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SUMMARY

“

The inviscid incompressible flow round a thin nacelle
from which a jet is issuing is considereds It is shown that
the inhomogeneous motion can be transformed into an equivalent
homogeneous motion which may be represented by two semi~-infinite
distributions of vortices in the two~dimensional case and by a
semi~infinite distribution of circular vortex rings in the axi-
symmetric case, By assuming constant vorticity in the wake and
constant or linearly increasing vorticity to represent the duct,
the duct shape and the pressure distribution over its outer

'} surf'ace are calculated for given ratios of jet speed to free
stream speed, Assuming a slender duct the vorticity represent-
ing it is expressed,to a first arproximation, as a function of
the duct width or diameter and the volume flow through the duct,
Methods of extending the treatment to a thick-walled duct with
a wake of finite thickness and for including the viscous effects
are suggested,
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chord length of duct

half width of assumed duct shape

complete elliptic integral of the second kind

complete elliptic integral of the first kind

the modulus of the élliptic integrals

pressure

pressxire in undisturbed stream

volume flow through duct

radial distance

radius of circular vortex ring

undisturbed free stream velocity

longitudinal components of the perturbation velocity
on the outside and inside surfaces of the duct
respectively

normal component of the perturbation velocity on duct
surface
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strength per unit length of the vortex distribution in
two dimensions

strength per unit length of wake vorticity distribution
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@ vector potential for a system of circular vortex rings
.i‘( strength per unit length of vortex ring distribution
P density

1s Introduction

In the past most work on jet flow has been coniined
to the free jet and to the problem of the flow in the mixing
region downstream of the jet exit, Attention has been focussed
upon the velocity, and in some cases the density and temperature
distributions in the mixing region.

Little has been written, however, on the effect of the
jet upon the flow around the body from which it issues, and in
particular the effect upon the flow at the rear end of the body.
This paper contains an attempt to set up potential flow models
for both two-dimensional and axi-symme tric ducts from which jets
are issuing, Some consideration is also given to the staggered
two-dimensional duct and the two-dimensional duct at incidence,
Further, the approximations of slender body theory are used to
obtain expressions for the vorticity distributions representing
the ducts,

The detailed mathematical analysis is given in
seperate appendices to this paper, only methods and results
being discussed in the main body. Reference to equations in
appendices is made by quoting the letter denoting the appendix
and the cquation number e.g, (L.32)s A number in the position
of an index in the text denotes a reference included in the list
on page 19, in asterisk = signifies a footnote,

The author wishes to express his sincere gratitude to

Mre Gelle ILilley and IMr, TeReF. Nonweiler for their guidance and
constructive criticism throughouts.
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2¢ A potential flow model representing the flow about a

nacelle from which a jet is issuinge The general
problem,

_ In this problem we can recognise two distinct fields
of flow, the gases in each being incampressible and inviscida
There is the flow through the duct in which the total head of ¢
the flow is changed by some external action (e.ge a jet engine)

and the flow exterior to the duct. Downstream of the duct
these two flows are separated by a wake across which the
pressure must be contimuous, Although the effect of the
thickness of the duct is discussed later, the main arguments
are developed for a thin duct for which the wake is thin and
can be regarded as a dividing or wake streamline, or in the
axi-symmetric case a stream surface, Since, in general, the
fluid velocity is different on either side of this wake,
there will be, lying on this streamline or surface, a distrib-
ution of vorticity of strength per unit length equal to the
difference between the velocities, (fige 1)

Kchemann and Weber ' have published a series of
monographs dealing with duct flow, and mention this problem
amongst others concerning ducts ahd cowlings for propulsive
unitse They give in detail the solution of the problem of
an axi-symnetric duct without wake, i.e. a duct from which
there is no jet velocitya Since the total heads of jet and
stream are different we are considering an inhomogeneous
flow problem which cannot be treated by normal potential flow
methods without modificatione.

2+1e The equivalent homogeneous flow

The complete flow can be rendered homogeneous by a
considering the total heads put equal without changfing the $
velocity in either the jet or the surrounding stream, In
consequence there will be a constant pressure difference .
between the jet and the stream, and we must therefore assume
that the wake streamline or stream surface is replaced by an
infinitesimally thin surface separating the jet and stream,
and which can support the supposed pressure difference (fige. 2)e

The validity of this argument can be appreciated by
considering the equation of steady motion for an incampress=
ible inviscid fluid, which can be written

qe grad q-= -% grad p o.oc.-.'oooo(1)

for zero body force, This equation contains only the
pressure gradient and hence a constant change of pressure
as advocated asbove will not affect the velocity field,
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This equivalent flow can now be treated by the usual methods,
Subsequently the conditions in the original flow can be found
by cancelling the pressure change across the wake,

202« The distribution of vorticity

Since, in the equivalent flow, the total heads are
the same on both sides of the dividing surface, the pressure
difference across this thin surface is (A.1)

ODp = tp (Vs = V5)

where V1 is the speed on the outside, and V2 the speed on

the inside, of the dividing surface.

Now this dividing surface is a streamline so that the direction
of flow on both sides of it are parallel to it, This enables
ns to represent the surface as a distribution of vorticity
equal in strength per unit length to the difference in velocitys.
Thus the vorticity representing the dividing surface has
strength per unit length

- v -v = 20p
YW = V2 V1 = V1+V ooooooo.oooo(z)

2

The duct itself is idealised to a thin surface so
that in two dimensions it is represented, as for two thin
aerofoils, by two distributions of vortic®s, or in the axi=-
symmetric case, by a distribution of circular vortex rings.

The problem of the establishment of a potential model
for the jet flow now resolves itself into that of determining
the strength and position of the vortex distribution represent-
ing the wake, and also of determining the vorticity distribu-
tion which represents the ducte.

3+ The two-dimensional duct

The two-dimensional duct is considered both at zero
incidence and at a small incidence, The mathematical deriva-
tion of results quoted in this section are given in Appendix A
and Appendix B for the zero incidence case and the case of the
duct at small incidence respectivelye.

3e1ls The symmetrical duct at zero incidence

The two-dimehsional duct is taken as being formed
by two similar thin aerofoils of chord length c, given by
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y=iy1(x) ’ ""2’5\:1(:‘5

placed symmetrically about the x-axis in a uniform stream of
speed U parallel to the x-axis, Following thin aerofoil
theory, we replace the two thin aerofoils by distributions
of vortices, which must be continuous both in magnitude and
position with the vortex distribution representing the wake
so that the Joukowski condition of no flow round the duct
trailing edges is satisfied. From the symmetry of the con-
figuration it is clear that, if the Vorticiti representing

the upper thin aerofoil at x =x, 1is «{(x,l s then that

representing the lower is -Y(x1).

3elele The perturbation velocity

It is shown that these distributions of vorticity
lead to a perturbation velocity at any point (x,y) which has
longitudinal and normal components given by (A.L4,5) as

10

I Iy
(%) = = 3= ( )J - - : dx
RSHE N ISR [y Cvewy e e L
ooocooooo.:o(B)
and N oo

<,)=1-J e R B
S _C/ZY o z(x-x1)2+(:>f--y1)2 (x=x, )2+ (743,)° J{

1

'ococccccooo(h)
The normal component is contimuous through y =y 1 whereas the
longitudinal component is not.
If the equation for the position of the wake streamline
were known, i,e. if we knew the relation between and X,

over the wake, then by using the boundary condition that the
duct walls are streamline

Vv
%% - U o ..000-000000(5)

equations 3 and 4 give a singular integral equation for the
vorticity distribution y(x,)s The integral equation will

be singular since at the point considered on the duct or wake

surface y = vy and X = Xye In section 8 of Appendix A
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this problem is considered in slightly more detail, and it

is shown that even when the problem is simplified by assuming
that u is very small compared with U, the vorticity in
the wake is assumed constant, and that the vorticity distribu-
tions representing the duct and wake lie along the lines

¥ = + d, the integral equation becomes (4030)

/2 hdZ "1 dx
V(x,d) = Y(x1) (x_x1)2+m2

Vmc/2

The equation is an extension of the equation

.
g(p) = %; \3 %—"‘nﬁ an
U -

1
X=X

eooo-aeoo-oo(6)

1

which Sc:l’):r'Bde:c'2 and Sﬁ‘nngen3 have shovm to have the solution

b s
__2 [im l Atp dp
£m) = -2 /1m | W /IS0 s
1) 1

As yet (6) has not been solved, but it is believed that a
solution may be possible following the method of Schr¥der
and SBhngen.

Assuming a slender duct, i.ee. the duct chord large
compared with its width, with leading edges at x = O, the
longitudinal component of the perturbation velocity can be
written

i)  just outside the duct and wake (A435)

A0
r P ‘ vz, Jy (=, )

(7)

and
ii) Just inside the wake (Ae36)

uy(x) = ug + v(x) [ - % (%xz)i sesussbessell)

\
where : denotes the Cauchy finite principal part of the
singular integral,
The normal component can then be calculated from

v:(U+u)g‘}{.
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Purthermore, the vorticity distribution representing a slender
duct cen be found (section 3.1.4).

3e1.2s The perturbation velocity in special cases

To proceed further it is necessary to assume forms
for the vorticity distributions representing the duct and wake
streamlines, and to assume that the duct and wake have a chosen
shape, Ordinary thin aerofoil theory applies only to aerofoils
with small cember, and hence it is reasonsble to suppose that
the argument developed here will apply only to a duct whose
walls have small curvature and a wake which is approximately
straight, Thus the chosen vortex distributions are assumed
to lie on the parallel lines y,(x) = +d, where d is &
constant,

In Appendix A, section 4, the vortex distributions
considered are

i) a constant vorticity, of strength y = /[{per unit
length, along the duct and its wake.

ii) a linearly increasing strength of vortieity along
the duct, and constant strength in the wake, i.c.

24 c c c
7(x) = —=(x+3) 3 -3<x£3

2
4 . c
Yw(x) = A s X237
and
111) a simusoidal veriation of vorticity over the duct

and constant vorticity in the weke, i.e.

y(x) =Ksin[12"; (x+%)] : ‘%SXS%
v (x) = K ; =Z3

The assumption of constant vorticity in the wake does place a

slight restriction on the solution since it implies, from (2)

that V, = V, is constant, Now Lp = #p(V3 ~ V%) is

(to a first order) constant, and hence V, + V,l is constant.

Therefore, in the wake, we are assuming that V1 and V, are

constants which is strictly only true if the wake streamlines
are straight and parallel to the x~axis. While this is not
exactly the case figs. 3 and 5 show that it is very nearly so.
If however the accuracy required demand it the variation in
V1 and V2 due to the curving of the wake streamline can be

1
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calculated by considering the balance between the centrifugal
force and the pressure on the boundery streamline, A new
vorticity distribution can then be found to replace the constant
distribution assumed at first and the modified shape of the

wake calculated. This iterative process can be repeated to
any degree of accuracy.

The perturbation velocity components given by a
constant overall vorticity distribution are,. from (A, 8,9) s On
the outside of the upper surface of the duct and wake

JL " S , o
uo(x,d) = Ziﬂ{ &ng/z)? -5 <‘ § = 0 for x<&~
' 1 for x2~-
0.0-00..000.(9)

on the inside of the upper surface

. \ ~
u, (X,d.) = 2'1 {'7"‘ + ta.n- {\X‘PCL/ {( 2f{ 0000000(10)
(_ . :

and

-

|
v(x,d) = f\ ~ log, {1 + (
\x+%

2d\) e aevane atiit)

The normal component v(x) is contlnuous across the duct and
wake, and infinite at the leading edge - a parallel with thin
aerofoil theory, It also tends to zero far upstream and far
dovmstream, It is seen that at x = + ", where

-1 X + c/2

woad 2’

u=0§u.=:'{
(% = 2

Now, at infiinity, K= V2 - V1 and hence the velocity on the
jet side of the wake streamline is U + K = v, 4 (V2 - V1) =V
and V1 on the freestream side. Also, far upstream at

X==02, 0 =0 and hence,

2

YW= T = )
o] a

as required, Thus the conditions of the problem are satisfied
by the solution found,

Similar expressions for the other two assumed

[N Te) mla




vorticity distributions are considerably more complicated
and are given in Appendix A, section 4.2 and 4.3,

3e1e3e The shape of the duct and wake

When the components of the perturbation velocity
have been found to a first approximation it is then possible
to find approximately the shape corresponding to the assumed
vortex distribution by using the condition that the surface
of the duct and wake must be a streamline, i.e,

dy _ _¥v_
dx =~ U+u

to give the slope of the profile at any value of x. The
shape is then found by integration.

These calculations have been performed in the case
of the constant vorticity distribution and for the linearly
increasing distribution, The corresponding duct shapes are
shown in figs, 3 and 5 respectively,

To obtain the second approximation shown in these
figures the assumed vorticity distribution wes taken to lie on
the shape calculated before, The components of the
perturbation velocity are then found numerically and the duct
shape is re-calculated from them, This process can be
repeated until the difference batween two successive shapes
is negligible, giving the correct duct shape for the assumed
vorticity distribution.

3s1elte The vortex distribution for a given shape

In fig. 3 the duct shapes given by a constant

vorticity distribution for both V,/V, = 1.2 and v2/v1 = 4,3

are shown, It is seen immediately that the duct shape is
different in the two cases, and thus we can infer that a
given duct shape is represented by different vorticity
distributions for different speeds, but it is only by a
process of trial and error that a suitable vortex distribution
can be found without recourse to numerical solutions of
equations of the form of (6), Birnbaum™* has shown that, for
the finite duct with no wake (i.e. straight through flows three
basic vorticity distributions can be used which give the

shapes of a flat plate, a parabolic arc, and an S-shaped
profile, In each case the vorticity at the trailing edge

is zero since there is no weke,

It is thought that the three vortex distributions
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given in section 3,1.2 above give a good basis for calculating
the shapes of ducts from which a jet is issuing., It must be
. remembered, however, that whatever combination of basic
distributions is used, the vorticity at infinity downstream
must be that given by (2) where V, tekes the free stream
value and V2 is the jet speed at infinity.

If the duct is assumed slender then an expression
for the vorticity, representing the duct and wake, can be
found explicitly. It is chown (A441) that, if Q, is the

volume flow of fluid through unit span of the duct, anrd U is
the free stream velocity, then the vorticity at y(x) on the
duct surface is

Q
v(x) = —;‘é—) - U + o(%) cessssscnsse(12)

where c¢ is the length of the duct in the streamwise direction
and y/c is small,

As an example an arbitrary duct shape with wake was
chosen (fige 15) and the jet and free stream speeds taken such
that V,/V, = 1,25, Using the vorticity distribution given by

(12) the duct shape corresponding to this distribution was
calculated from equations 3, 4 and 5 and the result compared
with the assumed shape (fige 15)s The agreement between
assumed and calculated shape is close except near the leading
edge when, due to the nature of equation 4, a singularity is
to be expected.

3s1eb5e The pressure distribution

The pressure distribution over the outside surface
of the duct cen be immediately calculated from the perturbation
velocity., Having found u and v as, for example, in (9)
and (11), the difference in pressure between a point on the
duct surface and in the undisturbed stream can be expressed as

-
2 2 2
%p = p =D, = £pU° = p _SU+u) +v_j
. R
-QLZ . J— u2 + 2ul + ‘sz] 000000-00000(13)
ZpU i

The pressure distributions for the ducts represented by the
constant vorticity distribution and the linearly increasing
vorticity distribution are given in Figs, 4 and 6, In both
cases the pressure distributions corresponding to the first
and second approximations to the duct shape are shown.
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3e2¢ The staggered duct

If the x=coordinates of the leading edges of the
upper and lower thin aerofoils are different, but those of the
trailing edges are the same, we have a staggered duct of a
form often met in practice, This case is considered in
Appendix A, section 7, where it is pointed out that there is
no longer symmetry sbout the x-axis, and hence it is unlikely
that the same vorticity distribution can be used in this case,
even when the different limits of integration are taken.

The perturbation velocity can be calculated as before and from
it the shape and pressure distribution can be found, as for
the symmetrical duct,

3e3e The two-dimensional duct at incidence (Appendix B)

Although the duct is supposed symmetrical about the
x-axis (fige 7) the complete flow is not symmetrical about a
line drawn parallel to the undisturbed stream, Thus it is
unlikely that the duct shape, obtained by methods outlined in
section 3.1, will be exactly symmetrical since the cross flow
would be neglected, However, provided the incidence is small,
such a solution will give some information about the flow
round a duct with jet at incidence,

When a physically likely shape (B,7) is assumed for
the shape of the wake, the integrals for the perturbation
velocity are formidable, If, “wowever, for small incidences
the wake streamlines are assumed to leave the duct parallel
to the free stream (fige. 8) the perturbation velocity can be
calculated as in Appendix B, section 3.3, and the shape and
pressure distribution can be found as before,

The equations for the components of the perturbation
velocity both show logarithmic singularities at the trailing
edge of the duct, These are due to the sudden change in flow
direction, which is assumed at the trailing edge.

44 The thin axi-symmetric duct

The thin axi-symmetric duct at zero incidence is
represented by a distribution of circular vortex rings thex
centres of whichlie on the z-axis, (the axis of symmetry)

It is shown in Appendix C that the magnitude of
the vector potential at a point P (z,r,g') due to the

x fige 9
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distribution of vortex rings representing the duct is

A

where R(z') is the radius of the vortex ring et % =:3!
and F and E are elliptic integrals of the first and second
kind respectively of modulus

k= hr R(z')
(z-z’)2+i£+R(z')j -

It is further shown that the perturbation velocity at P has
camponents

, 1 ; - | R? (z ')-rz-(z-z 1) ¢ :I dz !
u(z,r) = 5= | K(z") |F - —= E —
L 4 : (z=5")%+[R(z")-x | [(z=2")%+ (R(z')4r) E
a oo-ocooooooo(11+)
an 1054 .
v(z;r) = = a_ K(z') (z=z") | 2 __2r R(z'")E ‘ dz! .
27‘,.40 & L (z-z')2+@(z')—r12 | §~(z-z')2+(R(z)+r)}§

..00000000.‘(15)
From these the duct shape given in fig. 11 has been calculated.

If a slender duct is assumed thén it is shown that the
strength per unit length of the vorticity distribution is

K(Z) = Y(Z) = -S—%;) -U+0 (E‘) qeoo-ocooooo(16)

As for the two-dimensional duct, which is not assumed
to be thin, the further solution of the problem of the non-
slender axi-symmetric duct proceeds by assuming that a chosen
vorticity distribution lies on a circular cylinder of constant
radius, The perturbation velocity is determired along the
duct surface, and the first approximation to the 8uct shape then
calculated from the boundary condition of no flow across the
surface, i.€,

More accurate approximations cen then be found as in 3.1e¢3e
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Fig., 11 shows a duct shape calculated for the case
V2/V 4 = 0e3 vhich corresponds to a ducted radiators Constant

vorticity has been assumed on the duct and in the wake, This ‘
solution is compared with an intake duct calculated by

Kuchemarm and Weber- and shown to be in close agreement, The

corresponding pressure distribution is shown in fig. 12.

Returning to jet flow where V > 1 the duct shape and

pressure distribution over the duct induced by the jet are

given in figse, 13 and 14 for the cases of constant vorticity .

and V,/V, = 1,5 and 1.2,

5e¢ The extension to a duct with walls of finite thickness

Previously the ducts considered have been formed
either by two thin aerofoils or by a thin cylinder, and no
consideration has been given to the thickness of the walls.
Thick profiles can be represented by a distribution of
sources and sinks superimposed upon the vortex distribution
found previously, The calculation of the appropriate system
of sources and sinks is complicatéd, not only by the fact that
their strength and location are not known on the duct, but
also by the need to have a source distribution to rcpresent
the thickness of the wake,

Kuchemann6 has suggested that the effect of thickness
is of minor importance compared with the camber line of the
profile (i.e. the shape of the corresponding thin profile), and
that the thickness is only important when determining the rate
of flow through the duct. A correction to the velocity inside
the duct is given as

I3 2

<
'
<
I
QFFU
N
1
e :-:./
F e

Ry

where Va and Vﬁ are the speed on the immer surface of the

thick duct (radius Ra) and thin duct (radius Rﬁ) respect= .
ively, By inference we can use this to determine the speed

inside a weke of finite thickness,

A general theory for a two-dimensional finite duct,
taking account of thickness, has been given by Wittich/, He
considers a disturbence velocity potential Z(x,y) which must
satisfy Laplace's equation

V2 2(x,y) = O
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and the boundary condition

9z _ 9%
on Uan

over both aerofoils, He then deduces the appropriate source
distribution o(s) in the form of a singular integral
equation, the integral being taken round two closed curves,
The restriction that the curves must be closed and finite
prevents the method being used without considerable modifica-
tion for a duct with weke,

Another method of including the thickness of the
duct walls in two dimensions is to represent them, as for
aerofoils, by the region of fluid at rest enclosed by a
system of vortices arranged on the boundary of the duct and
its wake, The determination of the actual distribution of
vorticity representing the duct and weke is extremely
difficult as again the integral equations are not solvable
except by mumerical methods, In a similar way, the thickness
of an axi-symmetric duct can be considered by taking a dis-
tribution of vortex rings on the inside and outside surfaces
of the duct.

In an attempt to correct the over-large values of
1ift on aerofoils found by the classical Joukowski circulation
theory, Witosynski and ThCI;IpSOIlB have evolved a discontimuous
potentiale They recognise a wake behind the aerofoil bounded
by the streamline !/= O which is split at the trailing edge
into two branches, In transforming the aerofil to a circle
the wake region is excluded from the transformation, The
corresponding complex potential is single-valued, and defines
the flow campletely, except in the wake region, A development
of this theory may perhaps assist in the solution of the problem
of a duct with wake from which a jet is issuing,

- 6e The effect of the flow in the mixing region

The discussiors in the previous parts of this
section have dealt with only inviscid fluids, In practice
viscous mixing processes in the wake will affect the flow over
the ducts Much has been written on the mixing in the wake,
but the effect of the mixing on the viscous flow sbout the
duct has not yet been investigated.

It is clear, however, that the viscous jet will
entrain some of the fluid fram the surrounding stream, and
thereby increase the normal component of the perturbation
velocity near the duct trailing edgee This will cause the
now finite width wake, or mixing region, to curve further

g ... ]
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inwards, This increase in velocity also causes a reduction
in pressure at the rear of the duct, and therefore the duct
will experience a drag due to the presence of the mixing
region, Further, the reduction in pressure will tend to
prevent separation of flow over the rear of the nacelle and
to restrain the formation of a turbulent boundary layer over
the nacelle, '

Viscous forces in the mixing region will also cause
the jet to be slowed up and thus the assumption of constant
vorticity in the wake, which was made earlier, is not
realisable in practice,

To cover the effects of viscosity it is necessary to
extend the treatment given earlier in this section to consider
a distribution of sinks in the wake, and also to include the
effect of the boundary layer attached to the duct walls. The
actual flow outside the jet can be regarded as very nearly
equivalent to that produced by a system of sinks along the
jet axis, the strength of the sinks being sufficient to induce
the correct inflow at the jet boundary, Now the inflow
velocity is equal to

o ¥

i) 3~ in two dimensions
T

ii) -:-_- g—-ﬁ in axi-symmetric flow,

where ",(f s %" are the appropria*e stream functions for the
additional radial flow, The system of sinks has strength

per unit length proportional to o K}/ 0Xe Squire and Trouncer9
have shown that the required sink strength can be made up of

a conbination of constant and linear sink distributions taken
over successive small lengths of the jet axis, The exact
analytic solution for the source strength involves an integral
equation, which is not readily solvable,

If the inflow has been found from the associated
problem of the flow in the mixing region, the value of

%—:&- s -g—% can be found immediately, Comparison between
these values and those calculated for a source distribution
of strength m extending over a small length give the
required value of the source strength at the appropriate
point of the jet axis,
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7+ Concluding remarks

The potential flow model for the jet flow from a
nacelle is limited in its application by the method used in
deriving its The representation of a duct by a simple vortex
distribution is only permissible when the éuct is thin, the
difference in the speeds of the jet and stream is small, and
the speeds are low, As explained in section 5, the thickness
of the duct and wake lead to additional problems which have
yet to be investigated when the added complication of the Jet
flow is included., Further, the cffects of temperature and
density difference between the jet and the free stream nust
be inCIU.dedo

Viscous effects, resulting in the development of the
mixing region, have been discussed fully in the literature
(eege ref, 125. A complete solution to the effect of the jet
on the viscous flow around the body from vhich it is issuing
is, in fact, a union of the solutions of this paper and those
of the problem in the mixing region. The viscous effects
themselves can be represented by a system of sinks in the
wake, the strength of the sink distribution being found from
the velocity of inflow into the jet, An added complication
is the presence, before mixing begins, of a developed boundary
layer, This also must be considered and included in the
determination of the sink distribution.

Knowing the temperature distribution in the mixing
region it should be possible to represent the flow of a hot
Jet by a system of heat sources distributed, in the first
instance, along the jet axis, A first step in this study has
been made by -Sqﬁre“g who has calculated the temperature
distribution in the laminar mixing region of a hot jet by
considering the temperature field due to a single heat source
at the centre of the orifice, It still remains to determine
the effect of the temperature field on the flow round the body
from which the jet is issuing., Since the pressure across
the wake streamline rmst be continuous it should then be
possible to allow for the effects of different densitye

The calculation of the forces and moments on the
duct is complicated by the problem of representing the change
in the total head of the flow through the duct by a system
of singularities, For a symmetrical duct at zero incidéncs
there will be only a force in the free stream direction but
at incidence there will be 1lift and pitching moments in
addition, The incidence case is further complicated by the
cross flow around the duct and part of the wake, This has
not been considered in Appendix B and further investigation
is required to find the change in the vorticity distribution
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necessary to represent the symmetrical duct at incidence,
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APPENDIX A

A potential=-flow model for two dimensional duct flow

Te The two-dimensional duct is considered formed by two
similer thin aerofoils, chord length c, placed symmetrically
about the x-axis in a uniform stream parallel to the x-axis.

We shall assume that the flow through tthe duct is accelerated
or slowed down by external action, so that there is a difference
in total head between the free stream and the flow from the
duct, giving an inhcmogeneous flow, This also implies that
there is a wake in which resides a distribution of vorticity of
strength per unit length equal to the difference in velocity.

2 The equivalent homozeneous flow

To render the problem tractable, the flow is made
homogeneous by assuming the wake streamline replaced by an
infinitesimally thin solid boundary, a continuation of the
duct, upon which the vorticity lies, This wall supports the
pressure difference between jet and stream, which must then be
assumed if the total heads are put equal without changing the
velocities (see fige 2).

Thus, if V1 and V2 are respectively the speeds just outside

and inside the wake streamline at any point of its length, the
pressure difference supported by the solid boundary is

p 2
LESP = P1 - P?_ = %P(V2 - vﬁ) 010010000000(1)

This pressure difference is assumed constant along the wake,
and the strength of the bound vorticity distribution in the
weke replacing the solid boundary is

YW = V2 - V1 = '_2'@4‘1—' 000000000000(2)
p(V,+V,)

3¢ The induced velocity

As in thin aerofoil theory, the two thin aerofoils,
and here the wakes, are replaced by vortex distributions, The
distribution representing the upper aerofoil and wake is taken
to be of strength Y(x1) per unit length along the x-axis at

(x 1374 ), and that representing the lower aerofoil and weke then
has strength -Y(x,l) at (x,l,- y1). The vorticity is bound
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on the aerofoil and wake boundary and hence y, = f(x1) -

At any point 2z the complex perturbation potential
w(z) due to these vortex distributions is given by

% o0

- 1 "
w(z) = == Y(x1) zloge(z-zn - loge(z’-z,l)j dx,
-C/2 ........CDUO(B)
where 21 = X1 X iy1 = x1 S iy1(x1) .
%‘;— ==u+ iv where u and v are the longitudinal and
normal components of the induced velocity. Thus, at any point
(x,y) from (3) toking real and imaginary parts

Now

100 f
Y-y y+y
u=--12—1t- Y(x,') ; 1 2-— 21 , d.x1
/2 o) Pary)? o) ety
.....I..I...(l")
00
vegm | () (ex) ) — o= ?aoq
Vec/2 (2= ) 24 (=3, )° (x-x1)2+(y+y1)2f

et rnterens D)

As the aerofoils are thin, y will be approximately constant for
all values of x, and hence to a first approximation we put
yy = d giving

™o

U= - v(x,) e = T zdﬁ
Va2 (x—x1)2+(y-d)2 (x-x1)2+(y+d)2J
000000000000(6)
X7.7
v = -;',E Y(X1)(x'x1) 1 = L ? dx1
-c/?2 ‘ (x-x1)2+(y-d)2 (x-x1)2 +(y+d)2[

PRI i

To proceed without further approximation it is necessary to assume
vorticity distributions in terms of x and then the corresponding
perturbation velocity components can be calculated.
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L, The Perturbation Velocity in special cases

belo

Constant vorticity along aerofoil and wake

If the vorticity along the aerofoils and their wake
is constant so that y(x) =/{ along y = + d, then from (7)
the normal velocity component at any point x on the duct is

-, X v "\. X7 -}‘
X=X .
e { I 1 ax, |
27 ) X-'X1 1 g ( )2 )4-(12 1(
{"J-C/Z : U mg/2 X=Xy + j
! ’ 2
and hence v =-—,-310g 1 +('ﬁ-} 00.0.0.00..9(8)
Ly e c
X +=
— 2
Thus v is infinite at the leading edge and tends to zero as
x tends to infinity,

The longitudinal component at any point on the duct
is obtained by evaluating u on y = d.

The longitudinal component of the perturbation
velocity on the outside of the duct and wake is, from (6)

(.‘{x, % .o
A P 1 a4 dE ] ax
B g o ’ 2 2 )t ox 2.2
y—;d+:L Jog/2 (x-x1) +(y=-d) z] J_C/z(x x1) +4d
i.e0 - ..x ]..C..O',) (.- D
i - 1- i A 1
u =5 tan = |—es --—-1:1ma(y-d)f dx
- [_ 2dj_ e 2%y sar) (x-x, )2+ (y-d) L
2 Yac/2 1 )
s £ cY
S C \“E){ K
or (5l 7(?2 + tan 5q ls bl > ) ..ooooouo-oo(9)
B = 0, for x £ - -g-
§=1, forxz~-%

and, just inside the weke, taking the limit as y tends to d-

-~
A~

S;forx?/-%,8=1

o]
1]
N
¥l
:—\/\.w—\
A
+
ct

for x<--§,6 =0
Eekssnnianvel 1)
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L2 ILinear vorticity distribution on the aerofoil

As a second case, we consider a varticity distribution
such that

KoL 8) e Lo o
Yx) =5 (x+%) 3 -§<x<8
Y(x1)=l{ . x;%

i.,es the vorticity is linearly increasing in the duct and
constant in the wake,
From (7), the normal perturbation velocity component at a

ax,

point x, on the duct is
-—K l‘c/Z .
1 o] 1
ves| = (x=x, )(x, + %)
27 C do c 1 1 2 (x_x1 )2 (x—x1)2+hd2_
2
el -
(x=x X=X,
. c/2 1

and after performing the integrations

—

- 2
v = E—%{% (x= % )1og,_ l: +( ﬁdf.)ﬂ- = (x + — )log,
x>~ 5)

=
e 5

)

2 cd

X

2, .42 _¢

2

)

000-00003-09(11)

The longitudinal perturbation velocity component
surfacg is given, from (6), by

on the outside

15._ ,\(D
] 2 2k (x, + 2 ax, 2aK ax,
—_— +
e _s (x-x1)2 + lpdz . % (x—x1 )2 + hdz
- R R.YS
e/2
I PC/ ?15 (x, + 'g' )ax, e
- %= lim (y-d4)| |
R ey A 2 2 c (x=x )2+( -d)2
S -c/2 (x-x1) + (y=-d) 1 Y




o : c. | { c‘\z 2
K |« -1 /x = E‘ Ka l‘x + -2-;,1+h-d
u(x) =gz 15+ tean” 2d/, e 8 o2
o - x -2 +l+d2
(x-3
I[\. c -1 2dc
= omg (X + 5 Jtem 2
x2 + 1+d2- S
L
where & = O for X.,?r"-g'
§ = 1 for x<--§ esf12)
and Jjust inside the wake
. - 2
/ N Cc 2
K (m A {X-3  Ka (x b '2‘) +id
u(x) = ox | 2 + tan l! Zd,{.], & o dog hestogrean

2
(¢} 2
2) +44

(x -

(x + %) '.l:an"‘l 2do
/ 2 2
X +4d -

K

T 2me

2
L 2

I

PPN b 1 )

4.3 The vorticity distribution in the form of a sine function

+M5

2

If the strength of vorticity distribution on the aerofoil

is assumed to be proportional to a sine function of x we take

C Hosinl E e\l « L2 Lo
¥(x;) = Aein ch ("1 *3)| ¢ mEEM 3
and
Y(X1) = I',\; XZ% ooooo-oo-c-e(“i-)

giving a vorticity distribution which increases from zero at the
leading edge sinusoidally along the chord of the thin aerofoil
and is constant in the wake,

From (7) the normal component of the perturbation
velocity is




-c/2 _
, Y — >
1 1
+ == (x=x,) - dx
2% !jc/é 1 (XFX1)2 (X-x1) !32 q

+ K cz/z[s:i.n'}DH+cos-— (xx) - } .dx
2/2x = & £ (:-c-x1 )2 (x—x1)2+{+d2 1

Putting = =
DY) = % Si -’ZE-C- (‘X.+2id) + Si ?—2‘—0- (¥ -2id)] cosh cﬂ
i . K . s G - : 7d
-3 [Cl e (¥-42id) - Ci %= (X -21&)] sinh ==
qoooooo-oooo(15)
and

E(X) = -;-| ci -’2‘—0 (X +2id) + Ci gg (X.-Zid)“ cosh ”;‘d

;'LSJ. o (¥ +2id) = si -— (!-216.)] smhl‘-d-
ocooooooonoo(16)
where X = Xy =X,
M 3 5 7
Si(U) ; Slz x dt=u -~ 4 + L - = +  eee
I s 343 5845 787
107
2 L 6
and Ci(u) = = COStdt_log 'r-u - = + = aee
J 2842 Lok 6346

% Reference 10
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h 1 R at CH
where og, ¥ = ; T - P %
o fo} L 4

= o57721(6) oees

(D and E are seen to be real functions of x, X,5 and a)
v becomes . _
\ K
v=—}-<=log 1+ (28 4 v (cos Kin =%
2% C V \_ 2 2‘;
| X =7 i 2¥2x
- . TS 4 ~siX g 2% E (4. EX
D/2 ol A R 4 ¢ c)*Sl4 Lo
+ K cos—’gc-+s:1.n——-)tﬂ(2-;9-E[E.,.x)-ci."i(—]_.z_‘;
29(571& 2 2 \2 \2 / L’" 7/
T 2x.}
+Cll+'\.f'1—c)f
..0.‘.'.'0..(17)

From (6), using the vorticity distribution given in (14), the
normal component of the perturbation velocity just outside the
duct is

— o P

) i AL
X 1‘c/z aKein| & (x, + §)] ax, | 2Ka  ax, 2
Sox v i T
(Foo/2 (ex)? 4 12 Vo/z  (x=x,)? + 4a® |
4
c/2 !
sin X
B (_.d){ K 520( +5) )} ax
27 a4+ 2
y— Iv /2 (xex) o+ (-)
ARE?] 3
Fe }
o
i

ef2 (x~x1) + (y—d)2 ii

which reduces to
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{(«.::os == + sin ﬂx) IE*‘(— x)-F(— +x)J + (cos -27% - sin ?27%
Z

2¢2n

‘G(— —x)—G(-— +x) ‘

a .,‘
K 7« - Xt 5) v(x) . c
+-2-’E(§+tan 53] "2 6,8=0forx£--§-
c
b=1farxz=-7
h oocooa-oolcoo(“S)
where
- . K - . ey d
P(X) =1 EC:L 5=(X+2id) - Ci 22‘-5 (X -21d)w cosh ==
B o o . Ky - ] 2 Td
+ le o (X +2id)+ Si o (x-zld)_ sinh =
and
A b, K : . T vk | nd
G( )= i LS:L 5o (X +2id)= Si 55 ('K—Z:.d)J cosh 5=
. K_ - . N PO e
- f:. 5o (A +2id)+ Ci o (K.,-Zld)-” sinh 5=
again F and G are real functions of x, Xy and d,

5¢ The shape of the duct

Having calculated the components u,;v of the perturba=
tion velocity on the outside of the duct and wake for a given
vort:.c:l.‘!ar distribution, the slope of the duct surface can be
found since

v
% - ;1—-;.[-]- .........ﬂ..(19)

where U is the free stream velocity,

This slope, integrated, gives the shape of the duct.

As can be seen fram section 4 of this Appendix, the
components of the perturbation velocity are complicated even
for simple vorticity distributions, and an exact integral
is unlikely to be found, Thus a numerical integration is
suggested in all cases,

To obtain a second approximation to the shape of the
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duct, the values of u and v are found with the assumed
vorticity shape, and the shape recalculated as shown above.
Better approximations can be cobtained by further iterations.

There is, obviously, just one shape for a given
vorticity distribution but, provided the total vorticity at
the trail:i.ng edge is equal to the constant value of the
vorticity in the wake, different shapes can be cbtained by
combining any number of vorticity distributions over the
chord of the thin aerofoils replacing the ducte

6. The Pressure Distribution over the duct

From the perturbation velocity components it is
also possible to calculate the pressure distribution over the
duct surface, If Py is the free stream pressure and p(x)

the pressure at any point x of the duct surface

p(x) = p, =- %p(ug + 2uU + v2)
o p(x) - p 1,2 2
—-——2—0- .—.-—(u + 2uU + v ) .ooooocooono(zo)
ZpU v

The effect of comprzssibility can be included by
using the result due to Glauertj

C
Bm = = 1 0-0'0.000000(21)
pi -

where cpc is the pressure coefficient in the compressible flow

i is the pressure coefficient in the correspond:x.ng
p incompressible flow

and M is the free stream lach number,

7+ The 'staggered'! duct

If the x~coordinates of the leading edges of the
upper and lower aerofoils are different, representing a
staggered duct,; the perturbation velocity can still be
calculated although here there is not the simplification
which previously was the case due to syrmetrya.
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Consider the duct formed by the upper aerofoil

Y=y (x), - 01/2 £x £ ¢/2 and the lower aerofoil
y= - yz(x) ;s - 02/2 < x <c/2 where v { { =Y, (2/ de

For such a configuration the perturbation velocn.ty at any point

(xy7) can be written in terms of its longitudinal and normal
components as

[ y-y . Y+
2
LL "C1/2 (x"xal) +(y"y1) -02/2 (X"’X1) +(y+y2)

...'........(23)

o1
- 2%

r)Gex)ar | ) (e e,

Vo fp (1) +<y~y1>2 Jooy o () 4 owy)”

.0..........(21"‘)

{
}
= 2%\
(

where ¥, x1) and +v,(x,) are the vorticity distributions

representing the upper and lower thin aerofoils respectively,
and ¥y 1 and y, ere functions of x.

Since constant vorticity 4 is assumed in the wake, (23) and
(24) cen be rewritten as

we/2

Y1 (x1)(y-y1 )d-x 72(x1)(y+y2)dx

Foc /2 (xx,)*+(5y, ) Teeyf2 (xx,)%4 (347,)°

e'2

1

dx

f )
) it I+Y,
) K 1

Ye/2i (x~-x1)2+(:>r-y1)2 (x—x1)2+(Y+y2)2_J.
cesssscvases(25)
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1 { g.w/z ¥y (%) Gemxy ), {'0/2 Yp(xy) ey ), ?
Ll +
(g2 (ex,)° 4y, )" Umop/2 (x-x,)? +(y+y2)2_5
+ _2’}- {‘T (x-x,,) ! ; z = 2q 5 ! d.x,l
=l o/2 [ Gexq )+ (G4 (x=x, )+ (¥+7,) J/
cssscoscsece(26)

y, and y, are not, in general, equal even in the wake, but
as a first approximation, particularly in the Wake, ¥y and Vo
would be taken equal to a constent d. ,

The shape of each side of the duct and wake can be
calculated as in section 5 of this appendix, and the pressure
distribution as in section 6,

8s The inverse problem

8e1e In the previous sections of this appendix a vorticity
distribution has been assumed, and the perturbation velocity
components calculated, from which the shape of a duct and its
pressure distribution have been found. A more direct approach
is to take a given shape and from it to find the vorticity
distribution required to represeht the duct,

8e2s The exact integral equation for the vorticity
distribution

The slope of the thin profiles making up the duct is
given in terms of the perturbation velocity components as

% = -I-I:-EJ 000000000000(27)

Now, for a symmetrical duct at zero incidence, the normal
component of the perturbation velocity at (x,y) is given in
terms of the vorticity distribution as, (equation 5),

if)a_):/ ’

vxy) = | wlx )(x-x>( ! - 1 ax
= /2 1 1 (x“x1)‘2+(y--y1)2 (x-x1)2+(y+y1)2) !
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where y = + y1(x1) is the locus of the vorticity distribution.

Assume now that the vorticity distribution is constant
in the wake, and thus the effect at (x,y) of the wake
vorticity is

[ ] “
( , ) = o ( ) : - 1 ) B
R Jo/2 E ((x—-x1)2+(y-y1)2 (x-x1)2+(y+y1)2, 1

aooocnoo'o-o(28) ¢

Substituting from (28) into (27) we have

0 C/ 2

(x55) = v_(x,3) = &= (X)(x-x)( - - : dx
i !J _0/2Y1 ! ,"(x-x1)2+(y-y1)2 (x-x1)2’+(3r+.v1)2 !

R o

and thus we cbtain an integral equal for the vorticity distribu-
tion representing the aerofoils in terms of the normal perturba=
tion velocity given by the shape of the profile, and the known
constant vorticity in the wake,

As it stands (29) is not solvable exactly, If,
however, we assume the vorticity distribution to lie on the
lines y, =+ d, (29) can be simplified to

i!C/z i l,_dz d.x1
'.Q.l....‘.'(}o)

which, again, is not readily solvable,

9« An approximate solution using slender body theory

9e¢1e The perturbation velocity

Consider a duct made up of two thin aerofoils
y =% y(x), 0L x<€ ¢ and their wake., At any point (x,y)
the longitudinal perturbation velocity is, from (L)

OO

u(x,y) = = o= r (x,) .
’ ! OY K (x4 (my,)? e ooy

, !
i

y=y T4y,
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To obtain the longitudinal component of the perturba-
tion velocity on the duct surface we must evaluate this integral

as y—3 ¥, (x1)

e

TeCe y o ok
u(x,y,) = o= | v(x,) 7y dx ¥ lim 1 v(x,) ik
Wel T2 2 2 T ox i 1 ) 2
" - ! (x-x1) +4 ! Ty T g (x-x1-) +(y-y.,)

ooocoooooooo(,”-i)
It is immediately obvious that the second integral is a singular
integral of the form encountered in thin aerofoil theory and hence
(31) may be written

!1 g o«

2y
u-'\x,y ) = 'j— ‘ Y(X ) '—““'—1——'—" dx, + l ;.L__}'C'L__.‘-—-—- 66.0.'(32)
4 27 £t 2 2 1 # 2
o (x=x, ) "4k} /1 (daq)
v &

the negative or positive sign being taken according as we
consider the outer or inner surface of the duct,

Now, taking the length of the duct as c, we can
express all the lengths as non-dimensional multiples of c¢ in
the form

x =Xo, x4 =Xc and y, = eY(X,l)c

Substituting these into (32) we have
Ve

Y(X,) g ax, T % *r(X)/ ( e {_?f'(xﬂz)E

(X=X " )2+l¢£2Y2

- 1

i

which, expanded in ascending powers of &, becomes

<

l“\ £

3 » =
Y(X,')ZSY ;(1 g 22 5_823(2 }

1
u(x,Y) o= e 3 + P™ asee d-X

+1

i —— 9 = 4

% Y(X) ): 1 - —;‘ 82‘}'(){)} 7 ‘% SAE'(X)_‘ eve $ 0000(33)
L J

If we now assume a slender duct, i.e. € small compared with

unity, the terms of third and higher order of & in (33) can be

neglected giving the longitudinal component of the perturbation

velocity on the duct surfece as




Y
X - -
u(X,y) = £ i M s Y ( - 12 Y’(X)'z vo(5h)
? ® | (X"X )2 2 ; e o A £ ¢
Yo 1 - J

Thus the actual longitudinal component of the perturbation
velocity on the outside surface of the duct and wake is

N OO0
’ v(X, )T(x, )ax,

2
= \2
. (x—x1)

(35)

Ale

X}2!+

,...; .

Dl

o g
—~

U.O(X) L

and on the inside

u; =u o+ yv(X) {1 - -1§ &2 EI'(X):!Q} IET—— .3

i
neglecting terms of third and higher order in €,

The normal component of the perturbation velocity
can be found immediately since the flow must be tangential to

the duct surface, i.e,
= (Usu) %‘xv-

9¢2s The stream functions and vorticity

The complex perturbation potential for the fluid
motion about the duct is

\ O )
- fy(xp J 108 (am2,) - log <Z~51>)} ax,

o

where Zy =X, + iy1 and Yy = y1(x)

Thus the stream function for the perturbation is

ate?;
) 1 2 ( (X"x1)2+(Y'y1 )2
\41' o= ‘2— Y(X ) . log dx
b 9 1 3 2 1
o (_, / (x- ) +( S )
v Ll
or Ny ‘ 2 .
. v ( (x-x, )2+(y-y1 )7
q: =7 | «(x,)! log § dx, wwel(37)
d o : (x=x, ) "+ (343, )

It is seen that on the x-axis,

Y=o RGP (.}
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Thus the stream function for the flow about such a duct in a
uniforn stream in the x~direction of speed U is

_Uy+‘}/ 9.....0000:0(39)

Now on the duct surface, as on any strcemline, the strean
function is constant and equal, in magnitude,to half the
volume flow (QO) through the duct, Thus, from (37) and (39),

on the duct surface

VX 2 2
1 1 ) 1 (X‘X1) +(y—y1)
2Qo"_Uu+l;.7t..-Y(x1 o8 2 2 1
u (x=x, )+ (54,
o 1 1
or in dimensionless form, using (32),
Q ) | (%X, )2+a2(3(--3c1 )2
Thee = = Y + ogp | v(X)log T > & (40)
Yo (X—X1) +€ (Y+Y1)
The integral equation (40) can be satisfied by
y(x) = - U + 0(e)
2ecY(x)
giving the vortex distribution as
%
‘Y‘(X) = e [ 0(8) ooooooooeaoo(lm)

2y
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. APPENDIX B

The two-dimensional duct at incidence

1e - The methods of thin aerofoil theary used in the
previous appendix are here applied to a two~dimensicnal duct
at incidence a to a uniform stream of speed U at infinity.
The duct considered is formed by two thin aerofoils
y=+y(x), -c<x<0 3§ y(x) being always positive. The
wakes upon which the vorticity distributions lie are not now
mirror images of each other in the x-axis and hence we take
the wake streamline of the upper thin aerofoil y = y(x) to be
given by
y=y,(x) oLxg o
where y(0) = ¥y (0)

and that of the lower aerofoil to be given by
y=v,(x) Oxxg

where -y(0) = y2(0)

such that y, (x) and yz(x) are both parallel to y = x tan a
for large X

The configuration is shown in figure 7.

2+ The vorticity distribution

2e1le The vorticity in the wake

For reasons given in the previous gppendix the vorticity

distributions on the two wake streamlines are taken to be
constant and of equal magnitude but of different sign i.e.

Y1(X) =—Y2(X) =,{ ; O(x\(\ OC 0-0000....-0(1)

~

242e¢ The vorticity rcpresenting the duct

Previously a vortex distribution has been assumed and
this has dictated the shape of the ducts If, however, distribu-
tions of vorticity y(x) and =-y(x) are assumed to lie on
y=+y(x) and y = - y(x) respectively, then due to the
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bending of the wake, the duct represented by these vorticity
distributions will not in general be symmetrical., It is
therefore assumed that the symmetrical duct is represented by
distributions of vorticity 1, (x) replacing the upper thin

aerofoil and -‘(Z(x) replacing the lower,

3a The perturbation velocity

3ele General expressions

As in section 3 of Appendix A, the longitudinal and
normal components of the perturbation velocity at any point
(x5y) are

Nk g
o -1— i ){’ (y"y1 )Y.] (X1) _ (Y+.V2)Y2(x1) dx (2)
o !\b (x=x) 2+ (r=7,)° ()Pl )? [
and Mo ) .
4 [ 1y(x) ¥, (x,)
V=§'7?j (X"X.‘)a’( )2 5 = ) 2(6-7(1 (3)
s [ =2 )5+ (r-)" (x4 (4,)
or, on expanding the vorticity distributions,
"kc’p’,?
L) Gapdvte) 2
u(x,y) = = 32 2 7 2 7 | 9%
oo 1 G )4 (3,)" () ) "4 (34y,) {
-
K b (3y=,) (7+,) ?
R R ey vy S e B
g it

Following the assumptions of thin aerofoil theory the vorticity
representing the duct walls is taken as lying upon the lines
y=x4d, =cgxx0,

Hence, (4) becomes .
O (y-a)y, (x,) (y+a)y,(x,) )
Rl = we f 1: %1 _ 2\ %4 {
RN Iy ALy e

-

Yoo

K 11 vy) I+, .
“ux ] - (5)
% Ol(x-x1)2+(y-y1 )2 (x‘x1 )2+(y+y2)2} !

&
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and likewise (3) becomes

. [P { n(x) Y?<x> )
v(x,y) = D (X"'X.l) { 5 - 5 4%y

L P T

R7 )

f 1 1 Z

+5p | (exy) 2 z - 2 R B
tUo (X"X1 ) 'l'(y"‘y,‘ ) (X’“X1 ) +(y+y2) J
-

PRI L% {7

Once forms for (x) and x) are known the first integral
Yy Yo , :

in each of (5) and (6) are calculable with no more difficulty
than that incurred in section 4 of the previous appendixe

3e20 The shape of the wake

To proceed with the integrals over the wake sane
form for y, and Vg must be assumed, Equation ( 18) shows
that the wake streamiines will have very nearly exponential
form, Also both wake streamlines must be parallel to
¥y = x tan ag for large x and be contimuous with their

particular thin aerofoil,

s ° o V1 V2

lece at x =0 y1_d, y2=-d, R P
- d3’1_d(>’2 B

and for large x o =3 = tan ao

The simplest form for ¥ 4 and Y5 fulfilling these conditions
is
tan a, + d

I

N

H"

o + X - 1? - d 900000009000(7)

! @

tan a
o)

1]

Jo

't"

and, substituting from (7) into the second 1ntegrals of (5)
and (6), we have integrals of the form

\ (X5 X

~ i

y = d = tan aoi_e +X, =1 1

21 5 —
Jo (X-X.I) +Ld+tan4 ao(e x4 +x, =1 ) -y

The integrals over the wake can be simplified by
assuming that the weke streamlines are straight and parallel
to the free stream direction, Thus we take



=3

vy, = d+xtanao

-d + x tan ao o.oo--ooeoeo(B)

A

and the wake integral in (5) becomes

®,
(¥ =-d=x0, y+d-x0

Ay

:
"\

- 2 2 - 2 2
= (_(X-x‘l) +(y—d—-x160) (x~x1) +(y+d-x160)

g T

J

.000.0.00.06(9)
where 60 = tan ao .

he idealised configuration is showvn in figure 8,

3e3a The perturbation velocity for the idealised duct

If we put
A = 1+ 62
o
B = .--2,(>c+60 Ly-a]) ; B' = -2(x+60‘__y+c}.})
C = :c2+(y--<1)2 s g =x2+(y+d)2 sesnnenliD)

(9) becomes

0 oo PR/ R,
60x1~(y-d) 6 x, ~(y+d)
—_— gx, - dx

2 1 2 ' 1
o Ax{+Bx, 40 J o AxG4Bx, 40
e c
= - ﬂ loge ET + T - T!? c000'00<11)
2y &
( B0, ) e ax,
where T = _-(y—d) - L} 5
{— J % N Ax1+Bx1+C
B'O_" ek dx,
and Tz {=(y+d) = -—2-2-2 >
j 1 Ax1+B x1+C
Now B2=4AC = 4| x+0 (y-a)| L 4(146%) | x%+( -d)ﬂ
= L o(y-al o) X+ (y-a)7 |

-k Eeox -(y-di!z
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and is thus essentially negative or zero,.

Thus (ref's 10) for B2=lAC negative i,e. y not on the wake

streamline Beo
~(y-d) =g - i
L= e ?3_("' tan-1 ...E-——-
0x = ly-df |- Juic-5°
) B'eo . _
=(y+d)=- =1 '
and mi- 24 %- tan ; _B___:_“_-: .oo.o(12)
BoE = (y+a) ‘--'/AAC 1-B12 A

e

Thus from (9), (10), (1i) and (12) the wake integral becomes

-0 2 2 x+0 jy-d x+6 B‘+(il
5 log, x2+(y-d)2 b ) e ol }_ ) o> -“’
140 x“+(y+d) 140 Gox-(y-d) Gox—b_md_.i N

which, when eo =0 and y=d reduces to -72£+ tan }Zc_d and

agrees with (A9) and hence the longitudinal component of the
perturbation velocity is, for the simplified wake

J"° } (y=a)r, (x,) (r+a)yy(x,) )

- dx
(o, 0300 ooy e) |

u(x,y) = E‘;{ 1

- |

KK ' 2 7. a2 _, x+6_(y-d)
+—'—'—-{—-—é—- }tan a, loge-}-cz—+'(‘LdL2— tan1——?-———-
2n(1+tan ao) l x +(y+d) Gox’(Y"d)

-1 x+60(y+d)

- tan
x60~(y+d)w
assscsesnssstil)

Similarly, the integral over the wake in (6) becomes, using
(8) and (10)

ok - 1 -

i (e=x)) | =5 PR

ds Ax,l - Bx1 +C Ax1 +B Xy +C !

which is equal to (ref., 10)




1 X +(y-d)2 2x + 207 | = -1 B
- 57 log == 5= tan —
24 e 2 2 F 2 e
x“+(y+d) Jusc - 52 \/A.AC-BZ i
{v o BN ~
2% +57) [« - _B |
e % e !
/140 1-B 12 Viagr-p12 |
IS 1og X +(y-d) Yy ‘t» g e (y-a)
2(1+6%) 2 2 (y+d) 2(1+6i) | 0 x~(y-d)
= e x+60(y+d)
Oox—(y+d)

and hence the normal comppnent of the perturbation velocity is

30 ( ¥ (x ) ¥ (X ) .)
V(X;.V)‘-"—%"‘t' \ (x—x,l).{ ; ! 5 - g 1 > ; 4
3! -C f(X-X1) +(y-d) (X-X1) +(y+d) |
K § 2 oo a\2
- 5 log Ezi(.Ldlz_ =tan q
Lx(1+tan ao) € x +(y+d) &
[ _q x+tan ao(y-d) -1 x+(y+d)tan a 2
‘J‘tan - tan
x tan ao-(y-d) x tan ao-(y-a-d)J
oo-oo.a-..a.(‘llﬁ)

If y lies on the wake streamline ¥y = d + x tan a,s B‘2 - LAC

is zero and hence . .

BO
T = -—% ‘(y-d) + 2Aoa| ooooa-occooo(15)
T! remaining unaltered,
Thus
fle] /’ .
u(x,y) = - 3= ‘ £ dm il 2~ (y+d):2(X1) 2?- 1
B U =g { (X-X,]) + y"d) (X-X1) +(y+d) :{
¢ _q | x+0 (y=-a) o
+ -———}—(‘—-—-2—. Stan_ ao loge lc-iﬁtz_-l_ T tan —-—9—————- - 12c- ’
2x(1+tan®a ) |/ x +(y+d) x0 ~-(y+d)
o L fil (o) o
x0 _+(y-d)
+'-—"_'] -o.ooocoo-oo(16)

x+6 (y—-d) J
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Also
2 “0 ) ) 7.3
( 1| RS Yo (x, ]
viny) =gz | Gex) 2 e 2 5 &z,
J -c ) (=2, ) "+ (y-a) (3= ) "+ (y+a)“ |
€ et 7 x0_+(y~d) _4 x+0 (y+a)
06..606000"0(17)

Similerly u(x,y) and v(x,y) can be calculated when y lies
on the lower wake streamline in which case B'2 = LAC! will be
ZEr'O,

Ly, The duct shape

The duct shape is found from the modified boundary
condition over a body at incidence

ay v+Usin a
dx=__—_——-.
u+ Ucos a
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APPENDIX C

The Axi-symmetric Duct in Potential Flow

Ta The axi-symmetric duct is represented by a surface
distribution of vorticity made up of an infinite number of
coaxial circular vortex rings of radius R and strength ¥y
per unit axial length, Both R and 4 are functions of the
axial distance 2z of the ring from the lip of the duct.
Reasoning on parallel lines to that given in sections 1 and 2
of appendix A shows that the vorticity extends into the wake
and that the equivalent homogeneous flow gbout the duct and
its wake can be represented by a semi-infinite distribution of
coaxial vortex rings. (See fige 9)s

2« The circular vortex ring

Consider a circular vortex ring of radius R and
strength /A , such that the normal through the centre is the
zm~exis of cylindrical polar coordinates x,r,f. Consider
also the point P (x,r,@) 3 see fig, 10,

-

In cases of axial symmetry the vector potential 0
at P, as defined by Clebsch, has only one component which is
along the normal to the axial plane (i.,e., the plane through the
exis and P), The unit vector along this normal is 1n. The

magnitude of the vector potential is

Y
H ~>

N =2 i n.ds
L = n.isy e f =
i.-‘c
) {12%
= ﬁ"‘. R_co_s__im ag!
T Lhx PQ2
o]

where Q is the point (0, R, #').

Triting @' - g = 2 X
/2
Y KR

: (2 cos®X ~1)a
3l e T T

y { 2 ik
o K%\ (‘l-—k2cos2 A )2
k° /

& 00000905(1)

oo-...ooa--o(z)
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which can be rewritten as

1 &
S | 2
14 [RY? |2=k 2
@ % (r) ', kF“kE
L
where F and E are complete elliptic integrals of the first
and second kinds respectively.

000000000000(3)

Nrrrinie o

i e = - .
The vector velocity q = uwr+uz is given by
prd :
g = curl (6 H)
or o~
=L L sy e L
ur B 0z = uz “r or (I‘ [}A") L] uﬁ =0 Ocono(ll-)

3¢ The vector potential for the duct and wake

Consider now the duct of length ¢ and wake consisting
of a semi=infinite distribution of such circular vortex rings
stretching from zero to infinity, The magnitude of the vector
potential at P(z,r,d) due to the duct and wake is, from (3)
by integration

e

dz! .s(5)

2 k

7~ 1 e R( tl\ Jz‘f 2 2

.31 ' Rz e | 2=k o 25

W = ) (2" | =3 )3 F-sE
Jo {.

N

2 _ L r R(z!)

(z=2' )2+ E‘+R(z : )]2

where now k

and hence E and F are functions of z'.

Lo The Perturbation Velocity

The axial component of the wverturbation velocity
at P is, from (4) and (5),

Vo0 - o
l ] 1 !
u_{z,r) = o= }’((z‘) P+ B (et )= (ama) EI - z
Z 27 2)2
o (z=2zt) +‘R(f’4')“1‘__‘L _I)_\Z"Zl) r(z')"' (

o........,.a(6)



TECHNISCHE HOGESCHOOL
VLIEGTUIGBOUWKUNDE
Kanaalstraat 10 — DELFT

and the radial component is

e = _]
u (Z,l‘) = - -;— KLZ')(Z'Z') ngF - 2 + R(z") E .
b g Ui T ‘
o L (z2")(x=R(z")) _J
as?

» 2{)% 9000000000(7)

g(z-z')“-a-i_R(z'ﬁr_i (
L >,
Ifs P _i_s taken on the duct surface then the mean
axial velocity (uz) is found by putting r = R(z) in (6) and

interpreting the improper integral so obtained by its Cauchy
principal parte It has been shown (ref. 11) that

© ' Y 13 K(z')as!
G) =i ¢ [p .BEDRE ] __w___lj ()
rR(z) LT 20-RED T Rp(a)”

/2 2
where Dw = | S;n 2 af
i 1 = k5 sin“g
1O Y
,7‘!
. K2 - LR(z)R(z") eossossesces(9)

(z=2z ')2+ E{(z ')+R(z)}2

for a finite thin duct of length co

This result can be generalised to the case of a duct with wake,
Since the vortex tube representing the wake is a stream tube
we may write, for the duct and wake,

ake3
(u,) : { Y R(z')~R(z)
Z

) K (2')az’
=Lz W 2 B
r=R(z) J L 2(1=k“)R(z1)

g 00(10)

<

"} () m(a")]

The actual longitudinal velocity is obtained by adding the
contribution due to the local vorticity

PO N
i + %—/(/}(1 +l§’(z)J g
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the negative sign referring to the flow outside the duct and

weke, and the positive to the inside.

For the outside surface, assuming a slender duct, (i.e. R(z)

is small compared with c), we have, by expanding the elliptic
integrals and taking the limit as 2z -3z,

o

~E
(u_ ) =1 & .% ‘ M-,—)- d.Z'
%" r=R(z) ‘J fzmz ] 3

E 2 ’
=g R(z)| d__ /2 ) (E
1%+ log 20| .2 (R (z)K(z? +0 _c} (11)
The normal component of the perturbation velocity for a slender

duct is

(u ) = .{((U+uz) 'a_r‘f ooooaoao-ooo(.12)

1 dz |
r=R(z) L i r=R(z)

5« The vorticity distribution

The vorticity distribution representing a slender
axisymmetric duct and wake can be found by an extension of the
method used in ref. 11 for a slender finite duct without wake.

The Stokes! stream function for the semi=-infinite
vorticity distribution in a uniform stream of speed U parallel
to the axis of symmetry is

LP(Z:I') =

!‘J' i 2T
.

((z—-z') +RLZ )+ x” P - E= (z=z1) +2R(z')+rf ! y(z')az’

27t -2

y oj (z=z') +‘R(Z')+r! { R

Now the Stokes' stream function at any point (z ,r) is related
to the flux or volume flow Q per unit time through a circle
of radius r normal to the a%is of symmetry

i.e. e‘P: -

On the surface of the duct '-,l' mist be constant since the duct
surface is a stream~tube, Hence, the boundary condition is




e
8y -'f

2
—&D-__U-R'—Sﬁ.‘.i—

27 2 27t

g(z z’) +2R (z') E
I(Z-Z’) +hR(2") J

= 3
?( -Z')2+4R2(Z')‘! y(z')dz'

O
o ;

which, for a slender duct, reduces to
{‘/(' . % Q
E. ! ' v _ O _ 1 p? 1
-5 | & 0 [R2RG1)|" ¥(s1)as" = 32 = $ UR(2) wensel(13)
Lo g
w2 o
where Chr= sin'§ cos ng
& (1-k_sin’g)>/?
(o} W
and E = Eéél and is small,
Equation (13) is satisfied by
Qo
‘Y(Z) = "S‘(Ey -U + 0(8) 000000000000(14)

where S(z) = AR (z) is the cross sectional area of the duct
at  (2,R(z) )
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