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Summary

This thesis studies the hydrodynamics of froth flotation, a process that
is used in industry as a means of removing small inclusions from the
treated liquid by gas bubble injection. This work is particularly moti-
vated by the removal of aluminium and silicon oxides from liquid steel.

Hydrodynamic aspects have a strong influence on the efficiency of
froth flotation. The flow around a rising bubble, especially the turbu-
lent flow in the near-wake, is of particular importance as it may cause
preferential concentration of particles as well as significantly change
the collision and attachment rates of particles with the surface of the
bubble. Both effects are studied in this work.

Preferential concentration of particles in the near-wake is a result of
the time-averaged balance of inertial and pressure forces on a dispersed
particle, resulting in a drift towards the wake. It can therefore be ob-
served by an effective time-averaged particle slip velocity over the wake
boundary. Likewise, a direct confirmation of preferential concentration
is possible by measurements of the average concentration of particles in
the wake. These measurements were done in the wake of a solid mock-
up of a spherical-cap bubble in the VerMeer vertical water tunnel. The
particle slip velocity was obtained from simultaneous two-phase Particle
Image Velocimetry measurements and numerically integrated in post-
processing. The particle concentration was obtained directly from the
average scattered light intensity. Both experimental results are com-
pared to the predictions of a model for the preferential concentration
in the wake, derived from a local balance of inertial, gravitational and
diffusive fluxes.

The influence of turbulence on particle attachment rates was mea-
sured in the newly constructed DABuT (Dynamic Air Bubble Trap)
facility, using bubbles of different shapes and volumes. The research
was again focused on the semi-spherical bubbles, these were also found
to have the highest attachment rates. The results of the measurements
are compared to a model based on a turbulent attachment flux and the
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effective shielding of particle attachments by a mono layer of particles
building up and finally covering the rear side of the bubble in proximity
to the wake.

In conclusion, both effects contribute to the overall efficiency of flota-
tion. the results of this work suggest that spherical-cap bubbles —
although potentially difficult to generate — have the highest potential
for the optimisation of flotation processes in industry.
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Samenfatting

Dit proefschrift beschrijft de hydrodynamica van bellen-flotatie, een
proces dat industrieel wordt toegepast om kleine deeltjes uit vloeistoffen
te verwijderen door middel van gasbel-injectie. Dit werk is specifiek
gemotiveerd op het verwijderen van aluminium en siliciumoxiden uit
vloeibaar staal.

Hydrodynamische effecten hebben een grote invloed op de efficiëntie
van bellen-flotatie. De stroming rondom een opstijgende gasbel, en in
het bijzonder de turbulentie in het zog direct achter de bel, is belangrijk
omdat deze kan leiden tot een preferente concentratie van deeltjes in het
zog, maar ook invloed heeft op het botsings- en het aanhechtingsproces
aan het oppervlak van de bel. Beide effecten zijn beschreven in dit
proefschrift.

Preferente concentratie van deeltjes in het belzog is het resultaat van
een tijdsgemiddelde balans tussen traagheids- en drukkrachten op de
deeltjes, leidend tot een naar het belzog gerichte flux van deeltjes. Deze
kan waargenomen worden door een tijds-gemiddelde driftsnelheid over
de rand van het belzog. Anderzijds is een directe bevestiging van prefer-
ente concentratie te meten aan de hand van de gemiddelde concentratie
in het belzog. Deze metingen zijn uitgevoerd in het zog van een vast
model voor een ’spherical cap’ (half-ronde) gasbel in de ’VerMeer’ ver-
tikale watertunnel. De driftsnelheid van de deeltjes is verkregen aan
de hand van twee-fasen Particle Image Velocimetry metingen en in een
nabewerking numeriek gëıntegreerd. De deeltjesconcentratie werd di-
rect verkregen uit de intensiteit van het verstrooide laserlicht.

Beide experimentele resultaten zijn vergeleken met de voorspellingen
van een fysisch model voor preferente concentratie afgeleid op basis van
lokale balansen van fluxen veroorzaakt door traagheid, zwaartekracht
en turbulente diffusie.

De invloed van turbulentie op de snelheid van deeltjes-aanhechting
aan het beloppervlak is gemeten in de nieuw geconstrueerde DABuT
(Dynamic Air Bubble Trap) meetopstelling voor bellen van variërende
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vorm en volume. De focus lag opnieuw op half-ronde bellen, waarbij
werd gevonden dat deze ook het meest efficiënt zijn.

De meetresultaten zijn vergeleken met een fysisch model gebaseerd
op een turbulente aanhechtingsflux en effectieve afscherming door een
zich geleidelijk vormende mono-laag van deeltjes die de zog-zijde van de
gasbel uiteindelijk volledig afdekt.

In conclusie dragen beide effecten bij aan de overall efficiëntie van
flotatie. De resultaten van dit proefschrift tonen aan dat half-ronde
”spherical-cap” bellen - hoewel wellicht moeilijk te maken - het beste po-
tentieel hebben voor het optimaliseren van industriële flotatie-processen.

xii



Zusammenfassung

Ziel dieser Dissertation ist die Untersuchung der Hydrodynamik der
Schaumflotation, ein Prozess zur Trennung von dispersen Feststoffen
von der Trägerflüssigkeit durch die Injektion von Gasblasen. Diese Ar-
beit ist insbesondere motiviert durch das Entfernen von Oxiden (Alu-
mina- und Silica-Partikel) aus Stahlschmelzen.

Hydrodynamische Effekte sind von großer Bedeutung für die Effek-
tivität des Flotationsprozesses. Die Strömung um eine aufsteigende
Gasblase, und insbesondere die turbulente Strömung in deren Nachlauf,
ist besonders bedeutsam, da sie die Ursache darstellt für eine erhöhte
Partikelkonzentration im Nachlauf und ebenso Einfluss hat auf die Stoß-
wahrscheinlichkeit von Partikeln mit der Blasenoberfläche. Diese beiden
Effekte werden in dieser Arbeit untersucht.

Die Anreicherung von Partikeln im Nachlauf ist das Ergebnis eines
Kräftegleichgewichts im zeitlichen Mittel zwischen Trägheits- und Druck-
kräften auf ein suspendiertes Partikel, welches eine zum Nachlauf gerich-
tete Bewegung zur Folge hat. Diese Bewegung kann durch eine effektive
Driftgeschwindigkeit der Partikel im zeitlichen Mittel und relativ zum
Fluid beobachtet werden. Die Anreicherung von Partikeln im Nach-
lauf kann über eine Messung der mittleren Partikeldichte auch direkt
gemessen werden. Diese Messungen wurden im Nachlauf eines Mess-
ingmodells einer Blase in dem vertikalen VerMeer-Wasserkanal durch-
geführt. Die Driftgeschwindigkeit der suspendierten Partikel wurde mit-
tels Mehrphasen-PIV bestimmt und in der Nachbearbeitung numerisch
über den Rand des Nachlaufs integriert. Die Partikeldichte wurde direkt
über die mittlere Intensität des Streulichtes bestimmt. Die Ergebnisse
beider Experimente wurden mit den Vorhersagen eines Modells für die
Partikelanreicherung im Nachlauf verglichen, welches auf der Annahme
eines Gleichgewichts der Terme für die trägheitsbedingte, die gravitative
und die diffusive Partikelflussdichte basiert.

Der Einfluss der Turbulenz auf die Stoßrate wurde in dem neu ent-
wickelten DABuT Versuchsaufbau gemessen, unter Benutzung von ver-

xiii



List of Tables

schieden Blasenvolumen und -formen. Die Untersuchung wurde wiede-
rum hauptsächlich an halbkugelförmigen Blasen durchgeführt, da bei
diesen die höchsten Stoßraten gefunden wurden. Die Ergebnisse dieser
Messungen wurden mit einem Modell verglichen, welches auf einer tur-
bulenten Stoßflussdichte und der Abschirmung durch bereits mit Par-
tikeln beladenen Oberflächenteilen basiert, welche nach einer gewissen
Zeit die komplette Rückseite der Blase bedecken.

Das Ergebnis dieser Arbeit ist, dass beide Effekte einen Einfluss auf
die Effizienz des Flotationsprozesses haben. Blasen in Form eines Kugel-
abschnittes haben, trotz möglicher Probleme bei deren Erzeugung in
industriellen Anlagen, dabei das größte Potential für die großtechnische
Optimierung der Flotation.
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1 Introduction

1.1 A Sphere Immersed in a Fluid – the “Terrible”

Problem of Fluid Mechanics

The scientific field of fluid mechanics deals — as the name suggests
— with the dynamics of the motion of fluids. Although there have
been considerable efforts spent to understand the dynamics of a fluid
in an unbound domain (e.g. in the case of homogeneous, isotropic
turbulence), the problem is of practical interest as soon as the flow
domain is bounded by walls, which is confirmed by the fundamental
works Poisseuille on pipe flows, and those of Ludwig Prandtl (Prandtl,
1904) on the boundary layer. In 1851, Sir George Gabriel Stokes already
published his famous work (Stokes, 1851) on a flow that is “bounded
from the inside”, that is the viscous flow around a sphere.

In 2013, a search on Web of ScienceR© for the keywords “fluid flow”
and “particle” gives almost 25000 search results after the year 1900, and
over 17000 for a period over the last ten years. This shows that there
is a considerable — and still growing — interest in this field, driven
by a wide range of applications in industry and nature. This work is
dedicated to the understanding of the hydrodynamic processes found
in one of these industrial applications: Flotation, that is the effect of
particle transport induced by gas bubbles rising in a fluid.

1.2 Flotation in Industrial Applications

Gaudin (1957) writes that “flotation is a process for separating finely
divided solids from each other”. It is phase separation technique that
was originally used to separate (valuable) ore from (invaluable) stone
after being crushed to pieces/powder (bulk-oil flotation1). The flotation
process then was applied to other separation problems in the chemical
industry and is nowadays a major process with a wide range of ap-
plications. In the literature it is therefore not divided by application
anymore but by the process particles attach to a carrier phase: skin or
film flotation at water-air surfaces, and froth flotation when separated
particles and the carrier gas form a froth on the surface.

The importance of the flotation process for science is maybe best sum-
marised by the following quote attributed to P.A. Rehbinder: “Flotation

1Terminology from Gaudin (1957).
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1.3 Flotation in the Continuous Casting Process

is the encyclopaedia of colloid sciences” (from Nguyen & Schulze, 2004,
who also gives a nice overview over the historical development of the
process). The complexity of the problem arises from the wide range
of phenomena that influence it, from the macroscopic scale of the flow
around the rising gas bubbles to the break-up of the thin liquid film at
molecular scale. Next to hydrodynamic forces, these small scales are
strongly influenced by electrostatic forces in the form of dipole layers
and surface charges

1.3 Flotation in the Continuous Casting Process

Besides chemical factors that influence the quality of steel, Zhang &
Thomas (2003) give an overview about the degradation of steel quality
by non-metallic inclusions that is summarised here in the following.
They write that the “source of most fatigue problems in bearing steel are
hard and brittle oxides, especially large alumina particles over 30µm”.
These inclusions have further negative impact on the quality as they
locally reduce ductility and cause voids and cracks during rolling.

These non-metallic inclusions can be created indigenous by the de-
oxidisation of pure iron by adding Aluminium or Silicon as deoxidants
to the mould. These alumina and silica particles crystallise and form
larger clusters by collision and aggregation. A further source of inclu-
sions (so-called precipitated inclusions) is caused by the reduction of
solubility during cooling and solidification of the steel. These inclusions
consist again of alumina and silica, but also of Nitride and Sulphides,
and are typically smaller (< 10µm). Exogenous inclusions are those
that enter the steel by reoxidation, slag entrainment or the erosion of
lining refractory. Flotation is therefore used to remove these inclusions
(besides the precipitated inclusions) by injecting Argon gas into the
mould in ducts/nozzles and the tundish.

Fig. 1.1 shows electron microscopy images of samples taken from so-
lidified steel. The argon bubbles leave a cavity in the solidified steel
where typically agglomerates of inclusions can be found either near the
cavity or directly on its surface, see Fig. 1.1(a). The alumina inclusions
are dark grey in the images, the lighter grey particles are oxides that
are created during preparation of the sample. The equilibrium size of
Argon bubbles in liquid steel is in the range of 3 to 8 mm in diameter,

3



1 Introduction

(a) Argon bubble with inclusions and smaller bubbles in the wake

(b) Accumulation of inclusions in the wake and on the surface of a cavity originating
from a bubble

(c) Cavity from an Argon bubble with inclusions (dark grey), the light grey areas
in the cavity are not inclusions but the remains of oxidised steel during sample
preparation

Figure 1.1: Electron microscopy records of cavities of argon bubbles in
solidified steel. By courtesy of Tata Steel
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1.4 Transport of Cyanobacteria in Bodies of Water

the smaller cavities (approximately 100 µm in diameter) shown in the
images were created in cases where the buoyancy was insufficient for the
bubble to depart the mold during solidification. The accumulation of
inclusions near the surface of the bubble can be seen in Figures 1.1(b)
and 1.1(c) (left) and also in the magnified parts (right). The number
“1” in Fig. 1.1(c) (right) marks a dark-grey alumina inclusion.

1.4 Transport of Cyanobacteria in Bodies of Water

Particle transport in natural bodies of water is often related to mi-
croorganisms and their seasonal cycle of growth and decay. Microcys-
tis aeruginosa is a planktonic cyanobacteria with the ability to control
buoyancy by growing gas vesicles inside cells and interstitially by nutri-
ent intake and photosynthesis. Their seasonal cycle is described in detail
in Zohary & Robarts (1990) and is summarised here in the following.
In spring, increasing solar irradiance causes higher near-surface water
temperatures leading to thermal stratification. These circumstances
together with high grazing pressures on competitive algal species give
Microcystis aeruginosa advantages that lead to high growth gates and
finally the formation of hyperscums, millimetre-thick algal films directly
under the water surface that prevent gas exchange (see Ploug (2008) for
a study on different cyanobacteria species with similar characteristics
causing blooms in the Baltic Sea) and severely hinders light penetra-
tion to deeper zones. These hyperscums typically reach their maxi-
mum extend mid-summer and disappear due to stronger agitation of
the water surface by winds in autumn. The hyperscums can neverthe-
less reach a second (lower) maximum during winter under conditions
(low water temperature, less solar irradiation) that typically prevent
any growth. This effect can therefore be attributed to the flotation of
existing cyanobacteria colonies to the surface in calm waters.

Similar to algae blooms (high concentrations below the surface), the
emergence of hyperscums of cyanobacteria at the surface is particularly
hazardous to other species and has severe implications on the quality
of drinking water. The (re)appearance of both hyperscums and blooms
is particular interesting for this work as they appear on a timescale
smaller than what would be expected for their natural buoyancy.

5



1 Introduction

1.5 Research Motivation and Problem Definition

Only a small aspect of the whole flotation problem is studied in this
work, namely the hydrodynamic influence on the whole process. Two
aspects of the fluid flow can potentially be relevant to flotation, the
direct transport of inclusions by the gas bubble due to preferential con-
centration in the wake, and the influence of a turbulent flow on the
attachment rates of particles to the surface of the bubble. Both effects
are investigated in this work. Although also the attachment process is
a result of the hydrodynamic instability of the thin liquid film between
inclusion and bubble surface, leading to the break-up of the film and
the formation of a stable three-phase contact line, the scale at which
this process is occurs are too small to be experimentally accessible.

1.6 Outline of this Thesis

The first part of Ch. 2 tries to stretch an arc from Newton’s second law
to the equation of motion for a particle in a fluid, and explains briefly
all contributing terms. Newton’s second law is essential the underlying
principle for deriving the Navier-Stokes equation, the governing equa-
tion for describing the time-development of the momentum of a viscous
fluid in an Eulerian frame of reference. For small particle Reynolds
numbers, a solution of the simplified Navier-Stokes equation can be ob-
tained analytically and the forces presented and discussed in Sec. 2.1.2
can be derived from the resulting flow field. The reason for this classi-
fication is that — despite the fact that all forces and moments can be
combined to a single integral over the particle’s boundary each — all
forces relate to somewhat different effects and do not contribute under
certain conditions.

After discussing all contributing forces, a brief survey is given in
Sec. 2.1.3 on combining the contributing forces to an equation of mo-
tion for a particle immersed in a non-stationary flow. This survey is
finishing with the well-known Maxey-Riley-Gatignol equation that is
used to describe a particle for a low particle Reynolds number through-
out the modern literature. By simplifying this equation further to the
so-called weak-inertia approximation in Sec. 2.1.4, one part of the basis
is obtained for modelling preferential concentration in a wake.
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1.6 Outline of this Thesis

The second part needed is a model for the flow around and in the
near-wake of a spherical-cap bubble. It is obtained by extending the
spherical-wake model of Dayan & Zalmanovich (1982) to an ellipsoid of
rotation, a fact that is motivated by the experimental results presented
in Sec. 4.1. Putting together the weak-inertia approximation with this
flow field resulted in the model derived in Sec. 2.3 for the preferential
concentration of particles in the near-wake. Ch. 2 is concluded with a
discussion of the dimensionless numbers that are the parameters of the
model for the preferential concentration of particles in the near-wake.

Ch. 3 describes the facilities used for the experiments as well as the
necessary alignment and calibration methods. These measurements
were done using a solid spherical cap in a vertical water tunnel, a simpli-
fication that was made necessary because real air bubbles could not be
used in this facility without extensive modifications. The chapter dis-
cusses the two approaches that were used to measure the preferential
concentration, the indirect way via the integration of the time-averaged
particle flux over the wake boundary in Sec. 3.2.3, and by measuring the
particle concentration directly from the raw PIV images in Sec. 3.2.4,
integrated over the near-wake of the spherical cap and relative to the
concentration in the outer flow.

Before describing the measurement principle in Sec. 3.2.3 and the
detection of the wake boundary in Sec. 3.2.2, the image alignment is
discussed in detail in Sec. 3.2.1 as it is crucial to the obtained mea-
surement accuracy of this method. The section is concluded by an
assessment of the uncertainties of the resulting flux results in Fig. 3.7.

For the direct measurement of particle concentration described in
Sec. 3.2.4, two methods were developed to obtain concentration data
from the scattered light intensity that deal with the inhomogeneity in
the illumination in different ways: the method described in Eq. (3.18)
is based on a model for the inhomogeneous illumination that can be fit-
ted to the data for normalisation. All contributions to this illumination
model are also discussed. The other method presented in Eq. (3.24) is
based on a trick: a relative concentration increase can be obtained by
dividing two data sets measured with different flows but under identical
conditions of illumination. This chapter is concluded by a comparison
of the two methods: despite potentially better results with the first
method, it introduces a bias to the resulting concentration value that
can be of the order of the result. It is a consequence of the model

7



1 Introduction

for the Mie scattering of the dispersed particles, which does not al-
ways match reality. All results presented in the following chapter are
therefore obtained using the normalisation trick, despite much larger
statistical measurement uncertainties.

The results of both the flux and the concentration measurements are
presented in Ch. 4. This chapter includes a brief description of the
shapes of the wakes under different flow conditions in Sec. 4.1. Both
concentration and flux results are compared to the model derived in
Ch. 2.

Ch. 5 contains everything about the measurements done with real
air bubbles. The chapter starts with an overview in Sec. 5.1 over the
most important models used for the describing the flotation process:
the particle-bubble encounter, the attachment of the particle to the
gas-liquid interface, and a possible detachment due to strong forces
exerted on the already attached particle. Due to the extensive amount
of literature in the field of flotation, this theoretical overview cannot be
complete. Based on the discussion of the turbulent particle encounter
in Sec. 5.1.1, the small formula for the increase in covered surface area
is developed in Sec. 5.1.4.

For these measurements, a smaller facility described in Sec. 5.2.1
was built. Essentially, the experiment measures the increase in surface
area covered by particles on a semi-spherical bubble, a shape that is a
special case of a spherical cap as a result of the near pipe walls, and
as such it is a reasonably stable object that allows to do reproducible
measurements. The experiment itself and the methods used for data
analysis are described in Sections 5.2.2 and 5.2.3. The results of these
measurements are presented in Sections 5.2.4 and 5.2.5, including a
qualitative description of the observations made also for other bubble
shapes than semi-spheres. These results are compared to the small
model for the concentration build-up derived in Sec. 5.1.4.

Finally, Ch. 6 discusses the obtained results and the implications for
the optimisation of the flotation process in industry. It compares the
efficiency of both the wake entrainment and the particle attachment
to the bubble surface based on the results obtained in the previous
chapters. It also gives ideas for further research on this topic, and
discusses possible improvements to the experiments and methods used
throughout this work.
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2 Theoretical Background and a

Model for Particle Entrainment
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2 Theory and Entrainment Model

The aim of this work is to derive a model for predicting the con-
centration increase in the near-wake of a spherical cup over the outer
flow. The model output — the concentration increase — should be
a function of the flow properties and the particle properties only, be-
cause these properties are known a-priori and/or can be estimated from
empirical correlations. This restriction is required if the model is use-
ful for predicting the efficiency of particle flotation due to the effect of
entrainment, as more complicated or very specific flow parameters are
typically not known for flows in industrial processes. Summarising the
requirements, the derivation of the model requires

• a formula for the local eulerian particle phase velocity as a function
of the local fluid velocity field,

• and a sufficiently simple geometry for the flow field in the near-
wake of a spherical cap, which potentially can also be used to
describe the wake of a rising spherical-cap bubble.

The formula for the particle phase velocity can be obtained from the
theory of a sphere immersed in a fluid, and this line of thought is pre-
sented in the first part of this chapter, Sec. 2.1. Starting from Newton’s
second law, the forces acting on the sphere can be derived if the sphere is
small and so is its velocity relative to the fluid (small Reynolds number).
Combining these forces yields an equation of motion for the immersed
sphere, and a simplified version of it can be obtained by an analysis of
the magnitude of the contributing terms. This simplified equation of
motion is the weak-inertia approximation described in Sec. 2.1.4.

The model for the near wake is briefly described in Sec. 2.2. It is
based on a spherical geometry describing the spherical cap and its wake,
and a potential flow around it. It therefore fulfills the requirement for
simplicity. Based on it and the weak-inertia approximation, Sec. 2.3
contains the derivation of the formula for the wake entrainment.

In the recent years, dispersed multiphase flows have been the topic of
ongoing research, as the theses of Evans (2013); Zahnow (2010); Mazz-
itelli (2003); van Haarlem (2000) and many others show. Each of these
theses introduces the theory in similar ways but yet to a different ex-
tend and level of detail; the aim in this work is to stretch a complete
arc from the foundations to the equation of motion used for our model’s
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2.1 Single Particle Dynamics: A Sphere in a Fluid

derivation, and to discuss in detail the conditions for the validity of the
simplifications made.

2.1 Single Particle Dynamics: A Sphere in a Fluid

The first part of this section gives an overview over the theoretical de-
scriptions of a small spherical body immersed in a fluid; from Newton’s
second law over the contributing forces to the best-known equation of
motion. The weak-inertia approximation, a simplified version of the
equation of motion for low Reynolds numbers, is introduced in the fol-
lowing as it forms the basis for the description of the motion of the
particulate phase in a turbulent fluid.

2.1.1 Fundamental Theory

Suspensions are in general described as a system consisting of a contin-
uous phase, i.e. the fluid (liquid or gas) that occupies a certain domain,
and a dispersed phase, which represents the inclusions (typically objects
of a solid material and different sizes and shapes, but liquid drops or
small gas bubbles are also possible) that are enclosed by the fluid. The
term continuous implies that the fluid is usually not described by the
interaction of atoms or molecules, but as a continuum; a simplification
that is valid when the mean inter-molecular distance is small compared
to the characteristic size of flow features. For the dispersed phase it
is often assumed that the inclusions have sufficiently stable shapes and
that they can be described by a single size parameter (an effective diam-
eter); in other words, they are usually described as small solid spheres.

The definition above is more a necessary condition than a sufficient
one, based on the necessity to simplify the system to a degree that
makes it treatable. Exceptions exist to all constraints given above: for
small aerosols in gases (Friedlander, 2000), the characteristic size is of
the order of (or even significantly smaller than) the molecular free path
length. The size of the dispersed particles is usually neither constant
nor is their shape simple, particle agglomerates exhibit very complex or
even fractal shapes (Zahnow et al., 2011). Particles tend to agglomerate
due to (gentle) collisions and form larger clusters. These clusters can
also break up into smaller ones if there are strong shear forces in the
flow, or again due to collisions, now at higher kinetic energies. Liquid
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2 Theory and Entrainment Model

and gaseous inclusions are even more complex; additionally to break-
up and coalescence, they must be described by a continuum with an
appropriate boundary condition at the interface. However, when the
viscosity of the dispersed phase is high compared to the viscosity of the
continuous phase and surface tension is dominating all other body and
pressure forces, the equilibrium shape is approximated by a sphere and
disturbances are strongly damped. Rain drops ≤ 1mm (or any other
liquid drop with a vanishing Weber number) are the ideal example for
the definition above (Beard & Chuang, 1987).

Despite the mentioned constraints, the dissipative nature of fluid
flows allows to treat dispersed particles as point masses independently
of their actual shape, if a condition for the size of the particle is fulfilled.
Small-scale fluctuations in fluid flows are strongly damped by viscosity
for Re << 1, such that the flow at these scales can solely be described
by the balance of viscous and pressure forces

µ∆u = ∇p . (2.1)

The Stokeslet is a solution of this equation for a point at the origin
moving with a velocity relative to the fluid velocity u∞ infinitely far
away from the origin. Independently of the shape of the particle, the
Stokes flow solution converges to the solution of the sphere for distances
sufficiently large compared to the effective diameter of the particle. Fur-
thermore, the effective diameter itself can be defined by the diameter
of a sphere that creates the same flow in the far field. Consequently, all
particles can be described by spheres if their effective diameter is small
enough that the flow around it can be treated as Stokes flow, i.e. if it
is smaller than the smallest turbulent scale in the flow.

The time-evolution of mass and momentum density of the continuous
phase is described by the continuity equation and Newton’s second law

∂ρF
∂t

= −∇ · (ρFuF ) (2.2a)

ρF
DuF

Dt
= ∇ ·

(

−p1+ µ

(

∇uF +∇uT
F − 2

3
1∇ · uF

)

+ ζ1∇ · uF

)

= ∇ · σ
(2.2b)
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2.1 Single Particle Dynamics: A Sphere in a Fluid

in the most general form for a viscous fluid (Landau & Lifshitz, 1987).
The shear viscosity µ (second order tensor describing the resistance of
a fluid to shear deformations, often simply called viscosity) and the sec-
ond or volume viscosity ξ (can be a vector) are in general not constant
in space and depend on the pressure p and on temperature. The differ-
ential operator D/Dt represents the total derivative after time here; it
should not be confused with the Lagrangian time derivative d/dt later
in this chapter. For an incompressible Newtonian fluid with constant
viscosity, the stress tensor is given by

σ = −p1+ µ
(
uF + uT

F

)
(2.3)

and Eq. (2.2b) can be simplified to the well-known Navier-Stokes equa-
tion

ρF
DuF

Dt
= −∇p+ µ∆uF . (2.4)

Eq. (2.1) can be obtained from Eq. (2.4) in the limit of vanishing
Reynolds number ReP = ρF |vP − uF,∞|dP /µF (here the definition of
the particle Reynolds number is used).

The motion of the spherical particle (now in the sense of a Lagrangian
time derivative) with three translational and three rotational degrees of
freedom is described by the system

dxP

dt
= vP (2.5a)

mP
dvP

dt
=

{

∂VP

σdS +
∑

F ext (2.5b)

IP
dωP

dt
=

{

∂VP

(x− xP )× (σdS) +
∑

M ext , (2.5c)

with the particle mass mP and its moment of inertia IP . The external
forces F ext and moments M ext represent all the interactions of the
particle with external fields and/or collisions.

The coupling from the particle to the fluid is included by enforc-
ing the appropriate (Dirichlet or von-Neumann) boundary condition
to Eq. (2.2) at the boundary of the particle. Including all contribu-
tions from particle-particle collisions (both direct collisions and hydro-
dynamic interactions by the change of the flow field due to the pres-
ence of the other particle are possible), the system is said to be in
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2 Theory and Entrainment Model

the four-way coupling regime. In the case of a high volume fraction of
suspended particles, this leads to an effective chemical potential (see
Seiter & Alder, 1978): particles in a zone with a high concentration
have a preference to move into regions with low concentrations due to
the higher chance of collisions.

The system consisting of Equations (2.2) and (2.5) can be further sim-
plified if it is sufficiently dilute (low volume load VP /VF = Φ << 1) that
particle-particle collisions can be neglected (two-way coupling). Fur-
thermore, if all friction forces between the particles and the fluid are so
small that the momentum of a sufficiently large (> dP ) fluid element is
not significantly changed by the presence of the particle (low mass load
ΦρP/ρF << 1, weak external fields), then the fluid flow can be consid-
ered to be undisturbed by the dispersed phase (one-way coupling). In
terms of transport, the dispersed phase is then called a passive scalar, in
contrast to an active scalar that interacts with the transporting contin-
uous phase in the two- and four-way coupling regime. This terminology
is typically used to describe scalar fields like dye concentrations (pas-
sive scalar) or temperature (active scalar). The analogy here is that
the particle concentration (or alternatively probability density to find
a particle at a certain place) is fully determined by the advection of
the fluid. It should be mentioned that the particle velocity — though
being a (non-linear) function of the fluid velocity — is in general not
solenoidal, even if the fluid is incompressible.

2.1.2 Forces in the Point Particle Approximation

The solution of Eq. (2.5) requires the calculation of the surface integrals
over the particle boundary. In the case of a spherical particle in a
viscous flow and providing that the conditions for one-way coupling
are fulfilled, these surface integrals can be directly computed from the
analytical solutions of the flow field. The evaluated integrals will then be
functions of the fluid velocity, the particle velocity and angular velocity
as well as their derivatives, and it can furthermore be decomposed into
several contributing effects that are briefly discussed in the following.
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2.1 Single Particle Dynamics: A Sphere in a Fluid

Particle Drag

The equation for the drag of a solid sphere moving relative to a resting
fluid

−Fdg = 6πηρFRP vP (2.6)

was derived in section IV of Stokes (1851) by neglecting the non-linear
term from the stationary Navier-Stokes equation. As written by Landau
& Lifshitz (1987) and Batchelor (1967), it was improved by Oseen1 by
linearising the advection term by (u∞ · ∇)uF . As Faxén (1922) points
out, this is a necessary correction if the fluid domain is infinite, as in that
case, for any finite value of the viscosity ν, a characteristic size l of a fluid
volume element can be found that the Reynolds number u∞l/ν 6< 1 as
assumed by Stokes (1851).2 Corrections of higher order, obtained from
a perturbative expansion of the stream function, were first obtained
by Goldstein (1929), and were later improved by Proudman & Pearson
(1957) and Chester et al. (1969). These higher-order corrections were
summarised by Veysey & Goldenfeld (2007), resulting in the formula
for the drag

Fdg = −6πηRP vP







1
︸︷︷︸

Stokes

+
3

8
Re
︸︷︷︸

Oseen

+
9

40
Re2 log Re

︸ ︷︷ ︸

Proudman&Pearson

+
9

40
Re2

(

γ +
5

3
log 2− 323

360

)

+
27

80
Re3 log Re

︸ ︷︷ ︸

Chester & Breach

+O(Re3)








, (2.7)

with the Euler constant γ.Veysey & Goldenfeld (2007) furthermore
present a comparison with experimental and numerical results which
suggests that despite a better approximation for Re < 0.3, the higher-
order corrections deviate stronger for Re ≥ 1 than the Oseen correction.

1Oseen, C.W. Über die Stokes’sche Formel, und über eine verwandte Aufgabe in der

Hydrodynamik, Arkiv för matematik, astronomi och fysik, 6, 29, (1910); this text
was not available during the writing of this thesis.

2It is interesting to note that Faxén (1922) qualitatively attributes this to the
development of a wake behind the sphere, something that delayed if the fluid
domain is bounded by walls - the case studied in his work.
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2 Theory and Entrainment Model

Likewise, the approach of using perturbation methods for solving this
problem is strongly criticised by Liao (2002), as the underlying assump-
tion of all perturbation methods is a small Reynolds number; a condition
that will necessarily fail for values of Re beyond unity. This leads to the
effect that for larger Re the Oseen formula is a better approximation
than those including the higher-order terms. Liao (2002) therefore uses
the homotopy analysis method to derive a tenth-order approximation
to the drag formula that shows a surprisingly good agreement with ex-
perimental data for Re < 30. He however states that the order of this
approximation is “not high enough to determine the convergence region
of our drag formula”.3

Veysey & Goldenfeld (2007) spent more effort on the “terrible prob-
lem”4 by deriving the drag formula

Fdg = ρFu
2
FR

2
P

4π(24 + 24Re + 8Re2 +Re3 + 4exp(Re)(Re2 − 6))

Re(2(Re + 1) + exp(Re)(Re2 − 2))
(2.8)

by the aid of renormalisation group methods, which is probably the best
analytical approximation to the drag of a sphere for the interval 0.5 ≤
Re ≤ 50 existing to this date. Their comparison with experimental
data nevertheless indicates that — similarly to the conclusions of Liao
(2002) — still further improvements are needed.

More recently, Guo (2011) completely questioned all the analytical
approaches and suggested the use of semi-empirical drag formulae. This
approach dates back to Rubey (1933) who — one should note the sim-
ilarity with Oseen’s formula — postulated his widely used drag law
as

CD =
β

Re
+ α , (2.9)

where α = 0.44 ± 0.06 is the asymptotic drag coefficient for high Re,5,
and β = 24 the Stokes result for low Re. Eq. (2.9) is a reasonable
estimate for the drag of a sphere for Re ≤ 2 · 105.

3Liao (2002) however achieves a good matching by an ingenious choice of the aux-
iliary parameter of the homotopy analysis method.

4original quote of Veysey & Goldenfeld (2007).
5According to Guo (2011) a constant drag coefficient was already observed in ex-
periments by Newton in 1687.
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2.1 Single Particle Dynamics: A Sphere in a Fluid

Instead of the increasingly complicated drag formulae, it is often eas-
ier to use the Faxén theorem (Mazur & Bedeaux, 1974)

F (r, t) =
6πµRP

4πR2
P

∫

δV
uF (r, t)dA (2.10)

in the general case of an inhomogeneously moving fluid with known
uF (r, t).

Bagchi & Balachandar (2004) analysed the effect of free-stream tur-
bulence on the drag of a particle by means of surface integrals of shear
stress and pressure induced by simulated turbulent velocity fields. For
a sinking sphere in a turbulent fluid, there are two effects that influence
the observed time-averaged drag, namely

• a decreasing settling velocity with increasing turbulence intensity
due to the non-linearity of the drag on the velocity relative to the
fluid,

• and the preferential trajectory effect, an increase in settling veloc-
ity as a result of settling particles having a higher probability to
be found in downwash regions and avoiding zones with an upward
motion.6.

According to results of Bagchi & Balachandar (2004), there is no sys-
tematic dependency of the time-averaged drag of either the turbulent
Reynolds number or the turbulence intensity. However, with particle
sizes increasing the Komogorov length scale, the drag formula cannot
capture the small-scale fluctuations that were observed in the DNS. Par-
ticles with a diameter of about 10ηK show a significant damping even in
the low-frequency part of the spectrum. In this case, the point-particle
approximation is not a valid model any more.

Acceleration of the Fluid

Following Batchelor (1967), the external acceleration of the fluid with
force density f = DuF /Dt per unit mass gives a contribution −ρFfx

T

to the stress tensor if the accelerating force is constant over a subset

6This preferential trajectory effect was already described by Maxey (1987).
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2 Theory and Entrainment Model

of the domain that is larger than the particle. Calculating the surface
integral gives

F acc = −ρFV0
DuF

Dt
, (2.11)

with the material derivative D/Dt = ∂/∂t+ (uF · ∇).

Added Mass

The added or virtual mass of a body is a term used for describing the
inertia of the fluid in the vicinity of the body. A change in momentum
of the body therefore always requires a change of momentum of the fluid
that is influenced by the body’s motion, or in other words, a change in
kinetic energy of the body requires a change in kinetic energy of the
surrounding fluid. Following Batchelor (1967), the kinetic energy of a
fluid surrounding a moving body without rotation can be written as

T =
y

V

ρF
2
CM,ijuF,iuF,jdV . (2.12)

The fluid momentum is therefore given by

pi =
∂T

∂uF,i
=

y

V

ρFCM,ijuF,jdV , (2.13)

and hence the resulting force due to a change of that momentum is

F am =
dp

dt
= ρFV0CM

duF

dt
. (2.14)

Batchelor (1967) also calls this force the acceleration reaction, and CM,ij

the coefficient of virtual inertia. The added mass coefficient CM is in
general a tensor of second order and the product tr(CM )ρFV0 is the mass
of the fluid that is displaced by the motion of the body. If the body is
simultaneously accelerated by the fluid, its acceleration relative to the
fluid at infinity is ∂U∞/∂t−DuF /Dt, and the expression in Eq. (2.14)
changes accordingly. This is in accordance with the argumentation by
Auton et al. (1988).7 The specific term for a spherical body was first
derived by Basset (1888).

7Auton et al. (1988) point out that the difference in the fluid inertia should be
proportional to dvP /dt−DuF /Dt instead of d(vP −uF )/dt in the work of Maxey
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2.1 Single Particle Dynamics: A Sphere in a Fluid

The History Force

While the added mass term describes the change of inertia in the sur-
rounding fluid due to an acceleration of the immersed body (the flow
pattern is not changed), the history term describes the contribution to
this change in the flow pattern (Ahmadi & Goldschmidt, 1971). Gatig-
nol (1983) and Maxey & Riley (1983) derive the term

F hist = 6πµRP

∫ t

0

d(vP − uF )

dτ

dτ
√

π(t− τ)
, (2.15)

and call it the Basset history term,8 as this term was first derived by
Basset (1888)9 in an attempt to derive an equation of motion for a
sphere in a viscous flow.

If the flow field can be described by a stream function Ψ, the history
term arises from the time-dependency of the stream function ∂Ψ/∂t
that has to fulfil the differential equation

D

(

D − 1

ν

d

dt

)

Ψ = 0 (2.16)

with

D =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(

cosecθ
∂

∂θ

)

, (2.17)

as derived by Stokes (1851).

The history force is often small compared to the other contributions
and is furthermore costly to compute numerically, as the velocity of the

& Riley (1983). Both terms are only equal if the sphere is accelerated from rest
in a stagnant fluid, which was the case for which this term was derived first by
Basset (1888). The correct term was however already used by Batchelor (1967)
and also in the thesis of Then (1947). Nonetheless, the other term can still be
found in recent literature, see e.g. Marchioli et al. (2007).

8It should be noted here that Ahmadi & Goldschmidt (1971), Maxey & Riley (1983)
and Gatignol (1983) all use the term d/dt(vP −uF ) inside the integral, which is
somewhat surprising as the difference in the total time derivatives is done for vP

relative to the particle path and for uF relative to the fluid motion in case of the
added mass.

9Vojir & Michaelides (1994) dedicate a short passage in their work to the origin of
the history term: apparently, the term was derived already three years earlier in
the works of Boussinesq (1885a,b), which were not available during the writing
of this thesis, though.
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2 Theory and Entrainment Model

whole trajectory must be kept in memory.10 Thomas (1992) however
points out that it delivers a significant contribution near shocks, while
Hjelmfelt & Mockros (1966) confirms its relevance for high accelerations
in general. More computationally efficient methods have been proposed
by van Hinsberg et al. (2011) and Michaelides (1992). The term be-
comes negligible again in the case of statistically stationary response,11

and it is also often neglected compared to other terms for gentle changes
in the velocities. Despite this zero-mean effect on the particle location,
the history term has a significant effect on the diffusivity of particles
in a turbulent flow; see Reeks & McKee (1984). It furthermore causes
a stronger high-frequency response to fluctuations in the fluid velocity
(Vojir & Michaelides, 1994). In the so-called weak-inertia approxima-
tion (Maxey, 1987), the Basset history term is not part of the equation
of motion.

Hydrodynamic Lift

A lift force is in general the result of a non-zero circulation of the fluid
around the sphere. This circulation can have several causes, therefore
different problems were described in literature. The general lift force is
given by Saffman (1992) as

F L =
y

V

ρ(v ×ωF )dV (2.18)

= ρFvP ×
y

VP

ωFdV . (2.19)

If the total circulation over the whole domain is zero, the integral can
be done over the vorticity outside the sphere V \VP instead of VP . If
the flow is quasi-2D, the famous Kutta-Joukowski theorem

F L = ρFv × Γ (2.20)

10Another numerical complication arises from the fact that the integrand is singular
for τ → t. The integral is however well-defined as the derivation was done for a
sphere accelerating from rest, i.e. limτ→t vP (τ ) = uF (t).

11As shown by Ahmadi & Goldschmidt (1971), the integral effect of the Basset
history term over a long time t → ∞ of the motion is bounded by

|F hist| ≤
2M√

t

with a positive constant M for bounded w = vP − uF .
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with the total circulation Γ =
s

AωdA is obtained, giving the lift per-
unit-span of an airfoil profile.

In the viscous regime, the lift force acting on a freely rotating particle
in the unbounded shear flow u = (κz + U)ex was first analysed by
Saffman (1965), who derived the relation

FL,z = K1URP

(
κR2

P

ν

)1/2

︸ ︷︷ ︸

=
√
Reκ

+O(ν−1/2) (2.21)

with the numerically determined constant K1 = 81.2. The lift force
can also be expressed as the function of some shear Reynolds number
Reκ = κR2

P /ν that was introduced by Saffman (1965).12 The lift force
under shear flow of a sphere in contact with a solid wall was studied by
Leighton & Acrivos (1985)13, who derived

FL,z = K2(κµR
2
P )

(
κR2

P

ν

)

︸ ︷︷ ︸

=Reκ

(2.22)

with the numerically determined constant K2 = 9.22. It should be
noted that the lift is here proportional to Reκ instead of

√
Reκ in the

case of the unbounded shear flow.

A rotating body that is moving relative to a fluid14 will also expe-
rience a lift force normal to its translational velocity. Auton (1987)
shows, by using a method developed by Lighthill (1956a,b, 1957) for

12Saffman (1965) also mentions that “no sideway force on a single rigid sphere can
be derived on the basis of the creeping flow equations” ∇p = ν∆u with ∇·u = 0,
a result derived earlier by him (Saffman, 1956). This can easily be seen as the
term ∆u is identical to that of a uniform flow. Therefore, the advection term
(u · ∇)u must be included in the analysis.

13Leighton & Acrivos (1985) studied the causes for re-suspension of particles at
particle Reynolds numbers of O(10−2). He concluded that the calculated lift force
is “far too small to be of significance relative to the drag”, and that “the factors
responsible for the observed re-suspension remain, therefore, to be identified”.
This motivates the use of statistical models for the particle re-suspension based
on an attractive potential and particles “borrowing” kinetic energy from the fluid
to detach, see Sec. 5.1.3.

14This is the famous Magnus effect in ball sports.
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2 Theory and Entrainment Model

weakly rotational flows that comply with |ω|RP << ||vP − uF ||, that
this force can be written as

F L = CLVP ρF (vP − uF )× ωF , (2.23)

with the lift coefficient CL = 1/2 for a sphere and VP = 4
3πR

3
P . It

should be noted that the general lift coefficient is “the combined effect
of the rotationally and inertially induced forces” (Auton et al., 1988)
and is given by

CL =
1

2
(1 + CM ) + CLΩ (2.24)

in an inviscid rotational flow, where CLΩ denotes the purely rotational
contribution; see also Sec. 2.1.3.

Depending on the particle shape and the flow, the lift force can be or-
ders of magnitude stronger than the drag. However, this is only the case
for high Reynolds number flows (e.g. around airfoils) and is typically
not the case for Re ≤ O(1).15

The Faxén Force

As written by Mazur & Bedeaux (1974), Faxén derived in his thesis16

his well-known theorem for the force on a body

F =
6πηRP

4πR2
P

x

∂S

uF (r)dS (2.25)

resting in a non-homogeneous stationary flow uF . The somewhat strange
way of writing the constant factor in Eq. (2.25) shall indicate that the

15For many types of flows, though, the human mind seems to intuitively attribute
certain effects to the wrong force: e.g. in rowing, the concept is widespread that
the propulsion is realised by the drag of the blades in the water. However, it
has been observed (see Kleshnev, 1999; Caplan & Gardner, 2007) that the blades
leave the water at the end of the stroke (“release”) some distance in the direction
of motion of the boat relative to the position of the start of the stroke (“catch”).
It was also shown by William C. Atkinson using simulations that spherical blades,
which minimise the lift compared to the drag, make very inefficient rowing blades
(http://www.atkinsopht.com/row/socrball.htm).

16Faxén , H. Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen

Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Arkiv
för matematik, astronomi och fysik, 18 (1924); this work was not available during
the writing of this thesis.
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2.1 Single Particle Dynamics: A Sphere in a Fluid

force is proportional to the velocity averaged over the surface of the
sphere; the denominator 4πR2

P is a result of the normalisation with the
surface area of the sphere. If the fluid velocity is developed into a Taylor
series around the origin and inserted in Eq. (2.25), all odd terms of the
series do not contribute due to the symmetry of a spherical body.17 All
terms of even order will contribute though, resulting in a series for the
force

F = c0 uF |x=0
+ c2

∂2

∂xi∂xj
uF

∣
∣
∣
∣
x=0

x2
∣
∣
|x|=RP

+O
(
x4
)
. (2.26)

The terms higher than second order are usually neglected, and the
second-order term simplifies to ∝ ∆uF due to the rotational invariance.
The coefficients ci for each term of the equation of motion depend on
whether Eq. (2.25) was calculated as a surface or volume average; see
Gatignol (1983).

The Faxén force is therefore the second-order correction to the fluid
velocity, which is present in all terms of the equation of motion that
contain uF . It is also a small contribution that can be neglected if
the particle size is of the order of the Kolmogorov length scale and
smaller. However, Calzavarini et al. (2009) showed that the second order
correction for both the drag and the added mass term are important for
obtaining realistic acceleration statistics from numerical simulations for
neutrally buoyant particles that are larger than the Kolmogorov length
scale.

External Forces

External forces contain all forces like gravity, electrostatic or magnetic
fields. They also include forces that are only present near boundaries
(see Magnaudet, 2003) like additional resistance due to thinning films,
and all short-ranged attractive or repelling forces due to electrical dou-
ble layers on interfaces and van-der-Waals forces. With the exception

17The approach of Faxén (1922) is somewhat different: he develops the pressure into
spherical harmonics, and decomposes the velocities into a regular and a singular
part in the origin plus a constant (the component of u∞). Solving this system
by using the no-slip boundary conditions at the surface of the sphere, he obtains
the correction

πR3
P ∇p|

x=0
,

which gives the correct second order term by using the Stokes formula µ∆u = ∇p.
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2 Theory and Entrainment Model

of the additional resistance due to thinning films, these forces do not
explicitly depend on the particle or fluid velocity (implicit dependence
is possible if the external field is generated by charged and/or magne-
tised particles). Typically, they are modelled as conservative fields, and
the contributing forces are calculated as the volume integral over the
point-interaction of the particle material with the external field.

2.1.3 Equations of Motion for a Spherical Particle

Basset (1888) derived the first equation of motion containing the added
mass and the history terms for a sphere that is accelerated from rest.
This equation was further improved by the works of Boussinesq (1903)
(see Zeytounian (2003) for a modern review of the book), and Faxén
(1922) and Oseen (1927) extended it to what became later known as the
BBO (Basset-Boussinesq-Oseen) equation. The extension of the prob-
lem to a sphere in a non-stagnant fluid was first done by Then (1947).18

Modern derivations from first principles were published almost simul-
taneously by Maxey & Riley (1983) and Gatignol (1983), which will be
briefly discussed in the following.

For a creeping flow around a spherical particle with the no-slip bound-
ary condition, Maxey & Riley (1983) gave a derivation of the equation

18This thesis written under the supervision of J.M. Burgers is certainly a hidden gem,
as it also contains — besides the extension of the BBO equation to a moving fluid
in chapter 4 — a first analysis of the diffusivity of particles in a turbulent flow
in chapter 5 and 6, notwithstanding some corrections that were pointed out by
Corrsin & Lumley (1956) and Reeks & McKee (1984).
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2.1 Single Particle Dynamics: A Sphere in a Fluid

of motion

4

3
πR3

PρP
dvP

dt
=

4

3
πR3

P (ρP − ρF ) g
︸ ︷︷ ︸

gravity

− 6πνρFRP

(

vP − u− 1

6
R2

P∆u

)

︸ ︷︷ ︸

Stokes drag

− 2

3
πR3

PρF

(
dvP

dt
− Du

Dt
− d

dt

(
1

10
R2

P∆u

))

︸ ︷︷ ︸

added mass

+
4

3
πR3

P ρF
Du

Dt
︸ ︷︷ ︸

fluid acceleration

− 6πµR2
P

∫ t

0

d/dτ
(
vP − u− 1

6R
2
P∆u

)

√

πν(t− τ)
dτ

︸ ︷︷ ︸

Basset history

that is valid for vanishing particle Reynolds number (Re = RP |vP −
uF |/νF << 1) and small velocity gradients ((R2

P /νF )∇uF << 1) in the
continuous phase. Additionally, the size of the particle must be small
compared to the length scale LF of variations in the flow (RP /LF << 1).

Gatignol (1983)19 published a derivation that also includes the ro-
tational motion. Using the dimensionless time τ = (R2

P /νF )t, both
equations can be written as

mP
dvP

dτ
= 6πηRP

(

(vP − uF
S) +

1

9

(
dvP

dτ
− 3

duF
V

dτ

)

+

∫ τ

−∞

(
dvP

dτ ′
− duF

S

dτ ′

)
dτ ′

√

π(τ − τ ′)

)

+
∑

F ext (2.27)

19This work is almost uncited in literature, and has only recently gained some at-
tention. It nevertheless presents the most complete (including rotation) and
mathematically rigorous derivation of an equation of motion that can be found
in the literature up to this date.
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2 Theory and Entrainment Model

and

IP
dωP

dτ
= 8πηR3

P

(

(ωP − ωF
S − 1

15

dωF
V

dτ

+
1

3

∫ τ

−∞

(
dωP

dτ
− dωF

S

dτ

)(

1
√

π(τ − τ ′)
− eτ−τ ′erfc

√
τ − τ ′

)

dτ ′
)

−
∑

M ext , (2.28)

with the volume-averaged and surface-averaged undisturbed flow veloc-
ities uF

V and uF
S respectively. The Taylor series for the fluid veloc-

ity, including all the Faxén correction terms, is also given by Gatignol
(1983). Following again the argumentation of Auton et al. (1988), the
time-derivatives for the fluid velocity should be D/Dτ . The advantage
of these equations over Eq. (2.27) is that the generalisation to arbitrary
body shapes is simply done by the change of the integration volume
or surface for determining the fluid velocity. The equations derived by
Gatignol (1983) therefore represent the general equation of motion for
an arbitrarily shaped body in the creeping flow regime.

Contrary to the creeping flow assumption Equations (2.27) to (2.28)
are based on, Auton et al. (1988) derived an equation of motion for
an inviscid, unsteady and non-uniform rotational velocity field. They
assume that the rate of strain over the particle’s dimensions is small
compared to the relative velocity w = vP − uF , thereby defining the
small parameter

ǫ = RP
||∇u0||

w
<< 1 , (2.29)

and require furthermore that the time for changing w is small compared
to the time a fluid element needs to pass the particle

∣
∣
∣
∣

∂w

∂t

∣
∣
∣
∣
<<

w2

RP
. (2.30)

Under these assumptions, the force on a body becomes

F = ρFVP

[

(1 + CM )
DuF

Dt
− CM

dvP

dt
+ CLωF × (vP − uF )

]

,

(2.31)
with the added mass coefficient CM = 1/2 and the lift coefficient CL =
(1 + CM )/2 + CLΩ = 1/2 for a sphere (Auton (1987), and where CLΩ
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2.1 Single Particle Dynamics: A Sphere in a Fluid

is the rotational lift coefficient. The accuracy of Eq. (2.31) is of first
order in ǫ.

2.1.4 Weak-Inertia Approximation

The weak-inertia approximation

vP = uF + τPαg + τP (β − 1)

(
Du

Dt

)

, (2.32)

is derived from Eq. (2.27) (Maxey, 1987)20 and can be seen as a first-

order approximation for small particle response times τP =
R2

P

3νF β , β =
3ρF

2ρP+ρF
, (smaller than the smallest time scales in the flow τF ). Eq. (2.32)

also defines a velocity field vP for the dispersed phase if uF is given,
with ∇ · vP 6= 0 in general. The interpretation of the particle velocity
vP as the Eulerian phase velocity is not without problems, though. It
neglects the possibility that two particles at the same point can have
different velocities at different times; therefore, the stationary velocity
field does not exist. Even in the non-stationary case, a collision-free
point particle model would allow that a fast particle catches up on a
slower one, resulting in two particles with different velocities at the
same point and time. The latter constraint is fulfilled by the weak-
inertia assumption, and Eq. (2.32) must be interpreted as a stochastic
PDE with stochastic variables vP and uF that allows the treatment of
stationary-state solutions.

The benefit of the weak-inertia approximation lies in the fact that
an expression for the particle concentration can be obtained for a given
stationary incompressible flow field. The basic idea comes from the
famous Einstein paper on the Brownian motion (Einstein, 1905): “The
state of dynamic equilibrium [. . . ] can be conceived as a superposition
of two processes proceeding in opposite directions, namely

1. a motion of the suspended substance under the influence of the
force K which is exerted on each suspended particle,

20Maxey (1987) uses a slightly different equation of motion in his paper; the added
mass term is written as

d

dt
(v − u) ,

contrary to the argumentation of Auton et al. (1988), and therefore his parameter
R is defined differently to the β used in this work
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2 Theory and Entrainment Model

2. a process of diffusion, which is to be conceived as the result of
the random motions of the particles due to thermal molecular
motion.”

The dynamic flux balance is taken here by analogy to Einstein’s idea
between the convective transport of particles and the turbulent diffusive
transport

0 = ρPvP − νP∇ρP , (2.33)

which can be rearranged to

∆logρP = div
(
ν−1
P vP

)
= div

(
ν−1
P (uF + τP (β − 1) ((uF · ∇)uF − g))

)

(2.34)
by dividing by ρP , multiplying by the inverse of the diffusion tensor
ν1P and taking the divergence. As the diffusivity νP is a symmetric
positive-definite matrix, its inverse exists and Eq. (2.34) can be solved
by the Poisson integral

ρP = exp

(
y

V

∇ ·
(
ν−1
P (r′)vP (r

′)
)

|r′ − r| dr′
)

. (2.35)

Eq. (2.35) is an explicit function of the particle density in the domain
as a function of the particle phase velocity. Together with Eq. (2.32),
an explicit relation between the particle concentration and the fluid
velocity is available.

It should be noted that there is no stationary state for the particle
concentration if the fluid velocity field uF is laminar (νP = 0). The
concentration increases unboundedly at certain points where∇·vP < 0.
This can be solved by introducing a molecular (Brownian) diffusivity
flux Dm∇ρP into the continuity equation.

Eq. (2.33) is a consequence of the continuity equation for the dis-
persed phase.21 However, in a simple continuum model, the total par-
ticle flux is not necessarily zero. The continuity only implies that the
longitudinal component of the flux

jP = ρPvP − νP∇ρP = ∇Φ
︸︷︷︸

longitudinal component

+ ∇×A
︸ ︷︷ ︸

transversal component

(2.36)

21The momentum balance is violated in the one-way coupling regime for the dis-
persed phase, because it is negligible compared to the momentum of a fluid ele-
ment of sufficient size.
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2.2 A Model for the Near-Wake

is zero. A constraint for the transverse component can be obtained from
the dissipative nature of fluid flows, or the bound energy spectrum Ê(k)
of the turbulent fluid. As a consequence, both the velocity spectrum
û(k) and the vorticity spectrum ω̂(k) = k × û(k) are bound (they
converge sufficiently fast in the limit k → ∞), and thereby also the
transverse component of the flux ρPvP is bound in the weak inertia
limit. The transverse component is hence constant in a control volume
of sufficiently small dimension. It was now shown that by requiring
rotational symmetry (S0(3)22) “the gauge field of a fluid flow coincides
with the vorticity” (Kambe, 2003). Together with the local constant
(particle phase) vorticity field23 at small scales, the gauge invariance
implies that the transverse component has no influence here; i.e. the
sum of the local particle fluxes can be set zero.

2.2 A Model for the Near-Wake

Dayan & Zalmanovich (1982) assume a bubble wake of spherical shape,
which consists of a spherical-cap bubble with the rim at the polar angle
θ0 and the near wake occupying the rest of the volume of the sphere
(see Fig. 2.1). They furthermore assume an irrotational flow around
this sphere. Balancing gravity, Stokes’ drag and inertia, they derive the
radial component of the particle slip velocity at the wake boundary as

vr =
2

9

R2
P

µ
(ρP − ρF )gz(sin

2 θ − cos θ) . (2.37)

Supposing that N(RP ) is the concentration of particles with radius
RP in the wake, Dayan & Zalmanovich (1982) solved the differential
equation

d2N(RP ) = −N(RP )

Vwake
vrdAdt (2.38)

using Eq. (2.37) and dA = 2πR2
wake sin θdθ, and derived

N(RP , t) = N0(RP ) exp

(

−0.573
gR2

P (ρP − ρF )

Rwakeµ
t

)

. (2.39)

22The special orthogonal group SO(3) represents the group of rotations in three
dimensions; it should be noted that it is only required that the laws of the system
(the Lagrangian) obey this symmetry, not necessarily the domain itself.

23The system of the particle phase should obey the same symmetries as the under-
lying fluid flow.
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2 Theory and Entrainment Model

This equation describes the change in concentration of particles with
radius RP inside the wake over time.

Our model is based on the same assumptions. Dayan & Zalmanovich
(1982) do not model a stationary state though. For buoyant particles
(ρP < ρF ), Eq. (2.38) would change to

d2N(RP ) = − Next

Vwake
vrdAdt (2.40)

with some constant external particle concentration Next and a negative
(inward) vr. The solution to this equation is a linear increase in concen-
tration with time. This can only be the case when diffusive fluxes can be
neglected at all times t and for all concentration differences, as otherwise
the particle concentration would grow without bounds. Adding diffu-
sion to their model would add a term D(RP )(N(RP )−Next(RP ))dAdt
to the right side of equation Eq. (2.38), whose contribution can be ne-
glected in the case studied by them. With increasingN(RP ) for buoyant
particles, this term will however retard and finally stop any growth of
the particle concentration inside the wake. In our case, when the po-
tential flow around a sphere is used to model the time-averaged flow
around the bubble and its wake of an otherwise fully turbulent flow
field, the diffusion constant D(RP ) is so large that the system reaches
a stationary state with only a small change in particle concentration
inside the wake.

2.3 A Model for Particle Entrainment

In this section, the model for the particle entrainment is derived, based
on the weak-inertia approximation and the model of Dayan & Zal-
manovich (1982) for the near-wake of the spherical cap.

2.3.1 Particle Entrainment in a Spherical-Cap Wake

The model derived in the following assumes a balance between the
inertia-induced particle flux and turbulent diffusion from the wake re-
gion to the surrounding fluid. The inertia-induced particle flux is the
result of accelerations in the time-averaged flow, which is modelled as
a stationary irrotational flow around the spherical bubble-wake. This
model (see Fig. 2.1) was originally proposed by Dayan & Zalmanovich
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U∞

θ0
Rwake

air bubble

near-wake
n

normal of the
wake boundary

g = (0, 0,−gz)

Figure 2.1: Spherical model for the near-wake behind a spherical-cap
gas bubble according to Dayan & Zalmanovich (1982)

(1982). The diffusive particle transport is the result of concentration
gradients and the turbulent velocity fluctuations. In other words, the
model predicts the expectation value of the particle concentration in the
wake of a spherical-cap bubble as a function of the statistical properties
of the flow.

The equation of motion for a sufficiently small spherical particle in a
fluid is given by Maxey & Riley (1983) (see also: Gatignol, 1983; Mei,
1996) and is discussed in the previous section. The Faxén correction is
neglected in the Stokes drag and in the added mass term, the Basset
history term and other possible forces (such as the lift force and forces
due to pressure gradients). This is appropriate when the particle di-
ameter is very small in comparison to the characteristic length scale of
the velocity gradients in the flow (Saffman, 1965; Auton, 1987; Auton
et al., 1988; Thomas, 1992; Calzavarini et al., 2009). We thus retain a
simplified expression of the Maxey-Riley equation for the velocity v of
a small particle in a fluid that has a velocity field u:

dv

dt
= αg − 1

τP
(v − u) + β

Du

Dt
, (2.41)
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with:

α = 2
ρP − ρF
2ρP + ρF

= 1− β, and: β =
3ρF

2ρP + ρF
, (2.42)

and a particle response time τP , defined as

τP =
R2

P (2ρP + ρF )

9νρF
=

R2
P

3νβ
, (2.43)

where RP is the particle radius, ρP the density of the particle, and ρF
and ν the density and kinematic viscosity of the fluid respectively. The
added-mass term in (2.41) is in accordance with the argumentation of
Auton et al. (1988).

For small particle response times τP , the particle experiences a small
slip velocity v − u such that it undergoes nearly the same acceleration
as a fluid element, i.e. dv/dt − Du/Dt ∼= 0. This assumption is valid
even for a turbulent flow provided that the particle response time τP is
much smaller than the Kolmogorov time scale τK of the turbulent flow.
Consequently, the averaged particle velocity can be obtained from (2.41)
as

〈vP 〉t = 〈u〉t + τPαg + τP (β − 1)

〈
Du

Dt

〉

t

, (2.44)

where 〈· · · 〉 denotes an ensemble average over many realisations of the
flow. 24

By means of the Reynolds decomposition uF = 〈uF 〉+ u′
F , the fluid

velocity is decomposed into a time-averaged component 〈uF 〉 and a
fluctuating component u′

F with zero mean. This finally gives the time-
averaged equation

〈vP 〉 = 〈u〉+ τPαg + τP (β − 1)
[
(〈uF 〉 · ∇)〈uF 〉+

〈
(u′

F · ∇)u′
F

〉]
.

(2.45)
The turbophoresis term 〈(u′

F · ∇)u′
F 〉 is omitted from the following part

of the derivation; it is treated as an additional contribution to the par-
ticle flux in Sec. 2.3.5.

It is now assumed that the time-averaged flow around the bubble and
its wake in a frame of reference moving with the spherical-cap bubble

24In practice, the flow conditions and turbulence statistics are assumed to be sta-
tionary, and 〈· · · 〉 is determined by means of a time-average.
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2.3 A Model for Particle Entrainment

at a constant velocity U∞ is described by a stationary potential flow
around a sphere with a radius Rwake; see Fig. 2.1. Neglecting gravity, it
follows from (2.44) that a particle moving tangentially to the boundary
of the sphere that defines the mean wake is experiencing a slip velocity
with a radial component

〈vr〉|r=Rwake
= τP (β − 1)

1

2

∂

∂r
〈uθ〉2

∣
∣
∣
∣
r=Rwake

= −τP (β − 1)
9U2

∞
4Rwake

sin2 θ , (2.46)

with: 〈uφ〉 = 0,25 〈ur〉|r=R = 0, 〈uθ〉|r=R = 3
2U∞ sin θ, and ∂〈uθ〉/∂r|r=R =

− 3
2RU∞ sin θ. The term (〈uF 〉 ·∇)〈uF 〉 is simplified through the vector

identity (u · ∇)u = 1
2∇u2 − u × (∇ × u), where the last term can be

omitted as we consider an irrotational flow. The radial component of
the fluid velocity 〈ur〉 is zero at the wake boundary (by definition), and
the azimuthal component of the fluid velocity is zero due to rotational
symmetry.

With Eq. (2.45), the time-averaged particle flux over the wake bound-
ary is given by

Φi = 2π

∫ π

θ0

〈nP 〉|r=Rwake
〈vr〉|r=Rwake

R2
wake sin θ dθ, (2.47)

where 〈nP 〉 is the mean particle number density in the fluid. The inte-
gral is only calculated over the wake boundary, leaving out the region
of the spherical-cap bubble; see Fig. 2.1. Assuming a constant parti-
cle number density nP,ext in the ambient fluid (and therefore over the
boundary of the wake), we arrive at the following simplified relation for
the inertia-induced particle flux:

Φi = −τP (β − 1)
3π

2
U2
∞RwakenP,ext

(
2− cos3 θ0 + 3cos θ0

)
. (2.48)

Here, the sign convention is that the flux is positive in the outward
radial direction.

25The velocity in the azimuthal direction uφ is assumed to be zero; this dimension
is therefore omitted in the following analysis.
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Figure 2.2: Measured particle concentration in the wake of a solid spher-
ical cap, upward flow, corrected for inhomogeneous illumi-
nation and normalised by mean intensity. Note the local
concentration increase in the free shear layers, the rather
sharp boundary between the near wake and the outer flow,
and the absolute concentration increase in the near wake.
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2.3 A Model for Particle Entrainment

In a statistically stationary state, the inward inertia-driven flux is
balanced by an outward flux due to turbulent diffusive particle trans-
port with a diffusion coefficient DP (see e.g. Hinze, 1975) through the
bounding surface A of the wake, which is given by

Φd =

∫

A
DP∇〈nP 〉 · dA

≈ DP
nP,wake − nP,ext

LP
2πR2

wake

∫ π

θ0

sin θdθ

≈ Curms (nP,wake − nP,ext)R
2
wake2π(cos θ0 + 1). (2.49)

The sum of both contributions is zero in the stationary state. Here it is
assumed that the diffusion process can be described by a gradient diffu-
sion model. Furthermore, we assumed a uniform particle concentration
nP,wake inside the wake and a uniform particle concentration nP,ext in the
outer flow. This simplification is supported by experimental data, see
Fig. 2.2. Hence, we can approximate the concentration gradient by the
difference between these concentrations divided by a length scale LP . In
analogy to the turbulent momentum transport coefficient, the turbulent
particle diffusivity coefficient DP = CurmsLP can be decomposed into
the product of a velocity scale (here the scale of the turbulent velocity
fluctuations urms), a length scale LP , defined as the mixing length of
the dispersed phase, and a constant C of order 1. It is assumed that the
integral length scale LP is the characteristic scale for both the parti-
cle concentration gradient and the momentum mixing length, and that
LP scales with Rwake. Both length scales are not necessarily identical,
but any proportionality constant can be absorbed into the (unknown)
constant C. This assumption however requires experimental validation.
Balancing both fluxes, i.e. Φi+Φd = 0, and rearranging the terms gives
the following expression for the ratio of the particle concentrations in
the wake and in the external flow:

nP,wake

nP,ext
− 1 =

U∞
urms

τP (β − 1)

Rwake/U∞

3f(θ0)

4C
, (2.50)

with:

f(θ0) =
2− cos3 θ0 + 3cos θ0

1 + cos θ0
= 2 + cos θ0 − cos2 θ0, (2.51)
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2 Theory and Entrainment Model

which incorporates a Stokes number St, defined as

St =
τP (β − 1)

Rwake/U∞
=

τP (β − 1)

T
, (2.52)

that characterises the trapping of the particle in the wake. The ratio
of this characteristic Stokes number and the turbulence level TL =
urms/U∞

Stmean =
St

TL
(2.53)

is equivalent to the so-called “large eddy Stokes number” defined by
Hardalupas et al. (1992). We use the term “mean flow Stokes number”
here, as this parameter describes the scaling of the contribution of the
time-averaged flow. The time T = Rwake/U∞ is the characteristic time
scale for the wake; it only depends on the properties of the mean flow.
The term U∞/urms is the reciprocal of the relative turbulence level, and
f(θ0) is a geometrical factor that only depends on the polar angle of the
edge of the spherical cap. For a spherical-cap gas bubble (with a large
Weber number) the angle θ0 is typically around 50◦ (see e.g. Wegener
& Parlange, 1973), so that f = 2.23; completely ignoring the spherical
cap, i.e. θ0 = 0◦, gives f = 2.

Given (2.52), we now define a modified particle response time

τ∗P = τP (β − 1) =
2R2

P (ρF − ρP )

9νρF
, (2.54)

which is a measure for the response of the particles; it only depends on
the properties of the dispersed phase. It should be noted that according
to this definition, the characteristic Stokes number in (2.52) attains
negative values for particles with a density that is larger than that of
the surrounding fluid (for which β < 1).

2.3.2 The Influence of Gravity

In deriving Eq. (2.45) for calculating the radial slip velocity at the
wake boundary, the gravity term in (2.44) was neglected. By balancing
the gravity g = (0, 0,−gz).

26 with Stokes drag on a moving spherical

26The direction of gravity is here chosen according to the coordinate system of the
rising bubble, see Fig. 2.1 For the comparison with the experimental data in
Ch. 4, g = (0, 0,+gz) will be used.
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2.3 A Model for Particle Entrainment

particle, the radial component of the settling velocity, i.e.

vs,r = −τPαgz cos θ = τP (β − 1)gz cos θ, (2.55)

induces an additional particle flux:

Φg = 2π

∫ π

θ0

nP,extτP (β − 1)gz cos θR
2
wake sin θdθ

= πτP (β − 1)gzR
2
wakenP,ext

(
cos2 θ0 − 1

)
. (2.56)

Comparing Eq. (2.48) and Eq. (2.56) gives

Φg

Φi
=

2 (cos θ0 − 1)

3 Fr2 (2− cos θ0)(1 + cos θ0)
, (2.57)

with the Froude number Fr = U∞/
√
gzRwake. The Froude number

can be interpreted here as the ratio of the radial to the gravitational
acceleration. Hence, the gravitational flux can be neglected if

3(2 − cos θ0)(cos θ0 + 1)

2(1 − cos θ0)
Fr2 ≫ 1. (2.58)

Requiring that in a stationary case we have Φi +Φg +Φd = 0, gives

nP,wake

nP,exterior
− 1 =

U∞
urms

τP (β − 1)

Rwake/U∞

f̃(θ0,Fr
2)

C
, (2.59)

with a modified shape factor:

f̃(θ0,Fr
2) =

3

4
(2 + cos θ0 − cos2 θ0) +

1

2 Fr2
(cos θ0 − 1) . (2.60)

The condition in Eq. (2.58) implies Fr2 ≫ 0.107 for θ0 = 50◦, i.e.
U∞ ≫ 0.11 m/s for the spherical cap used in the experiments described
in Chapters 3 and 4. The contribution to the flux due to gravita-
tional settling to the mean transport therefore scales with St/Fr2TL =
Stmean/Fr

2.
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z

r

θ0
η0

(ξ0, η)

U∞

a

b

Figure 2.3: Coordinate system for the potential flow around a prolate
ellipsoid with half axes a = ccoshξ0 and b = csinhξ0; the
spherical cap is defined by the polar angle of its rim θ0,
which is situated at the angle η0 of the elliptical coordinate
system of the wake; a point at the wake boundary is given
by the coordinates (ξ0, η)

2.3.3 A Model for an Elliptical Wake

The experimentally measured velocity fields show that the wake does
not have a spherical shape and that its boundary is better described
by an ellipsoid of rotation. In the following the formula for the concen-
tration increase is also derived for a potential flow around an ellipsoid.
The derivation of a formula for the particle concentration in an elliptical
wake follows the same approach as in Sec. 2.3.1. From the derivatives of
the Stokes stream function of a potential flow around a prolate ellipsoid,
the normal particle slip velocity at the wake boundary is calculated.
The inertial particle flux follows by integration, likewise the diffusive
and the gravitational fluxes. It should be noted that all dimensionless
numbers are normalised with the major half axis a of the ellipse. The
shape factors now depend on the eccentricity e of the elliptical wake.

The Stokes stream function for the potential flow around a prolate
ellipsoid (Batchelor, 1967) in elliptical coordinates ξ, η (see Fig. 2.3) is
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2.3 A Model for Particle Entrainment

given by

Ψ =
U∞
2

c2 sin2 η

(

sinh2 ξ −K

(

cosh ξ + sinh2 ξ log tanh
ξ

2

))

,

(2.61)
with

K =
b2

ac+ b2 log
(
a−c
b

) (2.62)

and e = c/a =
√
a2 − b2/a. By analogy to Sec. 2.3.1, the slip velocity

of a particle in direction of ξ at the boundary of the ellipsoid (ξ = ξ0)
is given by

vP,ξ|ξ=ξ0
= τP (β − 1)

1

hξ

∂

∂ξ

u2

2

∣
∣
∣
∣
ξ=ξ0

, (2.63)

because the velocity component uξ is zero at the boundary by definition.
For the same reason u2 = u2η at the boundary, and one gets

1

2hξ

∂

∂ξ
u2η =

1

2hξ

∂

∂ξ

(−1

hξr

∂

∂ξ
Ψ

)2

=
Ψ′

h3ξr
2

(

Ψ′′ −Ψ′
(

1/2

h2ξ

∂h2ξ
∂ξ

+
1

r

∂r

∂ξ

))

(2.64)

with the scale factor hξ = c
√

sinh2 ξ + sin2 η and the radial distance to
the z axis r = c sinh ξ sin η. The different terms are:

1/2

h2ξ

∂h2ξ
∂ξ

∣
∣
∣
∣
∣
ξ=ξ0

=
c2 sinh ξ cosh ξ

c2 sinh2 ξ + c2 sin2 η

∣
∣
∣
∣
ξ=ξ0

=
ba

b2 + c2 sin2 η
, (2.65)

1

r

∂r

∂ξ

∣
∣
∣
∣
ξ=ξ0

=
cosh ξ

sinh ξ

∣
∣
∣
∣
ξ=ξ0

=
a

b
, (2.66)

∂

∂ξ
Ψ

∣
∣
∣
∣
ξ=ξ0

=
U∞bc3 sin2 η

ac+ b2 log a−c
b

, (2.67)

and
∂2

∂ξ2
Ψ

∣
∣
∣
∣
ξ=ξ0

=
U∞ac3 sin2 η

ac+ b2 log a−c
b

. (2.68)
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With these terms, the particle slip velocity normal to the wake boundary
is given as

vP,ξ|ξ=ξ0
= f(e)

τP (β − 1)U2
∞ sin2 η

a
, (2.69)

with

f(e) =

√
1− e2e6

(e− (1− e2) artanh(e))2 (1− e2 cos2 η)5/2
. (2.70)

For e → 0, Eq. (2.45) for a sphere is obtained. This can be seen by
making use of the series expansion of artanh(e) = e + e3/3 + O(e5),
whereby the factor f(e) becomes

lim
e→0

f(e) = lim
e→0

√
1− e2e6

(e− (1− e2)(e + e3/3 +O(e5)))2 (1− e2 cos2 η)5/2
=

9

4
.

(2.71)
The inertial flux can now be determined by integrating vP,ξ over the

boundary of the wake, which gives

Φi = 2π

∫ π

η0

〈nP 〉t|ξ=ξ0
vP,ξ|ξ=ξ0

√

a2 sin2 η + b2 cos2 ηb sin ηdη

= πτP (β − 1)aU2
∞nP,exteriorfinertia(e) (2.72)

with

fi(e) =
(1− e2)e3

(e− (1− e2) artanh(e))2

(

(e2+1)(artanh(e)+artanh(e cos η0))

− e
cos η0 + 1

2

(
e+ 1

e cos η0 + 1
+

e− 1

e cos η0 − 1

))

(2.73)

and η0 = arcsin
(

ξ

2a
√
1−e2

)

.27 The diffusive flux over the boundary is

Φd = Curms (nP,wake − nP,exterior) 2π

∫ π

η0

√

a2 sin2 η + b2 cos2 ηb sin ηdη

= Curms (nP,wake − nP,exterior)πa
2fd(e) , (2.74)

27For conformity with the notation of Fan & Tsuchiya (1990), the base diameter of
the spherical cap is denoted by the symbol ξ here; it should not be confused with
the coordinate ξ of the elliptical coordinate system.
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with

fd(e) =
√

1− e2
(
√

1− e2 +
arcsin(e)

e

+cos η0
√

1− e2 cos2 η0 +
arcsin(e cos η0)

e

)

. (2.75)

For e → 0, Eq. (2.49) for a sphere is again obtained. The contribution
of gravity results in a flux

Φg = 2π

∫ π

η0

−nP,exteriorτPα
gz cos η

√
1− e2

√

1− e2 cos2 η

√

a2 sin2 η + b2 cos2 ηb sin ηdη

= πnP,exteriorτP (β − 1)a
U2
∞

Fr2
fg(e) , (2.76)

with

fg(e) = (1− e2)
(
cos2 η0 − 1

)
(2.77)

and the Froude number Fr = U∞/
√
gza. From the flux balance 0 =

Φinertia +Φd +Φg, the elliptical wake model follows as

nP,wake

nP,ext
− 1 =

U∞
urms

τP (β − 1)

a/U∞

f(e, η0,Fr
2)

C
, (2.78)

only using a more complex shape factor

f(e, η0,Fr
2) = e3

(e2 + 1)artanh
(

e 1+cos η0
1+e2 cos η0

)

− e− e(e2−1) cos η0
(e2 cos2 η0−1)

(cos2 η0 − 1) (e− (1− e2) artanh(e))2

+
1

Fr2

√
1− e2 + arcsin(e)

e + cos η0
√

1− e2 cos2 η0 +
arcsin(e cos η0)

e√
1− e2 (cos2 η0 − 1)

.

(2.79)

The parameter a is the major half axis and e the eccentricity of the
ellipse, and the rim of the spherical cap bubble is located at the polar

angle η0 = arcsin
(

ξ

2a
√
1−e2

)

with the chord length ξ of the spherical
cap.
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2.3.4 Convergence to the Stationary State

The treatment of the instationary case is similar to the derivation of the
model of Dayan & Zalmanovich (1982). The change in concentration
dnP,wake/dt is identical to the sum of the inertial flux

Φinertia = FInP,ext , (2.80)

the gravitational flux
Φg = FGnP,ext , (2.81)

and the diffusive flux

Φd = −FD(nP,wake − np,ext) , (2.82)

giving the following differential equation:

dNP,wake(t)

dt
= Vwake

dnP,wake

dt
= (FI + FG + FD)nP,ext − FDnP,wake(t)

(2.83)
with nP,ext = const. Under this condition and with nP,wake(t = 0) =
nP,ext, the solution is given by

nP,wake(t)

nP,ext
− 1 =

FI + FG

FD

(

1− exp

(

− FD

Vwake
t

))

. (2.84)

The stationary state models derived in Sections 2.3.1 to 2.3.3 are there-
fore the solutions for t/T → ∞, with the time scale T = Vwake/FD. For
small t << T , the solution increases/decreases linearly with the slope
(FI + FG)/Vwake.

The factor FD for the spherical model is given as

FD = 2πCurmsR
2
wake(cos θ0 + 1) , (2.85)

therefore

T =
Vwake

FD
∝ Rwake

urms
. (2.86)

With a typical rise velocity for a 50◦ spherical-cap bubble in water of
0.25 m/s, a turbulence level of 0.2 and a wake radius of 10−2 m, the
time scale T is approximately 0.2 seconds. In other words, the time
needed to reach the stationary state is small compared to the overall
bubble rising times in facilities with sizes in the order of one meter and
more. Furthermore, disturbances are damped out quickly if the flow in
the wake is stable.
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2.3 A Model for Particle Entrainment

2.3.5 The Contribution of Turbophoresis

In the derivation of the inertial particle flux in Sec. 2.3.1, the fluctuation
term τP (β − 1) 〈(u′

F · ∇)u′
F 〉 was omitted. It represents another con-

tribution to the particle slip velocity relative to the fluid, and therefore
induces a particle flux. The flux due to this term is called turbophoresis.

Writing the advection term in conservative form
〈
(u′

F · ∇)u′
F

〉
= ∇ ·

〈
u′u′T 〉 (2.87)

shows that this term scales with u2rms/L (Tennekes & Lumley, 1972),
with the integral length scale L = Rwake. After integration over the
wake boundary, the turbophoresis term scales with τP (β−1)Rwakeu

2
rms,

yielding a scaling relative to the diffusive flux of

Φt

Φd
∝ τP (β − 1)Rwakeu

2
rms

urmsR2
wake

=
τP (β − 1)

Rwake/U∞

urms

U∞
. (2.88)

The contribution of turbophoresis relative to the transport induced by
the time-averaged flow is thus smaller by a factor TL2 that is of order
O(10−2), and can therefore be neglected.

However, looking at local contributions to the turbophoresis reveals a
different scaling. Converting the surface integral over the wake bound-
ary into a volume integral and separating terms using vector identities
gives

Φt = τP (β − 1)

∫

nP (x)∇ ·
〈
(u′

F · ∇)u′
F

〉
dV

+ τP (β − 1)

∫

∇nP (x) ·
〈
(u′

F · ∇)u′
F

〉
dV

= τP (β − 1)

∫

nP (x)

[
1

2
∆〈u′2F 〉 − 〈ω2

F 〉 − 〈u′F∆u′F 〉
]

dV

+ τP (β − 1)

∫

Dturboph∇nP (x)dV (2.89)

for the flux induced by turbophoresis. The enstrophy term 〈ω2
F 〉 scales

with u2rms/λ
2 with the Taylor microscale λ (see Tennekes & Lumley,

1972, p. 89), such that

Φt

Φd
∝ τP (β − 1)R3

wakeu
2
rms/λ

2

urmsR2
wake

=
τP (β − 1)

Rwake/U∞

urms

U∞

R2
wake

λ2
. (2.90)
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For homogeneous isotropic turbulence, the ratio of the integral length
scale and the Taylor microscale can be expressed as

L2

λ2
=

A

15
ReL =

A

15
TLRe , (2.91)

with ReL = urmsL/ν, L ≅ Rwake and the constant A of order one (see
Tennekes & Lumley, 1972, p. 67). The contribution of the enstrophy
term of the turbophoresis to the mean particle transport therefore scales
with a factor TL3Re relative to the mean flow contribution. For TL ≅

O(10−1) and Re ≅ O(103), it is of order one and therefore comparable
to the contribution of the mean flow. It should be noted though that
the high-enstrophy regions are situated in the free shear layers only,
which is considerably smaller than the near wake itself.
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Table 3.1: Legend to Fig. 3.1

1 main pump 10 test section 19 filter valve
2 flow straightener 11 spherical lens 20 filter
3 pressure tap 12 cylindrical lens 21 filter valve
4 diffusor 13 end mirror 22 bypass valve
5 grid 14 field-of view 23 bypass/2nd pump
6 pressure tap 15 pressure tap 24 mirror
7 contraction 16 free surface 25 Nd:YAG laser
8 pressure tap 17 flow meter 26 spherical cap
9 porous rings 18 platform 27 opt. coarse grid

3.1 Experimental Setup

3.1.1 Vermeer-Setup

All two phase measurements were done in a vertical water tunnel,
the VerMeer (Verticale Meerfase) facility built by (Poelma, 2004), see
Fig. 3.1. The facility was used without major changes. The system for
the boundary layer suction was not used during this work, instead a
second pump was installed in the bypass to allow measurements with
reversed flow direction, although at a reduced flow rate. This was done
to allow calibration measurements of the intensity distribution in the
absence of a wake, these calibrations however turned out to be of in
general insufficient quality due to quickly setlling particles. One porous
ring was replaced to mount the spherical-cap bubble model made of
brass. Another porous ring and two glass cylinders were replaced by
a single, longer glass cylinder to allow for unobstructed measurements
downstream of the wake.

The main centrifugal pump is powered by an ABB general purpose
AC controller; the second, smaller centrifugal pump in the added bypass
is throttled by an inline ball valve. Leaving the pump, the flow passes a
flow straightener made of drinking straws (� 3mm) to reduce swirling
motion and enters a diffusor with the rectangular grid. The sudden
contraction with an area ratio 10:9 corrects for the anisotropy in the
velocity fluctuations at the inlet of the test section. There, the weakly
turbulent flow has a fairly flat mean velocity profile in the centre of the
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3.1 Experimental Setup

Figure 3.1: Schematic drawing of the VerMeer facility: A vertical water
tunnel used for the wake measurements (by courtesy of Ch.
Poelma)
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pipe, and it is weakly accelerating in the centre due to the boundary
layer growth at the pipe walls. After leaving the test section, the flow
passes the top of the facility (the only free surface is located there at
the overflow pipe), and flows back to the pump via a flow meter and
a filter. The bypass and the pump mounted there were used to lower
flow speeds at the minimal pump speed, for “flushing” the facility and
re-entrain settled particles into the flow, and for the reversal of the flow
direction in the test section.

The test section is a quboid with square footprint made of four glass
plates. It is filled with water together with the rest of the piping. The
flow inside the stacked glass cylinders is thereby optically accessible
without the strong distortions induced by curved interfaces. The index-
matching is not perfect, though, but own calibrations have shown that
the difference in horizontal and vertical magnification is less than 0.1%,
see Sec. 3.2.1.

Inside the test section, glass cylinders of different lengths were used
to place the spherical cap model at different distances to the inlet.
An additional (hexagonal) grid was mounted at the inlet of the test
section for the measurements with a high turbulence level in the flow
approaching the spherical cap.

The cameras were mounted on a traverse allowing for the observation
at all positions of the test section. Initially, both cameras were mounted
in parallel, with the field of view of the second camera aligned to that of
camera one (direct view) by an additional mirror and a beam splitter.
As the image can be flipped horizontally in software, a T-shaped camera
mount with only the beam splitter cube was used, gaining space in the
optical path that was previously occupied by the mirror. The latter is
also easier to align, as the degrees of freedom in the alignment of the
mirror are no longer available and also not needed.

In general, all experiments with a new particle type were started
with fresh water that was provided via an ion exchanger to avoid the
formation of lime deposits in the facility. The test section, the flow
straightener and the section with the grid were dismantled and cleaned
to remove residues of formerly used test particles. The whole facil-
ity was flushed several times at maximum pump speed and re-filled
with fresh water. The particle concentration was optimised for approx-
imately 2 ·104 visible particles in each frame, therefore it was confirmed
by measurements without added particles that the concentration of un-
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wanted particles is less than about 200 (1% of the total concentration).
The different particles used were dispersed in de-ionised water and, us-
ing a syringe, injected via a pressure tap upstream of the first grid.

3.2 Data Correction and Analysis

3.2.1 Image Alignment for 2-phase PIV

When comparing the flux of a dispersed phase over a boundary with the
flux of a continuous phase, see Sec. 3.2.3, it is necessary that both flow
field measurements are well-aligned. In the case of a small misalign-
ment, the detected wake boundary (see Sec. 3.2.2) would be at different
positions in the field-of-view, and the subsequent integration of the ve-
locities would effectively be done over different boundaries with a small
displacement, leading to systematic errors. A test with recorded veloc-
ity fields revealed that small displacements in the position of the wake
boundary can cause significantly different results for the total flux, see
Fig. 3.3. As shown in the following, these small displacement errors
can already be introduced by adding or removing a filter to the optical
path.

The alignment of the two cameras is done by careful adjustments of
the beam splitter and/or additional mirrors, but practically an align-
ment with sub-pixel accuracy is difficult to achieve. Therefore, an image
aligment step is done during the preprocesing step, before the PIV anal-
ysis. It is necessary to determine the mapping function that transforms
the coordinates of the reference frame of camera 1 to that of camera
2 at the time of the measurement (directly before and after, to avoid
accidental misalignments). This can be done in two ways: Either with
an external calibration target installed in the second light path of the
beam splitter, or — the so-called autoalignment — by taking the same
image with both cameras (colour filters for two-phase PIV have to be
removed in this case). In both cases the local displacement field can
be determined by cross-correlating sections of both images (practically
done by a PIV correlation analysis with a sufficient large interrogation
window size). The use of the external target requires that the image
is flipped horizontally to account for the beamsplitter now acting as a
mirror for camera 1 and as a transparent object for camera 2. More
importantly, due to the position of the beam splitter and possibly an
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Table 3.2: Selected parameters of the VerMeer facility

Test Diameter 0.1 m
section Length 0.66 m

field of view 46× 46/67 × 67 mm
Spherical Material brass
cap Mount 3 wires (stainless steel), 0.4 mm

Radius Rsphere =12.5 mm
Angle θ0 50◦

Volume-eq. diameter 11 mm
Chord length ξ 19 mm

Medium Type Tap water, filtered and softened
via an ion-exchanger

Temperature 20− 40◦C
Viscosity ν (1.0 . . . 0.66) × 10−6 m2/s
Flow rate ≤ 4.8 l/s
Flow velocity U∞ ≤ 0.63m/s

Tracer Name EBM Fluostar,
Carboxy-modified acrylate resin

Dye Rhodamine B
Density 1.1 g/cm3

Diameter 13.5 µm
Grid 1 Type squared, PVC, mounted in a
(fixed) diffuser/contraction of 10%

Solidity σ1 0.44
Mesh spacing M1 7.5 mm

Grid 2 Type hexagonal, PVC, mounted
(remov.) directly in the pipe

Solidity σ2 0.51
Mesh spacing M2 15 mm

PIV Interrogation window 32× 32 pixel
settings Overlap 50%

Laser 200 mJ Nd:YAG, 532 nm
Filter OG570 570 nm low pass (tracer)

570 nm high pass (disp. phase)
Cameras Megaplus ES 4.0, 4MP CCD
Lenses Micro-Nikkor 105mm 2.8D,

used at NA = 5.6 . . . 16
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additional mirror, the path lengths from each camera to the external
target differ somewhat from that to the position of the light sheet in the
test section, causing a small difference in magnification and a blurred
(out of focus) external target for one camera. On the contrary, the in-
ternal calibration (autoalignment) is only affected by the removal of the
filter from the optical path, whose influence on magnification and defo-
cus is very small, see Fig. 3.2 (f). It must be ensured though that the
filters are not mounted to the objective lenses itself; the misalignment
introduced by the installation and removal of the filters was significantly
larger than the desired (sub-pixel) accuracy allowed. Using separate fil-
ter mounts, the only systematic error in the alignment remaining is in
the small displacements induced by filters which were not mounted per-
fectly orthogonal to the optical axis. Any rotation and magnification
errors could be eliminated, see Tab. 3.3.

After the coarse mechanical alignment, the fine alignment was done
by means of image processing before the PIV analysis. From the average
displacement vector field of several auto-alignment measurements, an
affine mapping function can be calculated from the system of equations

rII = rI +∆r = (1+A) rI . (3.1)

In homogeneous 2D coordinates r = (x, y, 1)T , this system has only six
free parameters. The entries of the affine map are

A =





a b c
d e f
0 0 1



 ; (3.2)

they can be obtained from the normal equation

{∆rij}{rjk} =

(
a b c
d e f

)

{rij}{rjk} . (3.3)

The matrix {rij}{rjk} contains the components (row index) of all refer-
ence points (column index), multiplied by its transpose. Therefore, the
solution is given by calculating the inverse of this 3 × 3 matrix, multi-
plied to the left side of Eq. (3.3). A robust fit approach that iteratively
reweights the contribution of each displacement vector was found to be
less sensitive to outliers than the standard least squares method; see
Fig. 3.2 (c) for an example.
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(c) local displacement of camera 2 rela-
tive to camera 1; scaling factor 5
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previously outside are zero-padded
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(f) alignment error induced by a
mounted filter, scaling factor 10

Figure 3.2: Correction of camera misalignments for an external target
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3.2 Data Correction and Analysis

Table 3.3: Alignment matrix coefficients and coefficient errors (mean µ
and standard deviation σ for two data sets, recorded with
filters removed (autocalibration)

a b c d e f

µ -6.63E-4 1.59E-2 -1.54E+1 -1.62E-2 -6.77E-4 2.17E+1
σ 3.50E-5 5.41E-5 1.29E-1 2.43E-5 2.82E-5 3.54E-1

µ -1.93E-3 1.59E-2 -1.10E+1 -1.61E-2 -2.06E-3 2.46E+1
σ 3.06E-5 3.38E-5 1.74E-1 2.00E-5 2.12E-5 3.68E-1

The effect of the fine alignment using this method is shown in Fig. 3.2.
The parameters for two alignment data sets with 32 recording pairs
each are shown in Tab. 3.3, whose data was obtained by calculating
the mapping function for each image pair. The parameter errors result
in an overall statistical alignment error over the whole image frame of
σx = 0.18 . . . 0.36 and σy = 0.13 . . . 0.35 pixel for the first data set,
and σx = 0.2 . . . 0.37 and σy = 0.17 . . . 0.37 pixel for the second. These
statistical errors are mainly caused by vibrations of the setup, and to
a some degree also by the image correlation, which has a finite error of
approximately 0.1 to 0.2 pixel (Adrian & Westerweel, 2010).

An indication about the magnitude of the flux uncertainties induced
by misalignment can be obtained from Fig. 3.3, where the resulting
integrated flux is plotted over the magnitude of an artificial misalign-
ment of the wakeboundary for a single phase time-averaged flow field.
Despite some visible noise that is smaller than the statistical measure-
ment uncertainty (shaded area), there is a distinct trend visible. The
resulting flux changes by approximately −0.2cm3/s per pixel displace-
ment. A displacement of a few pixel can therefore alter the result of
the integration by a value that is compareable to the magnitude of the
observed flux difference in Fig. 4.6 for particles with a small response
time. The alignment error should therefore be smaller than one pixel.

The estimate for the systematic error induced by the mounting of
the filters, a series of images was taken from an internal and an exter-
nal target with alternately mounted and unmounted filters. One local
displacement vector field is shown in Fig. 3.2 (f), the statistics of the
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3 Experiments on Particle Entrainment

Table 3.4: Systematic alignment errors (mean µ and standard deviation
σ) due to installed filters: This error is a result of installing
filters that changes the length of the optical path (magnifi-
cation error, det(T ) = 1 if there is no error of this type);
filters that are not aligned normal to the optical axis cause a
small displacement (∆x and ∆y) of the image; image rotation
(Ωz), relative axis scaling (Sxx/Syy) and shear (Sxy) are not
affected by the installation of filters (coefficients comparable
to self-alignment)

internal calibration target, green filter (high-pass)
a b c d e f

µ -2.31e-3 -1.87e-5 2.35e-3 -2.06e-5 -2.04e-3 -2.37e-3
σ 5.30e-5 2.50e-5 2.24e-4 1.32e-5 3.69e-5 1.98e-4

det(T )− 1 Ωz Sxy Sxx/Syy − 1 ∆x [px] ∆y [px]
µ -4.34e-3 -9.24e-7 -1.96e-5 -2.75e-4 2.41 -2.42
σ 3.86e-5 1.31e-5 1.51e-5 8.29e-5 0.23 0.20

internal calibration target, orange filter (low-pass)
a b c d e f

µ -1.16e-3 6.59e-5 1.18e-3 1.90e-6 -1.24e-3 -5.55e-4
σ 3.32e-4 7.86e-5 2.75e-4 1.49e-5 2.20e-4 8.24e-4

det(T )− 1 Ωz Sxy Sxx/Syy − 1 ∆x [px] ∆y [px]
µ -2.41e-3 -3.20e-5 3.39e-5 8.16e-5 1.21 -0.568
σ 4.87e-4 4.20e-5 3.80e-5 2.85e-4 0.282 0.844

for reference: internal calibration target, no filter (self-alignment)
a b c d e f

µ 1.08e-5 3.12e-5 -1.24e-5 1.62e-5 7.06e-5 2.25e-5
σ 8.11e-5 7.90e-5 1.78e-4 6.03e-5 9.28e-5 1.28e-4
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Figure 3.3: Effect of artificial displacements of the wake boundary:
small horizontal displacements are sufficient to alter the out-
come of the integration; the trend indicates an error of ap-
proximately −0.2cm3/s per pixel displacement

systematic alignment errors are given in Tab. 3.4. Adding a filter to
the optical path does not induce any noticeable rotation or shear in
the image, nor an anisotropy in the scaling of the axes. The magni-
tude of these misalignments are of order O(10−4) and smaller, which
causes sub-pixel displacements for an image with O(10−3) pixels in one
dimension, and the standard deviation is typically of the same order.
However, it also induces a noticeable change in magnification (the de-
terminant of the transformation matrix is not unity), and it typically
induces a small displacement due to tilted filters. The two latter contri-
butions cause local displacements in the order of a few pixels, but stay
well below the size of a PIV interrogation window (32 pixel).1

1This uncertainty can nevertheless have an influence on the flux measurements, as
a 2 pixel displacement of the wake boundary in the reference image might change
the measured flux; see also Sec. 4.2.2.
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3 Experiments on Particle Entrainment

The particle response time is fairly low for all particles used for the
dispersed phase, and thereby its velocity vector fields are strongly cor-
related to those of the continuous phase. Therefore, it is possible to test
the alignment by maximising the correlation for small displacements.
It is thereby also possible to correct for the remaining displacement due
to the alignment with removed filters. It is nevertheless a method with
larger statistic uncertainties than the alignment described above.

Summarising, the alignment of two-phase PIV images by means of
an affine mapping completely eliminates any shear and rotation in the
images, and reduces the local deviations to fractions of pixels. In prin-
ciple, non-linear effects like lens distortions can be corrected in a similar
way; however, the remaining systematic errors found were sufficiently
small. Using an external calibration target in the second light path
of the beam splitter has the advantage that no changes to the optical
system are needed (no filters need to be removed), though care must
be taken that the optical distance is identical for both light paths of
both cameras to avoid changes in magnification. The autocalibration
method avoids this problem, the removal of the filters for the calibration
however induces a small but well-defined change in magnification and a
small displacement of the image. Even these small misalignments were
sufficient to make a comparison of calculated fluxes over a boundary im-
possible. By maximising the correlation of the two measured velocity
fields, the displacement can be corrected after the PIV analysis.

3.2.2 Detection of Wake Boundaries

The boundary of the near-wake is defined by the separating streamline
in the time-averaged flow field from the rim of the spherical cap to the
rear stagnation point. However, this definition is practically useless,
even for hypothetical data free of all measurement uncertainties. The
ubiquitous fluctuations in a turbulent flow make it in general impossible
to track the separating stream line e.g. with the Runge-Kutta method
in the time-averaged flow field from the rim of the spherical cap to
the rear stagnation point. Therefore, an approximation to the wake
boundary is needed. As the stream line plot in Fig. 3.4 suggests, the
wake boundary is approximately described by an ellipsoid of rotation,
with a deformation towards an egg-like shape for Reynolds numbers at
the lower end of the measurement range (Re< 103).
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Figure 3.4: Methods for determining the wake boundary

The choice of an ellipsoid of rotation can be motivated analytically
as well. The wake behind spherical caps has been found to be similar
to a Hill vortex (Wegener & Parlange, 1973; Brücker, 1996). From the
Stokes stream function of a Hill vortex with radius R, the velocity can
be derived as

v(x) = 1.5
((
2x2u∞ − (u∞ · x)x

)
/R2 − u∞

)
. (3.4)

Requiring that the velocity component parallel to u∞ is zero gives
0 = u∞ · v, and using the simplification u∞ = (0, 0, u∞z ) in cylindrical
coordinates gives

1 =
r2

R2/2
+

z2

R2
, (3.5)

an equation for an ellipse with the half axes a = R/
√
2 perpendicular

and b = R parallel to u∞. Therefore, the wake boundary can be found
by fitting an ellipse to the zero-crossings of the axial component of the
mean flow velocity and subsequent rescaling of the smaller half axis by
the factor

√
2.

Alternatively to the similarity with a Hill vortex, the wake boundary
can be determined by finding the ellipse that minimises the angle be-
tween the tangent to the boundary and the flow. There is no obvious
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3 Experiments on Particle Entrainment

advantage of one fitting method over the other. However, it turned out
that it was easier to implement the additional constraints (enforcing the
ellipse to pass through the points at the rim of the spherical cap) for
the parallelism criterion.

The sought-for ellipse is a general conic

F (x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0 (3.6)

with the ellipse-specific constraint b2 − 4ac < 0 (see Halir & Flusser,
1998, for details about the fitting method) and two additional con-
straints from the requirement that the edges of the spherical cap lie on
the ellipse. The remaining free parameters were found iteratively by
minimising the cost function

∑

i

∣
∣
∣
∣
∣
atan

(

v⊥i
v
‖
i

)∣
∣
∣
∣
∣
Ai . (3.7)

Equation (3.7) minimises the sum of area-weighted absolute angles be-
tween the local tangent to the boundary and the time-averaged flow
field. It is therefore equivalent to choosing the boundary as parallel as
possible to the local mean flow velocity. This criterion was found to be
more robust than the minimisation of the total absolute flux over the
boundary. The latter tends to converge to solutions in close vicinity to
the spherical cap, where the magnitude of the fluid velocities is almost
zero.

3.2.3 Flux Measurements

Measurement Principle

Measuring the preferential concentration of particles in a wake can ei-
ther be done directly via a concentration measurement,(see Sec. 3.2.4),
or by analysing the particle flux into or out of a volume, see Sec. 3.2.3.
The latter method is based on the same local flux balance idea that was
described in Sec. 2.1.4: In the stationary state, a time-independent par-
ticle concentration in the domain requires that all contributions to the
local particle flux density cancel each other. If only the mean particle
transport and turbulent diffusion are considered, then the flux balance
reads

0 = ρPvP + νP∇ρP . (3.8)
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Rearranging, taking the divergence and integrating over a control vol-
ume V then results in

x

∂V

vPdA = −
x

∂V

νP∇ log ρPdA , (3.9)

whereby the Gauss theorem is used to transfer the volume integral into
a surface integral over the boundary ∂V of the control volume. The
diffusivity νP is a symmetric and positive definite matrix, therefore
a non-vanishing left-hand side implies that there is a mean gradient
in log ρP over the boundary of the control volume, and therefore a
preferential concentration.

Algorithm

The volume flux through the surface of the ellipsiod defined in Sec. 3.2.2
is assumed to be axis-symmetric (the wake boundary is a body of revo-
lution) around the z-axis, and can therefore be obtained by integration
of the normal velocity v⊥ over the wake boundary:

V̇ = 2π

∫ π

−π
v⊥r(φ)

√
(
dr

dφ

)2

+

(
dz

dφ

)2

dφ ≈
∑

i

v⊥i Ai/2 = 1/2v⊥ ·A

(3.10)
The sum on the right is the used approximation for this integral, with
Ai/2 being the surface area of point i of the elliptic boundary, taking
into account that only half of the ellipse must be rotated to get an
ellipsoid. Similarly,

σV̇ ≈ 1/2

√

ATCOV(v⊥)A (3.11)

gives an estimate for the standard deviation of the volume flux according
to the propagation of uncertainty, including turbulent fluctuations of the
normal velocity as well as statistical measurement errors. The variance-
covariance matrix of the normal velocities is defined as

COV(v⊥)kl =
1

M

M∑

j=1

(

v⊥k,j − v⊥k

)(

v⊥l,j − v⊥l

)

. (3.12)

Assuming M statisitically independent velocity fields, the standard er-

ror of the ensemble-averaged volume flux V̇ can then be obtained from
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Figure 3.6: Dependence of the flux error estimate on the number of
interpolation points at the wake boundary

Eq. (3.11) by

SE
V̇
≅

σV̇√
M

, (3.13)

which represents the statistical uncertainty for the flux measurements.
The normal component of the velocity v⊥i is interpolated from the in-
stantaneous velocity fields by linear interpolation for every point of the
boundary. To do this, the boundary is approximated by a number N of
discrete points, for which the normal vector and the area element are
calculated from the two neighbouring points. By taking into account
the correlation between velocities at neighbouring boundary points, the
calculated values for the mean volume flux and its fluctuations was
found to be independent of the total number of points N , provided that
it was sufficiently large.
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Convergence of the Method

The total number of points needed to approximate the elliptical wake
boundary can be determined by plotting the standard error of the mean
(SEM) of the calculated flux for different point counts. Fig. 3.6 shows
this plot; the mean becomes independent of the number of interpolation
points for a point count of at least 512. The standard deviation (STDV)
converges with about 256 points and more. A point count of 128 is
approximately equivalent to a sampling of the boundary with a PIV
interrogation window size between each sample, therefore 512 point are
approximately equivalent to a fourfold oversampling. The graph also
shows that the method for determining the error is independent of the
number of interpolation points beyond a sufficient number, a result of
the fact that correlations between data points are taken into account in
the error propagation.

The development of the ensemble-averaged flux and its uncertainty
(standard error of the mean) is shown in Fig. 3.7. A sufficiently high
number of statistically independent flow fields (> 200) is needed to
obtain a statistically meaningful flux at the level of the velocity fluctu-
ations in the experiment. For most particle types, data sets with 512
and 1024 PIV images were recorded, and several sets of 256 for those
particle types that lead to a fast loss of concentration of the dispersed
phase. Also shown is that there is a small systematic error in the flux
measurements: the flux of the continuous phase does not converge to
zero, as one would expect for an incompressible fluid. This is related to
the fact that the wake is not perfectly axisymmetric; the errors induced
by the 2D approximation of the integral over the wake boundary are
therefore large compared to the obtainable statistical uncertainties.

A last source of uncertainty stems from the alignment between the
two cameras: The wake boundary is determined by an ellipse fit to the
continuous phase (see Sec. 3.2.2), therefore uncertainties in the map-
ping function between both cameras cause an integration of the dis-
persed phase flux over a marginally different boundary, as it can be
seen by comparing the bootstrapping results for two different datasets
in Fig. 3.8.
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Figure 3.8: Histograms of the 4096 mean fluxes calculated from 256 ran-
domly selected velocity fields out of a dataset of 1024 fields
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Uncertainty Estimation by Bootstrapping

To validate the estimated standard deviations for the flux measure-
ments, the distribution of the calculated means for a sub-sample of the
whole data set was calculated. Fig. 3.8 shows this distribution; the
time-averaged fluxes were calculated over 256 velocity fields which were
selected randomly from a data set of 1024 PIV records. The mean
of all estimated fluxes is 1.5 · 103mm3/s with a standard deviation of
2.5·103mm3/s. The average estimated standard deviation of each subset
of 256 samples is 3.9 · 104mm3/s, which is almost identical to the esti-
mated standard deviation from the error propagation of 3.8 ·104mm3/s.
The standard deviation of the means is furthermore almost identical to
the standard error of the mean (3.8·104/

√
256)mm3/s = 2.4·103mm3/s.

Therefore, the distribution of the estimated average flux values is for all
practical aspects well-described by a normal distribution, and the error
analysis delivers results that agree well with the bootstrapping test.

The histogram in Fig. 3.8 also shows that the centre of the distribu-
tion of the calulated time-averaged fluxes deviates a bit from zero (for
the continuous phase). Possible causes are misalignments in the spheri-
cal cap and the light sheet (not aligned with the axis of symmetry), and
also slightly higher noise in the PIV vectors in areas with less contrast
in the recorded image. In the following, the presented flux values are al-
ways taken relative to the continuous phase, which means the difference
between the two phases.

3.2.4 Concentration Measurements

The concentration of particles have not been determined in separate
experiments, the concentration analysis was limited to the available
records taken for the PIV analysis. A PIV image is a spatial mea-
surement proportional to the total scattered light intensity of dispersed
particles, if factors like light absorption on the optical path from the
particle to the sensor can be assumed to be homogeneous. The local
inhomogeneities in the transmission of the imaging optics (vignetting)
must be neglectable as well, an assumption that is typically fulfilled if
the chosen aperture is sufficiently small (F/5.6 to F/16) and the sensor
diagonal is smaller than the imaging circle of the lens (21.5 mm versus
43.3mm). Under these circumstances, the local light intensity of the
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image can be modeled as

I(x, y) = M(x, y)L(x, y)nP (x, y) +N(x, y) , (3.14)

with the local effect of the anisotrope Mie scattering M(x, y), the local
luminosity L(x, y), the particle number density nP (x, y) and a noise
termN(x, y). The noise term can be eliminated by averaging sufficiently
many images. The following subsections discuss all contributions and
methods that have been used to deal with the Mie scattering and local
inhomogeneities in the luminosity, with the aim to determine the local
particle number density as a function of the local light intensity.

Mie scattering

The anisotropy of Mie-scattering is shown in Fig. 3.9 for a 55µm gas
bubble and green light with λ = 532nm. For particles with a certain
size dispersion and at sufficiently large apertures of the objective lens
used, the graphs show a smooth curve with a decrease of the scattered
light intensity towards larger scattering angles, something that is not
necessarily the case for other particles. It was found that the inten-
sity drop over the imaging frame (factor 2.6) can be considerably larger
than the light falloff due to both light absorption and the divergence
of the light sheet. Mie scattering is therefore the dominant contribu-
tion to the inhomogeneity of the recorded light intensity over the frame.
Furthermore, it is also the most difficult one to correct; there is no sim-
ple functional relation, such that it must be estimated using a software
package (MiePlot) with known particle size distribution. An advantage
is that Mie scattering — if the absolute concentration is sufficently low
that multiple scattering is negligible — is independent of particle con-
centration, its correction can therefore be applied before the correction
of other inhomogeneities.

Correction for Mie Scattering

The influence of the Mie scattering can be corrected, if the angular scat-
tering intensity distribution is known for the particles, and the angles
of observation from the setup of the imaging system. A particle whose
image is recorded on the sensor of the camera is observed under an
angle defined by the light ray from the particle towards the object-side
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Figure 3.10: Schematic drawing of the imaging of the particles; the light
recorded from a particle by the camera was scattered under
the angle ϕ and the scattered light intensity is averaged
over the angle ∆ϕ (not to scale)

principal point (the intersection of the entrance pupil with the optical
axis). The rays used for creating the particle image on the sensor are
those within the cone with opening angle ∆ϕ.

With known particle size distribution and refractive index, the angu-
lar scattering intensity distribution is calculated using a software pack-
age (Mieplot) and subsequently filtered with a box filter of width ∆ϕ.
The angle φ can be determined from either the focal length of the lens
or from the position of the entrance pupil.

The attempts to correct for the inhomogeneity due to the Mie scat-
tering were only successful for certain data sets. The method depends
strongly on well-determined particle properties (refractive index) and
size distributions. Uncertainties in these parameters can lead to over-
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and undercorrections that introduce significant systematic errors to the
concentration analysis.

Absorption

According to the Lambert-Beer law for light absorption by dispersed
absorbers, the loss of light intensity is exponential with the absorption
coefficient

α = σAρ (3.15)

with the absorption cross section σA of the absorber and its number
per unit volume ρ = N/V . The term absorption is used somewhat
ambiguous here, it is de facto the loss of light intensity in the light
sheet plane due to scattering in all directions. Nevertheless, the light
absorption model is independent of the underlying mechanism causing
the loss in intensity, therefore it can be used here as a phenomenological
model.

Using the particle volume load Φ = N ·VP /V and assuming spherical
absorbers yields

α =
π/4d2PΦ

π/6d3P
=

3Φ

2dP
. (3.16)

For the conditions used in the experiments, the light intensity loss over
the frame width of l = 46mm

1− I(l)

I(0)
= exp(−αl) = exp

(

− 3Φl

2dP

)

(3.17)

is approximately 12% (dP = 55µm, Φ = 10−4) to 47% (dP = 110µm,
Φ = 10−3) for a perfect absorber (isotropic scatterer). Including the
absorption due to the tracer phase (dP = 13µm, Φ = 5 · 10−5) gives
an intensity loss of 32% to 49%. As forward scattering is by far the
dominant direction, the calculated values are overestimating the real
amount of light absorption. The light absorption by the water can be
neglected for this analysis, the absorption coefficient for λ = 532.5nm
light α = (0.0447 ± 0.0011)m−1 (Pope & Fry, 1997) is too small to
contribute significantly over distances of several centimetres (<1%).
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3 Experiments on Particle Entrainment

Light Sheet Divergence

For a PIV measurement, a quasi-2D illuminated volume is needed with
dimensions of several centimetres or even more in width and a thickness
of less than 1 millimetre. However, light sheet optics with good coatings
for the use with high-energy laser beams are expensive and typically
limited to sizes of up to 2 inch. Therefore, often a divergent light sheet
is used (only one concave cylindrical lens), as the size of the mirror or
the last lens limits the maximum width of a parallel light sheet (created
with a concave and a convex cylindrical lens with aligned focal points).
The closer it is installed to the measurement volume, the more apparent
the divergence will be in the image; the focal length of the cylindrical
lens only determines the part of the beam that is used to illuminate the
measurement volume.

Angular Beam Profiles

Another source of inhomogeneity is due to the non-constant intensity
profile of the laser beam itself. For optimising output intensity, the res-
onators of the lasers are aligned such to allow for higher modes (TEMxy)
than only the lowest, Gaussian mode (TEM00). This results in a super-
position of the lower modes and in a non-Gaussian beam profile. With
an adequately aligned light sheet, the relative deviation from the mean
intensity could be kept below 15%, but the deviations are visible as an
angular modulation of the light sheet intensity.

Finding the Focal Point of the Light Sheet

Determining the focal point (or virtual origin) of the light sheet is neces-
sary for the correction of both the divergent light sheet and the angular
beam profile. Due to the beam profile, the image dimension which is
orthogonal to the incoming light (i.e. the columns for a horizontal light
sheet) are correlated. By correlating two columns x1 and x2 with a
scaling parameter a and an offset ∆y

h(a,∆y) =

∫

y∈Y
I(x1, y)I(x2, ay +∆y)dy (3.18)

and subsequently finding the maximum of h(a,∆y, each pair of columns
gives one parameter pair (a,∆y) that maximises the correlation. By
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3.2 Data Correction and Analysis

calculating these for many columns, the focal point of the light sheet
can be determined with a (robust) fitting method. For an accuracy of
about 1% in the determined coordinates of the focal point, typically
4000 correlations of random column pairs had to be calculated. This
method works better if a strong beam profile is visible in the light sheet
intensity, and it is furthermore improved by averaging many records to
obtain a smooth intensity image with less noise. Somewhat surprisingly,
a low-pass filtering step for smoothing the intensity image before the
correlation step did not improve the accuracy of the determined focal
point coordinates.

Luminosity Models

The light absorption can be corrected together with the inhomogeneities
due to the divergent light sheet and the laser beam with a model derived
from the Poynting theorem

∇ · S = −∂UEM

∂t
− j ·E (3.19)

for a constant absorber density ∂UEM/∂t = α and in the absence of
currents j and electric fields E. Furthermore, for a radially expanding
wave, the Pointing vector S has only a component in radial direction,
which allows to solve for Sr in cylindrical coordinates. As the inten-
sity of the wave is given by |S| = Sr, this gives the formula for the
distribution of the light intensity

L(r, φ) = Sr(r, φ) = C(φ)
exp(−αr)

r
, (3.20)

with the scaling constant C dependent on the polar angle φ due to the
non-constant laser beam profile. This model can now be fitted to the
averaged measured intensity, after applying the correction for the Mie
scattering. The absorption coefficient α is global, whereas the scaling
constants C(φ) must be determined separately for each angular segment
of the light sheet.

Fitting the absorption model naturally implies that the average par-
ticle concentration (which are the absorbers) is homogeneous over the
domain. This is of course not fulfilled if there is preferential concen-
tration. The Poynting theorem still allows to derive a more general
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3 Experiments on Particle Entrainment

model by assuming the concentration of absorbers is proportional to
the concentration of particles. Then,

divS =
∂u

∂t
= −γρP = κĨ = κ(Iideal +N) , (3.21)

assuming that the recorded intensity and the ideal intensity (that is
expected theoretically for a smooth particle concentration, the limit of
infinitely many averaged PIV records) only differ by an additive noise
term (Ĩ = Iideal +N). From

L(r, φ) = Sr =
1

r

∫ r

r0

−κIideal(r̃, φ)r̃dr̃ + C(r0(φ), φ) (3.22)

follows the noise term

N(r, φ) = Ĩ(r, φ) − nP (r, φ)

(

1

r

∫ r

r0(φ)
−αnP (r̃, φ) r̃ dr̃ +C(r0(φ), φ)

)

(3.23)
and thereby the particle concentration

nP (r, φ) =
Ĩ(r, φ) −N(r, φ)

1
r

∫ r
r0
−κ(Ĩ(r̃, φ)−N(r̃, φ)) r̃ dr̃ +C(r0(φ), φ)

. (3.24)

This algorithm however was not implemented. Eq. (3.24) represents
a system with an integral equation for each point in the image, with
the absorption constants κ and α, the values of the line integrals at
the border of the domain C(r0(φ), φ) and the concentration nP (r, φ) as
unknowns, and is therefore underdetermined. It can only be solved with
additional assumptions about e.g. the local uniformity or symmetry of
the particle concentration.

Normalisation with a Reference Data Set

A disadvantage is that the illumination is not homogeneous due to
(i) the non-isotropic Mie scattering of the particles, (ii) the light loss
due to cumulative scattering, and (iii) the divergent light sheet. All
these effects can be corrected by means of a proper normalisation of
the recorded images with a reference data set taken under the same
conditions of illumination, imaging and particle concentrations.
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3.2 Data Correction and Analysis

It was therefore decided to normalise the measured light intensity
with a reference data set which was recorded under identical conditions
of illumination, typically recorded at a lower flow speed, which elimi-
nates the need of a Mie correction. The time-averaged intensity of the
first dataset I1(x, y) was — after background subtraction — divided
by the time-averaged intensity of the reference dataset I2(x, y), and
averaged using the geometric mean (Fleming & Wallace, 1986)

nwake,1/next,1

nwake,2/next,2
=

GM((I1(x, y)/I2(x, y))|(x,y)∈wake)
GM((I1(x, y)/I2(x, y))|(x,y)∈ext)

. (3.25)

This method works best if the absolute mean particle concentration —
and therewith the light falloff due to absorption — is identical for both
data sets. The latter condition is not always fulfilled, therefore the dif-
ferences in absorption introduce a small systematic error. The main
disadvantage is that due to the normalisation of noisy intensity values
with noisy intensity values, the uncertainties in the concentration mea-
surements increase significantly. For normal distributed time-averaged
intensities, the ratio distribution is a Cauchy distribution, for which
the sampling variability of the mean does not decrease with increasing
sample size Rothenberg et al. (1964). The geometric mean is similarly
affected by the long tails of the (almost) Cauchy-distributed intensity
ratios. The statistical error due to the blown-up noise was found to be
significantly larger than the systematic error introduced by any differ-
ences in absorption. Fig. 3.11 shows a comparison of both normalisation
methods.

Compared to the method based on a luminosity model with a large
systematic uncertainty and a small statistical uncertainty, this normali-
sation method has opposite properties, with small systematic errors but
significant statistical uncertainties. Based on these properties, it was
however chosen for the data analysis presented in Sec. 4.3, as statistical
uncertainties are more easily dealt with by increasing the number of
measurements. It is nevertheless the explanation for the large errorbars
in Fig. 4.7.

Alternative Methods for Concentration Analysis

There exist many more methods for concentration measurements, both
experimentally as well as more sophisticated approaches to data analy-
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Figure 3.11: Illustration of the data processing steps: original time-
averaged intensity image, taken at U∞ = 61 cm/s (a); after
normalisation with a reference dataset, taken at U∞ = 21
cm/s, increased contrast (b); original image after correc-
tion with the luminosity model, increased contrast (c); fil-
tered luminosity corrected image, increased contrast (d)
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Figure 3.12: Concentration of gas bubbles in the wake of the spherical
cap, measured with Shadowgraphy; note the weaker effect
of buoyancy in the high Reynolds number case

sis. These methods were either too difficult to implement in the VerMeer
facility, or the quality of the data obtained in several tests was not suffi-
cient for a subsequent data analysis. Some more data analysis methods
were also tried but gave insufficient results.

Small angle forward scattering is also a technique based on the light
scattering of particles, but it uses a different angle to obtain higher
scattering intensities and thereby a better signal. This method was not
used with the VerMeer facility, but was used in collaboration with M.
Dauda, A. Giffard and F. Zwaan, see Dauda (2011); Giffard (2011);
Zwaan (2010).

Shadowgraphy is another technique to measure the concentration of a
dispersed phase by recording the shadow of an object illuminated from
a uniformly lit and diffuse light source. It worked well for visualising
gas bubbles in the flow, see Fig. 3.12. The shadows of very small objects
like the dispersed particles however gave too weak of a signal to do a
meaningful data analysis. It was therefore only used for visualisation
purposes.

An alternative way of correcting the inhomogeneities in luminosity
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3 Experiments on Particle Entrainment

by making use of the intensity distribution of the fluorescent tracer
particles. The fluorescence of the tracer particles is isotropic, but influ-
enced by saturation. Close to the beam waist where the photon density
is highest, integrating over the light sheet thickness gives lower values
than further away from it. This is the result of fewer illuminated parti-
cles (the illuminated volume is smaller), with a saturated fluorescence
due to the high light intensity. The images of the tracer particles were
therefore without any use for the normalisation of the light intensity
of the dispersed phase. Monchaux et al. (2010) used a method based
on the counting of detected particles for their analysis of preferential
concentration of particles in a flow. Despite the elegance of the method
and its potential to allow for measurements of the fluctuations in the
concentration, the strong inhomogeneities in the illumination hampered
the particle detection to a degree that a homogeneous detection proba-
bility over the frame was unachievable.
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4.1 The Wake of a Spherical Cap

4.1.1 Qualitative Description

Over a wide range of Reynolds numbers (1500 < Re < 11600), the
boundary of the near wake is approximately an ellipsiod of rotation,
see Fig. 4.2. Coppus et al. (1977) observed different types of wakes;
they named the wakes measured in this work an open turbulent wake.
The ellipsoidal shape is therefore only visible in the time-averaged flow
fields; the instantaneous velocity fields do not show a closed stream line,
see Fig. 4.1.

The time averaged velocity field of the near-wake behind a spherical
cap at high Re is similar to a laminar one, which agrees with the ob-
servation made by Wu & Faeth (1994); Wu & Faeth (1995); Bagchi &
Balachandar (2004) for wakes behind spheres. Parlange (1969) writes
that the analytic flow solution for a laminar wake (constant vorticity
ωφ over the wake volume) is the so-called Hill-vortex (Hill, 1894), sur-
rounded by a potential flow. Early experiments by Davies & Taylor
(1950) supported that assumption, but Maxworthy (1967) pointed out
correctly that this model implies a vanishing drag. The qualitative sim-
ilarity to a spherical recirculation zone behind the spherical-cap bubble
was also observed by Wegener & Parlange (1973) for bubbles and solid
spherical caps in verious fluids. The images of spherical-cap bubbles
and their wakes taken by Bhaga & Weber (1981) also show this char-
acteristic recirculation zone.

In the measurements at lower Reynolds numbers (30 < Re < 250), the
average velocity field becomes increasingly asymmetric, see Fig. 4.3. In
this range, the roll-up of the free shear layers happens locally at isolated
locations only, leading to one (or few) helical vortex tube(s) separating
from the shear layers. This leads to strong oscillations in the wake
that were also observed and described by Coppus et al. (1977); Brücker
(1996); Bagchi & Balachandar (2004).

The approximately elliptical shape of the flow pattern for the mean
wake was found to change only marginally in the Reynolds-number
range of Re = 840 . . . 6600 (based on the volume-effective diameter
which is typically used for gas bubbles, 1500 < Re < 11600 if the
chord length of the spherical cap ξ = 19 mm is used as length scale)
used for the present experiments, see Fig. 4.4. Slightly larger differ-
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Figure 4.1: Instantaneous and time-averaged velocity field; background
colour: vorticity
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Figure 4.2: Comparison of the near wake for different Reynolds numbers
and turbulence levels of the approaching flow (dotted line:
fitted wake boundary)
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Figure 4.3: Deformation of the near-wake from the elliptical shape for
low Reynolds numbers (dotted line: fitted wake boundary)

ences were found for the measurements done with the additional coarse
grid #2 inserted (see Table 3.2), i.e. where the approaching flow has a
relatively high turbulence level.

The main qualitative difference of the time-averaged flow fields is
the longer downstream extension of the wake for a flow of low ambient
turbulence approaching the spherical cap. In the high turbulence case ,
the wake is considerably shorter, whereas the difference in width can be
neglected. There is no measureable change in the width of the wake for
Reynolds numbers in the range 1500 < Re < 11600. The downstream
length of the wake is also almost constant, only a small decrease at
Re=11600 can be observed. The relative size of the wake, hwake/ξ, is
defined as the ratio of the length of the near-wake hwake (determined
from the fit) and the chord ξ of the spherical cap (ξ = 19 mm). The
relative size of the wake is either 2.0 or 1.66, for the low or the high
turbulence case of the external flow, respectively. The width of the wake
relative to the chord length is 1.44 in the low turbulence case and 1.36
in the high turbulence case.

The elliptical region defined by the closed streamlines is referred
to as the ‘near wake’. However, for the range of Reynolds numbers
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Figure 4.4: Wake size parameters over Reynolds number: Both the ma-
jor and the minor half axis of the detected ellipsoidal wake
boundary vary only weakly in the range 1500 < Re < 11600.

(1500 < Re < 11600) used in the present measurements, the flow be-
hind a spherical-cap obstacle is an open turbulent wake. Therefore the
instantaneous velocity fields differ considerably from their time-average.
From the rim of the spherical cap, free shear layers evolve that become
unstable and break up almost instantaneously. This is the main source
of turbulence in this flow. The turbulence is transported into the near
and far wake of the spherical cap. So, we divide the observed flow
volume into three main parts: the near-wake, the shear layers, and an
outer flow region. Note that only a small portion of the far wake is
located inside the observation volume.

4.1.2 Flow Length and Time Scales

The width of the wake gives only a rough estimate of the largest scales
in the flow. The integral length scale L of the wake turbulence was esti-
mated by using the integral of the longitudinal autocorrelation function
of the streamwise velocity component. It was found to be approxi-
mately constant over the flow velocity range. The integral length scale
is estimated at L =4.5±1.1 mm for the centre of the wake, and at L
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Table 4.1: Estimates of relevant turbulent length and time scales, based
on the expressions for isotropic turbulence and an integral
length scale of 5.5 mm (see text) and a relative turbulence
level of 0.2

Re U∞ [m/s] ReL λ [mm] Reλ ǫ [mm2/s3] ηK [µm] τK [ms]

1500 0.08 85 2.3 36 6.9 · 102 195 38
4100 0.21 235 1.4 59 1.4 · 104 91 8.4
11600 0.61 670 0.8 100 3.3 · 105 42 1.7

= 5.8±0.6 mm for the rear stagnation point of the wake. An integral
length scale of L = 5.5 mm (i.e., 0.22Rsphere and 0.29ξ) is used for the
estimates presented in Tab. 4.1. It should be noted that these estimates
are valid for the region occupied by the open turbulent wake (including
the boundary of the near wake), and not for the outer flow region and
the shear layers.

The Taylor length scale λ and Kolmogorov length scale ηK are esti-
mated from (Tennekes & Lumley, 1972)

λ

L
=

√

15

A
Re

−1/2
L , ǫ = 15ν

u2rms

λ2
, ηK =

(
ν3

ǫ

)1/4

, (4.1)

with: ReL = urmsL/ν, and where it is assumed that the turbulence in
the wake is nearly isotropic (A ≈ 1).

The turbulence properties of the external flow approaching the spher-
ical cap are only of limited importance for the mixing in the conical
region of the open turbulent wake behind the spherical cap, which in-
cludes the boundary of the near wake. The turbulence there is domi-
nated by the shedding of vortices from the free shear layers. Qualita-
tively, the stronger momentum exchange between the outer flow and the
wake causes wider shear layers and a smaller velocity difference, thereby
weaker velocity gradients and weaker vortex shedding. The turbulent
kinetic energy (and thereby the rms of the velocity) was still found to
be of similar level (Warncke et al., 2009). The fluctuating component
of the velocity normal to the boundary is directly proportional to the
local turbulent transport over the boundary. Fig. 4.5. shows that it

83



4 Results on Particle Entrainment

 0

 0.05

 0.1

 0.15

 0.2

 0.25

π3π/4π/2π/40-π/4-π/2-3π/4−π

u r
m

s/
u ∞

θ

Re=840, z/M=50: 0.16
Re=2300,z/M=50: 0.18
Re=6600, z/M=50: 0.19

Boundary turbulence level:

urms/u∞ Re=840, z/M=50
urms/u∞ Re=2300, z/M=50
urms/u∞ Re=6600, z/M=50

(a) low upstream turbulence level

 0

 0.05

 0.1

 0.15

 0.2

 0.25

π3π/4π/2π/40-π/4-π/2-3π/4−π

u r
m

s/
u ∞

θ

Re=840, z/M=8: 0.18
Re=2300, z/M=8: 0.20
Re=6600, z/M=8: 0.20

Boundary turbulence level:

urms/u∞ Re=840, z/M=8
urms/u∞ Re=2300, z/M=8
urms/u∞ Re=6600, z/M=8

(b) high upstream turbulence level

Figure 4.5: Standard deviation u′n of the velocity normal to the wake
boundary relative to the free-stream velocity U∞ as a func-
tion of the polar angle θ, for an approaching flow with: (a)
low turbulence level (less than 3%) and (b) high turbulence
level (15–21%). The rear stagnation point is located at θ
= 0; the shear layers are found at |θ| > π

2 . The rim of the
spherical cap is at |θ| = 13π/18 (≈ 3π/4)84
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is nearly constant at the downstream side of the wake (|θ| 6 π
2 ). The

weaker fluctuations for |θ| > π
2 for the lower flow velocities are explained

by the more stable shear layers, with the vortex shedding starting fur-
ther downstream from the rim of the spherical cap. The graph shows
slightly higher fluctuations near the rear stagnation point and in the
shear layers for the high turbulence level flow case.

4.2 Particle Transport over the Wake Boundary

4.2.1 Analysis of the Flux Data

Based on the continuity equation in the stationary state (see Sec. 3.2.3
for more details), the existance of a concentration gradient in the wake
implies a negative (inward) particle flux if the concentration is higher
in the near-wake than in the outer flow. In other words, the particle
velocity has, although it is strongly correlated to the fluid velocity for
low inertia particles with a small response time, a component normal
to the wake boundary. The integrals of the measured dispersed phase
velocities over the wake boundary should therefore be negative if there
is a preferential concentration of particles in the wake.

The measurement data given in Tab. 4.2 shows that a statistically
significant inward particle flux can indeed be observed for the measure-
ments done with the 3M S60 particles. With increasing flow velocity,
the magnitude of the flux also increases approximately linearly, contrary
to the quadratic increase suggested by Eq. (2.48). The results obtained
from the measurements with other particle types are less consistent: the
magnitude of the measured fluxes is of the order of the measurement
uncertainty, which also explains the occurence of positive signs for the
flux (outward flow). In these cases, the measurement uncertainties are
too high to draw a conclusion. It should be noted that the values given
in Tab. 4.2 are averaged from several data sets that were measured un-
der identical conditions. The large uncertainties therefore reflect the
scatter among the different measurements.

Fig. 4.6 shows the graphs obtained by plotting the measured flux
values against the predictions from the spherical and ellipsoidal wake
model. Each point in the graph represents one single dataset here. The
linear line is obtained from a least-square fit to the data sets in the small
boxes in each graph, thereby excluding 6 data sets as “outliers”. For
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u∞ turb. level V̇ [mm3/s] SEV̇ [mm3/s]

3M S60 55µm, 0.6g/cm3

9.09E-04 0.5545 -3.72E+1 1.27E+1
7.79E-04 0.4897 -4.79E+1 5.74E+0
1.12E-02 0.1192 -4.42E+2 3.01E+1
7.66E-02 0.1623 -2.92E+3 2.48E+2
2.14E-01 0.1818 -5.05E+3 6.85E+2
6.13E-01 0.1882 -2.33E+4 1.93E+3

3M S22 55µm, 0.22g/cm3

1.27E-02 0.1179 1.69E+02 3.46E+2
7.62E-02 0.1632 -9.79E+02 1.01E+3
2.13E-01 0.1822 -2.03E+03 2.89E+3
6.15E-01 0.1876 -2.09E+03 8.30E+3

3M K1 110µm, 0.125g/cm3 low turbulence case
7.79E-02 0.1596 -3.22E+2 4.27E+2
2.14E-01 0.1997 -2.96E+3 2.42E+3
6.12E-01 0.2044 -1.22E+3 1.71E+3

3M K1 110µm, 0.125g/cm3 high turbulence case
7.99E-02 0.1558 -7.20E+2 5.40E+2
2.17E-01 0.1794 -1.60E+3 1.25E+3
6.20E-01 0.1862 +1.84E+3 1.58E+3

Table 4.2: Summary of the particle flux measurements; a positive sign
means outward flow
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Figure 4.6: Measured particle flux versus the estimated flux from
Eq. (2.48) and Eq. (2.56), spherical wake model (top) and
ellipsoidal wake model (bottom). The linear fit is obtained
from the data in the insets.
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both models there is a weak correlation with the experimental results.
The variance of the residuals of the fit is approximately 22 and 17,
showing that the scatter in the data is approximately a factor of 4 to 5
higher than expected from the statistical uncertainties. A comparison
with a perfect model should reveal a slope near unity; therefore both
models overpredict the experimental outcome by appoximately a factor
of 3. If the outliers are included into the fit, a slope around zero is
obtained in both cases.

4.2.2 Discussion of the Flux Measurement Results

In conclusion, the uncertainties of the performed particle flux measure-
ments are too high to allow a meaningful comparison with and a val-
idation of the particle entrainment model. This is not a result of the
statistical uncertainties, yet there remain systematic errors in the mea-
surements. One likely source of errors is in the alignment of the two
cameras: An alignment error, despite being small, would cause a com-
parison of the particle fluxes integrated over different wake boundaries,
see Sec. 3.2.1. This error, for the obtained accuracy in the alignment, is
of the order of the flux difference for measurements with particles with
a small response time. It can nevertheless be larger in combination with
other systematic errors, namely the assumption of a symmetric near-
wake for the time-averaged flow. An integration over an asymmetric
wake (e.g. due to a misalignment of the spherical cap) can cause non-
zero fluxes even in the continuous phase, because the weighting applied
for the surface area is based on the assumed symmetry. These non-zero
fluxes are indeed obtained for the continuous phase.

4.3 Preferential Concentration

4.3.1 Dependency of Particle Concentration on the Particle

Properties

According to the model described in Sect. 2.3, the concentration in-
crease in the wake can be expected to be of the order of a few percent
for the particles in Table 4.3. For such small changes in the concentra-
tion it is challenging to perform quantitative measurements. Variations
in the particle-image exposure, due to angle-dependent Mie-scattering,
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Table 4.3: Overview of the properties of the particles that were used for
the dispersed phase, where dP is the particle diameter, ρP
the density of the particles, τP the particle response time,
β the density ratio with respect to the working fluid as de-
fined in (2.42), and vP the particle terminal velocity (where
a negative value means the particles are buoyant).

particle type material dP ρP τP β vP
[µm] [g/cm3] [ms] [–] [mm/s]

SiLi glass spheres 55 2.5 0.50 0.5 +0.25
3M S60 hollow glass sph. 55 0.6 0.19 1.36 –0.067
3M S22 hollow glass sph. 55 0.22 0.12 2.08 –0.13
3M K1 hollow glass sph. 110 0.125 0.42 2.4 –0.59
QCel 7014 hollow glass sph. 125 0.14 0.56 2.34 –0.75
Cennasphere ceramic spheres 300 0.6 5.5 1.36 –1.50

a diverging light sheet, and the light blockage of particles were found to
be of the same order of magnitude (if not larger) as the anticipated vari-
ations in the particle concentration. This makes it impossible to base
any quantitative concentration measurements on the directly recorded
image intensities. Therefore, the average scattered light intensity for a
given particle type at one free-stream flow speed was normalised with
the recorded scattered light intensity recorded at a lower free-stream
flow speed. The rationale behind this is that both data sets have been
recorded at nearly identical optical conditions (provided that the rela-
tive change in concentration is small) and that the relative change in
concentration is always smaller for the lower free-stream flow speed, cf.
(2.50) where the relative change in concentration is proportional to U∞
(for a constant turbulence level). In practice this means that we use
the data set recorded for Re = 840 to normalise the data taken at Re =
2300 and Re = 6600. It is also possible to use the data taken at Re =
2300 to normalise the Re = 6600 data; this was occasionally done when
no measurement data was available for Re = 840.

Table 4.4 shows a summary of results from concentration measure-
ments for different particle types. The values represent the relative
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4 Results on Particle Entrainment

Table 4.4: Overview of selected measurement results for the relative
change (in %) of the mean particle concentration in the near
wake compared to the concentration in the external flow, for
different flow Reynolds numbers. The results are for the low
turbulence level flow data. Uncertainty margins indicate the
standard error of the measurement result.

RP ρP Re = 840 Re = 2300 Re = 6600
[µm] [g/cm3] [%] [%] [%]

SiLi 55 2.5 –1.5 ± 1.5 0.6 ± 1.6 –0.7 ± 3.7
3M S60 55 0.6 0.0 ± 0.4 0.0 ± 0.7 0.1 ± 0.7
3M S22 55 0.22 –0.6 ± 0.8 0.6 ± 1.2 1.6 ± 2.1
3M K1 110 0.125 –1.4 ± 0.7 1.4 ± 0.9 3.8 ± 1.8
QCel 7014 125 0.14 – 3.2 ± 0.7 9.6 ± 1.7
Cennasphere 300 0.6 – – 21.0 ± 7.5

increase in concentration over the outer flow, obtained with the nor-
malisation method and subsequent correction described in Sec. 3.2.4.
One can conclude that small particles show hardly any measurable ef-
fect, whereas increasingly higher concentrations could be measured for
buoyant particles with larger diameters. For particles with a density
that is larger than that of the fluid a small decrease of the particle
concentration in the wake was found, in accordance with our model.

Figure 4.7 shows the scaling of the change in particle concentration
relative to the outer flow as a function of the Stokes number defined in
(2.52) divided by the turbulence level TL = urms/U∞. The error bars
denote the standard deviation of concentration increase for a number
of measurements done under identical conditions, and normalised with
the same reference data set. Filled symbols are measurements with a
strongly turbulent flow approaching the spherical cap; and the inset
in Fig. 4.7 shows a magnified version of the plot close to the origin.
Buoyant particles (i.e., with a positive characteristic Stokes number ac-
cording to our definition) show an increase in particle concentration in
the near wake, as it is predicted by our simple model. For particles with
a density that is higher than that of the fluid (i.e., the “SiLi” particles
in Table 4.4, for which τP ∗ < 0 and thereby St < 0, see Eq. (2.54)
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Figure 4.7: Increase in particle concentration inside the near-wake rel-
ative to the outer flow over the ratio of the characteristic
Stokes number and the turbulence level; the concentration
increase is corrected for the contribution of Fr2 (see text);
spherical wake model (top) and ellipsoidal wake model (bot-
tom); note the different definitions of the St and Fr for the
spherical wake (characteristic length scale Rwake) and the
ellipsoidal wake (characteristic length scale major half-axis
a
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in Sec. 2.3.1), two data sets support the predictions of the model with
a decrease in concentration, whereas the other data set shows a slight
increase. Neither the increase nor the decrease found in these four data
sets is statistically significant, though. Please note that the measure-
ment uncertainty, as indicated by the error bars, is relatively large in
comparison to the magnitude of the relative change in concentration.
This is due to the rather small changes in concentration that occur for
small particles, and the systematic errors resulting from the normalisa-
tion method. Nevertheless, the line fitted to the experimental data in
Figure 4.7 reveals that the experimental data correlates reasonably well
with our simple model within the estimated statistical uncertainty of the
experimental data. The value of the proportionality constant γ, which
absorbs a number of unknown constants, is found to be γ = 0.78±0.09.
A similar fit gives γspherical wake = 0.40 ± 0.05 for the spherical wake
model, with the change in slope resulting in the differences of the defi-
nition of the characteristic Stokes and Froude number. The rms of the
normalised residuals is 1.24 (χ2 = 1.54) for the spherical wake model
and 1.14 (χ2 = 1.30) for the elliptical wake model, which shows that
the linear fit describes the data sufficiently well.

It should be noted that the condition in (2.58), i.e. a high Froude
number, is generally not fulfilled for most of the measurements. This
implies that the gravitational term cannot be omitted in Eq. (2.41–2.44).
Note that for the correction of the experimental data with the Froude
number Fr2 in Fig. 4.7, the sign of the gravitational acceleration was
changed. This is necessary, as for the present measurements gravity was
pointing in a direction that is opposite to the direction of the incoming
flow. (Please note that the model has been derived for a rising spherical-
cap gas bubble in a frame of reference moving with the bubble, for which
the gravitational acceleration is in the direction of the fluid motion.)

The model derived for an elliptical wake shows a marginally better
agreement with the experimental data than the spherical wake model,
although the difference is small and statistically not significant (relative
errors of the fit of 10.9% for the elliptical versus 12.0% for the spherical
wake model).
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4.3.2 Discussion of the Concentration Measurements

Contrary to the flux measurements in Sec. 4.2, the preferential concen-
tration of particles is visible in the data, despite still high measurement
uncertainties. There is a clear linear trend in the experimental results
that supports the prediction of the elliptic wake model, although the
model still somewhat overpredicts the preferential concentration found
in the experiments. The spherical wake model shows the same linear
trend, but overpredicts the experimental data to an even higher degree.

The measurement uncertainties of the concentration data are cer-
tainly higher than desireable. This is a result of the normalisation
of each data set with a (also measured) reference data set to remove
the contribution of the anisotropic Mie scattering. This normalisation
amplifies the measurement uncertainties of each data set, though the
nature of the uncertainties is still statistical. An increase in the num-
ber of measurements would therefore reduce these uncertainties. The
normalised residuals of the linear fit (reduced χ2) close to unity fur-
ther support the statistical nature of these uncertainties. Increasing
the number of samples was limited by the loss of dispersed particles
in the flow over the total duration of the experiment (approximately
40 minutes for 1024 records) and by the sampling rate of the image
acquisition system (1 record per 2 seconds). For an average Signal-to-
Noise-Ratio of 10 for a single data set (the geometric mean of the SNR
in Tab. 4.4 is 0.8), approximately 150,000 records are needed if a Gaus-
sian distribution of the uncertainties is assumed. The convergence is
still much worse even for such a high number of samples, as the ratio
distribution of two Gaussians is a Cauchy distribution.

The results can also be improved by using longer integration times, as
sharply imaged particles are only required for a subsequent PIV analysis
and not for the analysis of time-averaged concentrations. The raw data
was intentionally optimised for measuring the particle transport over
the wake boundary via PIV instead for concentration measurements,
a circumstance which takes its toll here. There are in principle also
other possible methods for the concentration analysis that are based
on detected particles (e.g. Monchaux et al., 2010) instead of averaging
the scattered light intensity. However, these methods require a careful
normalisation for a homogeneous detection probability over the frame,
something that turned out to be too difficult to achieve during this
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work.
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Dispersed particles are not only transported due to the local entrain-
ment in the bubble wake, but also — and potentially much more effi-
ciently — by collision and attachment to the bubble surface. Histori-
cally, this part has been studied much more thoroughly than the wake
entrainment, insomuch that there is a considerable amount of literature
dating back to the beginning of the 20th century (see e.g. the chapter
on the “Mechanism of Collection” in Gaudin, 1957).

The following chapter contains a description of the measurements
of the attachment rates on a single bubble trapped in a decelerating
downward flow. It contains of two parts: Sec. 5.1 summarises the the-
oretical background needed to understand how particles can attach to
the surface of the bubble, namely the particle-bubble encounter, the
attachment and the possible detachment processes. The (turbulent)
encounter is in particular relevant for the derivation of the attachment
model in Sec. 5.1.4 that is later compared to the data obtained from
the experiments. The theory of the attachment and the detachment
process are not directly needed for the derivation of this model, but are
required for the interpretation of the results, as the attachment proba-
bility strongly depends on particle properties. The detachment is also
not relevant to the performed experiments,1 but the detachment theory
in Sec. 5.1.3 gives an indication of the influence of turbulence on the
attachment process, a field that not well-understood yet. The second
part of the chapter describes the experiment in Sec. 5.2 and the results
in Sec. 5.2.4 and Sec. 5.2.5.

5.1 Models for Particle-Bubble Attachments

According to modern understanding (Nguyen et al., 1997; Nguyen &
Schulze, 2004), the whole flotation process can be divided in to three
stages:

• the process of the approach of the particle towards the bubble
surface is called the encounter or collision,

• the attachment describes the physical contact between the particle
and the gas-liquid interface, and

1Only bubbles were studied where no detachment can be observed; otherwise, it is
not possible to interpret the increase in surface concentration as attachment rate
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• after a successful attachment, the particle might become detached
again.

The particle-bubble attachment is a process that in itself consists of
three steps:

• the thinning of the liquid film between the particle and the gas-
liquid interface to a critical thickness,

• the rupture of the film with the formation of a three-phase contact
(TPC) line, and

• the expansion of the TPC line from the critical radius and stabil-
isation of the TPC at the equilibrium position.

The probability Pfloat of a particle being transported by the bubble (ex-
cluding wake effects and assuming statistical independence) is therefore
described with the product (Yoon & Luttrell, 1989)

Pfloat = PencPatt(1− Pdet) , (5.1)

with
Patt = PthinPruptPtpc . (5.2)

Eq. (5.1) is generally accepted in the flotation literature, see e.g. Nguyen
& Schulze (2004). There are possible doubts about the validity of this
equation, as Penc and Patt are not completely independent (e.g. the end
of the encounter process is equal to the beginning of the attachment
process, a somewhat arbitrary border). However, for the purpose of
this work, only the combined probability of both the encounter and
the attachment is relevant for the measurements, and the detachment
was excluded using air bubbles without smooth surfaces and without a
sharp rim.

In the following section, an overview is given over each part of the
process, including a discussion of models from the literature.

5.1.1 Particle-Bubble Encounter

General Idea

The particle encounter describes the approach of the particle to the
bubble, and in particular the coordinates — the so-called collision an-
gle — at which this interaction occurs. There is some ambiguity in this
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definition (see chapter 9 of Nguyen & Schulze, 2004, for an extended
discussion), as there is no sharp limit at what distance this encounter
occurs. It is generally accepted to use a distance of RP to the unde-
formed interface. At this stage, the interface is slightly deformed and a
thin liquid film is created.

Historically, the oldest system studied consisted of a single, spherical
bubble rising in a quiescent fluid. In this geometry, a stationary particle
in the path of the bubble collided with it at a certain polar angle (in
spherical coordinate system of the bubble), the so-called collision angle
φC . In a potential flow (see 9.3 of Nguyen & Schulze, 2004), this collision
angle is only a function of the radial distance of the initial particle
position from the future path of the bubble, the so-called encounter
radius. The maximum encounter radius at that a collision can occur is
the grazing radius RC . The encounter efficiency can then be defined by
the ratio of the swept area (the circular disc around the future path of
the bubble) to the interception area (the circular disc of maximal radius
that is swept by the bubble)

EC =

(
RC

RB +RP

)2

. (5.3)

Using the collision angle and the fact that the collision radius can be
written as RC = (RB + RP ) sin φC , the encounter efficiency is solely a
function of the collision angle

EC = sin2 φC . (5.4)

Empirical Theories and Heuristics

For fully deterministic processes, the encounter efficiency would equal
the encounter probability Penc, in more realistic cases (turbulent flows,
complex bubble shapes) it is very difficult to determine an encounter
efficiency from purely geometrical reasoning. In general, an effective
collision angle φC can be found such that Eq. (5.4) gives an approximate
description of the collision probability over the polar angle. According
to Dobby & Finch (1987), the probability Penc can be related to the
encounter rate Nenc(φ) as a function of the collision angle by

Nenc(φ) ∝
(

sinφ

sinφC

)2

for φ ≤ φc , (5.5)
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and Nenc = 0 for φ > φc. This heuristic relation for the number of
colliding particles over the polar angle was obtained from numerical
tracking of particles (Stokes drag only) and a potential flow around a
sphere, as well as experimental data (see Dobby & Finch, 1987, for more
details).

Yoon & Luttrell (1989) and Nguyen (1994) specify relations of the
type

Penc = A

(
RP

RB

)n

(5.6)

for the particle collision probability as a function of the particle and
bubble radius, and give the scaling factor A and the exponent n for
different flow conditions. Yoon (2000) gives a more extensive historical
overview on models of this type.

Turbulent Particle-Bubble Encounter

The flotation literature on the particle-bubble encounter in a turbu-
lent flow is limited, see chapter 11 of Nguyen & Schulze (2004). In
oceanography on the contrary, the problem of predator-prey encoun-
ters has been studied extensively for almost two decades (MacKenzie
et al., 1994; MacKenzie & Kiorboe, 2000). The standard model for this
problem is a perfectly absorbing sphere in a turbulent flow. It is as-
sumed that the turbulent particle flux over the boundary of the sphere
is equivalent to the particle encounter problem. The following discus-
sion is — unless otherwise noted — based on Mann et al. (2005); Pécseli
& Trulsen (2010); Pécseli et al. (2012).

Using scaling arguments only, Pécseli & Trulsen (2007) derive an
expression for the turbulent particle flux. The dispersed phase is treated
as a passive scalar. The diffusion equation for the particle density in
spherical coordinates is

∂

∂t
n(ξ, τ) =

1

ξ2
∂

∂ξ
ξ2D(ξ)

∂

∂ξ
n(ξ, τ) , (5.7)

using normalised coordinates ξ = rǫ1/4/ν3/4 = r/ηK and τ = t
√

ǫ/ν =
t/τK . With the boundary condition n(R, t) = 0 (perfectly absorbing
sphere with radius R) and a vanishing left-hand side (stationary state),
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Eq. (5.7) can be rearranged to

n(∞)− n(R/ηK) =

∫ ∞

R/ηK

dn(ξ)

dξ
dξ =

∫ ∞

R/ηK

J0
ξ2D(ξ)

dξ . (5.8)

The constant J0 = 4πR2 dn/dr|r=R represents the total diffusive parti-
cle flux. In the inertial subrange, the diffusion coefficient is modelled as
D = C1ǫ

1/3r4/3 (the model of Richardson, 1926), resulting in the turbu-
lent encounter rate (more exactly, the steady-state flux into a perfectly
absorbing sphere of radius R) as

J0
n0

=
28π

3
C1ǫ

1/3R7/3 (5.9)

for the inertial range η0 < R < L. In the viscous subrange 0 < R < η0,
the same analysis gives

J0
n0

= 12πC2R
3

√
ǫ

η
(5.10)

using the diffusivity D = C2r
2ǫ/ν. On a per-unit-area basis, this is

equivalent to a scaling ∝ R in the viscous and ∝ R1/3 in the inertial
range.

By translating these results to the encounter rates of bubbles in a
turbulent flow, it can be seen that the result for the viscous subrange
is not relevant, as bubbles smaller than ηK are not very common in
the relevant applications. Nevertheless, the result for the inertial range

can be directly applied; see Sec. 5.1.4. The scaling ∝ R
1/3
B implies

here that smaller bubbles are considerably more efficient (∝ R
−8/3
B ) due

to higher possible numbers if the total gas volume V = NB4/3πR
3
B is

constant. Using ǫ ∝ u3rms/L also shows that there is a linear scaling with
the standard deviation of the turbulent velocity fluctuations, a result
that qualitatively agrees with the observations made in Sections 5.2.4
and 5.2.5. It should be noted that — by the nature of the passive
scalar assumption made in the derivation — no scaling relations can be
obtained for the size and other properties of the dispersed particles.

5.1.2 Particle Attachment

According to current understanding, the attachment process is further
split into sub-parts, which are the collision period (involving a deforma-
tion of the gas-liquid interface and possible oscillations of the particle)
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and the contact period (the particle sliding along the interface), after
which the thin film ruptures and a stable three-phase contact line is
created. Following this scheme, Nguyen & Schulze (2004) give a com-
prehensive overview of models for each step.

In the following part the models are discussed that either simplify the
process by describing drainage times (the induction time in contact time
theories) or try to solve a system of differential equations containing
the equation of motion of a particle and a PDE for the thin film. The
collision step subsequent to the encounter is not discussed here; it is
however implicitly solved in the latter type of models. Nguyen et al.
(1997) discusses the influence of the simplifications Prupt = Ptpc = 1
(the attachment probability is therefore only related to the probability
of the liquid film thinning to a critical thickness). For a discussion of
all other problems the reader is referred to Nguyen & Schulze (2004).
The thin-film drainage problem is also discussed in the frame of general
coalescence problems.

Contact Time Theories

Due to the complexity and large range of scales of the processes in-
volved in the particle attachment, so-called contact time theories have
been developed that introduce the induction time tI . It is assumed that
this time is representative for the mean time needed from the encounter
(the particle approaches the bubble surface to a certain distance) to the
successful attachment. It is further assumed that a particle attaches to
the gas-liquid interface if the sliding time tS is larger than tI . The slid-
ing time is the time between the first geometric contact between bubble
and particle (the moment of encounter) until the particle trajectory
separates2 from the bubble surface again.

The sliding time can be derived from the geometry of the problem:
By integrating the tangential particle velocity vP,φ = uφ + τPg sinφ
(which excludes all terms from the equation of motion besides Stokes
drag and gravity), the resulting formula (Sutherland, 1948)

tS = (RP +RB)

∫ φm

φC

dφ

vP,φ(φ)
(5.11)

2If the particle attaches to the surface, this trajectory is of course mere theoretical
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gives a relation for the sliding time tS as a function of the collision
angle φC and the angle of separation from the bubble surface φm (the
minimum and the maximum angle of contact).

To solve equation Eq. (5.11), an analytical expression is needed for
the tangential particle velocity vP (φ). The first approach was done
by Sutherland (1948), assuming inertia-less particles travelling on the
stream lines of a potential flow around a spherical gas bubble. More
sophisticated models with also more assumptions and/or including em-
pirical correlations have been presented by Nguyen et al. (1998) and
Yoon & Luttrell (1989). A good overview of even more contact time
models is given by Nguyen & Schulze (2004).

The drawback of the contact time models is that the unknown solu-
tion of the film drainage problem is replaced by an unknown parameter
φm, the angle of attachment (similar to the modelling of the encounter
by an effective collision angle φC), or the unknown induction time tI .
For a spherical bubble, both parameters are equivalent; for more general
shapes the induction time is typically used. The unknown parameters
potentially also contain all the bubble and particle properties (contact
angle) and must be determined for each set of parameters (bubble size
and shape, particle properties) separately, either by experiment or by
the use of other models or empirical correlations. Contact time theories
are therefore not closed. However, effective induction times are often
determined for a particular experiment from the measured attachment
rates, and are subsequently used for other cases.

Nguyen & Schulze (2004) also describe collision contact time theo-
ries. Contrary to the sliding contact time theory presented above, these
models are used for the impact of a high-inertia particle on the front of
the bubble’s surface, which typically attend strong local deformations
of the surface. The sliding contact time models are more appropriate
for gentle collisions with weak-inertia particles.

Models solving a film drainage equation

Schulze (1992) presents a model that is based on a system of two coupled
linear differential equations, the equation of motion for the polar angle
φ of the particle and the thin-film equation with the film thickness hF as
the parameter. He assumes that particles follow trajectories (r(t), φ(t))
with r(t) = hF (t) + RB + RP along the bubble surface and that the
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thin film ruptures when the film thickness reaches a critical value hF =
hcrit. This critical thickness hcrit(θP , σ) is modelled as a function of the
contact angle θP and the surface tension σ, and is therefore limited to
cases for which such a relation is known.

From the force balance in tangential and normal direction, Schulze
(1992) obtains the system of equations

dhF
dt

= −hF cB









τP (β − 1)

RP

gravity + centrifugal acceleration
︷ ︸︸ ︷(

g cosφ−
v2P,φ

RB +RP + hF

)

+
|ur| − 0.1714vP,rel

√
ReB

RP
︸ ︷︷ ︸

drag and lift








(5.12)

and

dφ

dt
=

angular velocity
︷︸︸︷
uφ +

15

settling velocity
︷ ︸︸ ︷

τP g sinφ
8 log(hF /RP )

RB +RP + hF
. (5.13)

The force balance includes Stokes drag, the (Saffman) lift force, cen-
trifugal force (particle inertia) and gravity. The resistance to a change
of the thickness hF of the thin film is modelled with the Taylor equation
(coalescence of two solid spheres)

F = −6πµa2

hF

dhF
dt

, (5.14)

with the reduced radius a = RPRB/(RP+RB), that is further simplified
by assuming RP << RB.

Thereby the model of Schulze (1992) is an example of a model that
consist of solving a simple PDE for the draining film next to the equation
of motion of the particle. This concept is considered to be the “modern”
approach to the problem of flotation, as it avoids any assumptions about
contact and attachment angles or induction times3 and the model can

3The only remaining unknown parameter is the critical film thickness at which the
rupture occurs
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be easily implemented and solved numerically. It has been successfully
extended by using more complex thin-film equations and possibilities
for the particle rebound, see Ralston et al. (2002) for a review.

Both the contact time models and the more modern theory based on
a simulation of the drainage process are widely used in industry and
in flotation research. Nevertheless, their use is limited for predicting
the outcome of the performed experiments. The contact time models
require the knowledge of the induction time tI , which can itself only
be obtained from attachment rate or bulk flotation rate measurements
with similar particles and bubbles. Furthermore, even the sliding time
tS is not always well-defined for strongly deforming bubbles (wobbling-
ellipsoidal). The models based on the coupled system of an equation of
motion for the particle and an equation for the thin liquid film can only
be solved numerically.

5.1.3 Particle Detachment

As the forces holding a particle to the gas-liquid interface are finite,
particle detachment is possible and occurs4. In the past many efforts
were made to describe this phenomenon by models based on the balance
of the forces of the three-phase contact line adhering to the particle and
shear and drag forces of the flow trying to resuspend it. Alternatively,
thermodynamic models based on an analysis of the free energy of the
particle in the attached and detached state have been proposed. An
extensive summary of these models can be found in Nguyen & Schulze
(2004).

Another type of detachment models has been evolved from the study
of particle resuspension from solid walls by a turbulent flow. These are
kinetic/statistical models based on both the force-balance and/or the
energy accumulation idea, see Ziskind et al. (1995); Reeks & Hall (2001)
for reviews. A somewhat special model was proposed by Reeks et al.
(1988): The adhesive particle can oscillate in the attractive potential
near the wall, and the energy transfer is done by fluctuations in the
lift force exerted by the turbulent flow that are close to the resonance
frequency of the particle, leading to an easier detachment than in the

4Although the experiments were designed to avoid particle detachment, Fig. 5.12
shows clusters of particles and small bubbles that detached from the cusp-like
rims of a Taylor bubble, whereas this was not observed for other bubble types
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case of a steadily applied force. This “Rock’n’Roll” model (it is often
called “Rock’n’Roll” model in the literature, as it also incorporates
the influence of drag forces resulting in rolling particles; the latter is
not relevant for particle detachment from a gas-liquid interface, as the
particle can slide and rotate freely in case of an empty interface, only
limited by the stick-slip motion of the three-phase contact line on the
particle surface itself), which is apparently unreferenced in the flotation
literature so far, is intriguing because it can incorporate the random
forcing of a turbulent flow together with a clean microscopic description
of the attachment forces in form of an attractive potential near the gas-
liquid interface.

The essence of the “Rock’n’Roll” model is an exponential probability
distribution for the detachment rate p

p = n exp

(

− Q

2〈PE〉

)

, (5.15)

with a “typical frequency of particle-surface deformations within the
adhesive potential well” (Reeks & Hall, 2001). Q represents the height
of the potential wall that needs to be overcome; in the flotation case
it therefore depends on the increase in the free energy from the at-
tached to the detached state. The quantity 〈PE〉 is the averaged po-
tential energy of a particle “rocking” in the potential well near the
interface. In the original model, it is a linear function of the variance
of the fluctuating component (1 + η)〈F ′〉2 of the time-dependent total
force F (t) = 1/2FL + RP /aFD, the sum of the lift an drag force, with
the radius of the contact area a. The quantity η in the pre-factor (1+η)
is the ratio of the near-resonance part of 〈PE〉 to the off-resonance part,
it describes the overlap of the attenuation spectrum with the eigenspec-
trum of the particle attached to the interface. To summarise, this model
contains all necessary quantities to describe the particle detachment in
a turbulent flow, namely

• the binding energy in form of the height of the potential well Q;

• the kinetic energy of the oscillations of the particle in the potential
well 〈F ′〉2; and

• the coupling strength η due to the overlap of the oscillation spec-
trum with the spectrum of the attenuating forces.
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Particle detachment cannot be quantitatively measured in the per-
formed experiment, but it can be observed in some cases, see Sec. 5.2.4.
The idea of a resonant energy transfer is however very intriguing for
future research on the influence of turbulence on the thin-film drainage
process. Dynamical systems like the film drainage models by Schulze
(1992) described in Sec. 5.1.2 typically have a spectrum of eigenmodes
including instable modes. It is obvious that an attenuation of an insta-
ble mode by resonant coupling can lead to a much faster rupture of the
thin liquid film than what is found by quasi-steady simulations.

5.1.4 Modelling the time-development of the Surface

Coverage of a Bubble

In the case of a semi-spherical bubble, there are two possibilities for an
increase in the number of particles attached to the bubble surface:

1. particles attach on the front side of the bubble after a certain
sliding time; and

2. particle attachment occurs at random positions and is dominated
by turbulent particle transport towards the gas-liquid interface.

The first case can be modelled using the various contact time theories
(see Sec. 5.1.2). The aim of the present section is to investigate the
second idea.

The hypothesis is to assume that the particle attachment rate is pro-
portional to some attachment flux jP and the total area A(t) that is
uncovered and thereby available for attachments

dN(t)

dt
= jattA(t) . (5.16)

The attachment flux jatt has the dimension of particles per unit time
and area, and is assumed to be a linear function of the particle con-
centration in the surrounding flow5 and also depends (non-linearly) on
the flow itself (it incorporates all the attachment efficiencies and the
turbulent transport towards the interface). It is also chosen to be in-
dependent of time and viscosity, although this simplifying assumption

5This assumption is valid for low particle concentrations where particle-particle
interactions are negligible
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is not necessarily fulfilled due to the change in boundary conditions
from a free-slip gas-liquid interface to a (partial) no-slip interface with
increasing coverage. It is nevertheless a reasonable assumption for a
bubble size in the inertial range of the turbulence (Pécseli et al., 2012)
and particles larger than the thickness of a possible boundary layer.

Assuming furthermore that each attached particle covers a certain
area AP of the bubble surface, the equation changes into

dN(t)

dt
= jatt (A0 −APN(t)) = jattA0

(

1− AP

A0
N(t)

)

. (5.17)

The solution is given by

N(t) =
A0

AP

(

1− exp

(

−AP jattt− C0
AP

A0

))

. (5.18)

The integration constant represents the choice of a reference/starting
time C0 = jattA0t0 and can be chosen equal to zero. The model for the
covered surface area can therefore be written as

Acovered(t) = APN(t) = A0 (1− exp(−t/Tatt)) (5.19)

with the time scale Tatt =
1

AP jatt
for the coverage reaching 1-1/e of its

final value A0. This time scale Tatt was measured in the performed
experiments, see Sec. 5.2.2.

It should be noted that this approach to the attachment problem is
completely different from the contact time theories and the simulations
based on solving thin-film equations. It assumes that the whole flotation
process is controlled by the “random bombardment” of the interface by
a turbulent particle flux and therefore by the mechanisms of turbu-
lent particle encounter described in Eq. (5.6). It shows a good agree-
ment with the experimental data presented in Sections 5.2.4 and 5.2.5.
Nonetheless, the complete complexity of the attachment process is in-
corporated in the the attachment flux jatt.

5.2 Measurements of Particle Attachment Rates

The aim of the experiment is to measure the rate of flotation of particles
on a single bubble only. The advantage of this approach is that the flow
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Table 5.1: Parameters for the particle attachment measurements

Particle type fluorescent Polyethylene (PE)
Dye Rhodamine B
Particle size dP 27-45 µm

53-63 µm
75-90 µm
106-125 µm

Density ρH2O 1000 kg
m3 at 20◦C

Viscosity µH2O 10−3 kg
m·s at 20◦C

Surface tension σH2O−Air 7.310−2 kg
s2 at 20◦C

Morton number Mo 2.5 · 10−11

Semi-spherical vrise 15. . . 16cm/s
bubbles V ≈ 5cm3

Re 3400
Eo 60

Wobbling- vrise 14. . . 16cm/s
ellipsoidal V 1 . . . 2cm3

bubbles Re 2000
Eo 20. . . 30

Small spherical vrise ≤ 11cm/s
& ellipsoidal V ≤ 0.1cm3

bubbles Re ≤ 600
Eo ≤ 5

Taylor bubbles vrise 14cm/s
V ≥ 15cm3
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around this bubble can be studied and the build-up of particle coverage
of the bubble’s surface can be measured over time. The disadvantages
are that a single rising bubble is rather uncommon for industrial ap-
plications. More commonly, plumes of thousands of bubbles are used,
with bubble collisions, coalescence and break-up in a highly complex
flow. A single bubble experiment avoids complex bubble-bubble inter-
actions, and the approaching flow is well-defined. In flows with a small
volume load < 10−3 (Elghobashi, 1994), objects like particles or bubbles
are typically not influenced by other objects, and single-bubble experi-
ments are a valid simplification. To increase the observation time, the
bubble is trapped in a conical pipe at a position where the rising velocity
is cancelled by the velocity of the approaching flow. As a consequence,
the pipe walls have a certain influence on the bubble shape when the
bubble volume becomes too large (see Sec. 5.2.4 for a discussion of ob-
served bubble shapes). For further simplification, the only fluids used
were water for the liquid and air for the gaseous phase, resulting in the
dimensionless numbers presented in Tab. 5.2.

Most experiments were performed using a semi-spherical bubble (ef-
fectively a spherical-cap bubble, but due to the wall effects the polar
angle is close to 90◦ instead of the ≈ 50◦ typically observed for freely
rising bubbles of that volume (Wegener & Parlange, 1973). These bub-
bles have a stable toroidal wake, therefore oscillations are minimal and
sudden variations in the bubble position are largely avoided.

Although the experimental facility is not limited to this type of parti-
cles, only fluorescent Polyethylene particles of different sizes were used
for the measurements, see Tab. 5.1. Polyethylene particles are weakly
hydrophobic (contact angle 96◦), and are therefore good candidates for
this type of experiments as attachments are sufficiently likely (large
critical thickness for the rupture of the thin liquid film) and the de-
tachments are unlikely (the energetically preferred state is the attached
state) if sharp rims, skirts and cusps of the bubble are avoided. The
fluorescence of the particles was initially required for the observation
with a high-speed camera under exposure with the 532nm light of a
Nd:YAG laser, as in this case the strong reflections from the surface
can be avoided by means of an optical low-pass filter, similar to the one
used for the two-phase flow measurements in Chapters 3 and 4
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Measurement section
with conical pipe

High-speed camera Colour camera

Light sheet for
High-Speed imaging

Figure 5.1: Imaging setup for taking High-speed and colour records; the
light sheet for the high-speed PIV is aligned perpendicular
to the sketched plane

5.2.1 The DABuT Facility

Measurements on gas bubbles in water require either a mechanism that
follows the trajectory of a rising bubble over time, or some method
to keep a bubble in a certain volume of observation. The DABuT
(Dynamic Air Bubble Trap) facility is based on the latter principle; the
bubble is kept stationary in a conical pipe by adjusting the flow rate such
that the rise velocity of the bubble is countered by the flow velocity. The
facility consists of a rectangular test section that contains the conical
pipe from a Rotameter volume flow meter, which furthermore allows
an almost distortion free optical access to the central pipe from all four
sides. The flow enters the test section via a turbulence settling chamber
consisting of a 20 cm long flow straightener to remove any swirl resulting
from the inlet, as well as two additional grids to further suppress large
scale turbulence. The outlet of the test section is connected to a wye
junction with the straight end connected to the bubble injector, the
out-bound end leading to the pump. The flow loop is completed by
the pump and a flow meter. The bubble injector consists of a turnable
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(a) High-Speed camera (left) and the conical pipe of the
measurement section (right); the mirror in the front is
part of the light sheet setup

(b) Bubble injector with
the needle and the turn-
able spoon (V=2cm3)

Figure 5.2: Test section and bubble injector of the DABuT setup

spoon mounted on top of an injection nozzle, see Fig. 5.2.

The imaging system contains of a high-speed camera for particle
tracking and a conventional digital SLR camera for the colour imag-
ing. The latter camera is triggering two flashlights, one connected to
the hot-shoe of the camera itself, and the second one in slave mode by
a photo diode that triggers on the light of the first flash. At the mag-
nifications (M ≅ 0.4) used, an aperture of F/22 was used to achieve
a compromise between depth of field and a reasonably sharp imaging
of the bubble. The high-speed camera was used with an aperture of
F/8 to F/16 for a sufficient exposure at different frame rates and laser
pulse energies. The power of the used flashlights was set to low values
of 1/16 of the maximum power output to obtain a sufficiently short
pulse duration (10−4 seconds) for avoiding motion blur of the moving
particles.

5.2.2 Measurement Principle

The working principle of the flotation measurements with trapped bub-
bles is explained in the following. By the conservation of the particle
number, the attachment flux of particles towards the bubble surface
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Table 5.2: Selected parameters of the measurements in the DABuT
facility

Test section 14.5 × 14.5 × 39.5 cm
Tube � 34–40mm, conical
Tube length 300mm, 260mm conical

Imaging systems Cameras Photron Fastcam APX RS
with Micro-Nikkor 105mm 2.8D
Pentax K10D
with Tamron 90mm 2.8

cross-sectional area A2

flux Φ2 =
s

ρPvPdA2
Φ2

cross-sectional area A1

flux Φ1 =
s

ρPvPdA1
Φ1

by continuity: attachment flux

Φatt =
s

jattdAbubble = Φ2 − Φ1

∝ dAcovered/dt

Φatt

Figure 5.3: Measurement principle: the attachment rates cannot be
measured directly, but under identical experimental condi-
tions, they can be compared for different bubbles by deter-
mining the rate in the build-up of surface coverage

112



5.2 Measurements of Particle Attachment Rates

must be the difference between the particle flux over cross-sectional
areas upstream and downstream of the bubble, hence

Φatt =
x

jattdAbubble = Φ2 − Φ1 , (5.20)

if the particle concentration in the fluid does not change (steady state
assumption). As shown in Sec. 5.1.4, the magnitude of the total attach-
ment flux is related to the change of the number of attached particles
over time. The number of attached particles is proportional the covered
surface area, as particles can only attach in form of a mono layer; see
Sec. 5.2.5. Putting everything together, the attachment flux is propor-
tional to the change of the covered area

Φatt ∝
dAcovered

dt
. (5.21)

The measurement of the covered area therefore only represents a relative
measurement of the attachment flux Φatt, up to a multiplicative con-
stant. In reality, however, even for very stable bubbles (see Sec. 5.2.4)
this cannot be achieved, and the wobbling introduces a bias to the mea-
surements that is discussed in Sec. 5.2.3. Nonetheless, the measurement
of the covered area, independently of the normalisation, over time al-
lows to access the timescale of the flotation problem, as the timescale
of the attachment model (Sec. 5.1.4) is independent of the total abso-
lute or relative coverage. The remaining systematic uncertainties are
mainly due to the wobbling of the bubble and its consequences for the
projection on the sensor of the camera.

5.2.3 Methods for Image Analysis

The recorded images of the bubble are analysed to obtain information
about the number of attached particles (bubble coverage) over time.
Furthermore, the concentration of particles in the free flow must be
determined to eliminate this parameter from the rate of flotation. This
way, the effect of the shape of the bubble and the properties of the flow
around it can be studied.

Owing to the simplicity of the design of the experiments, there are two
issues that must be dealt with: Firstly, the usage of a standard digital
single lens reflex camera (SLR) for recording colour images of the gas
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bubble, which requires the minimisation of any influence of the white
balance setting and the internal processing on the final result. Secondly,
a full reconstruction of the 3D bubble surface is not possible with a
single camera only, therefore the instability in the bubble’s position
causes different projected bubble shapes and an unknown bias to the
measured coverage of the bubble.

Bubble coverage

Although the counting of individual particles that are attached to the
bubble is in principle possible, there are practical difficulties with that
approach due to a low contrast at particle boundaries in a covered zone
and in particular for smaller particles due to the general diffraction-
limited imaging (an aperture of F/22 was used to maximise depth-of-
field, which also causes a reduction of small-scale contrast as a result
of an increased diffraction-limited spot size in comparison to imaging
with a lower F-number). The presence of a mono layer of particles (see
Sec. 5.2.5) however simplifies the particle counting, as it is simpler to
detect the total covered area, rather than counting individual particle
images.

The algorithm consists of the following steps:

1. Proper Orthogonal Decomposition (POD) of the colour space to
find the colour (RGB) eigenvector that corresponds to the ’pink’
particle images;

2. calculating the pink component (saturation) and its histogram;

3. fitting a bimodal distribution function to the histogram; and

4. determining the integral under the Gaussian part.

The POD is done by calculating the eigenvalues and -vectors for the
covariance matrix

COV =





〈r, r〉 〈r,g〉 〈r, b〉
〈g, r〉 〈g,g〉 〈g, b〉
〈b, r〉 〈b,g〉 〈b, b〉



 , (5.22)

with r = R−mean(R,G,B) being the vector of the red colour channel
of the image corrected by the grey value (mean of all three components),
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and equivalently for the green (g) and blue (b) colour channels. The
individual off-diagonal components of Eq. (5.22) therefore represent the
cross-covariance of two different colour channels, and the whole 3 × 3
matrix is the colour covariance matrix of the image. The eigenvec-
tor of such a covariance matrix are the so-called principal components
(the POD is also often called Principal Component Analysis); they de-
scribe the directions in RGB space in which the data varies with the
corresponding eigenvalue as variance. The eigenvectors therefore each
correspond to a base vector of the colour space, and they all span the
ellipsoid which gives the best approximation to the point cloud of the
image in the colour space in a least-square sense. The eigenvalues are
usually interpreted as the energy content of the image belonging to the
associated mode or eigenvector. Subtracting the mean grey before the
POD gives effectively a decomposition of a 2D subspace of the whole
colour space. In the present case of having pink particle images, we find
pink eigenvector and one vector orthogonal to pink. The magnitude of
the corresponding eigenvalue to pink changes in time with increasing
coverage; the eigenvalue itself is yet an insufficient measure for the cov-
erage.

The advantage of this approach is that any bias introduced by colour
mapping functions in the image processing in the camera as well as the
influence of white balance settings can in principle be eliminated. For
unchanged camera settings and exposure, the found eigenvectors should
be constant over the measurement time of one data set. As shown
in Fig. 5.4, this is indeed the case after a sufficient time. For small
times, the number of particles that have attached to the bubble are
small and hence the number of pixels that are pink, leading to higher
uncertainties in the vector components. To avoid these uncertainties
and their influence on the analysis of the saturation histograms, the
whole data set was analysed with a constant colour vector that was
chosen identical to the converged values.

From the pink eigenvector, the pink signal is determined by taking
the scalar product with the colour vector at every pixel. The subse-
quently calculated histogram is shown in Fig. 5.5. It shows the bimodal
distribution with a nearly Gaussian part for the pixels that can be
associated with particles covering the bubble surface. The main part
(background) is similar to a Laplace distribution (double exponential
distribution), although a better fit to the histogram is obtained for posi-
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Figure 5.4: Stability of the POD colour space decomposition for a se-
lected data set; coefficients of the eigenvectors over time
(left) and eigenvalues over time (right)

tive pinkness values by using a Cauchy distribution in combination with
the Gaussian distribution. The time development of the histogram (the
Gaussian part changes in expectation value and magnitude, see Fig. 5.5)
also shows that detection strategies based on binarisation are not suit-
able for the problem. Any near-optimal threshold for the whole data
set would underpredict the coverage for low values (at the beginning of
the experiment) and overpredict it later on. Therefore, only the Otsu
method was tested more extensively (automatic thresholding based on
the maximisation of the inter-class variance in the histogram, see the
section on “clustering thresholding” in Sezgin & Sankur (2004)), but
was found to fail if one class (the covered part) is very small.
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Figure 5.5: Bimodal distribution of the pink signal (saturation) and its
time development

Particle concentration in the flow

Determining the amount of particles dispersed in the flow is necessary
to allow a normalised comparison of the determined time scales. As the
particle concentration changes in an uncontrollable way due to settling,
particles sticking to walls, and due to collisions with the bubble, the
amount of injected particles is not a reliable quantity. The average
concentration of particles was therefore determined by image processing
as well.

A convenient method to count particle images is to detect local max-
ima in the image colour field (the pink colour component calculated
by the POD). To avoid counting maxima that are related to the image
noise, the image is blurred with a binomial filter of given standard devi-
ation, which is an often used and computationally efficient discrete ap-
proximation to a Gaussian smoothing filter (Haddad & Akansu, 1991).
This approach (scale-space decomposition, see e.g. Lindeberg (1993))
is a very common method in image processing to extract features like
points and edges from noisy images. In the case of the recorded data
sets, a complete scale-space decomposition is not needed and too time
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Figure 5.6: Uncertainties in the particle counting (concentration mea-
surements) as a function of the variance of the blur operator

consuming, as all particle images are of a similar size6. It is there-
fore sufficient to choose an optimal second centred moment (denoted as
“variance” in the following) of the size of the blur operator, see Fig. 5.6.

The optimal choice of the variance of the blur operator is a compro-
mise between the relative error in the counting of M(i) maxima

eM(i) ≅

√

M(i)

M(i)
=

1
√

M(i)
. (5.23)

This error is typically smaller than the systematic error induced by
choosing a too small or too large variance, which can be estimated by

e∆M(i) ≅
∂M(i)

∂i
, (5.24)

6For the performed experiments, this is not a result of the diffraction-limited imag-
ing (the particle size is about twice to four times as large as the diffraction spot
size), but a consequence of all images being recorded at almost identical magni-
fication
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and the error induced by filtering potentially relevant information in the
image. The latter is more difficult to access, but it can be estimated by
the correlation in the detection rates after applying filters with similar
standard deviation. Near the optimum filter width, the result of the
maxima detection should not depend on the filter width itself, and the
correlation between the detection rates should be close to unity. When
the variance of the filter is varied in discrete steps, the error of the filter
with variance i can be estimated by

e2σ2=i = 1− corr(di−1, di) + corr(di, di+1)

2
. (5.25)

When all errors are assumed to be statistically independent, the error
norm

etot,i =
√

e2M(i) + e2∆M(i) + e2
σ2=i

(5.26)

can be minimised to obtain an optimal choice for the variance σ2 = i.

Fig. 5.6 shows that for a sufficiently large blur size, the error is dom-
inated by e∆M(i) only and reaches a plateau of nearly constant total
error. Based on that, a blur filter with a standard deviation of 4 pixels
(σ2 = 16) was chosen for all data sets. This results in a total relative
uncertainty of about 10% for a single concentration measurement.

Fig. 5.7 shows a result of the maxima counting, plotted is the num-
ber of detected maxima per square millimetre of the projected area
over time. The approximate 4% drop in concentration for short times
corresponds to the amount of particles collected by the bubble. The
further slow decrease in concentration is approximately the rate of par-
ticle settling in the whole facility7. If the concentration values obtained
from Fig. 5.7 are used to calculate the total amount of particles in the
facility, the obtained value is only about one quarter to one third of
the amount of particles that were added to the setup beforehand. This
shows that particles quickly settle and attach to surfaces of the setup,
a process that cannot be avoided as evidenced by the negative slope
of the particle concentration for larger times. The typical volume load

7Ideally, this should have been confirmed by a separate measurement of the decay
of particle concentration only (without a bubble); however, in the first place, the
colour images were taken for documentation purposes only, and it was found later
that they contain more valuable information compared to the images taken with
the high-speed camera and a light sheet
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Figure 5.7: Time-development of the particle concentration (counted
maxima) in the flow (75. . . 90 µm particles). Note the sharp
decrease at the beginning of the experiment (high attach-
ment rate due to the presence of a yet uncovered bubble),
compared to the slow decrease when the bubble’s surface is
covered (particle settling in the facility)

for all performed experiments was in the order of 10−4 (1 . . . 5cm3 of
particles over a total fluid volume of about 20 litres).

5.2.4 Qualitative results

The following part gives a brief descriptions of the bubbles used for
measurements in the DABuT facility. The discussed regimes for the
bubble shape are not sharp, and transitions of one type to another
typically occur when the surface tension changes due to a mono layer
of attached particles (see Sec. 5.2.5), due to a change in boundary-
condition at the bubble surface with an increasing number of attached
particles, and when the volume is reduced over time due to dissolving
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air. The bubble shapes described in the following have been found in
many experiments already, see e.g. Clift et al. (2005) for a summary.

Semi-spherical bubbles

The bubbles of this type are an intermediate regime between the wobbling-
ellipsoidal/wobbling spherical-cap bubbles and the large Taylor bubbles
typically found in slug flows. They have a volume of about 5 cm3, and
contrary to wobbling-ellipsoidal bubbles the wall effects have a notice-
able influence on the shape. The shape of a freely rising bubble with
a similar volume in water would have the shape of a spherical cap.
The semi-spherical bubbles inherit from them the stable flow pattern
around the bubble and the rather sharp (small radius of curvature) rim
at the point of flow separation. The presence of the pipe walls results
in a semi-spherical shape as a significant portion of the pipe’s cross-
sectional area is occupied by the bubble (>50% blockage). The shape
of this type of bubbles is rather stable due to the stable flow pattern
around it, and is only disturbed by surface modes that get damped and
finally vanish as soon as a suficient number of particles become attached
to the bubble surface. In the latter case the shape also changes slightly;
the rim becomes less sharp and the point of flow separation moves a bit
upstream. Bubbles with a somewhat smaller volume can also change
their shape towards a wobbling ellipsiodal bubble by the attachment of
particles and by a volume loss due to air dissolving into the water. A
detachment of smaller bubbles from the rim as occurs for larger Taylor
bubbles was not observed.

Wobbling-ellipsoidal bubbles

These air bubbles have a volume of about 1-2 cm3, and their shape is
typically not stable. This regime includes also wobbling spherical-cap
bubbles (≈2 cm3), as these typically turn into a wobbling ellipsoidal
bubble when a sufficient large number of particles stick to the surface.
In general, the effects of the pipe wall are still weaker than the surface
forces, and although the wobbling spherical caps show first signs of a
rim, the surface is generally smooth. The flow around these bubbles
is on the border between a largely stable (wobbling spherical cap) and
unstable (wobbling ellipsoidal) flow pattern. The presence of the pipe
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walls is likely the cause for the stabilisation. A good discussion of the
path instability of ellipsoidal bubbles can be found in Magnaudet &
Eames (2000).

Small ellipsoidal and spherical bubbles

The shape of the bubbles in this regime is fully determined by surface
forces, with the deviation from the spherical shape due to gravitational
effects and no observed wobbling. These bubbles are either (i) created
by detachment from a sharp rim at the point of flow separation or (ii)
by single bubbles that detach individually from the injection capillary
and that do not coalesce on their path towards the test section. Bubbles
with a diameter of about 1 mm and less are of the first kind, because
the detachment from the injection capillary provides a lower limit for
the bubble size. When multiple bubbles of this type are injected, they
typically coalesce within a few seconds and create a larger bubble of
the wobbling ellipsoidal type. With the presence of small polyethylene
particles (with a diameter of 27-45 µm) in the flow, the rapid attachment
of these particles prevents coalescence and measurements can be done
on small groups of these bubbles. The wake behind these bubbles is
already turbulent such that these bubbles oscillate, and in general they
follow chaotic paths. Smaller, spherical bubbles almost never leave the
boundary layer near the pipe walls; the situation changes a bit with
larger bubble sizes and in the presence of other bubbles.

Taylor bubbles

If one injects bubbles with a volume significantly larger than that of a
semi-spherical bubble, the semi-spherical front of the bubble will not
change, and the increase in volume results in an extension of the bub-
ble size downstream (Delfos, 1996). Although the extension is almost
cylinder-like, the distance of the surface to the pipe wall is gradually
decreasing. The somewhat unstable bottom of the Taylor-bubble is sep-
arated from the side walls by a sharp rim. The Taylor bubble looses
volume over time by the separation of small (<1mm) bubbles from this
rim, which are typically found in the wake of the Taylor bubble.
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5.2 Measurements of Particle Attachment Rates

(a) amorphous (b) polycrystalline

Figure 5.8: Observed monolayers on bubble surfaces

5.2.5 Observations

Monolayers of Particles

The recorded images with a sufficient number of attached particles show
that the particles form a mono layer, with an increasingly dense pack-
ing that locally approaches a two-dimensional dense packing for bub-
bles with a fully covered bottom (see Fig. 5.8). The only exception
are clusters of smaller particles that are present in the flow (the tur-
bulence in the setup is not strong enough to break up these clusters)
and which also attach as clusters. This mono layer has the effect that
it changes the boundary condition on the bubble surface from free-slip
to no-slip. There is also an effect on the effective surface tension of the
particle-filled interface: Contrary to the reduction of surface tension by
surfactants (Probstein, 2003), a layer of attached particles increases the
stiffness and thereby the surface tension.

The two types of monolayers shown in Fig. 5.8 are to some degree
related to the flow around the bubble: high tangential velocities cause
stronger shear forces, causing particles to create a more dense packing
with short-range order (“polycrystalline”) at the rear side of the bubble.
If these shear forces are lower (lower rise velocity of the bubble), then
particles tend to cover the surface with a higher inter-particle distance
with no apparent order (“amorphous”). Local repulsive forces between
the particles inhibit the formation of a more dense packing.

According to Landau & Lifshitz (1987), an adsorbed film can change
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surface tension because it provides an additional resistance to the in-
crease or decrease of local surface area. This is the case if the (effective)
viscosity of the film is large compared to that of the two fluids (here:
air and water). The boundary condition to fulfil at the interface is8:
[

p1 − p2 − σ

(
1

R1
+

1

R2

)]

ni = (σ
(1)
ik − σ

(2)
ik )nk +

∂σ

∂cA

∂cA
∂xi

(5.27)

The left side is equivalent to the Young-Laplace formula, and the first
term on the right takes into account the strain rate tensor

σik = −pδik + µ

(
∂ui
∂xk

+
∂uk
∂xi

)

(5.28)

of a moving interface as a result of viscous friction in both media. The
second term to the right is the gradient of the (spatially varying) surface
tension, with the surface tension σ(cA) being a function of the surface
concentration cA. Additionally, the continuity equation for the film

∂cA
∂t

+ div(cAv) = 0 (5.29)

has to be fulfilled in case the film is compressible (the area of small
surface elements can change). The latter is to some degree the case,
as the film can be tangentially stretched (increasing the inter-particle
distance at constant thickness would not invalidate the layer model
for small expansions); however, compression is effectively not possible
beyond the point when neighbouring particles are in direct contact.

Landau & Lifshitz (1987) also derive a damping factor for capillary
waves at a surface that is covered with an adsorbed incompressible film.
Neglecting gravity, they obtain

γ =
k7/4µ1/2σ1/4

2
√
2ρ3/4

(5.30)

with the wave number k, the dynamic viscosity µ and fluid density ρ,
a value which differs from the pure interface by the factor

γFilm
γ

=
1

4
√
2

(
σρ

kµ2

)1/4

=
1

4

(
Re2λ

8πWeλ

)1/4

. (5.31)

8This model is solely based on macroscopic reasoning (finitely small film thickness);
effects like the locally increased curvature are not considered and unlikely to
contribute significantly, as the contact angle for PE particles with water and air
is close to 90◦C
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5.2 Measurements of Particle Attachment Rates

(a) 107 seconds (b) 275 seconds

(c) 519 seconds (d) 1359 seconds

Figure 5.9: Selected records of a time series with a semi-spherical bub-
ble, 4g PE particles of diameter 53-63µm

The Weber number Weλ = ρv2λ/σ and the Reynolds number Reλ =
ρvλ/µ are here defined with the wavelength λ of the capillary wave as
the characteristic length scale (not to be confused with the turbulent
Reynolds number that is defined over the Taylor microscale). For typical
k, this factor is large relative to 1, therefore the adsorbed film model
explains the strong damping of surface waves that is observed in the
presence of a mono layer of particles.

Semi-Spherical Bubbles

Semi-spherical bubbles show a rather unusual build-up of particle con-
centration. From the start of the experiment on, surface concentration
builds up very quickly (O(10s) . . .O(100s)) on the rear (wake side) of the
bubble. As soon as the rear side is covered such that the bubble is filled
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beyond the rim at the stagnation point, the concentration increases
only very slowly in the order of several hours (O(104s)). This period
is characterised by a completely covered rear side that only breaks up
occasionally to leave thin gaps of free air-water interface that closes
quickly. At the time scale of O(104s) the volume of the bubble also
changes due to air dissolving into the water; therefore it cannot be ex-
cluded that the increase in the percentage of covered bubble surface is
caused by a volume loss with an approximately constant total number
of attached particles. Noticeable is also the dense packing of particles in
the covered area, even a quasi-2-dimensional short-range order similar
to that in a polycrystalline solid can be observed.

Wobbling-Ellipsoidal Bubbles

The build-up of the surface particle concentration is more slowly in
the case of a wobbling ellipsoidal bubble. The time needed to cover
more than half of the bubble’s surface is O(103s), the attachment rates
decrease gradually. Over the same time scale, a volume loss due to
dissolving air can be noticed, which only stops when the bubble is com-
pletely covered with particles. However, the bubble is never as densely
covered as in case of the semi-spherical bubbles, in analogy to a solid
state crystal the covering layer could be described as amorphous.

Small Ellipsoidal and Spherical Bubbles

The particle attachment to small ellipsoidal and spherical bubbles is
comparable to that of wobbling-ellipsoidal bubbles, with gradually de-
creasing attachment rates over a time of several minutes, up to a point
where no increase is observable any more. On the same time scale
a loss of volume due to dissolving air is visible. The surface is never
fully covered with particles, as coverage remains loose with greater clear
openings. It should be noted that these observations are only based on
a single time series of records taken from an injected group of bubbles.

Taylor Bubbles

The concentration increase at the back side of Taylor bubbles is, similar
to the semi-spherical bubbles, of order O(102s). They also show a simi-
lar slowdown in the attachment rate when the rear side is fully covered.

126



5.2 Measurements of Particle Attachment Rates

(a) 432 seconds (b) 1029 seconds

(c) 2064 seconds (d) 4664 seconds

Figure 5.10: Selected records of a time series with a wobbling-ellipsoidal
bubble, 2g PE particles of diameter 53-63µm

After that moment, the covered area grows slowly (O(104s)) beyond
the rim and creeps upwards against the flow direction. Estimates of
time scales are difficult here, since the bubble constantly looses small
air bubbles that are (partially) covered by particles, and which create
small clusters of millimetre-sized bubbles and particles (see Fig. 5.12).
The covered part of the bubble is densely packed with particles.

Attachment Time-Scales for Semi-Spherical Bubbles

Fig. 5.14 was obtained by plotting the computed values for the coverage
of the bubble over time. The covered area is increasing steeply in the
beginning, reaches a local maximum for intermediate times and then
approaches then a constant value. The data shows a lot of scatter,
larger than the estimated uncertainty in the particle counting. The

127



5 Surface Attachment

(a) 45 seconds (b) 257 seconds (c) 392 seconds

(d) 695 seconds (e) 1365 seconds (f) 3185 seconds

Figure 5.11: Selected records of a time series with a group of small bub-
bles, 8g PE particles of diameter 53-63µm
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5.2 Measurements of Particle Attachment Rates

Figure 5.12: Clusters of millimetre-sized bubbles and particles (106-
125µm) in the wake of a Taylor bubble

latter is a direct consequence of the wobbling of the bubble; when the
bottom side of the bubble is visible in the field-of-view, higher values
are recorded than when the bubble is observed from the side only. The
observed local maximum in Fig. 5.18 (top) is likewise a result of the
wobbling, which is caused by a bias in the data analysis: the algorithm
is too simple to distinguish between particles that are observed directly
and those that are seen through the bubble itself (see Fig. 5.15). In both
cases, part of the image is positively detected as “pink” and is therefore
counted as covered area. If the bubble is wobbling strongly due to
the absence of a damping particle layer (compare Sec. 5.2.5), observing
bubbles tilted towards and away from the observer is more common
and leads to the computation of higher values of coverage. It should be
noted that this is a fundamental bias of all projective measurements of
the surface coverage using one camera only. The bias can be minimised
by observing the bubble from the bottom position, which is however
experimentally difficult to realise, or by fully reconstructing the 3D
bubble surface using multiple cameras. It can be seen in Fig. 5.18
that the bias is small compared to the uncertainties induced by the
wobbling of the bubble in general, and therefore no need was seen to
further improve the data analysis here.

The time scales of the flotation can be obtained from Fig. 5.14 by
fitting the model Eq. (5.19) from Sec. 5.1.4. Tatt can be interpreted as
the time scale to reach 1 − 1/e of the maximum coverage. It will be
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(a) 28 seconds (b) 56 seconds (c) 111 seconds

(d) 239 seconds (e) 490 seconds (f) 990 seconds

(g) 1943 seconds (h) 3662 seconds (i) 5362 seconds

Figure 5.13: Selected records of a time series with a Taylor bubble, 6g
PE particles of diameter 75-90µm
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Figure 5.14: Time-development of the bubble surface area covered by
particles; note the strong variations due to the wobbling
of the bubble at the beginning of the experiment, directly
after injection

called the attachment time scale in the following. For t → ∞, the model
Eq. (5.19) converges against a covered area A0, the final coverage. Val-
ues of both parameters are given in Tab. 5.3 for all experiments done
with semi-spherical bubbles. It should be noted that the values for the
final coverage A0 are difficult to relate to the percentage of covered sur-
face area, as the exact shape of the bubble is unknown (the semi-sphere
is an approximation) and the perspective of the camera introduces a
bias in the data analysis described in Sec. 5.2.3. The exact value is fur-
thermore not of interest compared to the attachment time scale Tatt

9,
which is inversely proportional to the sweeping efficiency (the combined

9The total time a bubble needs to rise from the injection to the surface of a flotation
cell is O(1) . . .O(10) seconds for typical industrial applications; therefore, even a
spherical-cap bubble with a high sweeping rate will not reach a full coverage of
its rear side
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Figure 5.15: Bias in the particle counting leading to the observed max-
imum in Fig. 5.14: Together with the pink particles de-
tected at the bottom of the bubble, also the inner side of
the bottom can be observed by refraction

flotation efficiency Pfloat = PencPatt(1−Pdet) with detachments excluded
Pdet = 0) of the particular bubble.

The time-development of the covered surface area for different ex-
periments is presented in Fig. 5.16. The data shows a strong scatter
in particular the data recorded with the small particle sizes (Fig. 5.16
top). These were the early measurements for which also fewer records
were taken than during the later experiments. Nevertheless, within a
single data set, there is a reasonable agreement of the data with the
predictions of the attachment model, i.e. a fast increase in the covered
area followed by a decrease in the attachment rate until a somewhat
stationary level is reached.

For the measurements with larger particles presented in Fig. 5.17,
more records were taken and they also show a better match between
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Figure 5.16: Projected covered surface area over time, 27-45µm parti-
cles (top) and 53-63µm particles (bottom), semi-spherical
bubbles
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Figure 5.17: Projected covered surface area over time, 75-90µm par-
ticles (top) and 106-125µm particles (bottom), semi-
spherical bubbles
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different data sets. Qualitatively, the predicted behaviour of the at-
tachment model can be verified again. However, more than half of the
data sets show a second steep increase after some time when the sta-
tionary state has been reached according to the model. This behaviour
coincides with the creeping of the monolayer over the rim of the semi-
spherical bubble; see Tab. 5.3 for a more detailed analysis of this effect.
Qualitatively, these measurements can only be explained by the model
until the second sharp increase. Fitting the model to the data sets with
the two-step behaviour naturally results in much larger attachment time
scales than for the data sets that match the model’s prediction. This
can be seen in listing of all measured time scales in Tab. 5.3.

If all data sets are separated in two groups (the ones following the
predictions of the model, and the ones showing a two-step behaviour),
then Fig. 5.18 is obtained. In both cases, the time axis was furthermore
normalised by the measured particle concentration (a concentration of
approximately 750 detected maxima per cm2 was normalised with a
factor of one (this is approximately equivalent to a volume load of 10−4

for 100µm particles), as this was near the median concentration of all
data sets), and the covered surface area by the final coverage area ob-
tained from the fit. In the case of the measurements with a single-step
behaviour, this normalisation leads to a good overlap of the graphs of
the different measurements. This strongly supports the idea that there
is no measurable effect of the particle size on the attachment rates in
the performed experiments. In the case of the data sets showing the
mentioned two-step behaviour, a higher number of outliers can be no-
ticed shortly after injection, an effect that is related to the bias in the
data analysis for strongly wobbling bubbles. The graphs from different
measurements again match very well (within the scatter of the data)
for times smaller than 200 seconds and larger than 600 seconds. In be-
tween, the second rapid increase in coverage occurs at different times for
different experiments, such that the scatter there is significantly larger.

A comparison to an experiment with a wobbling-ellipsoidal bubble
reveals that the time scales for the attachment rate are significantly
larger in this case, see Fig. 5.19. This graph shows again the coverage,
normalised with the final coverage obtained from the fit, over the time
with the correction applied for the difference in the absolute particle
concentration. The data shows much more scatter than in the cases
of the semi-spherical bubbles, a result of the highly unsteady motion
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Figure 5.18: Covered surface area over time for semi-spherical bubbles
showing an exponential increase according to the model
(top) and with a two-step behaviour (bottom)
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Figure 5.19: Covered surface area over time for a wobbling-ellipsoidal
bubble; note the difference in time range

and chaotic oscillations of the bubble. This is also reflected in the
much higher measurement uncertainties obtained from the data analy-
sis method. Nevertheless, the data seems to agree with the model to a
certain degree (the χ2 of the fit is 10.1 in this case, which is comparable
to the values obtained for the semi-spherical bubbles, see Tab. 5.3). The
attachment time scale, however, is approximately 2000 seconds, a value
that is one order of magnitude larger than the time scales of the bubbles
with the two-step behaviour, and about a factor of 40 larger than the
bubbles with only one step. The semi-spherical bubbles have a wake
with complex vortex shedding and no stable vortex ring/recirculation
zone at the rear side where a zone of highly turbulent flow is perma-
nently in direct proximity to a part of the bubble surface. If the tur-
bulence is assumed to have no influence on the attachment of particles,
either by increasing the encounter rate or by quickening the rupture of
the thin liquid film, it is difficult to argue that these bubbles show such
a different result when bubble rise velocity (and thus flow rate) as well
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Figure 5.20: Observed two-step behaviour: the measured surface con-
centration of particles increases rather quickly and satu-
rates, and a second exponential increase occurs after an
initial delay; compare the images in Fig. 5.21

as the particle properties (size and material, the differences in absolute
concentration is corrected by the normalisation of the time axis) are
similar.

Tab. 5.3 lists the attachment time scales from the single-step fit for
all experiments done with semi-spherical bubbles. The separation into
the two groups is also obvious here, the short attachment time scales
around 50 seconds correspond to the “fast” sweeping bubbles that agree
with the model, and the ones with a larger time scales correspond to
the measurements showing the two-step behaviour.

Two-Step Attachment

The two-step behaviour is illustrated in Fig. 5.20, showing the measured
concentration increase. A series of images recorded during the same
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Table 5.3: Attachment time scales Tatt obtained from fitting Eq. (5.19)
for all measured semi-spherical bubbles

particle size attachment time final coverage rms of residuals
scale Tatt [s] A0 [px] (reduced χ2)

211 ± 8 3.00e5 ± 2.7e3 3.69
53± 5 1.28e5 ± 1.5e3 1.95

75-90µm 55± 6 1.43e5 ± 2.0e3 3.49
48± 5 1.32e5 ± 1.7e3 2.81
54± 4 1.32e5 ± 1.7e3 2.79
126± 26 2.40e5 ± 1.3e4 7.7

36± 5 2.55e5 ± 4.5e3 5.8
41± 6 4.18e5 ± 1.0e4 5.59

106-125µm 203± 12 5.60e5 ± 1.1e4 2.73
204± 18 4.45e5 ± 1.1e4 3.03
277± 20 4.7e5 ± 1.2e4 2.50
294± 25 4.21e5 ± 1.1e4 3.0

39 ± 22 3.68e5 ± 2.9e4 5.82
27-45µm 184± 35 2.85e5 ± 2.3e4 6.94

206± 20 3.66e5 ± 8.8e3 6.35

53-63µm 352 ± 102 3.45e5 ± 4.1e4 1.52
172± 73 3.81e5 ± 1.2e4 6.37

Comparison: wobbling ellipsoidal bubble
53-63µm 1943 ± 289 1.25e4 ± 4.8e2 3.18
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(a) 10 seconds (b) 26 seconds (c) 52 seconds

(d) 80 seconds (e) 122 seconds (f) 176 seconds

(g) 181 seconds (h) 207 seconds (i) 306 seconds

(j) 358 seconds (k) 406 seconds (l) 488 seconds

(m) 607 seconds (n) 744 seconds (o) 1123 seconds

Figure 5.21: Time-series with a double-step behaviour (PE 106−125µm
particles): the second step at around t0 = 346 ± 10s co-
incides with the point at which the monolayer creeps over
the rim of the spherical cap, compare Fig. 5.20
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measurement is presented in Fig. 5.21. Qualitatively, the occurence
of the second step coincides with the moment at which the monolayer
starts creeping over the rim of the semi-spherical bubble, see in partic-
ular the images at times between 300 and 400 seconds in Fig. 5.21.

A fit for two exponential steps can be obtained from the function

Acovered(t) =







A1

(

1− exp
(

− t
Tatt,1

))

, if t ≤ t0

A1

(

1− exp
(

− t
Tatt,1

))

+A2

(

1− exp
(

− t−t0
Tatt,2

))

, if t > t0

(5.32)
with five unknown parameters and A0 = A1 + A2. Fig. 5.20 shows
an example of such a fit. It can be seen that this model provides a
much better fit to this particular data set (variance of the residuals
χ2 = 2.1, χ2 = 6.3 for the single-step model). The time scales obtained
are Tatt,1 = 17s±3s, Tatt,2 = 108s±17s with a delay time t0 = 346s±10s,
compared to 277s±20s for the single-step model. The initial time scale
Tatt,1 is nevertheless biased towards smaller values because of the strong
wobbling, see Sec. 5.2.2 for a description.

This bias is illustrated by the fit shown in Fig. 5.22. For the single-
step model, the number of outliers due to wobbling is always small
compared to the number of samples in the whole data set, and both
fits give almost the same results within the margin of error (296 ±
12s versus 320 ± 15s), although the regression with outliers removed
gives naturally the better fit (χ2 = 6.35 versus χ2 = 8.97). In the
two-step model on the contrary, the initial time scale Tatt,1 changes
from 39 ± 6s (a value that agrees well with the earlier results from
the “fast” sweeping bubbles) to 5.9 ± 2.7s (a value almost one order
of magnitude smaller than the earlier results) despite an only marginal
decrease in the quality of the fit (χ2 = 3.9 instead of χ2 = 3.3). The
time scale Tatt,2 is not influenced by the outliers (they only exist directly
after injection of the bubble), but affected by the choice of the initial
value of the delay time t0. The parameter correlation for both fits is is
−0.75 (outliers excluded) and −0.67 (outliers included), which confirms
the strong (anti-)correlation between the two parameters. It must be
concluded that the two-step model with five free parameters is already
too complex10 for the regression of the measured data, and its results

10John von Neumann: “With four parameters I can fit an elephant, and with five I
can make him wiggle his trunk.”
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(a) Fit with outliers removed, and a large start value for t0
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(b) Fit including the outliers, and a small start value for t0

Figure 5.22: Problems of the two-step model: two fits of the same data
set showing very different results depending on the initial
value of the delay time and the presence of outliers due to
strong wobbling, see also the text
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Table 5.4: Time scales obtained from the two-step model

particle size Tatt,1 [s] Tatt,2 [s] t0 [s] χ2

75-905µm 16.1 ± 3.1 297± 26 187± 15 6.8

17.4 ± 22.6 692± 106 303± 43 5.3
8.5 ± 12 196± 26 122± 13 6.0

106-125µm 32.9 ± 6.0 111± 26 312± 16 4.1
17.5 ± 3.1 108 ± 17.6 346± 10 2.2
38.9 ± 5.8 103± 24 508± 17 3.3

should be used and interpreted with care.
Tab. 5.4 summarises the resulting parameters of the two-step model.

As discussed, the time scales of the initial step can be very small and
uncertainties large, a result of the bias in the surface concentration
measurement. It can still be concluded that these time scales are com-
parable to the short time scales found in Tab. 5.3. The time scales for
the second step are larger, and there is a reasonable correspondence to
the longer time scales found in Tab. 5.3.

5.2.6 Discussion of the Attachment Measurements

The experiments with the semi-spherical bubbles allow to obtain some
insight about the mechanisms that improve the particle attachment
rates in flotation, although drawing a final conclusion is not yet possi-
ble. If one hypothesises that particles attach to the front side of the
bubble, one would expect that the attachment rate is constant over
time, as the conditions (a clean surface) do not change over time (for
semi-spherical bubbles). Nevertheless, it was observed that there is a
noticeable decrease in attachment rates when the rear (wake) side of
the bubble is filled with particles, which violates the assumption.

The observed two-step behaviour is more difficult to explain, and it
was not expected from the simple attachment model. It is unlikely that
it is caused by a sudden attachment rate at the front of the bubble.
The duration of the change from the first plateau to the second one
is in the order of 200 to 400 seconds, which excludes a sudden burst
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of turbulence created upstream of the bubble in the settling chamber.
In the latter case, several shorter increases would be much more likely,
although they might not be visible due to the strong scattering of the
data. It is more likely that small gaps open in the monolayer at random
(e.g. near stagnation points), allowing new particles to attach. This is
more and more prevented as the monolayer becomes densely packed.
There is apparently some hysteresis when the rear side of the bubble is
fully covered, as the shear stress prevents the attached particles moving
over the rim. Once the boundary of the monolayer creeps over the rim,
the stresses become lower again such that — at a lower rate — particles
can attach again due to a higher probability for random small gaps. The
whole attachment process finally stops if stresses are high enough that
the monolayer is compressed to a dense packing again, preventing the
creation of openings due to turbulence at the rear side.

Besides these conclusions that can be drawn from the qualitative be-
haviour alone, speculating over the exact cause of the particle attach-
ment is difficult as the experimental results do not shed any light on
this issue. The achievable resolution is limited to approximately 45µm
due to the magnification and the diffraction-limited imaging. Resolv-
ing the thin liquid film is therefore not possible by the imaging system
alone, ignoring all other practical problems that such an attempt would
give. The analysis is therefore limited to “bulk” properties like the cov-
ered surface area, and there is no access to the microscopic processes
involved in the particle attachment in this type of experiment. Having
studied the wakes of a spherical cap (see Ch. 4), however, suggests that
the expected turbulent particle flux (compare Eq. (5.6)) to the bubble
surface is larger by one order of magnitude in the bubble wake com-
pared to the low-turbulence flow approaching the bubble’s front. This
one order of magnitude difference can also be found in the time scales
of the coverage measurements; it can therefore be attributed to the tur-
bulent particle encounter only. Nonetheless, it does not exclude other
contributing effects of turbulence on the attachment itself, in particular
the idea of Reeks et al. (1988) described in Sec. 5.1.3 for the particle
detachment from a surface is intriguing: the thin liquid film separating
particle and bubble is a dynamic system itself with eigenmodes in form
of capillary waves. The amplification of these eigenmodes (and/or the
weakened attenuation for smaller film thicknesses) is essential for the
formation of a dimple that finally leads to the rupture of the film. A
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turbulent flow would provide a spectral energy range that, if there is an
overlap with the eigenspectrum of the thin liquid film, can in principle
greatly reduce the time needed to cause these instabilities.
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6.1 The Wake Experiments and the Wake Model

To measure a contribution to the particle transport by the wakes of
rising bubbles, PIV measurements were done on the wake of a solid
spherical-cap model with the geometry of a typical spherical-cap bub-
ble. Analysing the particle flux (excluding density effects) over the
wake boundary did not give results of sufficient accuracy to support
the existence of this effect. The particle concentration measurement
on the contrary — despite still rather high measurement uncertainties
— provide more evidence and show a clear trend that matches with
the predictions of the derived model, although the scaling factor is not
exactly unity.

The models — in particular the equations for the diffusive flux (Eq. (2.49))
— were derived with the intention to have simple scalar parameters that
can easily be obtained from experiments. Consequently, the whole effect
of turbulence was reduced to the rms of the velocity multiplied with an
a-priori unknown scaling constant. Using the more general expression
for the diffusive flux gives

Φd =

∫

DP |r=Rwake
∇〈nP 〉t dA|r=Rwake

. (6.1)

Better approximations for the local particle diffusion tensor DP can be
obtained from correlations of the particle phase velocity (Reeks, 1992).

Similarly to the diffusive flux, more general expressions for the iner-
tial and the gravitational components can be obtained by integrating
the particle slip velocity in normal direction over the wake boundary.
This would automatically include turbophoresis in the mean transport
term. A more general treatment therefore requires more detailed knowl-
edge about the statistics of the flow, which is available from the PIV
images for the performed experiments, but less so for most industrial
applications. The simple model provides correct scaling relations also
for these cases, but will require correction factors that are dependent
on the conditions of the application (turbulence level in the outer flow,
mean wake size, and mean rise velocity of the bubble).

For discriminating between the spherical and the elliptical wake mod-
els and/or other potentially influencing parameters, more accurate mea-
surements are needed. Due to the different geometry, the elliptical-wake
model showed a marginally better correlation with the experimental
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data than the spherical-wake model, though the difference is statistically
not significant. With the difference in the scaling constants obtained
from the fit, the spherical wake model overpredicts the concentration in-
crease by a factor of about 2 relative to the elliptical wake model, whose
fitted slope is closer to unity. The models are assumed to describe the
concentration increase in the wake of a spherical-cap gas bubbles as
well, although with a potentially different scaling constant due to the
free-slip boundary condition at the surface of the bubble.

A still open problem is the inclusion of the turbophoresis term into
the model. The short analysis in Sec. 2.3.5 shows that the order of
magnitude of the turbophoresis is seemingly small compared to the
contribution of the time-averaged flow, but can be of the same order of
magnitude in high-enstrophy regions as the free shear layers. The total
contribution of turbophoresis is therefore difficult to estimate from the
scaling arguments only. Nevertheless, its contribution is likely weaker
in case of real gas bubbles with a free-slip boundary condition due to
the weaker shear layers.

6.2 The Bubble Experiments

The experiments with the semi-spherical air bubbles can be summarised
as following: After a very fast start, the particle attachment rates de-
crease as the rear side (wake side) of the bubble becomes covered with a
mono layer of particles. After the coverage is completed, the remaining
attachment rates are so low that no further growth of the covered area
van be observed. In fact, the loss of bubble volume due to air dissolving
in the water causes a reduction in surface area that leads to a slowly
increasing coverage which is, in the performed experiments, indistin-
guishable from an increase in coverage due to attachment. What can
be concluded is that the initial attachment rate can be solely related
to the remaining free surface area at the rear of the bubble, and any
other attachment rate is at least two orders of magnitude lower than the
initial one and effectively not measurable in the performed experiments.

This leads to the conclusion that attachment at the bubble’s front is
insignificant compared to attachment at the rear. This is a consequence
of the fact that the front side stays clean for the whole duration of the
experiment, and only the rear side is covered. As soon as the rear side
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is covered with a mono layer of particles, then any further increase in
coverage happens very slowly. This also coincides with the observa-
tions made for the wobbling-ellipsoidal bubbles: their wake is no stable
toroidal vortex ring with strong turbulence in direct proximity to the
bubble, the vortex shedding happens locally and in a chaotic manner.
Consequently, only a slow increase in the particle attachment was ob-
served. Another argument is the good agreement of the model derived
in Sec. 5.1.4 with the experimental data in Sections 5.2.4 and 5.2.5. The
only assumption needed for this model is an attachment rate propor-
tional to the product constant attachment flux and the free, uncovered
surface area in proximity to a turbulent wake.

As there is no reason why the rear side of the bubble is preferred for
an attachment (gravity can be excluded because of the use of almost
neutrally buoyant particles). The reasons for the observed differences
should lie in the type of flow: laminar flow around the front part of
the bubble versus a turbulent flow in its wake. The contribution of
turbulence to the attachment rates can again be twofold:

1. turbulence increases the encounter rate, and

2. it can possibly reduce the film drainage time and thereby increase
the attachment probability.

The increase in encounter rate is supported by the models described in
Eq. (5.6); they suggest a linear scaling with the rms of the turbulent
velocity fluctuations. The second argument is more subtle, and it needs
the “Rock’n’Roll” idea of Reeks et al. (1988) described in Sec. 5.1.3:
for the detachment process, the spectrum of turbulent kinetic energy
attenuates oscillations of attached particles in the near-wall potential
if there is resonance (overlap with the spectrum of the particle oscil-
lations). Similarly, if there is resonance between the spectrum of the
capillary waves of the thin liquid film separating particle and interface,
then turbulence can also enhance the attachment rates by a stronger
amplification of the instabilities of the thin film. For the moment, there
is no possibility to draw a conclusion about this enhancement from the
performed experiment, and the presented reasoning certainly remains
speculative. But as an afterthought it points into a direction that is
very interesting for a future study, experimental and theoretical.
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6.3 Applicability of the Results

The intention of the project that led to this work was to obtain more
insight into the mechanisms that contribute to the particle transport in
flotation. This section provides some examples how the obtained results
can be used to approach problems in the optimisation of the flotation
efficiency in industrial applications.

6.3.1 Make it Turbulent!

The experiments show that turbulence can have a positive and some-
times operative effect on the obtained flotation rates if certain con-
ditions are met. Most obvious is the ∝ urms scaling of the particle
encounter rate in a turbulent flow, see Eq. (5.6). A high turbulence
level in the whole domain would therefore also enhance the attachment
rates for smaller, spherical and in particular wobbling-ellipsoidal bub-
bles. For larger, more quiescent facilities, it would be beneficial to inject
bubbles of the size of a spherical cap, as this type of bubbles provides
clearly higher attachment rates than wobbling-ellipsoidal bubbles, with
the additional benefit of the most effective particle transport in the
wake due to a large wake volume and a stable vortex ring.

6.3.2 Scaling of Wake Entrainment with Bubble Volume

Davies & Taylor (1950) derived the simple relation (as shown by Joseph
(2003), it holds for perfect spherical caps with vanishing viscosity and
surface tension)

U2
∞

gRcurv
= Fr2 =

4

9
(6.2)

for the bubble rise velocity of a spherical-cap bubble as a function of the
radius of curvature Rcurv of the bubble’s front. Eq. (6.2) together with
Eq. (2.59) gives the scaling of the concentration increase with bubble
size

nP,wake

nP,exterior
− 1 ∝ U∞

urms

U∞
Rcurv

∝ 1√
Rcurvf(Re)

. (6.3)

In other word, smaller bubbles tend to have higher concentration dif-
ferences due to the smaller radius of curvature. The scaling of the total
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amount of inclusions removed over the injected amount of gas therefore
becomes

concentration · wake volume

injected volume
∝ V −1/6

f(Re)
, (6.4)

if a constant wake-to-bubble volume ratio is assumed. Excluding the
Re-dependent changes in average turbulence intensity in and size of the

wake, there is a weak negative scaling ∝ V
1/6
bubble in transport efficiency

with increasing bubble volume.

6.3.3 Estimates of Removal Rates

A comparison of the efficiency of the wake-induced transport and the
transport due to particle attachment can be made exemplary for spherical-
cap bubbles, if it is assumed that the results for the attachment rates of
the semi-spherical bubbles are representative also in the case of a freely
rising bubble.

A spherical-cap air bubble with a volume of 2cm3 in water would
have a rise velocity of U∞ = 18.5cm/s, an Eötvös number of Eo = 33,
a Froude number of Fr = 4/9 and a Reynolds number of about Re =
2900. Assuming a typical rim angle of θ0 = 50◦ results in a shape factor
for the spherical wake model (compare Eq. (2.60)) of 1.27. For the
ρP = 0.98g/cm3 PE particles with a diameter of 50µm, the modified
particle response time (see Eq. (2.54)) is τP∗ = 1.1 · 10−5s. With an
assumed turbulence level of urms/U∞ = 0.2, the relative increase in
particle concentration according to the spherical wake model Eq. (2.59)
is only 1.7 · 10−3, therefore the wake only contributes insignificantly to
the overall transport in this case. The situation is different in the case
of an Argon bubble of the same volume rising in liquid steel (rhoF =
6.9·103kg/m3, σ = 1800g/s2 at 1823K, compare Li et al. (2005)) results
approximately in a 3.5% increase in particle concentration inside the
wake for a 50µm Al2O3 particle (ρAl2O3

= 4g/cm3).
In the attachment model Eq. (5.19), the attachment time scale Tatt =

1/jattAP is approximately 50s for the performed experiments. The at-
tachment flux density for the experiments can therefore be estimated as
jatt = 101/smm2. This value was obtained for the semi-spherical bub-
bles with A0 ≈ 10cm/s and a volume load of approximately Φ = 10−4,
the value of the rear area of a 2cm3 spherical-cap bubble is A0 = 4.1cm2.
With a total process time of 10 seconds, such a spherical bubble can
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sweep approximately 4000 particles at a volume load of 10−4, these val-
ues are independent of particle size and density. The wake of the 2cm2

bubble has a volume of approximately 20cm3 (for a spherical wake,
more if an ellipsoidal wake is assumed), and with a concentration of
1500 particles per cm3 (equivalent to a volume load of 10−4 50µm par-
ticles) gives approximately 30000 particles per wake. A 3.5% increase in
particle concentration would therefore result in an effective transport
of ca. 1000 particles per wake, or about one quarter of the particles
removed by direct attachment. It can therefore be concluded that for
long rising time the transport rate due to particle attachment is more
effective than the increase in wake concentration, although the latter
can have a comparable magnitude if the rising times of bubbles are
short. As both the attachment flux jatt and the wake concentration
nwake are linear in the total particle concentration, their ratio does not
change with absolute particle concentration in the flow.

This short calculation shows that both contributions can have an im-
pact on the optimisation of flotation processes and should be considered.
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