Ship motion compensation platform for high payloads dynamic analysis and control MSc Project at GustoMSC – Wouter de Zeeuw Prof.dr. D.J. Rixen, Ir. M. Wondergem

Introduction: Pooltable on cruise ship

Challenge the future 2

Two ship motion compensation platforms:

Offshore windturbine installation with Jack-up units **GustoMSC**

Present method

Goal: Complete windturbine installation from a floating unit Motion stabilizing platform to extend operating limits

1000[t] Fast feeder barges ////

Jack up unit

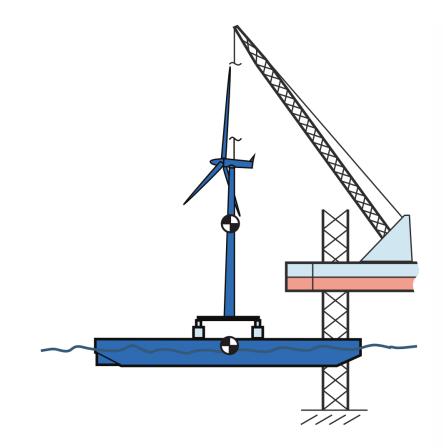
stays at site

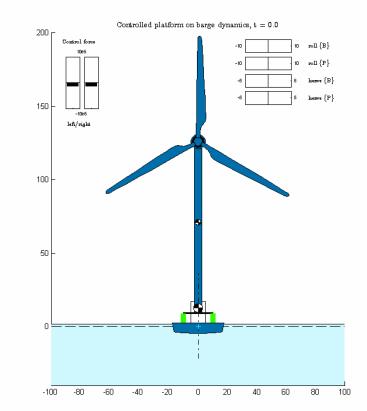
Small overview

Preliminary 2D model

- 1. Analysis of Ampelmann scalemodel tests
- 2. 3D modeling of new mechanism on ship
- 3. Controlling the system

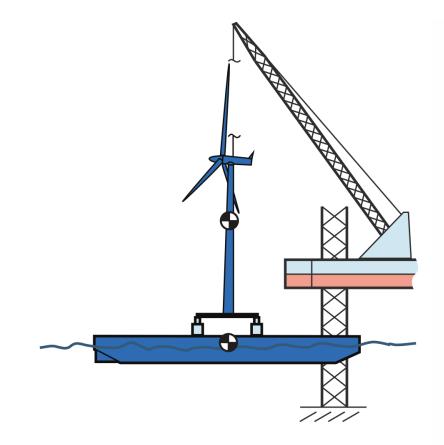
Goal: Complete windturbine installation from a floating unit Preliminary 2D model showed feasibility ...

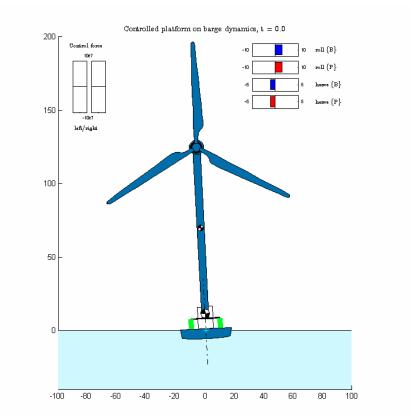




Goal: Complete windturbine installation from a floating unit

Preliminary 2D model showed feasibility but dynamic instability





1. (In-)stability due to the quasistatic control?

 k_P

 \bullet

k_S≨∏

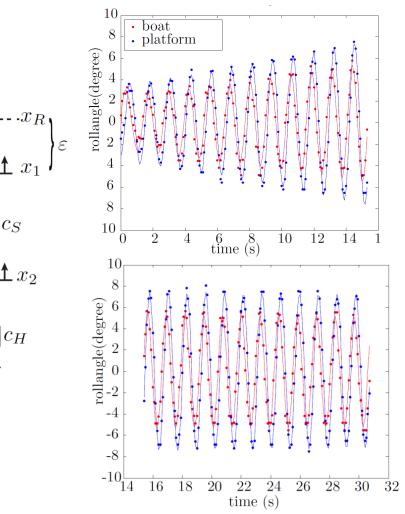
•

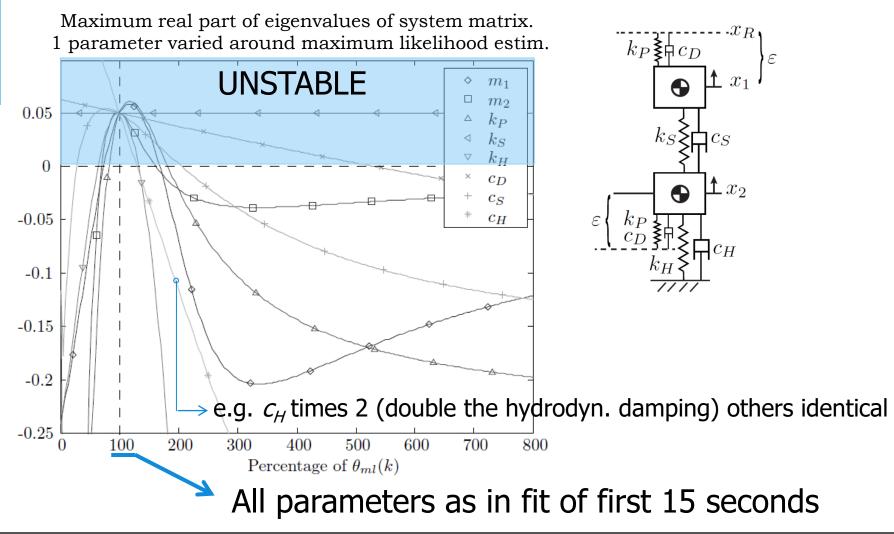
 $\frac{k_P}{c_D}$

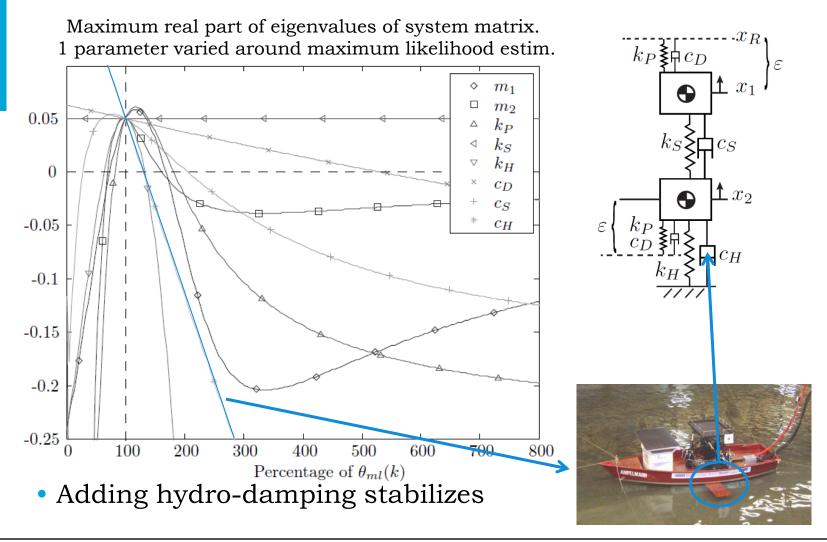
 ε

 c_S

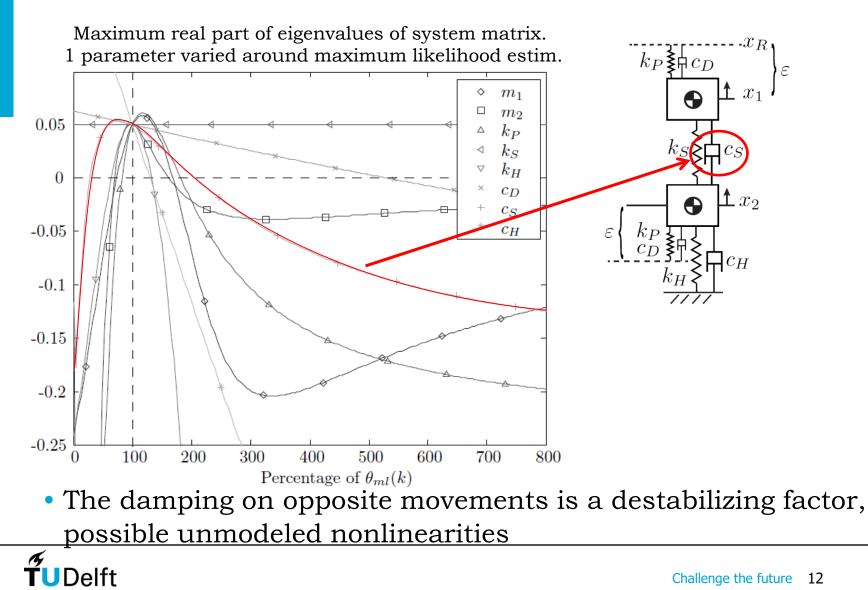
Similar mass system: Ampelmann scale model tests



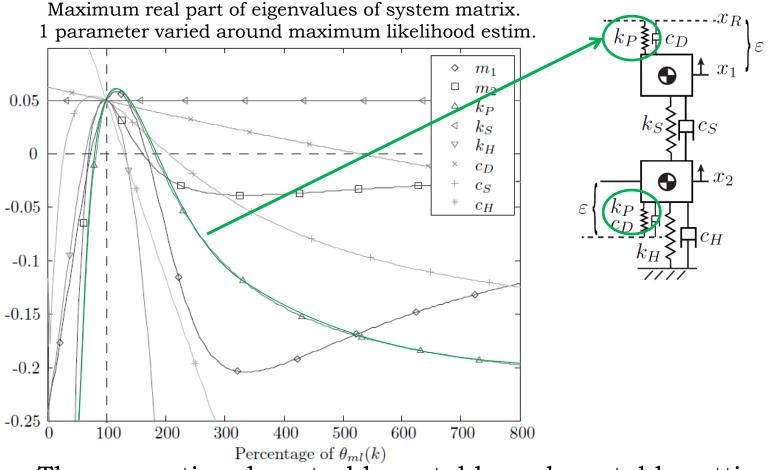




TUDelft



Challenge the future 12

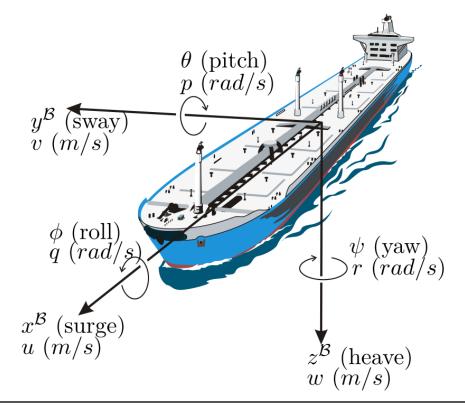


• The proportional control has stable and unstable settings

TUDelft

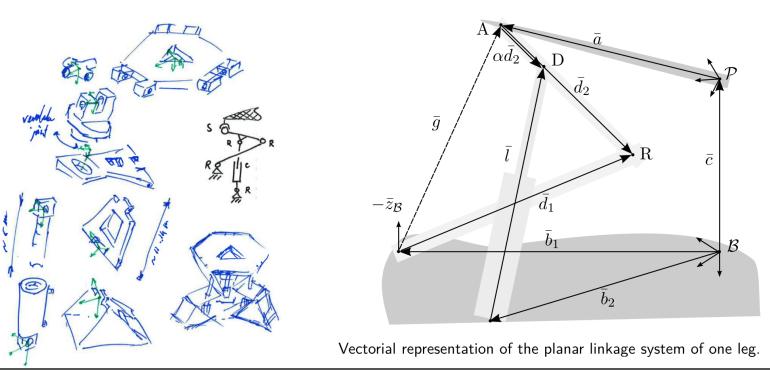
2. 3D modeling - ship movements

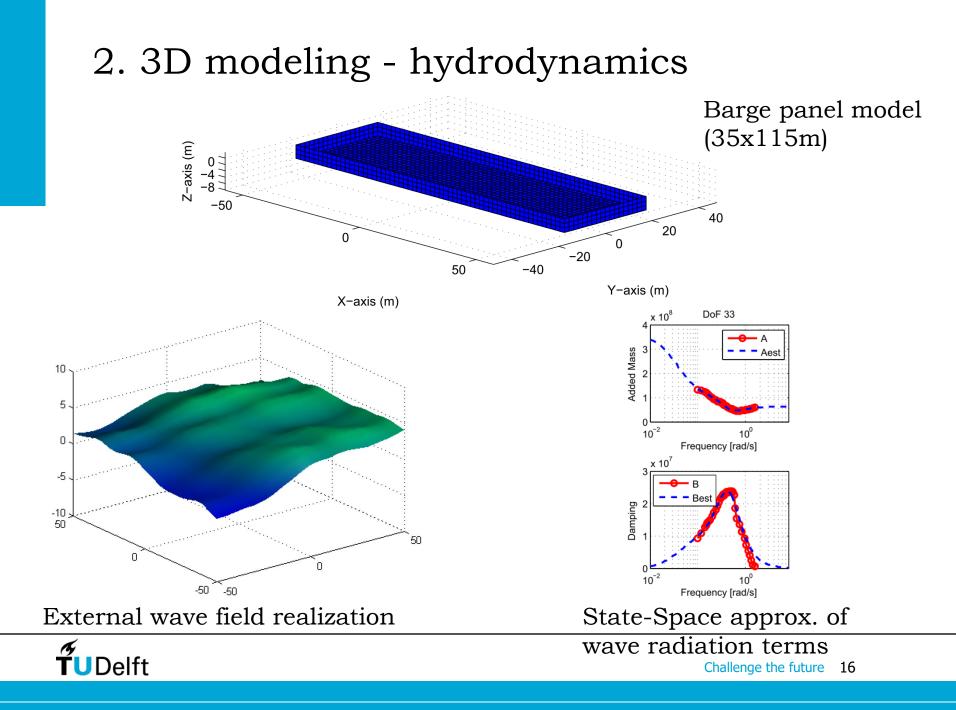
- Accelerations due to planar movements surge, sway and yaw are smaller than due to off planar movements
- Platform should compensate heave, roll and pitch



2. 3D modeling - platform mechanism

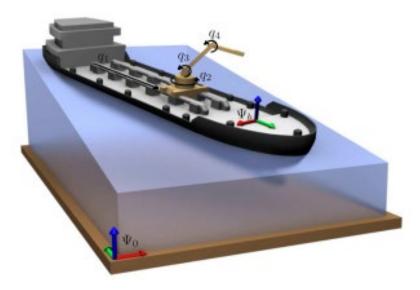
- New mechanism for a 3 degree of freedom platform
- Planar movements are constrained by 3 Sarrus type linkages
- Force vs. Reach variable via α





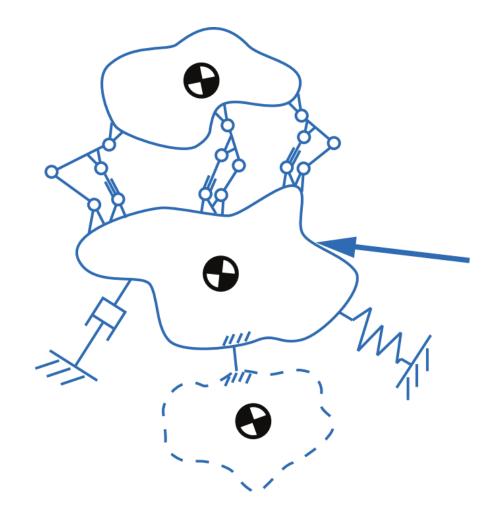
2. 3D modeling - vessel+platform

- Lagrangian dynamics (body fixed)
- Extension of serial robot on ship to parallel robots

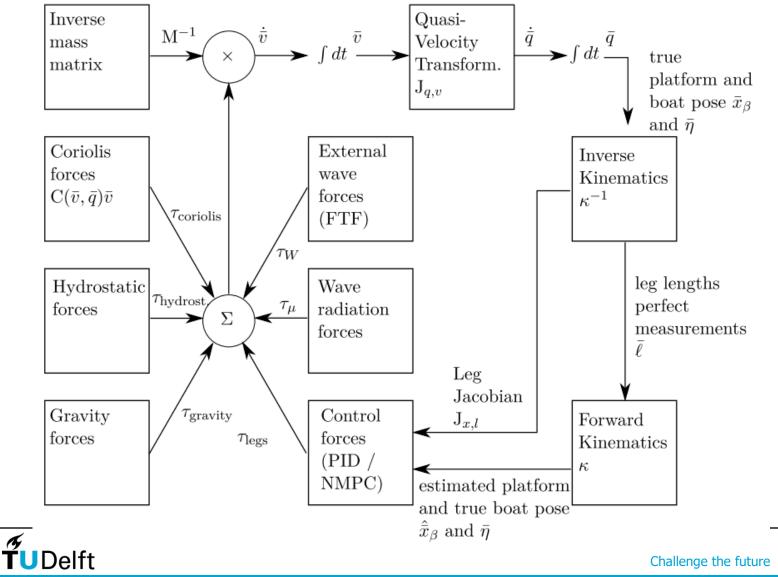


2. 3D modeling - total dynamics

- Nonlinear kinematics
- Coriolis terms
- Pose dep. mass matrix
- External waveloads
- Hydrostatics
- Hydrodynamics
 - Wave radiation
 - Added mass/damping



2. 3D modeling - total dynamics



3. Controllers - Naïve Quasistatic vs. Model Based

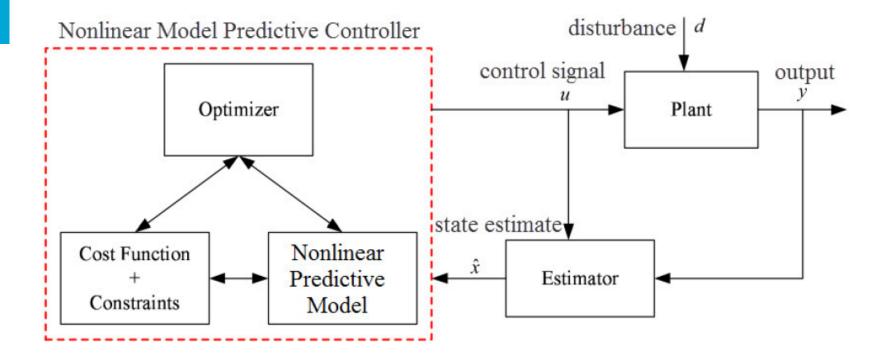
Quasistatic:

- Calculate leg length error assuming fixed boat position
- 2 Proportional-Integral-Derivative (PID) controllers
 - On mean error
 - On asymmetric errors

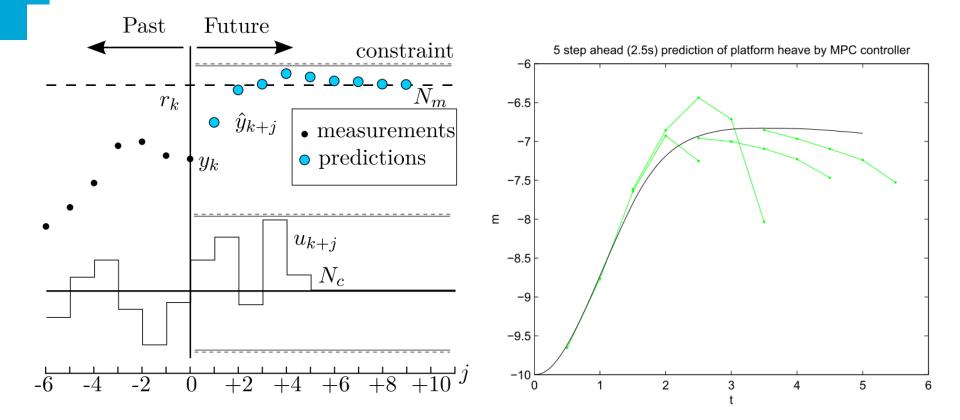
Model Based:

• Nonlinear Model Predictive Control

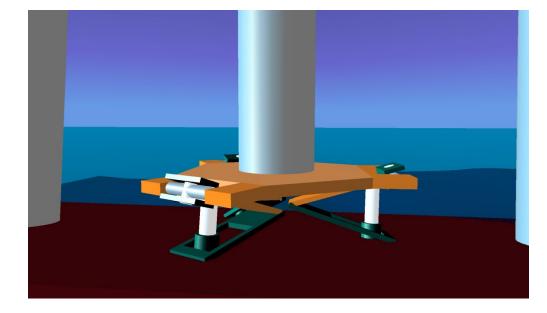
3. Control - Nonlinear Model Predictive Control

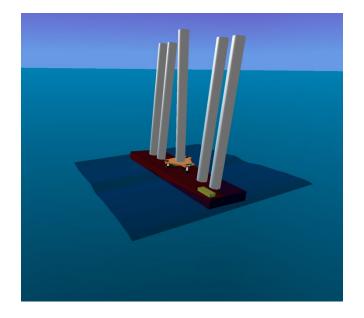


3. Control - Nonlinear Model Predictive Control

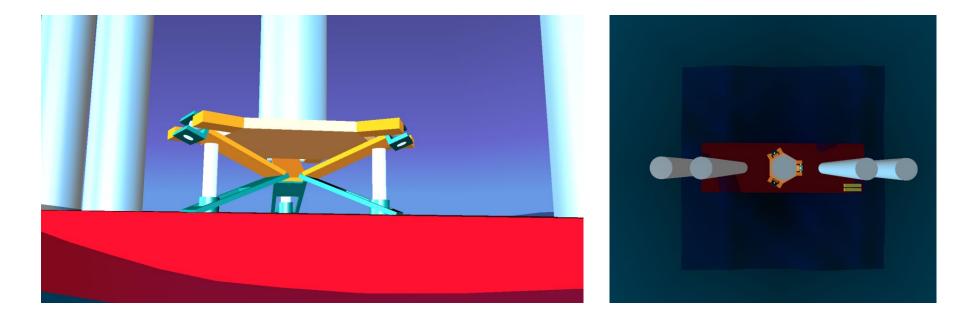


Visualizations

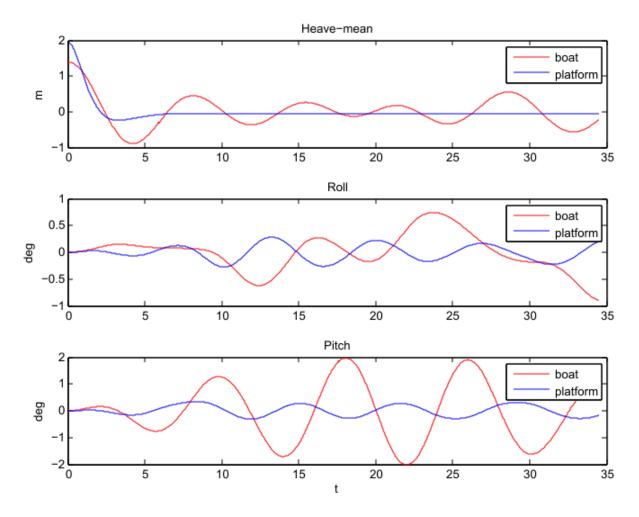




Visualizations



Heave-Roll-Pitch in storm conditions Head sea, seastate Hs=4m T1=6.5s.



Energy usage in disturbance rejection Milder sea

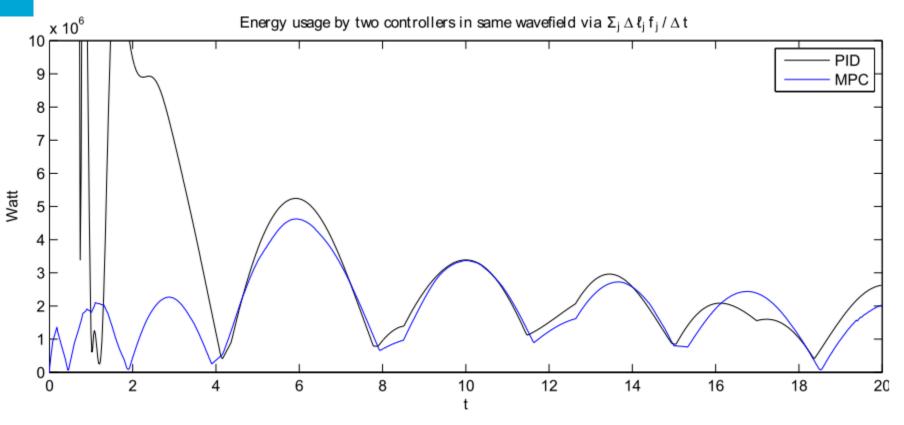
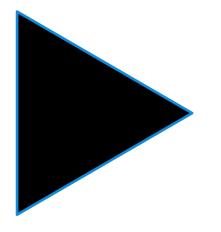


Figure 4-18: Comparison of the power required by the platform.

Conclusions

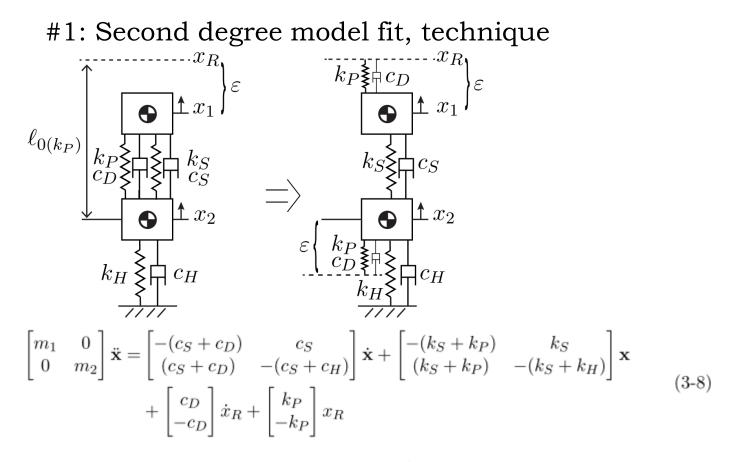
- The scalemodel roll instability can be reproduced by a linear model with quasistatic control and influential parameters can be recognized.
- The coupled ship parallel platform dynamics are derived and he new platform can compensate the ship movements.
- MPC is shown to be a successful candidate for control, requires less power than PID in disturbance rejection and is less hard to tune and to stabilize.



Challenge the future 28

Thank you. Questions?

GustoMSC



Or for with a non changing reference of zero $(x_R = 0)^1$

$$\ddot{\mathbf{x}} = \begin{bmatrix} -\frac{(c_D + c_S)}{m_1} & \frac{c_S}{m_1} \\ \frac{(c_D + c_S)}{m_2} & -\frac{(c_H + c_S)}{m_2} \end{bmatrix} \dot{\mathbf{x}} + \begin{bmatrix} -\frac{(k_P + k_S)}{m_1} & \frac{k_S}{m_1} \\ \frac{(k_P + k_S)}{m_2} & -\frac{(k_H + k_S)}{m_2} \end{bmatrix} \mathbf{x} \qquad SSR = \sum_{1}^{N} (\mathbf{y} - \hat{\mathbf{y}})^T (\mathbf{y} - \hat{\mathbf{y}})$$
Fitting technique:
$$A_s = \begin{bmatrix} C & K \\ I & \underline{0} \end{bmatrix} \quad \hat{\mathbf{y}}(t) = e^{A_s t} \mathbf{x}_0 - \mathbf{x}_0 - \mathbf{x}_0, C, K$$
Challenge the future 30

#1b: Second degree model fit, results

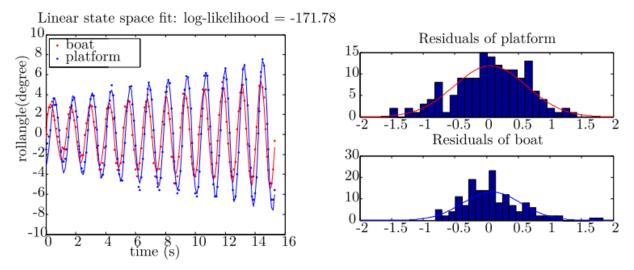


Figure 3-8: Fit for the first 15 seconds using the parametric physical model. $m_1 = 20kg$ and the first half of the dataset is used so t = 0..T/2. The dots are the measured data points and the full line is the estimated model.

$\dot{\phi}_{p0}$	23.25	(4.77)	$\dot{\phi}_{b0}$	-1.64	(-0.76)
ϕ_{p0}	-0.37	(-0.71)	ϕ_{b0}	-3.09	(-10.01)
m_1	20.00	(fixed)	m_2	72.97	(275.16)
k_P	755.63	(54.57)	k_S	0.00	(0.01)
k_H	2068.72	(164.39)	c_D	3.37	(1.40)
c_S	63.00	(43.21)	c_H	35.39	(18.46)
σ	0.74	(16.85)			

Table 3-3: Physical parameterized fit of first 15 seconds with $\log \mathcal{L} = -171.78$.

#2: Kinematics – leg joint velocity Jacobian construction

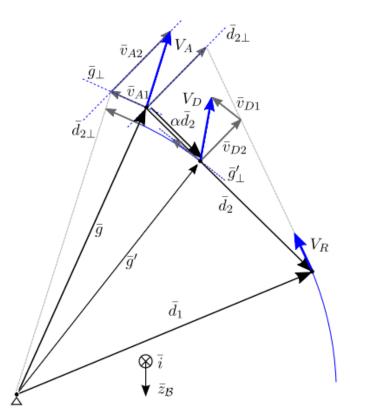


Figure 4-6: Velocity of joints in planar linkage system. The linkage is connected to the platform in A and to the hydraulics in D. The vectors \overline{d}_1 and \overline{d}_2 form the parallel mechanism of the linkage, and the auxiliary vectors \overline{g} and \overline{g}' are used in calculation and represent no parts. The main strategy of the velocity transformation is to decompose velocity vector V_A in two independent directions that represent the two rotations around the revolute joints at the floor and in R.

#3: Hydrodynamics – rad forces

Cummins eqn. in hydrodyn. ref. frame:

$$(\mathbf{M}_{\mathrm{RB}}^{\mathcal{H}} + \mathbf{A}_{\infty})\ddot{\bar{\xi}}^{\mathcal{H}} + \int_{-\infty}^{t} \mathbf{K}(t - t')\dot{\bar{\xi}}^{\mathcal{H}}(t)dt' + \mathbf{G}\bar{\xi}^{\mathcal{H}} = \bar{\tau}^{\mathcal{H}}$$

With the retardation function $\mathbf{K}(t)=\frac{2}{\pi}\int_0^\infty \mathbf{B}(\omega)\cos(\omega t)d\omega.$

Retardation forces (vector):

$$\bar{\mu}^{\mathcal{B}} = \int_{0}^{t} \mathbf{K}(t - t')\bar{\nu}(t)dt'$$
$$= \int_{0}^{t} \left[\frac{2}{\pi} \int_{0}^{\infty} \left(\mathbf{J}^{*T}\mathbf{B}(\omega)\mathbf{J}^{*}\right)\cos\left(\omega(t - t')\right)d\omega\right]\bar{\nu}(t)dt'$$

State space approx. per radiation component (scalar):

$$\dot{\bar{\chi}} = A_{rad}\bar{\chi} + B_{rad}\bar{\nu}$$

 $\mu^{\mathcal{B}} \approx \hat{\mu}^{\mathcal{B}} = C_{rad}\bar{\chi}$

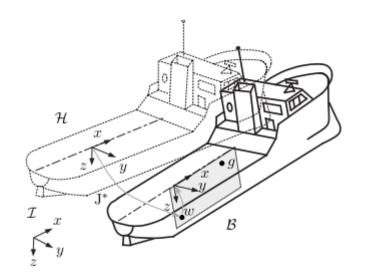
TUDelft

Known values via hydrodynamic code (WAMIT):

$$\bar{\tau}_{rad}^{\mathcal{B}} = \mathbf{A}_{c}^{\mathcal{B}}(j\omega)\bar{\nu}^{\mathcal{B}} = \left[\frac{\mathbf{J}^{*T}\mathbf{B}(j\omega)\mathbf{J}^{*}}{j\omega} + \mathbf{J}^{*T}\mathbf{A}(j\omega)\mathbf{J}^{*}\right]\bar{\nu}^{\mathcal{H}}$$

Approx. model: (Gauss-Newton iter)

$$\hat{\tau}_{rad_{kl}}^{\mathcal{B}}(s) = \left[\mathbf{A}_{\infty_{kl}}s + \frac{\mathbf{P}_{kl}(s)}{\mathbf{Q}_{kl}(s)}\right]\nu_l(s)$$



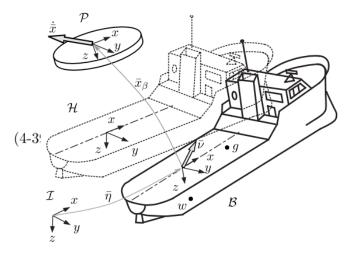
#4a: Dynamics – Pose dep. mass matrix

The kinetic energy of the platform is now found using the platform rigid body inertia matrix $M_{RBp} \in \mathbb{R}^{6\times 6}$ with the reduction matrices H from Eq. (4-34) and the velocity of the platform with respect to the inertial frame expressed in the platform frame $\mathcal{P}(\bar{V}_{0p}^{\mathcal{P}})$ as:

$$\mathcal{K}_{\text{platform}} = \frac{1}{2} (\bar{V}_{0p}^{\mathcal{P}})^T M_{RBp} \bar{V}_{0p}^{\mathcal{P}}$$
(Relative velocity) = $\frac{1}{2} (\bar{V}_{0b}^{\mathcal{P}} + \bar{V}_{bp}^{\mathcal{P}})^T M_{RBp} (\bar{V}_{0b}^{\mathcal{P}} + \bar{V}_{bp}^{\mathcal{P}})$
(ref. frame transf.) = $\frac{1}{2} (\bar{V}_{0b}^{\mathcal{B}} + \bar{V}_{bp}^{\mathcal{B}})^T \text{Ad}_{\mathcal{BP}}^T M_{RBp} \text{Ad}_{\mathcal{BP}} (\bar{V}_{0b}^{\mathcal{B}} + \bar{V}_{bp}^{\mathcal{B}})$
(notation) = $\frac{1}{2} (\bar{\nu} + \text{H}\dot{\bar{x}})^T \text{Ad}_{\mathcal{BP}}^T M_{RBp} \text{Ad}_{\mathcal{BP}} (\bar{\nu} + \text{H}\dot{\bar{x}})$

$$= \frac{1}{2} (\bar{\nu}^T + \dot{\bar{x}}^T \text{H}^T) \text{Ad}_{\mathcal{BP}}^T M_{RBp} \text{Ad}_{\mathcal{BP}} (\bar{\nu} + \text{H}\dot{\bar{x}})$$
(expand) = $\frac{1}{2} \bar{\nu}^T \underbrace{\text{Ad}_{\mathcal{BP}}^T M_{RBp} \text{Ad}_{\mathcal{BP}}}_{M_{vv}} \bar{\nu} + \bar{\nu}^T \underbrace{\text{Ad}_{\mathcal{BP}}^T M_{RBp} \text{Ad}_{\mathcal{BP}} \text{H}}_{M_{vc}} \dot{\bar{x}}$

$$+ \frac{1}{2} \dot{\bar{x}}^T \underbrace{\text{H}^T \text{Ad}_{\mathcal{BP}}^T M_{RBp} \text{Ad}_{\mathcal{BP}} \text{H}}_{M_{cc}} \dot{\bar{x}}$$



Where we've recognised the velocity of the ship expressed in the ship frame (only heave, roll and pitch) as $\bar{V}_{0b}^{\mathcal{B}} = \mathbf{H}^T \bar{\nu}$ and the velocity of the platform relative to the ship expressed in \mathcal{B} as $\bar{V}_{bp}^{\mathcal{B}} = \dot{\bar{x}}$. Now the total mass matrix for the platform dynamics becomes:

$$\mathbf{M}_{p} = \begin{bmatrix} \mathbf{M}_{cc} & \mathbf{M}_{vc} \\ \mathbf{M}_{vc}^{T} & \mathbf{M}_{vv} \end{bmatrix} = \begin{bmatrix} \mathbf{H}^{T} \\ \mathbf{I}_{6\times 6} \end{bmatrix} \mathbf{M}_{vv} \begin{bmatrix} \mathbf{H} & \mathbf{I}_{6\times 6} \end{bmatrix} \in \mathbb{R}^{9\times 9}$$
(4-40)

And the kinetic energy and massmatrix for the ship are found by the rigid body mass plus the infinite period added mass in the body frame (Eq. (4-32)):

$$\begin{aligned} \mathcal{K}_{\rm ship} &= \frac{1}{2} \bar{V}_{0b}^{\mathcal{B}^T} \mathbf{M}_s \bar{V}_{0b}^{\mathcal{B}} \\ &= \frac{1}{2} \bar{\nu}^T \mathbf{M}_s \bar{\nu} \end{aligned}$$

The total mass matrix is now (4-41) (platform) pose dependent

Ιυρειττ

#4b: Dynamics - Lagrange

Now using the velocity transform coupling the position variables to the quasi-velocities defined as:

(body fixed general velocities) $\bar{v} = S(\bar{q})\dot{\bar{q}}$ (euler angle rates) (4-44) Gives the Lagrangian \tilde{L} expressed in the derivative of the position variables (\bar{q}):

$$\tilde{L}(\bar{q},\bar{v}) = \frac{1}{2}\dot{\bar{q}}^{T}S^{T}(\bar{q})M(\bar{q})S(\bar{q})\dot{\bar{q}} - \mathcal{U}(\bar{q})$$

$$\frac{\partial\tilde{L}}{\partial\bar{v}} = S^{T}(\bar{q})\frac{\partial L}{\partial\bar{v}}$$

$$\frac{d}{dt}\left(\frac{\partial\tilde{L}}{\partial\bar{v}}\right) = \dot{S}(\bar{q})\frac{\partial L}{\partial\bar{v}} + S^{T}(\bar{q})\frac{d}{dt}\left(\frac{\partial L}{\partial\bar{v}}\right)$$

$$\frac{\partial\tilde{L}}{\partial\bar{q}} = \frac{\partial L}{\partial\bar{q}} + \frac{\partial^{T}(S(\bar{q})\dot{\bar{q}})}{\partial\bar{q}}\frac{\partial L}{\partial\bar{v}}$$
(4-45)

Now Lagrange's equations are found as:

$$\frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial \bar{v}} \right) - \frac{\partial \tilde{L}}{\partial \bar{q}} = S^{T} \tau$$
(4-46)
$$\mathbf{M}(\bar{q})\dot{\bar{v}} + \underbrace{\dot{\mathbf{M}}(\bar{q})\bar{v} - S^{-T}(\bar{q})\frac{1}{2}\frac{\partial^{T}\mathbf{M}(\bar{q})\bar{v}}{\partial \bar{q}}}_{\text{Multibody Coriolis terms}} + \underbrace{S^{-T}(\bar{q})\left(\dot{\mathbf{S}}^{T}(\bar{q}) - \frac{\partial^{T}(\mathbf{S}(\bar{q})\dot{\bar{q}})}{\partial \bar{q}} \right) \mathbf{M}(\bar{q})\bar{v}} + S^{-T}(\bar{q})\frac{\partial \mathcal{U}(\bar{q})}{\partial \bar{q}} = \tau$$
(4-47)

Coriolis terms identical to single body case

