modelling
IMU Inertial Measurement Unit
IR Infrared
SDK Software Development Kit
TEL Transport Engineering and Logistics
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Chapter 1

Introduction

In the renewed Automated Guided Vehicle laboratory at the Delft University, one of the
requirements for model AGVs is to accurately follow prescribed trajectories. The overall
objective of the system is to simulate the operation on a seaport container terminal. As
a multi-agent control system, it is desired that the positioning of AGVs is mainly based
on internal sensors that register motion. The position is estimated with the data from
the sensors. This is called odometry. It is desired to have an external observer correct
the AGVs as little as possible.
Several attempts have been made to increase the accuracy of path following AGVs by
using additional sensors for odometry. In Gerritse (2014), the positioning of models is
improved with an accelerometer. Further research is performed into the use of an inertial
measurement unit (IMU). However there exists a deviation between the desired and the
realized steering angle as well as the perceived and actual velocity. This difference is
partially caused by the incorrect assembly of the drive mechanism but may have other
causes as well.
To compensate for these deviations, a calibration process for the model AGVs will be
developed in this research. The project is guided by the following main research question:

Can the accuracy of model AGVs be improved with the calibration of actua-
tors?

The AGV’s accuracy will be measured as the difference between the desired and the
actual end-position after performing a trajectory. The approach for following such a
trajectory will be similar to the algorithm used in de Groot (2015), in which Dubins-
trajectories are calculated and performed.
The contents of the research assignment will be partitioned into chapters of this report
according to the following sub-questions:
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2 Introduction

• What is the laboratory set-up and equipment?
• Which method is suited for the calibration of mobile robots?
• How will the calibration method be implemented for the calibration of model

AGVs?
• What are the results for the model AGV’s calibration?
• Is a calibrated AGV more accurate than an uncalibrated AGV?

These sub-questions will be answered in the chapters according to this structure: chap-
ter 2 elaborates the methodological approach that will be used throughout this report.
This includes the set-up of the independent observer, the literature survey approach and
approach for performing the implementation and experiments. Hereafter the laboratory
set-up, containing the model AGVs, environment, computational system and assump-
tions are discussed in chapter 3. To gain knowledge on calibration and its application
on mobile robots, a literature survey is performed in chapter 4.

This knowledge is then used for the explanation of the kinematic model of AGVs and
the implementation of it in chapter 5 and chapter 6 respectively. The implemented
calibration procedure is used in chapter 7 to calibrate a single AGV for the purpose of
testing. In chapter 8 the results to these tests are depicted, of which the conclusion
is presented in chapter 9. This final chapter also discusses the results and provides
recommendations for future research.
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Chapter 2

Methodology

This chapter clarifies the methodical approach that will be used during this research.
The method for systematically setting up the external observer system is discussed in
section 2.1. This is later used to analyse the effect of calibration in chapter 8.

Before implementing a calibration method, a survey is conducted regarding the literature
of available calibration methods for autonomous vehicles. Articles are found according
to the approach described in section 2.2. The literature survey will provide a guideline
for the implementation of a calibration method, which is elaborated upon in chapter 6.
In section 2.3 is discussed how the implementation, experimentation and evaluation of
results will occur.

2.1 Independent observer

For the calibration of model AGVs, an external observer will be used to capture the
position and rotation. This independent observer is required to produce an identical
coordinate system each time it is set-up and calibrated. The proposed OptiTrack Motion
Capture system, elaborated in chapter 3, is able to achieve this requirement.

A methodical approach for setting up and calibrating the OptiTrack system is presented
in Appendix section D.1 and Appendix section D.2. This will ensure that the results
presented in chapter 8 are comparable, even if the independent observer is displaced
between tests.
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4 Methodology

Table 2.1: Results from literature survey

TU Delft Library Web of Science Science Direct SpringerLink
Results 130 349 1239 242
Of interest 1 4 24 12

2.2 Survey approach

In order to find which methods are available for the calibration of model AGVs, a litera-
ture survey is performed. This study will be presented in chapter 4. Several sources such
as the TU Delft Library, Web of Science, Science Direct and SpringerLink are consulted
for publications. For the search, a combination of the words: self*, automat*, calibrat*,
mobile*, robot*, servo* and sensor* is used.

The results from this literature survey are presented in Table 2.1. As it is not possible to
read every single article, a strict selection procedure was applied to filter which articles
are of interest. After reading the abstract of an article, it was decided to keep or discard
the article. Every article that was kept is marked as "of interest" in Table 2.1. These
articles are then fully read for relevant information and presented in chapter 4. Out of
all the interesting articles, one article was unobtainable due to confidentiality.

To categorize the found calibration methods and expand the scope further, a search for
articles containing both calibrat* and method* is performed. This yielded for TU Delft
Library, Web of Science, Science Direct and SpringerLink, a total of 2529, 839, 348 and
3976 articles respectively. As the results on these websites are sorted on relevance, only
the first 100 entries are evaluated similar to the previous search. From this selection,
15 articles are considered interesting, based on the title and abstract. However, a total
of six articles could not be obtained due to confidentiality. The available information is
further discussed in chapter 4.

2.3 Implementation and experiments

Literature regarding calibration approaches yields information about which method is
best applied in the case of model AGVs. In chapter 6 is elaborated how the implementa-
tion occurs. Hereafter, tests will be carried out to determine the effect of calibration on
the vehicles. The calibration method is implementable for every model AGV, however
the experiments will be conducted with a single vehicle to eliminate the build quality
differences between various models.

The tests to determine if calibration has benefits, consist of the AGV completing several
trajectories with both initial values and calibrated values. Deviation between predicted
final position and actual final position of a trajectory is denoted in two horizontal plane
coordinates and the orientation of the vehicle.
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2.3 Implementation and experiments 5

A schematic of the experimental procedure is presented in Figure 2.1. After calibration
of a specific model AGV, the model is returned to its initial, uncalibrated values. A
trajectory is then performed and repeated 10 times. The same trajectory is performed
but now with the calibrated servos. Hereafter, the AGV is again set to its initial values
and the test is repeated for a different trajectory. The test ends when all trajectories are
performed 10 times for both a calibrated and an uncalibrated AGV.
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6 Methodology

Repeat 10x

Perform trajectory

Switch to calibrated 
values

Return to initial 
values

Both initial and 
calibrated values tested 

for this trajectory?

Start

All unique trajectories 
tested?

Yes

Select untested 
trajectory

No

End

Yes

Perform calibration 
for specific model 

AGV

No

Figure 2.1: A flowchart depicting the experimentation procedure that will be used to
analyse the effects of actuator calibration on model AGVs.
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Chapter 3

Laboratory and set-up

To make this calibration experiment transparent and repeatable, a detailed model de-
scription and experiment set-up are given in this chapter. To assure correctness of the
method and applicability, the assumptions that are made for the model and the observing
system are discussed in section 3.2. The model itself, the observer and the computational
system are discussed in section 3.1.

3.1 Experiment set-up

In this section, the different materials and equipment for the calibration of model AGVs
are discussed. The first sections discusses the model AGVs, whereafter the environment
is elaborated. Finally, the computational system is discussed.

3.1.1 Model AGVs

The vehicles that will be used in this research assignment are model AGVs. These
scale models of actual AGVs have been used to simulate container terminal operations
previously. The current system is operated by an Arduino microprocessor which is
depicted in Figure 3.1.

A more detailed description of the system is given in van Blijswijk (2015) and Gerritse
(2014). The latter additionally gives a kinematic model of the AGV that are required
for deadreckoning.
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8 Laboratory and set-up

Figure 3.1: One of the 25 model AGV’s with mounted Arduino processor, breadboard and
battery.

3.1.2 Environment

The model AGVs are operated and tested at the faculty of Mechanical Engineering at
the Delft University of Technology. For the tracking of the AGVs, a system with “plug-
and-play" characteristics has been purchased. It was decided that the NaturalPoint Inc
Motion Capture system with Flex13 cameras would achieve this goal.

The system may be set-up with 4 to 24 cameras, each additional camera increasing the
maximum size and accuracy of the system. According to the NaturalPoint Inc website,
the capture volume can encompass a 6,1 diameter circle when using six cameras. This
is suitable for the dimensions of the workspace depicted in Figure 3.2.

The listed materials are required for setting up an OptiTrack system with six cameras:

6 OptiTrack Flex13 cameras
6 tripods
6 tripod mounting pieces
6 camera-to-hub data cables
2 OptiTrack OptiHubs
2 power adapters for OptiHub
2 hub-to-computer data cables
2 data cable extenders
1 hub synchronization cable
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Figure 3.2: Dimensions of the workspace for the AGV laboratory. Tables and other office
equipment is depicted in blue, the computer system is depicted in green, the OptiTrack
Flex13 cameras are depicted in orange and the OptiHub is depicted in red.
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Synchronization cable

Desktop

Data cable

Data cable

OptiHub (2x)

Flex 13 camera (3x)

Flex 13 camera (3x)

Figure 3.3: Schematic representation of the experiment set-up. The lines depict cables
and wireless connections. Arrows show the flow of information from the cameras to the
computational system.

A schematic representation of the system is depicted in Figure 3.3. The instructions for
installing the system are present in Appendix D.1.

3.1.3 Computational system

Software provided by the OptiTrack manufacturer is installed on the computer and
processes the camera data into a three dimensional image of the workspace. However
before this image can be constructed, the system needs to be calibrated. Instructions
for the calibration can be found in Appendix D.2 and need to be repeated every time
one or more cameras are displaced.
The system is set-up such that the gathered position data is broadcast over the local
area network. By doing this, multiple experiments can take place at the same time.
In Appendix D.3, the instructions for establishing a connection between OptiTrack and
Matlab are presented.

3.2 Assumptions

In the course of this research, several assumptions are made that simplify the model.
To ensure correctness of the approach, it is important that these are mentioned. The
list provides an overview of the assumptions that are made, and these are substantiated
later.
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• Model AGV
1. The AGVs can be modelled according to the bicycle model
2. The slip of the models wheels is negligible
3. The varying size of wheels is negligible
4. The front axle is equal to the rear axle velocity of the model AGV
5. The effects of acceleration and deceleration are negligible
6. The Kinematic model from Gerritse (2014) is sufficiently accurate
7. The performance dependency on battery power is negligible

• OptiTrack system
1. The motion tracking system does not drift
2. The accuracy of the OptiTrack system is within 10 millimetres

3.2.1 Model AGV

The Kinematic model of the scale AGVs is elaborated in Gerritse (2014). This report
substantiated why wheels slip and size are negligible. It is assumed that this model is
correct for the purpose of calibration, as no significant changes have occurred since.

One major obstacle in the calibration of the AGVs is that the battery power could have
an impact on the performance of the servo motors that actuate the model. To verify
that this is indeed the case, an endurance test is performed with the model AGV and a
full battery. The AGV is instructed to drive circles in the test area at maximum speed.
The results are elaborated in section 8.1.

3.2.2 OptiTrack system

The manufacturer of the OptiTrack system provides information on the accuracy of the
system and software. When properly set-up, the only variable in the marker positioning
is the measurement error. Depending on the quality of the camera calibration and
amount of cameras, an error of 0,10 - 2,0 mm/marker can be observed. The AGV
models are set up to have a total of five marker, of which a minimum of three is required
to recognise the unique vehicle. This results in a maximum error of 6 millimetre and is
well within the set 10 millimetre boundary.
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Chapter 4

Calibration methods

This chapter elaborates on the literature that is available for calibration. Calibration is
used to compare the magnitude of a sensor or the motion of an actuator with a known
magnitude or motion. Many robotic devices use sensors and actuators to control the
robot. To comprehend how calibration affects these, a robotic arm is used as an example.
This is then extended to the model AGVs.

The robotic arm, similar to the one proposed in Duelen and Schröer (1991), may be used
in manufacturing environments. The arm has multiple joints and these joints are powered
by actuators. The actuators rotate according to an electric signal, but cannot derive the
arm’s position from this signal. It is therefore required to compare the magnitude of the
electric signal with the actual rotation of the arm. This rotation may be subject to an
offset, linear behaviour or even non-linear behaviour. During calibration, this behaviour
is analysed and processed into a correct signal for the actuators.

Calibration works as well for calibration of sensors and is not confined to robotic arms.
It is possible, even necessary, to calibrate any actuator and sensor. In the case of mobile
robots, like the model AGVs used in the laboratory setup, the assembly of individual
vehicles can cause minor deviations between them. Calibration may reduce these devi-
ations, in the case of model AGVs the steering angle and actual velocity. It is however
appropriate to consult about established calibration procedure before a method is con-
ceived.

In section 2.2 is described how the literature survey for calibration methods is performed
and filtered. A selection of the resulting articles is represented in this chapter. Several
definitions are discussed in section 4.1, whereafter section 4.2 and section 4.3 elaborate
the found calibration approaches. Issues that occur during calibration approaches are
discussed in section 4.4. The gained knowledge is then used to define and implement the
calibration approach for this report which is discussed in chapter 5 and chapter 6
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4.1 Definitions

In order to ensure that calibration is well understood and no misunderstandings oc-
cur, this section elaborates on the definitions of several words. In Rykiel (1996), the
definitions for model, calibration, verification and validation are discussed. This publi-
cation focuses mainly on the practise of Discrete Element Modelling (DEM) but is also
applicable to other fields.
A publication by Merlet (2006) discusses the calibration of robotic arms. The model,
calibration, verification and validation are defined similarly to Rykiel (1996). In addition,
the terms domain and poses are elaborated.

Model Amodel can represent different virtual or physical objects. It often serves as sim-
plification for a selected part of reality. Computer simulations, robotic equipment
or dynamics, among others, are examples of subjects that are modelled frequently.
The model is then used to predict future behaviour of the object.

Domain A model is only applicable in the domain that is prescribed by the made
assumptions. Recalling the robot arm example, a calibration method for a 2-joint
robot arm is not applicable to a 3-joint robot arm. The assumptions are related
to the model and influence the domain of its applicability.

Calibration According to Rykiel (1996), a general definition for calibration is the esti-
mation and adjustment of model parameters and constants to improve the agree-
ment between model output and a data set. Applying this to the case of mobile
robots would imply minimizing the deviation between the presumed and the actual
position of each actuator. The predicted trajectory of the AGV is defined as model
output, whereas the actual trajectory is defined as the data set. Calibration of the
actuators may lead to an agreement between this model output and data set.

Verification By verifying the model, it is demonstrated that the model itself is correctly
formulated. This is best represented by asking oneself: “Is the model right?”.
Improper formulation of the model may be caused by incorrect calculations or
logical steps. Certain errors only appear under specific circumstances and may
not have been anticipated. Verification is therefore important before the model is
used.

Validation Contrary to verification, validation of a model is concerned with the appli-
cability of the model to the intended domain. It is therefore important to ask: “Is
it the right model?". As the model represents a part of reality, it is necessary to
demonstrate that the model is applicable in the set domain and that the range of
accuracy is consistent with the intended application of the model.

Poses Calibration may require a subject to assume poses. This means that the subject
attains a certain position and/or rotation. Differing poses may help improve the
accuracy of a calibration.
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14 Calibration methods

4.2 Calibration approaches

In this section, several calibration approaches that are found in literature are discussed.
The focus is put on the calibration of robots with servos as the knowledge will be used
to produce a calibration approach for model AGVs in chapter 6. According to Merlet
(2006), three different types of calibration approaches can typically be distinguished.
These types are:

• External calibration
• Constrained calibration
• Self-calibration

External calibration methods use external equipment to partially or fully measure the
poses of the subject in order to calibrate it. An example of such a method is detecting
mobile robots with an external camera system. These methods are considered to be
expensive and lengthy, as external equipment must be precise to achieve decent results.
Robots are required to be off-line, not performing any tasks, when calibrated externally
and need to be in the workspace of the external observer during calibration.
Methods concerning constrained calibration rely on a system that constrains the robots
motion during the calibration process. Similar to external calibration methods, con-
strained calibration is a lengthy process, must be performed off-line and can only be
performed in the workspace that limited by the system that constrains. Constrained
calibration is however considered to be the least expensive calibration method. Forcing
a robotic arm into predefined positions and measuring the input variables for such a
pose is an illustration of constrained calibration.
With the coming of smaller and higher precision sensors, self-calibration of robots has
become feasible. The robot carries internal sensors with it that can determine the
poses in several or all degrees of freedom. For a full calibration, it is required to have
every degree of freedom of the robot covered by at least one sensor. An example of
self calibration is the calibration of a servo based on a rotary encoder. This can be
performed while the robot is in normal operation and is possible in the entire workspace.
Self-calibration is relatively low cost, but it may happen that not all parameters can be
calibrated.

4.3 External calibration in literature

This research is limited by the materials that are available. In chapter 3 is discussed
that an OptiTrack camera system is present as independent observer. The following
literature is therefore focussed on external calibration of mobile robots.
A total of three articles that are found describe external calibration procedures which use
kinematic models. The three articles are Varziri and Notash (2007), Duelen and Schröer
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(1991) and Lee et al. (2010). A kinematic model portrays the behaviour of the vehicle
with mathematical equations. These equations are derived from the object’s kinematics
and contain unknown variables. The variables may then be estimated based on recorded
movements of the vehicle. Taking the case of a model AGV as an example, the kinematic
model would output the position of the AGV based on its previous position, the actuator
inputs and the passed time. By using the kinematic model in reverse, it becomes possible
to determine the model inputs based on the observed output. This can then be used to
compare the presumed and observed actuator positions for calibration.

In Varziri and Notash (2007) the Gauss-Newton and Levenberg-Marquardt methods are
compared to identify the parameters of the kinematic model. The established kine-
matic model is complex and requires multiple iterations to solve the unknown parame-
ters. These iterations are performed with the previously mentioned Gauss-Newton and
Levenberg-Marquardt methods. It is concluded that both methods provide a sufficient
improvement for calibration.

Duelen and Schröer (1991) develop a continuous differential equation to describe the
behaviour of a robot arm. The robot arm is modelled on a computer based on its
kinematic behaviour. A theodolite system, which measures angles in horizontal and
vertical planes, is used to observe the robots spatial coordinates. The input of the
robot is then compared with the spatial coordinate to determine the kinematic model
parameters.

Lee et al. (2010) address the kinematic model of a car-like robot in order to improve
the position accuracy. In the kinematic model, significant changes in wheel diameter
and slip are taken into account. The robot is driven by an open loop controller which
is instructed to perform predesignated trajectories. The planned and actual trajectory
are compared and calibration values could be retrieved.

An alternate notation for the kinematic model is performed in the form of an invariant
Jacobian in Batlle et al. (2010). The mathematical model is presented in matrix form and
constructed for a three-degree of freedom vehicle. Performed tests are used to estimate
the calibration parameters.

Different approaches are used in (Khalil and Dombre, 2002). The chapter describes both
the simple, the end-effector coordinates and distance measurement calibration approach.
In the simple approach, the calibration is performed through a trial-and-error guessing
process. This approach can be improved upon by using the end-effector coordinates of
a robot to limit the guessing process. Similar to end-effector coordinates, the distance
measurement uses coordinate data but takes more data into consideration. End-effector
coordinates and distance measurement are however typically used in robotic arms. Ap-
plication to mobile robots is not documented in these publications.

Several other studies involving cameras and robot calibration perform the tests inverted.
In Chen et al. (2007), an environmental camera system is calibrated by using a mobile
robot. After calibration of the cameras, the system is used for the odometry of the
mobile robot.
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To provide a quick overview of the relevant calibration approaches mentioned in litera-
ture, the following list is constructed from the approaches that were discussed earlier in
this section. The listed methods are complemented by the relevant article.

• Estimating the calibration parameters - (Khalil and Dombre, 2002)
- Using end-effector coordinates - (Khalil and Dombre, 2002)
- Using distance measurement - (Khalil and Dombre, 2002)

• Constructing a kinematic model - (Varziri and Notash, 2007; Lee et al., 2010)
- Using an invariant Jacobian - (Batlle et al., 2010)

4.4 Calibration issues

When performing a calibration process, Merlet (2006) argues that several issues are of
importance. These issues should be resolved by the applied calibration approach, or the
effect should at least be considered by the user.

Observability of parameters For the calibration of robots it is important to identify
all the parameters that influence the motion. It may not always be possible to
identify every parameter with a specific calibration method and it is therefore
important to consider this before selecting a calibration approach. It can also
occur that a specified parameter has no influence on the calibration subject or
that the parameter is affected by a combination of other parameters.

Sensitivity of measurements Estimation of parameters is affected by the precision
of the instruments and the generated sensor noise. Data from each measurement
experiences an uncertainty and this needs to considered in the calibration process
by repetition.

Accuracy of calibration There is no standard available for measuring and indexing
the accuracy of a calibration procedure. To provide objective data, an indication
of accuracy should be determined before implementing and performing calibration
procedures.

Choice of calibration poses The accuracy of a calibration is influenced by the the
diversity and quantity of calibration poses. Increasing the amount of poses gives a
larger data set which can be analysed. Additionally, more diverse poses will allow
for better interpolation of the data.

Unicity In previous part, the importance of having several different calibration poses
is discussed. These poses are required to be unique in the sense that two differing
poses should not have the same set of calibration parameters.
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Chapter 5

Kinematics in theory

The experimental equipment and set-up, discussed in chapter 3, form a boundary condi-
tion for the possible calibration methods. Methods sufficing to these boundary conditions
are presented in the literature survey that is conducted in chapter 4. From the literature
it appears that kinematic models are typically used for the calibration of mobile robot
systems similar to AGVs. As kinematic models are well established and understood,
and a kinematic model is already available for the studied model AGVs, this chapter
will elaborate on the theory behind a kinematic model for AGVs, to be used in the
calibration thereof.

The calibration is necessary for the laboratory model AGVs because deviations between
the perceived steering angle and actual steering angle occur. This is also the case with
perceived and actual velocity. In order to improve the deadreckoning of the vehicles, it
is necessary to minimize these deviations.

This chapter will be subdivided into several sections. In section 5.1, a general depiction
of a kinematic model is given. This ensures that the purpose of it is clear before adopting
the kinematic model for AGVs.

5.1 Description of a kinematic model

The concept of mobile robot kinematics is not new. It is already mentioned in Muir
and Neuman (1986) and defined as the study of geometry of motion. For example the
motion of a robot from the geometry of the constrained wheels. A modern definition is
given by Ribeiro and Lima (2002), defining kinematics as the study of mathematics of
motion without considering the forces that affect the motion.
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A kinematic model thus describes the motion of a constrained object, neglecting the
forces that act upon it. In the example of an AGV, the constraints can be defined as
the maximum steering angle and maximum speed. There exists a relation between these
that describes the motion of the AGV. For calibration purposes, the kinematic model
can also be used to calculate the input based on the observed output.

Prior work on kinematic models for model AGVs has been performed in Gerritse (2014).
In this report is discussed which factors influence the vehicles operation and are thus re-
quired to be modelled in order to predict the vehicles location. The model is constructed
assuming that it behaves like a bicycle with equal wheel diameters and no slip. These
assumptions are listed in chapter 3 and will be presumed true from this point.

In Gerritse (2014) the input for the kinematic model is defined the current position, the
rotation of the front axle, the rear axle, the velocity of the front wheels, the velocity
of the rear wheels and the passed time. The kinematic model gives a new perceived
position, orientation and velocity as an output. This output is then taken as the input
for the next iteration of this model repeatedly.

For the calibration of AGVs, this process has to be reversed. The output is measured
by using an independent observer and is used to estimate the inputs, specifically the
overall velocity, orientation and motion. The inputs which can then be estimated are
the rotation of the front and rear axle, and the velocity of the vehicle.

5.2 Kinematics

In section 5.1 is explained what a kinematic model is, which inputs it requires and what
it returns. For calibration, the inputs and outputs of the kinematic model are reversed
to compare the perceived actuator performance with the actual actuator performance.
With this comparison, the deviation between perceived and actual steering angles can
be minimized as well as the difference in the perceived and actual velocity.

The mathematical equations for the kinematic model of the AGVs are subdivided into
two parts. The first part modelling the rotational mechanism and the second part
modelling the motion mechanism. Combining both parts leads to the kinematic model
of the AGVs, discussed by Wang and Qi (2001). This is further elaborated in section 5.3.

5.2.1 Rotational kinematics

The most difficult part of calibrating model AGVs is the steering mechanism. A front-
wheel steered vehicle modelled as a bicycle would have a turning radius similar as de-
picted in Figure 5.1. This is presented in Jazar (2008). The center of rotation is in line
with the rear axle of the vehicle and the rotation of the front axle can easily be deduced
by using trigonometry.
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Figure 5.1: Depiction of a front-wheel steered bicycle model rotating around the center
(Courtesy of Jazar (2008)).

Equation 5.1 may be used to calculate the rotation of the front or rear axle in the case
of one fixed and one rotated axle. The subscripts f and r represent the front and rear
axle respectively.

δ = arctan l

R1
(5.1)

For the model AGVs, the rear axle can also be rotated. This introduces two additional
steering options. These options are depicted in Figure 5.2 and Figure 5.3. Crab steer is
excluded, as this would not result in an altering orientation and thus not return a center
of rotation. The method for determining the axle angles will not hold then.

The two other cases can also be solved by using trigonometry. When the axles are
rotated in a similar direction but with different magnitudes (see Figure 5.2), the angles
may be calculated with Equation 5.2 and Equation 5.3.

δf = arctan a1 + a2 + c2
R1

(5.2)

δr = arctan c2
R1

(5.3)

Research assignment T.J.W. Bentvelsen



20 Kinematics in theory

Figure 5.2: Illustration of axes rotating in a similar direction but with varying magnitude
for a bicycle model (Courtesy of Jazar (2008)).

Figure 5.3: Opposite steering for a bicycle model, used to make tight turns (Courtesy of
Jazar (2008)).
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In the case of opposite steering wheels (see Figure 5.3), Equations 5.4 and 5.5 can be used
to calculate the rotation angle of the axles. Both cases however require additional infor-
mation of the vehicle. The implemented calibration method must be able to distinguish
all cases to calculate the rotation of the front and rear axles.

δf = arctan c1
R1

(5.4)

δr = arctan c2
R1

(5.5)

5.2.2 Motion kinematics

As is explained in section 5.1, the model AGV is limited by the kinematic constrains
of the vehicle. The length from center to front (lf ), the length from center to rear (lr),
the rotation of the front (δf ) and rear axle (δr), as well as the front axle and rear axle
assembly velocities (vf and vr) constrain the model AGVs in their motion. Wang and Qi
(2001) describe the velocity of AGVs in a planar frame of reference with Equation 5.6.
The angle β is defined in Equation 5.7 and is depicted in Figure 5.4. It should be noted
that the assumption is made that the vf and vr are equal, due to a single controller
driving both motors.

v = vf cos δf + lr cos δr

2 cosβ (5.6)

β = arctan lf tan δr + lr tan δf

lf + lr
(5.7)

5.3 A kinematic model for AGVs

In the previous sections the definition of a kinematic model and the mathematical ex-
pressions for it are discussed. By combining the orientation and motion, Wang and Qi
(2001) created the kinematic model for AGVs depicted in Figure 5.4. This model is
based on the well known bicycle model.
In the model, it is assumed that lf , lr, δf , δr, vf and vr are known. Wang and Qi (2001)
state that with this information, the heading angle can be determined by using Equa-
tion 5.8. The decomposed velocities can then be calculated with Equations 5.9 and 5.10.
Displacements can be obtained by integrating both Equation 5.9 and Equation 5.10.
This however requires an initial position for each AGV (x0, y0).

ψ = v cosβ(tan δf + tan δr)
lf + lr

(5.8)
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Figure 5.4: The kinematic model of a bicycle adopted for AGVs in reference to a fixed
global coordinate system (Courtesy of Wang and Qi (2001)).

Table 5.1: A summary of all the used variables for the kinematic model and an explanation
of their purpose.

Name Symbol Value (if applicable) Unit
Vehicle velocity v - [m/s]
Front axle velocity vf - [m/s]
Rear axle velocity vr - [m/s]
Vehicle orientation angle ψ - [rad]
Velocity vector angle β - [rad]
Front axle angle δf - [rad]
Rear axle angle δr - [rad]
Length front lf 0, 181 [m]
Length rear lr 0, 121 [m]
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Table 5.2: A summary of the input change to pulsewidth.

Name Previous variable Symbol Input range Unit
Vehicle velocity v τv 900 - 2100 [µs]
Front axle angle δf τf 900 - 2100 [µs]
Rear axle angle δr τr 900 - 2100 [µs]

vx = v cos(ψ + β) (5.9)

vy = v sin(ψ + β) (5.10)

The kinematic model will be used vice versa mimicking the approach from Lee et al.
(2010). With this, the relation between input and output given by the Arduino controller
(Arduino) will be determined in chapter 6. Continuing from this point, the input of the
kinematic model will be defined as the pulse width (τ) and is presented in Table 5.2. The
position and orientation of the vehicle are recorded by the OptiTrack motion capture
system and from this, the output values δf , δr and v can be determined. Combining these
with the pulse width input should give the information that is necessary for calibration.
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Chapter 6

Implementing the model

The workings of a kinematic model and application to AGVs are discussed in chapter 5.
With this information, the kinematic model can be adapted for implementation in the
AGV laboratory in order to determine the deviation between the servo input and the
AGV’s output. The system will be set up such that the following steps are performed,
of which items 2 to 7 are automatic:

1. Servo inputs are manually set at a specific value (angle and velocity)
2. The model AGV describes an arc (preferably within the boundaries of the motion

capture system)
3. The AGV’s trajectory is registered with the motion capture system
4. Data frames from the motion capture system are sent to Matlab
5. Matlab registers the location and orientation of the vehicle and depicts these in a

figure
6. After closing the figure, Matlab calculates the values for δf , δr and v based on the

kinematic model mentioned in chapter 5
7. The values are printed on the screen
8. Curve fitting is performed to relate the input and output manually
9. The acquired curve is implemented in the Arduino code, completing the vehicle

calibration

To achieve the proposed steps, Matlab code is written to perform these steps. Curve
fitting the equation that circumscribes the relation between actuator input and output
is best done manually, as this relation may differ per individual AGV. The curve fitting
procedure and final code implementation (steps 8 and 9) in the controller will be further
discussed in chapter 7.
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Figure 6.1: Model AGV with removed top part for better visibility. The markers are
indicated with red dots.

This chapter is further built up as follows: the identification of AGVs by the motion
capture system and available data is discussed in section 6.1. Implementing steps 2 to
7 is then performed in section 6.2. A short section is devoted to the implementation in
the Arduino code in section 6.3. And to conclude this chapter, the program elaborated
in section 6.2 is verified and validated in section 6.4.

6.1 AGV identification and data

The vehicle is identified by OptiTrack and MotiveTracker with reflecting markers. A
total of five markers are placed on the model AGV. For better visibility of markers by
the cameras, the top part of the AGV is removed as can be seen in Figure 6.1.

Motive:Tracker is able to distinguish different objects by measuring the distance between
a specific number of markers. The minimum visible marker threshold can be set as
desired but is automatically set at four in the case of five markers. This means that
at least four markers have to be spaced at unique distances to track different objects.
As long as the markers are not displaced, Motive:Tracker will always recognize the
corresponding vehicle from the unique configuration of marker positions, even after the
system is stopped or recalibrated.

Currently, only one AGV at each time is within the boundaries of the motion capture
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system. It is therefore not a required to create multiple unique patterns of the IR
reflecting markers. If this would be the case, the following should be noted:

• The precision of OptiTrack allows for a minimum marker spacing of 10 millimetres
between individual marker locations

• Individual markers must be spaced at least 10 millimetres from each other to be
recognized by the motion capture system

• The lengths between sets of two markers on an individual vehicle should be unique
• Markers on individual vehicles should not be placed symmetrically as OptiTrack

will try to rotate the virtual rigid body around different axes to optimize the fit

For each individual AGV, Motive:Tracker registers seven variables. The first three vari-
ables represent the location data of the center of mass for the AGV’s five markers. These
x, y and z coordinates are measured in meters from the origin (dependent on the cali-
bration). The x and z coordinates describe the ground plane, whereas the y coordinate
circumscribes the vertical distance from this ground plane.

The remaining four variables, qx, qy, qz and qw are the quaternion of a vehicle. The
founder of quaternions tried to find a unique three dimensional numbering system but
failed to do so in three dimensions. In a four dimension numbering system however
this could be achieved unambiguously (Baker, b; Rosenfeld, 1988). The four variables
consist of one real (qw) and three imaginary dimensions (qx, qy and qz). The imaginary
dimensions are all perpendicular and have a unit value of

√
−1. A more elaborate

explanation on quaternions is given at Baker (b) and Rosenfeld (1988).

With several mathematical operations a quaternion can be converted into Euler an-
gles (Baker, a). Euler angles represent three dimensional rotations with three numbers
instead of four, this is however non-linear. The orientation of the model AGV is repre-
sented by its yaw, one of the three values associated with Euler angles. The conversion
is further discussed in section 6.2.2.

The variables that were discussed can be broadcast from Motive:Tracker to Matlab on
the same personal computer or to another computer over the network. NaturalPoint Inc
has provided OptiTrack with an SDK that allows for this (NatNet). The SDK includes
libraries that allow Matlab to retrieve the data and presents an example of how this is
achieved. An instruction hereto is available in Appendix D.3.

6.2 Matlab program

The Matlab code example provided with the NatNet SDK, connects with Motive:Tracker
and uses the data frames to depict the orientation of the subject. As there is little
documentation available on the communication between Motive:Tracker and Matlab,
the example was reverse-engineered for the implementation of the calibration procedure.
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In subsection 6.2.1 is elaborated on the structure of the Matlab code. This is generated
beforehand to reduce the risk of errors. The final programming code is presented in
Appendix A. During the actual programming, several other issues were raised, which
had to be processed. The mathematical solutions and foundation to these problems are
discussed in subsection 6.2.2.

6.2.1 Conceptual model

Before the actual programming is performed, it is advisable to first determine the struc-
ture of the program in pseudo code, including statements and loops. This is done to
reduce the risk of making errors in one’s though process. The pseudo code for the two
most important parts of the program, MainProgram and DataProcessing are elaborated
in this section.
The MainProgram for calibration will perform steps 2 to 7 listed at the start of this
chapter. It starts by closing all figures and clearing the workspace, after which it loads
the parameters. Then, the rigid body data and frame rate are retrieved from OptiTrack.
A figure and figure handle are created. The figure will be updated with the location of
all rigid bodies by the function DataProcessing. This function is called by the data
listener every single time a frame of data is ready in OptiTrack.
After closing the figure, the data from the figure is processed and a circle fit is applied
to the location data. This yields a center point and a radius. With the center point
and the orientation of an AGV, the angles of the front and rear axles can be calculated.
Hereafter, the location data is processed into velocity, of which the median is calculated
and all information is written to a file. The steps are listed hereunder.
MainProgram

1. Close figures and clear workspace
2. Load parameters
3. Retrieve rigid body data from OptiTrack
4. Retrieve frame rate from OptiTrack
5. Create figure of rigid body location
6. Set up data listener
7. Wait for figure to be closed
8. Delete data listener
9. Fit circle on location data
10. Calculate axle angle
11. Process location data into velocity data
12. Calculate median velocity
13. Write data to file

During the data listener callback, the function DataProcessing is activated every time
Matlab receives a data frame. The function processes the data from the data frame and
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stores it in variables. The data is then used to update the location figure after which
the function is closed, to be recalled again by a new data frame. This will be performed
in the following steps:

DataProcessing

1. if (no data in stored variable)

(a) create initial data
(b) create location figure information

2. end
3. if (frame is a duplicate)

(a) end function

4. end
5. if (frames have been missed)

(a) read rigid body data from data frame
(b) process data frame information
(c) store data in variable
(d) fill missing information

6. else

(a) read rigid body data from data frame
(b) process data frame information
(c) store data in variable

7. end
8. process stored data in figure

The entire program is terminated when the user closes the location data figure. An
example of this location figure with added data is depicted in Figure 6.2. Hereafter the
main code processes some additional data and stores this before terminating completely.
The entire code is presented in Appendix A.

6.2.2 Additional calculations

As was mentioned, during programming several additional issues occurred which are not
described in chapter 5. The first issue is dealing with quaternions instead of angles. The
second issue that will be discussed in this section elaborates on the operations that are
required to calculate the center of rotation for an AGV. With this center of rotation, it
can be determined which case is applicable to an AGV during calibration. Finally, the
velocity is calculated with the information from OptiTrack.
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Figure 6.2: Location data plotted in a Matlab figure.

Transforming quaternions to euler angles

For the calibration of AGVs, it was important to retrieve the yaw of a vehicle. OptiTrack
however outputs the orientation data in quaternions qx, qy, qz and qw to give a uniquely
defined orientation. Euler angles however do not unambiguously define the orientation
of an object and transformation typically limits the yaw of an object to 90 degrees. The
limitation can be circumvented by using Equation 6.1 and allows for a full 360 degrees
rotation.

β = arctan 2qyqw − 2qxqz

1− 2q2
y − 2q2

z

(6.1)

There are two exceptions to Equation 6.1, which can be found with Equation 6.2. When
the value pole is 0.5, the yaw is directed to the north pole. However when pole is -0.5,
the yaw is directed to the south pole. To prevent the Matlab from giving an error, an if
statement is used to execute Equation 6.3 in the case of a north pole and Equation 6.4
in the case of a south pole.

pole = qxqy + qzqw (6.2)
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Figure 6.3: Matlab figure after performing all steps for determining the steering angles of
the front and rear axles.

β = 2 arctan qx

qw
(6.3)

β = −2 arctan qx

qw
(6.4)

Circle fitting to data

In order to find the center of rotation and radius of a trajectory, a circle is fitted on
the stored location data of an AGV. On the Matlab website (Mathworks), several circle
fitting algorithms exist. An updated version of a fast approach for geometric circle fitting
is created by Sumith, which follows the Landau-Smith method presented in Tomas and
Chan (1989).

A circular fit following this method is depicted in Figure 6.3. Herein, the trajectory
depicted in Figure 6.2 is fitted. As the data shows, fitting with the Landau-Smith
method allows for data fitting of partial circles, which is desired as a trajectory will not
always circumscribe a full circle.
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Figure 6.4: [Determining which scenario is the case for the center point of the circle fitted
to the location data.

Determining which case

In chapter 5 is explained that three cases exist for model AGVs to circumscribe a circle.
For calculation purposes, it is necessary to find which of this cases holds for a performed
trajectory. This can be achieved by finding the projection of the circle center on the
AGV’s center line. The following positions of the circle center projection are possible
and are depicted in Figure 6.4:

1. On the front axle

2. On the rear axle

3. Between the front and rear axle

4. In front of the front axle

5. Behind the rear axle

The AGV’s center line can be calculated with Equation 6.5. This requires the yaw of
the vehicle (β). In the equation m = tan β and the n value can be determined with the
location data of the AGV’s center.

y1 = mx1 + n (6.5)

The shortest distance between line y1 and the circle center is determined by the intersec-
tion of lines y1 and y2 (see Equation 6.6). For line y2, p = −1/m and q can be determined
by substituting the x and y values for the circle center.

y2 = px2 + q (6.6)

Research assignment T.J.W. Bentvelsen



32 Implementing the model

The calculated locations can then be used to determine the distances required in Equa-
tions 5.1, 5.2, 5.3, 5.4 and 5.5 according to the five cases listed above. After performing
all these steps, Matlab plots the lines and distances in a figure, as is depicted in Fig-
ure 6.3. The angle of the axles are then presented in degrees.

Determining the AGV’s velocity

For the comparison of the AGV’s velocity input and output, the AGV is driven at a
constant velocity. By taking the median of all the velocity data, a good estimation
can be obtained. OptiTrack however does not register the velocity of objects and it is
therefore required to calculate the velocity of an object based on two locations and the
passed time. This is performed with Equation 6.7.

v =
√

(xi+1 − xi)2 + (zi+1 − zi)2 (6.7)

The velocity is only calculated after finishing the program, as it is not necessary to
calculate it during each loop. This saves processing power for more important tasks.

6.3 Arduino program

A generic program for AGV control is available in the laboratory. The workings of the
program are described in van Blijswijk (2015). After calibration however, the program
needs to be adapted to relate the calibrated input to the output. During tests it was also
noticed that the method developed in van Blijswijk (2015) had an accuracy of 1 degree.
To circumvent this problem, an extra library is included in the Arduino program that
allows for servo control with the pulse width of the signal (τv, τf and τr).

In Appendix C, the data is given for the servos used in the model AGVs. The data is
retrieved from Database and shows that the used Hitec HS-700BB has a pulse width of
900− 1200µs. Comparing this with the range of 45 to 135 degrees described in van Bli-
jswijk (2015), gives a 13, 3 times higher resolution when using pulse width. Additionally,
with the old commands, it was not possible to bring the model AGV to a complete halt.

If these commands would have been used during a simulation, it would have resulted in
numerous errors, with vehicles randomly running their course. Reluctantly, controlling
the servo with its pulse width results in a better control of the AGV. With a pulse width
set to 1500, a servo completely stops operating. An extra effect of this is that the AGVs
do not produce sound when they halt. The Arduino program from van Blijswijk (2015)
is thus adapted to incorporate these additional features.
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Table 6.1: Angle of the front and rear axle when the Arduino is given a certain command
for the axle steering angle. The presented data is an average of three measurements.

Vehicle command [µs] 900 1100 1300 1500 1700 1900 2100
Vehicle output front [degrees] 39,8 27,2 14,1 1,87 -11,0 -24,7 -38,4
Vehicle output rear [degrees] 34,4 24,0 11,8 -0,10 -13,0 -25,6 -36,1

Table 6.2: Velocity of an AGV at two different inputs. The presemted data is an average
of three measurements.

Vehicle command 900 1500 2100
Vehicle output [m/s] 0,32 0,00 -0,32

6.4 Verification and validation

An important part of assessing the usefulness of models and computer programs is the
verification and validation. In chapter 4, among others, the definition of the terms
verification and validation are discussed. The focus in this chapter was on models,
but can also be applied to software. The verification and validation of the kinematic
model will be skipped, as this is already verified and validated in Wang and Qi (2001).
Additonally Gerritse (2014) has used this kinematic model for the odometry of AGVs.

6.4.1 Verification

The definition of verification states that it can be associated with asking "Is the model
right?". A typical method to answer this question is to provide the system with simple
inputs and verify that the outputs correspond to one’s expectations. As the verification
is purely intended for testing the model, the vehicle has not yet been calibrated. It can
thus be expected that the desired angle and actual angle of the axles are not similar.
This is the case in Table 6.1.

It can however be verified that the model is working correctly from this table. When
setting the steering angle at −30 degrees instead of −45 degrees, one expects the output
also to be higher. This is the case for all the tested angles in Table 6.1.

For measuring the velocity of the AGVs, there is little comparison data. In de Groot
(2015) is measured that the maximum velocity of an AGV is 0, 32m/s. In the results
depicted in Table 6.2 is found that the maximum velocity matches the velocity found
in de Groot (2015). From the tests can be assumed that both the rotational as well as
the translational properties of AGV are being measured correctly by the implemented
program that is described in this chapter.
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6.4.2 Validation

For the validation of models and software, one can ask a similar question as is the case
with verification: "Is it the right model?". The intention of this question is to determine
whether the calibration program complies with the set demands. The demand for the
calibration process was that it should be automated and applicable to the AGVs in the
laboratory.

The program is applicable to the laboratory AGVs and for the largest part automated.
The data for each calibration however must be interpreted manually, to assess the best
fitted curve. With the exception of data interpretation, the calibration method is auto-
mated. Although this is the case, the program is still considered to be compliant to the
demands made and therefore validated.
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Chapter 7

Performing the calibration

Now that the program code has been verified and validated, the calibration of a model
AGV can be performed. The calibration will be performed for the steering servos and the
drive servos. How the tests are performed is described in section 7.1 with two schematic
depictions of the method. Hereafter, the results to the calibration of the steering and
drive servos are mentioned in section 7.2.
These results are then interpreted in section 7.3 with the use of curve fitting to establish
the relation between servo input and output. This relation can then be used in the
Arduino code to minimize the deviation between the desired output of the servo and the
actual output of the servo.

7.1 Calibration procedure

To ensure that every single AGV is calibrated appropriately, it is useful to have a stan-
dard calibration procedure. For this report, the calibration procedure is more extensive,
as the relation between input and output is still unclear. The procedure will there-
fore contain more data points and a higher number of repetitions than the calibration
procedure that will be used in practise.
In this research, the front axle, rear axle and drive servos will be calibrated. This results
in two individual procedures, one for the steering servos and one for the drive servos.
The first procedure is depicted schematically in Figure 7.1 and determines the relation
between the pulse width for the steering angle (τf and τr) as input and actual steering
angle as output (δf and δr).
The procedure starts with setting the front axle as active subject to be varied. It sets
the pulse width of all three servos to 1500µs, which is the center for both axles and
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halt for the drive servo. The active subject (in this case the front axle) is then varied
between 900µs and 2100µs with steps of 100µs and each step being measured 10 times.
After completion of all steps, the rear axle is set as active and all servos are set to their
mid values. Again the pulse width will be varied between 900µs and 2100µs, every step
being 100µs. The measurements are stored whereafter the last part of the procedure
is performed, opposite steering axles. Originally it was planned to measure these with
steps of 100µs, but due to time constraints the measurement was performed with 300µs
steps. This concludes the steering angle calibration.

In the second procedure, the relation between the pulse width for the driving servo (τv)
and the vehicle velocity (v) for different steering angles and configurations is determined.
A flowchart schematic is depicted in Figure 7.2. For this procedure, the test does not
have to be repeated multiple times, as the velocity is calculated between data points in
a vector. The presented velocity then is the median of the velocity vector.

The procedure starts with setting the pulse width of the drive servo to 900µs. A loop is
started which sets the AGV to front axle single steer and varies the steering servo input
from 900µs to 2100µs with steps of 200µs. This is then repeated for both opposite steer
and crab steer. The loop is repeated for a drive servo pulse width of 900µs to 2100µs in
steps of 50µs. Reaching 2100µs concludes the measurements.

7.2 Calibration results

From the tests described in section 7.1, a large amount of data was retrieved. The data
in Table 7.1 depicts the statistics of the results for front wheel steering with most im-
portantly the median, minimum and maximum. The maximum spread between median
and absolute extreme value of the front axle is observed to be 0, 46 degrees. The same
test performed on the rear axle shows the absolute spread for the rear axle of the tested
AGV to be 0, 94 degrees, seen in Table 7.2.

For Tables 7.1 and 7.2, only one axle is rotated whilst the other is kept approximately
straight. Rotating both axles in opposite direction yields the results from Table 7.3.
Comparing the results with Tables 7.1 and 7.2, shows that a similar input for both
single and opposite steering results in a similar steering angle observed by the calibration
procedure, thus further assuring the correctness of the method.

After performing the measurements for steering angles, the velocity of the AGV is mea-
sured. The median of the velocity vector is presented in Table 7.4. This table gives a
clear overview.. It was however noticed that the AGVs tend to drive slower when taking
corners. This information is presented in Appendix B. The velocities are measured for
16 different speed inputs, with 7 different angles in 3 configurations, resulting in 336
median velocities.

T.J.W. Bentvelsen Research assignment



7.2 Calibration results 37

Set all servos pulse 
width to 1500µs

Is pulsewidth 2100 µs?

Start

Set front axle active

Set pulsewidth to 
900 µs

Increase pulsewidth 
with 100 µs

Perform trajectory

Measure rotation

R
ep

ea
t 

1
0

x

No

Front axle, rear axle and 
double axles tested and 

measured?

Yes

Set rear axle active

End

Yes

Rear axle tested and 
measured?

No

No

Set front and rear 
axle in opposite 

steer active

Yes

Figure 7.1: A flowchart depicting the procedure that will be used to calibrate the rotation
of model AGVs.
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Figure 7.2: A flowchart depicting the procedure thath will be used to calibrate the velocity
of model AGVs.
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Table 7.1: Minimum, maximum, median, 1st quartile and 3rd quartile of the tests with
changing front servo in degrees.

Input [µs] Front axle [degrees] Rear axle [degrees]
MIN Q1 MED Q3 MAX MIN Q1 MED Q3 MAX

900 40,08 40,14 40,21 40,23 40,26 -3,12 -3,07 -2,96 -2,38 -2,23
1000 40,06 40,07 40,17 40,22 40,30 -2,89 -2,79 -2,69 -2,64 -2,55
1100 33,40 33,51 33,65 33,65 33,87 -2,48 -2,41 -2,27 -2,24 -2,12
1200 24,69 24,70 24,75 24,78 24,89 -2,63 -2,58 -2,54 -2,52 -2,41
1300 16,11 16,12 16,17 16,30 16,30 -2,19 -2,15 -2,13 -1,97 -1,94
1400 7,42 7,43 7,57 7,61 7,87 -2,49 -2,47 -2,35 -2,33 -2,32
1500 -1,71 -1,63 -1,59 -1,54 -1,19 -2,29 -2,09 -2,04 -1,96 -1,82
1600 -10,18 -9,80 -9,72 -9,72 -9,60 -1,75 -1,70 -1,69 -1,63 -1,58
1700 -18,45 -18,35 -18,28 -18,23 -18,19 -1,63 -1,49 -1,47 -1,38 -1,35
1800 -26,68 -26,64 -26,61 -26,50 -26,42 -1,49 -1,41 -1,40 -1,21 -1,18
1900 -35,55 -35,52 -35,47 -35,47 -35,45 -1,25 -1,19 -1,15 -1,11 -1,10
2000 -41,30 -41,24 -41,22 -41,14 -41,14 -1,30 -1,22 -1,13 -1,02 -1,00
2100 -42,13 -42,10 -42,06 -42,01 -41,93 -1,67 -1,60 -1,50 -1,43 -1,34

Table 7.2: Minimum, maximum, median, 1st quartile and 3rd quartile of the tests with
changing rear servo in degrees.

Input [µs] Front axle [degrees] Rear axle [degrees]
MIN Q1 MED Q3 MAX MIN Q1 MED Q3 MAX

900 -0,43 -0,16 -0,10 0,05 0,08 40,13 40,38 40,39 40,42 40,42
1000 -0,64 -0,62 -0,54 -0,45 -0,41 39,13 39,22 39,23 39,25 39,40
1100 -1,05 -0,70 -0,57 -0,47 -0,46 32,14 32,45 32,50 32,51 32,68
1200 -0,80 -0,67 -0,67 -0,64 -0,61 23,90 23,98 24,01 24,05 24,08
1300 -1,18 -1,11 -1,05 -0,94 -0,84 15,14 15,22 15,26 15,36 15,48
1400 -1,71 -1,22 -1,20 -1,11 -1,11 6,20 6,49 7,14 7,15 7,17
1500 -1,51 -1,47 -1,44 -1,36 -1,18 -2,45 -2,31 -2,27 -2,27 -2,16
1600 -1,34 -1,26 -1,08 -1,01 -0,97 -11,34 -11,31 -11,30 -11,25 -10,60
1700 -1,53 -1,49 -1,35 -1,24 -1,22 -20,26 -20,25 -20,13 -20,00 -19,97
1800 -1,68 -1,55 -1,29 -1,17 -1,16 -29,33 -29,16 -28,99 -28,84 -28,83
1900 -1,73 -1,59 -1,46 -1,43 -1,41 -37,58 -37,48 -37,48 -37,37 -37,32
2000 -1,75 -1,36 -1,31 -1,28 -1,25 -39,54 -39,22 -39,18 -39,17 -39,10
2100 -1,52 -1,49 -1,25 -1,21 -1,05 -39,97 -39,95 -39,76 -39,74 -39,69
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Table 7.3: Minimum, maximum, median, 1st quartile and 3rd quartile of the tests with
changing front and rear servo in opposite steering mode in degrees.

Input [µs] Front axle [degrees] Rear axle [degrees]
MIN Q1 MED Q3 MAX MIN Q1 MED Q3 MAX

900 40,01 40,09 40,16 40,34 40,46 40,85 41,13 41,18 41,19 41,20
1200 24,64 24,80 24,84 24,97 25,00 24,33 24,42 24,62 24,63 24,88
1500 -1,51 -1,47 -1,44 -1,36 -1,18 -2,45 -2,31 -2,27 -2,27 -2,16
1800 -27,33 -27,21 -27,19 -27,18 -27,09 -29,11 -29,09 -28,99 -28,98 -28,94
2100 -42,29 -42,12 -42,10 -41,96 -41,94 -40,64 -40,63 -40,42 -40,26 -40,23

Table 7.4: Median of the velocity vector for an AGV driving with both steering servos set
at 1500µs, driving straight forward.

Drive servo input [µs] Velocity [m/s]
900 0,322
950 0,323
1000 0,323
1050 0,322
1100 0,324
1150 0,322
1200 0,321
1250 0,291
1300 0,260
1350 0,221
1400 0,160
1450 0,060
1500 0,000
1550 -0,006
1600 -0,116
1650 -0,192
1700 -0,243
1750 -0,275
1800 -0,299
1850 -0,325
1900 -0,324
1950 -0,323
2000 -0,323
2050 -0,322
2100 -0,323
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Table 7.5: The R2 of the three servos for two different curve fit candidates. For the drive
servo, both the full data set and a data set with partially neglected points are used.

Curve fit Front axle steering servo Rear axle steering servo Drive servo (full) Drive servo (partial)

1st-order polynomial 0,9991 0,9954 0,9234 0,9837
3rd-order polynomial - - 0,9917 0,9949

7.3 Curve fitting the data

To determine the relation between the input and output of a servo, curve fitting is used.
The curve can vary from nth-order polynomial to exponential function or anything fitting.
This mathematical relation will then be used to send the right commands to the servos.
It should be noted that the relation only has to be valid for the input range from −40
to 40 degrees, as this is the limit of the servos.
For the steering servo data obtained in Table 7.1 and Table 7.2, as well as the drive
servo data from Table 7.4, there are two possible candidates for the curve fit. Other
possibilities are not considered since the data does not indicate the existence of such
curves. The two possible candidates are:

• A 1st-order polynomial (simple line)
• A 3rd-order polynomial (higher order function)

The R2 of all data curve fits is presented in Table 7.5. It appeared that during for the
3rd-order polynomial curve fit of the steering servo data, insufficient data point were
available to reliably calculate the curve. Since the linear fit already gives an accuracy of
at least 99, 5% on the steering servos, the 1st-order polynomial is used for the calibration
thereof. An illustration of the front axle and rear axle servo curve fits is depicted in
Figure 7.3 and Figure 7.4 respectively. It should be noted that since for both servos, the
two most outer data points are omitted. Equation 7.1 and Equation 7.2 are therefore
only applicable in the range of −40 to 40 degrees.

δf = −0, 0840pwB + 125, 00 (7.1)

δr = −0, 0837pwC + 123, 55 (7.2)

For the drive servo, Table 7.5 shows that a better accuracy can be gained by using the
3rd-order polynomial curve fit on the partial data set from section 7.2. A depiction of
this is given in Figure 7.5. Here it also should be noted that since several data points
are neglected, the equation for the curve, Equation 7.3, is only applicable for the range
from −0, 32 to 0, 32 m/s.

v = 3, 74x10−9pw3
A − 1, 70x10−5pw2

A + 0, 024pw − 10, 86 (7.3)
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Figure 7.3: Linear fit of the steering angle data for the front axle.
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Figure 7.4: Linear fit of the steering angle data for the rear axle.
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Figure 7.5: A 3rd-order polynomial fit to the velocity data. The red data points are
neglected in the fit to improve the overall fit for the specific range of −0, 32 to 0, 32 m/s.

The equations for the calibration of the steering servo are now implemented in the
Arduino program code. The drive servo curve fit is then used to calculate the time
interval between starting and stopping the vehicle.

As an extra note, in section 7.2 is mentioned that the velocity also is tested for different
steering angles and types of steering. The data can be found in Appendix B. In order
to give an impression, a plot and curve fit is generated for one of the inputs, namely
1200µs on the drive servo, with differing steering angles ranging from 900µs to 2100µs.
This plot is depicted in Figure 7.6. Future research may focus on finding an equation
which predicts the velocity based on the servo inputs for the drive and steering servos.
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Figure 7.6: A plot and simple curve fit to give an impression of the relation between velocity
and steering angle for different types of steering. The drive servo is set at 1200µs and the
steering angle input ranges from 900µs to 2100µs with steps of 200µs. The green curve,
blue curve and red curve represent the crab steer, single steer and double steer respectively.
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Chapter 8

Results

This chapter presents the results of the performed tests. There are two main parts of
this chapter and the report that require testing. In the first part, the assumption is
made that the battery drainage can be neglected when regarding the performance. This
is substantiated with evidence presented in section 8.1. The section also discusses the
effect of acceleration on the precision of the results.
The second part of this chapter depicts the data that will be used to answer the main
research question in chapter 9. The data is obtained by performing the approach de-
scribed in chapter 2. Herein, a calibrated and an uncalibrated AGV are compared for
start and end position.

8.1 Performance of a model AGV

A Matlab script was created to determine the vehicles velocity and log this in a file. In
Figure 8.1 the velocity is constructed for a period of 14717 seconds. Several peaks occur,
which are caused by the motion capture system losing track of the subject for several
frames. Between approximately 10000 and 14717 seconds, these peaks occur regularly
due to the model AGV leaving the captured workspace and re-entering it. These data
points will be neglected in the results.
The total endurance test lasted for 29877 seconds, about 8 hours and 18 minutes. The
position is measured 10 times each second, giving 298770 data points. Table 8.1 shows
the percentiles for the velocity of all data points. This shows that the median velocity
is 0,305 m/s. Table 8.2 shows the velocity of the model AGV for several intervals.
Each velocity consists of an average of 200 data points, with each interval spaced 3000
seconds apart. This provides a rough overview of the dependency on battery power by
the forward actuating motor.
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Figure 8.1: Four hour part of the model AGV endurance test.

Table 8.1: Percentiles for all endurance test data points.

Percentile 5 25 50 75 95
Velocity [m/s] 0.287 0.297 0.305 0.313 0.319

Table 8.2: Velocities in [m/s] for several intervals in the endurance test.

Interval 1 2 3 4 5 6 7 8 9 10 11

Velocity [m/s] 0.311 0.315 0.314 0.311 0.310 0.303 0.303 0.300 0.296 0.292 0.291
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Figure 8.2: The velocity-time diagram of a model AGV derived from the location data.

The table clearly shows that after 8 hours and 18 minutes of operation, the final velocity
is 7.6% lower than the maximum achieved velocity. It should be noted that the peaks
from Figure 8.1 are disregarded in these results.

To assess the effect of acceleration and deceleration, a short test run is performed. The
velocity-time graph is depicted in Figure 8.2. The graph shows a near vertical line where
acceleration and deceleration occurs. After the deceleration however, a small increase in
velocity is noticed. The hypothesis is that this small increase is present due to the AGV
driving backward as a result of heavy braking and the fact that the calculated velocity
is always positive.

From the data of the graph can be retrieved that the acceleration from 0,0 m/s to 0,3
m/s occurs in 0,294 sec. The deceleration is from 0,32 m/s to 0,02 m/s in 0,588 sec.
This means that during acceleration a total of 0,043 m will have passed and during
deceleration a total of 0,099 m will have passed. On a 10 second drive, as is seen in
Figure 8.2, this would be a small deviation of about 4, 7%. The percentage will decrease
as the length of the trajectory increases. It is therefore assumed that acceleration and
deceleration effects can be neglected for calibration.

8.2 Comparison of a calibrated and an uncalibrated AGV

In this section is investigated whether calibration has a positive effect on the final po-
sition and rotation of AGVs. The approach for performing these tests is explained in
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chapter 2. For the tests, several trajectories are proposed. These trajectories are how-
ever limited by the presence of only one uncalibrated velocity, which is the maximum
velocity. The uncalibrated AGV is thus only tested with maximum velocities. When
taking this into account, the following basic trajectories are proposed for testing and
depicted in Figure 8.3:

1. A straight trajectory of 2 meters in forward direction at maximum velocity
2. A straight trajectory of 2 meters in backward direction at maximum velocity
3. A straight trajectory of 2 meters in forward direction at half the maximum velocity
4. A straight trajectory of 2 meters in backward direction at half the maximum

velocity
5. A turn of 90 degrees with the end location 1 meter to the left and 1 meter in front

of the start at maximum velocity.
6. A turn of 90 degrees with the end location 1 meter to the right and 1 meter in

front of the start at maximum velocity.
7. A turn of 90 degrees with the end location 1 meter to the left and 1 meter behind

the start at maximum velocity.
8. A turn of 90 degrees with the end location 1 meter to the right and 1 meter behind

the start at maximum velocity.
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Figure 8.3: The test trajectories for the comparison of calibrated and uncalibrated AGVs.
The distances are denoted, as well as the numbers of each trajectory.
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Table 8.3: Test results for trajectory case 1, driving forward in a straight line at maximum
velocity. In this table, the values for ∆s are denoted in millimetres [mm] and the values for
∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆suncalibrated 72,46 77,06 83,03 87,46 119,80
∆scalibrated 1,20 3,04 5,90 13,03 16,30
∆δuncalibrated 0,60 2,85 5,10 5,875 8,70
∆δcalibrated 0,20 1,33 1,90 2,30 2,30

Table 8.4: Test results for trajectory case 2, driving backward in a straight line at maximum
velocity. In this table, the values for ∆s are denoted in millimetres [mm] and the values for
∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆suncalibrated 7,40 10,73 18,34 22,20 56,44
∆scalibrated 3,50 12,25 14,60 18,72 70,10
∆δuncalibrated 1,30 2,33 3,4 3,95 5,70
∆δcalibrated 0,10 1,93 2,3 3,35 3,60

For the proposed trajectories it, the starting position and rotation is measured as well as
the end position and location. To simplify the results, taking into account the possibility
of cornering by the vehicle, the position data is transformed into a distance between
start and end position. For the straight trajectories, these distance needs to be 2 meters,
whereas the turning trajectories require a distance of 1,41 meters. The observed rotation
of the vehicle must be 0 degrees in the case of a straight trajectory and 90 degrees for a
turn.
Table 8.3 and Table 8.4 show the results for cases 1 and 2. It is observed that for both
the forward and the backward case, the median of the distance between start and end is
improved. However, the forward case shows more improvement than the backward case.
A similar result is observed for the rotation of the vehicle in both cases.
Tables 8.5 and 8.6 show the results of a calibrated AGV performing a straight 2 meter
trajectory at half the maximum speed. No uncalibrated data is available since the
only known velocity of an uncalibrated AGV is its maximum velocity. The results are
consistent with cases 1 and 2, confirming the potential of calibration on model AGVs.
Table 8.7 through Table 8.10 depict the results for cases 5 through 8 respectively. In
all cases, the median of the rotation shows improvement with the calibration. When
looking at the distances, the cases with forward movement show improvement for the
calibrated test AGV. The backward movement in case 6 however shows worse accuracy
after calibration. An interesting results is also that the spread also seems to have been
reduced by the calibration. This is unexpected and an explanation still remains.
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Table 8.5: Test results for trajectory case 3. In this table, the values for ∆s are denoted
in millimetres [mm] and the values for ∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆scalibrated 1,90 4,26 10,30 31,90 46,70
∆δcalibrated 0,50 2,03 2,20 2,30 2,30

Table 8.6: Test results for trajectory case 4. In this table, the values for ∆s are denoted
in millimetres [mm] and the values for ∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆scalibrated 0,10 5,80 10,10 18,78 34,90
∆δcalibrated 0,70 2,55 3,20 3,30 3,70

Table 8.7: Test results for trajectory case 5. In this table, the values for ∆s are denoted
in millimetres [mm] and the values for ∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆suncalibrated 5,34 9,59 13,22 15,79 38,08
∆scalibrated 0,10 5,89 8,00 9,49 13,40
∆δuncalibrated 101,10 102,05 103,10 104,50 106,10
∆δcalibrated 87,90 88,48 89,70 89,80 90,50

Table 8.8: Test results for trajectory case 6. In this table, the values for ∆s are denoted
in millimetres [mm] and the values for ∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆suncalibrated 32,72 41,34 46,17 58,44 100,44
∆scalibrated 47,50 53,20 55,50 58,41 180,70
∆δuncalibrated 88,50 97,43 98,10 98,40 100,00
∆δcalibrated 90,10 92,03 93,20 93,47 94,40

Table 8.9: Test results for trajectory case 7. In this table, the values for ∆s are denoted
in millimetres [mm] and the values for ∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆suncalibrated 64,29 123,97 136,15 142,08 178,63
∆scalibrated 3,50 5,45 9,60 14,32 18,30
∆δuncalibrated 78,50 78,68 80,50 81,95 82,30
∆δcalibrated 82,60 84,63 85,80 88,23 91,20
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Table 8.10: Test results for trajectory case 8. In this table, the values for ∆s are denoted
in millimetres [mm] and the values for ∆δ in [degrees].

MIN Q1 MED Q3 MAX
∆suncalibrated 9,31 64,74 68,29 74,65 123,30
∆scalibrated 57,70 59,49 62,90 66,93 77,50
∆δuncalibrated 80,50 82,03 82,80 83,30 83,90
∆δcalibrated 84,60 85,35 86,90 88,33 90,90
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Chapter 9

Concluding remarks

In this chapter, the results of the study into the calibration of AGVs are interpreted
and a conclusion is drawn. This is elaborated in section 9.1. The conclusion could
only be reached by researching the sub-questions that are drafted in the introduction of
this report. During the study, several interesting other topics and improvements were
encountered. These topics are discussed in section 9.2.

9.1 Discussion

To improve the odometry of model AGVs in the laboratory, it is requested to investigate
the deviation between the perceived servo inputs and outputs. This research has done
so with the main research question being:

Can the accuracy of model AGVs be improved with the calibration of actua-
tors?

In chapter 8, the results of a simple comparison between a calibrated and an uncalibrated
AGV are given. From the data can be concluded that all cases, the rotation of the model
AGV benefits from being calibrated. This conclusion is based on the fact that the actual
rotation of a model AGV is closer to the desired location for calibrated AGVs, as opposed
to uncalibrated AGVs. The results also show that the deviation in distance is reduced
in most cases, with case 6 being an exception to this. Having such a result may indicate
that insufficient tests were performed.

Previously it was also mentioned that the spread unexpectedly has been reduced. This
can be explained by the fact that the curve fit for the steering servo contains a linear
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component. This can cause the spread in results to decrease, as occurs in all the cases.
For the vehicle’s orientation, the spread is typically between 2 and 4 degrees. The
distance typically shows a spread between 1 and 90 millimetres.
In all cases with the exception of one the deviation between the desired end-position
and the actual end-position of the calibrated AGV as well as the deviation between the
desired end-orientation and the actual end-orientation, has been reduced. This leads to
the conclusion that calibration of actuators can indeed improve the accuracy of model
AGVs. This conclusion could only be drawn when looking at the following sub-question:

• What is the laboratory set-up and equipment?
• Which method is suited for the calibration of mobile robots?
• How will the calibration method be implemented for the calibration of model

AGVs?
• What are the results for the model AGV’s calibration?
• Is a calibrated AGV more accurate than an uncalibrated AGV?

The investigation into these questions has occasionally resulted in additional topics and
improvements. These additional topics and improvements are distilled and presented in
section 9.2

9.2 Recommendations

Following this study into the calibration of AGVs, several interesting topics and improve-
ments were encountered. During the calibration and the tests it was noticed that there
still is a significant deviation between similar trajectories. The cause of these deviations
are not exactly known, but it is highly likely that insufficiently tightened parts and de-
lays in the Arduino processor are contributors to these deviations. When performing
trajectories, it is desired to have a small spread, since uncertainties result in a less pre-
dictable trajectory. It is recommended to improve the predictability of trajectories by
decreasing the spread.
In Wang and Qi (2001), from which the kinematic model is adopted, is assumed that the
slip and difference in wheel diameter can be neglected. Similarly, it was assumed that
the acceleration and deceleration would have little effect on the model AGVs trajectory,
since the maximum velocity is only small and the acceleration is high. Two additional
assumptions that are made in this research are that the axles rotate instantaneous and
that the front axle drive servo and rear axle drive servo have similar speeds. It could be
investigated whether one or more of these assumptions still hold, when trying to improve
the accuracy of calibration further.
Finally, it is hypothesized that a variable delay between sending a command to the
Arduino controller and the Arduino controller setting the servo could have an impact on
the predictability of trajectory. If the path following algorithm would be aware of this,
the accuracy of the model AGVs could be improved.
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Appendix A

Matlab code

This appendix presents all the code that was written for the calibration of AGVs. The
code is initiated by running TrackingMain, which then calls the subsequent functions in
this appendix.

A.1 TrackingMain

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab main file for tracking the position of AGV's in the laboratory.
4 %%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 clear all
8 close all
9 clc

10

11 %% Define global variables
12 global frameRate;
13 global desiredFrameRate;
14 global vehicleID;
15 global totalDropped;
16 global totalDuplicate;
17 global AGV;
18

19 %% Load Parameters
20 Parameters
21

22 speedFig = false; % if true, calculate the speed
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23 storeData = false; % if true, save data in excel file
24 calibrate = true; % if true, perform calibration
25

26 %% Initialization of the client
27 [theClient, errCode] = InitializeConnection(ClientIP, ServerIP, CastMethod);
28 if errCode ~= 0
29 return
30 end
31

32 %% Retrievel of information
33 frameRate = GetFrameRate(theClient);
34 fprintf('\n[NatNet] OptiTrack Frame Rate : %d fps\n\n', frameRate)
35 rigidBodies = RetrieveObjectData(theClient);
36

37 %% Initialize figure and hold
38 locationFigure = figure('Name','AGV Position Data','NumberTitle','off');
39

40 %% Create frame ready event handler
41 ls = addlistener(theClient,'OnFrameReady2',@(src,event)FrameReadyCallback(src,event));
42 uiwait(locationFigure);
43

44 %% Termination of the connection
45 % Stop the event handler
46 if(~isempty(ls))
47 delete(ls);
48 end
49

50 % Display total dropped frames and duplicate frames
51 fprintf('\n[NatNet] Total Dropped Frames : %d frame(s)', totalDropped);
52 fprintf('\n[NatNet] Total Duplicate Frames : %d frame(s)', totalDuplicate);
53

54 % Disconnect with NatNet server. Improper termination will lead to Matlab errors!
55 UninitializeConnection(theClient);
56 clear functions
57

58

59 %% Process data
60

61 if calibrate
62 % perform a circle fit on the data and create circle data for plotting.
63 [Cx, Cz, R] = Landau_Smith(AGV(vehicleID).x, AGV(vehicleID).z);
64 theta = 0 : pi/180 : 2*pi;
65 xcircle = R * cos(theta) + Cx;
66 zcircle = R * sin(theta) + Cz;
67

68 % calculate the formula of the lines that represent the parallel and
69 % tangent to the AGV's direction.
70 arrayIndex = length(AGV(vehicleID).yaw);
71 m = tan(AGV(vehicleID).yaw(arrayIndex));
72 n = AGV(vehicleID).z(arrayIndex) - m * AGV(vehicleID).x(arrayIndex);
73 z1 = m * AGV.rangeX + n;
74 p = - 1 / m;
75 q = Cz - (p * Cx);
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76 z2 = p * AGV.rangeX + q;
77

78 Ix = (q - n) / (m - p);
79 Iz = m * Ix + n;
80 Fx = AGV(vehicleID).x(arrayIndex) + (a1 * cos(AGV(vehicleID).yaw(arrayIndex)));
81 Fz = AGV(vehicleID).z(arrayIndex) + (a1 * sin(AGV(vehicleID).yaw(arrayIndex)));
82 Rx = AGV(vehicleID).x(arrayIndex) - (a2 * cos(AGV(vehicleID).yaw(arrayIndex)));
83 Rz = AGV(vehicleID).z(arrayIndex) - (a2 * sin(AGV(vehicleID).yaw(arrayIndex)));
84

85 % calculate the distance between intersect point I and the front and
86 % rear axles to determine the location of point I, also calculate the
87 % shortest distance between the circle center and point I.
88 distFront = sqrt((Fx - Ix)^2 + (Fz - Iz)^2);
89 distRear = sqrt((Rx - Ix)^2 + (Rz - Iz)^2);
90 distCenter = sqrt((Cx - Ix)^2 + (Cz - Iz)^2);
91

92 if distFront == 0
93 % intersect point I is exactly on front axle and therefore the
94 % rotation is zero, but the rotation of the rear axle is non-zero.
95 state = 1;
96 angleF = 0;
97 angleR = atan2((a1 + a2), distCenter);
98

99 elseif distRear == 0
100 % intersect point I is exactly on rear axle and therefore the
101 % rotaton is zero, but thre rotation of the front axle is non-zero.
102 state = 2;
103 angleF = atan2((a1 + a2), distCenter);
104 angleR = 0;
105

106 elseif and(distFront < (a1 + a2), distRear < (a1 + a2));
107 % intersect point I is between the front and rear axle, both axles
108 % are now rotated with opposite signs.
109 state = 3;
110 angleF = atan2(distFront, distCenter);
111 angleR = -atan2(distRear, distCenter);
112

113 elseif and(distFront < distRear, distRear > (a1 + a2));
114 % intersect point I is in front of the front axle, both axles are
115 % now rotated in similar direction but with different angles and
116 % negative sign.
117 state = 4;
118 angleF = -atan2(distFront, distCenter);
119 angleR = -atan2(distRear, distCenter);
120

121 elseif and(distFront > distRear, distFront > (a1 + a2));
122 % intersect point I is behind the rear axle, both axles are now
123 % rotated in a similar direction but with different angles and a
124 % positive sign.
125 state = 5;
126 angleF = atan2(distFront, distCenter);
127 angleR = atan2(distRear, distCenter);
128
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129 end
130 side = sign(((Fx - Rx) * (Cz - Rz)) - ((Fz - Rz) * (Cx - Rx)));
131 angleF = side * ((angleF / pi) * 180); % express angle in degrees with correct sign
132 angleR = side * ((angleR / pi) * 180); % express angle in degrees with correct sign
133

134 % recreate location data figure with similar labels and dimensions.
135 locationFigure = figure('Name','AGV Position Data','NumberTitle','off');
136

137 hold on
138

139 title('Mocap Position Plot')
140 xlabel('X position [m]')
141 ylabel('Z position [m]')
142 set(gca,'YLim',[-2.5 2.5])
143 set(gca,'XLim',[-2.5 2.5])
144 set(gca,'XGrid','on','YGrid','on')
145 axis square
146

147 % plot all available data into new figure.
148 plot(AGV(vehicleID).x, AGV(vehicleID).z);
149 plot(AGV.rangeX, z1);
150 plot(AGV.rangeX, z2);
151 plot(xcircle, zcircle);
152 plot([Fx Rx], [Fz Rz]);
153 plot([Fx Cx], [Fz Cz]);
154 plot([Rx Cx], [Rz Cz]);
155

156 hold off
157

158 fprintf('[Calibration] State of rotation : state %d\n', state)
159 fprintf('[Calibration] Front axis angle : %4.2f degrees\n', angleF)
160 fprintf('[Calibration] Rear axis angle : %4.2f degrees\n', angleR)
161

162

163 if not(isempty(AGV))
164 for i = 2 : length(AGV(vehicleID).time)
165 if AGV(vehicleID).time(i) - AGV(vehicleID).time(i-1) > 0.000001
166 ds = sqrt((AGV(vehicleID).x(i) - AGV(vehicleID).x(i-1))^2 + (AGV(vehicleID).z(i) - AGV(vehicleID).z(i-1))^2);
167 dt = AGV(vehicleID).time(i) - AGV(vehicleID).time(i-1);
168 AGV(vehicleID).velocity(i) = ds / dt;
169 else
170 AGV(vehicleID).velocity(i) = 0;
171 end
172 end
173 if speedFig
174 plot(AGV(vehicleID).time,AGV(vehicleID).velocity)
175 end
176 end
177 velocity = median(AGV(vehicleID).velocity);
178 fprintf('[Calibration] Velocity : %4.2f m/s\n', velocity)
179 end
180

181 %% Write to file
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182 if storeData
183 if not(isempty(AGV))
184 xlswrite(filename, transpose(AGV(vehicleID).time), sheet, 'A1');
185 xlswrite(filename, transpose(AGV(vehicleID).x), sheet, 'C1');
186 xlswrite(filename, transpose(AGV(vehicleID).z), sheet, 'D1');
187 xlswrite(filename, transpose(AGV(vehicleID).yaw), sheet, 'E1');
188 xlswrite(filename, transpose(AGV(vehicleID).velocity), sheet, 'F1');
189 end
190 end

A.2 Parameters

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab parameters file for position tracking system
4 %%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7

8 % IP addresses of server and client. The client is the computer which
9 % receives the postion data from Motive:Tracker and the server is the

10 % computer which sends the data.
11

12

13 %% Connection parameters
14

15 ClientIP = char('145.94.185.77');
16 ServerIP = char('131.180.120.154');
17

18 CastMethod = 1; %0 = Multicast, 1 = Unicast
19

20 %% Random framerate
21

22 desiredFrameRate = 120; % in fps. Do not increase this value above 120 fps.
23

24 %% Calibration
25 vehicleID = 1;
26

27 a1 = 0.181; % distance from center of mass to front axle
28 a2 = 0.121; % distance from center of mass to rear axle
29

30 %% File properties (xls-file with position data)
31 filename = 'Calibration.xlsx';
32 sheet = 1;
33

34 %% Figure parameters
35 useFigure = true;
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A.3 InitializeConnection

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab function to initialize the connection between Matlab and
4 %%% Motive:Tracker by using NatNet SDK.
5 %%%
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 % Input is the local IP-address of the client computer and the server
9 % computer, the output is the NatNet Client library.

10

11 function [theClient, errCode] = InitializeConnection(ClientIP, ServerIP, Method)
12 try
13 % Determin the version of Matlab on Windows to match with the
14 % correct library. Display commands are for debugging.
15 syst = computer;
16 errCode = 0;
17 if strcmp(syst,'PCWIN')
18 display('[NatNet] Running on 32-bit Windows.')
19 PCversion = 'x86';
20 elseif strcmp(syst,'PCWIN64')
21 display('[NatNet] Running on 64-bit Windows.')
22 PCversion = 'x64';
23 else
24 display('[NatNet] Unsupported Operating System.')
25 errCode = 1;
26 return
27 end
28

29 display('[NatNet] Creating Client.')
30

31 curDir = pwd;
32 mainDir = curDir;
33 dllPath = fullfile(mainDir,'lib',PCversion,'NatNetML.dll');
34 assemblyInfo = NET.addAssembly(dllPath);
35

36 % Create an instance of a NatNet client
37 theClient = NatNetML.NatNetClientML(Method); % Input = iConnectionType: 0 = Multicast, 1 = Unicast
38 version = theClient.NatNetVersion();
39 fprintf('[NatNet] Client Version : %d.%d.%d.%d\n',version(1),version(2),version(3),version(4));
40

41 % Connect to an OptiTrack server (e.g. Motive)
42 display('[NatNet] Connecting to OptiTrack Server.')
43 flg = theClient.Initialize(ClientIP, ServerIP); % flg = returnCode: 0 = Success
44 if (flg == 0)
45 display('[NatNet] Initialization Succeeded')
46 else
47 display('[NatNet] Initialization Failed')
48 errCode = 2;
49 return
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50 end
51

52 % Catch any errors that might occur during the execution of the
53 % function and display them.
54 catch err
55 display(err);
56 end
57 end

A.4 GetFrameRate

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab file for retrieving the frame rate of the camera system.
4 %%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 % Input is the client information and output is the frame rate.
8

9 function [frameRate] = GetFrameRate(theClient)
10 [byteArray, retCode] = theClient.SendMessageAndWait('FrameRate');
11 if(retCode == 0)
12 byteArray = uint8(byteArray);
13 frameRate = typecast(byteArray, 'single');
14 end
15 end

A.5 RetrieveObjectData

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab function to retrieve data from the Motive:Tracker server.
4 %%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 % Input is the client data from NatNet SDK, output is the number of rigid
8 % bodies that are known to Motive:Tracker.
9

10 function [maxBodies] = RetrieveObjectData(theClient)
11 dataDescriptions = theClient.GetDataDescriptions();
12 maxBodies = 0;
13

14 % print data of the available markers and rigid bodies
15 fprintf('[NatNet] Tracking Models : %d\n\n', dataDescriptions.Count);
16
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17 for idx = 1 : dataDescriptions.Count
18 descriptor = dataDescriptions.Item(idx-1);
19 if(descriptor.type == 0)
20 fprintf('\n\tMarkerset : %s\t(%d markers)\n', char(descriptor.Name), descriptor.nMarkers);
21 markerNames = descriptor.MarkerNames;
22 for markerIndex = 1 : descriptor.nMarkers
23 name = markerNames(markerIndex);
24 fprintf('\t\tMarker : %-20s\t(ID=%d)\n', char(name), markerIndex);
25 end
26 elseif(descriptor.type == 1)
27 maxBodies = max(maxBodies, descriptor.ID);
28 fprintf('\n\tRigid Body : %s\t\t(ID=%d, ParentID=%d)\n', char(descriptor.Name),descriptor.ID,descriptor.parentID);
29 elseif(descriptor.type == 2)
30 fprintf('\n\tSkeleton : %s\t(%d bones)\n', char(descriptor.Name), descriptor.nRigidBodies);
31 fprintf('\t\tID : %d\n', descriptor.ID);
32 rigidBodies = descriptor.RigidBodies;
33 for boneIndex = 1 : descriptor.nRigidBodies
34 rigidBody = rigidBodies(boneIndex);
35 fprintf('\t\tBone : %-20s\t(ID=%d, ParentID=%d)\n', char(rigidBody.Name), rigidBody.ID, rigidBody.parentID);
36 end
37 end
38 end
39 end

A.6 FrameReadyCallback

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab frame ready callback function.
4 %%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 function FrameReadyCallback(src, event)
8 frameOfData = event.data;
9 DataProcessing(frameOfData);

10 end

A.7 DataProcessing

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab data processing.
4 %%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6
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7 % This function is called every time a new frame from OptiTrack on a
8 % specific port is detected by Matlab. The function is not a loop, but
9 % retains its variables via the "persistent" and "global" declaration.

10 function DataProcessing(frameOfData)
11 persistent lastFrameTime;
12 persistent initialFrameTime;
13 persistent arrayIndex;
14 persistent frameCounter;
15 persistent fitCounter;
16

17 global frameRate;
18 global desiredFrameRate;
19 global vehicleID;
20 global totalDropped;
21 global totalDuplicate;
22 global AGV;
23

24 % Create the initial figure and location for first start-up. Will not
25 % be called after the first time.
26 if isempty(AGV)
27 lastFrameTime = frameOfData.fLatency;
28 initialFrameTime = frameOfData.fLatency;
29 totalDropped = 0;
30 totalDuplicate = -1; % the first frame is always duplicate, therefore compensate with -1
31 arrayIndex = 1;
32 frameCounter = 0;
33 fitCounter = 0;
34 AGV.rangeX = -2.5:0.1:2.5; % define axis for drawing calibration lines
35

36 % Create initial plot of the AGV location to prevent Matlab drawing
37 % a line between [0,0] and the AGV location. And create a compass
38 % figure that displays the rotation of vehicles.
39 if(frameOfData.RigidBodies.Length() > 0)
40 hold on
41 for ID_init = vehicleID : vehicleID
42 rigidBodyData = frameOfData.RigidBodies(ID_init);
43

44 % Determine the x and the z coordinates of the AGVs that
45 % correspond to the horizontal plane locations.
46 AGV(ID_init).x(1) = rigidBodyData.x;
47 AGV(ID_init).z(1) = -rigidBodyData.z; % mirror the location Z-axis so that the plotted figure corresponds to your view.
48 AGV(ID_init).Location = plot(AGV(ID_init).x, AGV(ID_init).z);
49

50 % Determine yaw of the vehicle by testing for a singularity
51 % (either north pole or south pole). The quaternion
52 % information from OptiTrack is transformed to euler
53 % angles.
54 pole = rigidBodyData.qx * rigidBodyData.qy + rigidBodyData.qz * rigidBodyData.qw;
55 if pole > 0.499
56 AGV(ID_init).yaw(1) = 2 * atan2(rigidBodyData.qx, rigidBodyData.qw);
57 elseif pole < -0.499
58 AGV(ID_init).yaw(1) = -2 * atan2(rigidBodyData.qx, rigidBodyData.qw);
59 else
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60 AGV(ID_init).yaw(1) = atan2(2 * rigidBodyData.qy * rigidBodyData.qw - 2 * rigidBodyData.qx * rigidBodyData.qz, 1 - 2 * rigidBodyData.qy^2 - 2 * rigidBodyData.qz^2);
61 end
62

63 m = tan(AGV(ID_init).yaw(1));
64 n = AGV(ID_init).z(1) - m * AGV(ID_init).x(1);
65 z1 = m * AGV.rangeX + n;
66 AGV(ID_init).Rotation = plot(AGV.rangeX, z1);
67 end
68

69 title('Mocap Position Plot')
70 xlabel('X position [m]')
71 ylabel('Z position [m]')
72 set(gca,'YLim',[-2.5 2.5])
73 set(gca,'XLim',[-2.5 2.5])
74 set(gca,'XGrid','on','YGrid','on')
75 axis square
76 hold off
77 end
78 end
79

80 % As this function is recalled and several variables are not declared
81 % as persistent, these variables need to be created before they are
82 % used. This function initially assumes that a newFrame is false, and
83 % calculates if this is indeed a new frame later on.
84 newFrame = false;
85 droppedFrames = false;
86 frameTime = frameOfData.fLatency;
87 calcFrameInc = round((frameTime - lastFrameTime) * frameRate);
88

89 % This part of the code counts the number of times this function is
90 % called and matches this with the desired framerate that can be
91 % defined in the parameters file.
92 frameCounter = frameCounter + 1;
93 if frameCounter == ceil(frameRate/desiredFrameRate)
94 arrayIndex = arrayIndex + calcFrameInc;
95 if(arrayIndex==0)
96 arrayIndex = 1;
97 end
98 frameCounter = 0;
99 newFrame = true;

100 end
101

102 % Determine whether a frame is dropped or duplicate, else it is a
103 % marked as a new frame.
104 if(calcFrameInc > 1)
105 %fprintf('\nDropped Frame(s) : %d\n\tLastTime : %.3f\n\tThisTime : %.3f\n', calcFrameInc-1, lastFrameTime, frameTime);
106 droppedFrames = true;
107 totalDropped = totalDropped + 1;
108 elseif(calcFrameInc == 0)
109 %display('Duplicate Frame')
110 newFrame = false;
111 totalDuplicate = totalDuplicate + 1;
112 end
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113

114 % Try for a new frame and test if rigid bodies are present in data.
115 % Then for each rigid body retrieve position and rotation data from
116 % OptiTrack. The information is then displayed in a figure. If an error
117 % occurs, it is catched and presented without stopping the program.
118 try
119 if(newFrame)
120 if(frameOfData.RigidBodies.Length() > 0)
121 for ID = vehicleID : vehicleID
122 % Read data of RigidBody ID.
123 rigidBodyData = frameOfData.RigidBodies(ID);
124

125 % If dropped frames have occured, fill in the index
126 % with values.
127 if(droppedFrames)
128 % Fill the array with values when dropped frames occurs.
129 for i = 1 : calcFrameInc
130 fillIndex = arrayIndex - i;
131 if(fillIndex > 1)
132 AGV(ID).x(fillIndex) = rigidBodyData.x;
133 AGV(ID).z(fillIndex) = -rigidBodyData.z; % mirror the location Z-axis so that the plotted figure corresponds to your view.
134 AGV(ID).time(fillIndex) = lastFrameTime - initialFrameTime; % fill the index with last frame time to prevent incorrect measurement.
135

136 pole = rigidBodyData.qx * rigidBodyData.qy + rigidBodyData.qz * rigidBodyData.qw;
137 if pole > 0.499
138 AGV(ID).yaw(fillIndex) = 2 * atan2(rigidBodyData.qx, rigidBodyData.qw);
139 elseif pole < -0.499
140 AGV(ID).yaw(fillIndex) = -2 * atan2(rigidBodyData.qx, rigidBodyData.qw);
141 else
142 AGV(ID).yaw(fillIndex) = atan2(2 * rigidBodyData.qy * rigidBodyData.qw - 2 * rigidBodyData.qx * rigidBodyData.qz, 1 - 2 * rigidBodyData.qy^2 - 2 * rigidBodyData.qz^2);
143 end
144 end
145 end
146 end
147 AGV(ID).x(arrayIndex) = rigidBodyData.x;
148 AGV(ID).z(arrayIndex) = -rigidBodyData.z; % mirror the location Z-axis so that the plotted figure corresponds to your view.
149 AGV(ID).time(arrayIndex) = frameTime - initialFrameTime;
150 set(AGV(ID).Location,'XData',AGV(ID).x,'YData',AGV(ID).z)
151

152 % Calculate the yaw of the AGV, regarding
153 % singularities.
154 pole = rigidBodyData.qx * rigidBodyData.qy + rigidBodyData.qz * rigidBodyData.qw;
155 if pole > 0.499
156 AGV(ID).yaw(arrayIndex) = 2 * atan2(rigidBodyData.qx, rigidBodyData.qw);
157 elseif pole < -0.499
158 AGV(ID).yaw(arrayIndex) = -2 * atan2(rigidBodyData.qx, rigidBodyData.qw);
159 else
160 AGV(ID).yaw(arrayIndex) = atan2(2 * rigidBodyData.qy * rigidBodyData.qw - 2 * rigidBodyData.qx * rigidBodyData.qz, 1 - 2 * rigidBodyData.qy^2 - 2 * rigidBodyData.qz^2);
161 end
162

163 m = tan(AGV(ID).yaw(arrayIndex));
164 n = AGV(ID).z(arrayIndex) - (m * AGV(ID).x(arrayIndex));
165 z1 = m * AGV.rangeX + n;

Research assignment T.J.W. Bentvelsen



68 Matlab code

166 set(AGV(ID).Rotation,'XData',AGV.rangeX,'YData',z1)
167 end
168 end
169 end
170 catch err
171 display(err);
172 end
173

174 lastFrameTime = frameTime;
175 end

A.8 UninitializeConnection

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%%
3 %%% Matlab function to uninitialize the connection between Matlab and
4 %%% Motive:Tracker by using NatNet SDK.
5 %%%
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 % Input is the client data from NatNet SDK
9

10 function UninitializeConnection(theClient)
11 theClient.Uninitialize();
12 fprintf('\n[NatNet] Connection terminated\n\n')
13 end
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Detailed velocity tables

Each of the following tables has the single-, double- and crab-steer possibilities presented
for 7 different input rotations. Each table also presents this for two different driving
velocity inputs. The outputs are medians of the velocity in m/s. A total of 16 different
velocities are tested in these tables, for 3 steering possibilities and 7 rotations. This
gives 336 results.

ANGLE VELOCITY [m/s] for 900 VELOCITY [m/s] for 1200
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,28 0,24 0,31 0,27 0,24 0,30
1100 0,29 0,26 0,32 0,29 0,26 0,31
1300 0,31 0,31 0,32 0,31 0,30 0,31
1500 0,32 0,32 0,32 0,32 0,32 0,32
1700 0,31 0,31 0,32 0,31 0,30 0,31
1900 0,29 0,26 0,32 0,29 0,26 0,31
2100 0,28 0,24 0,31 0,27 0,24 0,30
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ANGLE VELOCITY [m/s] for 1250 VELOCITY [m/s] for 1300
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,25 0,21 0,27 0,22 0,20 0,25
1100 0,26 0,24 0,28 0,23 0,22 0,25
1300 0,28 0,27 0,28 0,26 0,25 0,26
1500 0,29 0,29 0,29 0,26 0,26 0,26
1700 0,28 0,27 0,28 0,26 0,25 0,26
1900 0,26 0,24 0,28 0,23 0,22 0,25
2100 0,25 0,21 0,27 0,22 0,20 0,25

ANGLE VELOCITY [m/s] for 1350 VELOCITY [m/s] for 1400
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,19 0,17 0,22 0,13 0,11 0,15
1100 0,20 0,18 0,22 0,14 0,12 0,15
1300 0,22 0,21 0,22 0,16 0,15 0,16
1500 0,22 0,22 0,22 0,16 0,16 0,16
1700 0,22 0,21 0,22 0,16 0,15 0,16
1900 0,20 0,18 0,22 0,14 0,12 0,15
2100 0,19 0,17 0,22 0,13 0,11 0,15

ANGLE VELOCITY [m/s] for 1450 VELOCITY [m/s] for 1500
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,05 0,03 0,07 0,00 0,00 0,00
1100 0,06 0,04 0,07 0,00 0,00 0,00
1300 0,06 0,05 0,07 0,00 0,00 0,00
1500 0,07 0,07 0,07 0,00 0,00 0,00
1700 0,06 0,05 0,07 0,00 0,00 0,00
1900 0,06 0,04 0,07 0,00 0,00 0,00
2100 0,05 0,03 0,07 0,00 0,00 0,00

ANGLE VELOCITY [m/s] for 1550 VELOCITY [m/s] for 1600
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,00 0,00 0,00 0,09 0,07 0,10
1100 0,00 0,00 0,00 0,10 0,09 0,11
1300 0,00 0,00 0,00 0,12 0,11 0,12
1500 0,01 0,01 0,01 0,12 0,12 0,12
1700 0,00 0,00 0,00 0,12 0,11 0,12
1900 0,00 0,00 0,00 0,10 0,09 0,11
2100 0,00 0,00 0,00 0,09 0,07 0,10
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ANGLE VELOCITY [m/s] for 1650 VELOCITY [m/s] for 1700
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,15 0,13 0,18 0,20 0,17 0,21
1100 0,16 0,15 0,18 0,22 0,20 0,22
1300 0,18 0,18 0,19 0,21 0,23 0,23
1500 0,19 0,19 0,19 0,24 0,24 0,24
1700 0,18 0,18 0,19 0,21 0,23 0,23
1900 0,16 0,15 0,18 0,22 0,20 0,22
2100 0,15 0,13 0,18 0,20 0,17 0,21

ANGLE VELOCITY [m/s] for 1750 VELOCITY [m/s] for 1800
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,23 0,19 0,26 0,25 0,21 0,28
1100 0,25 0,23 0,27 0,27 0,25 0,29
1300 0,27 0,26 0,28 0,29 0,29 0,29
1500 0,28 0,28 0,28 0,30 0,30 0,30
1700 0,27 0,26 0,28 0,29 0,29 0,29
1900 0,25 0,23 0,27 0,27 0,25 0,29
2100 0,23 0,19 0,27 0,25 0,21 0,28

ANGLE VELOCITY [m/s] for 1850 VELOCITY [m/s] for 2100
SINGLE DOUBLE CRAB SINGLE DOUBLE CRAB

900 0,27 0,23 0,30 0,27 0,23 0,30
1100 0,30 0,27 0,31 0,30 0,27 0,31
1300 0,31 0,31 0,31 0,31 0,31 0,31
1500 0,32 0,32 0,32 0,32 0,32 0,32
1700 0,31 0,31 0,31 0,31 0,31 0,31
1900 0,30 0,27 0,31 0,30 0,27 0,31
2100 0,27 0,23 0,30 0,27 0,23 0,30
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Servo information
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Appendix D

Instructions

D.1 How to set up the OptiTrack system
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How to set up the OptiTrack system 
This document describes how to set up the OptiTrack system for use in the AGV laboratory at the 

3mE faculty of the Delf University of Technology. 

General information 
This tutorial learns you how to set up the OptiTrack system with Flex 13 cameras (1.3 MP and 120 

FPS). For documentation and references, visit the website http://www.optitrack.com/. Depending on 

the size of the marker, a maximum tracking distance is guaranteed by the company. This distance is 

denoted in the table below. The metric values are defined similarly. 

Table 1 – Maximum tracking distance for each marker size, measured from the face of the camera. 

Distance 28 ft. 35 ft. 39,5 ft. 

Marker size 7/16 in. 5/8 in. 3/4 in. 
 

Distance 8.5 m. 11 m. 12 m. 

Marker size 11.1125 mm. 15.87500 mm. 19.05 mm. 
 

For the system to work properly, a clean and non-reflective floor is requires to ensure that all 

returning infrared light (850 nm) is solely from the tracking markers, however it is impossible to fully 

eliminate all infrared sources. It could prove useful to eliminate outdoor light by blocking the 

windows. 

 

Figure 1 – Clean and non-reflective environment. 

The OptiTrack systems can be set up in multiple ways with different configurations. Typical setups 

are denoted in the table below with the associated capture volume. 

Table 2 –  Different configurations for the OptiTrack system setup, depending on the amount of cameras. 

Number of cameras 4 6 8 12 
Setup Circular Circular Rectangular Rectangular 

Capture volume [ft.] 12 ø x 7+ 16 ø x 7+ 24 x 24 x 8+ 24 x 24 x 8+ 

Setup area [ft.] 20 ø 20 ø 24 x 24 24 x 24 

Capture volume [m] 3,66 ø x 2,14+ 4,88 ø x 2,14+ 7,3 x 7,3 x 2,4+ 7,3 x 7,3 x 2,4+ 

Setup area [m] 6,1 ø 6,1 ø 7,3 x 7,3 7,3 x 7,3 

Trackable bodies 4 5 6 8 



Setup of a specific configuration 
The following part is intended for  the step by step set up of the OptiTrack Flex 13 system. To ensure 

proper installation, this guide is illustrated. 

Step 1 – Unpack the tripod and set it to its maximum height. 

      

Step 2 – Remove the socket from the tripod head. 

      

Step 3 – Use the thread to mount the camera on the socket and then mount the socket on the tripod. 

      

 



Step 4 – Place the cameras at the desired locations. 

 

Step 5 – For each camera, connect the mini USB cable to the camera and make sure that cable strain 

at the connector is relieved by tying the Velcro tightly to the tripod (see picture). 

       

Step 6 – Connect each red USB connector to the OptiTrack OptiHub starting from 1 to 6. This cable 

may not exceed the total length of 5 meter, as the signal will be lost. If the OptiHub is too far from 

the camera, consider placing another OptiHub and different camera grouping. 

      

 



Step 7 – Connect the power supply (left) to the correct input of the OptiHub. 

       

Step 8 – Connect the data cable (left) Type B USB connector to the correct input of the OptiHub. The 

other end, regular Type A USB cable, can be inserted into the computer USB port. 

      

A single OptiHub with 2 connected cameras, a power cable and data cable will look like the figure 

below. 

 



When multiple OptiHubs are used, synchronization has to be performed with the synchronization 

cable (left). The cable has to be connected between the master device output (red) and the slave 

device input (blue). When synchronizing three or more OptiHubs, form a serial connection in which 

the output of a slave device is the input of the next device and so on. Do not connect the last slave 

device to the master device. 

      

 

A fully connected master device should look like the OptiHub depicted in the figure below. 

 

When using multiple OptiHubs, connect each individual OptiHub directly to the computer using the 

data cable. If this cable proves to be insufficient in length (standard length is 5 meter), attach a USB 

2.0 extension cable (figure below) to the cable. Each extension cable is 5 meter and the total length 



between OptiHub and computer may not exceed 15 meter. Keep in mind that the USB port then has 

to be connected directly to the computers motherboard (without internal cables) to prevent data 

loss. 

 

 

Connect multiple OptiHubs to the computer or laptop by running the data cable of each individual 

OptiHub to the computer USB port. Note that you should not connect the data cable of an OptiHub 

to the camera port of a different OptiHub. 
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How to calibrate the OptiTrack system 
Continuing on from the previous guide, where setting up the OptiTrack system is explained, this 

document shows how to calibrate the system. 

General information 
For the system calibration, it is required to download the Motive:Tracker software from the website 

http://www.optitrack.com/. When the download is complete, install the software. When the 

installation is finished, open the program and click the “License folder” button. 

 

Copy and paste the license file (.dat extension) from the Laboratory Dropbox into this folder. 

 

 

 



Starting Motive:Tracker 
To start the Motive:Tracker software, perform the following steps. 

Step 1 – Insert the hardware key that is attached to the envelope (left figure) into the computer USB 

port and start the program (right figure) by opening the shortcut or clicking retry in the license 

interface. 

     

Step 2 – Select the camera group containing all cameras (blue) and set the mode (red) to “Aiming”, 

which helps with adjusting the camera position such that full coverage of the field is achieved. 

 



 

Step 3 – View the computer screen while aiming the cameras. Pressing the aim button (blue in the 

figure below) on the back of the camera, brings up a larger display. Exit aiming mode for the camera 

by pressing the button again and move to the next camera until a satisfactory setup is achieved. Now 

switch back to “Tracking mode” in the Motive:Tracker interface. 

 

 

 

 

 

 

 



System calibration 
After starting the software and aiming the cameras, the system needs to be calibrated. 

Step 1 –  Set the cameras to tracking mode and remove all infrared reflecting objects from the 

subject area. It may happen that some unknown objects still reflect light or that opposing camera’s 

see each other’s infrared  LED lights. To circumvent this problem, use the “Mark visible markers” 

option (red) or block them manually. 

 

Step 2 – Pick up the “wand” (left) and select the “start wanding” option (blue) in the menu to 

calibrate the system. 

 

 

 

 



Step 3 – Wave the “wand” in the subject area and make sure the full area is covered for high quality 

results. When this is achieved, it is displayed in the right menu with a green background and the 

“calculate” button (blue) can be pressed. A screen is displayed with the results and these can be 

accepted. 

 

Step 4 – The system is now calibrated and the camera positions are displayed in the 3D view. One 

thing that remains is the leveling of the ground plane. 

 

 



Step 5 – To level the ground plane, place the “calibration square” (left figure) that is provided in the 

subject area and click the “set ground plane” button (blue). Before pressing the button, make sure 

that the calibration square is level and that the Z is positioned correctly. As the markers on the 

calibration square are above the ground plane, apply the correct offset to the plane. 

  

 

If all steps are performed correctly, the system is now calibrated and ready for use.  
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How to connect Matlab with the OptiTrack system 
 

Following the other two instruction on how to set up and calibrate the OptiTrack system, this 

instruction helps with connecting OptiTrack and Matlab via the eduroam network. The network is part 

of the TU Delft environment and can be connected to by students and staff with either a cable or 

wireless connection. OptiTrack requires a computer which is allowed to broadcast on ports 1510 and 

1511. Ask the IT department for more information on this. Once the computer is given access to 

broadcast on eduroam, take the following steps to connect Matlab: 

 

Step 1 – Open OptiTrack’s Motive:Tracker software and click on the “Streaming Pane” icon visible 

below. 

 

 

 

 

 

 

 

 

 

 

 



Step 2 – Clicking the button will open the Data streaming window. Make sure to note the “Local 

Interface” IP-address, note which type of streaming you use (Unicast or Multicast) and check the box 

“Broadcast frame Data”. The “NET” icon in the bottom right will turn orange when the box is checked 

and turn green once a program has connected with Motive:Tracker. 

 

  



Step 3 – Now that OptiTrack is set-up, Matlab can connect to it. An example program is provided in the 

NatNet SDK that can be downloaded from the website. The version that is used is NatNet SDK 2.7 and 

contains a folder with sample code, of which one is concerned with Matlab. A few things are important 

to set properly, namely; 

- The code uses a library which allows for the connection to OptiTrack. The library is dependent 

on which version of Windows you are using. It assumes that you are using a 64-bit OS, but 

when using a 32-bit OS, the marked portion of needs to be replaced by: “dllPath = 

fullfile(mainDir,’lib’,’x86’,’NatNetML.dll’). Make sure that you do not change the hierarchy of 

the NatNet SDK folder, Matlab then cannot find the library. 

- The orange marked portion of the code needs to be adjusted for the type of connection you 

make. OptiTrack can either make a Multicast and Unicast connection. Experience learned that 

it does not matter which type is used, but both Matlab and OptiTrack need to be set-up with 

the same type. 

- The final marked portion of code needs to be adjusted according to the OptiTrack server IP-

address (ServerIP) and your computers personal IP-address (ClientIP). The server’s IP-address 

is found at the “Local Interface” from the figure above. The client’s IP-address can be obtained 

by opening windows command and typing “ipconfig”. 

 

Step 4 – Now that everything is done, you can run the Matlab code. If all goes well, you will see a graph 

that shows the Euler angles of the object in Motive:Tracker. 

 

Note – This is an instruction for the basic NatNet SDK code and has been written in the case that all 

information is lost. An altered version of the program, for the purpose of vehicle tracking, is available 

on the AGV lab Dropbox. Using that code is quite similar. The IP-addresses and connection type can be 

adjusted in the “Parameters” file. Also, in this code the selection of 32-bit and 64-bit is automated and 

does not require altering. 
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