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SülVïïvI/Jff 

The inviscid incompressible flow round a tliin nacelle 
from which a Jet is issuing is considered» It is shown that 
thje inhomogeneous motion can be transformed i:ito an equivalent 
homogeneous motion which may be represented by two semi-ixif inite 
distributions of vortices in the tvro~diraensional case and by a 
semi-infinite distribution of circular vortex rings in the axi-
symmetrj.c case» By assuming con.stant vorticity in the walce and 
constaiit or IJjiearly jjicreasing vorticity to represent the duct, 
the duct shape and the pressure distribution over its outer 
surface are calculated for given ratios of jet speed to free 
stream speeds Assuming a slender duct the vorticity repcresent-
ing it is expressedpto a first approximation, as a function of 
the duct width or diameter and the volume flovT through the dtact» 
Methods of extending the treatment to a thick-walled di;.ct v/ith 
a wake of finite thi.ckness and for including the viscous effects 
are suggestedo 

lEP 



-2-

GONTENTS 

List of Symbols 

Introduction 

A potential flow model representing the flow about a 
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UST OF ^üiISOlB 

chord length of duct 

half width of assumed duct shape 

complete elliptic integral of the second kind 

ccraplete elliptic integral of the first kind 

the modulus of the elliptic integrals 

pressure 

pressTore in \andisturbed stream 

voliome flov/ through duct 

radial distance 

radius of circular vortex ring 

\indisturbed free stream velocity 

longitudinal components of the perturbation velocity 
on the outside and inside surfaces of the duct 
respectively 

normal component of the pertxarbation velocity on duct 
surface 

longitudinal distances 

normal distances 

distances in axial direction 

angle between duct wall and x-axis 

angle of incidence of duct 

strength per unit length of the vortex distribution in 
two dimensions 

strength per tmit length of wake vorticity distribution 

0 for X upstream of duct leading edge 

1 for X downstream of duct leading edge 
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Ü/ vector potential for a system of circular vortex rings 

M. strength per unit length of vortex ring distribution 

p density 

1, mtrodiiction 

In the past most v/ork on jet flow has been coï.'f.'l"ied 
to the free jet aaid to the problem of the flow in the mixing 
region downstream of the jet exit. Attention has been focussed 
upon the velocity, and in some cases the density and teciperatur-e 
distributions in the mixing region. 

Little has been written, however, on the effect of the 
jet upon the flov/ around the body from v/hich it issues, and in 
particular the effect upon the flovf at the rear end of the body, 
Thiis paper contajjis an attempt to set up potential flow models 
for both two-diiaensional and axi-symne trie ducts from vdaich jets 
are issuing. Some consideration is also given to the staggered 
two-dimensional duct and the ti,TO-diinensional duct at incidence, 
Further, the approximations of slender body theory are used to 
obtain expressions for the vorticity distributions representing 
the ducts, 

The detailed mathematical analysis is given in 
separate appendices to this paper, only methods and results 
being discussed in the main body. Reference to equations in 
appendices is made by quoting the letter denoting the appendix 
and the equation number e.g. (A,32), A number in the position 
of an index in the text denotes a reference included in the list 
on page 19» An asterisk s signifies a footnote, 

The author wishes to express his sincere gratitude to 
ilr, G,M, Idlley and Ivfr, T,R,F, Nonvreiler for their guidance and 
constructive criticism throughout, 

/ 2 , ,,o 
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2» A potential flow model representing the flow about a 
nacelle frcm which a jet is issuing. The general 
problem, 

In this problem we can recognise two distinct fields 
of flow, the gases in each being inconpressible and inviscid, 
There is the flow through the duct in which the total head of 
the f lav is changed by sane external action (e,g, a jet engine) 
and the flov; exterior to the duct. Downstream of the duct 
these two flows are separated by a wake across which the 
press\are must be continuous. Although the effect of the 
thickness of the duct is discussed later, the main arguments 
are developed for a thin duct for v/hich the ŵ ake is thin and 
can be regarded a^ a dividing or wake streamline, or in the 
axi-symmetric case a stream surface. Since, in general, the 
fluid velocity is different on either side of this wake, 
there will be, lying on this streamline or surface, a distrib
ution of vorticity of strength per unit length equal to the 
difference betv/een the velocities, (fig, 1), 

KSfchemann and Weber have published a series of 
monographs dealing with duct flov/, and mention this problem 
amongst others concerning ducts ahd cowlings for propulsive 
xxnits. They give in detail the solution of the problem of 
an axi-symmetric duct without wake, i,e, a duct from which 
there is no jet velocity. Since the total heads of jet and 
stream are different we are considering an inhonogeneous 
flow problem which cannot be treated by normal potential flow 
methods without modification, 

2,1, The equivalent hociogenecus flow 

The complete flow can be rendered homogeneous by 
considering the total heads put equal without chtingSjng the 
velocity in either the jet or the surrounding stream. In 
consequence there Td.ll be a constant pressure difference 
between the jet and the stream, and we must therefore assume 
that the v/ake streamline or stream surface is replaced by an 
infinitesimally thin surface separating the jet and stream, 
and which can support the supposed pressure difference (fig, 2), 

The validity of this argument can be appreciated by 
considering the equation of steady motion for an inccrapress-
ible inviscid fluid, which can be written 

1 
q, grad q = - — grad p ,,,«,,,,,,•,(1) 

for zero body force. This equation contains only the 
pressure gradient and hence a constant change of pressure 
as advocated above will not affect the velocity field, 

http://Td.ll
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This equivalent flov/ can now be treated by the usual methods» 
Subsequently the conditions in the original flow can be found 
by cancelling the pressure change across the wake, 

2,2, The distribution of vorticity 

Since, in the equivalent flow, the total heads are 
the same on both sides of the dividing stirface, the pressure 
difference across this thin surface is (A,l) 

A P = ip (v̂  - v^) 

•vrfiere V. is the speed on the outside, and Vp the speed on 

the inside, of the di\riding surface, 
Now this dividing surface is a streamline so that the direction 
of flov/ on both sides of it are parallel to it. This enables 
ns to represent the surface as a distribution of vorticity 
equal in strength per unit length to the difference in velocity, 
Thus the vorticity representing the dividing stirface has 
strength per ijnit length 

Y = V - V = ^ ^ £ _ , (2) 
Mff 2 1̂ V^+V^ K^J 

The duct itself is idealised to a thin surface so 
that in tv/o dimensions it is represented, as for tvra thin 
aerofoils, by two distributions of vorticos, or in the axi-
symmetric case, by a distribution of circular vortex rings, 

The problem of the establishment of a potential model 
for the jet flew nov/ resolves itself into that of deterraining 
the strength and position of the vortex distribution represent
ing the wake, and also of determining the vorticity distribu
tion T/hich represents the duct, 

5, The two-dimensional duct 

The tv/o-dinensional duct is considered both at zero 
incidence and at a small incidence. The mathematical deriva
tion of results quoted in this section are given in Appendix A 
and Appendix B for the zero incidence case and the ca.se of the 
duct at small inciderice respectively, 

3,1 • The symmetrical duct at zero incidence 

The tv70-dimehsional duct is taken as being formed 
by two similar thin aerofoils of chord length c, given by 

http://ca.se


-7-

the equation 

c 

placed symmetrically about the x-axis in a uniform stream of 
speed U parallel to the x-axis, Follov/ing thin aerofoil 
theory, we replace the tv/o thin aerofoils by distributions 
of vortices, v/hich raust be continuous both in magnitude and 
position with the vortex distribution representing the v/ake 
so that the Joukowski condition of no flow round the duct 
trailing edges is satisfied. From the symmetry of the con
figuration it is clear that, if the vorticity representing 
the upper thin aerofoil at x = x. is Y(X^)> then that 

representing the lower is -Y(X.), 

3,1,1, The perturbation velocity 

It is shovm that these distributions of vorticity 
lead to a perturbation velocity at ary point (x,y) which has 
longitudinal and normal ccmponents given by (A,lf.,5) as 

u(x,y) = - ^ 
y-y. y+y. / 

Y(X. ) ^ r ^ 2 ^1 
J - c / 2 [(x-x^) +(y-yi) (x-x^) +(y+yi) ] 

^ ^ AOC) 

dx. 1 

1 
(x-x^) +(y-y^) (x-x̂ ) +(y+y^) \ 

(3) 

v(x,y) = 1^ Y(X^ ) (̂ x ) \- ^ -^ - - ~ "2 I 
^ - c / 2 {_(x-x̂ ) +(y-y^) (x-x^) +(y+y^) j 

(4) 

The normal component i s continuous through y = y. vidiereeis the 

longitudinal ccxirponent i s n o t , 

I f the equation for the pos i t ion of the wake streamline 
were known, i , e , i f we knew the r e l a t i o n between y. and x. 

over the wake, then by using the boundary condition t ha t the 
duct v/alls are streamline 

^ 1— (5) 
dx U + u • ^•^' 

equations 3 and 4 give a singular integral equation for the 
vorticity distribution Y(X.J ) • The integral equation will 

be singular since at the point considered on the duct or wake 
surface y = y and x « x., In section 8 of Appendix A 
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tliis problem is considered in slightly more detail, and it 
is shovm that even when the problem is simplified by assimiing 
that u is very small compered v/ith U, the vorticity in 
the wake is assumed constant, and that the vorticity distribu
tions representing the duct and v/ake lie along the lines 
y = + d, the integral equation beca.fies (A,30) 

ric/2 

V(x,d) = 

-' -c/2 

Y(X.,) 

kd" 
dx. 

1̂  
x-x^ 

(x-x.) +4d I •̂ "̂ l 
.(6) 

The equation is an extension of the equation 

01 
s(t̂ ) = t^ \ Pt ^ _i_ 1 ËhA 

! 
Ü-1 

2 3 
vrfiich SchrtJder and S?Jhngen have shov/n t o have the s o l u t i o n 

f (.) = - f j ^ 1' g(.) y 
L -1 

As yet (6) has not been solved, but it is believed that a 
solution may be possible following the method of Schxlfder 
and Stthngen, 

Assuming a slender duct, i.e. the duct chord large 
conpared with its width, with leading edges at x = 0, the 
longitudinal component of the perturbation velocity can be 
written 

i) just outside the duct and v/ake (A,35) 

Uo(x) = - 2Y(X) 1 - U'^) . 

vvO 

and 

Y(xjy.(x.) 

^ ^- Jo (̂ -̂ l) 
ax. (7) 

ii) just inside the wake (A,36) 

.(8) 

where i denotes the Cauchy finite principal part of the 
singular integral, 
The normal component can then be calculated from 

V = (U + u) dx 
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Furthermore, the vorticity distribution representing a 
duct can be found (section 3.'l.4-)» 

5*1 •2, The perturbation velocity in special cases 

To proceed further it is necessary to assume forms 
for the vorticity distributions representing the duct and wake 
streamlines, and to assume that the duct and wake have a chosen 
shape. Ordinary thin aerofoil theory applies only to aerofoils 
with small camber, and hence it is reasonable to suppose that 
the argument developed here VTLU apply only to a duct whose 
walls have small curvature and a wake which is approximately 
straight. Thus the chosen vortex distributions are assumed 
to lie on the parallel lines y. (x) = + d, vrfiere d is a 
constant, 

In Appendix A, section 4» the vortex distributions 
considered are 

i) a constant vorticity, of strength Y = Kper vrnit 
length, along the duct and its wake, 

ii) a linearly increasing strength of vorticity along 
the duct, and constant strength in the wake, i,e, 

Y(x) = f (x.f) ; - f ^ x ^ l 

Y^(x) = /<• ; X ̂  I 
and 
iii) a sinusoidal variation of vorticity over the duct 

and constant vorticity in the wake, i,e, 

Y(x) = KsinTf^Cx + f) • c _ ^ c 
, - 2 > ^ ^ ^ 2 

Y > ) = K ; x ^ f 

The assumption of constant vorticity in the wake does place a 
sligjit restriction on the solution since it implies, from (2) 
that V^ - Vg is constant. Now Ẑ p̂ = ^p(v2 - V^) is 

(to a first order) constant, and hence V- + V. is constant, 

Therefore, in the wake, we are assuming that V̂  and Vp are 

constants which is strictly only true if the wake streamlines 
are straight and parallel to the x-axis, VJhile this is not 
exactly the case figs. 3 and 5 show that it is very nearly so, 
If however the accuracy required demand it the variation in 
V^ and Vp due to the curving of the wake streamline can be 
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calculated by considering the balance betî een the centrifugal 
force and the pressure on the boundary streamline, A nev/ 
vorticity distribution can then be found to replace the constajit 
distribution assumed at first and the modified shape of the 
wake calculated. This iterative process can be repeated to 
any degree of acctoracy, 

The perturbation velocity components given by a 
constant overall vorticity distribution are, from (A,8,9)^ on 
the outside of the upper surface of the duct and v/ake 

%(-'̂ ) = i [f - '-•' ( ^ } ) - ^ ; 6 = 0 fc. x<-1 
'̂  ' c 

1 for x^- 2 

(9) 
on the i n s i d e of the upper su r face 

r A\ '< (T^ 4- -1 / x + c / 2 ^ } bK ,.r^\ 
u^(x,d) = ^ ; ^ + tan ( - ^ Z 1+ " ^ (10) 

and 
// I / r, ̂  \ 2 I 

(11) v(x,a) = - é icj 1. f^y 2% c ; ^ 

The normal component v(x) is continuous across the duct and 
wake, and infinite at the leading edge - a parallel v/ith thin 
aerofoil theory. It 81.-30 tends to zero far upstream and far 
dovmstream. It is seen that at x = + •>."• , where 

*^ 'v~ld-; = 2 ' 

u„ = 0 ; u. = K 

Now, at infinity, K = Vp - V. and hence the velocity on the 

jet side of the v/ake streamline is U + K = V. + (Vp - V.) = Vp 

and V. on the freestreara side. Also, far upstream at 

x = -i>?, 5 - 0 and hence, 

u = u. = 0 . 
o 1 

as required. Thus the conditions of the problem are satisfied 
by the solution found, 

Similar expressions for the other two assumed 
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vorticity distributions are considerably more complicated 
and are given in Appendix A, section 4.2 and 4.3» 

3,1»3» The shape of the duct and wake 

•When the components of the perturbation velocity 
have been found to a first approximation it is then possible 
to find approximately the shape corresponding to the assumed 
vortex distribution by using the condition that the surface 
of the duct and wake must be a streamline, i,e, 

dv _ V 
dx ~ U+u 

to give the slope of the profile at any value of x. The 
shape is then found by integration, 

These calculations have been performed in the case 
of the constant vorticity distribution and for the linearly 
increasing distribution. The corresponding duct shapes are 
shown in figs, 3 and 5 respectively, 

To obtain the second approximation shown in these 
figures the assumed vorticity distribution v/as taken to lie on 
the shape calculated before. The components of the 
perturbation velocity are then found numerically and the duct 
shape is re-calculated from them. This process can be 
repeated until the difference between tvro successive shapes 
is negligible, giving the correct duct shape for the assumed 
vorticity distribution, 

3.1 .4. The vortex distribution for a given shape 

In fig, 3 the duct shapes given by a constant 
vorticity distribution for both Vp/V. = 1,2 and Vp/V, = 1,3 

are shovm. It is seen immediately that the duct shape is 
different in the tvro cases, and thus we can infer that a 
given duct shape is represented by different vorticity 
distributions for different speeds, but it is only by a 
process of trial and error that a suitable vortex distribution 
can be found without recourse to numerical solutions of 
equations of the form of (6), Birribaum̂  has shovm that, for 
the finite duct with no wake (i,e, straight through flov/) three 
basic vorticity distributions can be used vrfiich give the 
shapes of a flat plate, a parabolic arc, and an S-shaped 
profile. In each case the vorticity at the trailing edge 
is zero since there is no wake, 

It is thought that the three vortex distributions 
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given in section 3.1.2 above give a good basis for calculating 
the shapes of ducts fran v;hich a jet is issuing. It must be 
remembered, hov/ever, that v/hatever combination of basic 
distributions is used, the vorticity at infinity dovm.stream 
must be that given by (2) where V^ takes the free stream 
value and Vp is the jet speed at infinity, 

If the duct is assumed slender then an e.xpression 
for the vorticity, representing the duct and wake, can be 
found explicitly. It is .•̂ hovm (A,41 ) that, if Q is the 

volume flow of fluid through tmit span of the duct, and U is 
the free stream velocity, then the vorticity at y(x) on the 
duct surface is 

Y(x) =Jfc> - U . O ( J ) (12) 
^ X 

where c is the length of the duct in the streamv/ise direction 
and y/c is small, 

As an example an arbitrary duct shape with wake was 
chosen (fig, 15) and the jet and free stream speeds taken such 
that Vp/V. = 1,25. Using the vorticity distribution given by 

(12) tlie duct shape corresponding to this distribution v/as 
calculated from equations 3» 4 and 5 and the result compared 
v/ith the assuvjed shape (fig, 15). The agreement between 
assijmed and calculated shape is close except near the leading 
edge v/hen, due to the nature of equation 4, a singularity is 
to be expected. 

3.1,5» The pressure distribution 

The pressxire distribution over the outside surface 
of the duct can be inmediâ tely calculated firan the perturbation 
velocity. Having found u and v as, for example, in (9) 
and (11), the difference in pressure betv/een a point on the 
duct surface and in the undisti^rbed stream can be expressed as 

2 1 2 2 
6p = P - PQ = ipU - ip I (U+u) + V 

car 
Sp 

ipU^ ~ ^ 
- ̂  (u^ + 2uU + v^J (13) 

The pressure distributions for the ducts represented by the 
constant vorticity distribution and the linearly increasing 
vorticity distribution are given in Figs, 4 and 6, In both 
cases the pressure distributions corresponding to the first 
and second approximations to the duct shape are shovm, 
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3.2, The staggered duct 

If the »-coordinates of the leading edges of the 
upper and lower thin aerofoils are different, but those of the 
trailing edges are the same, we have a staggered duct of a 
fonn often met in practice. This case is considered in 
Appendix A, section 7» where it is pointed out that there is 
no longer symmetry about the x-axis, and hence it is unlikely 
that the same vorticity distribution can be used in this case, 
even vdien the different limits of integration are taken, 
The perturbation velocity can be calculated as before and from 
it the shape and pressure distribution can be found, as for 
the symmetrical duct, 

3.3, The two-dimensional duct at incidence (Appendix B ) 

Although the duct is supposed syiimetrical about the 
xy-axis (fig, 7) the ccmplete flow is not symmetrical about a 
line drawn parallel to the vindisturbed stream. Thus it is 
unlikely that the duct shape, obtained by methods outlined in 
section 3.1 > vrf.ll be exactly symmetrical since the cross flow 
would be neglected. However, provided the incidence is small, 
such a solution vri.ll give some information about the flow 
round a duct with jet at incidence, 

TJhen a physically likely shape (B,7) is assumed for 
the shape of the walce, the integrals for the perturbation 
velocity are formidable. If, hov/ever, for small incidences 
the wake streamlines are ass\mied to leave the duct parallel 
to the free stream (fig, 8) the perturbation velocity can be 
cailculated as in Appendix B, section 3,3» and the shape and 
pressure distribution can be found as before, 

The equations for the components of the perturbation 
velocity both show logarithmic singularities at the trailing 
edge of the duct. These are due to the sudden change in flow 
direction, vrtiich is assumed at the trailing edge, 

4» The thin axi-symmetric duct 

The thin axi-symmetric duct at zero incidence is 
represented by a distribution of circular vortex rings the 
centres of y*iichlie on the z-axis, (the axis of symmetry) 

It is shown in Appendix C that the magnitude of 
the vector potential at a point P (z,r,0') due to the 

X fig, 9. 

http://vrf.ll
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distribution of vortex rings representing the duct is 

! 

'Jo 

v/here R(z') is the radius of the vortex ring at z = z* 
and F and E are elliptic integrals of the first and second 
kind respectively of modulus 

k2 = 4r R(z') 

(z-z')^+[r+R(z')l^ 

It is further shovm that the perturbation velocity at P has 
canponents 

I •' «J 

u(z,r) = i - iK(z') 
271: 

Oo 

^ R^(z')-r^_-(z-z')^ 
E dz' 

and 

v(z,r) = - — 

l^z-z')^ (R(z')+r)2> 

(14) 

2% 
K(z')(z-z') 

r 
t/o 

k^F -
2r R(a')E 

(z-z')^+[R(z')-rT 

da' 

[(z-z')^(E(2)+r)j 

...(15) 

)I 

From these the duct shape given in fig. 11 has been calculated, 

If a slender duct is assimied then it is shovm that the 
strength per \init length of the vorticity distribution is 

KM = r(z) = s?I) - " - ° (f) i(lÊ) 

As for the two-dimensional duct, which is not assiomed 
to be thin, the further solution of the problem of the non-
slender axi-symmetric duct proceeds by a.ssuming that a chosen 
vorticity distribution lies on a circular cylinder of constant 
radius. The perturbation velocity is determined along the 
duct surface, and the first approximation to the duct shape then 
calculated from the boundary condition of no flov/ across the 
surface, i,eo 

dr 
dz 

V 

U + u 

ilbre accurate approximations can then be found as in 3.1.3. 

file:///init
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Pig, 11 shows a duct shape calculated for the case 
Vp/V. = 0,3 v/hich corresponds to a ducted radiator. Constant 

vorticity has been assumed on the duct and in the wake. This 
solution is compared vidth an intake duct calculated by 
Kuchemann and Weber^ and shovm to be in close agreement. The 
corresponding pressure distribution is shovm in fig, 12, 
Returning to jet flov/ where Vp/V. ;̂  1 the duct shape and 
pressure distribution over the duct induced by the jet are 
given in figs, 13 and 14 for the cases of constant vorticity 
and VgA., =1.5 and 1.2. 

5, The extension to a duct with walls of finite thickness 

Previously the ducts considered have been formed 
either by two thin aerofoils or by a thin cylinder, and no 
consideration has been given to the thickness of the v/alls, 
Thick profiles can be represented by a distribution of 
sources and sinks superimposed upon the vortex distribution 
found previously. The calculation of the appropriate system 
of sources and sinks is conplicatèd, not only by the fact that 
their strength and location are not knovm on the duct, but 
also by the need to have a source distribution to represent 
the thickness of the v/ake, 

Kuchemann has suggested that the effect of thickness 
is of minor importance ccrapared v/ith the camber line of the 
profile (i,e, the shape of the corresponding thin profile), and 
that the thiclaiess is only important when determining the rate 
of flow through the duct, A correction to the velocity inside 
the duct is given as 

\ V - V = { -i^ - 11 /i - u + V 

a 

where V and V^ are the speed on the inner svirf ace of the 

thick duct (radius R ) and thin duct (radius R„) respect

ively, By inference we can use this to determine the speed 

inside a wake of finite thickness, 

A general theory for a two-dimensional finite duct, 
taking account of thickness, has been given by Wittich7, He 
considers a disturbance velocity potential Z(x,y) which must 
satisfy Laplace's equation 

9^ Z(x,y) = 0 
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and the bcxindary condition . 

^2 = » U ~ dn " ön 

over both aerofoils. He then deduces the appropriate source 
distribution cr(s) in the form of a singular integral 
equation, the integral being taken roiond tv/o closed curves» 
The restriction that the curves must be closed and finite 
prevents the method being used v/ithout considerable modifica
tion for a duct v/ith wake, 

Another method of including the thickness of the 
duct walls in two dimensions is to represent them, as for 
aerofoils, by the region of fluid at rest enclosed by a 
system of vortices arranged on the boundary of the duct and 
its wake. The determination of the actual distribution of 
vorticity representing the duct and wake is extremely 
difficult as again the integral equations are not solvable 
except by numerical methods. In a similar way, the thickness 
of an axi-symmetric duct can be considered by taking a dis
tribution of vortex rings on the inside and outside surfaces 
of the duct, 

In an attempt to correct the over-large values of 
lift on aerofoils found by the classical Joukowski circulation 
theory, Vv'̂ itosynski and Thccipson" have evolved a discontinuous 
potential. They recognise a wake behind the aerofoil bounded 
by the streamline '^ = 0 which is split at the trailing edge 
into two branches. In transforming the aeroül to a circle 
the walce region is excluded from the transformation. The 
corresponding complex potential is single-valued, and defines 
the flovT ccTjpletely, except in the wake region, A development 
of this theory may perhaps assist in the solution of the problem 
of a duct with wake from v/hich a jet is issuing, 

6. The effect of the flow in the mixing region 

The discussions in the previous parts of this 
section have dealt with only inviscid fluids. In practice 
viscous mixing processes in the v/alce v/ill affect the flov/ over 
the duct, lliioh. has been v/ritten on the mixing in the V7ake, 
but the effect of the mixing on the viscous flow about the 
duct has not yet been investigated, 

It is clear, hov/ever, that the viscous jet v/ill 
entrain some of the fluid frcci the surrounding stream, and 
thereby increase tlie nornnal canponent of the perturbation 
velocity near the duct trailing edge, Tliis will cause the 
now finite v/idth wake, or mixing region, to curve further 
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inv/ards. This increase in velocity also causes a reduction 
in pressure at the rear of the duct, and therefore the duct 
v/ill experience a drag due to the presence of the mixing 
region. Further, the reduction in pressure will tend to 
prevent separation of flov/ over the rear of the nacelle and 
to restrain the formation of a turbulent boundary layer over 
the nacelle, 

Viscous forces in the mixing region will also cause 
the jet to be slov/ed up and thus the assumption of constant 
vorticity in the wake, which was made earlier, is not 
realisable in practice, 

To cover the effects of viscosity it is necessary to 
extend the treatment given earlier in this section to consider 
a distribution of sinks in the wake, and also to include the 
effect of the boundary layer attached to the duct walls. The 
actual flow outside the jet can be regarded as very nearly 
equivalent to that produced by a system of sinks along the 
jet axis, the strength of the sinks being sufficient to induce 
the correct inflov/ at the jet boundary. Now the inflow 
velocity is equal to 

i) V ^ in tv/o dimensions 
' d X 

ii) — -T— in axi-symmetric flow, 

where 'f', *|' are the appropria-* e stream functions for the 
additional radial flow. The system of sinks has strength 
per unit length proportional to ö ̂ '/öx. Squire and Trouncer'̂  
have shovm that the required sink strength can be made up of 
a combination of constant and linear sink distributions taken 
over successive small lengths of the jet axis. The exact 
analytic solution for the source strength involves an integral 
equation, which is not readily solvable, 

If the inflow has been found fron the associated 
problem of the flow in the mixing region, the value of 

T-^ , -r-**' can be found immediately, Conparison betv/een 

these values and those calculated for a source distribution 
of strength m extending over a small length give the 
required value of the source strength at the appropriate 
point of the jet axis, 
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7, Concluding remarks 

The potential flow model for the jet flov/ from a 
nacelle is limited in its application by the method used in 
deriving it. The representation of a duct by a simple vortex 
distribution is only permissible v/hen the duct is thin, the 
difference in the speeds of the jet and stream is small, and 
the speeds are low. As explained in section 5> the thickness 
of the duct and wake lead to additional problems v/hich have 
yet to be investigated when the added ccanplication of the jet 
flow is included. Further, the effects of temperature and 
density difference between tlie jet and the free stream mast 
be included, 

Viscous effects, resulting in the development of the 
mixing region, have b̂ ên discussed fully in the literatixre 
(e,g, ref, 12;, A complete solution to the effect of the jet 
on the viscous flov/ around the body from vdiich it is issuing 
is, in fact, a union of the solutions of this paper and those 
of the problem in the mixing region. The viscous effects 
themselves can be represented by a system of sinks in the 
v/ake, the strength of the sinlc distribution being found from 
the velocity of inflow into the jet. An added complication 
is the presence, before mixing begins, of a developed boundary 
layer. This also must be considered and included in the 
determination of the sink distribution, 

Knowing the tenrperature distribution in the mixing 
region it should be possible to represent the flow of a hot 
jet by a system of heat sources distributed, in the first 
instance, along the jet axis, A first step in this study has 
been made by Squire13 who has calculated the temperature 
distribution in the laminar mixing region of a hot jet by 
considering the temperatiire field due to a single heat source 
at the centre of the orifice. It still remains to determine 
the effect of the temperature field on the flov/ round the body 
from v/hich the jet is issuing. Since the pressiore across 
the wake streamline must be continuous it should then be 
possible to allow for the effects of different density, 

The calculation of the forces and moments on the 
duct is ccciplicated by the problem of representing the change 
in the total head of the flov/ through the duct by a system 
of singularities. For a symiTietrical duct at zero incidence 
there v/ill be only a force in the free stream direction but 
at incidence there v/ill be lift and pitching moments in 
addition. The incidence case is further complicated by the 
cross flov7 arovind the duct and part of the wake. This has 
not been considered in Appendix B and further investigation 
is required to find the change in the vorticity distribution 
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necessary to represent the symmetrical duct at incidence, 
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APEENDIX A 

A potential-floY/ model for tv/o dimensional duct flow 

1 • The two-dimensional duct is considered formed by tv/o 
similar thin aerofoils, chord length c, placed symmetrically 
about the x-axis in a uniform stream parallel to the x-axis, 
Yfe shall assuirie that the flov/ through ithe duct is accelerated 
or slowed down by external action, so that there is a differexice 
in total head between the free stream and the flow from the 
duct, giving an inhonogeneous flow. This also implies that 
there is a wake in wiiich resides a distribution of vorticity of 
strength per unit length equal to the difference in velocity, 

2. The equivalent homogeneous flow 

To render the problem tractable, the flov? is made 
homogeneous by assuming the v/ake streamline replaced by an 
infinitesimally thin solid boundary, a continuation of the 
duct, upon which the vorticity lies. This wall supports the 
pressure difference between jet and stream, which roust then be 
ass-umed if the total heads are put equal without changing the 
velocities (see fig. 2 ) , 
Thus, if V. and V^ are respectively the speeds just outside 

and inside the wake streamline at any point of its length, the 
pressure difference supported by the solid boundary is 

Z^P = p., - P2 = ip(V2 - V^) (-l) 

This pressure difference is assumed constant along the v/ake, 
and the strength of the bound vorticiiy distribution in the 
wake replacing the solid boundeiry is 

Yw = ^ 2 - ^ 1 

3, The induced velocity 

2''̂ P ,„.(2) 
P(V^+V2) 

As in thin aerofoil theory, the tv/o thin aerofoils, 
and here the wakes, are replaced by vortex distributions. The 
distribution representing the upper aerofoil and wai:e is taken 
to be of strength Y(X.,) per unit length along the x-axis at 

(x. ,y^), and that representing the lower aerofoil and v/ake then 

has strength -Y(X^) at (x^,- y^). The vorticity is bound 
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on the aerofoil and wake boundary and hence y. = f(x>) . 

At any point z the canplex perturbation potential 
co(z) due to these vortex distributions is given by 

»(.) = t 
CO 

( 

J-c/2 

Y(X^) |logg(z-z.,) - logg(z-z^)/ dx^ 

.(3) 

where ẑ  = x^ + iy^ = x^ + iy.,(x̂ ) , 

dtü 
dz 

Now •— = - u + iv where u and v are the longitudinal and 

normal coniponents of the induced velocity. Thus, at any point 
(x,y) from (3) taking real and imaginary parts 

y - y-, y 
u = - 2% 

Ü 
Y(x^) — ^ ( ^ i 

-c/2 ' [(x-x^)^(y-y^)^ (x-x^)^(y+y^)^j 
.(4) 

V = 2% 

•){p 

Y(X^)(X-X^) 

U-.C/2 / (x-x^)^(y-y^)^ (x-x^)^(y+y^)^_ 
(^1 

.(5) 

As the aerofoils are thin, y vidll be approximately constant for 
all values of x, and hence to a first approximation we put 
ŷ  = d giving 

u = -fe I Y(x,)j ^^^ :L±±^1 a.̂  
'-̂  -c/2 {_(x-x̂  f^{y-df (x-x̂  f+iyWi 

(6) 

V = 
1_ 
2% 

Y(x^)(x-x^) j ^ ^ 
*^-c/2 f (x-x^)2+(y-d)2 (x-x^)2+(y+d)2f 

(7) 

U 
To proceed without further approximation it is necessary to assume 
vorticity distributions in terms of x and then the corresponding 
perturbation velocity components can be calculated, 
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4, The Pertvirbation Velocity in special cases 

4,1, Constant vorticity along aerofoil and vrske 

If the vorticity along the aerofoils and their walte 
is constant so that Y(X) =/^ along y = + d, then fro.m (7) 
the normal velocity component at any point x on the duct is 

V = 2% ] 
1 x-x 

dx, -
1 dx. \ 

) ! x-x, 1 ( , v2 , .2 ^ 1 / 
(-i-c/2 ^ . J-c/2 (-̂ -̂ l) -"^ J 

K 
and hence v = - -r—̂  log 

47̂  e 
1 + 2d 

'2/J 

,,.o»o.oae,&VO^ 

Thus V is infinite at the leading edge and tends to zero as 
X tends to infinity, 

The longitudinal component at any point on the duct 
is obtained by evaluating u on y = do 

The longitudinal coirponent of the perturbation 
velocity on the outside of the duct and v/ake is, from (6) 

H ( 
n !X-

- ~ ^ lim ' ( y - d ) 1 
/ / • 

2 ^ l | + 2 l | 
dx. 

y-*<i+} , . , -c /2 ^"^"^1^ +(y-^) ( ü - c / 2 ^ ^ " ^ i ^ ^^ 

i , e . 

u = -r— t a n 
2% 

x^-x 
2d 

a> 
K ( 

OQO 

c 2 . ^ ^^'^ 
2 y-^^-" I - -c . ,/2 (x -x^) +(y-d) 

2 <ax̂  

o r u = ^ J2 H- t a n -rrr- ( - " ^ 2d .(9) 

6 = 0 , f o r X < - -5-

5 = 1 , f o r X .^ - 'T 

and, j u s t i n s i d e the v/ake, t a k i n g the l i m i t as y tends t o d-

u = 27t )2* t a n ( - 2 d - / f + T ^ ' f o r X 7 - | , 6 = 1 

f o r X < - | , 6 = 0 

(10) 
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4*2, Linear vorticity distribution on the aerofoil 

As a second case, we consider a vorticity distribution 
such that 

Y(x,)=f ( x . f ) ; -f^x^ 

Y(X^) = « ; x ^ ^ 
^ 2 

i.e. the vorticity is linearly increasing in the duct and 
constant in the wake, 
From (7), the normal perturbation velocity canponent at a 
point X, on the duct is 

pc/2 

V = 2% c 

+ K 

c 
2 

r\oo 

(x-x^)(x^ + f ) 1 
2 , ,2 

_(x-x^) (x-x^) +4d' 
dx. 

=/2 

(x-x^) 
(x-x^) (x^x^) +4d^ 

dx. 

and after performing the integrations 

K fl / c NT 
27«3 [ 

1 + 4î  

L (x-g c\2 
2 

- 2 (x + f )logg 1 + hd" 

- 2d tan -1 
2 cd 

2 , ;,2 c 
_x + hd - ^ ^ 

f °̂ 2 

i 
.(11) 

The longi tudinal per turbat ion veloci ty ccanponent on the outside 
surface i s given, from ( 6 ) , by 

n f 2d/<. ̂  ex ^ p^^ p^,<^ 
^ { I - 7 — (x^ + 2) ^ 1 2d'<. dx 
27C 

£ (x-x.) + 4d 
" 2 ^ 

1__ 

c (x-x. ) + 4d 
2 ^ 

/ < . . 
2r. 

lim (y-d) 
y-:»d+ 

ic, / 2 1 / c \ , \ 
- (x^ + ^ )dx^ ^ ^ 

nOfy 

J-c/2 (x-xp2+ (y-d)' 

dx 
1 

c (x-x.) +(y-d) 
2 ' 
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or 

u(x) = ^ 

-t / °^i / c\ , , 2 

f -̂  * ^ K 2d . log^ 
~ { 2TO •'•"^e . .2 

(x - 1 ; .w^ 

K / c N. -1 2dc -— (x + — ; tan 
23tc ^ 2 ' 

« l (x l 
2 ) .n2 c 

where 6 = 0 for x ^ - -r 

6 = 1 f or x < - § . . (12) 

and j u s t ins ide the wake 

fx - %! 
„(.) . A I , ,̂ -1 (i^yi . | 1 ,.,̂  

2 
/ cX >̂ 2 
(x + 2-Ï +W 

(x - f ) +4i' 

- 2^ (̂  ̂  f) *̂ "̂  
2 ...2 c 

- + ^ ^ 6 2 + 2 

.(13) 

4.3. The vorticity distribution in the form of a sine function 

If the strength of vorticity distribution on the aerofoil 
is assumed to be proportional to a sine function of x v/e take 

Y(X^) = Ksin IJ^ (x^ + f)j ; - f .^x^ ^ f 

and 

Y(X^) = K ; x ^ f >(14) 

giving a vorticity distribution v/hich increases from zero at the 
leading edge sinusoidally along the chord of the thin aerofoil 
and is constant in the v/ake, 

From (7) the normal canponent of the perturbation 
velocity is 
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V = 2% 

JL 
2% 

',c/2 

- c /2 

{% / c\ / \\ 1 
^ ^ |2^(.^1 ^2} ^ ^ - ^ 1 ^ 7 — (x-x^) (x-x^) +4i 

«ix, 

=/2 

(x-x^) 
1 

(x-x^) (x-x^) +4d 
dx. 

= é °̂ge 1 . - 1 ^ 2 

2i/2Tt 

=/2 -

L c / 2 

7DC. "KX. 
s i n —JT" + cos 7;— ^c c. o (x-x^) 

(x-x^) (x-x^) •¥kd 
dx, 

Putting X . (~ 1 --̂  

D(X) = -̂ LSi f̂  (••X+2id) + Si f̂  (X-2id)J cosh f 

- I [ci f̂  (y-+2id) - Ci 1^ (.X-2id)n sinh •Kd 

c 

and 
(15) 

TOi E(X) = |-1 Ci f̂  (X+2id) + Ci 1^ (:^>2id)1 cosh ^ 

- I [si fj ("̂ +2id) - Si ^ (.•^-2id)l sinh f 

....r. (16) 
vrtiere X = X., - X , 

Si(u) = 

•lU 

s i n t , . U-' 
— T — d t = u - — 

u u 

-• o 
3 J.3 5.'.5 7i.7 

and Ci(u) = - cos t , . - u 
r- d t = log Y 

2i.2 
u u 

4J .4 6j ,6 

X Reference 10 
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ni 
where logg Y = 

1 - e - t 
dt -

- t 
dt 

( ; . 

= .57721(6) „ . . 

(D and E are seen to be r e a l functions of x , x . , and d) 

v becomes 

V = ^ log 
2 Ii 

+ — Z T 
2^275 ^ 

/ 7CX . %x\ 
(cos 2^ - s in ^ j 

K ( TOC 
+ — r - loos -rr- + 

2'/27t ^ 2° 

V̂  " 2/ „ 

f D ( f - x ) - B ( f . x ) . S i f ( l - f ^ . S i f G l - i ^ 

+ C i 7- ( - 1 - — ,, 
4 .̂ c y 

.(17) 

Item (6) , using the v o r t i c i t y d i s t r ibu t ion given i n (14), the 
normal canponent of the perturbation veloci ty j u s t outside the 
duct i s 

lW2 o^ l/^A^\ IL. /. 

( - -c /2 (x -x . ) " + 4d' 

L^ir^ 2d/<sin|^(x^.f)Jdx, j • 2/<d dx, ) 

^•c/2 (x-x . )^ + W'' I 

/ t ; c / 2 1/ . 1 7Ï / C \ f J 

j i <̂̂ L̂2̂  (̂ 1 -̂  riJ ̂ 1 - 1;̂  lim (y-d) ) 
y-^^-^ |vLo/2 (x-x,)2 + ( y - d ) 2 

p (;<: K dx. 

+ 
>o/2 (x-x,)2 + (y^d)M 

which reduces to 
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^ (( "KX . -KX •j [P(^ -x)-P(^ +x)J + (cos 2^ - snji —j 

I G(f -x)-G(f +x) I I 

K {% . -1 ^ "̂  2 ^ Y(X) . , 5, ^ „ ^ c 
+ 2^ (2 "̂  * ^ ~ 2 d " / ~ 2 ~ 5 ; 5 = 0 for X ̂ - -̂  

6 = 1 for X ̂  - "I 

( f + tan~^ 1 ^ ) - ^ 6 ; 6 = 0 for 

, a « o , . * f t a , , . V < 0 ^ 

where 

P(X) = i j Ci ~(X+2id) - Ci ~ (X-2id) j cosh ^ 

+ j Si 1^ (>:+2id)+ Si ~ ( X.-2id) | sinh 

c 

Tid. 

and 

G(9L)= i | s i f̂  (X+2id)- Si f̂  (;r.-2id)J cosh g 

- jci ^ (,^+2id)+ Ci 1^ (X-2id) j sijoh g 

ai .gain P and G are real functions of x, x., and d, 

5. The shape of the duct 

Having calculated the components u,v of the perturba
tion velocity on the outside of the duct and vTake for a given 
vorticity distribution, the slope of the duct surface can be 
found since 

^ = -L. (i9) 
dx U+U ^^^ 

v/here U i s the free stream velocity, 

This slope, integrated, gives the shape of the duct, 

As can be seen fran section 4 of this Appendix, the 
canponents of the perturbation velocity are complicated even 
for simple vorticity distributions, and an exact integral 
is unlikely to be found. Thus a n-umerical integration is 
suggested in all cases, 

To obtain a second approximation to the shape of the 
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duct, the values of u and v are found with tlie assumed 
vorticity shape, and the shape recalculated as shown above, 
Better approximations can be obtained by further iterations, 

There is, obviously, just one shape for a given 
vorticity distribution but, provided the total vorticity at 
the trailing edge is equal to the constant value of the 
vorticity in the v/ake, different shapes can be obtained by 
combining ary number of vorticity distributions over the 
chord of the thin aerofoils replacing the duct, 

6, The Pressure Distribution over the duct 

From the perturbation velocity components it is 
also possible to calculate the pressure distribution over the 
duct surface. If p is the free stream pressure and p(x) 

the pressure at any point x of the duct surface 

. - 2 2 
P(x) - P^ = - ip(u + 2uU + V ) 

or 

o 

)(x) - I 
— = r (u + 2uU + V ) ..e.«.«(20) 

ipU^ ~ u2 

The effect of compressibility can be included by 
using the result due to GlauertJ 

^ = ^ ...(21) 
°pi /1-ir 

where c is the pressure coefficient in the compressible flow 

c . is the pressaire coefficient in the corresponding 
•̂  incaapressible flow 

and M is the free stream ilach number, 

7» The ^staggered' duct 

If the x-coordinates of the leading edges of the 
upper and lovver aerofoils are different, representing a 
staggered duct, the perturbation velocity can still be 
celculated although here there is not the simplification 
wiiich previously was the case due to symmetry, 
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Ccnsider the duct formed by the upper aerofoil 

y = y-i(x), - C./2 < x :$ c/2 and the lower aerofoil 

y = - y2(x) ; - C2/2 ̂  X -.<c/2 where y, f | ) = ^2 ( f ) = ^ 

For such a configuration the perturbation velocity at any point 

(x,y) can be written in terms of its longitudinal and normal 
components as 

u = - 4- ) I v., (x, ) 
i-oo 

y - y, 1 
. , 0 0 

^^^-0^2 (x-x,) +{y-y^) 

dx, + Y2(x.l) -
y + y2 

dxi 

-Go/2 (x-x,) +(y+y2) 

.(23) 

and 
r 

(\ 'XJ 

1 ] 
V = —— • 

2%) 

Y., (x, ) (x-x, )dx, 

'^00 

Y2(x,)(x>-x,)dx, 

(c'-c,/2 (^-^i)^+(y-yi)^ J„c2/2 (^-xi)^+(y+y2)' 

.(24) 

where Y^(x,) and +Y2(xp) are the vorticity distributions 

representing the upper and lower thin aerofoils respectively, 
and y and y^ are functions of x. 

Since constant vorticity i^ is assumed in the wake, (23) and 
(24) can be rewritten as 

u = -

tc/2 
Y>, (x,) (y-y, )dx 

)c/2 
Y2(x.,)(y+y2)dx 

C''-c,/2 (x-x,)^(y-y,)' 
0 O 

/ -C2/2 (x-x,) + (y+yg) 

..Ot' 

2% 
y-y^ y'<-yr ) 

c/2 I (x-X,)2+(y-y,)2 (x-x,) +(y+y2) J 
K dx, 

.(25) 
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-, i ( Y-,(x,)(x-x,)dx, 0°/ Y2(x,)(x-x,)dx, 1 

:i-<;/2 (x-x,)2 +(y-y,)2 J-C2/2 (x-x, )2 +(yH.y2)2j 

•̂  27t 
(x-x,) ̂  p -r - 2 2 • '^l 

..c/2 j(x-x,) +{yy^) (x-x,) +(y+y2) j 

•> , , . , e * « « « o . ̂  <̂  o y 

y, and yp are not, in general, equal even in the v/ake, but 
as a first approximation, particularly in the v/al:e, y, and y2 
would be taken equal to a constant d, 

The shape of each side of the duct and v/ake can be 
calcula.ted as in section 5 of this appendix, and the pressure 
distribution as in section 6, 

8, The inverse problem 

8,1, In the previous sections of this appendix a vorticity 
distribution has been assumed, and the perturbation velocity 
components calculated, from which the shape of a duct and its 
pressure distribution have been found, A more direct approach 
is to take a given shape and fran it to find the vorticity 
distribution required to represeht the duct, 

8.2, The exact integral equation for the vorticity 
distribution 

The slope of the thin profiles making up the duct is 
given in terms of the perturbation velocity components as 

^ ^ -JI- (27) 
dx U+u ••••• ^ '^ 

NOT/, for a symmetrical duct at zero incidence, the normal 
component of the perturbation velocity at (x,y) is given in 
terns of the vorticity distribution as, (equation 5 ) , 

v(x,y) = ̂  Y(x, ) (x-x, ) / : ^ ^ - - ^ ^ j dx, 
.i _c/2 V^^~^1'' +(y"yi^ (x-x,) +(y+y,) / 
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where y = + y..(x,) i s the locus of the vo r t i c i t y d i s t r i bu t i on , 

Assume nov/ that the v o r t i c i t y d i s t r ibu t ion i s constant 
i n the vrake, and thus the effect a t (x,y) of the v/ake 
v o r t i c i t y i s 

> ^ / \ 
1 ) (x -x , ) I ^ 2 

3/2 V(x-x,) +(y-y,) 
2 ; ^ 1 

(x-x, ) +{y+y^) / 

(28) 

Substitutixog from (28) in to (27) v/e have 

'•(x,y) - v j x , y ) = - ^ 
w' 

' • ) 

..0/2 

- c /2 

^ 1 1 \ 
Y ( X , ) ( X - X , ) I -s - ^ - -g-- 'ojax, 

^ ^ \ , (x-x , )%(y-y , )^ ( x - x , ) S ( y + y , ^ ^ 

(29) and thus we obtain an integral equal for the vorticity distribu
tion representing the aerofoils in terms of the normal perturba
tion velocity given by the shape of the profile, and the knovm 
constant vorticity in the wake, 

As it stands (29) is not solvable exactly. If, 
hov/ever, we ass\ame the vorticity distribution to lie on the 
lines y.. = ± d, (29) can be simplified to 

=/2 

V(x,d) = v(x,d) - v^(x,d) = 

-c, /2 

Y(x,) 
4i 

_(x-x,)2+Z^2_ "-"1 

dx 
1 

x-x, 

(30) 

which, again, is not readily solvable, 

9. An approximate solution using slender body theory 

9.1. The perturbation velocity 

ConsMer a duct made up of two thin aerofoils 
y = + y(x), 0.$ X ̂ . c and their v/ake. At any point (x,y) 
the longitudinal perturbation velocity is, from (4) 

n<x> 
u(x,y) = - -s 

27t 
Y(x,) 

y-y. y+y. 

(x-x,)^+(y-y,)'^ (x-x,)'^+(y+y,) [ 
<ax^ 
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To obtain the longitudinal component of the perturba
tion velocity on the duct surface we must evaluate this integral 
as y > ŷ (x-i) 

i . e , 

u(x,y,) = ^ 

cr> 

Y ( X , ) 
2y, • , j y-y^ 

Trpi ^^'Tk ^^ \ Y(^I) 7—TT,—^2 
(X-X,) +4y, y-iy^^)^ (x-x,) + (y-y,; 

.(3-i) 
I t is immediately obvious that the second integral is a singular 
integral of the form encountered in thin aerofoil theory and hence 
(31) may be written 

u.:x,y,) =1^ j Y(x,) 
2y 

(x-x,) +4y, 
^ dx T i ̂ ^^^^ 
2 . _2 '^l ^ 2 / ,T7T2 

i e * s . , \ J ^ ) 

74 
the negative or positive sign being taken according as v/e 
consider the outer or inner surface of the duct, 

Nov/, taking the length of the duct as c, vre can 
express all the lengths as non-dimensional multiples of c in 
the form 

= Xc, X, = X,c and y, = eY(X,)c 

Substituting these into (32) we have 

^(X>Y) = ^ Y(X ) T^—Ö-7 <^. + 7 Y ( X ) / (1+e^ !J'(X) 
^ ^ (X-X,)2+4^^T^ ^ ^ / - '- -

. 1 
1 2^ 2 

which, expanded in a.scending powers of e, becomes 

u(X,Y) = ^ 
27C 

'li.-' 

y(̂ l)̂ ^^ f, _ 4 e V 
^ (x-x,)2 ) (x-x,)2 

4 e 2^2 I 
2 

(X-X,) ' 
dX, 

; 1 Y(X) ! 1 - -̂  e^|j'(x)] + I ê (Y'(x)"î  . . . J .„.(33) 

If v/e nov/ assume a slender duct, i . e . e small compared v/ith 
tuiity, the terms of third and higher order of e in (33) can be 
neglected giving the longitudinal conrponent of the perturbation 
velocity on the duct surface as 
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u(X,Y) = f 
Y(X )YdX _ r . „ 2 ) 

/ o + i Y ( X ) . 1 - ^ e 2 | Y ' ( X ) | / . . (34) 

Thus the actual longi tudinal canponent of th ê perturbat ion 
ve loc i ty on the outside surface of tlie duct and v/ake i s 

^ A o r >2" Y(X, )Y(X, )dX, 

L ? (35) 

and on the inside 

.(36) u. = u^ + Y(X) (1 - I e^ rY'(X)J^l 

neglecting terms of thirl and higher order in e, 

The normal component of the perturbation velocity 
can be found immediately since the flo\/ must be tangential to 
the duct surface, i,e, 

V = (U+u) g . 

9 ,2 . The stream f one t l ons and v o r t i c i t y 

The complex perturbation po ten t i a l for the f lu id 
motion about the duct i s 

r\ca 

^ = 2;^ Y(X, ) \ log (z-z , ) - log 
I ' o ^ 

(^-i^)/ dx. 

where z, = x, + iy , and y, = y , (x ) 

Thus tlie stream function for the perturbation i s 

cr 

1'=fe 

^' = fe 

^co 
, ^ ( I ^ ^ " ^ 1 ^ +(y-yi) 

Y ( X , ) ) log / ^ ^— dx. 
o C v̂  (x-x,)^(y+y,)' 

Y(X,) I log 
-1 ' 

( X - X , ) +(y-y,) ^ 

2 i 
I dx, ,„(37) 

(x-x,)%(y+y,)^ j 

It is seen that on the x-axis, 

^ = 0 .(38) 
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Thus the stream function for the flow about such a duct in a 
lonifonn stream in the x-di rec t ion of speed U i s 

- Uy + y 9 o..e.o(39) 

Nov/ on the duct surface, as on any strecanlinè, the streani 
function is constant and equsu., in magnitude, to half the 
volume flow (Q ) through the duct. Thus," from (37) £Ĵ i (39), 

o' 
on the duct surface 

u 

prx 

Y 
o 

(x-x,) +(y-y^) 
^ (^1^ ^°S -2- -2 ^ i 

(x -x , ; +{y+y^) 

or in dimensionless foivn, using (32) , 

Q. ^___ i''';^^^^ (X-X,)V(Y-Y,)2 
2Uec - " ^^^^ + 2̂ ûe j '-^^-^ - ^ ^^ ^^ ^^ rule = - ^(^) -̂  1 ^ ] Yv^)log ' '— dX, (kO) 

o (X-X,) +e'̂ (Y+Y,)'̂  

The in tegra l equation (40) can be so.tisfied by 

Q 
Y(X) = 2__ _ u + G(e) 

2ecY(x) 

giving the vortex distribution as 

Y(X) = 2J-U + 0(e) (41) 
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• i^J^NDIX B 

The two-dimensional duct at incidence 

1, The methods of thin aerofoil theory used in the 
previous appendix are here applied to a two-dimensional duct 
at incidence a to a uniform stream of speed U at infinity, 

The duct considered is formed by tv/o thin aerofoils 

y =±y(x), - c ^ x < . 0 } y(x) being alv/ays positive. The 

wakes upon which the vorticity distributions lie are not now 
mirror images of each other in the x-axis and hence we talce 
the v/alce streamline of the upper thin aerofoil y = y(x) to be 
given by 

y = y-,(x) O^x^ cc: 

v/here y(0) = y, (o) 

and t h a t of the lower a e r o f o i l t o be given by 

y = y2(x) 0 - r . x , < . '^•^ 

Y/here - y ( 0 ) = y2(0) 

such that y, (x) and y2(x) are both parallel to y = x tan a^ 

for large x, 

The configuration is shovm in figure 7« 

2 , The v o r t i c i t y d i s t r i b u t i o n 

2 . 1 , The v o r t i c i t y i n the v/ake 

For r ea sons given i n the previous ^ p e n d i x the v o r t i c i t y 
d i s t r i b u t i o n s on the two v/ake s t r e a m l i n e s are taken t o be 
c o n s t a n t and of equa l magnitude b u t of d i f f e r e n t s i gn i , e , 

Y , (x ) = - Y2(x) = K ; O^x^r^ (1) 

2.2, The vorticity representing the duct 

Previously a vortex distribution has been assumed and 
this has dictated the shape of the duct. If, hov/ever, distribu
tions of vorticity Y(X) and -Y(X) are assumed to lie on 
y = + y(x) and y = - y(x) respectively, then due to the 
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bending of the v/ake, the duct represented by these vorticity 
distributions will not in general be syr.r.ietrical» It is 
therefore assumed that the symmetrical duct is represented by 
distributions of vorticity Y>| (x) replacing the upper thin 

aerofoil and -Yp(x) replacing the lower, 

3. The perturbation velocity 

3.1, General expressions 

As in section 3 of Appendix A, the longitudinal and 
normal components of the perturbation velocity at any point 
(x,y) are 

1 I i (y-yJY.(x.) (y+yn)Yo(x.) / 
u = - l - 1 ) ^ ^ % ^ ^ ^ — 2 ) "^1 — < 2 ) 

2% 
• ' - C . 

)(x-x,) +{y-y.) (x-x,) +(y+y2) f 

and Hoc 

^1(^1) 
- T ^ — : 2 ^ 1 (^) 

/ 1 I \ 
V = •^ 1 (x-x,) ; . 

J-o |(x-x,)'^+(y-y,)'^ (x-x,)'̂ +(y+y2)'̂  f 

or, on expanding the vorticity distributions, 

u(x,y) = - 5-
2K 

2% 

i (y-y.j )Y., (x,) (y+y2)Y2(x^) ) 

N 2 2" " 2 2 »̂ ^̂ 1 
-c ((^"^1^ +{yy^) (x-x,) +(y+y2) { 

V.» 

[- {y~y^) {y+yn) ] 
r:—:2>^^ (̂ ) 

o )(x-x,) +(y-y,) (x-x,)^+(y+y2)^ [ 

Follcwing the assumptions of thin aerofoi l theory the v o r t i c i t y 
representing the duct v/alls i s taken as lying upon the l i n e s 
y = + d, - c ^ x ^ 0, 

Hence, (4) becomes 

u u , y ; - 2% I \f . 2 , ,^2 , x2 , . N 2 , ^ ' ^ I 
J _ c ' (^"^i^ +(y-^} (x-x , ; +(y+d; / 

2% 

r' 
t 

] 
(y-y.,) y+yr 

. ,o / (x-x , ) +(y-y^) (x-x,) +(y+y2) 
2 > <3x, (5) 
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and likewise (3) becanes 

V 1 i s ( *>'I("M) Yo(x,) ] 
v(x,y) = ^ (x-x,) 1^^ ^ ^-2^ 2 i ^ 1 

l(x-x,) +(y-d) (x-x,) +(y+d) \ U_G 

K. I , N i 1 1 / + v~ (x-x,) i ^ -^ g"' ^ i dx, 
J^ ) (x-x,) + (y-y,) (x-'X,) +(y+y2) 

Once forms for Y4(x) and Yp(x) ai"© knov.n the first integral 

in each of (5) and (6) are calculable vith no more difficulty 
than that incurred in section 4 of the previous appendix, 

3 • 2 o The shape of the v/ake 

To proceed with the integrals over the v/ake sane 
form for y. and yp must be assumed. Equation (18) shov/s 
that the walce streainxines will have very nearly exponential 
form. Also both v/ake streamlines must be parallel to 
y = X tan a for large x and be continuous v.ath their 

particular thin aerofoil, 
<3ŷ  dy2 

i.e. at x = 0 y, =d; y2=-d; ^r=d]r=° 
. .P -I «^yi <3y2 and for large x -z— = i — = tan a ^ dx dx o 

The simplest form for y. and y ^ fulfilling these conditions 
is 

y, = tan a» 1_2 •*• ̂  " U "̂  *̂  

y„ = tan a le + x - 1 : - d ,,,,«•...,,,(7) 

and, subs t i tu t ing from (7) in to the second in t eg ra l s of (5) 
and (6 ) , we have in tegra ls of tlie forr. 

DfX> •{ - X , ~, 
y - d - tan a j _ e +x, -1 j 

., ^ (x-x,) -i^_d+tan a^(e~^Ux,- l ) -yj 

The integrals over the v/ake can be simplified by 
assTJming that the v/ake streamlines are straight and parallel 
to the free stream direction. Thus we take 
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y. = d + X tan a *'1 o 

yp = -d + X tan a .(8) 

and the wake integral in (5) becomes 

fy-d-x,e^ y + d - X 1 o 
j } ^1 ^ |(x-x,) +(y-d-x,0^)'' (:J:.X,) +(y+d-x,ê )'=̂  j 

• o a o m » * e »•a a \y J 

v/here 6 = tan a . 
o o 

The idealised configuration is shov/n in figure 8, 

3,3. The perturbation velocity for the idealised duct 

If we put 

A = 1+9^ 

B =-2(x+e^ Qr-dj j ; B' = -2(x+e^Ly+dj) 

C = x^+(y-d)^ ; C' = X +(y+d)' .(10) 

(9) becones 

0^x,-(y-d) 
—2 -ax 

^ Ax,+Bx,+C 

0 •-:'•' 
9pX, -(y+d) 

j^Ax^+B'x,+C' 
dx. 

where 

and 

T = ) - ( y - d ) - - - ^ ( 

^ l o g ^ § T H - T - T ' 

2A 

dx 1 

Ax^+Ex.+C o 1 1 

T'= i-(y+d) -

! Ü 

^\)r 1̂ 
2 ^ j J ^ A x f + B ' x , ^ 

Now B -̂4AC = 4 | x+6^(y-d}i - 4(1+6^) x^+(y-d)^ 

= - 4 [e^x -(y-d^r 

.(11) 
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and is thus essentially negative or zero, 

Thus (ref, 10) for B -4AC negative i.e. y not on the wake 
streamline 

BO 

T = 
e^x - fy-d) 

7Ï . - 1 

2 - tan 
B 

V4AC-B^J 

and 
-(y+d)-

B'e 
c 

2A 
6 X - (y+d) 

7C , - 1 
•2 - tan B' 

V'W'-B'^ 

• »«.o\ '^/ 

Thus fran (9), (IO), (II) and (12) the v/ake integral becomes 

, -1 ^-^^oH , -1 ̂ -^QOLH 
tan tan 

-0 2 , ,s2 

—2^ log ^ +(y-^) + J L 
1+0 ® x^+(y-Hi)^ 1+0^ 0 x-(y-d) ^o^ly^^ 

% X 
and which, when 0 = 0 and y=d reduces to -p + tan p, 

agrees with (A9) and hence the longitudinal coniponent of the 
perturbation velocity is, for the simplified wake 

u(x,y) = - 2;̂  

'O 

-c 

r(y-d)Y,(x,) (y+d)Y2(x.,) ) 
I 
/ (x-xJ + (y-d) (x-xj +(y+d)'̂ j 

2; ^1 
1̂- 'V 

/<- i X 
5 — ;tan a log —5 p 

27;(1+tan a^) j ® x +(y+d)'^ | O^x-(y-d) 

- f A \ ^ r ^ x+6 (y-d) 

- tan 
_, x+ö^(y+d) 

x0 -(y+d) 

.(13) 

Similarly, the integral over the wake in (6) becomes, using 
(8) and (IO) 

1 1 

ü< 
(x-x,) 

Ax. + Bx. +C Ax. +B'x. +C' 
1 1 1 1 

dx 1 

which is equal to (ref, IO) 
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. 2 / TV2 2 ( X + —) 

2A -^^^e 2 . .x2 ,• ~ 
X +(y+d) ,;^^^ _ ^2 

TC , - 1 B 
•g - t a n —— / 2 

vV\C-B > 

^f-li)-
/ 4 A C ' - B ' ^ 

7ï .u -1 B' - - t a n n 
/4AC'-B»2 

A 2 ^ ^v2 0 ; , x+0 (y-d) 

2 ( 1 + Ö ; ) x%(y+d)^ 2(1+©;) L O^x-(y-d) 

- t an 
_., x+Ö^(y+d) 

0^x-(y+d)_ 

and hence the normal component of t h e p e r t u r b a t i o n v e l o c i t y i s 

. ^ 1 f . s( Yi(x,) Y2(x,) ") 
v(x,y)=2;̂  I (^"l)L, i / .^2-: J . .̂ 2 ̂  ^1 

'.i -c 
f ( x - x , ) +(y-d) ( x - x , ) +(y+d) ? 

/<. 

47c(l+tan a ) 

T X +(y-d) . log - p - ^ ' ^ ^ — ^ - t a n a e ^ / -,\ii o _ X +(y+d; 

f . x+tan a^(y-d) . x+(y+d)tan a ) 
1 tan"̂  2 _ tan"̂  ^ ) 
/ X tan a -(y-d) x tan a -(y+d)J 

! (14) 

If y lies on the wake streamline y = d + x tan a , B - 4AC 

is zero and hence 

T = - 1 (j-ü) * 4 r j .(15) 

T' remaining u n a l t e r e d , 

Thus 

u(x,y) = - "5 
2% 

)o r { (y-d)Y.,(x,) (y+d)Y2(x,) ) 

,. _^ 1 (x -x , )2+(y-d)2 ( x - x , ) ^ ( y + d ) 2 / "^ 

K 

27c(l+tan a^) / 2 • J * - % l°Be ^ ' ^ * * -" ' 
X + (y+d) ' x0Q-(y+d) ^ 

xQ^+(y-d) I 

x+0^(y-d) i J 
. . ( 1 6 ) 
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Also, 

v(x,y) = ^ 
2% 

\0 

(x-x ) f—II^^ ^2^^ 
' '"' '^ )(x-x,)2+(y-d)2 ' (x-x,)^+(y+d)"j 

2 / -^1 

- c 

K. - ^ I log ^^•^Ny- / - - tan a _; — -
47ï(l+tan a^) i x +(y+d) ' x+0 (y-d) 

f'xÖ^+(y-d) _, x+0^(y+d) 
+ tan ••" 

x0 -(y+d) 

o o « » o o o c o „.0(17) 

Similarly u(x,y) and v(x,y) can be calculated when y lies 
on the lov/er wake streamline in vdrLch case B'2 - 2fAC' will be 
zero, 

4, The duct shape 

The duct shape is found from the modified boundary 
condition over a body at incidence 

dv _ V + U sin g 
dx ~ TT 

u + u cos a 
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APESITOIX C 

The /oei-symmetrie Itent in Î otential Flow 

1. The axi-symmetric duet is represented by a siorf ace 
distribution of vorticity made up of an infinite number of 
coaxial circular vortex rings of radius R and strength Y 
per unit axial lengtho Both R and Y ^^^ functions of the 
axial distance z of the ring from the li.p of the duct, 
Reasoning on parallel lines to that given in sectiorî  -] and 2 
of appendix A shov/s that the vorticity" extends into the w.-3ke 
and that the equivalent homogeneous flow about the duct and 
its wake can be represented by a semi-infinite distribution of 
coaxial vortex rings, (See fig, 9). 

2, The circular vortex ring 

Consider a circular vartex I'ing of radius R and 
strength l\ , such that the normal through the centre is the 
z-aod-s of cylindrical polar coordinates x,r,^. Consider 
also the point P (x,r,0) J see fig, 10c 

-* 

In cases of axial symmetry the vector potential ^ 
at P, as defined by Clebsch, has only one canponent v/hich is 
along the normal to the axial plane (i.e, the plane through the 
axis euid P), The unit vector along this normal is n« The 
magnitude of the vector potential is 

0 = ̂ .© 

y o 

R cos {^0) 
2 

PQ 
d̂ ' 

where Q i s the point (O, R, 0^)» 

\7riting 0* - jẐ  = 2 ' ^ 

r;.̂  _ ÜR 
TC 

hV2 
(2 cos^X-l)d 

o o") (1~k °os .'C)-̂  
k'̂  / 

. . (1) 

where k^ = 4rR 

z^+(r+R)^ 

.(2) 

file:///7riting
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v/Mch can be revaritten as 

r\ K {BY f2-k^ ^ 2 .^1 /^s 

^ = 2^ [rj ;;-ir^-k^f ""^^^ 
where P and E are complete e l l i p t i c in tegra ls of the f i r s t 
and second kinds respectivelye 

—v> ^ — ? 

The vector ve loc i ty q = u r + u z i s given by 

q" = ciirl (0 if) 

or Q 
u = -r 

1 d u = — dz * "z r or ^ ( r Q ) ; u^ = 0 (k) 
V 

3. The vector potential for the duct and v/ake 

Consider now the duct of length c and wake consisting 
of a semi-infinite distribution of such circular vortex rings 
stretching from zero to infinity. Tlie magnitude of the vector 
potential at P(z,r,0̂ ) due to the duct and v/ake is, from (3) 
by integration 

d o /, J 

v/here nov/ k = 4 r R(z') 

(2-z')^+ jr+R(z')j^ 

and hence E and F are functions of z', 

4. ' The Perturbation Velocity 

The axial canponont of the perturbation velocity 
at P is, from (4) and (5), 

^^(zjr) 1_ 
2% 

105 

K(z«) 
Jo 

P 
dz' ^R^(z')-r^^-(z-zj£^3 

(z-z')^+!R(3')-rJ J|(z-z')^+[R(z')+rJ 

; . . . . (6) 

— ^ )2 

} ( 
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and the r a d i a l component i s 

u (z,r) = - -
2% 

-kh-

O f ^<(z')(z-z') l^2^^_ 2 + R(z')E 

L (z-z')^+(r-R(z-)) 

dz« 

((z-z')^+LR(z')+rJ ̂  
2 ^ ..(7) 

If P is taken on the duet surface then the mean 
axial velocity (u ) is found by putting r = R(z) in (6) and 

z 
interpreting the improper integral so obtained by its Cauchy 
principal part. It has been shown (ref, 11) that 

(-J 
•=R(z) 

.(8) 

where 

iV2 

D = 
w 

'.,' o 

2 
sin 0 

1 -
i2 . 2 ^ k sin 0 
V,- '̂  

00 

and k2 = 
V 

ZiĴ (z)R(z') 

I 2 
..(9) 

(z-z») +|H(Z')+R(Z)J 

for a finite thin duct of length c 

This result can be generalised to the case of a duct with wake, 
Since the vortez tube representing the wake is a stream tube 
we may v/rite, for the duct and v/ake, 

(S) ,,(10) 

The actual longitudinal velocity is obtained by adding the 
contribution due to the local vorticity 

i,e, ± iK/[i •^i'(-)]'] 



-45-

the negative sign referring to the flow outside the duct and 
T/ake, and the positive to the inside, 
For the outside stirface, assuming a slender duct, (i.e© R(z) 
is small conrpared v/ith c), we have, by expanding the elliptic 
integrals and taking the limit as z ~~^z', 

(̂-i ) 

^ r=R(z) 

b- ^ 2 
13 1 T R(z) - I f + -r- log 

2c - dz 
(R2(Z)/<(Z)) +o(f]''(ll) 

The normal canponent of the perturbation velocity for a slender 
duct is 

(u ) ^ j(u^u) ^} 
^ -nf \ ' Z^ 02, 

^=^(^) ^ J r=R(z) 

..(12) 

5* The vorticity distribution 

The vorticity distribution representing a slender 
a:::isymraetric duct and v/ake can be found by an extension of the 
method used in ref, 11 for a slender finite duct v.ithout v/ake, 

The Stokes' stream function for the semi-infinite 
vorticity distribution in a uniform stream of speed U parallel 
to the axis of symmetry is 

l|;(z,r) = - U r 

•\Cf. 

2% 
f(z-z')W(z')^r^ p . Ejj(z-z')yR(z')+r/^pY(z')dz' 

•-o/ (z-z')2+!R(z')+rl {"- ^ -̂  -̂  

Nov/ the Stokes' stream function at any point (z,r) is related 
to the flux or volume flav Q per unit time througii a circle 
of radius r normal to the axis of sjmmetry 

i,e, t i ^ = - -^ 
i 271 

On the surface of the duct ^ niust be constant since the duct 
surface is a stream-tube. Hence, the boundary condition is 
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Q. r̂ '~ 
27t ^ 2 * 271 t 

J o 

(z-z')W(z')^^|j^^_^,)2^^2^^.j]^^^^,)^, 
(z-z')^+4R^(z') 

which, for a slender duct , reduces to 

- I - k 
27t I " w v/ 

!.-0 

kfc , J R ( Z ) R ( Z ' ) | Y(2')d2' =ö7-iUT^^(2) . . . - ( 1 3 ) 27C 

where C = 
v/ 

\%/2 2 2 
s i n 0 cos jẐ  djZf 

Ü o (l-k,sinV)^^^ 

and - S k i 
c 

and i s small, 

Equation (13) i s s a t i s f i ed by 

Q 
Y(Z) = - g ^ - U + 0(e) .(14) 

,2., vdiere S(z) = 7tR (z) i s the cross sect ional area of the duct 

at (z,R(z) ) , 
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FIG. 5. DUCT SHAPE FOR LINEARLY INCREASING VORTICITY ON DUCT 
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FIG. 8. THE IDEALISED TWO DIMENSIONAL DUCT AT INCIDENCE. 
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