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Both the hopcount HN (the number of links) and the weight WN (the sum of the weights

on links) of the shortest path between two arbitrary nodes in the complete graph KN with

i.i.d. exponential link weights is computed. We consider the joint distribution of the pair

(HN,WN ) and derive, after proper scaling, the joint limiting distribution. One of the results

is that HN and WN , properly scaled, are asymptotically independent.

1. Introduction

Consider the complete graph KN with N nodes, and where the N(N − 1)/2 links are

equipped with independent, exponentially with parameter 1 distributed random variables.

We take two nodes of KN at random and construct the shortest path between the two

nodes. The shortest path minimizes the weight of all paths between the chosen two nodes.

The weight of a path is the sum of the weights of its constituent links. This shortest path

model appears in epidemic modelling [2, Chapter 3], in telecommunications [9, Chapter

16], in percolation [4] and in combinatorics [8].

We let HN denote the number of links of this shortest path and let WN be its weight.

The generating functions of HN and WN are given by ([10, 6]; see also [9])

E[sHN ] =
N

N − 1

(
Γ(N + s)

N!Γ(x+ 1)
− 1

N

)
, (1.1)

and

E[e−tWN ] =
1

N − 1

N−1∑
k=1

k∏
n=1

n(N − n)

t+ n(N − n)
, (1.2)

respectively.

In this paper we focus on the joint generating function E[sHNe−tWN ], and its asymptotic

properties. Interestingly, we find that WN and HN are asymptotically independent
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(Theorem 3.1), and this matches nicely with one of our earlier findings [7], that the

hopcount and the end-to-end delay of an Internet path are seemingly uncorrelated. We

give two different proofs of the asymptotic behaviour of the scaled random variables WN

and HN: the first proof is contained in Section 3, the second one in Section 4. The second,

non-probabilistic proof is the shorter one. Finally, we compare the asymptotic law of (the

scaled) WN with earlier results of Janson [8].

2. The joint distribution of the weight and the hopcount

Theorem 2.1. The joint generating function E[sHNe−tWN ] is given by

ϕ(s, t) = E[sHNe−tWN ] =
1

N − 1

N−1∑
n=1

( n∏
k=1

k(N − k)

t+ k(N − k)

)
· Γ(n+ s)

n!Γ(s)
. (2.1)

Proof. The length and the weight of the shortest path between two random nodes is in

distribution equal to the same quantities of node 1 and a random node taken from the

set {2, 3, . . . , N}. We denote the label of this random node by Z , which consequently has

a uniform distribution over the above-mentioned discrete set of size N − 1. Conditioning

on the end node hence gives

ϕ(s, t) =
1

N − 1

N−1∑
n=1

E[sHNe−tWN |Z = n+ 1].

In [4, pp. 227–228], a description is given to calculate the weight of the shortest path in

the complete graph KN , by adding nodes one by one according to a pure birth-process

with birth rate λk = k(N − k). Moreover, after the birth of the kth node, the distance of

this node to the root (node 1) is determined by attaching this node independently to a

uniform recursive tree (URT). From this construction, we find

E[sHNe−tWN |Z = n+ 1] =

n∏
k=1

k(N − k)

t+ k(N − k)
·
n−1∑
l=0

sl+1 E[X(l)
n ]

n
, n = 1, 2, . . . , N − 1,

where the product
∏n

k=1
λk
t+λk

stems from the n different steps in the birth process to reach

state n, and where X(l)
n is the number of nodes in the level set l of an URT of size n.

The basic recursion for these level sets is given by

E[X(l)
n ] =

n−1∑
m=l

E[X(l−1)
m ]

m
,

from which the probability generating function follows, as in [10, Lemma 1, p. 19]:

n−1∑
l=0

slE[X(l)
n ] =

Γ(n+ s)

(n− 1)!Γ(s+ 1)
.
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Table 1.

N simulations ρ(WN,HN ) r.h.s. of (2.4)

10 0.35 0.286814 0.487984

20 0.36 0.324335 0.427821

30 0.36 0.334539 0.401511

50 0.35 0.339257 0.374380

100 0.35 0.336218 0.345057

150 0.34 0.331327 0.330801

200 0.34 0.326995 0.321695

400 0.32 0.314861 0.302515

Together this yields

E[sHNe−tWN |Z = n+ 1] =

n∏
k=1

k(N − k)

t+ k(N − k)
·
n−1∑
l=0

sl+1 E[X(l)
n ]

n

=

n∏
k=1

k(N − k)

t+ k(N − k)
· Γ(n+ s)

n!Γ(s)
,

and hence (2.1).

Obviously, putting s = 1 in (2.1) yields (1.2). On the other hand, using the identity

m∑
j=n

(a+ j)!

(b+ j)!
=

1

a+ 1 − b

{
(a+ m+ 1)!

(b+ m)!
− (a+ n)!

(b+ n− 1)!

}
, (2.2)

we find that

N−1∑
n=1

Γ(n+ s)

n!Γ(s)
=

1

Γ(s)

N−1∑
n=1

(n+ s− 1)!

n!
=

1

Γ(s+ 1)

{
Γ(s+N)

(N − 1)!
− Γ(s+ 1)

}
,

and hence that

ϕ(s, 0) = E[sHN ] =
1

N − 1

{
Γ(s+N)

Γ(s+ 1)(N − 1)!
− 1

}
,

which is, indeed, (1.1).

As shown in the Appendix, the expectation of the product HNWN is

E[HNWN] =
1

N − 1

((N−1∑
k=1

1

k

)2

−
N−1∑
k=1

1

k
+

N−1∑
k=1

1

k2

)
. (2.3)

For large N, we observe that E[HNWN] = log2 N−logN+O(1)
N

. The asymptotics of the correl-

ation coefficient ρ(WN,HN), derived in the Appendix, is

ρ(WN,HN) =
π

√
2

6
√

lnN
+ o

(
(lnN)−1

)
, (2.4)

which clearly tends to zero for N → ∞. Table 1 compares the different expressions that

we obtained for ρ(WN,HN).
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3. Limiting behaviour

Our main goal in this section is the limiting behaviour of the joint distribution of WN

and HN , after proper scaling. Since our probabilistic method can be explained best by

first analysing the asymptotic properties of the marginal distribution of WN , after proper

scaling, we start with the latter. This introduces only a small amount of additional work.

Thereafter, we compare this marginal with a result of [11], where the limit of NWN − lnN

was computed by Laplace inversion. We also include a short derivation which shows that

the random variable HN is in the domain of attraction of the normal distribution, i.e.,

(lnN)−1/2(HN − lnN) converges to a standard normal random variable.

The idea is to condition on the random destination node Z introduced in Section 2.

Let AN = Z − 1, be uniformly distributed over the set {1, 2, . . . , N − 1}; then

WN = τ1 + · · · + τAN ,

where τ1, τ2, . . . is a sequence of independent exponentially distributed random variables

with τk having parameter λk = k(N − k), and where AN is independent of this sequence.

Indeed, with this interpretation

E[e−tWN ] = E[e−t
∑AN

k=1 τk ] =
1

N − 1

N−1∑
k=1

E[e−t(τ1+···+τk)] =
1

N − 1

N−1∑
k=1

k∏
i=1

E[e−tτi ],

which equals the right-hand side of (1.2), since

E[e−tτi ] =
λi

t+ λi
=

i(N − i)

t+ i(n− i)
.

We now follow the interpretation of [5, example on p. 118]. Define

Zk = (N − k) · τk. (3.1)

Then Zk has an exponential distribution with parameter k. We claim that for each sequence

MN → ∞, satisfying MN = o(N),

MN∑
k=1

(Nτk) − lnMN =

MN∑
k=1

(
NZk

N − k

)
− lnMN = (1 + o(1))

MN∑
k=1

Zk − lnMN
d→ V , (3.2)

where V denotes a Gumbel random variable, i.e., a random variable with distribution

function

P
[
V � t

]
= Λ(t) = exp(−e−t).

Indeed (3.2) follows from the classical extreme value theorem (see, e.g., [3]) for independent

exponential random variables ξ1, ξ2, . . . , ξM with mean 1, for which the spacings

ξ(i) − ξ(i−1), i = 1, . . . ,M (ξ0 = 0)

are exponentially distributed with parameter M − i+ 1, as follows:

M∑
k=1

Zk
d
=

M∑
k=1

(ξ(i) − ξ(i−1)) = ξ(M) = max
1�i�M

ξi.

This proves (3.2) since, by the mentioned extreme value limit theorem, ξ(MN ) − lnMN
d→ V .
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Writing τ∗
k = τk − E[τk], we get, for any 0 < δ < 1,

lim
N→∞

P(NWN − lnN � t) = lim
N→∞

P

(
N

AN∑
k=1

τk − lnN � t

)

= lim
N→∞

P

(
N

AN∑
k=1

τ∗
k − lnN +N

AN∑
k=1

E[τk] � t

)

= lim
N→∞

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

AN∑
k=1

E[τk] � t

)
, (3.3)

where the replacement of N
∑AN

k=1 τ
∗
k by N

∑Nδ

k=1 τ
∗
k in the last line is justified by Chebyshev

inequality [9, p. 88] because, using conditioning on AN ,

Var

(
N

AN∑
k=Nδ

τ∗
k

)
= N2

E

[ AN∑
k=Nδ

1

k2(N − k)2

]
=

N2

N − 1

[N−1∑
n=1

n∑
k=Nδ

1

k2(N − k)2

]
→ 0,

where the convergence to 0 follows by

N−1∑
n=1

n∑
k=Nδ

1

k2(N − k)2
=

N−1∑
n=Nδ

n∑
k=Nδ

1

k2(N − k)2
=

N−1∑
k=Nδ

1

k2(N − k)2

N−1∑
n=k

1

=

N−1∑
k=Nδ

1

k2(N − k)
=

1

N2

N−1∑
k=Nδ

1

k
+

1

N2

N−1∑
k=Nδ

1

(N − k)
+

1

N

N−1∑
k=Nδ

1

k2
= o

(
N−1

)
.

By the law of total probability,

rN = P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

AN∑
k=1

E[τk] � t

)

=

N−1∑
j=1

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

AN∑
k=1

E[τk] � t
∣∣∣AN = j

)
Pr

[
AN = j

]

=
1

N − 1

N−1∑
j=1

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

j∑
k=1

E[τk] � t

)
.

Replacing the latter sum by an integral gives

rN =
1

N − 1

∫ N−1

0

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

u∑
k=1

E[τk] � t

)
du+ Δ(N)

=
N

N − 1

∫ N−1
N

0

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

αN∑
k=1

E[τk] � t

)
dα+ Δ(N).

Taking the limit N → ∞ yields

lim
N→∞

P(NWN − lnN � t) = lim
N→∞

∫ 1

0

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

αN∑
k=1

E[τk] � t

)
dα, (3.4)
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provided that limN→∞ Δ(N) = 0. Before proceeding with the right-hand side of (3.4) we

prove that limN→∞ Δ(N) = 0. Indeed, the random variable AN has a uniform distribution

on {1, 2, . . . , N − 1}, so that AN/N converges in distribution to a uniform (0, 1) random

variable. Hence, for any bounded and continuous function g on (0, 1), we have

∫ 1

0

g(α) dα = lim
N→∞

N−1∑
n=1

1

N − 1
g

(
n

N − 1

)
= lim

N→∞

N−1∑
n=1

g

(
AN

N − 1

)
P(AN = n). (3.5)

Equality (3.5) on its own does not justify the conclusion limN→∞ Δ(N) = 0. However, it

does justify this conclusion whenever, for α ∈ (0, 1), the function

gN(α) = P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

αN∑
k=1

E[τk] � t

)

converges pointwise to some bounded and continuous function g(α), and this is demon-

strated implicitly in the further steps of the proof below, with g(α) = Λ
(
t− ln α

1−α
)
.

Therefore, we are allowed to proceed with the right-hand side of (3.4).

By the dominated convergence theorem [9, p. 100], bounding the involved probability

by 1,

lim
N→∞

P(NWN − lnN � t) =

∫ 1

0

lim
N→∞

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

αN∑
k=1

E[τk] � t

)
dα

=

∫ 1

0

lim
N→∞

gN(α) dα.

Since τ∗
k = τk − E[τk],

N

Nδ∑
k=1

E[τk] =

Nδ∑
k=1

N

k(N − k)
=

( Nδ∑
k=1

1

k

)(
1 + O(Nδ−1)

)

= δ lnN + O(Nδ−1 lnN),

and

N

αN∑
k=1

E[τk] =

αN∑
k=1

(
1

k
+

1

N − k

)
= ln αN − ln(1 − α)N = ln

α

1 − α
.

We obtain

N

Nδ∑
k=1

τ∗
k − lnN +N

αN∑
k=1

E[τk] = N

Nδ∑
k=1

τk − δ lnN + O(Nδ−1 lnN) − lnN + ln
α

1 − α
.

Applying (3.2), with MN = Nδ = o(N), finally gives for each fixed t

lim
N→∞

gN(α) = lim
N→∞

P

(
N

Nδ∑
k=1

τ∗
k − lnN +N

αN∑
k=1

E[τk] � t

)
= P(V + ln

α

1 − α
� t) = g(α),

and hence

lim
N→∞

P(NWN − lnN � t) =

∫ 1

0

g(α) dα =

∫ 1

0

Λ

(
t− ln

α

1 − α

)
dα. (3.6)
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In [11], the limit of NWN − lnN was derived by first computing the limit of the scaled

transform (1.2) and then applying the inversion theorem for transforms. We verify that

our result (3.6) is identical to [11, (10)]. Integration by parts and subsequently, a change

of the variable u = e−t

1−α , yields

∫ 1

0

Λ

(
t− ln

α

1 − α

)
dα = e−t

∫ 1

0

α

(1 − α)2
exp

{
−αe−t

(1 − α)

}
dα

= e−t
∫ ∞

e−t
uet(uet − 1) exp{−e−t(uet − 1)} e

−t

u
du

= ee
−t

∫ ∞

e−t

u− e−t

u
e−u du = 1 − e−tee

−t
∫ ∞

e−t

e−u

u
du.

We proceed with the asymptotic analysis of the generating function

E[sYN ] =
Γ(N + s)

N!Γ(s+ 1)
. (3.7)

The random variable YN has the same asymptotic properties as the random variable

HN , as can be seen by comparing (3.7) with (1.1). It is straightforward to compute the

expectation μN = E[YN] and the standard deviation σN =
√

Var(YN):

μN = lnN + γ − 1 + O

(
lnN

N

)
,

σN =

√
lnN + γ − π2

6
+ O

(
lnN

N

)
.

The random variable YN (and hence HN) is asymptotic normal (the generating function

(3.7) is close to that of a Poisson random variable), i.e.,

lim
N→∞

P

(
HN − μN

σN
� y

)
= lim

N→∞
P

(
YN − μN

σN
� y

)
= Φ(y) =

1√
2π

∫ y

−∞
e−z2/2 dz.

The joint limiting behaviour of WN and HN is given in the next theorem.

Theorem 3.1.

lim
N→∞

P

(
NWN − lnN � t,

HN − μN

σN
� y

)
= Φ(y) ·

∫ 1

0

Λ

(
t− ln

α

1 − α

)
dα. (3.8)

In particular, it follows that WN and HN are asymptotically independent.

Proof. Again we observe from (1.2) that, conditionally on AN = n, the random variables

HN and WN are independent, where

(
WN |AN = n

) d
= τ1 + τ2 + · · · + τn,(

HN |AN = n
) d

= Yn,

and where {τn}N−1
n=1 is defined as before and YN is independent from the sequence {τn}N−1

n=1 ,
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having generating function (3.7) with N = n. Parallel to the derivation which leads to

(3.6):

lim
N→∞

P

(
N

AN∑
k=1

τk − lnN � t,
YAN − μN

σN
� y

)

= lim
N→∞

N−1∑
n=1

P

(
N

n∑
k=1

τk − lnN � t,
Yn − μN

σN
� y|AN = n

)
P(AN = n)

= lim
N→∞

N−1∑
n=1

P

(
N

n∑
k=1

τk − lnN � t|AN = n

)
· P

(
Yn − μN

σN
� y|AN = n

)
P(AN = n)

= lim
N→∞

∫ 1

0

P

(
N

αN∑
k=1

τk − lnN � t

)
P

(
YαN − μN

σN
� y

)
dα. (3.9)

As said before, the first factor in the integrand on the right-hand side of (3.9) has been

treated in the derivation leading to (3.6). For the second factor we write:

P

(
YαN − μN

σN
� y

)
= P

(
YαN − μαN

σαN
� y

σN

σαN
− μαN − μN

σαN

)
→ Φ(y),

since, for α ∈ (0, 1) fixed,

σN

σαN
→ 1,

μαN − μN

σαN
→ 0.

The interchange of limit and integral is again justified by the Lebesgue theorem (dominated

convergence), the integrand being dominated by 1, since it is a probability.

4. The asymptotic PGF and PDF

Theorem 3.1 can also be proved by inverting the Laplace transform (2.1). Following a

procedure similar to [9, pp. 518–520], we write

t+ k(N − k) =

(√(
N

2

)2

+ t+
N

2
− k

)(√(
N

2

)2

+ t−
(
N

2
− k

))
,

and define y =

√(
N
2

)2
+ t. Then,

n∏
k=1

k(N − k)

t+ k(N − k)
=

n!(N − 1)!

(N − n− 1)!

n∏
k=1

1

(y + N
2

− k)

n∏
k=1

1

(y − N
2

+ k)

=
n!(N − 1)!

(N − n− 1)!

Γ(y + N
2

− n)

Γ(y + N
2

)

Γ(y − N
2

+ 1)

Γ(y − N
2

+ n+ 1)
,

and, substituted in (2.1), yields

ϕ(s, t) =
(N − 2)!Γ(y − N

2
+ 1)

Γ(y + N
2

)Γ(s)

N−1∑
n=1

Γ(n+ s)

(N − n− 1)!

Γ(y + N
2

− n)

Γ(y − N
2

+ n+ 1)
.
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For large N and |t| < N, we have that y =
√

(N
2

)2 + t ∼ N
2

+ t
N

, such that

ϕ(s, t) ∼
(N − 2)!Γ( t

N
+ 1)

Γ(N + t
N

)Γ(s)

N−1∑
n=1

Γ(n+ s)

(N − n− 1)!

Γ(N + t
N

− n)

Γ( t
N

+ n+ 1)
.

We now introduce the scaling t = Nx, where |x| < 1,

ϕ(s, Nx) ∼ (N − 2)!Γ(x+ 1)

Γ(N + x)Γ(s)

N−1∑
n=1

Γ(n+ s)

(N − n− 1)!

Γ(x+N − n)

Γ(x+ 1 + n)
. (4.1)

Following an approach analogous to that of [11], the sum

S =

N−1∑
n=1

Γ(n+ s)

(N − n− 1)!

Γ(N + x− n)

Γ(x+ 1 + n)

can be transformed into

S =
Γ(N + s+ x)

Γ(x+ 1 − s)Γ(N − 1)

∞∑
k=0

Γ(x+ 1 − s+ k)

k!(1 + x+ k)

Γ(N + x+ k)

Γ(N + 2x+ 1 + k)
.

For large N and fixed s and x, and using (as in [11]) Gauss’s series for the hypergeometric

series [1, 15.1.20], the asymptotic order of the sum S scales as

S =
Γ(N + s+ x)N−x−1

Γ(N − 1)

Γ(1 + x)Γ(s− x)

Γ(1 + s)

(
1 − O

(
1

N

))
. (4.2)

Substitution of (4.2) into (4.1), leads, for large N, fixed s and |x| < 1, to

ϕ(s, Nx) ∼ Ns−1−xΓ2(1 + x)Γ(s− x)

Γ(s)Γ(1 + s)

(
1 − O

(
1

N

))
.

This result suggests considering the scaling

E
[
s
HN−E[HN ]

aN e−xNWN
]

= s
− E[HN ]

aN
ϕ

(
s

1
aN , xN

)

for large N, where E[HN] ∼ μN ∼ lnN and where aN will be determined to have a finite

limit for N → ∞. With this scaling, we have

s
− E[HN ]

aN
ϕ

(
s

1
aN , xN

)
∼ N−xs

− E[HN ]
aN

Ns
1
aN −1 Γ2(1 + x)Γ

(
s

1
aN − x

)
Γ

(
s

1
aN

)
Γ

(
1 + s

1
aN

)
(

1 − O

(
1

N

))
.

Furthermore,

ln
(
s

− E[HN ]
aN

Ns
1
aN −1

)
∼

(
s

1
aN − 1

)
lnN − E[HN]

aN
ln s

∼ lnN

(
e

ln s
aN − ln s

aN
− 1

)
= lnN

(
ln2 s

2a2
N

+ O
(
a−3
N

))
,
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which tends to a finite limit provided a2
N ∼ lnN. Hence, if we choose aN = σN ∼

√
lnN,

then, for any finite complex number s 	= 0, we arrive at

s
− E[HN ]

aN
ϕ

(
s

1
aN , xN

)
∼ N−xΓ(x+ 1)e

ln2 s
2 Γ(1 + x)Γ(1 − x)

(
1 − O

(
1

N

))

= N−xe
ln2 s

2 Γ(x+ 1)
πx

sin πx

(
1 − O

(
1

N

))
,

from which

lim
N→∞

E

[
s
HN−E[HN ]

σHN e−x(NWN−lnN)
]

= e
ln2 s

2 Γ(x+ 1)
πx

sin πx
. (4.3)

This again shows that the normalized (continuous) random variables

HN − E[HN]

σHN

and NWN − lnN

are asymptotically independent. After replacing s → e−y , the inverse Laplace transform

then yields

lim
N→∞

Pr

[
HN − E[HN]

σHN

� t

]
= Φ(t) =

1√
2π

∫ t

−∞
e−z2/2 dz

and, as shown in [11],

lim
N→∞

Pr
[
NWN − lnN � t

]
= 1 − e−tee

−t
∫ ∞

e−t

e−u

u
du

=

∫ 1

0

Λ

(
t− ln

α

1 − α

)
dα.

The latter integral is a mixture of the Gumbel distribution.

5. Discussion

Janson was the first to compute the asymptotics of NWN − lnN in [8], where he gave a

short proof that NWN − lnN converges in distribution to the convolution of the Gumbel

distribution with the logistic distribution (L(x) = ex/(1 + ex)). In our notation, Janson

proves that, in asymptotic-L2 sense, the distribution of N
∑AN

k=1 τk is equivalent to that of

∞∑
k=1

1

k
(ξk − 1) + ln

AN

N − AN
+ lnN + γ,

where {ξk} is a sequence of i.i.d. exponentially distributed random variables with mean 1.

Using probability generating functions (pgfs), Janson then recognizes that

∞∑
k=1

1

k
(ξk − 1) + γ

has a Gumbel distribution and that the logistic distribution, which is the limit of

ln(AN/(N − AN)) is the difference of two independent Gumbel random variables [8,
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Theorem 5],

NWN − lnN
d→ V1 + V2 − V3, (5.1)

where V1, V2 and V3 are independent Gumbel-distributed random variables. Since

πx

sin πx
= Γ(1 + x)Γ(1 − x),

and Γ(1 + x) is the pgf of a Gumbel random variable, relation (4.3) in the second proof

leads to the same nice interpretation of (5.1).

In our (independent) first proof (Section 3) we were able to identify why the Gumbel

distribution appears. This is explained by writing the deterministic sum:
∑M

k=1 Zk as a

maximum of i.i.d. exponentially distributed random variables, see below (3.2). However,

NWN is a random sum of the variables Z1, Z2, . . . , and consequently, by conditioning, we

obtain as the end result a mixture of the Gumbel distribution: see (3.6).

For the second and third Gumbel random variable we have no better explanation than

that apparently ln(U/(1 −U)), the limit of ln AN/N

1−AN/N , is the difference of two independent

Gumbels or equivalently, that the quotient of two independent Exp(1) random variables

is equal in distribution to U/(1 −U). Both distributions are equal to a shifted Pareto

distribution:

P(ξ1/ξ2 > t) = P(U/(1 −U) > t) = (1 + t)−1, t > 0.
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Appendix: Derivation of the joint expectation E[HNWN]

From (2.1), we obtain by differentiation

E[HNWN] = −∂2ϕ(s, t)

∂t∂s

∣∣∣
s=1,t=0

=
1

N − 1

N−1∑
n=1

( n∑
k=1

1

k(N − k)
·

n∑
j=1

1

j

)
. (A.1)

This expression can be simplified to

E[HNWN] =
1

N − 1

(
2

N−1∑
k=1

1

k

k∑
j=1

1

j
−

N−1∑
k=1

1

k

)
.

In addition,

(N−1∑
k=1

1

k

)2

=

N−1∑
k=1

1

k

N−1∑
j=1

1

j
=

N−1∑
k=1

1

k

( k∑
j=1

1

j
+

N−1∑
j=k

1

j
− 1

k

)

= 2

N−1∑
k=1

1

k

k∑
j=1

1

j
−

N−1∑
k=1

1

k2
,

whose use leads to (2.3).
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The linear correlation coefficient is defined as

ρ(WN,HN) =
E[HNWN] − E[WN]E[HN]

σWN
σHN

. (A.2)

Using (see [9, p. 360])

E[WN] =
1

N − 1

N−1∑
n=1

1

n
, Var(WN) =

3

N(N − 1)

N−1∑
n=1

1

n2
−

(∑N−1
n=1

1
n

)2

(N − 1)2N
, (A.3)

and

E[HN] =
N

N − 1

N∑
l=2

1

l
, Var(HN) =

N

N − 1

N∑
l=1

1

l
− N

N − 1

N∑
l=1

1

l2
,

we obtain

E[HNWN] − E[WN]E[HN] =
1

N − 1

N−1∑
k=1

1

k2
−

(
1

N − 1

N−1∑
n=1

1

n

)2

,

which is, for large N,

E[HNWN] − E[WN]E[HN] =
1

N

π2

6
− ln2 N

N2
+ O

(
1

N2

)
,

and

Var(WN)Var(HN) =
π2

2
lnN

N2
−

π4

12

N2
+ O

(
lnN

N3

)
.

Introducing these asymptotics in (A.2) leads to (2.4).
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