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SoK: Deep Learning-based Physical Side-channel Analysis
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Side-channel attacks represent a realistic and serious threat to the security of embedded devices for already

almost three decades. A variety of attacks and targets they can be applied to have been introduced, and while

the area of side-channel attacks and their mitigation is very well-researched, it is yet to be consolidated.

Deep learning-based side-channel attacks entered the field in recent years with the promise of more com-

petitive performance and enlarged attackers’ capabilities compared to other techniques. At the same time, the

new attacks bring new challenges and complexities to the domain, making the systematization of knowl-

edge (SoK) even more critical.

We first dissect deep learning-based side-channel attacks according to the different phases they can be

used in and map those phases to the efforts conducted so far in the domain. For each phase, we identify the

weaknesses and challenges that triggered the known open problems. We also connect the attacks to the threat

models and evaluate their advantages and drawbacks. Finally, we provide a number of recommendations to

be followed in deep learning-based side-channel attacks.
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1 INTRODUCTION

The embedded devices market is constantly growing. Already in the 2020 world of connected
devices, there were more IoT (e.g., cars, smart home devices, connected industrial equipment)
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connections than non-IoT (e.g., smartphones, laptops, computers) connections. The current num-
ber of active connected devices is estimated to be more than 20 billion and is expected to reach
more than 30 billion by 2025 [49]. Such an escalation in the number of devices is followed by in-
creased security concerns and vulnerabilities, resulting in the ever-growing demand for certified
products. Consequently, millions of products are undergoing strict security assessments in evalu-
ation labs worldwide on a daily basis [3]. As a part of those evaluations, side-channel attacks

(SCA) (or analyses) represent a well-known threat since the 90’s [51] and are widely studied by
researchers in the community of information security and cryptography from both industry and
academia [4, 16, 65].

Various physical leakages such as timing delay [50], power consumption [52], and electromag-

netic emanation (EM) [89] become available during the device’s computation with the (secret)
data. Those leakages have led to a whole new research area: by combining the physical observation
of a specific internal state within computation and a hypothesis on the data being manipulated, it
is possible to recover the intermediate state processed by the device. Thus, it is possible to “break”
the device, i.e., learn its secrets.

Side-channel attacks and corresponding mitigations evolved in the past few decades, and more
recently, deep learning-based side-channel analysis became widely used in the SCA community.
Naturally, the security industry has started using such techniques as standard ones in the design
and certification process. A recent example is the machine learning approach (unsupervised
clustering) to break Google Titan Security Key [97]. While practically not so relevant, the project’s
main goal was to increase awareness when considering the worst-case adversaries and make such
techniques well understood. For example, the Common Criteria security evaluation of a device
evaluates the time required to perform a successful attack and the attack effort, i.e., the difficulty
of it, which both have an impact on the chip’s final security rating [24]. In short, confidence in
security evaluation implies considering the strongest adversary, which relates to the choice of
attack techniques [15].

The appeal and popularity of using deep learning in side-channel analysis in the last few years
are evident, as demonstrated in Figure 1. More precisely, we found 183 papers that investigate
deep learning-based side-channel analysis (DL-SCA) in the last six years. Clearly, from 2016
when the first paper appeared that used deep learning to conduct side-channel analysis [58], the
domain became very active.1 By analyzing those works, we can notice two main advantages be-
ing commonly brought up: (1) deep learning-based SCA is very powerful and can break targets
protected with countermeasures, and (2) deep learning-based SCA requires less (or no) effort to
pre-process the side-channel measurements and prepare the measurements for the attack.

At the same time, the main disadvantage (and an inspiration for many research works) is the
need to conduct hyperparameter tuning, which is considered an important and challenging task.
With all the diverse strategies and techniques in deep learning-based side-channel analysis, it is
not obvious how effective and efficient the different approaches are and how they compare to
each other. In addition, it is hard to identify the primary challenges as they are typically device-
or threat model-specific. Our motivation for this work is to systematize and critically evaluate
previously proposed approaches. We also aim to identify the main challenges and offer actionable
steps to solve those challenges. As such, we consider our work a crucial step in understanding
state-of-the-art deep learning-based SCA.

Some related works already itemized various machine learning-based side-channel attacks,
see, e.g., works by Hettwer et al. [40] or S. Picek [81]. This systematization of knowledge paper

1More precisely, Maghrebi et al. were the first to use convolutional neural networks [58]. There are earlier papers that use

multilayer perceptrons. Still, since they do not report the number of hidden layers or that number is set to one, we do not

consider those works as deep learning-based SCA.
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Fig. 1. The distribution of papers and datasets per year that are used by deep learning-based side-channel

analysis. For multiple versions of the same papers, we consider the peer-reviewed version. We consider

papers published in English only. Observe how datasets appear more consistently (and in larger numbers)

in the last few years, which we connect with a considerable interest in the SCA community for deep

learning-based SCA.

goes far beyond those works by providing a detailed list of up-to-date challenges with the latest
developments in the domain and recommendations on how to address them. This paper does
not aim to cover every proposed approach but systematically identifies and analyzes the main
approaches in getting deep learning to work for side-channel adversaries. We focus on attacks
exploiting the power and EM radiation as the most commonly exploited types of leakage in
embedded and IoT devices.

In short, with this systematization of knowledge (SoK) paper, we make the following
contributions:

(1) Discuss threat models and identify the differences among them and the impact of those in
practice.

(2) Enlist relevant phases in deep learning-based SCA and the impact of neglecting those phases.
(3) Evaluate and compare approaches proposed in terms of performance.
(4) Pinpoint why many proposed solutions are not adopted in practice and what are the neces-

sary criteria for new solutions.
Our analysis recognized four threat models. There, it is especially challenging to make the unsu-

pervised deep learning threat model practical. Next, we divided the deep learning process into six
phases and provided 18 challenges to be addressed in future research. We discussed 23 recommen-
dations to address the challenges and improve the state of the art. Finally, we recognized seven
works that have a significant impact on the deep learning-based SCA.

The rest of this paper is organized as follows. In Section 2, we provide necessary background
information about side-channel attacks, where we emphasize deep learning-based attacks. Next, in
Section 3, we provide an overview of different threat models commonly used. Section 4 discusses
various phases of supervised learning and connects them with important results in the SCA re-
search. Section 5 provides an overview of previous work in AI explainability for SCA, and in Sec-
tion 6, we briefly discuss publicly available frameworks for deep learning-based SCA. Section 7
provides an overview of the future of deep learning-based SCA, and in Section 8, we conclude the
paper. Finally, in Appendix A, we provide additional information about the deep learning architec-
tures commonly used in the profiling SCA.

ACM Computing Surveys, Vol. 55, No. 11, Article 227. Publication date: February 2023.
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2 BACKGROUND

We use calligraphic letters like X to denote sets. The corresponding lower-case letters x represent
elements of X or realizations of a random variable with values in X. Variables denoted in bold
such as x are vectors over the ground set X, e.g., if X = R and n ∈ N, then by x we mean a vector
in the n-dimensional Euclidean space Rn .

A cryptographic computation is commonly formalized as a mapping from a space of plaintexts
P to a space of ciphertexts C, parameterized with a keyspace K . These three spaces are usually
sets of vectors over a common alphabet A (most often A = {0, 1}). For example, in block ciphers,
plaintexts and ciphertexts have the same block length b ∈ N, so that P = C = Ab .

A dataset D represents a set of side-channel measurements, also called traces, collected from a
device during the execution of a cryptographic computation. A trace is a time sequence of F ∈ N
features (samples, points of interest). Thus, assuming that a single feature is a value ranging in a
setM, a trace is represented by a vector inMF . Each trace di ∈ D is associated with an input
value ai (plaintext or ciphertext)2 and a key ki , where ki denotes a generic key candidate, while
the correct key is k∗. The keys take their values from the keyspace K .

2.1 Side-channel Analysis

The side-channel analysis considers attacks that do not aim at the weaknesses of the algorithms
but their implementations [59]. The central idea of side-channel analysis is to compare some secret
data-dependent predictions of the physical leakages and the actual (measured) leakage to identify
the data most likely to have been processed. In practice, SCA requires the ability to model the
leakage (to come up with the predictions for data) and to have a good comparison tool (so-called
distinguisher) to extract the secret information efficiently.

Formally, a general workflow for SCA can be summarized as follows:
(1) Consider a device performing a cryptographic computation CFk∗ (a) on different inputs a

drawn uniformly random from the input space, using some fixed key k∗ drawn uniformly at
random from the keyspace K .

(2) During the cryptographic computation, the device will handle some intermediate valuesTk∗,a

utilizing the known input a and the unknown key k∗.
(3) When such a sensitive intermediate value is computed, the device generates some physical

leakage denotedWk∗,a.
(4) To perform a key recovery, an adversary must select a sensitive value depending on the

secret key k∗. Then, the adversary can evaluate its result for the input used to generateWk,a

and all the key candidates k ∈ K . This evaluation will result in different hypothetical values
Zk,a.

(5) The adversary uses a leakage model to map these values from the original space T into a
hypothetical leakage spaceZ.

(6) The adversary uses a statistical tool called a distinguisher to compare the different models
Zk,a with the actual leakagesWk,a. If the attack is successful, the best comparison result (i.e.,
the extreme value of the distinguisher) should be obtained for the correct key candidate.

A leakage model represents a function mapping the hypothetical data value toward the (approx-
imation of) physical leakage of the device. Common (well-studied and confirmed) leakage models
take either the Hamming weight of the hypothetical data (assuming that the physical leakage is
proportional to the number of ones in the intermediate value) or the Hamming distance between
the registers that store the data values at two different moments.

2As commonly done, we assume known plaintext and attack from the encryption side or known ciphertext and attack from

the decryption side. The attack principle remains the same.
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Typical for side-channel analysis is the divide-and-conquer approach, which aims at recovering
the sensitive variables in parts (e.g., sub-key bytes in the case of AES), making the approach com-
putationally feasible. Thus, the approach described above is repeated for each sub-key until the
(full) key k∗ is recovered. In general, if one sub-key can be recovered, it is enough to argue for the
implementation’s weakness.

2.1.1 SCA Taxonomy. Attacks performed in the SCA field can be divided into direct attacks
and two-stage attacks. In direct (also called non-profiling) attacks, the adversary obtains a (large)
number of measurements from the device under attack and uses statistical techniques to infer
secret information. Common examples of such attacks are simple power analysis (SPA) and
differential power analysis (DPA) [52].3 While direct attacks assume less powerful attackers
(since the attackers do not have access to an identical copy of a device), such attacks might require
millions of measurements to break the target and obtain secret information.

In the two-stage (also called profiling) attacks, a powerful attacker has a clone device identical
(or at least similar) to the device to be attacked. The attacker uses the clone device to build the
model of a device and ultimately to attack the target device. The profiling attack happens in two
stages, commonly denoted as the profiling and the attack stages.

2.1.2 Profiling Attacks. The foundation behind profiling techniques is that side-channel mea-
surements follow an unknown distribution that can only be approximated by an assumed statis-
tical distribution for the leakage. The first and best-known method for profiling attacks is the
template attack, where an adversary assumes that the leakage follows a multi-variate Gaussian
distribution [5, 19, 23]. The profiling stage consists then of computing statistical parameters for
a Gaussian mixture model. Thus, the model is built for each possible hypothetical leakage class
(e.g., all possible Hamming weight values of a byte). In the attack stage, the adversary computes
the probability that a new side-channel measurement (under attack) belongs to a certain class by
using the computed probability density function from the approximate statistics. The profiling at-
tack assumes a more powerful attacker than a direct one, and it may require significantly fewer
attack traces than direct attacks to break the target. Sometimes, only one trace is sufficient in a
profiling attack. Note that the two stages of the profiling attacks correspond to the two stages of
supervised machine learning: training and testing.

Machine learning techniques were adopted for profiling attacks, where the statistics of the un-
known leakage distribution are automatically learned from the profiling set. Thus, one advantage
of machine learning over template attacks is that the profiling model is learned without any as-
sumption about the statistical distribution of the leakage.

Machine learning models can be further divided into classical machine learning, where a
common step before conducting the attack is to run feature engineering, and deep learning,
where one uses raw features or an optimized trace time interval thereof. Although the first
category of machine learning models is out of scope for this work, we list several references for
interested readers [42, 55, 84]. Additionally, we recommend a survey of machine learning-based
side-channel analysis by Hettwer et al. [40]. The main differences between our work and the one
by Hettwer et al. [40] are: (1) we investigate only deep learning-based SCA while Hettwer et al.
also considered other machine learning techniques, as well as different-than-SCA approaches,
(2) Hettwer et al. wrote their work in the early days of deep learning-based SCA (early 2018), so

3Besides power, it is common to use other side channels like EM, which changes the technique names to SEMA and DEMA.

Still, as the differentiation among those side channels is not important in our discussion, we use SPA/DPA for all such

attacks, regardless of the side channel.
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it covers only a few deep learning works, and (3) Hettwer et al. made a survey work that gives
detailed information about related works but not a systematization of knowledge [40].

2.1.3 Countermeasures. It is common to protect the implementations with countermeasures
against SCA. Countermeasures aim to break the statistical link between intermediate values and
traces (e.g., power consumption or EM emanation). There are two main categories of countermea-
sures for SCA: masking and hiding [59].

In masking, a random value (mask) is generated to conceal every intermediate value. More pre-
cisely, the computation is performed on masked data instead of actual data, and the computation
procedure removes the correlation between the measurements and the secret data. Two commonly
used types of masking are Boolean masking and arithmetic masking, which refer to the way “a
mask” is added to the input and other intermediate variables [59].

On the other hand, the goal of hiding is to make measurements appear random or constant.
Hiding decreases the signal-to-noise ratio (SNR) only. Hiding can happen in the amplitude (e.g.,
adding noise) and time (e.g., desynchronization, random delay interrupts, jitter) domains.

Countermeasures are selected based on the adversary’s capability. Hiding countermeasures
could be theoretically defeated by an adversary having an unlimited number of available side-
channel measurements.4 Similarly, masking countermeasures considering a first-order masking
scheme (first-order masking means that each sensitive variable is combined with a single mask) can
be (in the worst-case) defeated by an adversary that can access mask shares during a profiling stage.
The knowledge of the mask shares is a common assumption in the white box attack, as we assume
the attacker knows the exact places where the leakage occurs. A mask share denotes a randomly
selected value combined with the sensitive variable. The common ways to combine the mask and
the sensitive value are addition and multiplication. Commonly, highly protected targets consider
using high-order masking schemes or a combination of masking and hiding countermeasures.

2.1.4 SCA Adversary. There are two types of adversaries in SCA: the security evaluator and
the attacker. The main difference is that the security evaluator knows some secret information
about the device under attack beforehand, as they work closely with manufacturers. Also, when
considering the security evaluator perspective, it is more common to speak about side-channel
analysis, while for attackers, we usually refer to a side-channel attack.

2.2 Deep Neural Networks

A deep neural network typically classifies a signal characterized by F ∈ N features into one of
C ∈ N classes (or labels). Both features and labels are usually represented as compact subsets of
the n-dimensional Euclidean space. Formally, let us defineX ⊆ RF as the domain of input features
and Y ⊆ RC as the space of output classes.

A neural network is a mapping f : X → Y , which takes a vector of input features x ∈ X and
predicts the output class to which x belongs. In particular, the predicted class is represented as a
vector y ∈ Y through one-hot encoding: assuming that f predicts the class i ∈ {1, . . . ,C} for x,
the output vector y has 1 in the i-th coordinate, while it is 0 everywhere else.

The neural network transforms the input features vector x to its predicted label as y = σ (φ (x)).
The function φ : X → Y is a composition of l ∈ N layers, that is, φ = φl ◦φl−1 ◦ · · · ◦φ2 ◦φ1, where
for all i ∈ {1, . . . , l } the i-th layer is a function φi : Xi → Yi . In particular one has X1 = X and
Yl = Y , while in all other cases Xi ⊆ Rni and Yi ⊆ Rmi , with ni ,mi ∈ N. Given the input xi ∈ Xi ,
which is the output computed by the previous layer i − 1, the function of layer i is defined as

4In reality, there are no attackers unbounded in terms of the number of available side-channel measurements, but it is

common to assume the attacker to be arbitrarily powerful.
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φi (xi ) = ϕi (wi ·xi +bi ). Here, ϕi represents a nonlinear activation function (such as the Rectified

Linear Unit, or ReLU), and wi and bi are respectively the vectors of weights and biases for layer
i (the trainable parameters).

The components of the output vector φ (x) are also called logits, and the softmax function σ :
Y → [0, 1]C is applied to first convert these logits into a probability distribution. Then, the softmax
function computes the argument c ∈ {1, . . . ,C} that maximizes the resulting distribution. The
class (or label) of the input x inferred by the network f is then the one-hot encoding vector y ∈ Y
of c .

2.3 Deep Learning-based Side-channel Analysis

This paper considers deep learning-based side-channel analysis that follows the supervised learn-
ing paradigm and classification task where the output y is a probability distribution over C labels.
In SCA, the label yc is derived from the key k∗ and input ai through a cryptographic function CF
and a leakage model LM .

The objective of a learning algorithm Alд is to learn a parameterized fθ ∈ H , where H is the
space of hypotheses. More precisely, H is a functional space where each element f ∈ H is a
mapping f : X → Y between the input and the labels. Finally, fθ ∈ H is a specific function with
parameters θ ∈ Rn , where n denotes the number of trainable parameters. In what follows, we will
restrict the hypothesis spaceH to neural network models.

To train the neural network representing fθ , the learning algorithmAlд has access to the dataset
D drawn from the underlying distribution X × Y . As we assume the supervised learning setting,
D is partitioned into disjoint subsets commonly denoted as the training setDtr , validation setDvl ,
and test set Dts . The size of the training dataset equals N , the size of the validation set equals V ,
and the size of the test set equals Q . In the context of SCA, the different datasets represent data
acquisitions from different targets or stages of the profiling attack. Then, the classification process
can be broken down into the following steps:

2.3.1 Training. Let us assume a non-negative, real-valued loss function L quantifying how cor-
rect the prediction of a neural network is for an input x ∈ X and label ŷc ∈ Y . For a loss function
L, the output of the supervised learning algorithm is a neural network fθ minimizing the risk
E(x,y)∼X×Y [L(y, ŷ)], with y being the label predicted by fθ and ŷ the true label.

Since the underlying data distribution X × Y is not known, a supervised learning algorithm
uses the training set Dtr of size N to learn a hypothesis fθ that minimizes the empirical risk
1
N

∑N
i L(yi , ŷi ), where (xi , ŷi ) ∼ Dtr . In other words, the empirical risk is the expected value of

the loss function over all realizations of the joint distribution X ×Y .
To minimize the loss, it is common to use the backpropagation algorithm to update the parame-

tersθ with a multiplication of the derivative of the empirical risk concerning the model parameters
θ t at each iteration t .

During the training process,5 a neural network is tested based on how well it generalizes on
the unseen examples from the validation set Dvl . Once it converges to an acceptable error rate,
the training stops, and the neural network, along with its parameters, is stored as fθ where fθ
represents the SCA profiling model.

2.3.2 Test. In the test stage,6 the goal is to predict labels y based on previously unseen traces
x ∈ Dts , and the trained model fθ . The SCA metrics, such as guessing entropy and success rate,
are used to assess the test outcomes, as discussed in the next section.

5We will use the terms training and profiling interchangeably.
6We will use the terms test and attack interchangeably.

ACM Computing Surveys, Vol. 55, No. 11, Article 227. Publication date: February 2023.
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2.4 Evaluation of Side-channel Analysis

The outcome of predicting with a model fθ on the test set Dts is a two-dimensional matrix P
with dimensions Q × C , where Q is the number of available attack traces. The cumulative sum
S (k) for any key byte candidate k is a valid side-channel distinguisher (a tool to differentiate
between various key guesses), where it is common to use the maximum log-likelihood principle

S (k) =
∑Q

i=1 log(pi,y). The value pi,y denotes the probability that for a key k and input ai , we
obtain the label y.

It is common to estimate the effort to obtain the secret key k∗ from the predictions with met-
rics like key rank (KR), success rate (SR), and guessing entropy (GE). With Q traces in the
attack stage, an attack outputs a key guessing vector g = [д1,д2, . . . ,д |K |] in decreasing order of
probability where д1 denotes the most likely and д |K | the least likely key candidate.

The key rank represents the correct key k∗ position in the key guessing vector g. The success
rate of order o is the average empirical probability that the secret key k∗ is located within the first
o elements of the key guessing vector g. The guessing entropy is the average position of k∗ in
g [102].7 Note that since all those metrics assume the knowledge of the correct key k∗, they are
appropriate for the evaluation setting. On the other hand, the attacker should test the best guesses
until reaching the one that results in the correct plaintext.

2.5 Leakage Assessment and Deep Learning

A standard option to verify that the side-channel traces contain exploitable information is to con-
duct a leakage assessment, e.g., Test Vector Leakage Assessment (TVLA) [6]. Leakage assess-
ment only reveals if there is a leakage and not how to exploit it. Leakage assessment is far from
perfect as it can have many false positives and false negatives [67]. While leakage assessment is
not a part of deep learning-based SCA, deep learning can be used to assess leakage. Differing from
deep learning-based SCA, there does not seem to be many works considering deep learning and
leakage assessment. Moos et al. recently made an effort to use deep learning to distinguish between
two groups of data (fixed-vs-random or fixed-vs-fixed) [66]. The authors denoted this technique as
deep learning leakage assessment - DL-LA. Cristiani et al. used MINE (Mutual Information

Neural Estimator) to compute mutual information in high dimensional side-channel traces [26].
The obtained results showed that the MINE technique could be used as a simple tool to obtain an ob-
jective leakage evaluation. Note, however, that false positives and false negatives could also happen
for deep learning-based leakage assessment. A deep neural network classifier may falsely indicate
no occurrence of leakages from side-channel measurements by providing metrics similar to ran-
dom guessing. This false negative may be caused by the wrong selection of a deep learning classi-
fier that is unable to fit the leakages. At the same time, as pointed out by Moos et al., DL-LA may still
leave false positive risks as the confidence is provided per trace set and not per time sample [66].

Challenge 1. Due to limited results, it is still not clear what are (if any) the advantages of deep
learning for leakage assessment.

Recommendation 1. It is necessary to evaluate whether state-of-the-art techniques from DL-SCA
can also be applied to DL-LA. Special emphasis should be given to assessing the universality of the
deep learning models, i.e., that they work for multiple DL-LA scenarios.

3 THREAT MODELS IN PROFILING SCA

Several threat models are typically used in the deep learning-based side-channel analysis. They
all assume the attacker has unlimited power and the capability to obtain an arbitrary number

7J. Massey first defined guessing entropy as the expected number of guesses using an optimal strategy to correctly guess

the value of a random variable [61].
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Fig. 2. Threat models in profiling SCA. The attacker uses N measurements from the profiling device to build

a model. Next, in the attack stage, the adversary uses Q measurements from the device under attack to infer

the secret information.

of profiling traces or evaluate any number of profiling models. Naturally, the attacker’s power
is always bounded, but it is unclear how to do it. One recent attempt by Picek et al. tries to set
up a framework where the attacker is required to find the smallest number of profiling traces or
evaluate the smallest number of neural network architectures to break the target [85]. By doing so,
the authors aimed to “force” efficient attacks. We depict common threat models in Figure 2. Since
this restriction in the attacker’s power is compatible with all the other threat models, we will not
consider it separately.

3.1 Classical Threat Model

In the classical threat model, we assume that the attacker conducts profiling and attack on the
same device (thus, this setup is also denoted as “single-device-model” by Bhasin et al. [9]). While
this setting is, of course, not realistic, we can notice it represents the most-explored setting in
academia, see, e.g., [48, 121, 130]. There are two fundamental reasons for it as it (1) allows easier
setup since it is not required to have two devices and conduct data acquisition on different devices,
and (2) assumes the best-case setting for the attacker where the measurements come from the
same distribution. Indeed, the classical threat model can be used to estimate an upper bound to
the attacker’s power. Additionally, we can recognize two further variants of the classical threat
model: (1) the secret key is the same for the profiling and attack set, and (2) the secret key is
different for the profiling and attack set.

The main disadvantage of the classical threat model is that it is not realistic. The classical threat
model often corresponds to a white box threat model since the attacker knows (all) details about
the device under attack. Commonly, this threat model fits to the role of the attacker as a security
evaluator.

3.2 Portability Threat Model

In the portability threat model, we assume there are (at least) two devices: one for profiling and the
second one for the attack (Das et al. called such an attack the cross-device attack [29]). We refer to
such a setting as portability, and it corresponds to all scenarios where an attacker has no access to
measurements from the device under attack (to conduct training) but only to measurements from

ACM Computing Surveys, Vol. 55, No. 11, Article 227. Publication date: February 2023.
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a similar device, with uncontrolled variations, in process, measurement setup, or other stochastic
factors, to mention a few factors as identified by Bhasin et al. [9].

The portability threat model is less used in academia but is getting more attention from 2019 [27,
29, 35, 94, 112]. The main difficulty for the portability threat model stems from the fact that the two
devices (and corresponding datasets) do not necessarily follow the same distribution, resulting in
an effect called over-specialization where a neural network (or a part of it) learns to generalize
only for a specific dataset and cannot generalize for other datasets (i.e., devices, which is a setup
considered in the portability research). The over-specialization effect was discussed by van der
Valk et al. [111]. Bhasin et al. recognized the validation as the main problem for the portability
threat model since validation on the measurements from the profiling device would commonly
indicate a strong attack performance [9]. At the same time, the performance on the attack device
can be much worse. Consequently, Bhasin et al. recommended a multi-device model (MDM)

with at least three devices: one for training, one for validation, and one for the attack.
Additionally, Zhang et al. proposed several categories of cross-device attacks [132]:
• Same devices: the traces used in profiling and attacking stages are collected from the same

device. The only difference is the key variation. Observe that this setting is the same as
described in the previous section, indicating that there is also some disagreement on what
is the portability (cross-device) setting.
• Identical devices: the profiling and target device are two physical copies of the same chip

model. All the designs and configurations are identical.
• Homogeneousdevices: this case extends the dissimilarity of cross devices at the chip

level. Both devices have chips from the same manufacturer but with different models and
structures.
• Heterogeneous devices: the core chips of the two devices to be compared come from dif-

ferent manufacturers, differing in all aspects, such as models, instruction set architectures,
and power dissipation.

The main advantage of the portability threat model is that it is realistic, while the disadvantage
is that it requires more effort to conduct data acquisition. This model can be considered from white
box/gray box to black box, depending on the device differences.

3.3 Non-profiling Supervised Threat Model

B. Timon proposed a threat model that combines the traits of non-profiling SCAs and supervised
deep learning [108]. The author called the attack differential deep learning analysis (DDLA).
DDLA runs differential analysis (like in DPA) and then deep learning to assess how well the
differential analysis performed. More precisely, the attack requires that for each key hypothesis
k , the attacker computes hypothetical values and partitions those values based on the leakage
model. Next, the attacker runs a deep learning model with traces and partitions. For the correct
key k∗, the intermediate values will be correctly guessed, while other key guesses will not be
consistent with the traces.

The main advantage of the non-profiling supervised threat model is that it does not require a
copy of a device for training. Compared to other non-profiling attacks like DPA, DDLA can per-
form better, especially if the target is protected with countermeasures. On the other hand, the main
disadvantages of the attack in the non-profiling supervised threat model are that the performance
of the profiling attack can be significantly better (considering the number of measurements re-
quired from the device under attack) and that we must train a neural network for each key guess,
commonly resulting in 256 neural networks for the intermediate value leakage model (for the AES
cipher when modeling the output of an S-box). As we do not require knowledge about the profiling
device, the non-profiling supervised threat model can be considered a black box.
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Fig. 3. Deep learning-based SCA flowchart. We do not explicitly write data standardization/normalization

as this step is always done.

Achievement 1. The first application of the non-profiling deep learning threat model in the pro-
filing SCA [108].

Challenge 2. To allow deep learning to be deployed to more diverse evaluation settings, it is nec-
essary to design a functional approach for the unsupervised deep learning-based SCA.

Recommendation 2. While developing an unsupervised deep learning threat model is straightfor-
ward, it is more difficult to make it functional. Indeed, there are no reported successful results from
a fully unsupervised model to the best of our knowledge. At the same time, unsupervised (simple)
machine learning approaches based on, e.g., clustering, give good results [43, 97]. Intuitively, the un-
supervised deep learning threat model requires only a single device (device under attack) to obtain
a number of measurements with an unknown key. Afterward, it is required to use those measure-
ments and infer the key. We recommend first exploring various semi-supervised deep learning ap-
proaches to understand the limitations in the training set size before moving toward the unsupervised
approaches.

4 DEEP LEARNING PROCESS AND SCA

In Figure 3, we depict the common phases of the deep learning-based SCA. We note that most of
the investigated works do not follow the whole flowchart but instead, concentrate on one or two
phases only. For each of the phases, we discuss relevant works and challenges to be addressed. We
also provide recommendations on how to approach open questions.

Our analysis shows that deep learning-based SCAs use mostly multilayer perceptron (MLP)

and convolutional neural networks (CNNs). Besides those methods, there are several ap-
plications of autoencoders (to denoise the traces, conduct dimensionality reduction, or clas-
sify) [54, 58, 125]. Finally, there are a few applications of recurrent neural networks (RNNs); more
precisely, Long Short-Term Memory (LSTM) [58], residual neural networks (ResNets) [58], and
generative adversarial networks (GANs) [68, 113]. We provide a brief description of those neural
network types in Appendix A.
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4.1 Raw Data

The first task when running side-channel analysis is to conduct data acquisition and obtain the
measurements. While the data acquisition task is extremely important, it is commonly considered
as “only” engineering and not discussed in related works. This task is also arduous, as it assumes
(besides relevant knowledge) that the researchers also have (1) good enough equipment to record
high-quality traces, and (2) state-of-the-art implementations. Finally, as the researchers should
share and maintain the dataset with the community once those technical details are fulfilled, this
task includes continuous effort. Unfortunately, these conditions are seldom fulfilled, resulting in
only a limited number of publicly available datasets.

We can divide datasets into those that consider symmetric-key and public-key implementations,
and those can be in software or hardware. For symmetric-key implementations, a standard target
is AES. For public-key implementations, standard targets are RSA and ECC. Let us immediately
note a significant practical difference for SCA on symmetric-key or public-key implementations.
The goal of SCA on symmetric-key implementations is to break the target with as few traces as
possible (even a single trace). Still, commonly, one requires significantly more traces for symmetric-
key implementations. On the other hand, breaking the target with a single trace is often manda-
tory for public-key cryptography as one commonly uses key randomization countermeasures and
ephemeral keys. Consequently, there is only a single measurement with a specific key available for
analysis. We present the most relevant information about publicly available datasets in Table 1.

The DPAcontest v2 dataset (DPAv2) [104] is rarely used in both machine learning and deep
learning settings. We believe this is because it is not a protected implementation.

The DPAcontest v4 dataset (DPAv4) [105] represented a standard target for simpler machine
learning methods, see, e.g., [55]. However, it is not often used with deep learning methods as it is
a very easy dataset to break. Also, the dataset authors reported a problem with the implemented
countermeasure and first-order leakages in the traces.

The DPAcontest v4.2 dataset (DPAv4.2) [106] was released to fix the problems found in DPAv4.
Unfortunately, this dataset is rarely used in the deep learning-based SCA.8

The AES_HD dataset [98] is an unprotected but very noisy dataset, so it represents a much more
challenging target than, e.g., DPAv4. Still, it is not widely used as it is unprotected and uses the
same key for profiling and attack sets. There are several versions of this dataset available, where
the difference is in the number of available measurements: 50 000 measurements [11], 100 000 mea-
surements [98], and 500 000 measurements [12].

The AES_HD_MM dataset [31] is a masked hardware AES implementation that is not widely
used with deep learning techniques. We postulate that a possible reason for it is that the dataset
is older, so many researchers are unaware of its availability.

The Random Delay dataset (AES_RD) [25] is a protected dataset but straightforward to break
with deep learning (especially convolutional neural networks due to their spatial invariance prop-
erty), so it has not been used in the last few years.

The ASCAD datasets [87] (two versions, one with fixed key - ASCADf and one with random
keys ASCADv1) represent de-facto standards when evaluating deep learning-based SCA. Still,
considering the developments in the domain, they are relatively easy to break, and the version
with random keys is not significantly more complex than the fixed key version. Finally, these
datasets also introduced novelties from the data management perspective as they used the hdf5

8There are also other versions of the DPAcontest datasets (v1 and v3). Still, to the best of our knowledge, they were never

used in the context of deep learning attacks.
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format. We note that recent research showed that for ASCADf, some bytes show first-order or
univariate second-order leakage, which is unexpected for a protected implementation, as noted by
Egger et al. [30]. The new version of the ASCAD dataset (ASCADv2) [2] appeared only recently, so
there are not many results using it. In fact, to the best of our knowledge, only Masure and Strullu
reported results on this dataset up to now [63]. The available information indicates that the dataset
can be challenging to attack if assuming no knowledge of secret shares or easy to attack if shares
are known.

The CHES_CTF 2018 dataset [95] is an interesting dataset that is more difficult to attack than
ASCAD. Still, due to the lack of support, the publicly available version has only 10 000 traces per
profiling set, making it less used recently.9

The CHES_CTF 2020 dataset [7] contains measurements of the masked implementations of the
Clyde-128 cipher. In total, there are seven sub-challenges, four for software implementations and
three for hardware implementations. Gohr et al. are the only ones to use deep learning for this
dataset and only for software implementation where the target is Clyde-128 protected by an effi-
cient variant of ISW masking [45] with 3, 4, 6, and 8 shares [34]. Each sub-challenge contains both
fixed and random keys datasets.

The Portability dataset [10] is a software implementation without countermeasures. It is straight-
forward to attack, making it a less attractive target for deep learning. At the same time, the Porta-
bility dataset is (as far as we are aware) the only publicly available dataset to be used to investigate
the portability effects for AES (see the work by Bhasin et al. [9]).

In the case of available datasets based on public-key implementations, Ed25519 (WolfSSL) [116]
is unprotected (making it a non-realistic target), as discussed by Weissbart et al. [117]. Still, the lack
of publicly available datasets makes it one of the rarely available datasets considering public-key
implementations.

The Curve25519 μNaCl dataset [20] is a protected implementation, making it a (somewhat) re-
alistic target, but there are only a few available results. We believe such a lack of results is because
most SCA community investigates deep learning attacks on block ciphers (AES).

The Curve25519 datasets [114] contain protected implementations of EdDSA, differing in the
number of features and countermeasures. The datasets appeared very recently, so there is only
one paper investigating them [115].

We note that it is relatively common to simulate the effect of countermeasures by changing
the datasets. Common options include the addition of Gaussian noise or simulating the effect of
desynchronization, random delay interrupts, jitter, or S-box shuffling [125].

Achievement 2. Release of the ASCAD database that became a standard in the profiling SCA
evaluation and proposing to use the hdf5 format for the SCA domain [8].

Recommendation 3. While most of the SCA community uses a subset of the datasets listed above,
it also happens that some research works use proprietary datasets. We recommend using such datasets
sparsely unless the characteristics of the specific dataset are significantly different from those of pub-
licly available datasets. We hope that the list in Table 1 will help researchers understand the differences
among available datasets. For scenarios where new datasets are used, we consider it a must that those
datasets are also made publicly available. Using a common evaluation baseline makes it possible to
conduct a meaningful comparison among different deep learning techniques.

9An extended version of the CHES_CTF 2018 dataset, with some pre-processing, is available at http://aisylabdatasets.ewi.

tudelft.nl.
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Recommendation 4. Publicly available datasets are available from different sources. As hosting
them takes some effort, in the long run, we believe there is a need for one central place where all
datasets will be available. All the datasets should follow the same format. We suggest using the hdf5
format and data structure as in the ASCAD datasets, which are now widely accepted by the DL-SCA
community. While other formats are available (e.g., TFRecord or Petastorm), there does not seem to be
some specific need in the context of DL-SCA that hdf5 cannot do.

Challenge 3. As seen from the list of publicly available datasets, most of the targets are software
implementations offering limited countermeasures (e.g., first-order masking and simulation of mis-
alignment). Commonly, deep learning attacks easily break such targets and require significantly less
than available traces. Consequently, the gap between academia and industry that uses more realistic
targets widens. The DL-SCA community must actively work to reduce this gap. Additionally, at the
moment, there are insufficient results with more difficult datasets like ASCADv2 and CHES_CTF 2020
to assess properly how challenging they will be for DL-SCA. Therefore, the DL-SCA community needs
to investigate more such challenging datasets.

Recommendation 5. Based on the list of publicly available datasets, it is clear that we need to con-
sider protected hardware implementations and corresponding datasets. Available “hardware” datasets,
such as AES_HD and AES_HD_MM, contain a fixed key, and therefore they do not represent realistic
datasets for profiling SCA. On the other hand, protected hardware implementations like the CHES_CTF
2020 dataset use a less known cipher, making it rarely investigated with DL-SCA. Since hardware im-
plementations have better performance (than those in software), it is necessary to have datasets con-
taining the whole encryption or decryption function (compared with the current setup, where only one
round is given). For settings where multiple rounds execute in a single clock cycle, a potentially only
way to attack is to consider inner rounds, see, e.g., the work by Swaminathan et al. [103], requiring
appropriate datasets to evaluate the attacks.

4.2 Data Pre-processing

As stated in Section 1, recall that one commonly mentioned advantage of deep learning techniques
in SCA is that they do not require pre-processing. First, we notice that most of the works use either
data normalization or standardization [48, 121, 130]. Using data standardization/normalization is
a common practice when working with neural networks [36], so it is not surprising to see it in the
SCA domain, but we can already observe that the claim on no pre-processing is (strictly speaking)
not true.

On the other hand, when dealing with side-channel measurements, it is common that traces will
be misaligned due to the environment setup or countermeasures, as pointed out by Cagli et al. [17].
Interestingly, deep learning techniques (especially convolutional neural networks) work well even
in the presence of misalignment (due to the spatial invariance property) [17, 46]. Thus, the align-
ment part of pre-processing does not seem to be required. Nevertheless, Zhou and Standaert found
the alignment step to be helpful even when using deep learning techniques [135]. In this sense, the
model selection phase tends to be simplified if alignment is feasible.

In many SCA settings, the training set might not be sufficiently large due to the limitations of the
data acquisition setup or countermeasures. In such scenarios, it is common to use data augmenta-
tion techniques. For instance, Cagli et al. showed how data augmentation in the form of data shifts
(mimicking random delay countermeasure) and add-remove (mimicking jitter countermeasure)
could significantly improve attack performance for datasets with hiding countermeasures [17].
The reason is that when dealing with more complex countermeasures, one may need to use more
complex neural network architectures. Then, data augmentation can be a simple option to prevent
overfitting.
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Achievement 3. Breaking protected datasets and showing that CNNs are naturally adept at de-
feating the desynchronization countermeasure [17].

Similar conclusions were also made by Pu et al., who showed how data augmentation with shifts
improves the attack performance [88]. Perin et al. utilized data shift data augmentation for side-
channel analysis on ECC to achieve up to 100% accuracy [75]. The latter example is relevant as,
without data augmentation, the authors reported that the attack would not be successful.

The data augmentation techniques discussed up to now significantly improved the SCA per-
formance, and they were designed to simulate the effect of various hiding countermeasures. Nev-
ertheless, it is also possible to consider data augmentation that is not SCA-specific. For example,
Zhimin et al. proposed to use a mixup data augmentation where several existing traces are com-
bined (mixed up) to produce a new trace [57]. Providing a different approach, Picek et al. showed
how noise addition to the data at the input of neural networks could improve the SCA performance
due to the regularization effect [48]. Due to the binomial data distribution, the datasets are highly
imbalanced for certain leakage models like the Hamming weight or Hamming distance. As such,
the imbalanced data setting can cause difficulties for deep learning approaches to learn all possible
classes equally. Picek et al. showed that a standard data balancing technique called SMOTE could
significantly improve the attack performance [83]. Won et al. experimented with numerous vari-
ants of SMOTE, showing different variants to be more or less aligned with specific SCA datasets,
and implemented countermeasures [120]. More recently, Wang et al. proposed to use generative

adversarial networks (GANs) for data augmentation [113]. While the results look interesting,
the main problems seem to be relatively poor performance when dealing with many labels and
the need for a large dataset to train GANs, making the whole procedure less useful in practice.
Mukhtar et al. further explored the direction of data augmentation with GANs and managed to
generate realistic leakage traces for both symmetric and public-key cryptographic implementa-
tions [68]. To this end, the authors used conditional generative adversarial networks and Siamese
networks.

Wu et al. used a denoising autoencoder with clean and noisy data (where noise is the conse-
quence of countermeasures) to pre-process the traces and improve the attack performance [125].
The results showed not only that deep learning attacks can improve the performance after the au-
toencoder pre-processing step but also simpler profiling techniques like the template attack. Won
et al. used multi-scale convolutional neural networks that can apply independent transformations
(e.g., phase-only correlation, principal component analysis–PCA, or alignment methods) to input
data in each branch, extract the relevant features, and allow a better generalization of the profiling
model [119].

Challenge 4. Data pre-processing can be useful and improve deep learning SCA performance.
PCA and linear discriminant analysis (LDA) tends to improve the attack performance in the porta-
bility setup, especially in the presence of noisy measurements, as demonstrated by Danial et al. [27].
Still, we are missing a clear set of guidelines on what pre-processing techniques to use for different
settings.

Recommendation 6. We recommend always using data standardization/normalization as it is
common practice when dealing with neural networks. Since it is important to recognize if other pre-
processing techniques should be used, we recommend conducting systematic studies on the relevance
of pre-processing for DL-SCA.

Challenge 5. Considering data augmentation techniques, we can recognize two directions: either
use standard machine learning techniques or customize data augmentation for SCA. We believe there
is a need for a systematic comparison of those approaches. Indeed, if custom approaches do not offer
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significant advantages, we question their need as they also require more effort to develop. On the other
hand, if custom data augmentation is needed, there should be a clear set of recommendations on how
to build synthetic traces for various settings.

Recommendation 7. We recommend using data augmentation when the number of available pro-
filing measurements is not sufficient. As a rule of thumb, a sufficient number of profiling measurements
is any value that allows breaking the target (e.g., reaching a guessing entropy of 1). We recommend
a systematic comparison among different data augmentation techniques, with a special emphasis on
the differences in the performance between standard machine learning techniques and custom ones
developed for DL-SCA.

4.3 Feature Engineering

Feature engineering represents (probably) the most important phase of classical profiling SCA.
Since techniques like the template attack do not have any hyperparameters to tune (besides the
input dimension), the key aspect of a successful attack is to use the most informative features.
Commonly, to this end, one either uses a feature selection technique (e.g., Pearson correlation or
SNR) or dimensionality reduction (e.g., PCA). Still, there are two potential issues: (1) what feature
engineering technique to use (not necessarily a problem as there are only a few techniques com-
monly used), and (2) how many features to use? While the recent work of Picek et al. showed that
many feature selection techniques behave similarly [82], making the selection of a feature engi-
neering technique less crucial, there are no definitive pointers on the number of features to use.
Most related works use 50 features, but there is no deeper reason for that choice (besides being
relatively computationally efficient).

On the other hand, deep learning techniques are significantly more efficient and can work with
more features. Techniques like neural networks also make an implicit feature selection by assign-
ing small weights to features that are not important. As such, the SCA community commonly
claims to use raw data. Nevertheless, several commonly used (publicly available) datasets propose
using a pre-selected feature window containing the relevant information. Thus, it would be fair
to conclude that some feature engineering is used but not considered a part of the deep learning-
based SCA.

More recently, feature engineering techniques based on deep learning showed potential.
Ramezanpour et al. showed that an LSTM autoencoder could extract features from side-channel
traces and obtain the secret information with ten times fewer traces than required for a direct attack
like DPA [91]. The same authors used the autoencoder-based approach for feature engineering,
where it also showed good results on other ciphers like ASCON [90]. Mukhtar et al. experimented
with the PCA dimensionality reduction technique and showed that deep learning attacks on
public-key implementations could result in a highly successful attack [69]. Wu et al. followed
a different direction and proposed a triplet model to find highly efficient embeddings of input
data [123]. The authors combined deep learning-based feature engineering with a classical profil-
ing attack (template attack) and showed that such a combination could reach the performance of
state-of-the-art deep learning-based attacks.

Lu et al. showed significantly improved SCA performance when using raw data (thus, no pre-
selected windows) in their recent work [56]. With that result, the authors challenged the common
practices in the deep learning-based SCA and demonstrated that using more features can bring ad-
vantages. While the authors showed potential from the attack perspective (requiring fewer traces
to break the targets), the attack also required large neural networks, making the hyperparameter
tuning more complex. The common approach is challenged even further by Perin et al. [79]. The
authors considered the ASCAD datasets (fixed and random keys) and managed to break them with
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Table 2. A Summary of Feature Engineering Methods for Machine Learning-based SCA

Classical methods Pearson correlation [92], SNR [60], PCA [118], LDA [101], SOST/SOSD [33]

Deep learning-based methods Autoencoder [90, 91], Similarity learning [123]

Other methods Use raw features directly [56], re-sampling [79]

very small neural networks (up to two hidden layers), requiring only a single attack trace. The au-
thors investigated three feature selection scenarios and evaluated the attack performance for each.
A summary of the feature engineering methods used in SCA is presented in Table 2.

While the DL-SCA community commonly considers that no feature engineering is required
and all is left for implicit feature selection, they still use pre-selected windows of relevant data. A
direct consequence of working on pre-selected and smaller windows is a trend of working with
small neural network models. This simplification, in the end, reduces the benefits of automation
steps in SCA, where an appropriate model would automatically find relevant features inside raw
traces. Moreover, selecting hyperparameters of successful models becomes easier, which might
slow down the advances in the hyperparameter tuning process.

Challenge 6. Feature engineering is either not needed for deep learning-based SCA or we need
only very basic techniques. Still, as it is common to use side-channel traces with thousands (or tens
of thousands) features, we must investigate the possible drawbacks of using such extremely lengthy
traces. Preliminary results indicate that more features help, but it remains unclear how to decide on
the number of features to use or whether larger traces also require larger neural networks.

Recommendation 8. We recommend investigating the performance of DL-SCA with significantly
more features than currently used to assess the limitations of implicit feature selection as done by
neural networks. Additionally, it is necessary to assess whether working with longer traces will require
working with larger neural network architectures.

Challenge 7. If feature engineering is required, we must understand what techniques to use. Up
to now, feature selection, dimensionality reduction with PCA, autoencoders, and re-sampling reported
good results. Nevertheless, we are missing a systematic comparison of those techniques.

Recommendation 9. We recommend using raw data in the deep learning-based SCA. Addition-
ally, it would be beneficial to provide a systematic comparison among different feature engineering
techniques, both based on classical methods and deep learning techniques as reported in Table 2.

It is important to understand that raw data or raw side-channel measurements are often subject
to inherent feature engineering as part of side-channel acquisitions. One example is the trigger
signal that is implemented either as part of the source code running in the target device or by
adjusting the oscilloscope to detect a specific pattern. Later, side-channel measurements are usu-
ally trimmed in order to contain (mainly) the leakages from the target execution operation (e.g.,
the AES encryption interval). The amount of noisy and irrelevant measurement samples that the
acquired traces may contain depends on the availability and quality of a trigger acquisition signal.
Therefore, the meaning of raw data for deep learning-based SCA may be side-channel measure-
ments that mostly include the leakages from the target operation (e.g., the full AES encryption)
without necessarily passing through alignment and trimming processes to end up with a more
optimized trace interval (e.g., the specific location of an S-box operation for a single target key
byte).

4.4 Algorithm Selection

The design of an efficient deep learning model is, for any application domain, the most difficult
and laborious analytical step in the deep learning process [36]. Maghrebi et al. proposed the first
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comparison of deep learning models in the context of profiling SCA, showing that MLPs, CNNs,
and stacked autoencoders exhibit similar or superior performance when compared to template
attacks and machine learning methods [58].

Achievement 4. The first application of convolutional neural networks for profiling SCA and
demonstrating the potential of deep learning [58].

In some early works, e.g., [17, 58], the authors did not provide details about the reasoning for
CNN hyperparameters selection.10 Other works, e.g., [8, 48] selected CNN models based on the
VGG structure, commonly applied to image and audio classification domains [39, 99]. The results
indicated that model selection based on a VGG-like structure could be efficient across several
domains and datasets. More precisely, such architectures were successfully applied to, e.g., soft-
ware implementations with Boolean masking (ASCAD), software implementations with Boolean
masking and desynchronization (ASCAD), software implementation with random delay interrupts
(AES_RD), and unprotected hardware implementation (AES_HD).

Achievement 5. Showing that VGG-like architectures perform very well in the SCA context and
that one architecture can break different (software/hardware, protected/unprotected, masking/hiding)
implementations [8, 48].

Datasets evaluated in these first deep learning-based SCA publications [8, 17, 48, 58] are low-
noise AES implementations, and the attacked trace intervals were optimized based on the access
to the mask shares from the first-order Boolean masking. It is not surprising that various trained
neural network models can efficiently recover the key within a few hundred attack traces. More-
over, even if evaluated datasets vary in the number of features and traces, nothing informative was
provided as strong guidelines to select hyperparameters and define the appropriate model size (i.e.,
number of layers, neurons, and convolution filters).

To partially fill that knowledge gap, Zaid et al. [130] proposed a research direction focused
on optimizing CNN models that are dataset-specific. One of the main goals of Zaid et al. was to
demonstrate that CNN models could break previously evaluated public datasets with very small
architectures and show remarkable key recovery performance [130]. The authors provided the first
attempt to build a methodology for constructing CNNs for SCA. While it is not easy to follow the
proposed methodology with different datasets, the authors are the first to clearly write about the
need to have such methodologies in DL-SCA.

Achievement 6. Recognizing (and clearly stating) the need for methodologies to design small and
well-performing neural networks for SCA [130].

Later, Wouters et al. improved the previous architectures from Zaid et al. [130] with a pooling-
based dimensionality reduction layer as the input layer [121]. There, the required number of attack
traces to recover the key was reduced (slightly) further with the improved CNN models containing
less than half of the trainable parameters compared to the original architectures proposed Zaid
et al. [130]. Those works showed that selecting small CNN architectures based on a set of guidelines
(methodologies) results in an excellent attack performance. Furthermore, since the selected models
are small (small number of trainable parameters), there was no need to use explicit regularization,
which is a common option to prevent overfitting and improve generalization.

Following the same concept of finding small and efficient neural network models for profiling
SCA, Rijsdijk et al. proposed the application of reinforcement learning to select neural network
model hyperparameters [93]. Their search system is rewarded based on attack performance (the

10For instance, Maghrebi et al. [58] mentioned they used genetic algorithms for hyperparameter tuning, but provided no

details.
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guessing entropy of the correct key), and the decision process is based on defining the smallest
possible CNN models. This work improved upon the previous best results and showed that the
considered datasets could be broken with even fewer traces.

Optimizing a neural network model to be as small as possible could face performance limita-
tions if evaluated datasets become more complex (protected and noisy). As for other deep learning
application domains, complex datasets would be a situation where one solution is to explore larger
architectures [38]. Along these lines, several works started to adopt methods for hyperparameter
search on the same previously analyzed datasets (e.g., ASCAD, DPAv4, CHES_CTF 2018). A ran-
dom search was adopted by Perin et al. to define a set of CNN and MLP models to be later combined
into ensemble models [76]. There, the authors demonstrated that a random search usually results
in both good and bad models and that combining them into a final ensemble provides better results
than simply selecting the best model from the conducted search. Additionally, the authors showed
that even randomly selected neural network architectures perform well, indicating that the com-
monly considered datasets are not very difficult to break. Wu et al. proposed using a Bayesian
optimization search to define efficient MLP and CNN models [122]. Bayesian optimization is ben-
eficial for large search space scenarios and when the training process is expensive, which is the
case of hyperparameter search for profiling SCA. The authors showed that Bayesian optimization
is more efficient than classical random search when the number of searches is limited and can give
better results than the reinforcement learning approach.

Although the search space in all the works described in the last paragraph is quite large, the
authors always selected optimized ranges for each hyperparameter. Such selection, of course, re-
sulted from intuitive decisions related to the dataset and its countermeasures. In most cases, we
rarely see deep learning models where the number of hidden layers goes beyond ten hidden lay-
ers. Exceptional cases that consider deeper models are [56, 135]. For deep learning standards (and
for the evaluated datasets), a model can be considered small to medium size with such a num-
ber of layers. Even then, the search space is already quite large, and more efficient methods (e.g.,
Bayesian optimization, ensembles, reinforcement learning) are used to improve model selection.
The main drawback of what was reported for hyperparameter search on a larger search space is
that many models show good attack performance, limiting the understanding of what are good
hyperparameter options even for specific datasets or based on what criteria to compare the results.

Challenge 8. As research papers consider relatively small datasets, it would be useful to develop
efficient guidelines to determine the most important hyperparameters on more realistic settings con-
taining millions of noisy and protected side-channel traces. In this case, it is expected that the search
space will increase, and the number of well-performing models will decrease significantly.

Recommendation 10. Evaluate the common hyperparameter ranges and automated tuning tech-
niques with new, more challenging datasets. Furthermore, report the performance with the best archi-
tectures and the percentage of the well-performing models (i.e., those that break the target).

In the context of public-key implementations, Carbone et al. were the first to consider deep
learning-based profiling SCA [18]. More precisely, the authors attacked a protected RSA algo-
rithm (three countermeasures) and showed that CNNs have significant potential. Soon afterward,
Weissbart et al. ran a deep learning attack against EdDSA in WolfSSL and showed it is possible
to break the target with a single attack trace [117]. Interestingly, the authors used the same CNN
as Kim et al. used when attacking AES [48]. Finally, Perin et al. used a fundamentally different
approach to attacking a protected ECDSA (Elliptic Curve Digital Signature Algorithm) implemen-
tation [75]. After running a horizontal attack11 (for details about the horizontal attack, see the

11Horizontal attacks treat every key bit as represented by a small trace interval and, therefore, split every side-channel

measurement into a set of sub-traces.
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Table 3. A Summary of Masking Countermeasures Successfully Attacked with DL-SCA

Countermeasure Platform

First-order Boolean masking SW [8, 58], HW [119]

First-order Boolean masking with desync/RDI/jitter/S-box shuffling SW [130]

ISW masking SW [34]

First-order RSM SW [48]

Affine masking (with known affine sharem) SW [63]

work by Nascimento et al.) [70], the authors used deep learning to iteratively correct errors stem-
ming from the horizontal attack. The authors managed to get 100% accuracy with their approach,
even if starting with only 52% accuracy. Despite attacking protected implementations and the need
to succeed in a single attack trace, the results indicate that goal to be relatively easily achievable,
while such attack performance for symmetric-key cryptography implementations is rarely seen.
We believe this happens due to fewer classes for public-key implementations (commonly, only two
as we need to distinguish between bit values 0 and 1 only).

Challenge 9. Researchers reported many neural network architectures that can successfully re-
cover secret information without assuming any knowledge of the secret mask shares for the datasets
mentioned above (details about broken masking countermeasures are in Table 3). The defined leakage
models are constructed based on an intermediate value s , ignoring the fact that the value is masked
with a secret share, r , by implementing a Boolean masking countermeasure: sr = s ⊕ r . The main con-
clusion is that neural networks inherently find the points of interest related to r and sr and combine
both of them in the unmasking process.

The only exception is the ASCADv2 dataset, where an additional affine multiplicative share m
masks the target value with the following operation: sr,m = (s ×m) ⊕ r . For the ASCADv2 dataset
(and at the moment of writing of this document), no successful attacks were reported demonstrating the
possibility of key recovery without assuming the knowledge of at least one of the two secret sharesm or
r . Moreover, no publication demonstrated how to bypass high-order masking schemes in cryptographic
algorithms with DL-SCA. Finally, it is unclear what are the capabilities of various neural network
architectures against different SCA countermeasures.

Recommendation 11. To allow more meaningful comparisons, we must define a concept of an
optimized architecture. For instance, a model optimized to recover a key with as few as possible attack
traces, and at the same time, that can generalize in different conditions such as portability. Addi-
tionally, we recommend studying the limitations of DL-SCA against stronger countermeasures, e.g.,
assessing the difference when attacking Boolean and affine masking.

4.5 Model Training

Model selection is accompanied by model training to infer if the chosen architecture delivers satis-
factory performance for the given attack scenario. However, it is possible to improve the selection
of the model if some training aspects are carefully defined based on common knowledge and user
experience.

Among all tunable hyperparameters in a neural network, some are directly related to the train-
ing process. In SCA, learning rate, optimizer, batch size, number of epochs, or regularizers are usu-
ally less searched than other hyperparameters related to model structure (e.g., number of layers,
neurons, and activation functions) but directly affect how the model learns. For instance, different
optimizers work better for a different number of epochs, as reported by Perin and Picek [77]. In-
deed, the authors demonstrated that Adam or RMSprop require fewer epochs than Adagrad, SGD,
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or Adadelta to achieve good attack performance (although the last options tend to overfit less even
for much longer training). More importantly, the authors observed that certain optimizers perform
better, and this behavior is common for any model hyperparameters when the number of trainable
parameters is restricted to some bounds.

Training performance and duration are also directly affected by the chosen loss function. In
side-channel analysis, researchers predominantly consider categorical cross-entropy (while some
works use MSE). Recently, custom loss functions were proposed in the context of profiling SCA.
Zhang et al. proposed a Cross-Entropy Ratio loss function to remove negative effects from imbal-
anced labels in the Hamming weight leakage model [133]. Ranking Loss was proposed by Zaid
et al. as a method to minimize the ranking error of the correct key concerning other key hypothe-
ses [129]. Kerkhof et al. proposed a loss function called Focal Loss Ratio that provides very good
attack performance but does not have high computational overhead [47]. Later, Zaid et al. pro-
posed Ensembling Loss as a custom loss function to maximize diversity in an ensemble-based
approach [131].

Challenge 10. Defining a loss function that provides general behavior for multiple datasets and
attack models is hard. It still remains unclear whether we require custom loss functions (or any other
custom neural network element) for DL-SCA.

Recommendation 12. Using categorical cross-entropy represents a safe choice (at the moment),
although it could present inferior performance compared to the loss function customized and validated
to specific training data.

Fighting overfitting during training is usually done with regularization techniques. Most of the
publications we analyzed are not affected by overfitting for three main reasons: (1) datasets are
easy to attack, (2) selected models are often very small (i.e., a small fitting capacity that inher-
ently regularizes the model), and (3) training epochs are usually set to small values (normally less
than 300). One effort to make the selected neural network models even smaller was made by Perin
et al. [80]. The authors used pruning to design small neural networks that exhibit good SCA be-
havior, and they showed that a recently proposed hypothesis called The Lottery Ticket Hypothesis
also holds for the SCA domain.

Challenge 11. As one of the dominant problems in DL-SCA is overfitting, it is necessary to inves-
tigate how to prevent or, at least reduce it.

Recommendation 13. Setting efficient regularizers (e.g., dropout, l1, l2) is an alternative solution
to determine the best number of epochs. As regularizers prevent model overfitting, the number of
epochs can be set to a larger number without risking evaluating the model after generalization is
already degraded. Moreover, overfitting should also be minimized by setting a learning rate scheduler.
Then, the learning rate is adapted (manually or adaptively) during training. It is necessary to conduct
a systematic evaluation of various regularizers and assess which ones perform the best in the context
of DL-SCA.

4.6 Attack Evaluation

Attack evaluation considers different types of metrics depending on the target cryptographic algo-
rithm. For symmetric-key algorithms, the key is fixed during multiple encryption executions, and
therefore metrics from the predictions of multiple traces (class probabilities) are combined into a
final metric. On the other hand, if the key needs to be recovered from a single measurement, which
is the case of public-key algorithms, the model needs to be validated from a final metric that is not
a combination of multiple trace predictions, such as accuracy.
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The discrepancy between SCA and machine learning metrics was first investigated by Picek
et al. for the case of AES [83]. The authors demonstrated that an imbalanced class problem leads
to inconsistency between, e.g., accuracy and the SCA performance. This inconsistency is more
likely to be observed for side-channel measurements collected from protected or highly noisy
implementations.

Achievement 7. Investigating the differences between the machine learning and side-channel met-
rics and possible issues stemming from those differences [83].

Perin et al. visually showed how output class probabilities are ranked for both successful and un-
successful attacks when accuracy is not enough to make a distinction between both situations [76].
The authors demonstrated that accuracy is low or close to a random guessing value because ex-
pected classes are not always predicted as first, but usually among the first ones, and the summa-
tion of these probabilities (based on the label’s guessing for the correct key) is what explains the
success of certain attacks. Thus, these results confirm that GE is an appropriate metric for model
validation. One of the drawbacks of GE is its computational complexity. Computing GE only once
at the end of the training process is feasible. However, if GE validates the model during training
(e.g., for early stopping), it might add excessive time overheads if the number of validation/attack
traces is too large. Robissout et al. proposed the evaluation of the success rate of (small portions
of) training and validation sets to determine the best training epoch [96]. Still, it is unclear how to
use the proposed approach when there are random keys in the profiling set. Perin et al. evaluated
a mutual information-based metric to identify the best epoch to stop training [74].

Since GE is the most common metric in deep learning-based profiling SCA, one must ensure
its computation is correct and reliable. Ideally, to draw consistent conclusions about the model’s
learnability, it is recommended to compute GE from the maximum possible number of attack traces.
As GE is the average resulting vector of multiple key rank calculations, each key rank execution
should be computed from a randomly selected trace subset from all available attack traces. By
doing so, we ensure that GE is a measure of model generalization. Such version of GE computation
is explored by Wu et al. and defined as generalized guessing entropy [126]. Furthermore, Wu
et al. proposed to compute GE using the geometric mean over multiple key ranks instead of the
arithmetic mean (as commonly done) case as it seems to lead to more stable results [124]. Zhang
et al. proposed a guessing entropy estimation algorithm based on theoretical distributions of the
ranking score vectors [134]. That approach allows for better accuracy and efficiency than previous
estimation techniques. While the authors did not discuss the deep learning perspective, it seems
intuitive to use it in such a context since the GE evaluation is expensive and needs to be done
multiple times. Wu et al. discussed how guessing entropy can be a misleading metric, and they
proposed a new metric called profiling model fitting metric to estimate how reliable the guessing
entropy estimation is [126].

Challenge 12. Little is understood about the relationship between commonly used SCA metrics
(GE, SR) and model-learned parameters (i.e., the neural network weights). Metrics in SCA are all
derived from output class probabilities, and everything “inside” the model is usually not considered.
The research for specific metrics that could measure how well deep learning models understand and
fool a countermeasure would be a perfect fit for a bi-objective problem, i.e., a model would be selected
based on its ability to reach low guessing entropy and be efficient against certain countermeasures.

Recommendation 14. It would be beneficial to develop a metric that measures the level of desyn-
chronization (or even noise) that the trained model can process. Such a metric would also require some
level of AI explainability in SCA.

Challenge 13. It is unlikely but still relevant to try to find a universal profiling model that could
defeat all types of available countermeasures and that could be used in a wide variety of targets.
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Recommendation 15. We should measure and understand how the selected hyperparameters
make the model succeed (or fail) in fitting existing leakages. Additionally, it would be relevant to
develop techniques allowing us to quantify the differences in the targets to assess how “universal” a
certain model is.

Challenge 14. Efficient attack evaluation has an appeal from the security perspective. A wrong
attack evaluation based on an unreliable metric would mean an unreliable security assessment. In
some cases, security can be overestimated not because the target is actually secure but because the
evaluated metric is wrongly interpreted. Therefore, if such an evaluating metric indicates unsuccessful
attack performance, the evaluator needs to cover at least two questions: (1) whether the model is
trained correctly and the selected hyperparameters come from a reasonable process, and (2) whether
the evaluation metrics are correctly estimated and interpreted for the specific target. Finally, due to
the random weight re-initialization, retraining the same dataset and architecture from scratch leads
to a different result.

Recommendation 16. We recommend using guessing entropy as the metric of choice to evaluate
deep learning-based SCA. Furthermore, we recommend always sampling the attack traces from a large
pool of available traces and averaging the estimation by using the median. Finally, we recommend
reporting the results for a number of independent model trainings.

5 AI EXPLAINABILITY AND SCA

In general, side-channel analysis is done to break a target and assess its security, but also to pro-
pose stronger countermeasures. However, using deep neural networks to break the targets leaves
many questions open. Indeed, if the attack is not successful, we cannot understand why it was
unsuccessful. More precisely, it is difficult to know if we were unsuccessful due to a poor attack
method or strong countermeasures (or both). On the other hand, if the attack is successful, one
could (naively) think the goal is accomplished, but that is not the case. Once we succeed with an
attack, a natural step should be to propose better countermeasures. Unfortunately, the information
on how to design stronger countermeasures is difficult to obtain from neural networks, and the
security evaluator is left wondering how to strengthen the security of a target. Consequently, with-
out understanding the security flaws of the target, expensive timing (i.e., random delays) or noise
(i.e., extra logic) countermeasures could be added to the target, while a simpler solution directly
mitigating the leakage could be more cost-efficient.

The first work in the direction of SCA and AI explainability was made by Hettwer et al. and
it aimed at interpreting neural network decisions by using heatmapping techniques [41]. The au-
thors concluded that all tested techniques perform similarly and give relevant information about
the most important features (that caused specific neural network decisions). Masure et al. used a
sensitivity analysis technique called gradient visualization to pinpoint where information leakage
happens [62]. Van der Valk and Picek extended upon bias-variance decomposition and proposed
GE bias-variance decomposition to understand the performance of machine learning techniques
and how a change in a setting influences the SCA performance [110].

Van der Valk et al. made the first step toward the explainability of deep neural networks in
SCA by using the Singular Vector Canonical Correlation Analysis (SVCCA) tool to explain
what neural networks learn while training on different side-channel datasets [111]. The obtained
results were interesting as they showed that even datasets from different domains could have “more
similarity” than two side-channel datasets. Wu et al. used ablation to explain how neural networks
process hiding countermeasures [127]. The authors concluded that simpler countermeasures are
getting processed in the shallow layers, while more complex countermeasures are processed in
deeper layers.
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Challenge 15. Understand how neural networks process masking and circuit-level
countermeasures.

Examples of circuit-level countermeasures include, to name a few, Wave Dynamic Dif-

ferential Logic (WDDL) [109], Masked DPL (MDPL) [86], Dynamic and Differential

Swing-Limited Logic (DDSLL) [71]), Low-Dropout (LDO) regulators [100], Current Domain

Signature Attenuation (CDSA) [28, 32], hardware accelerators [53], and randomization-based
SCA protection [13].

Recommendation 17. We believe it is important to concentrate on both the techniques that pro-
vide insights into what features are the most important and techniques that provide insights into
what is happening in the neural network. We consider the latter direction to be more challenging but
potentially more impactful.

Challenge 16. Propose efficient countermeasures tuned to fight against deep learning-based SCA.

Recommendation 18. It would be interesting to consider the developments in the security of ma-
chine learning and recognize if some failure modes (e.g., poisoning attacks or adversarial examples
could be used as a countermeasure against DL-SCA. This possibility should evaluate not only the
(hopefully) decreased attack performance but also how realistic it is to deploy such a countermeasure
in hardware.

6 FRAMEWORKS

The current state of the art for deep learning-based SCA mostly uses the Keras framework [22]. Still,
it is not uncommon to also encounter TensorFlow [1] and PyTorch [72] implementations. Some
authors also use Matlab [64] and scikit-learn [73], especially in the context of machine learning.

Recommendation 19. Ideally, the DL-SCA community should use the same framework to make
the results easily reproducible. As this is difficult to expect, we recommend running experiments mul-
tiple times to reduce the influence of randomness stemming from the choice of different frameworks.

To the best of our knowledge, there are not many publicly available customized frameworks
for deep learning-based side-channel analysis. While having a publicly available framework is not
necessary for conducting deep learning-based SCA, we consider it very helpful, especially from
the reproducibility perspective. The first published framework we are aware of is developed by
Brisfors and Forsmark and is called DLSCA [14].12 The tool is meant to be modular, but the current
version supports only basic functionalities. It seems there has been no active development in the
last two years.

The second publicly available framework is called the AISY framework. This framework was
recently developed by Perin et al. [78], and it contains a significant number of functionalities
developed in the last few years in the deep learning-based SCA domain.13 The main advantage
of the AISY framework seems to be the relative ease of conducting reproducible research.

Recommendation 20. The SCA community would benefit from a publicly available tool that is
regularly updated and contains up-to-date functionalities. Naturally, it is not easy to know what func-
tionalities to support, but we propose to include those published in top conferences. As those functional-
ities would still represent a significant effort for the authors of the framework, we propose establishing
a standard coding style so it is easy to import functionalities from various research works.

12https://github.com/brisfors/DLSCA.
13https://github.com/AISyLab/AISY_Framework.
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7 THE FUTURE OF DEEP LEARNING-BASED SCA

The recent work of F. Chollet defines measures for intelligence and generalization in artificial
intelligence [21]. The author provided an important discussion to point out what a human-like
intelligent system must provide to be considered intelligent for the terms defined in the paper. He
suggested that, so far, deep learning has been restricted to specific tasks, and, as a consequence, this
does not necessarily result in an intelligent system. In the SCA domain, the story is no different. At
the moment, it is more fair to assume that recent achievements also showed task-specific results,
and the level of intelligence developed for SCA is still quite limited.

However, the existing state of the art does not necessarily mean that deep learning-based SCA
cannot go beyond this point. The state-of-the-art DL-SCA results are limited to the concept of local
generalization. According to F. Chollet, “this is the ability of a system to handle new points from
a known distribution for a single task or a well-scoped set of known tasks” [21]. It is also defined
as the “adaptation to known unknowns within a single task or well-defined set of tasks”.

Once a deep neural network is trained from a profiling set, the scope of target operation (e.g.,
a target intermediate cipher state), leakage model selection, attacked trace interval (number of
features), trace pre-processing, nature of side-channel leakage (e.g., power consumption, electro-
magnetic emissions, or time), and possible countermeasures are all well defined and taken into
consideration to build the model. If a single aspect changes, the model loses generalization ability
unless the training data distribution shows statistical similarities to other targets and the trained
model can cover them. In this case, the “known unknown” refers to a separate trace set measured
from an identical target.

As an example, if a deep neural network is trained on a profiling set defined for exactly two
classes (e.g., a byte contains all zeros or a byte contains all ones) and a separate test data is repre-
sented by a class that is different from these two classes (e.g., a byte containing Hamming weight
equal to 3), the model cannot provide a generalization error associated to the third type of class. It
can only indicate how likely this (unseen) data belongs to each of two well-defined classes. There-
fore, for the SCA domain to enter a broad generalization case, the model should be able to cover
unknown unknowns. An example would be the ability to generalize to leakage models not specif-
ically covered during the training stage. This way, the model could adapt to the new unknown
leakage models. One option to (at least) approach broader generalization could be to use transfer
learning as investigated by Thapar et al. [107].

While local generalization aspects limit research in AI-based side-channel analysis, every small
improvement on the offensive side will require a correspondent defensive improvement to mitigate
the new potential attack. Hence, the defensive side is also limited to threat models involving single
and well-scoped tasks or attacks. Countermeasures are not developed to protect against adversaries
dynamically, and they do not “generalize” to any possible attack. As side-channel analysis is a non-
invasive attack, the target system is not aware of the presence of an adversary. This means that the
protection cannot even adapt according to the attack’s invasive effect. Therefore, a countermeasure
needs to cover as many as possible known unknowns attack scenarios, restricting the dynamic and
adaptation condition.

Challenge 17. Design countermeasures that achieve broad generalization to cover unknown at-
tack scenarios.

Recommendation 21. Unfortunately, it seems we are rather far from having countermeasures
that achieve broad generalization. For this to happen, we believe we first need substantial progress in
understanding how to mount powerful deep learning-based attacks but also understanding how those
attacks work.
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Challenge 18. There are many developments for deep learning-based SCA. Consequently, it be-
comes difficult to recognize what technique to use and when. This difficulty becomes especially pro-
nounced as there are no comparisons among different techniques (e.g., if ensembles are more beneficial
than data augmentation or custom loss functions).

Recommendation 22. We require an automated system that will not only result in a strong attack
but also suggest the steps required for the attack to be successful.

Recommendation 23. As a general recommendation, we believe there should be an emphasis on
reproducible research. Every phase in DL-SCA needs to be clearly defined. First, the pre-processing,
feature engineering, and experimental setup must be discussed. Next, the researchers must clearly de-
fine the selected hyperparameters (as well as how those are found). As a preferred practice, researchers
should evaluate the attack performance with a different number of profiling and attack traces. Finally,
it should become a standard to publish the trained models.

8 CONCLUSIONS

Both academia and industry have been investigating side-channel analysis for several decades al-
ready. This process resulted in tremendous progress, but it also left many questions unanswered.
The recent trend of using deep learning in SCA makes the situation even less straightforward.
While the prevailing number of works report the new techniques resulting in improved attack
performance, most techniques are not well justified and critically evaluated and thus remain ne-
glected. Consequently, it is not easy to comprehend the truly beneficial techniques and when to
use them. We believe the researchers need to take a step back and observe the big picture. This
work might help with that goal.

This paper discusses the most important developments in DL-SCA and signalizes many open
challenges. Each challenge is accompanied by a recommendation on how to address it. Besides
those recommendations, we recognize the need to facilitate the results’ reproducibility: making
publicly available datasets, writing all the required details to reproduce the experiments, and
publishing the neural network models used in the experiments. In short, we hope our work will
help other researchers and practitioners to pave new research avenues and move forward in the
DL-SCA domain.

APPENDIX

A COMMON NEURAL NETWORK TYPES IN SCA

We briefly describe several types of neural networks used in deep learning-based SCA. The first
two types (CNNs and MLP) are commonly used, while autoencoders are not widely used, despite
being investigated in different contexts. Finally, the last three neural network types are rarely used.

Multilayer Perceptron. The multilayer perceptron (MLP) is a feed-forward neural network map-
ping input sets onto sets of appropriate outputs. MLP consists of multiple layers of nodes in a
directed graph, where each layer is fully connected to the next one, and training of the network is
done with the backpropagation algorithm [36].

Convolutional Neural Networks. Convolutional neural networks (CNNs) commonly consist of
three types of layers: convolutional layers, pooling layers, and fully connected layers [36]. The
convolution layer computes the output of neurons connected to local regions in the input, each
computing a dot product between their weights and a small region they are connected to in the
input volume. Pooling decrease the number of extracted features by performing a down-sampling
operation along the spatial dimensions. Finally, the fully connected layer computes the hidden
activations or the class scores.
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Autoencoders. Autoencoders (AEs) are neural network structures composed essentially of two
main blocks: encoder and decoder. The output of the encoder usually contains a reduced dimension
in comparison to the dimension of input data. The decoder block takes the encoder output as input
and outputs the same dimension of input data. Autoencoders can be employed in supervised and
unsupervised learning, where the main purpose is to transform input data as part of the (but not
necessarily) pre-processing phase. There are several types of autoencoders used in deep learning-
based SCA. One type is an autoencoder to remove noise from side-channel traces [54, 125]. The
second type is autoencoder models for feature extraction, reducing the dimensionality of the input
data [119]. Finally, autoencoders were also used for classification [58], where the authors placed a
softmax layer as the output layer.

Recurring Neural Networks. Recurrent Neural Networks (RNNs) are designed to recognize
patterns in sequences of data [36]. RNNs perform the same function on every input data and
store the output for the following input. This means that RNN stores the previous step input and
merges that information with the current step input. The output of the neural network is thus
dependent on past computation. Because the RNN has a memory, it is especially useful in train-
ing on sequential data (a stream of interdependent data). RNNs are widely used in the natural

language processing domain (NLP) [128], and LSTM is a well-known example of RNN-based
architecture [44], also used in SCA ([58]).

Residual Neural Networks. Residual Neural Networks (ResNet) consist of residual blocks with
several layers and a shortcut connection [38]. The shortcut connection connects the input and out-
put of each residual block. Each residual block contains basic layers of any type (e.g., convolution,
pooling, dense). The main purpose of shortcuts in a residual network is to avoid that deeper net-
works with several hidden layers becoming so deep that they cannot propagate the information
anymore.

Generative Adversarial Networks. Generative adversarial networks (GANs) are specific neural
network-based structures that can generate artificial data based on an evaluated data distribu-
tion [37]. Two types of models are trained: a generator and a discriminator. The generator takes
random data as input and tries to create output data indistinguishable from the original and avail-
able distribution. This generator model is trained until the discriminator model cannot differentiate
from which distribution (original or fake) the input is coming.
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