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Abstract. A Large Eddy Simulation (LES) with four different closure models are ana-
lyzed in OpenFOAM, an open source Computional Fluid Dynamics (CFD) package and
validated for the determination of the streamwise and spanwise coherence length of the
pressure field below a turbulent boundary layer at low Reynolds numbers. Matching re-
sults are found for outer scaling mean and fluctuating velocity data as well as for the
pressure spectrum data. The coherence function shows a similar decay with respect to
various literature studies. An exponential fit is applied to determine the coherence length.
Agreement within one displacement thickness error in streamwise and spanwise direction
is found for the coherence length with semi-empirical data. The spanwise coherence length
is considerably smaller than the streamwise coherence length, but indicates a clear peak in
the low frequency regime originating from large coherent structures with relatively small
amplitudes.

1 INTRODUCTION

Far field noise pollution is one of the main design drivers for, for example on-shore wind
energy. The turbulent trailing edge noise of a wind turbine blade is currently one of the
most dominant noise sources on a wind turbine and therefore understanding the physics
associated with the generation and propagation is of main importance for the design of
more silent wind turbines. Regarding hybrid aeroacoustic methods, pressure and veloc-
ity fluctuations are the main quantities of interest for determining the acoustic sources.
Especially the spanwise coherence of the wall pressure is of importance for the estima-
tion of, for example, trailing edge noise and vibro-structural problems. Several authors,
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such as Amiet [1] and Howe [2] have discussed difraction theory regarding trailing edge
noise. Here, the power spectral density and spanwise coherence length of hydrodynamic
pressure fluctuations were used to estimate the acoustic far field spectrum. Amiet [1] and
Howe [2] assumed that the incident pressure fluctuations on the wall below the turbulent
boundary convect over the trailing edge, which acts as an impedance discontinuity, where
the fluctuations are scattered in the form of acoustical waves. This theory forms the basis
of multiple experimental and numerical studies, such as the LES study of Christophe [3]
or the surface pressure measurements of Brooks and Hodgson [4].

This study focuses on the very first part of capturing trailing edge noise; the physically
correct simulation of a turbulent boundary layer of low Mach number flow. Particularly,
the spanwise coherence length of the hydrodynamic pressure fluctuations is investigated.
When the methodology proposed in next section is shown to be successful the study will
be extended to a finite flat plate, simulating trailing edge noise.

Numerical data will be obtained from a Large Eddy Simulation (LES) using the open-
source package OpenFOAM in combination with four sub-grid scale closure models. A
Direct Numerical Simulation (DNS) and Particle Image Velocitimetry (PIV) reference
study of Pröbsting et al. [5] is used to compare the results found.

2 METHODOLOGY

2.1 Governing fluid equations

Since a low Mach number flow over an infinite flat plate is considered, the incompress-
ible Navier-Stokes equations are used to describe the fluid dynamics. Further, Newtonian
fluid properties are assumed and gravity forces and other body forces are neglected, re-
sulting in the following simplified set of equations, describing the conservation of mass
and momentum:

∇ · u = 0, (1)

∂u

∂t
+∇ · (uu) = −∇p

ρ
+∇ · (ν∇u), (2)

wherein u are the different velocity components, p is the pressure, ρ the density and ν
the kinematic viscosity.

A LES methodology is applied, resolving all large eddy scales, while smaller eddy scales
are modeled. This methodology is known as the balanced form between completely mod-
eling the turbulence (Reynolds Averaged Navier-Stokes, RANS) and completely solving
the turbulence (Direct Numerical Simulation, DNS).

Discretization of the first time derivative is performed via a second order backward
difference scheme. The velocity and pressure gradient are discretized using a second or-
der, Gaussian linear interpolation (central differencing), while the velocity divergence is
interpolated using a second order, Gaussian linear interpolation with filtering for high-
frequency ringing. Finally the Laplacian of the kinematic viscosity and the velocity is dis-
cretized using the second order, Gaussian unbounded, second order, conservative scheme.
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The discretized set of equation is solved in the open-source package OpenFOAM, based
on the Finite Volume Method (FVM) [6]. The large time-step transient solver for incom-
pressible flow, pimpleFoam, is used using the PIMPLE (merged PISO-PIMPLE) algo-
rithm. PISO is an acronym for Pressure Implicit Splitting of Operators for time dependent
flows while SIMPLE stands for Semi-Implicit Method for Pressure Linked Equations which
is used for steady state problems. The PISO algorithm neglects the velocity correction in
the first step, but then performs one in a later stage, which leads to additional correction
for the pressure [7].

2.2 Sub grid scale models

Four different Sub Grid Scale (SGS) models, used for determining the eddy viscosity,
are validated and compared; the homogeneous dynamic Smagorinsky model, the selective
Smagorinsky model, the Spalart-Allmaras Improved Delayed Detached Eddy Simulation
(IDDES) and an implicit model, thus avoiding a SGS model.

The homogeneous dynamic Smagorinsky model is an algebraic eddy viscosity SGS
model founded on the assumption that local equilibrium prevails. In the dynamic version,
the two coefficients are calculated during the simulation. The averaging is performed over
the whole domain, i.e. homogeneous turbulence is assumed [6]. The selective Smagorinsky
model on the other hand, is a local method validated specifically for wall bounded flows
which is derived by Sagaut [8]. The SGS model is a combination of the basic Smagorinsky
model together with a selection function, which will be locally turned on and off on a
specific value of the local angular fluctuations of the instantaneous vorticity. The third
model involves a DES, a blending between the statistical RANS model and the LES
model. The method is developed to overcome excessive computer demands of LES. The
basic principle is to solve the boundary layer with RANS, whereas LES is used for the
external flow and separation regions. The IDDES is an improved model, to overcome
problems with the transition from RANS to LES [9]. An alternative to these explicit
methods is the Implicit LES (ILES), where numerical schemes are used such that the
inviscid energy cascade through the inertial range is captured accurately and the inherent
numerical dissipation emulates the effect of the dynamics beyond the grid-scale cut-off
[10].

2.3 Recycling method

To simulate a LES on a infinite flat plate within current computational demands,
a recycling method is used. The main idea behind the recycling and rescaling inflow
modeling approach is to extract data at a station downstream from the inflow, and rescale
it to account for boundary layer growth. In the approach by Lund [11], the flow at the
extraction station is averaged in spanwise direction and in time, to allow the decomposition
of the flow field in a mean and fluctuating part. The mean velocities and fluctuations are
then rescaled according to the law of the wall in the inner region and the defect law in
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the outer region, and blended together using a weighted average of the inner and outer
profiles:

(ui)in =
{
(Ui)

inner
in + (u′

i)
inner
in

}
[1−W (ηin)]

+
{
(Ui)

outer
in + (u′

i)
outer
in

}
[W (ηin)] , (3)

with the weighting function defined as:

W (η) =
1

2

{
1 +

1

tanh(α)
tanh

[
α(η − b)

(1− 2b)η + b

]}
, (4)

wherein η = y/δ indicates the outer coordinate scaling and α = 4 and b = 0.2 are
prescribed constants [11]. Interpolation is linear.

2.4 Definition and estimation of coherence

For determination of the coherence length, first the coherence function should be eval-
uated. The coherence function is the auto-power and cross-power density of the signals,
where Φ(ω, z1, z2) denotes the cross-power spectral density between two points along a
given dimensional line ∆z = z2 − z1, with ω defined as the angular frequency:

γ2(ω,∆z) =
|Φ(ω, z1, z2)|2

|Φ(ω, z1, z1)| |Φ(ω, z2, z2)|
. (5)

This representation is valid for the case that the flow statistics are homogeneously
distributed along the spatial dimension, stationary in time and for an infinite observation
period. For a flat plate the first criteria is fulfilled when considering the spanwise direction,
and with restriction to very short separations, also for the streamwise direction. By
definition, the coherence length is related to the integral of coherence function over the
spatial separation ∆z and therefore reduces to a function of frequency only:

lz(ω) = lim
L→∞

∫ L

0

γ(ω,∆z) d∆z. (6)

This relation can be used to obtain the coherence length. However, due to convergence
issues, first observed by Christophe [3] for his LES data with a finite observation period,
the coherence does not approach zero for very large separations ∆z and therefore, the
integral might be unbounded. Instead, in this study a curve fitting approach based on an
exponential function is applied ([12]):

γ(ω,∆z) = e−
|∆z|
lz(ω) . (7)

The fit is performed for each discrete frequency and has shown to be a robust alternative
to Eq. 6.
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3 MODEL SET-UP

The current study investigates a turbulent boundary layer on a flat plate of 400 mm
chord, with a wetted span of 40 mm (Fig. 1). The measurement volume in wall-normal
direction equals 30 mm. Reference length and velocity scales are the boundary layer
thickness and the free stream velocity at 250 mm downstream at the center of the compu-
tational domain. At a free stream velocity of u∞ = 10 m/s the Reynolds number based on
the local boundary layer thickness δ = 10.4 mm is Reδ ≈ 6, 800 and based on the momen-
tum thickness θ = 1.1 mm is Reθ ≈ 750. A complete overview of all model parameters
can be found in Tab. 1, including a comparison with the reference data of Pröbsting [5].

Figure 1: Snapshot at t = 0.5 s of streamwise velocity over the plate

The domain is discretized in 800 × 100 × 80 cells, resulting in vector sampling of
∆x/δ ≈ 0.048 and ∆z/δ ≈ 0.048 in streamwise and spanwise direction respectively.
In wall-normal direction the sampling resolution ranges from ∆y/δ ≈ 0.004 near the
wall to ∆y/δ ≈ 0.1 in the free stream. An adjustable time step is used, keeping the
Courant number below one. In practice this yields steps of ∆t ≈ 2 · 10−5. Pressure
and velocity fluctuations are stored each 4 steps, which results in a temporal sampling of
∆tu∞/δ ≈ 0.07 (ωδ�/u∞ ≈ 13.3). For the present study, approximately 4, 000 samples
equivalent to a non-dimensional time interval of Tu∞/δ ≈ 300.

As discussed, a recycle inflow flow condition is used for turbulent boundary layer
growth. At the outlet and top of the model, velocity is imposed by a Neumann boundary
condition. The wall is modeled with a no-slip condition. Both sides of the domain are
cyclic, to simulate an infinite span. Regarding pressure boundary conditions, the top
boundary is set to outside atmospheric pressure, while all other boundaries are modeled
using the Neumann condition.

4 RESULTS

4.1 Mean velocity and Reynolds stresses

An overview of the boundary layer growth along the plate is illustrated in Fig. 1. At
250 mm downstream, measurements were taken for this study. All parameters, extracted
from the LES simulation are summarized in Tab. 1. Please note that these are averaged
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Table 1: Boundary layer parameters from current study and comparison study from Pröbsting [5]

Parameter Symbol LES PIV DNS

Boundary layer thickness [mm] δ 10.4 9.4 9.4
Displacement thickness [-] δ�/δ 0.16 0.16 0.18
Momentum thickness [-] θ/δ 0.11 0.12 0.12
Wall shear velocity thickness [-] uτ/u∞ 0.045 0.052 0.053
Shape factor [-] H 1.48 1.45 1.50
Reynolds number [-] Reδ 6, 800 6, 240 8, 185

Reθ 750 730 1, 000
Reτ 310 436 325

parameters for all four models, although the differences between the SGS models are found
to be negligible.

The mean velocity profiles for the four different LES models scaled with outer scaling
variables are displayed in Fig. 2. A 2% difference is found for all simulations and com-
parison data. A shape factor of H = δ�/θ = 1.48 is found, which confirms the presence
of a fully developed turbulent boundary layer.
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Figure 2: Mean velocity in outer scaling
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Figure 3: Reynolds stress profiles in outer scaling

The distributions of the Reynolds stress tensor are attached in Fig. 3. All models show
excellent agreement (within 95% accuracy) with each other and with the reference results.
When approaching the wall, the streamwise velocity fluctuations measured with IDDES
underestimate all other LES models. This is a result of the averaging effect due to the
RANS approach near the wall. The other two normal components of the Reynolds stress
tensor show similar patterns.

As an indication for the outer time scale the eddy turn over time is estimated with
δ/u∞ ≈ 1 ms or a non-dimensional frequency of ωδ�/u∞ ≈ 1. In non-dimensional units,
this results in ωδ�/u∞ ≈ 14.5. Since the temporal sampling of the LES was set at
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ωδ�/u∞ ≈ 13.3, it is sufficient to sample the outer time scale. In the remainder of this
study, δ�/u∞ and δ� are used as outer time and length scale respectively.

Figure 4: Instantaneous visualization of second invariant of the velocity gradient tensor iso-contours
(Q = 0.2 · 106), colored by the streamwise velocity

4.2 Velocity spectrum and coherence

The unsteady organization and evolution of coherent structures within the turbulent
boundary layer is further investigated using Fig. 4, where the second invariant of the
velocity gradient tensor (Q) is plotted. The interaction between the low-speed streaks
(blue) and vortical structures (red) are shown by means of hairpin packets, full fairpins,
legs and cane vortices [13].

Next, the spectral energy distribution and the coherence are examined for the stream-
wise and wall-normal velocity components. Data is sampled at a probe located at y/δ =
0.1 and converted to a Power Spectral Density (PSD) signal using Welch’s method, to-
gether with a Hanning window of 128 samples with 50 % overlap [14]. The result is
depicted in Fig. 5. Clearly, the streamwise velocity fluctuations show a higher energy
content at lower frequency. This is caused by the streamwise coherent regions of low
speed fluid originating from the viscous sublayer convected into the upper regions of the
boundary layer. On the other hand, wall-normal velocity fluctuations are associated with
ejection and sweep events of much smaller extent [5, 15]. Both velocity fluctuation spectra
start to coincide at ωδ�/u∞ = 1.5 and start following a decay of approximately ω−5.
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4.3 Wall pressure fluctuations and spectrum

The pressure fluctuations, resulting from the streamwise and wall-normal velocity fluc-
tuations, are further discussed. A probe is located in the middle of the plate and sampled
the pressure fluctuations on the wall. The signal is transferred to a PSD using the same
procedure as described in previous section and plotted in Fig. 6. PIV and DNS references
are attached, as well as an estimation of the spectrum provided by the model of Goody
[16]. Again, the internal comparison between all LES models does not give any conclusions
about the most suitable model to predict pressure fluctuations. At the mid frequencies,
the LES overestimates the PSD compared to the analytical result with 1 − 3 dB. When
ωδ�/u∞ ≥ 2 the LES follows the decay of the reference, theoretical and analytical model
of ω−5. The indicated slope of ω−0.7 is characteristic for the overlap region, which becomes
narrow for very low Reynolds numbers [16].

4.4 Wall pressure coherence

To determine wall pressure coherence, the pressure in streamwise and spanwise direc-
tion are sampled along a line. With these data, Eq. 5 can be solved in both directions.
The results are found in Fig. 7 & 8. In general, the coherence along the streamwise di-
rection attains much higher values at low frequencies and decays beyond the resolvable
scales at higher frequencies ωδ�/u∞ ≥ 4.5. At high frequencies, large coherence is present
for the LES homogeneous Dynamic Smagorinsky model. Also the selective Smagorinsky
model shows a minor increase at the high frequency range. It is unknown why this sudden
increase happens. Nevertheless the decay of the coherence function until ωδ�/u∞ ≤ 2.5 is
similar in all cases, as well with the comparison study of Pröbsting [5], depicted in Fig. 9.

The spanwise coherence estimate, depicted in Fig. 8, only shows some coherence at low
frequencies. A larger discrepancy is found when comparing each LES model. Especially
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Figure 7: Streamwise coherence function γ2

p(ω,∆x) of pressure fluctuations on the wall

the homogeneous Dynamic Smagorinsky model differs; it captures more coherence at
lower (but not the lowest) frequencies. When ωδ�/u∞ ≥ 2 the coherence falls within
the resolution of the LES (i.e. ∆z/δ� = 0.5/1.7 ≈ 0.29). This region barely shows any
dependence on the frequency.
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Figure 8: Spanwise coherence function γ2

p(ω,∆z) of pressure fluctuations on the wall

The coherence of pressure fluctuations over the span show a substantially faster decay
compared to the streamwise direction, indicating that the resolution of the simulation
is a key parameter. Therefore, an implicit LES model with finer spanwise resolution
(∆z/δ ≈ 0.024) is run and compared with the standard mesh (∆z/δ ≈ 0.048). Results
of the pressure coherence function in spanwise direction is attached in Fig. 10. Clearly,
decreasing the cell size increases the coherence at all frequencies. Coherent structures at
a single broad frequency band are now discovered within the resolution of the simulation,
which was also seen in the reference DNS results from Fig. 9.
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improves the robustness of the estimation. Note that the

limited resolution and overlap between neighboring inter-

rogation volumes in the correlation process of PIV provides

a lower limit for the coherence since velocity vectors are

correlated over the this scale.

Figure 14a demonstrates the exponential fit leading to

the streamwise coherence length for two discrete frequen-

cies, xdH=u1 ¼ 0:73 and 1.47 based on the PIV data. The

fitting procedure has been applied to the first 20 data points

shown in the graph. Similarly, Fig. 14b demonstrates the

exponential fit for the spanwise coherence. Comparison

indicates the comparatively small spanwise coherence

length and marginal differences between the frequencies

displayed, pointing to the relative difficulty of the estima-

tion in this dimension.

An estimation for the error �c on the coherence is

evaluated through the root mean square estimator based on

the fitted data points with respect to the exponential fit,

under the assumption that the error is uniform all spatial

separations. The error bars in Fig. 14 indicate the assumed

error distribution (2�c one-sided, 95.4 % confidence level).

Based on this fitting procedure the coherence length is

determined for each frequency, shown in Fig. 15a, b.

Comparison confirms that the streamwise coherence length

assumes substantially larger values than its spanwise

counterpart for lower frequencies. The estimation obtained

(a) (b)

(c) (d)

Fig. 13 Contour plot of streamwise coherence c2p x;Dxð Þ with M = 2 (a), 3 (b), and 4 (c), and spanwise coherence c2p x;Dzð Þ with M = 4 (b) of

pressure fluctuations (dashed line indicates size of interrogation window)

(a) (b)

Fig. 14 Exponential fit to

streamwise (a) and spanwise (b)

coherence data at xdH=u1 ¼
0:73 and 1.47, M = 4
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Figure 9: Streamwise and Spanwise coherence func-
tion from Pröbsting et al.[5]
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on the wall

4.5 Coherence length

The final estimation of the coherence length involves the integration of the coherence
function. However, since this led to convergence issues in the past, instead an exponen-
tial fit based solution is applied [3]. The fitting has been applied to all the data points
in the region 0 ≤ ∆x/δ� ≤ 4. Clearly, from previous contours, the spanwise coherence
length is marginally compared with the streamwise coherence length. For each discrete
frequency, this exponential fit approach is applied. This results in streamwise and span-
wise coherence lengths depicted in Fig. 11 & 12. Comparing both figures, indeed the
streamwise coherence length is considerably larger than the spanwise coherence length,
especially for low frequencies. As a comparison, the PIV and DNS results can be used.
A close correspondence is found at all frequencies with the DNS data of Pröbsting et al.
[5]. Also the empirical model of Corcos [17] is attached for comparison. The streamwise
coherence estimate from Corcos [17] start to match at ωδ�/u∞ ≈ 1.0 and start showing a
similar decay. Only the homogeneous Dynamics Smagorinsky and selective Smagorinsky
start to deviate from this empirical solution by a sudden increase in coherence length at
high frequencies. These discrepancies are not fully understood yet and require further
attention. In addition, at frequencies ωδ�/u∞ ≥ 4.0, this behavior was also found at the
DNS simulation of Pröbsting [5].

The spanwise coherence result in Fig. 12 also match with the decay and values of the
empirical model of Corcos [17] in the higher frequency regions. In the lower frequency
regions, the error does not exceed one displacment thickness error. Note that the coherence
length estimate is only a small fraction of the displacement thickness δ�, which implies
very small structures of very small amplitudes. Therefore, at low frequencies, the decrease
in spanwise cell size enables better capturing of these structures. A larger coherence length
is found comparing both ILES simulations.
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Figure 11: Streamwise coherence length
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Figure 12: Spanwise coherence length

5 CONCLUSION

The current study deals with the estimation of the streamwise and spanwise coherence
length of the pressure field below a turbulent boundary layer at low Reynolds numbers
using four different LES closure models implemented in OpenFOAM, an open source CFD
software package. Results have been compared to DNS and PIV results from Pröbsting
et al. [5], as well as empirical models from Goody [16] and Corcos [17].

Results for outer scaling mean and fluctuating velocity data matches the PIV and DNS
reference data within 95 % accuracy. The pressure spectrum agrees well with the reference
results. Only a small overestimation at mid frequency range is observed. The decay at
larger frequencies corresponds to the theoretical decay of ω−5.

Regarding the streamwise coherence, the decay as well as the values are similar to the
PIV and DNS results. In constrast, the spanwise coherence is limited by its small length
and strength relatively to the mesh resolution. Increasing the spanwise mesh resolution
enables capturing large coherent structures at low frequencies.

For the estimation of the coherence length, an exponential fit based solution is applied.
Results of all four closure models match the decay of the reference result from Corcoc
[17] from ωδ�/u∞ ≥ 1.0 and onwards, while the DNS results are almost identical to
all results. The spanwise coherence length is significantly smaller than the streamwise
coherence length, indicating low amplitude structures.

In conclusion, all models are applicable for further aeroacoustic analysis. Further
analysis with respect to trailing edge flow is required to select the most suitable simulation.
Regarding computational time, the ILES as well as the selective Smagorinsky model show
a 20 % reduction with respect to the homogeneous Smagorinksy model, making these two
models good candidates for further analysis.
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