
MASTER OF SCIENCE THESIS 

 

 

 

 

Terminal Area Energy Management 

Trajectory Optimization using Interval 

Analysis 

Nuno Ricardo Salgueiro Filipe 

 

December 4, 2008 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

Terminal Area Energy Management 

Trajectory Optimization using Interval 

Analysis 

 

MASTER OF SCIENCE THESIS 

 

 

 

 

Nuno Ricardo Salgueiro Filipe 

 

December 4, 2008 

 

 

 

 

 

 

 

 

 

 

 

Faculty of Aerospace Engineering     ·     Delft University of Technology 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Nuno Ricardo Salgueiro Filipe 
All rights reserved. 
 



 

 

 

DELFT UNIVERSITY OF TECHNOLOGY 

DEPARTMENT OF 

CONTROL AND SIMULATION 

 

 

The undersigned hereby certify that they have read and recommend to the Faculty of 
Aerospace Engineering for acceptance a thesis entitled “Terminal Area Energy Management 
Trajectory Optimization using Interval Analysis” by Nuno Ricardo Salgueiro Filipe in 
partial fulfilment of the requirements for the degree of Master of Science. 
 
 
 
 
 
 
 

Dated: December 4, 2008 
 

 

Supervisor: 
prof. dr. ir. J. A. Mulder 

 

Readers: 
dr. Q. P. Chu 

 

 
ir. A. M. Barrio 

 

 
ir. E. van Kampen 

 

 
ir. E. de Weerdt 

 

 

 

 

 

 



 

 

 

 

 

 



Abstract  v 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Abstract 
 

Optimization is the problem of minimizing (or maximizing) a certain quantity, normally referred 
to as the cost function, by correctly choosing the values of a certain set of variables - static 
optimization - or by tuning the shapes of a certain set of time functions - dynamic 
optimization. 

Optimization problems are transversal to many manifestly different disciplines: physics, 
chemistry, engineering, economics, management, biology, just to name a few, which makes it 
a field of paramount importance. 

Gradient-based methods, like Nonlinear Programming, and Genetic Algorithms are currently 
the most popular and widespread optimization techniques. These methods cannot guarantee 
convergence to the global minimum. 

Through a branch and bound strategy, interval analysis is able to yield guaranteed and 
rigorous bounds on the global minimum. It does so by using intervals instead of real numbers 
and interval arithmetics instead of real arithmetics. Even numerical roundoff errors are 
considered and do not affect the rigour of the solution. 

Optimization based on interval analysis is a relatively recent topic. For example, the 
application of interval methods to high dimensional (more than a few hundred variables) static 
optimization problems is still too time consuming. Likewise, the development of interval 
methods for solving dynamic optimization problems is still just starting.  

In this thesis, a static and a dynamic global optimization algorithm are developed using 
interval analysis. It is shown that their efficiency and correctness are superior to a pre-
existent algorithm.  

The dynamic global optimization algorithm is applied to the optimization of the Terminal Area 
Energy Management (TAEM) phase trajectory of a Reusable Launch Vehicle (RLV). During the 
TAEM phase, the kinematic and potential energies of the vehicle must be regulated in order to 
assure a safe landing. At the same time, the heading of the vehicle must be aligned with the 
runway. The aerodynamic model of HORUS-2B was used during the tool’s prototyping. 

Two versions of the TAEM trajectory optimization tool were developed. The first one assumes 
no coupling between the longitudinal and lateral motions of the RLV. A Monte Carlo method 
was used to validate it. It was shown that the tool is able to find the global optimum of a cost 
function with several local minima.  

The second version takes into account the complete fully coupled equations of motion. 
VNODE-LP, a free interval Ordinary Differential Equations (ODE) solver, was used to rigorously 
bound the time histories of the states. It was shown that VNODE-LP cannot handle wide 
interval parameters, and is therefore inadequate for global optimization. Promising alternative 
interval ODE solvers were identified and recommended.  

 

 

Keywords: interval analysis, interval arithmetics, reliable computing, trajectory optimization, 
TAEM phase, HORUS-2B, static global optimization, dynamic global optimization, VNODE-LP, 
VSPODE, INTLAB 

 

 

 



vi  Abstract 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Acknowledgments  vii 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Acknowledgments 
 

First of all, I would like to express my gratitude to dr. Q. P. Chu (TU Delft) for being my 
mentor during this entire time. It was he who first pointed me this line of research. It was also 
thanks to him that I was able to finish my thesis at ESA/ESTEC. 

I would also like to thank ir. E. van Kampen and ir. E. de Weerdt (TU Delft) for their ideas and 
suggestions on interval analysis and for the patience they have demonstrated during our 
(sometimes) long meetings. 

A special thank you to prof. dr. ir. J. A. Mulder (TU Delft) for accepting me into the Control 
and Simulation Department and for his long-lasting support to Portuguese students. 

I am also very thankful to ir. A. M. Barrio (TEC-ECM, ESA/ESTEC) for his eye-opening advices 
and for lending me all the literature he has gathered about the TAEM phase. 

This thesis would not be possible without the help of dr. G. Ortega, the Head of the Dynamics 
and Mathematical Analysis Unit (TEC-ECM) of ESA/ESTEC. I would like to thank him for his 
unconditional support (even after our more or less heated discussions) and for giving me the 
opportunity to work for TEC-ECM. I would like to commend him for foreseeing the potential of 
interval analysis. 

During my stay at TEC-ECM I had the pleasure of working with some amazing people that 
disserve to be mentioned here: dr. ir. S. Erb, ir. F. Castellini, ir. J. Melman, A. Riccardi and ir. 
C. Tienda. 

My special thanks to dr. ir. E. Mooij (TU Delft) for providing me the aerodynamic model of the 
HORUS-2B. 

I am also in debt towards dr. ir. H. G. Visser (TU Delft) for finding the time to explain to me 
the foundations of static and dynamic optimization in a comprehensible manner. 

My sincere thanks to ir. T. Lombaerts (TU Delft) for his bright spirit and friendship. I will never 
forget the wonderful experience it was to be the student assistant of Automatic Flight Control 
System Design.   

I have to give my thanks to dr. N. S. Nedialkov (McMaster University, Canada), the developer 
of VNODE-LP, for his quick responses to all my questions. 

My gratitude also goes to prof. dr. S. M. Rump (Hamburg University of Technology), the 
developer of INTLAB, for his prompt responses. 

I would not be able to finish this thesis (at least not with the same mental sanity) if it weren’t 
for my dear friends. I would like to thank: Fred (for being always there), Tatiana (for never 
stop talking), Mário (for his friendship), Inês (for her craziness), Boavida (for his attitude 
towards life), Bruno (for his jokes), Maria (for her Portuguese dishes), Christina (for being my 
dance partner), Mathilde (oh la la), Sören (for never forgetting), Pieter (for being a great 
guy), Daan (for the Belgian beers) and Paulo (for being an animal). 

Last but not the least, I want to thank my mother, my father, my grandmother and my 
grandfather for making me the man I am today. Thank you! 

Por último, quero agradecer à minha mãe, ao meu pai, à minha avó e ao meu avô. Sem vocês 
nada disto seria possível. Muito obrigado por serem quem são! 

 

 



viii  Acknowledgments 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of Contents  ix 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Table of Contents 
 

Abstract ................................................................................................................. v 

Acknowledgments ................................................................................................ vii 

Table of Contents .................................................................................................. ix 

List of Figures ...................................................................................................... xv 

List of Tables ...................................................................................................... xix 

Nomenclature...................................................................................................... xxi 

Acronyms ..........................................................................................................xxvii 

Chapter 1 | Introduction ........................................................................................ 1 

1.1 Background .......................................................................................................... 1 

1.2 Problem statement ................................................................................................ 1 

1.3 Thesis goal ........................................................................................................... 2 

1.4 Thesis Outline....................................................................................................... 2 

1.4.1 Outline of Part I .............................................................................................. 3 

1.4.2 Outline of Part II ............................................................................................. 3 

Part I | Static and Dynamic Global Optimization using Interval Analysis ................. 5 

Chapter 2 | Interval Analysis – An Introduction...................................................... 7 

2.1 The virtues of interval analysis ............................................................................... 7 

2.2 The drawbacks of interval analysis .......................................................................... 8 

2.3 Interval arithmetics software toolboxes .................................................................... 8 

Chapter 3 | Interval Arithmetic ............................................................................ 11 

3.1 Outward rounding ............................................................................................... 11 

3.2 Basic definitions .................................................................................................. 12 

3.3 Real functions of intervals .................................................................................... 13 

3.4 The four elementary interval arithmetic operations .................................................. 13 

3.5 Dependency ....................................................................................................... 14 

3.6 The wrapping effect ............................................................................................ 16 

3.7 The fundamental theorem of interval analysis ......................................................... 18 

3.8 Interval vectors and matrices ............................................................................... 18 



x  Table of Contents 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Chapter 4 | Static Global Optimization ................................................................. 21 

4.1 The problem ....................................................................................................... 21 

4.2 The algorithm ..................................................................................................... 22 

4.2.1 Procedures to shrink the boxes........................................................................ 23 

4.2.1.1 Hull consistency ....................................................................................... 23 

4.2.1.2 Box consistency ....................................................................................... 26 

4.2.1.3 Comparing hull consistency with box consistency ......................................... 27 

4.2.2 Procedures to eliminate boxes ......................................................................... 27 

4.2.2.1 Using the inequality constraints ................................................................. 27 

4.2.2.2 Using an upper bound on the minimum ....................................................... 28 

4.2.2.2.1 The unconstrained case .................................................................... 28 

4.2.2.2.2 The inequality constrained case ......................................................... 29 

4.2.2.2.3 The equality constrained case ........................................................... 29 

4.2.2.2.4 The inequality and equality constrained case....................................... 30 

4.2.2.3 Using the gradient of the objective function ................................................ 30 

4.2.2.4 Using the gradient of the Lagrangian .......................................................... 30 

4.2.3 Branching ..................................................................................................... 32 

4.2.4 Interpretation of the results ............................................................................ 33 

4.2.5 Stopping criteria ............................................................................................ 34 

4.3 Example 1 .......................................................................................................... 35 

4.4 Example 2 .......................................................................................................... 37 

4.5 Example 3 .......................................................................................................... 39 

4.6 Example 4 .......................................................................................................... 41 

4.7 Example 5 .......................................................................................................... 45 

4.8 Example 6 .......................................................................................................... 47 

Chapter 5 | Dynamic Global Optimization ............................................................. 51 

5.1 The problem ....................................................................................................... 51 

5.1.1 Necessary conditions for a solution .................................................................. 52 

5.1.2 Necessary conditions for a solution with functions of the final state specified at a 
fixed final time ...................................................................................................... 53 

5.1.3 Necessary conditions for a solution with functions of the final state specified at an 
unspecified final time ............................................................................................. 54 



Table of Contents  xi 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

5.1.4 Necessary conditions for a solution with inequality constraints on the control 
variables ............................................................................................................... 54 

5.1.5 Necessary conditions for a solution with inequality constraints on functions of the 
state variables ....................................................................................................... 55 

5.1.6 Direct versus indirect numerical dynamic optimization methods ........................... 56 

5.2 The algorithm ..................................................................................................... 57 

5.2.1 Procedures to shrink the boxes........................................................................ 60 

5.2.1.1 Hull consistency ....................................................................................... 60 

5.2.2 Procedures to eliminate boxes ......................................................................... 61 

5.2.2.1 Using the inequality constraints ................................................................. 61 

5.2.2.2 Using an upper bound on the minimum ....................................................... 62 

5.2.2.2.1 The unconstrained case .................................................................... 63 

5.2.2.2.2 The inequality constrained case ......................................................... 63 

5.2.2.2.3 The equality constrained case ........................................................... 63 

5.2.2.2.4 The inequality and equality constrained case....................................... 64 

5.2.3 The shrinking phase ....................................................................................... 64 

5.2.4 Branching ..................................................................................................... 67 

5.2.5 Interpretation of the results ............................................................................ 69 

5.2.6 Stopping criteria ............................................................................................ 70 

5.3 Example 1 .......................................................................................................... 71 

5.3.1 Second-order parameterization ........................................................................ 73 

5.3.1.1 Description of the developed algorithm ....................................................... 73 

5.3.1.2 Description of Chu’s algorithm ................................................................... 74 

5.3.1.3 Comparing the algorithms ......................................................................... 75 

5.3.2 First-order parameterization............................................................................ 76 

5.4 Example 2 .......................................................................................................... 78 

5.5 Example 3 .......................................................................................................... 78 

5.5.1 A first-order parameterization ......................................................................... 78 

5.5.1.1 Description of the developed algorithm ....................................................... 79 

5.5.1.2 Description of Chu’s algorithm ................................................................... 79 

5.5.1.3 Comparing the algorithms ......................................................................... 80 

5.5.2 A second-order parameterization ..................................................................... 80 



xii  Table of Contents 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

5.5.3 A third-order parameterization ........................................................................ 82 

5.6 Example 4 .......................................................................................................... 87 

5.7 Example 5 .......................................................................................................... 88 

5.7.1 Description of Chu’s algorithm......................................................................... 88 

5.7.2 Description of the developed algorithm ............................................................ 89 

5.7.3 Comparing the algorithms ............................................................................... 97 

Part II | Terminal Area Energy Management Trajectory Optimization .................. 103 

Chapter 6 | The TAEM Phase............................................................................... 105 

6.1 The Space Shuttle’s TAEM Guidance .....................................................................106 

6.2 State-Of-The-Art ................................................................................................107 

6.3 The Equations of Motion .....................................................................................112 

6.3.1 Assumptions ................................................................................................112 

6.3.2 Coordinate Systems ......................................................................................112 

6.3.2.1 Runway Reference Frame .........................................................................112 

6.3.2.2 Local-Horizontal Local-Vertical Reference Frame .........................................113 

6.3.2.3 Kinematic or Flight-Path Reference Frame ..................................................114 

6.3.2.4 Body-Fixed Reference Frame ....................................................................115 

6.3.3 Atmospheric Model........................................................................................115 

6.3.4 Vehicle Model ...............................................................................................116 

6.3.5 Derivation of the Equations of Motion .............................................................120 

Chapter 7 | TAEM Trajectory Optimization using Interval Analysis ...................... 125 

7.1 1-DOF Methodology ............................................................................................125 

7.1.1 Terminal Entry Gate Determination .................................................................125 

7.1.1.1 Input File ...............................................................................................125 

7.1.1.2 Control Function Parameterization .............................................................127 

7.1.1.2.1 Angle-Of-Attack Parameterization .....................................................128 

7.1.1.2.2 Flight-Path Bank Angle Parameterization............................................131 

7.1.1.3 Longitudinal Profile Calculation .................................................................134 

7.1.1.4 Lateral Profile Calculation.........................................................................137 

7.1.1.5 Results ..................................................................................................141 

7.1.2 TAEM Optimal Trajectory Design.....................................................................146 



Table of Contents  xiii 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

7.1.2.1 Input File ...............................................................................................146 

7.1.2.2 Branching...............................................................................................146 

7.1.2.3 Final State Constraint ..............................................................................146 

7.1.2.4 Cost Function .........................................................................................150 

7.1.2.5 Using an upper bound on the minimum ......................................................152 

7.1.2.6 Stopping Criteria .....................................................................................152 

7.1.2.7 Contiguousness Verification ......................................................................153 

7.1.2.8 Solution Point Selection ...........................................................................154 

7.1.2.9 Results ..................................................................................................154 

7.2 3-DOF Methodology ............................................................................................159 

7.2.1 Chu’s method ...............................................................................................159 

7.2.2 Interval ODE solvers .....................................................................................159 

7.2.3 VNODE-LP....................................................................................................162 

7.2.3.1 Limitations of VNODE-LP ..........................................................................164 

Chapter 8 | Conclusions ..................................................................................... 169 

Chapter 9 | Recommendations ........................................................................... 171 

Bibliography....................................................................................................... 173 

Appendix A | Some practical issues of INTLAB .................................................... 177 

A.1 The difference between intval(0.1) and intval(‘0.1’) ...............................................177 

A.2 Rigorous bounds on a result ................................................................................177 

Appendix B | Input Files..................................................................................... 179 

B.1 TEG Determination Tool Input File .......................................................................179 

B.2 TAEM Optimal Trajectory Design Tool Input File.....................................................182 

B.3 3-DOF Methodology Script Input File ....................................................................185 

Appendix C | More dynamic global optimization examples .................................. 187 

C.1 Example 2 .........................................................................................................187 

C.1.1 Description of Chu’s algorithm........................................................................187 

C.1.2 Description of the developed algorithm ...........................................................188 

C.1.3 Comparing the algorithms..............................................................................193 

C.2 Example 4 .........................................................................................................194 

C.2.1 Description of Chu’s algorithm........................................................................195 



xiv  Table of Contents 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

C.2.2 Description of the developed algorithm ...........................................................196 

C.2.3 Comparing the algorithms..............................................................................200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Figures  xv 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

List of Figures 
 

Figure 3.1: Endpoints not representable by the computer. .............................................. 11 

Figure 3.2: Outward rounding. .................................................................................... 11 

Figure 3.3: Geometric representation of the wrapping effect. .......................................... 17 

Figure 3.4: Rectangular integration and the wrapping effect. .......................................... 17 

Figure 4.1: Flowchart of the developed static global optimization algorithm. ..................... 24 

Figure 4.2: Solution interval instead of a solution point. ................................................. 34 

Figure 4.3: Objective function of Example 1. ............................................................... 36 

Figure 4.4: Objective function of Example 2. ............................................................... 38 

Figure 4.5: Objective function of Example 5. ............................................................... 45 

Figure 4.6: Objective function of Example 6. ................................................................. 47 

Figure 5.1: Flowchart of the developed dynamic global optimization algorithm. ................. 59 

Figure 5.2: Flowchart of the shrinking phase. ................................................................ 65 

Figure 5.3: Performance index as a function of 1P , 2P  and 3P . ...................................... 86 

Figure 5.4: Illustration of the parameterization used to solve Example 5. ........................ 90 

Figure 5.5: Control function for p  and *P ..................................................................100 

Figure 5.6: First state for p  and *P . .........................................................................100 

Figure 5.7: Second state for p  and *P . .....................................................................100 

Figure 6.1: The TAEM phase. .....................................................................................105 

Figure 6.2: Space Shuttle TAEM guidance phases..........................................................106 

Figure 6.3: Space Shuttle’s HACs. ...............................................................................106 

Figure 6.4: Space Shuttle’s TAEM guidance longitudinal reference profiles. ......................107 

Figure 6.5: Lateral reference profile suggested in [Mayanna et al., 2006]. .......................108 

Figure 6.6: Characteristic shapes taken from [Chartres et al., 2005b]..............................109 

Figure 6.7: Longitudinal and lateral geometries taken from [Barton, 2002]. .....................110 

Figure 6.8: Lateral geometry taken from [Burchett, 2004]. ............................................111 

Figure 6.9: Reference trajectory geometry of the Buran shuttle (taken from [Vernis and 
Ferreira, 2006]). Here, the acronym NEP (Nominal Entry Point) is used instead of ALI. .......111 

Figure 6.10: Runway Reference Frame. .......................................................................113 



xvi  List of Figures 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Figure 6.11: Local-Horizontal Local-Vertical Reference Frame.........................................113 

Figure 6.12: Relation between the Flight-Path Reference Frame and the Local-Horizontal 
Local-Vertical Reference Frame (figure adapted from [Mulder et al., 2007]). ......................114 

Figure 6.13: Relation between the Body-Fixed Reference Frame and the Flight-Path Reference 
Frame. ......................................................................................................................115 

Figure 6.14: The HORUS spacecraft shown on top of the Sänger (taken from [Space Services 
Koellen, 2008]). .........................................................................................................117 

Figure 6.15: Control surfaces of the HORUS-2B (taken from [Mooij, 1998]). ....................118 

Figure 6.16: Lift-over-drag ratio of the HORUS-2B. .......................................................119 

Figure 6.17: Minimum and maximum allowed angle-of-attack. ........................................119 

Figure 6.18: External forces acting on the vehicle.........................................................120 

Figure 7.1: TEG Determination Algorithm Flowchart. .....................................................126 

Figure 7.2: 3-DOF SIMULINK model. ...........................................................................128 

Figure 7.3: Maximum glide and maximum dive profiles. .................................................129 

Figure 7.4: Maximum glide and maximum dive angle-of-attack profiles. ...........................129 

Figure 7.5: Mid-corridor profile. ..................................................................................130 

Figure 7.6: Angle-of-attack parameterization. ...............................................................131 

Figure 7.7:  Mach number at ALI as a function of subsonic angle-of-attack. .....................131 

Figure 7.8: Flight-path bank angle parameterization......................................................132 

Figure 7.9: Lateral profile for different values of 1μ  and 2μ . ........................................133 

Figure 7.10: States and outputs for different values of 1μ  and 2μ . ...............................134 

Figure 7.11: Nominal longitudinal profile. ....................................................................135 

Figure 7.12: Influence of TEPγ  on the time histories of q  and γ ...................................136 

Figure 7.13: Influence of ALIγ  on the time histories of q  and γ ...................................136 

Figure 7.14: Left: interval wrapping of ( )q E . Right: zoom-in. ......................................138 

Figure 7.15: 1-DOF SIMULINK model. .........................................................................139 

Figure 7.16: 3-DOF versus 1-DOF SIMULINK model. ......................................................140 

Figure 7.17: Correctness verification of the interval integration algorithm. ......................140 

Figure 7.18: Position of the Terminal Entry Gate. .........................................................141 

Figure 7.19: 1μ  and 2μ  subintervals associated with each square. ................................142 



List of Figures  xvii 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Figure 7.20: ,r TEPχ  intervals associated with each square. ............................................142 

Figure 7.21: Feasibility Monte Carlo analysis: random TEP points. ..................................143 

Figure 7.22: Feasibility Monte Carlo analysis: random midpoints.....................................144 

Figure 7.23: Position of the TEG for , 0r ALI ALI ALIx yχ = = = . .......................................145 

Figure 7.24: TAEM Optimal Trajectory Design Algorithm Flowchart. ................................147 

Figure 7.25: Cost function. ........................................................................................151 

Figure 7.26: Contiguousness verification. ....................................................................154 

Figure 7.27: Verification of the optimization results. .....................................................155 

Figure 7.28: Validation of the optimization results against the 3-DOF model: states and 
outputs. ....................................................................................................................156 

Figure 7.29: Validation of the optimization results against the 3-DOF model: lateral profile.
................................................................................................................................157 

Figure 7.30: Integration of the 3-DOF equations of motion with VNODE-LP. .....................163 

Figure 7.31: Bounds calculated by VNODE-LP when point interval parameters are used. ....165 

Figure 7.32: Bounds calculated by VNODE-LP when non-point interval parameters are used.
................................................................................................................................165 

Figure B.1: TEG Determination Tool Input File Example. ................................................181 

Figure B.2: TAEM Optimal Trajectory Design Tool Input File Example. .............................184 

Figure B.3: 3-DOF Methodology Script Input File Example. .............................................186 

Figure C.1: Illustration of the parameterization used to solve Example 2........................189 

Figure C.2: ( )u t  for 1t P∈ ........................................................................................195 

Figure C.3: Illustration of the parameterization used to solve Example 4........................196 

 

 

 

 

 

 

 

 

 



xviii  List of Figures 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Tables  xix 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

List of Tables 
 

Table 4.1: Formulation of Example 1. ......................................................................... 35 

Table 4.2: User inputs in Example 1. .......................................................................... 36 

Table 4.3: Comparative results for Example 1. ............................................................. 37 

Table 4.4: Formulation of Example 2. ......................................................................... 37 

Table 4.5: User inputs in Example 2. .......................................................................... 38 

Table 4.6: Comparative results for Example 2. ............................................................. 38 

Table 4.7: Formulation of Example 3. ......................................................................... 39 

Table 4.8: User inputs in Example 3. .......................................................................... 40 

Table 4.9: Comparative results for Example 3. ............................................................. 41 

Table 4.10: Formulation of Example 4. ....................................................................... 42 

Table 4.11: User inputs in Example 4. ........................................................................ 44 

Table 4.12: Comparative results for Example 4. ........................................................... 44 

Table 4.13: Formulation of Example 5. ....................................................................... 45 

Table 4.14: User inputs in Example 5. ........................................................................ 46 

Table 4.15: Comparative results for Example 5. ........................................................... 46 

Table 4.16: Formulation of Example 6. ....................................................................... 47 

Table 4.17: User inputs in Example 6. ........................................................................ 48 

Table 4.18: Comparative results for Example 6. ........................................................... 48 

Table 4.19: User inputs for the complete multidimensional problem. ................................ 49 

Table 4.20: Results for the complete multidimensional problem. ...................................... 49 

Table 5.1: User inputs related to the shrinking phase. .................................................... 66 

Table 5.2: Results with and without the shrinking phase. ................................................ 66 

Table 5.3: Effect of shrinkingN ....................................................................................... 67 

Table 5.4: Different ways of solving Example 4. ........................................................... 68 

Table 5.5: User inputs in Example 1. .......................................................................... 75 

Table 5.6: Comparative results for Example 1. ............................................................. 76 

Table 5.7: Comparative results for Example 3. ............................................................. 80 

Table 5.8: User inputs (second-order parameterization). ................................................. 82 



xx  List of Tables 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Table 5.9: Results (second-order parameterization). ....................................................... 82 

Table 5.10: User inputs (third-order parameterization). .................................................. 85 

Table 5.11: Results (third-order parameterization). ........................................................ 85 

Table 5.12: CPU time as a function of splitN  in Example 3. ........................................... 87 

Table 5.13: User inputs in Example 5. ........................................................................ 97 

Table 5.14: Comparative results for Example 5. ........................................................... 97 

Table 5.15: CPU time as a function of splitN  in Example 5. ........................................... 99 

Table 6.1: Parameters of the Exponential Atmospheric Model. ........................................116 

Table 6.2: HORUS-2B main characteristics....................................................................119 

Table 6.3: Path constraints assumed for the HORUS-2B. ................................................120 

Table 7.1: Main inputs of the TEG Determination Tool. ..................................................126 

Table 7.2: Main Inputs of the TAEM Optimal Trajectory Design Tool. ...............................148 

Table 7.3: Optimization results. ..................................................................................155 

Table 7.4: Influence of splitN  on CPUtΔ . .....................................................................157 

Table 7.5: Influence of the method used to update J  on CPUtΔ . ..................................158 

Table 7.6: High-order interval ODE solvers. ..................................................................161 

Table 7.7: Main Inputs of the 3-DOF Methodology Script. ...............................................163 

Table 7.8: Final state computed by SIMULINK and by VNODE-LP.....................................166 

Table B.1: TEG Determination Tool Input File Structure. ................................................179 

Table B.2: TAEM Optimal Trajectory Design Tool Input File Structure. .............................182 

Table B.3: 3-DOF Methodology Script Input File Structure. .............................................185 

Table C.1: User inputs in Example 2. .........................................................................193 

Table C.2: Comparative results for Example 2. ............................................................193 

Table C.3: User inputs in Example 4. .........................................................................201 

Table C.4: Comparative results for Example 4. ............................................................202 

Table C.5: CPU time as a function of splitN  in Example 4. ............................................203 

 

 



Nomenclature  xxi 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Nomenclature 
 

Delimiters 

 

.  magnitude 

[ ],a b  set of all real numbers comprehended between (and including) a  and b  

 

Greek Symbols 

 

α  angle-of-attack 

,minsubα  minimum α  during subsonic regime 

,maxsubα  maximum α  during subsonic regime 

β  sideslip angle 

χ  heading angle 

rχ  heading angle relative to the runway centreline 

,r weightχ  x -position cost function weight 

δ  deflection angle 

Δ  increment 

,rel sub phasesE −Δ  sub-phases relative length 

CPUtΔ  CPU time 

ε  user-defined stopping criteria 

φ  end-cost term 

Φ  extended end-cost term 

γ  flight-path angle 

eλ  equality Lagrangian multipliers 

iλ  inequality Lagrangian multipliers 

( )tλ  influence functions 

μ  multiplier parameters 

kμ  flight-path bank angle 

1μ  flight-path bank angle (interval) during sub-phase 1 

2μ  flight-path bank angle (interval) during sub-phase 3 



xxii  Nomenclature 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

ρ  air density 

0ρ  air density at the reference altitude 0h  

ν  multiplier parameters 

( ).ψ  functions of the final state 

 

Latin Symbols 

 

a  speed of sound 

aG  acceleration vector 

( )arg .  argument 

( ).C  inequality constraints on the control variables 

DC  aerodynamic drag coefficient 

LC  aerodynamic lift coefficient 

D
G

 drag force 

E  normalized energy 

f  smallest upper bound 

F  minimum of the infima 

F  maximum of the suprema 

*F  bounds on the minimum 

F
G

 vector sum of all external forces 

G  centre of mass 

h  altitude 

0h  reference altitude 

H  Hamiltonian; scale height 

i  general index 

( )inf .  infimum 

j  general index 

J  cost function or performance index 

J  smallest calculated upper bound 

J  minimum of the infima 

J  maximum of the suprema 

IJ  bounds on the minimum 



Nomenclature  xxiii 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

k  general index 

l  number of parameters 

L  Lagrangian 

/L D  lift-over-drag ratio 

L
G

 lift force 

m  number of columns; number of inequality constraints; number of control 
functions; mass 

(.)m  midpoint or centre 

( ).mag  magnitude 

( )max .  maximum 

( ).mig  mignitude 

( )min .  minimum 

M  Mach number 

subsonicM  maximum subsonic M  

n  number of dimensions; number of rows; number of state equations; load 
factor 

splitn  number of components split 

N  number of equations solvable by HC 

( ).N  tangency constraints 

N  largest floating point number representable by the computer 

clustersN  number of clusters 

ineqN  number of time subintervals 

intN  number of integration steps 

remainingN  number of remaining boxes 

shrinkingN  number of subintervals in which each parameter is divided during the 

shrinking phase 

splitN  number of new boxes per old box 

1
Nμ  number of subintervals in which 1μ  is split 

2
Nμ  number of subintervals in which 2μ  is split 

p  point inside the remaining boxes; integration order 

( ).p  inequality constraint 

P  parameter 



xxiv  Nomenclature 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

IP  bounds on the solution point 

q  number of functions of the final state; dynamic pressure 

( ).q  equality constraint 

( )u t  control function 

r  number of equality constraints 

( ).round  round floating numbers towards closest integers 

( ).R  inequality constraint 

( )sup .  supremum 

s  number of inequality constraints on functions of the state variables 

( )sum .  summation 

S  reference area 

( ).S  inequality constraints on functions of the state variables 

t  time 

/in outt  time instants at which the system’s trajectory enters or leaves the path 

constraints 

T  time interval 

U  set of admissible controls 

V
G

 velocity vector 

aV
G

 airspeed velocity vector  

kV
G

 ground velocity or flight-path velocity vector 

( ).w  width or diameter function 

W  width 

W
G

 gravitational force 

x  x -position in the runway reference frame 

bx  x -position in the body-fixed reference frame 

kx  x -position in the flight-path reference frame 

weightx  x -position cost function weight 

( )x t  state  

*X  bounds on the solution point 

IX  bounds on the final state 

y  y -position in the runway reference frame 



Nomenclature  xxv 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

by  y -position in the body-fixed reference frame 

ky  y -position in the runway reference frame 

weighty  y -position cost function weight 

Y  aerodynamic side force 

z  z -position in the runway reference frame 

bz  z -position in the body-fixed reference frame 

kz  z -position in the runway reference frame 

 

Subscripts 

 

0  initial 

abs  absolute 

eq  equality 

f  final 

feas  feasible 

fixed  fixed parameters 

free  free parameters 

( ) ,i i∈`  general identifier 

,i i∈`  general identifier; initial 

l  left 

,j j∈`  general identifier 

m  midpoint 

max  maximum 

mid  midpoint 

min  minimum 

nom  nominal 

r  rudder 

rel  relative 

thres  threshold 

X  lower bound of the interval X  

z  along the negative z -body axis 

 



xxvi  Nomenclature 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Superscripts 

 

x�  first time derivative of x  

'  general identifier 

' '  general identifier 

* global optimum 

C  Chu’s parameterization 

F  Filipe’s parameterization 

( ) ,i i∈`  general identifier 

initial  initial box 

I  interval 

j  dimensional index 

m  number of inequality constraints 

n  number of dimensions 

p  solution point 

( )q  q -th total time derivative 

r  number of equality constraints 

T  transpose 

X  upper bound of the interval X  

 

Other Symbols 

 

•  any of the four elementary operations: addition, subtraction, 
multiplication or division 

∅  empty set 

? unknown 

 

 

 

 

 

 

 



Acronyms  xxvii 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Acronyms 
 

ALI Auto-Landing Interface 

BB Branch and Bound 

BC Box Consistency 

CPU Central Processing Unit 

DOF Degrees Of Freedom 

ESA European Space Agency 

ECM Electrical Control Mathematics 

ESTEC European Space Research and Technology Centre 

GA Genetic Algorithms 

HAC Heading Alignment Cylinder/Cone 

HH Hull Consistency 

HORUS-2B Hypersonic Orbital Research and Utilization System 

INTLAB INTerval LABoratory 

IVP Initial Value Problem 

M.Sc Master of Science 

MBB Messerschmitt-Bölkow-Blohm 

N/A Not Applicable or Not Available 

NASA National Aeronautics and Space Administration 

NEP Nominal Entry Point 

NLP Nonlinear Programming 

ODE Ordinary Differential Equation 

OS Operating System 

RAM Random Access Memory 

RLV Reusable Launch Vehicle 

TACAN TACtical Air Navigation 

TAEM Terminal Area Energy Management 

TEC-ECM Dynamics and Mathematical Analysis Unit 

TEG Terminal Entry Gate 

TEP Terminal Entry Point 

TPBVP Two-Point Boundary-Value Problem 

TSTO Two-Stage-To-Orbit 

TU Delft Delft University of Technology 

USA United States of America 

 

 



xxviii  Acronyms 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 | Introduction  1 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 1 | Introduction 
 

1.1 Background 
 

Optimization is the problem of minimizing (or maximizing) a certain quantity, referred to in 
mathematics as the cost function, by correctly choosing the values of a certain set of variables 
- static optimization - or by tuning the shapes of a certain set of time functions - dynamic 
optimization. 

Global optimization is the problem of finding the global minimum of a cost function with 
several local minima. Finding an arbitrary local minimum is called local optimization.  

Optimization problems are transversal to many manifestly different disciplines: physics, 
chemistry, engineering, economics, management, biology, just to name a few, which makes it 
a field of paramount importance. While the applications may differ, the mathematical 
formulation of the problems is pretty much the same, which allows the same optimization 
techniques to be used in multiple disciplines. In particular, several apparently independent 
design problems connected with different disciplines may be formulated into a single 
optimization problem. This constitutes a so-called multidisciplinary design optimization 
problem.  

The most popular optimization technique currently available is Nonlinear Programming (NLP). 
As a curiosity, the term programming is not related with computer programming but with the 
word program used by the United States military to refer to a schedule. Military logistics 
programmes were the first application of optimization programming [Wikipedia, 2008b] back in 
the 1940s. 

Gradient-based optimization techniques like NLP require an initial guess for the optimal 
solution in order to start. Depending on that initial guess, the global minimum might or might 
not be found. In general, the more the local minima, the harder it will be for the NLP 
algorithm to find the global solution. Moreover, in many problems, generating a reasonable 
initial guess is a hard and time consuming task. Many authors consider it an art. 

Genetic Algorithms (GA) are a non-gradient-based optimization technique also popular 
nowadays. They are inspired in evolutionary biology. Like NLP algorithms, they might or might 
not converge to the global optimum. They have several tuning parameters.  

One of the applications of dynamic optimization is trajectory optimization. Trajectory 
optimization is the process of designing a trajectory that minimizes or maximizes a certain 
quantity [Wikipedia, 2008c]. As it will be seen shortly, one of the goals of this thesis is to 
optimize the trajectory described by a Reusable Launch Vehicle (RLV) during the Terminal Area 
Energy Management (TAEM) phase. The TAEM phase is the second of three phases that 
constitute the descent flight of a RLV: re-entry, TAEM and landing. The TAEM phase is in 
charge of controlling the vehicle’s total energy and of aligning it with the runway. The 
manoeuvres performed during this phase are vital for a safe landing. 

 

1.2 Problem statement 
 

There is a need for an optimization technique capable of finding the global optimum in a 
systematic way. With it, the user would no longer be required to go through several 
optimization loops. The global solution could be calculated in one go without the need for 
initial guesses or extensive fine tuning. There is an optimization technique capable of all of 
this: interval analysis.  



2  Chapter 1 | Introduction 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Through a branch and bound strategy, interval analysis is able to yield guaranteed and 
rigorous bounds on the global minimum. It does so by using intervals instead of real numbers 
and interval arithmetics instead of real arithmetics. Even the roundoff errors introduced by 
computers do not affect the rigour of the solution. For a more in-depth discussion about 
interval analysis the reader is referred to Chapter 2. 

In particular, interval analysis is a promising alternative to gradient-based methods (e.g., 
[Chartres et al., 2005b]) and to genetic algorithms (e.g., [Yokoyama and Suzuki, 2005]) for 
optimizing the descent trajectory of a RLV. So far, these two latter optimization techniques 
have been unable to guarantee convergence to the global optimum trajectory.  

Optimization based on interval analysis is a relatively recent topic. For example, the 
application of interval methods to high dimensional (more than a few hundred variables) static 
optimization problems is still too time consuming. Likewise, the development of interval 
methods for solving dynamic optimization problems is still just starting. 

 

1.3 Thesis goal 
 

In her Master of Science thesis: Interval Analysis Applied to Re-Entry Flight Trajectory 
Optimization [Chu, 2007], Weiwei Chu applied interval analysis to the optimization of the re-
entry trajectory of an Reusable Launch Vehicle (RLV). During the course of her thesis, she 
developed a static and a dynamic global optimization algorithm. She was partially successful: 
her trajectory optimization algorithm was so time demanding that she was not able to carry 
out the complete optimization. Moreover, inconsistencies were identified in her algorithms. 

The end goal of this thesis is to develop generic static and dynamic global optimization 
algorithms capable of competing with currently available static and dynamic optimization tools. 
Chu’s work will be used as a starting point. With this main goal in view, the following 
intermediate goals were established: 

1) Investigate the main virtues and drawbacks of interval analysis. 

2) Investigate the basic concepts of interval arithmetics. 

3) Develop and test a static global optimization algorithm less time demanding than 
Chu’s. 

4) Develop and test a dynamic global optimization algorithm less time demanding than 
Chu’s. 

5) Apply the dynamic global optimization algorithm to the Terminal Area Energy 
Management (TAEM) trajectory optimization problem. 

 

1.4 Thesis Outline 
 

This thesis is divided in two parts. The first part was written between August 2007 and March 
2008 in the Delft University of Technology, Faculty of Aerospace Engineering, Control and 
Simulation Department. It is constituted by the author’s Preliminary Master of Science Thesis 
[Filipe, 2008] published in February 16, 2008. It describes the knowhow acquired during the 
aforementioned period in static and dynamic global optimization using interval analysis. 

The second part of this thesis was written between April and November 2008 in the European 
Space Research and Technology Centre (ESTEC), the largest site of the European Space 
Agency (ESA), within the Dynamics and Mathematical Analysis Unit (TEC-ECM). In it, the 
theory developed in Part I is applied and extended to the design of optimal TAEM trajectories. 



Chapter 1 | Introduction  3 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

1.4.1 Outline of Part I 
 

The first part of this thesis is constituted by four chapters.  

The first chapter (Chapter 2) introduces interval analysis and its main virtues and drawbacks. 
It was written thinking about someone that never heard of interval analysis before.  

The second chapter (Chapter 3) gives the mathematical foundations of interval arithmetics and 
explains some important concepts such as outward rounding, dependency and the wrapping 
effect. The fundamental theorem of interval analysis is also stated. 

The third chapter (Chapter 4) is devoted to static global optimization using interval analysis. 
The underlying mathematical problem is defined. A static global interval optimization algorithm 
is designed and compared with Chu’s. The fundamental building blocks of the algorithm are 
carefully explained.  

The fourth and last chapter of Part I (Chapter 5) is devoted to dynamic global optimization 
using interval analysis. The underlying mathematical problem is defined. A dynamic global 
interval optimization algorithm is designed and compared with Chu’s. The fundamental building 
blocks of the algorithm are carefully explained.  

 

1.4.2 Outline of Part II 
 

The second part of this thesis is constituted by two chapters. 

The first chapter (Chapter 6) describes the state-of-the-art in TAEM trajectory design. The 3 
degrees of freedom equations of motion are derived. 

The second and last chapter of Part II (Chapter 7) recovers the theory explained in Chapter 5 
and adapts it to the TAEM optimal trajectory design problem. Two methodologies are 
investigated: one assuming no coupling between the longitudinal and lateral motions and 
another one considering the full model.   

The conclusions and recommendations for the future research are presented in Chapter 8 and 
Chapter 9, respectively.  

 

 

 

 

 

 

 

 

 

 



4  Chapter 1 | Introduction 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 

 



Part I | Static and Dynamic Global Optimization using Interval Analysis 5 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part I | Static and Dynamic Global Optimization 
using Interval Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6  Part I | Static and Dynamic Global Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 



Chapter 2 | Interval Analysis – An Introduction  7 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 2 | Interval Analysis – An Introduction 
 

The conventional arithmetic taught all around the world is based on real numbers. It is the 
core of almost every computational algorithm ever developed. Since the precision of 
computers is finite, using real arithmetic will most surely produce rounding errors. How big 
these rounding errors are is a question many people have tried to answer in the past. It is a 
fundamental question to assess the reliability of a result. 

The basic idea behind interval analysis is to use intervals (of real numbers) instead of real 
numbers. The purpose is to find guaranteed lower and upper bounds on the exact solution. 
This gives insight about the effect rounding errors have on the computed result. 

Interval algorithms calculate intervals that unquestionably contain the exact solution. The 
importance of this result cannot be stressed enough. Floating-point algorithms can never 
guarantee that the exact solution is within some range of the calculated result. This makes 
interval algorithms extremely more reliable than their floating-point counterparts.     

In most problems, bounding the exact solution is of little importance unless the interval 
bounds are narrow. An interval is said to be sharp [Hansen and Walster, 2004] if it is as 
narrow as possible. Of course that, in the limit, an interval can not be narrower than the 
shortest distance between two consecutive numbers representable by the computer. 

People started using intervals for bounding rounding errors in the 1950’s but interval analysis 
is said to have begun in 1966 with the book Interval Analysis [Moore, 1966] written by R. E. 
Moore. Nowadays, interval analysis is also called reliable computing and a journal with the 
same name exists completely dedicated to the field. 

 

2.1 The virtues of interval analysis 
 

The virtues of interval analysis are far from being limited to bounding rounding errors 
([Hansen and Walster, 2004]): 

1) When a problem has uncertain parameters it is said that the problem is perturbed. 
Uncertain parameters can be for example measured quantities subject to experimental errors. 
If the uncertain parameter is known to lie within a certain interval, any algorithm based on 
interval arithmetic will rigorously bind all possible solutions. 

2) In other problems all the parameters are exactly known. However, it could be of interest to 
know how the solution of a problem changes when some parameters change. This is called 
sensitivity analysis. By substituting the parameters by intervals bounding the range of interest, 
sensitivity analysis can be performed using interval arithmetic. 

3) A wide solution interval is a warning that round-off and/or catastrophic cancellation have 
occurred. These kind of numerical errors are harder to detect with floating-point algorithms 
than with their interval counterparts. 

4) Problems like global optimization can not be solved with noninterval methods. The best 
floating-point algorithms can do is to find a local optimum and hope that it is indeed the global 
one. Conversely, interval algorithms provide always guaranteed bounds on the global optimum. 
Moreover, if there are multiple solutions, all will be found and correctly bounded. 

5) According to [Hansen and Walster, 2004], interval methods are in general more reliable in 
the sense that some interval iterative methods always converge, while their noninterval 
counterparts do not, e.g., the Newton method for finding the zeros of a nonlinear equation. 



8  Chapter 2 | Interval Analysis – An Introduction 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

6) Interval algorithms have natural stopping criteria: there is no point in iterating further when 
the bounds on the solution are sufficiently narrow or no further reduction occurs. 

7) Interval algorithms for solving systems of nonlinear equations can sometimes prove the 
existence and uniqueness of a simple, i.e. nonmultiple, zero inside an interval without any 
extra computations. 

8) All the solutions of a nonlinear system of equations inside a given initial interval vector, 
also called a box, will be found and correctly bounded by an interval algorithm. 

9) Interval arithmetic can be extended to form a closed system, i.e., a system where there are 
no undefined arithmetic operations or operands. This includes division by zero and 
undetermined forms like 0 / 0 , ∞−∞ , 0×∞  and /∞ ∞  which are normally undefined in real 
arithmetic.  

 

2.2 The drawbacks of interval analysis 
 

Interval analysis is not without some problems: 

1) Slowness: since each interval is represented by a lower and upper bound (two real 
numbers) even the simplest interval operations, like adding or subtracting two intervals, are 
certain to take longer than their real counterparts, at least, if common hardware is used. This 
is the price to pay for guaranteed error bounds. However, as Moore’s law predicted, computer 
performance keeps on doubling approximately every two years. Parallel processing, for 
example, has yet to show all of its potential, as more and more processors are put together. 
Moreover, different computer companies already have specially developed hardware for 
computing with intervals. This makes it likely that in a matter of a few years, the relative 
effort of performing operations on intervals or on real numbers will no longer be an issue. 

Also worth mentioning is the fact some kind of problems, like finding all the roots of a 
polynomial, and in some areas, like robust control, interval algorithms are actually faster 
[Hansen and Walster, 2004]. 

2) Lack of sharpness: sometimes the initial bounds on a solution might be far from sharp. 
That can happen due to dependency and/or to the wrapping effect (both will be carefully 
explained in Chapter 3). Even though there is no general solution to these problems, there are 
simple techniques to substantially reduce their significance. Sometimes, simply rewriting an 
expression is all that takes to get sharp results. Moreover, a lot of research is being done right 
now to improve interval arithmetic even further. 

 

2.3 Interval arithmetics software toolboxes 
 

It was decided in the beginning that all the algorithms would be implemented in MATLAB. This 
decision was made taking into account the unrivalled portability and simplicity offered by 
MATLAB. On the other hand, MATLAB has the theoric drawback of being relatively slower than 
lower level software languages like C or FORTRAN. However, it will be shown when comparing 
the results obtained in Chapter 4 and Chapter 5 with the ones obtained with FORTRAN in [Chu, 
2007] that the relative speed of MATLAB is not a significant issue. At least, not when 
compared with the optimality of the algorithms. 

By default, MATLAB does not come with a toolbox to work with intervals. However, a list of 
available interval software for MATLAB is available in [Computer Science, 2007], as well as for 



Chapter 2 | Interval Analysis – An Introduction  9 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

other platforms. In there, one can find the interval toolbox INTLAB1 developed by Siegfried M. 
Rump from the Hamburg University of Technology in Germany (see [Rump, 2007]). INTLAB is 
totally free for private or academic purposes and it is completely written in MATLAB. Version 
5.4, the one used in Part I, includes, between other features, interval arithmetic operations for 
working with interval vectors and matrices and rigorous evaluation of standard real functions 
(e.g., the functions sine and cosine) when intervals are used as arguments. 

All the interval software for MATLAB listed in [Computer Science, 2007] requires INTLAB for 
running and/or is partially written in other languages making INTLAB the obvious choice.     

For a quite helpful INTLAB tutorial see [Hargreaves, 2002]. 

All the results presented in Part I were obtained using a computer equipped with a Pentium 4 
processor running at 2.4 GHz and with 1.25 GB of RAM. The operating system running on the 
machine was Microsoft Windows XP Professional with version 7.3.0 (R2006b) of MATLAB 
installed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     

1 INTLAB stands for INTerval LABoratory. 



10  Chapter 2 | Interval Analysis – An Introduction 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 | Interval Arithmetic  11 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 3 | Interval Arithmetic 
 

In this chapter, the most basic and fundamental concepts of interval arithmetic will be 
explained. For a more in-depth analysis the reader is referred to Chapter 2 of [Hansen and 
Walster, 2004].  

As previously stated, intervals are for interval arithmetic as real numbers are for real 
arithmetic. An interval X  with endpoints a  and b , where a  and b  are real numbers 
satisfying a b≤  will be represented as: 

 [ ],X a b=  (3-1) 

i.e., X  is the set of all real numbers comprehended between (and including) a  and b : 

 { }|X x a x b= ∈ ≤ ≤\  (3-2) 

 

3.1 Outward rounding 
 

Imagine X  is an intermediate result calculated by some interval algorithm. It can happen that 
the endpoints a  and b  are not exactly representable by the computer: 

 
x

a bRepresentable 
numbers  

Figure 3.1: Endpoints not representable by the computer. 

To guarantee that the entire computed interval is saved, outward rounding must be used. To 

explain how outward rounding works, assume ' ' ',X a b⎡ ⎤= ⎣ ⎦  is the interval saved by the 

computer. Then, 'a  should be the largest machine-representable number smaller than a  and 
'b  should be smallest machine-representable number larger than b , as illustrated in Figure 

3.2. 

 
x

a b
Representable 

numbers

'a 'b

 

Figure 3.2: Outward rounding. 

Outward rounding is crucial to guarantee that the exact solution is never deleted. Luckily, all 
computers since the 1980’s have the option to perform directed rounding, i.e., the user can 
specify if a number is to be rounded upwards or downwards. Direct rounding is used to carry 
out the so needed outward rounding in interval arithmetic. 



12  Chapter 3 | Interval Arithmetic 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

The mathematical rigour of interval analysis cannot be claimed, if a single roundoff error has 
not been taken into account [Nedialkov, 2006a]. Therefore, it is of paramount importance that 
all roundoff errors are identified and correctly incorporated in the final interval result. 

 

3.2 Basic definitions 
 

The following definitions establish the basis for interval arithmetic: 

1) Infimum and supremum: the lower and upper endpoints of an interval [ ],X a b=  will be 

denoted as X a=  and X b= . ( )infX X=  and ( )supX X=  are also called the infimum 

and the supremum of X , respectively. 

2) Positive, negative, nonnegative and nonpositive intervals: an interval is said to be 
positive if 0a >  and negative if 0b < . Similarly, an interval is said to be nonnegative if 

0a ≥  and nonpositive if 0b ≤ . 

3) Equal intervals: two intervals, [ ],X a b=  and [ ],Y c d= , are said to be equal if and only 

if: 

 
a c
b d
=⎧

⎨ =⎩
 (3-3) 

4) Ordering: an interval X  is said to be smaller than Y , X Y< , if and only if b c< . 

5) Thin and thick intervals: if a b=  the interval is said to be degenerate, thin or a point 
interval since it is equivalent to the real number a . If a b< , then the interval is said to be 
thick. 

6) Containment: an interval X  is said to be strictly contained in Y , X Y⊂ , if and only if: 

 
X Y
X Y
>⎧

⎨ <⎩
 (3-4) 

In the same way, X  is said to be contained in Y , X Y⊆ , if and only if: 

 
X Y
X Y
≥⎧

⎨ ≤⎩
 (3-5) 

7) Image of the union and of the intersection of two intervals: consider two intervals 
X  and Y  and a function :f X Y→ . If 1X  and 2X  are subintervals of X  then it can be 

easily proven that ([Jaulin et al., 2001]): 

 ( ) ( ) ( )1 2 1 2f X X f X f X∩ ⊂ ∩  (3-6) 

 ( ) ( ) ( )1 2 1 2f X X f X f X∪ = ∪  (3-7) 

 



Chapter 3 | Interval Arithmetic  13 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

3.3 Real functions of intervals 
 

The following functions are repeatedly used in algorithms based on interval analysis: 

1) The diameter or width of an interval is defined as: 

 ( )w X X X= −  (3-8) 

2) The midpoint or centre of an interval, as the name suggests, is given by: 

 ( )
2

X Xm X +
=  (3-9) 

3) The magnitude of an interval is calculated as follows: 

 ( ) ( )max ,mag X X X X= =  (3-10) 

while a similar expression is used to calculate the mignitude of X : 

 ( ) ( )min , ,0

0 ,0

X X X
mig X

X

⎧ ∉⎪= ⎨
∈⎪⎩

 (3-11) 

 

3.4 The four elementary interval arithmetic operations 
 

Using the concepts of addition ( )+ , subtraction ( )− , multiplication ( )×  and division ( )÷  

from real arithmetic, the corresponding interval arithmetic operation can be defined as: 

 { }| ,X Y x y x X y Y• = • ∈ ∈  (3-12) 

where •  symbolizes any of the four operations. In words, (3-12) means that X Y•  contains 
all possible results of x y•  for any x X∈  and y Y∈ . 

Using (3-12) as reference, the following expressions are used in practice to calculate the 

endpoints of X Y• , with [ ],X a b=  and [ ],Y c d= : 

 [ ],X Y a c b d+ = + +  (3-13) 

 [ ],X Y a d b c− = − −  (3-14) 

 ( ) ( )min , , , ,max , , ,X Y ac ad bc bd ac ad bc bd⎡ ⎤× = ⎣ ⎦  (3-15) 

 
1 1 1, ,0 Y
Y d c

⎡ ⎤= ∉⎢ ⎥⎣ ⎦
 (3-16) 



14  Chapter 3 | Interval Arithmetic 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 
1 ,0X X Y

Y Y
= × ∉  (3-17) 

Division by an interval containing zero is possible if extended interval arithmetic is used. The 
rules for doing that can be found in Section 2.1 of [Hargreaves, 2002] and in Section 4.6.1 of 
[Hansen and Walster, 2004]. Extended interval arithmetic is not properly supported by 
INTLAB. It is left to the user to implement it if desired. During this thesis, no need was felt as 
satisfactory results could be obtained without the extra programming. However, that might be 
necessary in a near future. 

Also useful to avoid dependency in multiplication (see Section 3.5 for a detailed explanation of 
dependency) is the following rule (this one implemented in INTLAB) given in [Hansen and 
Walster, 2004]: 

 

[ ]

( )

1,1 , 0

, , 0

, , 0

0, max , , 0 0

n n

n
n n

n n

if n

a b if a or if n is odd
X

b a if b and n is even

a b if a b and n is even

⎧ =
⎪
⎡ ⎤ ≥⎪⎣ ⎦⎪= ⎨⎡ ⎤ ≤⎣ ⎦⎪
⎪⎡ ⎤ ≤ ≤ >⎪⎣ ⎦⎩

 (3-18) 

 

3.5 Dependency  
 

Dependency is probably the single most significant problem of interval analysis. To explain it, 
an example given in [Hansen and Walster, 2004] will be used. Consider the interval 

[ ],X a b= . While most people would say that X X−  equals zero, applying (3-14) yields: 

 [ ],X X a b b a− = − −  (3-19) 

which is only zero if a b= . The solution is a thick interval and not a thin one. This widening 
of computed intervals is called dependency. 

Dependency occurs in the preceding example because by definition X X−  is given by: 

 { }| ,X X x y x X y X− = − ∈ ∈  (3-20) 

and not by: 

 { }|X X x x x X− = − ∈  (3-21) 

In other words, X X−  is computed as if it were X Y−  with Y  numerically equal but 
independent of X . 

Another example from [Hansen and Walster, 2004] shows why (3-18) is useful to avoid 

dependency in multiplication. Consider the operation [ ]21, 2− . Using (3-15) one gets: 

 [ ] [ ] [ ] [ ]21, 2 1,2 1,2 2,4− = − × − = −  (3-22) 

while (3-18) yields: 



Chapter 3 | Interval Arithmetic  15 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 [ ] [ ]21, 2 0,4− =  (3-23) 

The latter result is not affected by dependency and, therefore, is sharper. 

An important note about dependency is given in [Moore, 1966]: if an interval variable appears 
only once in a given expression, then it will not produce dependency. In particular, if every 
interval variable appears only once in a given expression, dependency will not occur. Take the 
following example from [Hansen and Walster, 2004]: 

 ( )(1) , X Yf X Y
X Y
−

=
+

 (3-24) 

Expression (3-24) can be alternatively written as: 

 ( )( 2)

2, 1
1

f X Y X
Y

= −
+

 (3-25) 

The subscripts are only used for identification purposes. Despite analytically equivalent, when 
analysed in terms of dependency, the two forms are different. Since X  and Y  only appear 
once in (3-25), dependency will not occur. But the same can not be said about (3-24). Taking 

[ ]1, 2X =  and [ ]3, 4Y = , one gets: 

 ( ) [ ](1) , 0.7501, 0.1666f X Y = − −  (3-26) 

 ( ) [ ](2) , 0.6001, 0.1999f X Y = − −  (3-27) 

As foreseen, ( ) ( )(2) (1), ,f X Y f X Y⊂  as a consequence of dependency. Note, however, that 

if 0 Y∈ , expression (3-25) can not be applied without extended interval arithmetic. In that 
case, a deeper analysis would have to be done for figuring out which form is better.  

Dependency can also be used to explain why the distributive law does not hold in general 
when multiplying intervals: 

 ( )X Y Z XY XZ+ ≠ +  (3-28) 

In the left hand side of (3-28), X  appears only once while in the right hand side it appears 
twice, making the form XY XZ+  subject to dependency. Hence, in interval arithmetic the so-
called sub-distributive law of multiplication holds: 

 ( )X Y Z XY XZ+ ⊆ +  (3-29) 

This law will be extensively used in the upcoming chapters to reduce the dependency effect. 

As for the associative and commutative laws of addition and multiplication, they still hold in 
interval arithmetic: 

 X Y Y X+ = +  (3-30) 

 X Y Y X× = ×  (3-31) 

 ( ) ( )X Y Z X Y Z+ + = + +  (3-32) 



16  Chapter 3 | Interval Arithmetic 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( ) ( )X Y Z X Y Z× × = × ×  (3-33) 

While it is true that dependency can cause catastrophic numerical instability, it is also true 
that one of the virtues of interval analysis is to produce wide solution intervals when this 
happens, warning the user about what is going on. On the contrary, floating-point algorithms 
can hide catastrophic numerical instability from the user. 

 

3.6 The wrapping effect  
 

The wrapping effect and dependency are two completely unrelated problems. The bounds on a 
solution might be far from sharp exclusively due to the wrapping effect without any 
contribution from dependency. 

A good example explaining the wrapping effect can be found in [Jaulin et al., 2001]. Take: 

 
1 1
0 1

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3-34) 

and: 

 
[ ]
[ ]

1

2

1,0
1,2

X
X

X
⎡ ⎤−⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3-35) 

 By using (3-15) one gets: 

 
[ ]
[ ]

[ ]
[ ]

1,0 0,21 1
. .

1, 2 1,20 1
A X

⎡ ⎤ ⎡ ⎤−⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3-36) 

Note that: 

 
0

.
2

A X
⎡ ⎤

∈⎢ ⎥
⎣ ⎦

 (3-37) 

but: 

 { }
0

. |
2

A x x X
⎡ ⎤

∉ ∈⎢ ⎥
⎣ ⎦

 (3-38) 

where { }. |A x x X∈  is the true solution set of the problem. Figure 3.3 shows geometrically 

what is happening. 

The red area represents the true solution set: { }. |A x x X∈ , while the dashed rectangle is 

the result calculated in (3-36). This result is the interval vector containing the true solution set 
with the narrowest possible interval components. It is the so-called hull of the solution set. 
The elementary interval arithmetic operations defined in Section 3.4 are only able to calculate 
the hull of the solution set and not the solution set itself. In this way, the computed solutions 



Chapter 3 | Interval Arithmetic  17 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

contain points that do not belong to the true solution sets, as is the case with the point 

[ ]0 2 T
 in the former example2. This phenomenon is called wrapping effect. 

 

Figure 3.3: Geometric representation of the wrapping effect.    

The operation most susceptible to the wrapping effect is integration. Integration is a recurrent 
procedure when optimizing dynamic systems. The rectangular method is the simplest 
technique to perform numerical integration and the use of interval arithmetics makes it even 
more straightforward. Its accuracy is directly related to the number of subintervals in which 
the initial interval is divided, intN . 

The rectangular method was chosen due to its simplicity, despite its accuracy limitations. 
Taylor models could be used to improve this aspect.   

Figure 3.4 and expression (3-39) illustrate the idea behind the rectangular method:     

 

... ...

t

( )f t  

1iT +iT1T  
intNT

( )if T  

a  b

 

Figure 3.4: Rectangular integration and the wrapping effect. 

 ( ) ( ) ( )
int

1
.

Nb

i ia
i

f t dt f T w T
=

= ∑∫  (3-39) 

A very important remark should be done here: the widths ( )iw T  might not be 

machine representable numbers. Therefore, ( )iw T  in (3-39) should be understood 

as the smallest intervals containing the true values of ( )iw T . 

As explained in [Berz, 2007], the wrapping effect in verified integration algorithms is caused 
by the need to enclose intermediate results in rectangular boxes. This can be seen in Figure 

                                                     

2 TX  represents the transpose of X . 



18  Chapter 3 | Interval Arithmetic 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

3.4 as the red boxes wrapping ( )f t . This can lead to integration results that are far from 

sharp.  

The only way to counteract the wrapping effect in the rectangular method is by increasing 

intN , which has obvious consequences on the computational speed. 

Apart from the wrapping effect, the integration results can also be affected by dependency 

coming from the calculation of ( )if T . 

 

3.7 The fundamental theorem of interval analysis 
 

One of the most important theorems in interval analysis was first demonstrated by Moore in 
[Moore, 1966]. Various authors recurrently call it the fundamental theorem of interval 
analysis. The subsequent version can be found in [Hargreaves, 2002] and is particularly easy 
to grasp: 

Theorem 3.1: If the function ( )1,..., nf Z Z  is an expression with a finite number of 

intervals 1,..., nZ Z ∈\  and interval operations ( ), , ,+ − × ÷ , and if: 

 1 1,...., n nX Z X Z⊆ ⊆  (3-40) 

then: 

 ( ) ( )1 1,..., ,...,n nf X X f Z Z⊆ . (3-41) 

For a analytically sound proof of this theorem the reader is referred to Section 3.2 of [Hansen 
and Walster, 2004].  

In particular, Theorem 3.1 guarantees that: 

 ( ) ( )x X f x f X∈ ⇒ ∈  (3-42) 

where x  and X  denote a real number and an interval, respectively. 

As mentioned in [Hansen and Walster, 2004], one of the far reaching consequences of the 
fundamental theorem is that it makes global optimization possible. 

 

3.8 Interval vectors and matrices  
 

In the forthcoming chapters, interval vectors and interval matrices will recurrently be used. 
Hence, the following definitions (based on the definitions given in [Hansen and Walster, 
2004]) are in order: 

1) Interval vector or box: an interval vector or a box is a vector whose components are 
intervals. The term box comes from the fact that an n -dimensional interval vector represents 
geometrically an n -dimensional parallelepiped with sides parallel to the coordinate axes.   



Chapter 3 | Interval Arithmetic  19 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

2) Interval matrix: an interval matrix is a matrix whose elements are intervals. 

3) Containment: let x  be a real vector and X  an interval vector, both with n  components. 

It is said that x  is contained in X , x X∈ , if and only if i ix X∈  for 1,...,i n= . Similarly, if 

A  is a real matrix and IA  is an interval matrix, both with n  rows and m  columns, IA A∈  

if and only if I
ij ijA A∈  for 1,...,i n=  and 1,...,j m= . 

Now let X  and Y  be n -dimensional interval vectors. X Y⊂  if and only if i iX Y⊂  for 

1,...,i n= . Similarly, if A  and B  represent two interval matrices with n  rows and m  

columns, A B⊂  if and only if ij ijA B⊂  for 1,...,i n=  and 1,...,j m= . 

4) Midpoint of an interval vector: the midpoint of an interval vector is defined as the real 
vector whose components are the midpoints of the corresponding components of the interval 
vector. 

5) Midpoint of an interval matrix: the midpoint of an interval matrix is defined as the real 
matrix whose elements are the midpoints of the corresponding elements of the interval matrix. 

6) Width of an interval vector: the width of an interval vector is defined as the real vector 
whose components are the widths of the corresponding components of the interval vector. 

7) Width of an interval matrix: the width of an interval matrix is defined as the real matrix 
whose elements are the widths of the corresponding elements of the interval matrix. 

8) Regular interval matrix: an interval matrix IA  is said to be regular if every real matrix 
IA A∈  is nonsingular. Otherwise, the interval matrix is said to be irregular. 

INTLAB comes incorporated with two different algorithms to multiply matrices with thick 
intervals. One built for speed and the other for sharpness. The latter one was chosen using 
the command intvalinit. 

 

 

 

 

 

 

 

 

 

 

 

 

 



20  Chapter 3 | Interval Arithmetic 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 



Chapter 4 | Static Global Optimization  21 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 4 | Static Global Optimization 
 

Weiwei Chu in her Master of Science thesis: Interval Analysis Applied to Re-Entry Flight 
Trajectory Optimization (see [Chu, 2007]) proved, to a certain extent, the suitability of 
interval analysis for finding guaranteed bounds on the global solution of static optimization 
problems, i.e., problems which do not involve dynamic equations. She did it using FORTRAN 
and the interval library INTLIB3. Her computer had a Pentium 4 processor running at 2.6 GHz 
and 512 MB of RAM. 

The objective will now be to solve the same static optimization problems discussed in [Chu, 
2007] with at least the same level of accuracy using less CPU time. Obviously, by accuracy one 
should always understand sharpness. 

Although Chu was using FORTRAN, which in theory should be faster than MATLAB, and a faster 
processor, she was also using a computer with less RAM. This makes it hard to compare the 
forthcoming results with hers in terms of CPU time. Nevertheless, it will be assumed that 
substantial improvements4 in computational time can only be justified by the developments 
made in the global optimization algorithm. Weighting all the pros and cons, the two 
configurations are too similar to justify significant differences in CPU time. 

The static global optimization algorithm discussed in the forthcoming sections is based on 
[Hansen and Walster, 2004] and [Chu, 2007]. 

 

4.1 The problem 
 

A static global optimization problem can be formulated in the following way: given a scalar 

function ( )f x , hereafter designated as the objective function, with nx∈\ , find the (global) 

minimum value of f , *f , and the point or points where this minimum value occurs, *x . 

Since maximizing ( )f x  is the same as minimizing ( )f x− , all maximization problems can be 

reformulated as minimization problems.  

To start the interval algorithm, an initial box or boxes containing *x  must be given. If the 
initial boxes overlap and the minimum point occurs in more than one initial box, than the 
optimum solution will be independently calculated from each of these initial boxes, wasting 
valuable CPU time. This is the only inconvenience of prescribing several initial boxes. However, 
to simplify what follows, it is assumed that only one initial box is provided. 

If no information whatsoever is known about the location of the minimum, the initial box, 

initialX , can be defined component-wise as ,N N⎡ ⎤−⎣ ⎦  where N  is the largest floating point 

number representable by the computer. However, one should keep in mind that the wider the 
initial box, the longer it will take to calculate sharp results. 

Since the search for the global minimum is restricted to the initial box, the problem is actually 
constrained: 

                                                     

3 More information about the interval standard function library INTLIB can be found in [Kearfott et al., 
2007]. 
4 What is a substantial improvement or not is something that will be discussed separately in each 
example. 



22  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 
( )min

: initial

f x
subject to x X∈

 (4-1) 

However, unless explicit equality and/or inequality constraints are given, problem (4-1) will be 
treated as unconstrained. In other words, it is assumed that the initial box is so wide that the 

minimum occurs in a stationary point of ( )f x  and not in a nonstationary point on the 

boundary of initialX . 

Let inequality constraints be denoted by ( ) 0p x ≤  with ( ) : n mp x →\ \  and equality 

constraints by ( ) 0q x =  with ( ) : n rq x →\ \ . Then, the static global constrained 

optimization problem with equality and inequality constraints is formulated as follows: 

 

( )

( )
( )

min
:

0
0

initial

f x
subject to x X

p x
q x

∈
≤
=

 (4-2) 

 

4.2 The algorithm 
 

The support column of the developed static global optimization algorithm is a common branch 
and bound (BB) procedure. As explained in [Wikipedia, 2007], the general branch and bound 
method can be divided in two main parts, one executed after the other: 

1) Branching (or splitting): each remaining box is divided in two or more subboxes;  

2) Bounding and pruning: for each subbox iX , bounds on ( ) ,i i if X f f⎡ ⎤= ⎣ ⎦  are calculated. 

Let f denote the smallest calculated upper bound (this notation will be kept throughout the 

text). Since *f f< , any box wherein if f>  can be safely deleted5.  

If no initial upper bound on *f  is known, f  is set to +∞  before the algorithm is started. 

In addition to the upper bound on the minimum, other techniques for deleting boxes are used 
in the developed algorithm. These techniques are explained one by one in Section 4.2.2. The 
developed algorithm also has procedures capable of shrinking the boxes, i.e., capable of 
reducing their width. In the limit, these latter procedures can even delete entire boxes. They 
are treated in Section 4.2.1. 

A major difference between the current algorithm and the algorithm given in [Hansen and 
Walster, 2004] is that while in [Hansen and Walster, 2004] only one box is processed at a 
time, here, all the boxes are processed at the same time. For example, while [Hansen and 
Walster, 2004] would apply hull consistency and box consistency to the same box before 
moving to another one, here, hull consistency is applied to all the boxes and then box 
consistency is applied to all the remaining boxes. This is done to take advantage of fact that 
interval vector and interval matrix operations are very fast in INTLAB, as highlighted in [Rump, 

                                                     

5 This is true for unconstrained problems. For constrained ones, further considerations need to be made. 
Section 4.2.2.2 deals with this issue. 



Chapter 4 | Static Global Optimization  23 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

2007]. Also in [Rump, 2007], it is said that loops may slow down the system considerably, 
which supports the idea that the boxes should not be processed one at a time. Nevertheless, 
further investigation about which is the best approach is required. 

The overall structure of the developed algorithm is quite straightforward. It is mainly a big 
cycle where the first step is always branching, followed by different, independent and 
contained modules, each implementing a different procedure designed to shrink and/or delete 
boxes. The order in which each module appears inside the cycle was roughly chosen to 
optimize speed. For example, fast and efficient procedures like hull consistency, i.e., that 
delete a lot of boxes and are relatively cheap in terms of CPU time, were placed higher in the 
cycle, when there are still a lot of boxes being processed simultaneously. Slower and less 
efficient procedures, like box consistency, were thrown to lower positions.  

The order suggested in Figure 4.1, where a flowchart describing the static global optimization 
algorithm is given, is probably not the best possible way of ordering the different modules. It 
is just a gross attempt to optimize speed based on a simple trial and error procedure. It is 
dubious if trying to find an optimum sequence is even worth the effort. As many other aspects 
of interval analysis, the best way of ordering the modules is in all probability problem 
dependent, making it impossible to find an unique sequence yielding the best results in every 
case. Instead, for each problem, a reasonable sequence should be sought. 

Only some of the procedures mentioned in Figure 4.1 are used to solve a particular problem. 
As a matter of fact, no example solved in the forthcoming sections has exactly the same 
flowchart as the one represented in Figure 4.1. Most of the times, a particular method is not 
applied to a particular problem simply because it is not defined for that particular problem. 
Other times, by introducing a determined procedure, more CPU time is required to reach the 
same accuracy. What methods are used in a particular example is something that will be 
treated later on when discussing the examples separately. At the same time, implementation 
details will be given for each method.    

The good thing about this modular approach is that modules can be inserted and removed 
from the optimization algorithm without affecting the remaining code. In particular, if a new 
procedure for shrinking and/or deleting boxes is developed, it is straightforward to integrate it 
into the existing code. 

 

4.2.1 Procedures to shrink the boxes 
 

In this section, two procedures capable of shrinking the boxes are described and compared: 
hull consistency and box consistency. In the limit, these procedures can even delete entire 
boxes. 

 

4.2.1.1 Hull consistency 
 

The following description of hull consistency (HC) is based on [Hansen and Walster, 2004]. 
Especial care will be taken in describing it since it is one of the techniques that most 
contribute for the forthcoming results.  

Start by considering a general function ( )f x  with a scalar variable x . This function should 

not be confused with the objective function. Actually, in static optimization problems, ( )f x  

will always be an equality constraint. Assume ( )f x  can be written as: 



24  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

Branching 
 

Hull consistency 
 

Box consistency 
 

Were the 
boxes 

sufficiently 
reduced? 

Initial box

initialX  

 Yes

Using the inequality 
contraints 

 

No

Using an upper bound 
on the minimum 

 

Using the gradient of 
the objective function 

 

Using the gradient of 
the Lagrangian 

 

Are the 
stopping 
criteria 
met? 

No 

End

Yes

 

Figure 4.1: Flowchart of the developed static global optimization algorithm.  

 



Chapter 4 | Static Global Optimization  25 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( ) ( ) ( )f x g x h x= −  (4-3) 

and that the equation ( ) 0f x =  needs to be solved. If *x  is a solution of ( ) 0f x = , then: 

 ( )( )* 1 *x g h x−=  (4-4) 

If an interval X  containing *x  is known, then: 

 ( )( )* 1x g h X−∈  (4-5) 

Relation (4-5) is a consequence of the fundamental theorem of interval analysis. Therefore, 
the following iterative process can be defined: 

 
( )( )1'

'' '

X g h X

X X X

−=

= ∩
 (4-6) 

If *x  is included in the initial interval X , then (4-5) guarantees that *x  will also be included 
in ''X . This way, the solution will never be eliminated. On the other hand, if ''X  is smaller 

than X , which is normally the case, (4-6) defines a way to sharpen the bounds on *x . If 

''X =∅ , then X  was eliminated and it has been proved that *x X∉ .  

HC can be more or less efficient depending on what function ( )g x  is chosen and how 

dependency affects the calculation of ( )h X . 

Normally, there are so many alternatives for ( )g x  that it is hard to choose one. The 

suggestion given by [Hansen and Walster, 2004] is that ( )g x  should be the term of ( )f x  

that dominates the other terms for some portion of X . For example, take 

( ) 4 3 2f x x x x x= + + + . If the objective is to delete boxes where x  is large, then the term 

4x  should be chosen as ( )g x . Conversely, if the objective is to delete boxes where 1x < , 

then the dominant term is x  and ( )g x  should be chosen as such. 

Any values of the range of ( )h X  that are outside the domain of 1g −  are deleted when 

calculating ( )( )1g h X− . INTLAB can be configured to do this automatically by means of the 

command intvalinit(‘RealStdFctsExcptnIgnore’). 

Consider now a system of m  equations in n  unknowns: ( ) : n mf x →\ \ . HC is applied to 

one equation and one variable at a time. All the remaining variables are replaced by their 
interval bounds. For example, applying HC to the i -th equation and to the j -th variable 
results in: 

 ( ) ( )1,..., ,..., 0j i j nq x f X x X= =  (4-7) 

All the previous comments now hold for ( )jq x .  



26  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Which is the best way to cycle between the equations and the variables is still a matter being 
researched. The following procedure is suggested in [Hansen and Walster, 2004]: order the 
equations in some arbitrary way. Then, cycle through the variables in such a way that each 
variable is solved once for each equation. When using a particular equation, the variable with 
the smallest index that has not yet been used with the aforementioned equation should be 
chosen. 

Last but not the least, HC can be used to prove the existence of a solution of a system of 
nonlinear equations inside a box X . This result is extremely important for Section 4.2.2.2. It 
is expressed by the following theorem: 

Theorem 4.1: Let the components of a function ( ) : n nf x →\ \  be of the form: 

 ( ) ( ) ( ) 0 , 1,...,i i if x g x h x i n= − = =  (4-8) 

Suppose a new box 'X  is computed from X  using: 

 ( )1' , 1,...,i i iX g h X i n− ⎡ ⎤= =⎣ ⎦  (4-9) 

Then, if 'X X⊂ , there is a solution of ( ) 0f x =  in X  (and also in 'X ). 

For a proof, the reader is referred to Section 10.12 of [Hansen and Walster, 2004]. 

Expression (4-9) states that each new component of 'X  is calculated using the initial box X . 
In practice, as soon as a new component 'iX  is calculated, it is used to calculate 1 'iX + . 

Theorem 4.1 can be proved using this more efficient form. 

It is said that a box X  is feasible, if there is at least one solution of ( ) 0f x =  inside X .   

 

4.2.1.2 Box consistency 
 

Due to the reasons explained in Section 4.2.1.3, box consistency (BC) plays a secondary role 
in the developed algorithm when compared to HC. For this reason, BC will not be as 
thoroughly described as HC. For a more deep discussion about BC, the reader is referred to 
Section 10.2 of [Hansen and Walster, 2004]. 

Consider a function ( ) : nf x →\ \ . The intention is to find a solution to ( ) 0f x =  inside a 

box X . Start by replacing all the variables except one by their interval bounds: 

 ( ) ( )1,..., ,..., 0i i nq x f X x X= =  (4-10) 

The idea behind BC is that if ( )0 'iq X∉ , where 'iX  is a subinterval of iX , then the subbox 

( )1' ,..., ',...,i nX X X X=  does not contain a solution of ( ) 0f x =  and can be safely deleted, 

shrinking the initial box X .   

How to choose the subinterval 'iX  from iX  and how to delete subintervals of 'iX  even 

when 'iX  can not be entirely deleted, are some of the questions answered in [Hansen and 

Walster, 2004].      



Chapter 4 | Static Global Optimization  27 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

4.2.1.3 Comparing hull consistency with box consistency 
 

Both consistency methods are designed to shrink the region of search of a particular problem. 
However, they have different virtues and drawbacks. The following analysis refers only to the 
HC and BC algorithms given in [Hansen and Walster, 2004] and is not applicable to other HC 
and BC algorithms available in literature. 

In order for BC to be applied, the function ( )f x  needs to be continuously differentiable, 

while for HC, ( )f x  can even be discontinuous. Another even more important advantage of 

HC is that it reaches its result faster. 

Nevertheless, sharper bounds can usually (but not always) be achieved with BC, if enough 
iterations are allowed. 

A unique characteristic of HC is its ability to isolate and bound different solutions of ( ) 0f x =  

that might exist in a given box. BC is merely able to reduce the region of search to a box 
containing all the solutions. 

A few tests were done to see if implementing BC after HC was worth the extra programming. 
In every test, to achieve the same level of accuracy, HC by itself was faster. As a 
consequence, BC was not implemented in the optimization algorithm. However, the author is 
aware that this decision is based on a finite set of tests and that a different set could yield 
different results.  

 

4.2.2 Procedures to eliminate boxes 
 

In this section, four techniques for deleting boxes are described. They are based on: 

1) the inequality constraints; 

2) an upper bound on the minimum; 

3) the gradient of the objective function;  

4) the gradient of the Lagrangian. 

 

4.2.2.1 Using the inequality constraints 
 

Consider an inequality constraint ( ) 0p x ≤ , where x  is a real vector with n  components. 

Now, assume that ( )p x  is evaluated over a box X  using the interval arithmetic operations 

defined in Section 3.4, resulting in ( ) ( ) ( ),p X p X p X⎡ ⎤= ⎣ ⎦ . It is said that: 

1) X  is (certainly) feasible if ( ) 0p X ≤  and that X  is (certainly) strictly feasible if 

( ) 0p X < . 



28  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

2) X  is (certainly) infeasible if ( ) 0p X > . 

Any box X  that is certainly infeasible can be safely deleted. 

Alternatively, instead of evaluating ( )p X  to test if X  is infeasible, HC can be used to solve 

( ) [ ],0p X = −∞ , which is equivalent to ( ) 0p X ≤ . With essentially the same amount of 

computing needed to test for infeasibility, HC yields the same or more information. While a 
feasibility test can only delete or not delete X , HC can also reduce the width of X . The only 

setback is that extended interval analysis must be used to solve ( ) [ ],0p X = −∞ . As already 

mentioned, INTLAB does not support extended interval analysis. 

 

4.2.2.2 Using an upper bound on the minimum 
 

How an upper bound on the global minimum can be used to delete boxes was already 
explained in Section 4.2 when talking about the bounding and pruning phase of a general 
branch and bound algorithm. While the basic idea is always the same, each kind of constraint 

needs to be treated in a special way. In the end, everything comes down to the fact that f  

can only be updated using a box X , after a feasible solution point with respect to the 
inequality and/or equality constraints has been proved to exist inside X . There are four 
different cases that need to be treated independently: the unconstrained case, the inequality 
constrained case, the equality constrained case and the inequality and equality constrained 
case. 

 

4.2.2.2.1 The unconstrained case 
 

Let iX  be a box generated during the branching phase of the algorithm. In the unconstrained 

case, every point ix X∈  is a feasible point due to the lack of constraints. Hence, instead of 

evaluating ( )f x  over the entire box iX  to calculate an upper bound on the minimum, 

resulting in ( ) ,i i if X f f⎡ ⎤= ⎣ ⎦ , a single point of iX  can be used for that effect. As in [Hansen 

and Walster, 2004], the midpoint of iX  is used in this thesis: 

 ( )( ) , ,,i i mid i midf m X f f⎡ ⎤= ⎣ ⎦  (4-11) 

Since: 

 ,i mid if f≤  (4-12) 

a sharper upper bound on the minimum is obtained. This means that in general more boxes 
will be deleted. 

 



Chapter 4 | Static Global Optimization  29 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

4.2.2.2.2 The inequality constrained case 
 

When there are only inequality constraints, before evaluating ( )( ) , ,,i i mid i midf m X f f⎡ ⎤= ⎣ ⎦ , it 

has to be guaranteed that ( )im X  is a certainly feasible (thin) box, i.e., it has to be 

guaranteed that: 

 ( )( ) 0ip m X ≤  (4-13) 

If (4-13) holds, then f  can be updated using (4-11). 

 

4.2.2.2.3 The equality constrained case 
 

Dealing with equality constraints is relatively harder than dealing with inequality constraints. 
Suppose a box iX  is known to be a feasible box with regard to the equality constraints, i.e., a 

solution x  of ( ) 0q x =  is known to exist inside iX . Then, an upper bound on the minimum 

is the supremum of ( ) ,i i if X f f⎡ ⎤= ⎣ ⎦ . Note that evaluating ( )( ) , ,,i i mid i midf m X f f⎡ ⎤= ⎣ ⎦  and 

taking ,i midf  as an upper bound on the minimum is no longer valid since ( )im X  might not be 

(and probably is not) a feasible box. This comes from the fact that the actual position of the 

solution of ( ) 0q x =  is not known. The only undisputable fact is that x X∈ . Therefore, 

( )f x  must be evaluated over the entire box iX . 

The existence of a solution inside a box can be proven using Theorem 4.1. However, 
Theorem 4.1 requires the number of variables, n , to be same as the number of equality 
constraints, r . In general, that is not the case. If n r= , then the minimization problem 
becomes somewhat awkward, since in principle, the r  equality constraints can be solved with 
respect to the n  variables. Thus, the most common situation is r n< . 

Therefore, to apply Theorem 4.1, n r−  variables must be fixed. As in [Hansen and Walster, 
2004], they are made equal to the midpoints of the respective intervals. An intricate method 
for deciding which are the best variables to fix is given in Section 15.5 of [Hansen and 
Walster, 2004]. Since the problems solved in this thesis are relatively simple, these variables 
will be selected manually. However, it should be highlighted that properly choosing which 
variables to fix can significantly change the results, as will become apparent when solving 
Example 4 in Section 4.6. 

Denote iZ  as the box obtained from iX  after fixing n r−  variables of iX . If Theorem 4.1 

is satisfied, that means that a box '
i iZ Z⊂  containing a feasible solution is known. Then, to 

get the smallest possible upper bound on *f , ( )'if Z  should be evaluated . Evaluating 

( )if Z  or ( )if X  would not be as efficient since both iZ  and iX  are wider than '
iZ . Note, 

however, that a box iY  can only be deleted if ( )if Y f> , i.e., ( )f x  must be evaluated over 

the entire box iY .  

 



30  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

4.2.2.2.4 The inequality and equality constrained case 
 

When a problem has simultaneously inequality and equality constraints, the following two 
conditions must be proven: 

1) iX  must be a feasible box with regard to the equality constraints. This can be proven using 

the method described in Section 4.2.2.2.3.  

2) The inequality constraints must be satisfied over the entire box iX , i.e., iX  must be a 

certainly feasible box.   

If both conditions are met, if , resulting from ( ) ,i i if X f f⎡ ⎤= ⎣ ⎦ , is an upper bound on the 

global minimum. 

 

4.2.2.3 Using the gradient of the objective function 
 

If the objective function ( ) : nf x →\ \  is continuously differentiable and the problem is 

unconstrained, then the gradient function of ( )f x , ( ) : n ng x →\ \ , is equal to zero at *x . 

Of course, ( )g x  is also equal to zero at local minima, local maxima and saddle points. 

Consider a box X  produced during the branching phase of the algorithm. If ( )0 g X∉ , then 

X  cannot contain the global minimum and can be safely deleted. Evaluating ( )g X  is a 

simple task with INTLAB since a first-order automatic differentiation routine is provided. Thus, 

the analytical form of ( )g x  does not even need to be calculated. 

However, as already mentioned in Section 4.2.2.1, applying HC to the equation ( ) 0g X =  is 

generally better than simply evaluating ( )g X . With essentially the same amount of 

computing, HC has the advantage of sometimes being able to reduce the width of X . 

In this thesis, HC is not applied to the equation ( ) 0g X = . ( )g X  is evaluated instead. 

Further upgrading the algorithm was deemed unnecessary: every time the gradient of the 
objective function could be applied to solve a specific problem, the desired levels of accuracy 
were achieved in less than one second. Nonetheless, HC should be used as a rule. 

 

4.2.2.4 Using the gradient of the Lagrangian 
 

According to [Visser, 2007] and [Bryson Jr. and Ho, 1975], to analytically solve the 
constrained static optimization problem formulated in (4-2), the so-called Lagrangian function 
of the problem must be formed:  

 ( ) ( ) ( ) ( ), , T T
e i e iL x f x q x p xλ λ λ λ= + +  (4-14) 



Chapter 4 | Static Global Optimization  31 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

where eλ  and iλ  are the so-called Lagrangian multipliers. L  is sometimes also called the 

augmented objective function, for obvious reasons. Necessary conditions for a local solution of 
(4-2) are then: 

 
( ) ( ) ( ) ( ), ,

0e i T T
e i

L x f x q x p x
x x x x
λ λ

λ λ
∂ ∂ ∂ ∂

= + + =
∂ ∂ ∂ ∂

 (4-15) 

 ( ) 0q x =  (4-16) 

 ( ) 0p x ≤  (4-17) 

 
( )
( )

0 , 0
, 1,...,

0 , 0
j

j

i j

i j

p x
j m

p x

λ

λ

⎧ ≥ =⎪ =⎨
= <⎪⎩

 (4-18) 

Conditions (4-15) through (4-18) are known as the first-order Kuhn-Tucker conditions [Visser, 

2007]. The j -th inequality constraint is said to be active if ( )* 0jp x =  and inactive if 

( )* 0jp x < .      

Solving these optimality conditions is not an easy task. It would require an interval algorithm 
capable of solving a system of nonlinear equations. If this algorithm was available, it could be 
used as another procedure for shrinking the boxes. For a step by step procedure on how to 
implement one, the reader is referred to [Hansen and Walster, 2004]. 

However, a procedure for deleting boxes can still be devised using the first-order Kuhn-Tucker 
conditions. It can only be applied to problems with a single inequality constraint ( 1m =  ) and 
no equality constraints ( 0r =  ). It is based on a similar procedure described in [Chu, 2007]. 
The condition that m  should be equal to 1 and that r  should be equal to zero is never made 
in [Chu, 2007]. This should be taken as a lapse. 

Rewriting the first order Kuhn-Tucker conditions for 1m =  and 0r =  yields: 

 
( ) ( ) ( ),

0i
i

L x f x p x
x x x
λ

λ
∂ ∂ ∂

= + =
∂ ∂ ∂

 (4-19) 

 ( ) 0p x ≤  (4-20) 

 
( )
( )

0 , 0
0 , 0

i

i

p x
p x

λ
λ
⎧ ≥ =⎪
⎨ = <⎪⎩

 (4-21) 

where iλ  is now a scalar. Note that expression (4-19) is the same as saying the vectors 

( )f x
x

∂
∂

 and 
( )p x
x

∂
∂

 must be parallel and have different directions.  

Consider a box X . The objective is to devise methods capable of proving that *x X∉ , so X  
can be safely deleted. Three such methods can be derived from (4-19)-(4-21): 



32  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

1) If ( ) 0p X > , condition (4-20) is disrespected and X  can be immediately deleted. This is 

the case already discussed in Section 4.2.2.1. 

2) If ( )0 p X∈ , the Lagrange multiplier iλ  can be calculated through (4-19) as the 

intersection of the following intervals: 

 ( )

( )

( ) , 1,...,j j
i

j x X

f x
xX j np x

x

λ

=

⎛ ⎞∂
⎜ ⎟∂⎜ ⎟= − =∂⎜ ⎟
⎜ ⎟∂⎝ ⎠

 (4-22) 

If ( )i Xλ =∅ , then X  can be safely deleted as (4-19) can not be satisfied. In this case, 

proving the existence of a solution of ( ) 0p x =  in X  is not required. If *x X∈ , then iλ  

has to be at least a point interval. It can never be an empty set. Therefore, there is no danger 

of deleting the optimal solution when ( )i Xλ =∅ . 

Also, if ( ) 0i Xλ < , X  can be safely deleted as a result of (4-21). Again, proving the 

existence of a solution of ( ) 0p x =  in X  is not necessary. If *x X∈ , then ( ) 0i Xλ <  is 

impossible, meaning that the optimal solution is always preserved.          

3) The third and final possibility is ( ) 0p X < . In this case, 0iλ =  from (4-21). Applying this 

result to (4-19) leads to: 

 
( ) 0

f x
x

∂
=

∂
 (4-23) 

X  can be safely deleted if 
( )

0
x X

f x
x

=

∂
∉

∂
. 

 

4.2.3 Branching 
 

The branching phase of the algorithm has been mentioned many times but its implementation 
has not yet been explained. Suppose the objective is to split a box iX  with n  components. 

The algorithm allows the user to specify which components of iX  should be split and in how 

many subintervals each one of those components should be divided. All the boxes are then 
split according to these criteria. 

For simplicity’s sake, assume each component is divided into splitN  subintervals and that splitn  

components of X  are split. Then, for every old box, splitn
splitN  subboxes will be generated. 

Even if 2splitN =  (the smallest possibility), dividing three components of X  would result in 

eight new subboxes. According to [Hansen and Walster, 2004], and to the author’s experience, 
eight new subboxes per old box is the maximum a normal personal computer can handle. This 
should be taken as a rule of thumb. 



Chapter 4 | Static Global Optimization  33 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

In [Hansen and Walster, 2004], when only consistency methods are used to reduce the width 
of the boxes (which is the case), the branching is performed by always dividing the three 
widest components into two subintervals each. However, they assume that this can be a poor 
choice. In fact, no procedure exists today telling which is the best way to split the remaining 
boxes. As many other things about interval analysis, it is still something very problem 
dependent and under investigation. 

Therefore, to allow the user to experiment different branching configurations, the choice was 
made not to implement a rigid splitting procedure. 

 

4.2.4 Interpretation of the results 
 

As important as calculating results is interpreting them. Not taking this into account is 
probably the biggest shortcoming of [Chu, 2007], as will become apparent in the following 
sections. 

Consider the general case when more than one box remains after termination. What makes 
interval optimization algorithms so unique is their ability to give guaranteed bounds on (all) 
the solution point(s) of a minimization problem. Any interval optimization algorithm should be 
able to yield such bounds. 

To simplify, it will be assumed that all the remaining boxes are contiguous, i.e., there are not 
any gaps inside the region defined by the remaining boxes. If this is not the case, the 
following results can be easily adapted. 

At the end of the algorithm, the only certain fact is that the global minimum has to be 
contained inside one or more of the remaining boxes. In which ones, however, it is not known. 
Therefore, the only guaranteed fact is that: 

 ( )( ) ( )( )*min inf max supj j
i j ii i

X x X≤ ≤  (4-24) 

where *
jx  is the j -th component of the solution point(s) and j

iX  represents the j -th 

component of the i -th remaining box. Expression (4-24) means that the solution point(s) of 
the minimization problem are undoubtedly contained inside the hull of the solution set. 

As a consequence of (4-24), the guaranteed bounds on *f  are: 

 ( )* min ,F f f F≤ ≤  (4-25) 

where F  and F  are given by: 

 ( )( )min ii
F f X=  (4-26) 

 ( )( )max ii
F f X=  (4-27) 

The reader might be asking why the upper bound on *f  is ( )min ,f F . The reason is simple: 

imagine that the box last used to update f  has been deleted (for example, by the using the 
gradient of the objective function), together with a substantial part of the initial search region. 



34  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

In this case, in all probability, F f≤ . If this is not the case, however, f  is sure to be 

smaller than F . 

 

4.2.5 Stopping criteria 
 

Now that all the steps of the algorithm have been explained, an important issue remains: how 
to stop the main cycle? 

The developed algorithm has two different stopping criteria: 

1) ( )( ) ( )( )max sup min inf , 1,...,
j

j j
i i Xii

X X j nε− ≤ =  (4-28) 

where j
iX  represents the j -th component of the i -th box, and: 

2) ( )min , ff F F ε− ≤  (4-29) 

where F  and F  are given by (4-26) and (4-27), respectively. Both 
jXε  ( n  parameters) and 

fε  (1 parameter) are given by the user.  

As can be seen by comparing (4-28)-(4-29) with (4-24)-(4-25), if both stopping conditions are 

satisfied, the guaranteed bounds on *x  and *f  will be sharper than Xε  and fε , 

respectively. As a rule, however, if one of the stopping conditions is met, the main loop should 
be stopped. Why? Consider the objective function represented in Figure 4.2. The global 

solution point of this objective function is not really a point but an interval: [ ]* 1,1x = − . If 

both conditions were to be met simultaneously and if the given value of Xε  was smaller than 

( )*w x , than the main cycle would run indefinitely.   

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

x

f(x
)

 

Figure 4.2: Solution interval instead of a solution point. 

Even when satisfying (4-29) is enough to stop the cycle, some precautions should be taken 
when choosing fε . If fε  is chosen so small that the wrapping effect and dependency prevent 

(4-29) from ever being fulfilled, one might end up with an infinite cycle anyway. 

However, in cases where it is known from the beginning that the solution point is indeed a 
point and not an interval, it is preferable only to stop the cycle when both conditions are met. 



Chapter 4 | Static Global Optimization  35 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

In that case, after termination, the guaranteed bounds on *x  and *f  will be indubitably 

sharper than Xε  and fε . The stopping conditions suggested in [Hansen and Walster, 2004] 

are not able to give this guarantee.  

Another advantage of requiring both stopping conditions to be met at the same time is that, 
by selecting Xε  or fε  relatively large, the criterion that will effectively stop the algorithm 

can be chosen. 

All the examples discussed in this chapter and in Chapter 5 have indeed a single solution 
point. Therefore, the main loop is only stopped when (4-28) and (4-29) are satisfied 
simultaneously. 

Besides the main loop, the optimization algorithm also has an inner cycle, as can be seen in 
Figure 4.1. The objective of this cycle is to repeatedly apply HC and BC as long as their 
efficiency is sufficiently high. The inner loop is stopped when the following two conditions are 
met: 

1) No box was deleted by the consistency methods. 

2) The maximum (with respect to all the components of all the boxes) absolute width 
reduction of a component was smaller than absε  or the maximum relative width reduction of a 

component was smaller than relε . The maximum relative width reduction is defined as the 

maximum absolute width reduction divided by the initial width of the maximally reduced 
component. The parameters absε  and relε  are both given by the user. 

Increasing absε  and relε  has both virtues and drawbacks. Bigger values of absε  and relε  mean 

a quicker inner cycle, at least initially. However, as the number and width of the boxes at a 
particular iteration of the algorithm increase (since the consistency methods have less time to 
converge), the total time needed to achieve a predetermined accuracy might also increase. 
Therefore, choosing good values for absε  and relε  can be tricky and should be taken seriously. 

Six static optimization problems will now be solved using the aforementioned algorithm. 

 

4.3 Example 1 
 

The first problem solved in [Chu, 2007] is an unconstrained problem taken from [Hansen and 
Walster, 2004]. Its formulation can be seen in Table 4.1: 

Table 4.1: Formulation of Example 1. 

Objective function ( ) 4 24f x x x= −  

Initial box [ ]0,3initialX =  

Solution point * 2 1.4142136x = ≈

Global minimum * 4f = −  

In Figure 4.3, a plot of the objective function for initialx X∈  is shown. 

The objective function can and should be rewritten as: 



36  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( ) ( )4 2 2 24 4f x x x x x= − = −  (4-30) 

to reduce the effect of dependency. This is not done in [Chu, 2007]. 

0 0.5 1 1.5 2 2.5 3
-10

0

10

20

30

40

x

f(x
)

X: 1.41
Y: -4

 

Figure 4.3: Objective function of Example 1. 

The following list shows which modules were used to solve this particular problem. The 
modules are identified by their respective sections. 

a) Section 4.2.2.2 - Using an upper bound on the minimum 

b) Section 4.2.2.3 - Using the gradient of the objective function 

The remaining modules can not be applied to this problem, as can be easily seen by the 
reader.      

The inputs given to the algorithm, besides the objective function and the initial box, are listed 
in Table 4.2. The value of splitN  was chosen rather arbitrarily. Note, however, that the choice 

of splitN  can have a great influence on the algorithm’s performance. More considerations 

about this will be given in Example 6. 

Table 4.2: User inputs in Example 1. 

Designation Symbol Value 

Initial upper bound on the minimum f  +∞  

New boxes per old box splitN  10 

Xε  3e-6 
Stopping criteria 

fε  6.8e-5 

The parameters Xε  and fε  were chosen equal to the widths of the “guaranteed bounds” 

calculated in [Chu, 2007] for *x  and *f . This guarantees that, after termination, the obtained 
results will be at least as sharp as the results obtained in [Chu, 2007]. The two algorithms can 
then be compared in terms of speed.     

In Table 4.3, the results produced by the developed algorithm are compared with the results 
presented in [Chu, 2007]. 

Two different algorithms are used in [Chu, 2007] to solve this problem: a so-called non-
gradient method and a gradient method. The only difference between them is the fact that, in 



Chapter 4 | Static Global Optimization  37 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

the former, procedure b) is not used, while the gradient method uses both a) and b) (like 
done here). Therefore, the results from [Chu, 2007] listed in Table 4.3 are the most accurate 
results given in [Chu, 2007] for the gradient method. 

The developed algorithm wins both in terms of speed and accuracy. More importantly, 
* 2 1,4142136x = ≈  is not correctly bounded by the solution interval taken from [Chu, 

2007]. Despite being a serious mistake, the problem is probably not in the algorithm itself but 
in the interpretation of the results (at least, for this particular example). As discussed in 
Section 4.2.4, interval arithmetic guarantees that the global solution is unquestionably 
contained in the hull of the solution set. However, in [Chu, 2007], the interval that gives the 
minimum cost function is taken as the global solution. While it is unclear which interval is 
actually being picked, the simple fact that a single interval is taken as the global solution 
(instead of the hull of the solution set) justifies the wrong result. 

Giving a single interval instead of the hull of the solution set also makes the results from [Chu, 

2007] misleadingly sharp. If the true solution was given, the widths of *F  and *X  would 
almost certainly increase. 

Table 4.3: Comparative results for Example 1. 

  The developed algorithm Chu’s algorithm 
(Gradient Method) 

Designation Symbol Result Width Result Width

Bounds on 
the minimum 

*F  [ ]4.00001, 3.99999− − 1.7e-6 [ ]4.00004, 3.99996− −  6.8e-5 

Bounds on 
the solution 
point 

*X  [ ]1.414213,1.414214  6.0e-7 [ ]1.414216,1.414219  3e-6 

CPU time [ ]CPUt sΔ  0.42 N/A 0.69 N/A 

Number of 
remaining 
boxes 

remainingN  2 N/A ?6 N/A 

As a side note, outward rounding was used to reduce the number of decimal cases of the 
lower and upper bounds given in Table 4.3. Conventional rounding was used for the widths. 
That is why the presented widths and intervals do not completely agree. The given values for 
the widths should be taken as a better approximation for the widths than the actual widths of 
the given intervals. 

 

4.4 Example 2 
 

Example 2 is also an unconstrained problem. It was taken from [Liberti, 2006]. The problem 
is stated in Table 4.4.  

Table 4.4: Formulation of Example 2. 

Objective function ( ) ( )0.25 sinf x x x= +  

Initial box [ ]3,6initialX = −  

Solution point ( )* 1cos 0.25 1.823477x −= − − ≈ −  

Global minimum ( )* * 1.424115f f x= ≈ −  

                                                     

6 ? = Not given. 



38  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

A plot of the objective function for initialx X∈  is shown in Figure 4.4. 

-2 0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

X: -1.82
Y: -1.424

x

f(x
)

 

Figure 4.4: Objective function of Example 2. 

Unlike before, the dependency problem can not be reduced now by using the sub-distributive 
law of multiplication. 

The same modules used to solve Example 1 were again used to solve Example 2. This 
should not come as a surprise since both Example 1 and Example 2 are unconstrained 
optimization problems. In Table 4.5, the inputs leading to the results listed in Table 4.6 are 
given. 

Table 4.5: User inputs in Example 2. 

Designation Symbol Value 

Initial upper bound on the minimum f  +∞  

New boxes per old box splitN  10 

Xε  9.0e-6 
Stopping criteria 

fε  4.6e-6 

Table 4.6: Comparative results for Example 2. 

  The developed algorithm Chu’s algorithm 
(Gradient Method) 

Designation Symbol Result Width Result Width 

Bounds on 
the minimum 

*F  [ ]1.4241153, 1.4241149− − 2.3e-7 [ ]1.4241173, 1.4241127− − 4.6e-6 

Bounds on 
the solution 
point 

*X  [ ]1.823477, 1.823475− −  9.0e-7 [ ]1.823484, 1.823475− −  9.0e-6 

CPU time [ ]CPUt sΔ  0.35 N/A 63.78 N/A 

Number of 
remaining 
boxes 

remainingN  1 N/A ? N/A 

To get sharper results for *X  and *F , the developed algorithm needs 0.35s, while [Chu, 
2007] needs 63.78s. The algorithm presented here is approximately 181 times faster. The 
main reason for this is that while a BB approach is used here, [Chu, 2007] is simply dividing 

initialX  in a high number of subintervals and then applying procedures a) and b) to all of 



Chapter 4 | Static Global Optimization  39 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

them. Achieving sharp bounds with this latter technique is a lot more time demanding than 
with a BB approach. 

Since the interval that gives the minimum cost function was still taken as the global solution in 

[Chu, 2007], the fact that here * *x X∈  must be understood as a mere coincidence. 

 

4.5 Example 3 
 

This example is relatively harder to solve than the two previous ones. It is a 2-dimensional 
problem with both inequality and equality constraints, as can be seen in Table 4.7. This 
problem was taken from [Hansen and Walster, 2004]. The analytical solution was calculated 

using the procedure described in Section 4.2.2.4. The steps for analytically calculating *x  are 
omitted since showing how to solve static optimization problems by hand is not the objective 

of this work. Mind, however, that the values given for *x  in [Chu, 2007] are wrong. 

Note that the bounds on the objective function and on the inequality constraint cannot be 

affected by dependency since the variables appear only once in ( )f x  and in ( )p x . 

Table 4.7: Formulation of Example 3. 

Objective function ( ) 1f x x=  

Initial box 
[ ]
[ ]

1,0

0,1initialX
⎡ ⎤−

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Inequality constraints ( ) 2 2
1 2 1 0p x x x= + − ≤  

Equality constraints ( ) 2
1 2 0q x x x= − =  

Solution point 
* 0.786151380.5 0.5 5

0.618033990.5 0.5 5
x

⎡ ⎤ −⎡ ⎤− − +⎢ ⎥= ≈ ⎢ ⎥
⎢ ⎥ ⎣ ⎦− +⎣ ⎦

 

Global minimum * 0.5 0.5 5 0.78615138f = − − + ≈ −  

To computationally solve this problem, the following modules were used: 

a) Section 4.2.1.1 - Hull consistency: applying the theory discussed in Section 4.2.1.1 to 
the equality constraint: 

 2
1 2 0x x− =  (4-31) 

yields the following iterative subroutine:  

 '
1 2X X= −  (4-32) 

 '
1 1 1X X X= ∩  (4-33) 

 ' 2
2 1X X=  (4-34) 

 '
2 2 2X X X= ∩  (4-35) 



40  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Only the negative root is considered in (4-32) since [ ]
1

1,0initialX = − . 

In [Chu, 2007], only (4-34) and (4-35) are used. 

b) Section 4.2.2.1 - Using the inequality constraints: this is also done in [Chu, 2007]. 

c) SECTION 4.2.2.2 - Using the upper bound on the minimum: as discussed in Section 

4.2.2.2.4, before using a box X  to update f , X  must be proven to be a feasible box 
with respect to the equality and inequality constraints. Here, the details of how to do 
that for the equality constraint will be given (dealing with the inequality constraint is 
relatively easier). 

Example 3 has a 2-dimensional objective function subject to a single equality 
constraint. That means that to apply Theorem 4.1, one of the two variables needs to 
be fixed. By arbitrarily choosing 1X , one ends up with the following procedure: 

1) Make 1X  a thin interval: 1, 1( )mX m X= . 

2) Calculate new bounds on 2X  using the equality constraint: ' 2
2 1,mX X= . Interval 

arithmetic must be used to calculate '
2X . Because of rounding errors, '

2X  will in 

general be an interval. 

3) If '
2 2X X⊂ , then Theorem 4.1 guarantees that there is a solution of (4-31) inside 

' '
1, 2

T

mX X X⎡ ⎤= ⎣ ⎦ . Thus, 'X  can be used to update f , provided that the inequality 

constraint is also satisfied for every 'x X∈ . 

In Table 4.8 and in Table 4.9, respectively, the inputs and the outputs of the developed 
algorithm are given. 

Table 4.8: User inputs in Example 3. 

Designation Symbol Value 

Initial upper bound on the minimum f  +∞  

New boxes per old box splitN  [ ]10 0 T
 

absε  2 
Inner loop stopping criteria 

relε  1.01 

1Xε 1.0e-6 
Xε

2Xε 1.6e-5 Stopping criteria 

fε  1.0e-6 

High values for the inner loop stopping criteria were intentionally chosen to optimize the 
computing time. Once again, while this is true for this particular example, it can not be 
generalized to other problems. 

Note that splitN  is now a column vector. Each component of splitN  represents the number of 

subintervals in which each corresponding interval component of X  is spit. 



Chapter 4 | Static Global Optimization  41 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Note that in [Chu, 2007], the lower bound of *F  is bigger than the upper bound. Here, these 
bounds have been switched.   

Once again, the developed algorithm was able to calculate sharper bounds in less time. 
However, the time difference is not as significant as in Example 2. This is explained by the 
fact that [Chu, 2007] is now also using a branch and bound approach. 

Table 4.9: Comparative results for Example 3. 

  The developed algorithm Chu’s algorithm 
(Gradient Method) 

Designation Symbol Result Width Result Width

Bounds on 
the minimum 

*F  [ ]0.78615141, 0.78615135− −  5.0e-8 [ ]0.786150, 0.786151− −  1.0e-6 

*
1X  [ ]0.78615141, 0.78615130− −  1.0e-7 [ ]0.786151, 0.786150− −  1.0e-6 Bounds on 

the solution 
point 

*X  *
2X  [ ]0.618033,0.618035  1.6e-7 [ ]0.618317,0.618334  1.6e-5 

CPU time [ ]CPUt sΔ  0.45 N/A 0.73 N/A 

Number of 
remaining 
boxes 

remainingN  1 N/A ? N/A 

The developed algorithm gives different upper bounds for *F  and 1X . This may seem strange 

since ( ) 1f x x= . However, there is nothing strange about it. As explained in Section 4.2.4, 

the bounds on *f  are calculated using expression (4-25). What is happening here is simply 

that f F< , and therefore f  is taken as the upper bound on *f . Moreover, in this particular 

example, *
1X  could be made sharper by equalizing it to *F . However, since this is something 

that cannot be done in general, this was not done here. 

As a final remark, the reader is asked to check that * *x X∉ , where *X  is the result 
calculated in [Chu, 2007]. Numerous errors were found in Chu’s algorithm: 

1) As mentioned before, the interval that gives the minimum cost function is taken as the 
global solution, instead of the hull of the solution set. 

2) The boxes are not checked for feasibility with respect to the equality constraints. 

3) The procedure described in Section 4.2.2.4 about using the gradient of the Lagrangian 
when there is only one inequality constraint is applied here, even though an equality 
constraint exists as well. 

Any one of these mistakes is reason enough for * *x X∉ .  

 

4.6 Example 4 
 

Example 4 consists on a 4-dimensional objective function with two equality constraints, as 
can be seen in Table 4.10. This problem and its analytical solution were taken from [Hansen 
and Walster, 2004]. 



42  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Note that the bounds on the objective function cannot be affected by dependency since 1x  

only appears once in ( )f x . 

Table 4.10: Formulation of Example 4. 

Objective function ( ) 1f x x= −  

Initial box 

[ ]
[ ]
[ ]
[ ]

1.1, 0.7

1.2,1

0,2

0,1.6

initialX

⎡ ⎤− −
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Equality constraints 

3 2
1 2 3
2 2
1 2 4

0

0

x x x

x x x

− + =

− − =
 

Solution point * 0.7 0.49 0.833 0.912688 0
T

x ⎡ ⎤= − ≈⎣ ⎦  

Global minimum * 0.7f =  

To computationally solve this problem, the following modules were used: 

a) Section 4.2.1.1 - Hull consistency: applying the theory discussed in Section 4.2.1.1 to 
the equality constraints: 

 3 2
1 2 3 0x x x− + =  (4-36) 

 2 2
1 2 4 0x x x− − =  (4-37) 

yields the following iterative subroutine:  

 ( )
1

' 2 3
1 2 3X X X= − − +  (4-38) 

 '
1 1 1X X X= ∩  (4-39) 

 ' 2
1 2 4X X X= − +  (4-40) 

 '
1 1 1X X X= ∩  (4-41) 

 ' 3 2
2 1 3X X X= +  (4-42) 

 '
2 2 2X X X= ∩  (4-43) 

 ' 2 2
2 1 4X X X= +  (4-44) 

 '
2 2 2X X X= ∩  (4-45) 

 ' 3
3 2 1X X X= −  (4-46) 



Chapter 4 | Static Global Optimization  43 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 '
3 3 3X X X= ∩  (4-47) 

 ' 2
4 1 2X X X= −  (4-48) 

 '
4 4 4X X X= ∩  (4-49) 

Expressions (4-38)-(4-49) were written taking into consideration that 
1

0initialX ≤ , 

3
0initialX ≥  and 

4
0initialX ≥ .    

b) Section 4.2.2.2 - Using the upper bound on the minimum: as discussed in Section 

4.2.2.2.3, before using a box X  to update f , X  must be proven to be a feasible box 
with respect to the equality constraints. 

Example 4 has a 4-dimensional objective function subject to two equality constraints. 
This means that in order to apply Theorem 4.1, two of the four variables need to be 
fixed. 

The chances that 'X X⊂  are enhanced if 'X  is much smaller than X . Taking this 
simple remark into account, one can see that by substituting 1X  and 2X  by their 

midpoints, expressions (4-46) and (4-48) yield point intervals for '
3X  and '

4X , apart 

from rounding errors. This makes it highly probable that '
3 3X X⊂  and '

4 4X X⊂ . The 

following steps for proving the existence of a solution of the equality constraints inside a 
box X  can then be devised:     

1) Substitute 1X  by 1, 1( )mX m X=  and 2X  by 2, 2( )mX m X=  in (4-46) and (4-48).    

2) Calculate '
3X  and '

4X .  

3) If '
3 3X X⊂  and '

4 4X X⊂ , then Theorem 4.1 guarantees that there is a solution of 

(4-36) and of (4-37) inside ' ' '
1, 2, 3 4

T

m mX X X X X⎡ ⎤= ⎣ ⎦ . Thus, 'X  can be used to 

update f . 

The inputs and the outputs of the developed algorithm are given in Table 4.11 and in Table 
4.12, respectively. 

Note that only the first and second component of X  are split during the branching phase. The 
algorithm relies exclusively on hull consistency to reduce the widths of 3X  and 4X . 

Some remarks should be given about the algorithm used by [Chu, 2007] to solve this problem: 

1) The branch and bound technique was not used. This is the main reason why the developed 
algorithm only needs about 5% of the time spent by Chu’s algorithm to achieve sharper 
results. 

2) HC is also applied to some extent in [Chu, 2007]. Expressions (4-46) through (4-49) are 
used but there is no inner loop. This makes it harder for [Chu, 2007] to calculate accurate 
results. 

3) The boxes are not checked for feasibility with respect to the equality constraints. 



44  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

4) In this example, the so-called non-gradient method is used instead of the gradient method. 
The different name only means that neither the gradient of the objective function nor the 
gradient of the Lagrangian are used to eliminate boxes. Indeed, neither of them can be used 
in this example. 

Table 4.11: User inputs in Example 4. 

Designation Symbol Value 

Initial upper bound on the minimum f  +∞  

New boxes per old box splitN  [ ]2 2 0 0 T
 

absε  1e-3 
Inner loop stopping criteria 

relε  5e-2 

1Xε 4e-4 

2Xε 2.2e-4 

3Xε 4.4e-4 
Xε

4Xε 9.0e-3 

Stopping criteria 

fε  4e-4 

Table 4.12: Comparative results for Example 4. 

  The developed algorithm Chu’s algorithm 
(Non-Gradient Method) 

Designation Symbol Result Width Result Width 

Bounds on 
the minimum 

*F  [ ]0.6999,0.7001  6.9e-5 [ ]0.7000,0.7004 7 4e-4 

*
1X  [ ]0.7001, 0.6999− −  8.9e-5 [ ]0.7004, 0.7000− −  4e-4 

*
2X  [ ]0.48999,0.49013  1.2e-4 [ ]0.49048,0.49070  2.2e-4 

*
3X  [ ]0.91268,0.91283  1.4e-4 [ ]0.91295,0.91340  4.4e-4 

Bounds on 
the solution 
point 

*X  

*
4X  [ ]0.0000,0.0058  5.8e-3 [ ]0.0000,0.0090  9.0e-3 

CPU time [ ]CPUt sΔ  48 N/A 1629 (≈27m) N/A 

Number of 
remaining 
boxes 

remainingN  6 N/A ? N/A 

5) The interval that gives the minimum cost function is taken as the global solution, instead of 
the hull of the solution set. This together with 3) implies that, in all probability, the global 

solution will not be correctly bounded. Indeed, one can see that * *x X∉  in [Chu, 2007]. 

6) Three different solutions are given in [Chu, 2007] for this example. The one that gives the 

sharpest intervals for *
2X , *

3X  and *
4X  was chosen. 

Coming back to the algorithm developed during this thesis, one can see that the widths of *
3X  

and especially of *
4X  are bigger than the widths of *

1X  and *
2X . This is the price one has to 

                                                     

7 The interval actually given is [ ]0.7004, 0.7000− − , probably due to a typing mistake.  



Chapter 4 | Static Global Optimization  45 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

pay for only splitting 1X  and 2X  during the branching phase. Other ways of splitting the 

boxes were tested, namely: 

i) [ ]0 0 2 2 T
splitN =  

ii) [ ]2 2 2 2 T
splitN =  

iii) [ ]10 0 0 0 T
splitN =  

iv) [ ]0 10 0 0 T
splitN =   

v) Picking the widest interval of a particular variable from all the boxes and dividing in two 
each one of the two variables with the biggest widths. 

However, the original way of splitting the boxes turned out to be the fastest way of achieving 
the required accuracy. 

 

4.7 Example 5 
 

The fifth example solved in [Chu, 2007] is essentially another unconstrained one-dimensional 
problem, now taken from [Deb, 1999]. The problem statement and its analytical solution are 
given in following table:     

Table 4.13: Formulation of Example 5. 

Objective function ( )
2 20.1 0.92 exp 0.8exp

0.004 0.4
x xf x

⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Initial box [ ]0,1initialX =  

Solution point * 0.1x =  

Global minimum ( )* * 0.9853475f f x= ≈  

A plot of the objective function for initialx X∈  can be seen in Figure 4.5. 

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

x

f(x
)

X: 0.1
Y: 0.9853

 

Figure 4.5: Objective function of Example 5. 



46  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Again, it is difficult (if not impossible) to rewrite the objective function in order to eliminate 
dependency. 

The same modules used for solving Example 1 and Example 2 are now also used to solve 
Example 5.  

The algorithm inputs are given in Table 4.14 while the outputs are given in Table 4.15. 

Table 4.14: User inputs in Example 5. 

Designation Symbol Value 

Initial upper bound on the minimum f  +∞  

New boxes per old box splitN  10 

Xε  +∞  
Stopping criteria 

fε  6.3e-4 

Since no information about *X  is given in [Chu, 2007], Xε  was set to +∞ . This way, the 

main loop is stopped when condition (4-29) is fulfilled. 

Table 4.15: Comparative results for Example 5. 

  The developed algorithm Chu’s algorithm 
(Non-Gradient Method) 

Designation Symbol Result Width Result Width 

Bounds on 
the minimum 

*F  [ ]0.98533,0.98550  1.6e-4 [ ]0.98533,0.98596  6.3e-4 

Bounds on 
the solution 
point 

*X  [ ]0.00000,0.10011  1.0e-4 ? ? 

CPU time [ ]CPUt sΔ  0.37 N/A 1.66 N/A 

Number of 
remaining 
boxes 

remainingN  1 N/A ? N/A 

Note that the so-called non-gradient method is used here, i.e., the only module applied by 
[Chu, 2007] to solve this problem is the module explained in Section 4.2.2.2.1. The BB 
technique is used however. 

Unfortunately, no information about *X  is given in [Chu, 2007]. Therefore, only *F  can be 
analysed. By looking at Table 4.15, one can see that the developed algorithm has a smaller 

CPUtΔ  and a sharper *F . 

Even if * *f F∈  in [Chu, 2007], this does not prove that * *x X∈ . In fact, it is said in [Chu, 
2007] that: all search results are kept and the smallest one will be used as the global 

minimum. This makes it doubtful that * *x X∈ . On the other hand, the developed algorithm 

yields * *x X∈  like one would expect.   



Chapter 4 | Static Global Optimization  47 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

4.8 Example 6 
 

The sixth and final static optimization problem solved in [Chu, 2007] was taken from [Than et 
al., 2003]. Table 4.16 summarizes the problem and its solution. The objective function is 
three-dimensional and it has no constraints. For the time being, 1x  and 3x  will be assumed as 

thin intervals. Assuming 1x  and 2x  as thin intervals would give the same results.  

Table 4.16: Formulation of Example 6. 

Objective function ( ) ( ) ( )( ){ }0.25 0.12 2 2 2 2
2 3 2 3

1

1 1 sin 50 1f x x x x x
x

⎡ ⎤= + + + +⎢ ⎥⎣ ⎦
 

Initial box 

[ ]
[ ]

[ ]

1,1

100,100

0,0
initialX

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Solution point [ ]* 1 0 0 Tx =  

Global minimum * 1f =  

What is particularly interesting about this example is that the objective function has several 
local minima, especially near the global minimum. Figure 4.6 shows this strange behaviour. 

-100 -50 0 50 100
0

20

40

x2

f(x
)

x1=1 and x3=0

-100 -50 0 50 100
0

10

20

30

x3

f(x
)

x1=1 and x2=0

 

Figure 4.6: Objective function of Example 6. 

It does not seem possible to further reduce dependency since the objective function is already 
in a factorized form. 

Example 6 was solved using the same modules used in Example 1, Example 2 and 
Example 5. However, there is something unique about this problem. By calculating the 

gradient of ( )f x , one can see that the objective function is not differentiable at *x . 

Therefore, to guarantee that the global solution point is not eliminated by the optimization 

algorithm, boxes where the gradient of ( )f x  is not defined, must not be deleted. 

Table 4.17 and Table 4.18 show the inputs and outputs of the developed algorithm, 
respectively. 



48  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Table 4.17: User inputs in Example 6. 

Designation Symbol Value 

Initial upper bound on the minimum f  +∞  

New boxes per old box splitN  [ ]0 9 0 T
 

1Xε +∞  

2Xε +∞  Xε

3Xε +∞  
Stopping criteria 

fε  3.4e-1 

Once again, no information about *X  is given in [Chu, 2007]. Hence, only (4-29) is used to 

stop the main loop. In [Chu, 2007], [ ]0 10 0 T
splitN = . 

Chu’s algorithm is based on the aforementioned non-gradient method supported by a BB 
approach. Table 4.18 shows that it is slower than the developed algorithm. 

Table 4.18: Comparative results for Example 6. 

  The developed algorithm Chu’s algorithm 
(Non-Gradient Method) 

Designation Symbol Result Width Result Width 

Bounds on 
the minimum 

*F  [ ]1.000,1.020  2.0e-2 [ ]1.000,1.336  3.4e-1 

*
1X  [ ]1,1  0 [ ]1,1  0 

*
2X  [ ]12,12−  22 ? ? 

Bounds on 
the solution 
point 

*X  
*
3X  [ ]0,0  0 [ ]0,0  0 

CPU time [ ]CPUt sΔ  0.20 N/A 0.27 N/A 

Number of 
remaining 
boxes 

remainingN  1 N/A ? N/A 

The algorithm developed during this thesis yields curious results: while the width of *F  is 

2.0e-2, the width of *
2X  is 22. To explain this difference, note that the objective function is 

being evaluated at the midpoint of each box, as explained in Section 4.2.2.2.1. Since the 

midpoint of 
2initialX  is *

2 0x =  and each interval 2X  is being divided in an odd number of 

subintervals, the objective function is being evaluated at *x  every cycle. Therefore, in the 

beginning of the algorithm, the upper bound on minimum, f , will be considerably smaller 

than F . At the end of the first cycle, condition (4-29) is already satisfied (due to f ) but the 

algorithm did not have time to sharpen the bounds on *
2x . This is why the results shown in 

Table 4.18 can seem strange. 

This problem shows how important it is to properly choose splitN . If the intervals 2X  were 

divided in an even number of subintervals, the objective function would never be evaluated at 
*x . To achieve bounds on *f  as sharp as before, the algorithm would need more time. For 

example, using the same inputs shown in Table 4.17 except for [ ]0 10 0 T
splitN = , the 



Chapter 4 | Static Global Optimization  49 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

time required for the algorithm to stop would be 0.80s. Using [ ]0 8 0 T
splitN =  would even 

take longer: 1.28s. 

Just to demonstrate all the potential of interval analysis, the complete three-dimensional 
problem will now be solved. Since this was not done in [Chu, 2007], the results cannot be 
compared. The point here is just to show that interval analysis can successfully solve 
multidimensional static optimization problems with objective functions as complicated as the 
one represented in Figure 4.6. 

The inputs shown in Table 4.19 were given to the algorithm. 

Table 4.19: User inputs for the complete multidimensional problem. 

Designation Symbol Value 

Initial box initialX  

[ ]
[ ]
[ ]

0.1,1

100,100

100,100

⎡ ⎤
⎢ ⎥
−⎢ ⎥

⎢ ⎥−⎣ ⎦

 

Initial upper bound on the minimum f  +∞  

New boxes per old box splitN  [ ]3 3 3 T
 

1Xε 2.0e-2 

2Xε 2.0e-2 Xε

3Xε 2.0e-2 
Stopping criteria 

fε  3.4e-1 

The corresponding outputs are shown in Table 4.20.  

Table 4.20: Results for the complete multidimensional problem. 

Designation Symbol Result Width 

Bounds on the minimum *F  [ ]1.000,1.017  1.7e-2 

*
1X [ ]0.9833,1.0000  1.7e-2 

*
2X [ ]0.0052,0.0051−  1.0e-2 Bounds on the solution point *X
*
3X [ ]0.0052,0.0051−  1.0e-2 

CPU time [ ]CPUt sΔ 55 N/A 

Number of remaining boxes remainingN  365 N/A 

Note that it took the algorithm 55s to satisfy the stopping conditions. Moreover, the number of 

remaining boxes is the highest so far: 365. Nevertheless, both *x  and *f  were correctly 
bounded. 

 

 

 

 



50  Chapter 4 | Static Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 



Chapter 5 | Dynamic Global Optimization  51 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 5 | Dynamic Global Optimization 
 

Dynamic optimization is a far more complex problem than static optimization. While static 
optimization problems are finite-dimensional, dynamic optimization problems are infinite-
dimensional. In static optimization problems, the objective is to optimize a finite set of 
parameters. In dynamic optimization problems, the objective is to optimize a time dependent 

function ( )u t , from an initial time 0t  to a final time ft . Since ( )u t  must be optimized for 

every 0 , ft t t⎡ ⎤∈ ⎣ ⎦ , this constitutes an infinite-dimensional problem.      

Weiwei Chu proved to a certain extent in [Chu, 2007] that interval analysis can be used to 
solve dynamic global optimization problems. She did it by solving three distinct problems with 
known solutions from literature. However, her bounds on the global solutions were sometimes 
far from sharp. In other cases, the global solution was not correctly bounded.  

The objective will now be to improve Weiwei’s algorithm. The first two problems solved in 
[Chu, 2007] will be used as benchmarks. The third one is left as future work. It will be shown 
that the developed dynamic global optimization algorithm is able to calculate sharper solution 
intervals than [Chu, 2007] in just a fraction of the time, while correctly bounding the global 
minima. 

As far as the author knows, there is no written book about dynamic global optimization using 
interval analysis. Therefore, the optimization algorithm was built using as only reference the 
work previously done by Weiwei in [Chu, 2007]. For the analytical way of solving these 
problems, the reader is referred to [Visser, 2007] and to [Bryson Jr. and Ho, 1975]. 

 

5.1 The problem 
 

In simple terms, the purpose of dynamic optimization is to find the optimal control function (or 

functions) ( )*u t  where the performance index (sometimes also called cost function) 

( ) ( )( ), , :J x t u t t ∞ →\ \  has its global minimum *J . Note that the control functions ( )u t  

exist in an infinite-dimensional space, which makes this an infinite-dimensional problem. 

The most general way of writing the performance index J  is as follows: 

 ( ) ( )( ) ( )( ) ( ) ( )( )
0

, , , , ,
ft

f f
t

J x t u t t x t t L x t u t t dtφ= + ∫  (5-1) 

The function vector ( ) : nx t →\ \  represents the states of the dynamic system being 

optimized. The states can be calculated from the control function vector ( ) : mu t →\ \  by 

means of the nonlinear ordinary differential equations modelling the system: 

 ( ) ( ) ( )( ), ,x t f x t u t t=�  (5-2) 

Please note that there is no relation between the state equations ( ), ,f x u t  and the objective 

functions ( )f x  minimized in Chapter 4. 



52  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

The term ( )( ),f fx t tφ  in (5-1) is called the end-cost term. It depends exclusively on the final 

state and on the final time. The other term ( ) ( )( )
0

, ,
ft

t

L x t u t t dt∫  is called the path-cost term. 

It adds the integrated effect of ( ) ( )( ), ,L x t u t t  to the performance index. The scalar 

function L  is commonly referred to as the Lagrangian. No relation exists between this 
function and the Lagrangian function discussed in Section 4.2.2.4. 

Without any loss of generality, all dynamic optimization problems can be treated as 

minimization problems since maximizing ( ) ( )( ), ,J x t u t t  is equivalent to minimizing 

( ) ( )( ), ,J x t u t t− . 

 

5.1.1 Necessary conditions for a solution  
 

A step by step description on how to analytically solve dynamic optimization problems can be 
found in [Visser, 2007] and [Bryson Jr. and Ho, 1975]. Hereafter, the necessary conditions for 
the existence of a stationary point of J  when there are no terminal constraints and the final 
time is fixed will be summarized: 

 ( ) ( ) ( )( ), ,x t f x t u t t=�  (5-3) 

 T H
x

λ ∂
= −

∂
�  (5-4) 

 0H
u

∂
=

∂
 (5-5) 

where the scalar function H  is called the Hamiltonian and is given by: 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , , , ,TH x t u t t t L x t u t t t f x t u t tλ λ= +  (5-6) 

The functions ( )tλ  are the so-called influence functions.  

To solve the 2n  differential equations established by (5-3) and (5-4), 2n  boundary 
conditions are required. Half of them are given by: 

 ( )
f

T
f

t t

t
x
φλ

=

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (5-7) 

and the other half by the initial state which is assumed to be known: 

 ( )0 , 1,...,ix t i n=  (5-8) 

Since n  boundary conditions are given at 0t t=  and the other n  at ft t= , this is called a 

two-point boundary-value problem (TPBVP).  



Chapter 5 | Dynamic Global Optimization  53 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Equations (5-4), (5-5) and (5-7) are known as the Euler-Lagrange equations in the calculus of 
variations. 

If L  and f  are not explicit functions of time, then it can be proved that H  will remain 
constant along an optimal trajectory, i.e.: 

 ( )( )* * *0H H u t H constant= = ⇔ =� �  (5-9) 

Additionally, if the k -th initial state is not known, then the k -th boundary constraint in (5-8) 
is replaced by:  

 ( )0 0k tλ =  (5-10) 

 

5.1.2 Necessary conditions for a solution with functions 
of the final state specified at a fixed final time 
 

If there are q  functions of the final state that need to be fulfilled: 

 ( )( ), 0f fx t tψ =  (5-11) 

with: 

 
, 0

1 , 0
q n L
q n L
≤ ≠⎧

⎨ ≤ − =⎩
 (5-12) 

then (5-7) is substituted by: 

 ( )
f f

T T
f

t t t t

t
x x x

φ ψλ ν
= =

∂Φ ∂ ∂⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (5-13) 

where Φ  is defined as: 

 Tφ ν ψΦ = +  (5-14) 

The q  multiplier parameters ν  are used to adjoin the q  functions of the final state to the 

optimization problem. If q n=  for 0L = , than the final state could be calculated from (5-11)

and used to determine the optimal value of J  from (5-1), making it an odd optimization 
problem. 

 



54  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

5.1.3 Necessary conditions for a solution with functions 
of the final state specified at an unspecified final time 
 

If the final time ft  is not specified, then ft  becomes a control parameter to be chosen 

together with the control functions ( )u t . The previous necessary conditions still apply but an 

extra equation is added to the problem: 

 0
f

T T

t t

f L
t t x x
φ ψ φ ψν ν

=

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (5-15) 

A performance index of special interest is the time needed to change the state of the system 
from a known initial state to a specified final state, constituting a minimum-time problem. In 
this case, one has:  

 0

0
1 fJ t t

L
φ =⎧

⇒ = −⎨ =⎩
 (5-16) 

and expression (5-15) can be simplified into: 

 1 0
f

T T

t t

f
t x
ψ ψν ν

=

∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂⎝ ⎠
 (5-17) 

Of course that, for the problem to make sense, at least one state has to be specified both at 

0t t=  and at ft t= . 

As already seen, if L  and f  are not explicit functions of time, then H  will remain constant 
along an optimal trajectory. If the final time is not specified as well, then that constant will be 
zero, i.e.: 

 ( )( )* * 0H H u t= =  (5-18) 

along an optimal trajectory. 

 

5.1.4 Necessary conditions for a solution with inequality 
constraints on the control variables 
 

Inequality constraints on the control variables ( )u t : 

 ( )( ) ( )0, 0 , fC u t t t t t c constraints≤ ≤ ≤  (5-19) 

make the optimization problems even more complex. Equation (5-5) can no longer be applied 

to determine the optimal control ( )*u t . Instead, it is replaced by the Minimum Principle of 

Pontryagin: 



Chapter 5 | Dynamic Global Optimization  55 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

H  must be minimized over the set of all possible ( )u t  [Bryson Jr. and Ho, 1975]. 

By denoting this set of admissible controls as U , the Minimum Principle of Pontryagin can be 
mathematically expressed as: 

 ( )
( )

{ }* arg min
u t U

u t H
∈

=  (5-20) 

An alternative way of dealing with inequality constraints on the control variables is to redefine 
the Hamiltonian as: 

 T TH L f Cλ μ= + +  (5-21) 

with the additional requirement that: 

 
0 , 0

, 1,...,
0 , 0

i i

i i

C
i c

C
μ
μ
= <⎧

=⎨ ≥ =⎩
 (5-22) 

By doing this, equation (5-5) remains applicable. 

 

5.1.5 Necessary conditions for a solution with inequality 
constraints on functions of the state variables 
 

There can also be inequality constraints on functions of the state variables: 

 ( ) ( )0, 0 , fS x t t t t s constraints≤ ≤ ≤  (5-23) 

To keep the notation simple, only one constraint ( 1s = ) and one control function ( 1m = ) will 
be assumed. The generalization for 2s ≥  and 2m ≥  is straightforward. 

Start by doing successive total time derivatives of S , while substituting x�  by ( ), ,f x u t , 

until the control function u  appears. Assume that the first total time derivative containing u  

is the q -th one and denote it by ( ) ( ), ,qS x u t . The Hamiltonian is then rewritten as follows: 

 ( )qTH L f Sλ μ= + +  (5-24) 

where: 

 
( )0 , 0 0

0 , 0

qS S
S

μ
μ

⎧ ≥ = ⇔ =⎪
⎨

= <⎪⎩
 (5-25) 

Equations (5-4) and (5-5) are still necessary conditions for a solution, but the Hamiltonian is 
now given by (5-24). 

Besides the aforementioned conditions, dynamic optimization problems subject to inequality 
constraints on functions of the state variables must also satisfy the following tangency 
constraints: 



56  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( )( )

( )( )
( ) ( )( )

( ) ( )( )

/ /

1
/ /

/ /

1
/ /

,

,
, 0

,

in out in out

in out in out
in out in out

q
in out in out

S x t t

S x t t
N x t t

S x t t−

⎡ ⎤
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�
#

 (5-26) 

where /in outt  are the time instants at which the system’s path enters or leaves the constraint 

boundary. 

According to [Bryson Jr. and Ho, 1975] and [Speyer and Bryson Jr., 1968], by defining the 
Hamiltonian as (5-24), the entry points or the exit points may be arbitrarily picked as the 
place to satisfy these interior boundary conditions, as they will be automatically satisfied at 
the other end. Note that HC can be applied to both end points. 

As a side note, the influence functions ( )tλ  and the Hamiltonian ( )H t  are in general 

discontinuous at junction points between constrained and unconstrained arcs [Bryson Jr. and 
Ho, 1975]. 

 

5.1.6 Direct versus indirect numerical dynamic 
optimization methods 
 

Numerical dynamic optimization methods which calculate the optimal control function ( )u t  by 

solving a multi-point boundary-value problem, i.e., by solving the aforementioned necessary 
conditions, are called indirect methods [Erb, 2008]. 

The advantage of indirect methods is that the control functions can have any shape and the 
solutions are analytically guaranteed to be local minima of J . On the other hand, multi-point 
boundary-value problems are often extremely difficult (if not impossible) to solve [Wikipedia, 
2008a]. In addition to their mathematically complexity, indirect methods suffer from several 
other difficulties: the initial guess is often hard to obtain as the convergence radius is often 
small; the initial guess often does not have an intuitive physical meaning [Chu, 2007]; new 
constraints and most model changes require the structure of the equations to be changed; 
complex constraints are hard or even impossible to implement. Nevertheless, the few problems 
that can actually be solved by indirect methods are done so very accurately and fast. 

Nowadays, direct methods have substituted indirect methods as the most popular technique. 
Direct methods are based on the parameterization of the control functions and/or states; the 

necessary conditions are completely disregarded. Since the shape of ( )u t  and/or ( )x t  is 

restricted, additional constraints are added to the optimization problem, which limits the 
accuracy of the solutions. On the other hand, it is easier in general to optimize the parameters 

representing ( )u t  and/or ( )x t  with an NLP tool than to solve a multi-point boundary-value 

problem. As a consequence, the range of problems that can be solved with direct methods is 
significantly larger than the range of problems that can be solved with indirect methods. 
Therefore, direct methods are said to be more general and robust than indirect methods. 

Due to the aforementioned reasons, the algorithm developed here is based on direct methods, 
as it will become obvious in Section 5.2. Nevertheless, it would be interesting to investigate in 
the future if interval analysis can also be used to make indirect methods yield global minima. 

 



Chapter 5 | Dynamic Global Optimization  57 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

5.2 The algorithm 
 

Needless to say that finding the global solution of a dynamic optimization problem via the 
necessary conditions described in Section 5.1 is, in general, not a very easy task. A commonly 
used technique to transform this otherwise infinite-dimensional problem into a finite-

dimensional one is to parameterize the control function ( )u t  [Chu, 2007]: 

 ( ) ( )1,..., ,Parametrization
lu t u P P t⎯⎯⎯⎯⎯→  (5-27) 

Thus, the problem is no longer to find the optimal control function ( )*u t  that minimizes the 

performance index ( )( ), :J u t t ∞ →\ \  but the l  parameters *
jP  ( 1,...,j l= ) that minimize 

( ) 1
1,..., , : l

lJ P P t + →\ \ . The thin box formed by these l  parameters will be denoted by 

*P . A parameterization with l  parameters will be called a l -th order parameterization. 

The biggest problem of parameterizing the control function is that the global solution might 

never be found if the true shape of ( )*u t  is not known. Take for example ( ) ( )* exp 2u t t=  

and the following two control function parameterizations: 

1) ( )1 1 2u t P P t= +  

2) ( ) ( )2 1expu t Pt=  

If the first parameterization ( )1u t  is chosen, then it is obvious that the global solution ( )*u t  

will never be found. The best a direct method can do is to find the global solution of the initial 

problem subject to an additional constraint on the shape of ( )u t . Note, however, that there 

might not even be a solution to this constrained problem. For example, assuming the initial 
state is known, a certain prescribed final state might not be reachable using a certain 
parameterization. Even if it is, the solution might not satisfy the necessary conditions (5-4) 

and (5-5) for the existence of a stationary point of J . On the other hand, if ( )2u t  is picked, 

then the global solution will be correctly bounded by the interval optimization algorithm. 

If the true shape of ( )*u t  is not known, then finding the true global minimum of a dynamic 

optimization problem will be quite hard, if not impossible. All the examples at the end of this 
chapter have well-known analytical solutions from literature, which makes things easier. 

According to [Chu, 2007], an especially flexible way of parameterizing the control function is 
through the use of neural networks. In this thesis, however, only simple standard functions 

will be used to approximate ( )u t , as this is already a sufficiently challenging task. 

By parameterizing the control function, the initial infinite-dimensional dynamic optimization 
problem is transformed into a finite-dimensional quasi-static optimization problem: the 

objective is no longer to find the optimal function ( )*u t  but to find the optimal parameters 

*
jP  ( 1,...,j l= ). It that sense, dynamic and static optimization are similar. Therefore, the 

reader will probably find some similarities between what follows and Chapter 4.    

To start the interval algorithm, an l -dimensional initial box or boxes initialP  containing *P  

must be given. If the initial boxes overlap and the minimum point occurs in more than one 



58  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

initial box, then the optimum solution will be independently calculated from each of these 
initial boxes, wasting valuable CPU time. This is the only inconvenience of prescribing several 
initial boxes. However, to simplify what follows, it is assumed that only one initial box is 
provided. 

In the limit, if there is not sufficient information available, the initial box initialP  can be defined 

component-wise as ,N N⎡ ⎤−⎣ ⎦  where N  is the largest floating point number representable by 

the computer. However, one should keep in mind that the wider the initial box, the longer it 
will take to calculate sharp results.  

The support column of the developed dynamic global optimization algorithm is again a 

common BB procedure. Now, however, instead of evaluating the objective function ( )f x , as 

in Chapter 4, the performance index ( ), ,J x u t  will be evaluated. As a reminder, the two 

steps of the BB procedure are:  

1) Branching (or splitting): each remaining box is divided in two or more subboxes; 

2) Bounding and pruning: for each subbox iP  satisfying all the constraints, bounds on 

( ), ,i i iJ P t J J⎡ ⎤= ⎣ ⎦  are calculated. Let J  denote the smallest calculated upper bound (this 

notation will be kept throughout the text). Since *J J< , any box wherein iJ J>  can be 

safely deleted. 

If no initial upper bound on *J  is known, J  is set to +∞  before the algorithm is started. 

In addition to the upper bound on the minimum, the developed algorithm has other techniques 
for deleting boxes. These techniques are explained one by one in Section 5.2.2. The developed 
algorithm also has procedures capable of shrinking the boxes, i.e., capable of reducing their 
width. In the limit, these latter procedures can even delete entire boxes. They are treated in 
Section 5.2.1. 

As in Chapter 4, all the boxes are processed at the same time and not one by one as in 
[Hansen and Walster, 2004]. Although it is the author’s conviction that the former approach is 
faster, this subject still needs to be further investigated. 

The overall structure of the dynamic and static optimization algorithms is very similar, as can 
be seen by comparing Figure 4.1 with Figure 5.1. 

Indeed, the concepts behind each block are the same as before. The only block that is 
completely new is the shrinking phase block. This procedure is suggested in [Chu, 2007] as a 
tool to chop off considerable portions of the initial box. However, the initial search domain will 
not be reduced into a thin box just by it.  

According to [Chu, 2007], the shrinking phase is especially helpful when the number of 
parameters is high. When it is low, the shrinking phase does not improve the performance of 
the algorithm and, therefore, should not be used. 

Hereafter, the shrinking phase will sometimes be referred to as the first phase of the 
algorithm and the remaining blocks as the second phase of the algorithm. It is intuitive to 
make this distinction since both phases have approximately the same number of code lines. 



Chapter 5 | Dynamic Global Optimization  59 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Initial box

initialP  

Branching 

Hull consistency 
 

Were the 
boxes 

sufficiently 
reduced? 

Yes

Using the inequality 
contraints 

 

Using an upper bound 
on the minimum 

 

Are the 
stopping 
criteria 
met? 

No 

End

Yes

Shrinking phase 
 

No

 

Figure 5.1: Flowchart of the developed dynamic global optimization algorithm. 

In every one of the forthcoming dynamic optimization examples, the only visible effect of 
adding a shrinking phase to the algorithm was the increase of the execution time. That is why 
a dashed line was used to represent the shrinking phase block in Figure 5.1. This does not 
mean that the shrinking phase concept does not work. As will be seen in Section 5.2.3, 
sometimes it does.  

The static optimization algorithm discussed in Chapter 4 can also be augmented with a 
shrinking phase. In Section 5.2.3, Example 4 (the one with highest number of variables) will 
be redone using a shrinking phase. 

The shrinking phase is analysed in depth in Section 5.2.3.  

The dynamic optimization algorithm follows the same modular structure of the static 
optimization algorithm. This structure makes it easier to modify the code and to adapt it to 
new problems. The order of the different modules was once again roughly chosen in order to 
optimize the algorithm’s speed.  



60  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

It might not be useful or even possible to apply a particular procedure to a particular problem, 
as it will become apparent when discussing each example individually.  

The reader might have noticed that there are fewer procedures for deleting boxes in Figure 
5.1 than in Figure 4.1, e.g., Figure 5.1 does not have any gradient method for deleting 
boxes. This reflects how immature and undeveloped the field of dynamic optimization using 
interval analysis is, when compared to static optimization. 

 

5.2.1 Procedures to shrink the boxes 
 

Due to the reasons presented in Section 4.2.1.3, HC is the only procedure used by the 
dynamic optimization algorithm to shrink the boxes. BC is not used. 

 

5.2.1.1 Hull consistency 
 

Hull consistency was already thoroughly explained in Section 4.2.1.1. All the observations 
given then for the static case are still applicable now to the dynamic case.  

Depending on the problem being solved, the following equality constraints might be present: 

1) Initial and final state constraints; 

2) Continuity constraints on the states; 

3) Continuity constraints on the control functions; 

4) Tangency constraints at entry and exit points;  

5) Necessary conditions for the existence of a stationary point of J ;  

6) Other equality constraints involving the states and/or the control functions;  

Whenever possible, these constraints should be converted into equations solvable by HC, to 
take advantage of its shrinking capabilities. 

If there are N  equations solvable by HC, then it does not make sense to parameterize the 

control function ( )u t  with less than N  parameters. Otherwise, one would only need to solve 

a system of N  nonlinear equations to determine the optimal control function ( )*u t , that is, 

assuming that there is a solution. In other words, instead of solving a real optimization 
problem, one would only need to solve a system of nonlinear equations using interval analysis. 

Therefore, to take advantage of all available information and to make ( )u t  as wide-ranging 

as possible, the following lower bound on the number of parameters jP  ( 1,...,j l= ) should be 

imposed:     

 l N>  (5-28) 

A natural choice when no information is available is to choose the control function as an 
interval polynomial, i.e., as a polynomial with interval coefficients. For example, for 1m = :  



Chapter 5 | Dynamic Global Optimization  61 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( ) 2
1 2 3 ... l

lu t P P t Pt Pt= + + + +  (5-29) 

Therefore, according to (5-28), the bigger the N , the bigger the l , allowing a more general 
representation of the control function. 

 

5.2.2 Procedures to eliminate boxes 
 

In this section, two techniques for deleting boxes are described. They are based on the 
inequality constraints and on an upper bound on the minimum. Unlike in Section 4.2.2, no 
gradient-based method is used to delete boxes. 

 

5.2.2.1 Using the inequality constraints 
 

Assume a general inequality constraint of the form: 

 ( ) ( )( ) 0, , 0 , fR x t u t t t t t≤ ≤ ≤  (5-30) 

By parameterizing ( )u t  and by solving (5-2), the inequality constraint can be rewritten as: 

 ( )1 0,..., , 0 ,l fR P P t t t t≤ ≤ ≤  (5-31) 

which is equivalent to: 

 ( )1,..., , 0lR P P T ≤  (5-32) 

where T  is defined as: 

 0 , fT t t⎡ ⎤⎣ ⎦�  (5-33) 

 Assume ( )1,..., ,lR P P T  is evaluated over a box P , resulting in: 

 ( ) ( ) ( ), , , ,R P T R P T R P T⎡ ⎤= ⎣ ⎦  (5-34) 

It is said that: 

1) P  is (certainly) feasible if ( ), 0R P T ≤  and that P  is (certainly) strictly feasible if 

( ), 0R P T < . 

2) P  is (certainly) infeasible if ( ), 0R P T > . 

Any box P  that is certainly infeasible can be safely deleted. 



62  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Once more, if extended interval analysis is supported, instead of evaluating ( ),R P T  to check 

if P  is feasible or not, a better alternative is to solve ( ) [ ], ,0R P T = −∞  through HC.   

Dependency can have a major role in the evaluation of ( ),R P T , especially due to T . If T  

appears more than once in the expression of ( ),R P T , even after rearranging the terms, it 

will be extremely difficult to prove feasibility or infeasibility of a certain box P : while the 
width of the boxes P  will be reduced as the algorithm progresses (due to the branching and 
shrinking) the interval T  will always have the same width: 

 ( ) 0fw T t t= −  (5-35) 

In the limit, it might happen that the boxes P  are already point intervals, but the bounds on 

( ),R P T  are still too wide to prove feasibility or infeasibility, all due to the dependency effect 

and to the constant nonzero width of T .  

Being able to prove that a certain box is feasible is a critical task: only feasible boxes can be 

used to update J . Being able to prove infeasibility helps, but the BB algorithm can still work 
without it.   

This dependency problem was overcome by dividing T  in ineqN  subintervals iT  given by: 

 ( )0 01 , , 1,...,f o f o
i ineq

ineq ineq

t t t t
T t i t i i N

N N
⎡ ⎤− −

= + − + =⎢ ⎥
⎢ ⎥⎣ ⎦

 (5-36) 

and by evaluating ( ), iR P T  for 1,..., ineqi N=  instead of ( ),R P T . The bigger the ineqN , the 

smaller the width of the subintervals iT , and bigger the changes of proving that a certain box 

is feasible or infeasible, at the expense of a higher computational time. 

The definitions of feasibility and infeasibility can be rewritten taking into account this new way 
of evaluating the inequality constraints: 

1) P  is (certainly) feasible if ( ), 0iR P T ≤  for all 1,..., ineqi N=  and P  is (certainly) strictly 

feasible if ( ), 0iR P T <  for all 1,..., ineqi N= . 

2) P  is (certainly) infeasible if ( ), 0iR P T >  for any 1,..., ineqi N= . 

 

5.2.2.2 Using an upper bound on the minimum 
 

As mentioned before, any box iP  for which iJ J> , where iJ  is calculated from 

( ), ,i i iJ P t J J⎡ ⎤= ⎣ ⎦ , can be safely deleted. The only condition is that J  can only be updated 

using boxes that contain at least one point satisfying all equality and inequality constraints, 
i.e., feasible boxes. 



Chapter 5 | Dynamic Global Optimization  63 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

In Section 4.2.2.2, the four possible combinations of equality and inequality constraints were 
individually analysed for the static case. Now, the same will be done for the dynamic case. 
Since there are no major differences between the two, this will be done rather quickly. 

Note that all the examples solved at the end of this chapter have at least one equality 
constraint, namely, the initial and final states.  

 

5.2.2.2.1 The unconstrained case 
 

When a problem has no constraints, the performance index can be evaluated at the midpoint 

of iP , ( )( ) , ,, ,i i mid i midJ m P t J J⎡ ⎤= ⎣ ⎦ . The performance index does not need to be evaluated 

over the entire box iP , ( ), ,i i iJ P t J J⎡ ⎤= ⎣ ⎦ . Since: 

 ,i mid iJ J≤  (5-37) 

a smaller upper bound on the minimum can in general be calculated by using the midpoints.  

 

5.2.2.2.2 The inequality constrained case 
 

When there are only inequality constraints, before evaluating ( )( ) , ,, ,i i mid i midJ m P t J J⎡ ⎤= ⎣ ⎦ , 

one has to guarantee that ( )im P  is a certainly feasible (thin) box, i.e., one has to guarantee 

that: 

 ( )( ), 0iR m P T ≤  (5-38) 

If (5-38) holds, than J  can be updated using the box iP . 

 

5.2.2.2.3 The equality constrained case 
 

Dealing with equality constraints is relatively harder than dealing with inequality constraints. 

The performance index can no longer be evaluated solely at the midpoint of iP . It has to be 

evaluated over the entire box iP . 

The existence of a solution inside a box can be proven using Theorem 4.1, as properly 
explained in Section 4.2.2.2.3.  



64  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

5.2.2.2.4 The inequality and equality constrained case 
 

When a problem has simultaneously inequality and equality constraints, the following two 
conditions must be proven: 

1) iP  must be a feasible box with respect to the equality constraints. This can be proven using 

the method described in Section 4.2.2.2.3.  

2) The inequality constraints must be satisfied over the entire box iP , i.e., iP  must be a 

certainly feasible box.   

If both conditions are met, iJ , resulting from ( ), ,i i iJ P t J J⎡ ⎤= ⎣ ⎦ , is an upper bound on the 

global minimum.  

 

5.2.3 The shrinking phase 
 

The flowchart of the shrinking phase can be seen in Figure 5.2. Note that the procedures 
used to shrink the search region are the same used in the second part of the algorithm: HC, 
the inequality constraints and the upper bound on the minimum. The only aspect that is truly 
different is the way the boxes are split. In brief, in the shrinking phase, the parameters are 
split sequentially, one at a time. 

The shrinking phase has an inner loop and an outer loop. One cycle of the inner loop consists 
on first splitting a particular parameter in shrinkingN  subintervals, while keeping the other 

parameters fixed. Then, the search region is shrunk using the already mentioned procedures. 
Finally, the hull of the remaining boxes is calculated and used as the initial box in the next 
cycle. The number of boxes at any particular time is, therefore, always smaller or equal to 

shrinkingN . Thus, the maximum time an inner cycle can take is always the same during the 

entire shrinking phase. That is not the case in the second part of the algorithm where, in 
general, the number of boxes and the run time increases every cycle.    

Before beginning the inner loop, the width of the initial box, iW , is calculated. Denote the 

width of the final box at the end of the inner loop as fW . iW  and fW  are in general vectors. 

If: 

 ( )max i f shrinkingW W ε− >  (5-39) 

where 0shrinkingε >  is a parameter given by the user, the inner loop is repeated. That is, if the 

initial box was sufficiently reduced in the last inner loop, the inner loop is repeated. In [Chu, 
2007], the number of times the inner loop is repeated is fixed by the user before the algorithm 
is started.  

As the reader might have noticed, (5-39) is similar to the HC loop stopping condition explained 
in Section 4.2.5.  



Chapter 5 | Dynamic Global Optimization  65 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 

1i =  

Initial box

initialP  

Calculate the width of the initial box, iW  

Hull consistency

Were the 
boxes 

sufficiently 
reduced? 

Using the inequality 
contraints 

Using an upper bound 
on the minimum 

( )max i fW W−
>  

shrinkingε  

? 

End

No

No

Split the i -th parameter in shrinkingN  subintervals while 

keeping the other parameters fixed 

Calculate the hull of all the boxes

i n= ?

Calculate the width of the final box, fW

1i i= +
No

Yes

Yes

Yes

Inner 
loop 

Outer 
loop 

 

Figure 5.2: Flowchart of the shrinking phase. 



66  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

As already mentioned, the main objective of the shrinking phase is to quickly chop off 
significant portions of the initial box initialP . According to [Chu, 2007], the bigger the number 

of parameters, the more useful it is. The argument is the following: since dividing more than 
three parameters in the second phase of the algorithm is extremely hard, as pointed out in 
Section 4.2.3, the fact that in the shrinking phase all the parameters are divided, 
independently of how many they are, can be extremely helpful in problems where l  is big. 
Also according to [Chu, 2007], when l  is small (smaller or equal to two) only using the second 
phase of the algorithm can be faster than using both phases. The results obtained during this 
thesis show that this is true even for bigger values of l . 

In any case, the user should not expect the initial search domain to be reduced into a thin box 
during the shrinking phase: its only goal is to reduce initialP  so that the second phase of the 

algorithm can (supposedly) run faster. 

Changing the order of the parameters may lead to different results at the end of the shrinking 
phase. How to decide which order is the best is not an easy task. However, according to [Chu, 
2007], parameters representing time should be processed first.   

As promised, Example 4 of Chapter 4 will now be used to demonstrate the capabilities of the 
shrinking phase. In Table 5.2, the results with and without the shrinking phase are compared. 
The results without the shrinking phase are the same shown in Table 4.12. The user inputs in 
Table 4.11 are used in both configurations. The user inputs related to the shrinking phase are 
presented in Table 5.1. 

Table 5.1: User inputs related to the shrinking phase. 

Designation Symbol Value 

Number of subintervals in which each parameter is 
divided during the shrinking phase shrinkingN 100 

Shrinking phase stopping criterion  shrinkingε  0.1 

Table 5.2: Results with and without the shrinking phase. 

  Without the shrinking phase With the shrinking phase 

Designation Symbol Result Width Result Width 

Bounds on 
the minimum 

*F  [ ]0.6999,0.7001  6.9e-5 [ ]0.6999,0.7001  7.7e-5 

*
1X  [ ]0.7001, 0.6999− −  8.9e-5 [ ]0.7001, 0.6999− −  9.2e-5 

*
2X  [ ]0.48999,0.49013  1.2e-4 [ ]0.48999,0.49015  1.4e-4 

*
3X  [ ]0.91268,0.91283  1.4e-4 [ ]0.91268,0.91284  1.5e-4 

Bounds on 
the solution 
point 

*X  

*
4X  [ ]0.0000,0.0058  5.8e-3 [ ]0.0000,0.0051  5.0e-3 

CPU time [ ]CPUt sΔ  48 N/A 26 N/A 

Number of 
remaining 
boxes 

remainingN  6 N/A 17 N/A 

The desired accuracy is achieved in approximately half the time by adding the shrinking phase. 

Also interesting is analysing what happens when the parameter shrinkingN  is varied. Table 5.3 

shows the elapsed CPU time and the ( )sum WΔ  for different values of shrinkingN . The 



Chapter 5 | Dynamic Global Optimization  67 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

( )sum WΔ  is a measure of how much the initial search domain was reduced due to the 

shrinking phase. WΔ  is calculated as follows: 

 ( ) ( )final initialW w P w PΔ = −  (5-40) 

where finalP  is the final box at the end of the shrinking phase. shrinkingN  was the only varied 

input.  

The minimal elapsed time is achieved when shrinkingN  is equal to 100. As a general rule, the 

bigger the value of shrinkingN , the more the shrinking phase reduces the initial search domain. 

For small values of shrinkingN  ( 1shrinkingN =  and 10shrinkingN = ), this reduction is not big 

enough to decrease significantly the total elapsed CPU time. For big values of shrinkingN  

( 1000shrinkingN = ), the shrinking phase gives slightly sharper results than for intermediate 

values of shrinkingN  ( 100shrinkingN = ), but this does not compensate the extra time spent on 

the shrinking phase. As a result, a compromise must be made: an intermediate value of 

shrinkingN  should be selected. In the forthcoming examples, shrinkingN  is always set to 100. 

Table 5.3: Effect of shrinkingN .  

shrinkingN  [ ]CPUt sΔ  ( )sum WΔ

1 41 4.174 

10 41 4.663 

100 26 4.817 

1000 61 4.867 

In the next section, a new branching routine for the second part of the algorithm is 
introduced. With it, Example 4 can be solved faster without a shrinking phase. From the 
author’s experience, this is generally the case: it is always possible to improve the second part 
of the algorithm to a point where using a shrinking phase is no longer beneficial. Therefore, it 
is the author’s opinion that more effort should be put on optimizing the second part of the 
algorithm than on the shrinking phase. 

  

5.2.4 Branching 
 

The branching routine executed in the second part of the dynamic optimization algorithm 
follows the same directives explained in Section 4.2.3 for the static case. Only the notation is 
different: instead of splitting boxes X  with n  components, it now splits boxes P  with l  
components.      

In fact, the first working branching routine implemented in the dynamic optimization algorithm 
was copy/pasted from the static case. That would have worked nicely if it was not for the fact 
that dynamic optimization problems are inherently harder to solve: in general, a lot more 
boxes need to be processed simultaneously. In this context, the main bottleneck slowing down 
the optimization algorithm was the branching routine.  



68  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

The old branching routine was based on l  FOR cycles, each one covering all the boxes. That 
made the branching routine extremely slow, for two reasons: 

1) INTLAB does not work very well with loops, as advocated in [Rump, 2007]. Therefore, 
whenever possible, loops should be replaced by matrix operations. 

2) As the number of boxes grew, covering all of them became harder and harder.    

Therefore, a new branching routine was created based on matrix operations. In it, there are 
no longer FOR cycles covering all the boxes. 

Table 5.4 shows the time saved with the new branching routine in Example 4. The first two 
entries of Table 5.4 were taken from Table 4.12. 

The only difference between the first and the last case is the branching routine. With the new 
branching routine, the static optimization algorithm is approximately 16 times faster. When 
compared to Chu’s algorithm, it is approximately 543 times faster. 

Table 5.4: Different ways of solving Example 4. 

 
CPU time 

[ ]CPUt sΔ  

With the old branching routine 48 

Chu’s algorithm 1629 (≈27m) 

With the new branching routine 3 

As already mentioned, the new branching routine makes the second part of the algorithm so 
fast that applying the shrinking phase to Example 4 is no longer advantageous: with the 
shrinking phase, the CPU time increases from 3 to approximately 5 seconds ( 100shrinkingN =  

and 0.1shrinkingε = ). 

As a general rule, FOR cycles covering all the boxes should always be replaced by matrix 
operations. 

The new branching routine also checks if the diameter of a component is equal to zero. If it is, 
that component is not divided. 

As explained in Section 4.2.2.2.3, in order to apply Theorem 4.1, some parameters jP  

( 1,...,j l= ) must be fixed. Denote these parameters by fixedP  and the parameters kept free 

by freeP . As also explained in Section 4.2.2.2.3, the objective is to prove that '
free freeP P⊂ , 

where '
freeP  is calculated from freeP  through HC. Analogously to the static case, the chances 

that '
free freeP P⊂  are higher if '

freeP  is much smaller than freeP . Therefore, when deciding 

which parameters to split during the branching phase, the user should take into account that 
parameters forming freeP  should not be divided, typically. Otherwise, as the algorithm 

progresses, the boxes freeP  will become so sharp that proving '
free freeP P⊂  will be almost 

impossible.     

For the same reason, the parameters with the sharpest initial bounds (relatively speaking), or 
in other words, the sharpest components of initialP , should not belong to freeP , typically. 

Otherwise, it will be extremely hard to prove '
free freeP P⊂ .       



Chapter 5 | Dynamic Global Optimization  69 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Moreover, when rearranging interval expressions to reduce the dependency effect, the 
parameters not divided during the branching phase, which in general will be wider, should be 
factored out first. 

Assume that there is only one solution *P  inside initialP . If there are as many equations as 

parameters ( l N= ), then there is no need to branch the boxes, i.e., splitN  can be defined as 

an empty array, [ ]splitN = − , since in most cases, sharp bounds on *P  can be determined just 

by applying the HC loop illustrated in Figure 4.1 and in Figure 5.1. If the number of 
parameters is higher than the number of equations, then the author suggests, as a rule of 
thumb, splitting: 

 l N−  (5-41) 

parameters. According to the author’s experience, this is the ideal number to make the 
algorithm as fast as possible. In Chapter 4, a trial-and-error procedure was used to optimize 

splitN . The results obtained then are in agreement with (5-41).  

The decision of how many parameters to split can be based on (5-41). However, the user still 
has to decide which parameters to split.  

In Section 4.2.3, it was said that eight new subboxes per old box is the maximum a normal 
personal computer can handle. This rule of thumb takes supremacy over expression (5-41). 

If there is more than one solution *P  inside initialP , then to bound all of them, the author 

suggests replacing (5-41) by: 

 1l N− +  (5-42) 

 

5.2.5 Interpretation of the results 
 

As in Section 4.2.4, assume multiple contiguous boxes remain at the end of the algorithm. If 
that is not the case, the following results can be easily adapted. 

Analogously to Section 4.2.4, interval analysis guarantees that: 

 ( )( ) ( )( )*min inf max sup , 1,...,j j
i j ii i

P P P j l≤ ≤ =  (5-43) 

i.e., the j -th component of the solution point(s) *P  must be contained inside that 

component’s hull. j
iP  represents the j -th component of the i -th remaining box.  

As a consequence of (5-43), just like in Section 4.2.4, the guaranteed bounds on *J  are: 

 ( )*J min , JJ J≤ ≤  (5-44) 

where J  and J  are given by: 

 ( )( )J min ,ii
J P t=  (5-45) 



70  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( )( )J max ,ii
J P t=  (5-46) 

If JJ < , a new HC equation is suggested here based on (5-44) to shrink the search region. 

Take ( ), ,
i ii P PJ P t J J⎡ ⎤= ⎣ ⎦  as the bounds on the performance index associated with a certain 

box iP . Then, it should be possible to use the following relation: 

 ( ), ,
ii PJ P t J J⎡ ⎤= ⎣ ⎦  (5-47) 

as a HC equation to shrink the box iP  since, by definition, 
iPJ J≤ . The same concept can be 

applied to the static global optimization algorithm discussed in Chapter 4. This idea still needs 
to be properly validated and tested and is only left here as a recommendation for future work. 
As far as the author knows, no other author has suggested this procedure before. In 
particular, it is not used or even mentioned in [Hansen and Walster, 2004] or in [Chu, 2007]. 

As a final remark, assume p  is a point inside one of the remaining boxes. Interval analysis 
guarantees that: 

 ( )J , JJ p t≤ ≤  (5-48) 

but not that: 

 ( )J ,J p t J≤ ≤  (5-49) 

As a consequence, if JJ < , which is normally the case, if a point needs to be selected from 
the final interval solution, the best course of action, according to the author, is to select a 

point, for example the midpoint, of the box where the last upper bound on the minimum J  
was calculated. By selecting such a point, one can guarantee that (5-49) is satisfied. Note, 
however, that p  is in all probability not a feasible point with respect to the equality 
constraints (but certainly feasible with respect to the inequality constraints). But since a 
feasible solution exists inside the box containing p , p  should be almost feasible. According 
to [Hansen and Walster, 2004], no algorithm can assure that a single point is certainly feasible 
because of rounding errors in evaluating the equality constraints. Therefore, an almost 
feasible point is the best one can hope for. 

 

5.2.6 Stopping criteria 
 

As in Section 4.2.5, the dynamic optimization algorithm has two stopping criteria: 

1) ( )( ) ( )( )max sup min inf , 1,...,
j

j j
i i Pii

P P j lε− ≤ =  (5-50) 

where j
iP  represents the j -th component of the i -th box, and: 

2) ( )min , J J JJ ε− ≤  (5-51) 



Chapter 5 | Dynamic Global Optimization  71 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

where J  and J  are given by (5-45) and (5-46), respectively. Both 
jPε  ( l  parameters) and 

Jε  (1 parameter) are given by the user. 

As can be seen by comparing (5-50)-(5-51) with (5-43)-(5-44), if both stopping conditions are 

satisfied, the guaranteed bounds on *P  and *J  will be sharper than Pε  and Jε , respectively. 

As a rule, however, if one of the stopping conditions is met, the main loop should be stopped. 
The reasons for this are explained in Section 4.2.5. 

Some precautions should be taken when choosing Jε . If Jε  is chosen so small that the 

wrapping effect and dependency prevent (5-51) from ever being fulfilled, one might end up 

with an infinite cycle if ( )*
Pw P ε> . 

However, in cases where it is known from the beginning that the solution point is indeed a 

point and not an interval, i.e., that ( )* 0w P = , it is preferable only to stop the cycle when 

both conditions are met simultaneously. In that case, after termination, the guaranteed 

bounds on *P  and *J  will be indubitably sharper than Pε  and Jε . 

Another advantage of requiring both stopping conditions to be met at the same time is that, 
by selecting Pε  or Jε  relatively large, the criterion that will effectively stop the algorithm can 

be chosen. 

All the examples discussed in this chapter have indeed a single solution point. Therefore, the 
main loop is only stopped when (5-50) and (5-51) are satisfied simultaneously. 

The conditions described in Section 4.2.5 for stopping the HC loop are kept. 

The stopping condition used in [Chu, 2007] is based on the width of the bounds on the final 
state. No mathematical expression is given however. For more information, the reader is 
referred to [Chu, 2007]. In Section 5.5.3, a possible additional stopping criterion based on the 
final state is also suggested.     

Four dynamic optimization problems will now be solved using the aforementioned algorithm. 

 

5.3 Example 1 
 

The first dynamic optimization problem solved in [Chu, 2007] is an unconstrained one-
dimensional problem taken from [Visser, 2007]. It is described by: 

Performance index: ( ) ( )( ) ( ) ( )( )
1

2

0

, , 0.5J x t u t t u t x t dt= +∫  (5-52) 

State dynamics: ( ) ( )x t u t=�  (5-53) 

Initial state: ( )0 0x =  (5-54) 

Final state: ( )1 1x =  (5-55) 

The solution is also given in [Visser, 2007]: 



72  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Optimal control function: ( )* 0.5u t t= +  (5-56) 

Global minimum: * 23 0.95833324J = ≈  (5-57) 

Since this is the first example, exceptionally, the optimal control function ( )*u t  and the 

global minimum *J  will be analytically calculated.  

The first step to determine ( )*u t  is to write out the Hamiltonian using definition (5-6):  

 ( ) ( ) ( ) ( ) ( )2, , , , , , 0.5 .H x u t L x u t f x u t u x uλ λ= + = + +  (5-58) 

As explained in Section 5.1.1, the necessary conditions for a solution are: 

 ( ), ,x f x u t u= =�  (5-59) 

 1H
x

λ ∂
= − = −

∂
�  (5-60) 

and: 

 0 0H u u
u

λ λ∂
= ⇔ + = ⇔ = −

∂
 (5-61) 

Differentiating (5-59) and combining the result with (5-61) and (5-60) yields: 

 1x u λ= = − =��� �  (5-62) 

which integrated results in: 

 ( ) 20.5x t t At B= + +  (5-63) 

Two boundary conditions are required to determine the constants A  and B . In this case, the 
initial and final states are known:   

 ( )0 0 0x B= ⇔ =  (5-64) 

 ( )1 1 0.5x A= ⇔ =  (5-65) 

Finally, the optimal control function is given by: 

 ( ) ( )* * 0.5u t x t t= = +�  (5-66) 

the optimal state trajectory by: 

 ( )* 20.5 0.5x t t t= +  (5-67) 

and the global minimum by: 



Chapter 5 | Dynamic Global Optimization  73 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( ) ( )( ) ( )( ) ( )( )
1

2* * * * *

0

23, 0.5 24J x t u t u t x t dt= + =∫  (5-68) 

As predicted in Section 5.1.1, since L  and f  are not explicit functions of time, the 
Hamiltonian is constant along an optimal trajectory, i.e.: 

 ( )2* * * * *0.5 0.125 0H u x u Hλ= + + = ⇔ =�  (5-69) 

In this example, two different parameterizations of the control function are tested: a second-
order parameterization and a first-order parameterization. 

 

5.3.1 Second-order parameterization 
 

The control function parameterization used in [Chu, 2007] will also be used here. It is given 
by: 

 ( ) 2 1u t P t P= +  (5-70) 

Note that the global minimum *J  can be reached using this parameterization, as can be easily 
seen by comparing (5-70) with (5-66). The optimal solution point is given by: 

 * 0.5
1

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (5-71) 

 

5.3.1.1 Description of the developed algorithm 
 

This quasi-static optimization problem can be solved just with HC. In other words, the 
parameters 1P  and 2P  can be determined from two interval equations.  

The first equation follows from the initial and final state constraints: the state trajectory ( )x t  

as a function of 1P  and 2P  can be calculated from the state dynamics (5-53) as follows: 

 ( ) 22
2 1 12

Px u P t P x t t Pt A= = + ⇔ = + +�  (5-72) 

After that, it is just a matter of applying the initial and the final state constraints: 

 ( )0 0 0x A= ⇔ =  (5-73) 

 ( ) 2
11 1 1

2
Px P= ⇔ + =  (5-74) 

Expression (5-74) is the first equation. The second one is a consequence of the necessary 
conditions for a solution (5-4) and (5-5): 



74  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 2 10 0H u u P t P
u

λ λ λ∂
= ⇔ + = ⇔ = − ⇔ = − −

∂
 (5-75) 

 2 21 1 1H P P
x

λ ∂
= − = − ⇔ − = − ⇔ =

∂
�  (5-76) 

Expression (5-76) is the second equation. 

Determining 1P  and 2P  from (5-74) and (5-76) is now extremely easy using HC (or even by 

hand). The following iterative subroutine was implemented following the instructions given in 
Section 4.2.1.1: 

 '
2 1P =  (5-77) 

 '
2 2 2P P P= ∩  (5-78) 

 
'

' 2
1 1

2
PP = −  (5-79) 

 '
1 1 1P P P= ∩  (5-80) 

 ( )'
2 12 1P P= −  (5-81) 

 '
2 2 2P P P= ∩  (5-82) 

From all the procedures shown in Figure 5.1 to shrink and/or delete boxes, HC is the only one 
applied here. 

 

5.3.1.2 Description of Chu’s algorithm 
 

The algorithm proposed in [Chu, 2007] is different. It has two procedures to delete boxes: 

1) After evaluating the final state, which can be done for example through8: 

 ( ) ( ) ( ) 2
11 1 , 1

2
Px x x P⎡ ⎤= = +⎣ ⎦  (5-83) 

any box ( ) ( ) ( )1 1 , 1x x x⎡ ⎤= ⎣ ⎦  not containing the desired final state is eliminated. In this 

thesis, HC is applied to (5-74). With essentially the same amount of computing, HC yields the 
same or more information since some boxes may be shrunk in the process. This idea that HC is 
better than a simple feasibility test is defended in [Hansen and Walster, 2004]. 

2) The procedure of Section 5.2.2.2 based on an upper bound on the minimum is then applied 
to all the boxes that were not deleted in 1). Chu’s algorithm has a crucial flaw: Theorem 4.1 
is not used to check the feasibility of the boxes. All the non-infeasible boxes are mistakenly 

                                                     

8 There is no reference in [Chu, 2007] about how the final state is actually calculated. 



Chapter 5 | Dynamic Global Optimization  75 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

assumed to be feasible. As the reader should already know, any box used to update J  has 
first to be proved feasible with respect to (5-74), for example, by applying Theorem 4.1. 

Otherwise, *P  might not be correctly bounded.  

Moreover, at the end, instead of calculating the hull of the solution set, the box yielding the 
minimal lower bound on the performance index is selected as the optimal solution. Note that: 

1) *P  might not be contained inside this box; 

2) The hypothetical bounds on *P  will be misleadingly sharp. 

 

5.3.1.3 Comparing the algorithms 
 

The developed algorithm was started using the following inputs: 

Table 5.5: User inputs in Example 1. 

Designation Symbol Value 

Initial box initialP  
[ ]
[ ]
0,1
0,1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

New boxes per old box splitN  [ ]−  

1P
ε  1.0e-3 

Pε
2Pε  1.0e-3 Stopping criteria 

Jε  1.0e-3 

absε  2 
Hull consistency stopping criteria 

relε  1.01 

The initial box given in Table 5.5 is the same used in [Chu, 2007]. Also like in [Chu, 2007], 
the shrinking phase is bypassed since the problem is relatively simple.   

The HC stopping criteria were chosen deliberately high to optimize the CPU time. In 
accordance to (5-41), splitN  was chosen as an empty array.  

In Table 5.6, the results produced by the developed algorithm are compared with the 
sharpest results presented in [Chu, 2007]. 

In this thesis, the final state is evaluated over a box P  through (5-83) and the performance 
index through: 

 

( )

( )

( ) ( )

1
2

0
1

2 22
2 1 1

0

2 2 1 1 2

0.5

0.5
2

1 1
6 2

J u x dt

PP t P t Pt dt

P P P P P

= + =

⎛ ⎞⎛ ⎞= + + + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ + +
= +

∫

∫  (5-84) 



76  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Table 5.6: Comparative results for Example 1. 

  The developed algorithm Chu’s algorithm 

Designation Symbol Result Width Result Width 

Bounds on 
the minimum 

IJ  [ ]0.9583,0.9584  1.1e-16 [ ]0.943,0.966  2.2e-2 

1
IP  [ ]0.5,0.5  0 [ ]0.500,0.501 9 1.0e-3 Bounds on 

the solution 
point 

IP  
2
IP  [ ]1,1  0 [ ]0.998,0.999  1.0e-3 

Bounds on 
the final state 

IX  [ ]1,1  0 [ ]0.998,1.001  1.5e-3 

CPU time [ ]CPUt sΔ  0.02 N/A 67 N/A 

Number of 
remaining 
boxes 

remainingN  1 N/A ? N/A 

Dependency is always an important issue. The form of (5-84) was somewhat moulded in order 
to minimize it. 

The developed algorithm correctly bounds *P  while producing a thin solution interval IP . 
The same cannot be said about Chu’s algorithm. In addition, the developed algorithm is 3350 
times faster. 

As mentioned in Section 5.2.1.1, if there are N  equations solvable by HC, then the number of 
parameters l  should be bigger than N . Otherwise, the optimization problem can be solved by 
solving a system of (nonlinear) equations. Nevertheless, l  was chosen here equal to 2N =  
to allow a direct comparison with [Chu, 2007] and to demonstrate how HC can be used to 
speed up the algorithms.  

Hence, increasing the order of (5-70) would make this problem more interesting. For example, 

the input ( )u t  could be defined as:  

 ( ) 2
3 2 1u t Pt P t P= + +  (5-85) 

This is not done here in pro of Example 3. 

 

5.3.2 First-order parameterization 
 

This section analyses what happens if the input ( )u t  is chosen as a constant, i.e., if: 

 ( ) 1u t P=  (5-86) 

Note that the global minimum *J  can not be reached using this parameterization, as can be 
easily seen by comparing (5-86) with (5-66).  

Repeating the steps of Section 5.3.1.1, the state dynamics are first integrated: 

                                                     

9 1
IP and 2

IP  are given in a different order, probably due to a typing mistake.   



Chapter 5 | Dynamic Global Optimization  77 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( )1 1x u P x t Pt A= = ⇔ = +�  (5-87) 

Applying the initial and the final state constraints yields: 

 ( )0 0 0x A= ⇔ =  (5-88) 

and: 

 ( ) 11 1 1x P= ⇔ =  (5-89) 

Therefore, the solution is already known: 1 1P = .  

The performance index for ( ) 1u t =  is equal to: 

 ( ) ( )
1 1

2
1

0 0

0.5 0.5 1uJ u x dt t dt= = + = + =∫ ∫  (5-90) 

Note that: 

 *
1

23
34uJ J= > =  (5-91) 

As for the necessary conditions (5-4) and (5-5), notice that:  

 10 0H u u P
u

λ λ λ∂
= = + ⇔ = − = − ⇔ =

∂
�  (5-92) 

 1H
x

λ ∂
= − = −

∂
�  (5-93) 

As the reader can see, (5-92) and (5-93) are incompatible. This means that no stationary point 

of J  can be of the form ( ) 1u t P=  with 1P ∈\ . More specifically, ( ) 1u t =  is not a 

stationary point of J .  

This does not mean the solution is wrong. It only means that ( ) 1u t =  is not a stationary 

point of J . This should not come as a surprise. Constrained optimization problems, like this 

one, may have their global minima at non-stationary points. Note that it is the shape of ( )u t  

that is being constrained here. 

In [Chu, 2007], it is said that the only way to find a solution is to parameterize the control 

function as ( ) 2 1u t P t P= + . This is not completely true. As it has been shown, if ( )u t  is 

parameterized as ( ) 1u t P= , then ( ) 1u t =  is a valid solution in the sense that both ( )0 0x =  

and ( )1 1x =  are satisfied. It is true that other parameterizations may yield better solutions, 

as is obvious from (5-91), but saying that ( ) 1u t =  is not a valid parameterization is not 

entirely correct.   

 



78  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

5.4 Example 2 
 

Example 2 is formulated and solved in Appendix C. 

 

5.5 Example 3 
 

Example 3 is a two-dimensional unconstrained problem taken from [Bryson Jr. and Ho, 1975]. 
It is described by:   

Performance index: ( ) ( )( ) ( )
1

2

0

, , 0.5J x t u t t u t dt= ∫  (5-94) 

State dynamics: ( ) ( )1x t u t=�  (5-95) 

 ( ) ( )2 1x t x t=�  (5-96) 

Initial state: ( )1 0 1x =  (5-97) 

 ( )2 0 0x =  (5-98) 

Final state: ( )1 1 1x = −  (5-99) 

 ( )2 1 0x =  (5-100) 

The solution is: 

Optimal control function: ( )* 2u t = −  (5-101) 

Global minimum: * 2J =  (5-102) 

Three different parameterizations of the control function are tested here: a first-order, a 
second-order and a third-order parameterization. 

 

5.5.1 A first-order parameterization 
 

The first parameterization and the only one tested in [Chu, 2007] is based on the assumption 
that the control function is constant: 

 ( ) 1u t P=  (5-103) 

The optimal solution point is obviously: 

 [ ]* 2P = −  (5-104) 



Chapter 5 | Dynamic Global Optimization  79 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

5.5.1.1 Description of the developed algorithm 
 

It is very simple to solve this problem using HC. Since the state boundary conditions are 
known, two interval equations can be written. The first one results from integrating (5-95): 

 ( )1 1 1 1x u P x t Pt A= = ⇔ = +�  (5-105) 

and from (5-97) and (5-99): 

 ( )1 0 1 1x A= ⇔ =  (5-106) 

 ( )1 11 1 2x P= − ⇔ = −  (5-107) 

Therefore, the solution is already known: 1 2P = − . This solution must also satisfy the second 

state equation: 

 ( ) 21
2 1 1 21

2
Px x Pt x t t t B= = + ⇔ = + +�  (5-108) 

 ( )2 0 0 0x B= ⇔ =  (5-109) 

 ( )2 11 0 2x P= ⇔ = −  (5-110) 

and indeed it does. 

Therefore, it was possible to determine *P  without any programming.  

No new information is added by (5-4) and (5-5). 

As for the global minimum *J , it is given by:  

 ( )
1

2* * 2
1

0

0.5 0.5 2J u dt P= = =∫  (5-111) 

 

5.5.1.2 Description of Chu’s algorithm 
 

This problem was solved in [Chu, 2007] using the algorithm explained in Section 5.3.1.2 with 
the modifications 1) and 3) mentioned in Section C.1.1. 

The initial box used in [Chu, 2007] is: 

 [ ]4, 4initialP = −  (5-112) 



80  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

5.5.1.3 Comparing the algorithms 
 

In Table 5.7, the obtained results are compared with the sharpest results presented in [Chu, 
2007]. 

Table 5.7: Comparative results for Example 3. 

  The developed 
algorithm Chu’s algorithm 

Designation Symbol Result Width Result Width

Bounds on the minimum IJ  [ ]2, 2  0 [ ]1.99998, 2.00002  2.6e-5 

Bounds on the solution 
point 1

IP  [ ]2, 2− −  0 [ ]2.0001, 1.9999− −  1.3e-4 

1
IX [ ]1, 1− −  0 [ ]1.0001, 0.9999− −  1.3e-4 

Bounds on the final state IX  
2
IX [ ]0,0  0 [ ]0.0001,0.0001−  2.0e-4 

CPU time [ ]CPUt sΔ 0 N/A 0.391 N/A 

Number of remaining 
boxes remainingN  1 N/A 2 N/A 

While Chu’s algorithm needs some time to converge, the developed algorithm immediately 
yields the right solution, as demonstrated in Section 5.5.1.1. 

The order of the parameterization will now be increased.  

 

5.5.2 A second-order parameterization 
 

In Section 5.5.1.1, it was seen that two interval equations follow from the state dynamics and 
the boundary conditions. Therefore, it should be possible to determine the two parameters of 
a second-order parameterization just by applying HC. That is in fact so. 

Consider the following second-order parameterization: 

 ( ) 2 1u t P t P= +  (5-113) 

where the optimal solution point is given by: 

 * 2
0

P
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (5-114) 

Integrating (5-95) and imposing (5-97) and (5-99) yields: 

 ( ) 22
1 2 1 1 12

Px u P t P x t t Pt A= = + ⇔ = + +�  (5-115) 

 ( )1 0 1 1x A= ⇔ =  (5-116) 



Chapter 5 | Dynamic Global Optimization  81 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( ) 2
1 11 1 1 1

2
Px P= − ⇔ + + = −  (5-117) 

and doing the same with (5-96), (5-98) and (5-100) results in: 

 ( )2 3 22 2 1
2 1 1 21

2 6 2
P P Px x t Pt x t t t t B= = + + ⇔ = + + +�  (5-118) 

 ( )2 0 0 0x B= ⇔ =  (5-119) 

 ( ) 2 1
2 1 0 1 0

6 2
P Px = ⇔ + + =  (5-120) 

HC was applied to (5-117) and to (5-120) in the following way: 

 ' 2
1 2

2
PP = − −  (5-121) 

 '
1 1 1P P P= ∩  (5-122) 

 ' 2
1 2

3
PP = − −  (5-123) 

 '
1 1 1P P P= ∩  (5-124) 

 '
2 14 2P P= − −  (5-125) 

 '
2 2 2P P P= ∩  (5-126) 

 '
2 16 3P P= − −  (5-127) 

 '
2 2 2P P P= ∩  (5-128) 

Since this problem is very simple, introducing a shrinking phase would not improve the results. 

The final state formulas, (5-115) and (5-118), are not affected by dependency, but the 
formula of the performance index is: 

 ( )
1 1 2 2

22 2 1 2 1
2 1

0 0

3 30.5 0.5
6

P PP PJ u dt P t P dt + +
= = + =∫ ∫  (5-129) 

The results shown in Table 5.9 were obtained by introducing the inputs given in Table 5.8. 

As expected, HC correctly bounds *P . No other procedure is necessary. splitN  was chosen as 

an empty array, in accordance to (5-41). 

The order of the parameterization will now be increased again. 

 



82  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Table 5.8: User inputs (second-order parameterization). 

Designation Symbol Value 

Initial box initialP  
[ ]
[ ]

4,4
4,4

⎡ ⎤−
⎢ ⎥−⎣ ⎦

 

New boxes per old box splitN  [ ]−  

1P
ε  1.0e-3 

Pε
2Pε  1.0e-3 Stopping criteria 

Jε  1.0e-3 

absε  1.0e-3 
Hull consistency stopping criteria 

relε  0.1 

Table 5.9: Results (second-order parameterization). 

Designation Symbol Result Width 

Bounds on the minimum IJ  [ ]1.9995, 2.0005  2.4e-4 

1
IP [ ]2.0002, 1.9998− −  4.8e-4 

Bounds on the solution point IP
2
IP [ ]0.0003,0.0003−  5.5e-4 

1
IX [ ]1.0003, 0.9997− −  4.8e-4 

Bounds on the final state IX
2
IX [ ]0.0001,0.0001−  2.0e-4 

CPU time [ ]CPUt sΔ 0.34 N/A 

Number of remaining boxes remainingN  1 N/A 

 

5.5.3 A third-order parameterization 
 

Consider the next third-order parameterization: 

 ( ) 2
3 2 1u t Pt P t P= + +  (5-130) 

with: 

 [ ]* 2 0 0 TP = −  (5-131) 

Now, only two equations are available for finding three parameters. Obviously, this is not 
enough. A true optimization problem needs to be solved now. The procedure discussed in 
Section 5.2.2.2 based on an upper bound on the minimum will have to be used. 

First, the HC equations need to be deduced. Integrating (5-95) and imposing (5-97) and 
(5-99) yields: 

 ( )2 3 23 2
1 3 2 1 1 13 2

P Px u Pt P t P x t t t Pt A= = + + ⇔ = + + +�  (5-132) 



Chapter 5 | Dynamic Global Optimization  83 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( )1 0 1 1x A= ⇔ =  (5-133) 

 ( ) 3 2
1 11 1 1 1

3 2
P Px P= − ⇔ + + + = −  (5-134) 

and doing the same with (5-96), (5-98) and (5-100) results in: 

 ( )3 2 4 3 23 32 2 1
2 1 1 21

3 2 12 6 2
P PP P Px x t t Pt x t t t t t B= = + + + ⇔ = + + + +�  (5-135) 

 ( )2 0 0 0x B= ⇔ =  (5-136) 

 ( ) 3 2 1
2 1 0 1 0

12 6 2
P P Px = ⇔ + + + =  (5-137) 

HC was applied to (5-134) and to (5-137) in the following way: 

 ' 32
1 2

2 3
PPP = − − −  (5-138) 

 '
1 1 1P P P= ∩  (5-139) 

 ' 32
1 2

3 6
PPP = − − −  (5-140) 

 '
1 1 1P P P= ∩  (5-141) 

 ' 3
2 1

24 2
3
PP P= − − −  (5-142) 

 '
2 2 2P P P= ∩  (5-143) 

 ' 3
2 16 3

2
PP P= − − −  (5-144) 

 '
2 2 2P P P= ∩  (5-145) 

 ' 2
3 1

36 3
2
PP P= − − −  (5-146) 

 '
3 3 3P P P= ∩  (5-147) 

 '
3 1 212 6 2P P P= − − −  (5-148) 

 '
3 3 3P P P= ∩  (5-149) 

Note that (5-138)-(5-149) are not effected by dependency. 



84  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

As discussed in Section 5.2.2.2.3, before using a box P  to update J , P  must be proved 
feasible with respect to the equality constraints (5-134) and (5-137). Since there are three 
unknown parameters and just two equations, in order to apply Theorem 4.1, one interval 
parameter must be fixed, that is, one interval parameter must be substituted by its midpoint.     

Hence, the next step is to choose two HC equations from (5-138)-(5-149) for applying 

Theorem 4.1. When choosing, one should bear in mind that the chances that 'P P⊂  are 

higher if 'P  is much smaller than P . After some trial-and-error, the following subroutine was 
devised: 

1) 3, 3( )mP m P=  (5-150) 

2) 3,' 2
1 2

2 3
mPPP = − − −  (5-151) 

3) 3,' '
2 1

2
4 2

3
mP

P P= − − −  (5-152) 

4) If '
1 1P P⊂  and '

2 2P P⊂ , then Theorem 4.1 guarantees that there is a solution of (5-134) 

and of (5-137) inside ' ' '
1 2 3,

T

mP P P P⎡ ⎤= ⎣ ⎦ . Thus, 'P  can be used to update J . 

The final state is calculated from (5-132) and (5-135). Dependency does not affect the 
calculated results. The same cannot be said about the performance index: 

 ( )
1 1

22 2
3 2 1

0 0

0.5 0.5J u dt Pt P t P dt= = + + =∫ ∫  

 
( )2 2 2

1 3 2 1 2 1 2 330 15 20 10 30 6
60

P P P P P PP P+ + + + +
=  (5-153) 

 
( )2 2 2

1 2 1 3 1 3 2 330 30 15 20 10 6
60

P P P P PP P P+ + + + +
=  (5-154) 

To minimize the dependency effect, the performance index is calculated as the intersection of 
(5-153) and (5-154). 

The results shown in Table 5.11 were obtained by introducing the inputs given in Table 
5.10. 

The following comments are due: 

1) *P  was correctly bounded. 

2) The number of remaining boxes is considerably higher than in previous examples. This 
shows how much more demanding it is to solve (true) dynamic optimization problems 
compared with static optimization problems. 

3) 1
IP , 2

IP  and 3
IP  are substantially wider than IJ . This is not really a problem since in 

most real life applications a point must be selected from IP  (the usefulness of interval 

solutions is still very limited). As explained in Section 5.2.5, when JJ < , which is the case, 



Chapter 5 | Dynamic Global Optimization  85 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

the best option is to select the midpoint p  of the box where the last upper bound on the 

minimum J  was calculated, i.e., the midpoint of the box ' ' '
1 2 3,

T

mP P P P⎡ ⎤= ⎣ ⎦ . Then, it is 

guaranteed that: 

 ( ) ( ) ( )*, , J I
JJ p t J P t J w J ε− ≤ − = ≤  (5-155) 

Table 5.10: User inputs (third-order parameterization). 

Designation Symbol Value 

Initial box initialP  

[ ]
[ ]
[ ]

2,2
2,2
2,2

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

New boxes per old box splitN  [ ]0 0 2 T
 

Initial upper bound on the minimum J  +∞  

1P
ε  +∞  

2Pε  +∞  Pε

3Pε  +∞  
Stopping criteria 

Jε  1.0e-3 

absε  0.1 
Hull consistency stopping criteria 

relε  0.05 

Table 5.11: Results (third-order parameterization). 

Designation Symbol Result Width 

Bounds on the minimum IJ  [ ]1.9994, 2.0003  8.7e-4 

1
IP [ ]2.0000, 1.9034− −  9.7e-2 

2
IP [ ]0.5789,0.0003−  5.8e-1 Bounds on the solution point IP

3
IP [ ]0.0005,0.5787−  5.8e-1 

1
IX [ ]1.0003, 0.9997− −  5.7e-4 

Bounds on the final state IX
2
IX [ ]0.0002,0.0002−  2.3e-4 

CPU time [ ]CPUt sΔ 4.3 N/A 

Number of remaining boxes remainingN  4744 N/A 

Therefore, more important than having sharp bounds on *P , is to have sharp bounds on *J . 

The maximal width of IJ  can be defined by the user through Jε . 

Note however that, as explained in Section 5.2.5, in all probability, p  will not be a feasible 
point with respect to the equality constraints. That is, in all probability, the final state will not 
be exactly reached if p  is used.  

By evaluating the final state at p : 



86  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( ), , , 1,...,
f fi f i ix p t x x i n⎡ ⎤= =⎢ ⎥⎣ ⎦

 (5-156) 

it is guaranteed that: 

 ( ) ( ) ( )( ) ( )( ){ }* * *, , max , , ,
f fi f i f i i f i f ix p t x P t x x P t x P t x− ≤ − −  (5-157) 

with 1,...,i n= . Therefore, another possible stopping condition for the dynamic optimization 
algorithm is: 

 ( )( ) ( )( ){ }* *max , , ,
f f ii i f i f i eqx x P t x P t x ε− − ≤  (5-158) 

with 1,...,i n=  and with the n  parameters 
ieqε  given by the user. A similar stopping 

condition is suggested in [Hansen and Walster, 2004].   

4) 2
IP  and 3

IP  are substantially wider than 1
IP . To understand why, Figure 5.3 is given. In 

it, the performance index J  is plotted as a function of 1P , 2P  and 3P  around *P . As can be 

seen, the slope of ( )1J P  around *P  is relatively higher than the slope of ( )2J P  and 

( )3J P . As a result, it is easier for the BB algorithm to find sharp bounds on *
1P  than on the 

other parameters. 

-4 -2 0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P1

J(
P 1)

P2=0 and P3=0

-2 0 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P2

J(
P 2)

P1=-2 and P3=0

-2 0 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P3

J(
P 3)

P1=-2 and P2=0

 

Figure 5.3: Performance index as a function of 1P , 2P  and 3P .  

5) Using the same inputs as before (see Table 5.10) together with 100shrinkingN =  and 

0.1shrinkingε = , adding a shrinking phase results in an increase of the CPU time from 



Chapter 5 | Dynamic Global Optimization  87 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

approximately 4.3s to 6.1s, for the same desired accuracy. Even with three parameters, it is 
still faster not to use a shrinking phase. 

6) In Table 5.12, CPUtΔ  is given as a function of splitN . All other inputs are kept constant 

(see Table 5.10). 

Table 5.12: CPU time as a function of splitN  in Example 3. 

Number of parameters 
being split 

New boxes per old box 

splitN  
CPU time 

[ ]CPUt sΔ  

[ ]2 0 0 T
 No convergence after 30s 

[ ]0 2 0 T
 3.7 1 

[ ]0 0 2 T
 4.3 

[ ]2 2 0 T
 4.7 

[ ]2 0 2 T
 No convergence after 30s 2 

[ ]0 2 2 T
 6.4 

3 [ ]2 2 2 T
 No convergence after 30s 

As predicted by rule of thumb (5-41), splitting just one parameter yields the fastest results. 

On the other hand, in Section 5.2.4 it is suggested that in this case, 3P  would be the best 

parameter to split, as a result of (5-150). However, Table 5.12 shows that the best results 
are obtained by splitting 2P  and not 3P . (5-151) and (5-152) show why. Splitting 2P  helps 

satisfying '
1 1P P⊂  but it makes it harder to satisfy '

2 2P P⊂ . Apparently here, the first effect 

has predominance. Nevertheless, splitting 3P , as suggested in Section 5.2.4, is almost as fast 

as splitting 2P , which makes it a good initial guess. 

It should be noted that the selection of splitN  should be done in strict connection with the 

selection of the HC equations used to prove feasibility, in this case, (5-151) and (5-152). It is 
not correct to say that a certain splitN  is always the best; only that a certain splitN  is the best 

with respect to a certain set of HC equations. 

7) To prove feasibility, two equations had to be chosen from the six HC equations (5-138)-

(5-149). Always keeping in mind that the chances of 'P P⊂  are higher if 'P  is much smaller 
than P , the two equations with the smallest coefficients multiplying 1P , 2P  and 3P  were 

chosen. It would be better if these coefficients were all smaller than one. 

 

5.6 Example 4 
 

Example 4 is formulated and solved in Appendix C. 

 



88  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

5.7 Example 5 
 

The only difference between Example 5 and Example 4 is that the state inequality constraint 
(5-166) is more restrictive in Example 5.  

Performance index: ( ) ( )( ) ( )
1

2

0

, , 0.5J x t u t t u t dt= ∫  (5-159) 

State dynamics: ( ) ( )1x t u t=�  (5-160) 

 ( ) ( )2 1x t x t=�  (5-161) 

Initial state: ( )1 0 1x =  (5-162) 

 ( )2 0 0x =  (5-163) 

Final state: ( )1 1 1x = −  (5-164) 

 ( )2 1 0x =  (5-165) 

State inequality constraint: ( )2 0.125 ,0 1x t t≤ ≤ ≤  (5-166) 

The analytical solution is given in [Bryson Jr. and Ho, 1975]: 

Optimal control function: ( )*

128 16 3,0
9 3 8

3 50 ,
8 8

128 80 5, 1
9 9 8

t t

u t t

t t

⎧ − ≤ ≤⎪
⎪
⎪= ≤ ≤⎨
⎪
⎪− + ≤ ≤⎪⎩

 (5-167) 

Global minimum: * 32 3.55556
9

J = �  (5-168) 

Example 5 has a higher global minimum *J  than Example 4 because (5-166) is more 
restrictive.  

 

5.7.1 Description of Chu’s algorithm 
 

The following parameterization is suggested in [Chu, 2007]:   



Chapter 5 | Dynamic Global Optimization  89 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( )
( ) [ ]

( ) [ ]

3 4 1

3 4 1 1

1 2

5 6 2 2

5 6 2

,0

,0 ,

0 ,

,0 ,

, 1

Pt P t P

Pt P P t P

u t P t P

P t P P t P

P t P P t

+ ≤ ≤⎧
⎪

+ ∩ −∞ < <⎪
⎪⎪= ≤ ≤⎨
⎪

+ ∩ −∞ < <⎪
⎪

+ ≤ ≤⎪⎩

 (5-169) 

with: 

 

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

0.35,0.40
0.60,0.65
13.0,15.0

8.0, 5.0
15.0, 13.0
8.0,10.0

initialP

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
− −⎢ ⎥

⎢ ⎥− −
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5-170) 

and: 

 * 3 5 128 16 128 80
8 8 9 3 9 9

T

P ⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (5-171) 

Note that it might happen that, for a particular box, 3 4 0Pt P+ >  for 1t P∈  and/or 

5 6 0Pt P+ >  for 2t P∈ . In that case, (5-169) will lead to ( )u t =∅ . 

This example was solved in [Chu, 2007] using the algorithm explained in Section 5.3.1.2 with 
the modifications enumerated in Section C.1.1. 

 

5.7.2 Description of the developed algorithm 
 

Without making further assumptions, the 6th order parameterization (5-169) can be rewritten 
as a 4th order parameterization as follows: 

 ( )

( )

3
3 1

1

1 2

4
4 2

2

,0

0 ,

1 , 1
1

P t P t P
P

u t P t P
P t P P t

P

−⎧ + ≤ ≤⎪
⎪⎪= ≤ ≤⎨
⎪
⎪ − + ≤ ≤
−⎪⎩

 (5-172) 

or in a more detailed form: 



90  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( )

( )

( ) ( )

( )

3
3 1

1

3
3 1 1

1

1 2

4
4 2 2

2

4
4 2

2

,0

0 ,

0 ,

0 1 ,
1

1 , 1
1

P t P t P
P

P t P P t P
P

u t P t P

P t P P t P
P

P t P P t
P

−⎧ + ≤ ≤⎪
⎪
⎪⎛ ⎞−

+ ∪ ≤ ≤⎪⎜ ⎟
⎝ ⎠⎪
⎪= ≤ ≤⎨
⎪

⎛ ⎞⎪ ∪ − + ≤ ≤⎜ ⎟⎪ −⎝ ⎠⎪
⎪

− + ≤ ≤⎪ −⎩

 (5-173) 

where: 

 * 3 5 16 16
8 8 3 3

T

P ⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (5-174) 

The meaning of 1P , 2P , 3P  and 4P  can be understood from Figure 5.4, where they are 

assumed to be point interval variables. 

0          1
 

 

 

 

 

 0

 

t [-]

u(
t) 

[-]

P1 P2

P3

P4

 

Figure 5.4: Illustration of the parameterization used to solve Example 5.  

By looking at (5-169) and (5-172), it is possible to relate Chu’s parameterization (identified by 

the superscript C ) with the one used in this thesis (superscript F ). 

 1 1
F CP P=  (5-175) 

 2 2
F CP P=  (5-176) 

 ( ) ( ) 3 40 0F C F Cu t u t P P= = = ⇔ =  (5-177) 

 ( ) ( ) 4 5 61 1F C F C Cu t u t P P P= = = ⇔ = +  (5-178) 



Chapter 5 | Dynamic Global Optimization  91 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

For the comparison with [Chu, 2007] to be valid, the initial box used in this thesis must be 
equivalent to Chu’s initial box. Therefore, (5-170) was inserted into (5-175)-(5-178) and the 
result was taken as the initial box used in this thesis: 

 

[ ]
[ ]
[ ]
[ ]

0.35,0.4
0.6,0.65

8, 5
7, 3

initialP

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 (5-179) 

Two interval equations can be deduced from the state dynamics and the initial and final state 
constraints. Integrating (5-160) yields: 

 

( )

( ) ( )
( ) ( )
( ) ( ) ( ) ( )

3
1 3 1

1

1 1 2

4
1 4 2

2

1 23
1 3 1

1

2
1 1 2

23 4
1 4 2

2

,0

0 ,

1 , 1
1

,0
2

,

1 , 1
2 1

Px u t P t P
P

x u P t P
Px u t P P t

P

Px t t P t A t P
P

x t B P t P
Px t t P t C P t

P

−⎧ = = + ≤ ≤⎪
⎪⎪ = = ≤ ≤⎨
⎪
⎪ = = − + ≤ ≤

−⎪⎩
⇔

−⎧ = + + ≤ ≤⎪
⎪⎪ = ≤ ≤⎨
⎪
⎪ = − + + ≤ ≤

−⎪⎩

�

�

�

 (5-180) 

The superscripts ( )
1

, ( )2
 and ( )3

 are used to identify the different phases.  

A , B  and C  can be determined by imposing the following conditions: 

 ( ) ( )1
1 0 1 1x A= ⇔ =  (5-181) 

 ( ) ( ) ( ) ( )1 2 3 1
1 1 1 1 1

2
P Px P x P B= ⇔ = +  (5-182) 

 ( ) ( )3
1 41 1 1x C P= − ⇔ = − −  (5-183) 

The first equation follows from equalizing the last two phases of (5-180) at 2t P= , i.e.: 

 ( ) ( ) ( ) ( )2 3
1 2 1 2x P x P=  (5-184) 

resulting in: 

 ( ) 3 1 4 2 4
1 2 0

2 2 2
P P P P Pq P − + − − =�  (5-185) 

On the other hand, integrating (5-161) yields:   



92  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

23
2 1 3 1

1

3 1
2 1 1 2

24
2 1 4 4 2

2

1 3 23 3
2 1

1

2 3 1
2 1 2

33 24 4
2 4 2

2

1 ,0
2

1 ,
2

1 1 , 1
2 1

,0
6 2

1 ,
2

1 1 , 1
6 1 2

Px x t P t t P
P

P Px x P t P

Px x t P t P P t
P

P Px t t t t D t P
P
P Px t t E P t P

P Px t t t P t F P t
P

−⎧ = = + + ≤ ≤⎪
⎪
⎪

= = + ≤ ≤⎨
⎪
⎪ = = − + − − ≤ ≤⎪ −⎩

⇔

⎧ −
= + + + ≤ ≤⎪

⎪
⎪⎪ ⎛ ⎞= + + ≤ ≤⎨ ⎜ ⎟

⎝ ⎠⎪
⎪

= − + + − − + ≤ ≤
−⎩

�

�

�

⎪
⎪

 (5-186) 

D , E  and F  can be determined by imposing the following conditions: 

 ( ) ( )1
2 0 0 0x D= ⇔ =  (5-187) 

 ( ) ( ) ( ) ( )
2

1 2 3 1
2 1 2 1 6

P Px P x P E= ⇔ = −  (5-188) 

 ( ) ( )3 4
2 1 0 1

2
Px D= ⇔ = +  (5-189) 

The second equation follows from equalizing the last two branches of (5-186) at 2t P= , i.e.: 

 ( ) ( ) ( ) ( )2 3
2 2 2 2x P x P=  (5-190) 

resulting in: 

 
22

3 1 3 1 24 2 4 2 4
2

22 1 0
3 3 3 6 2

P P P PPP P P P PP− + − + + + − =  (5-191) 

By combining (5-185) with (5-191), the latter can be simplified, resulting in: 

 ( )
22

3 14 2 4 2 4
2 1 0

6 6 3 6
P PP P P P Pq P − − + + =�  (5-192) 

HC was applied to (5-185) and to (5-192) in the following way (the intermediate intersection 
steps are not shown here):  

 

2
4

'
1

3

12
2 2

2

PP
P P

⎛ ⎞− + −⎜ ⎟
⎝ ⎠=  (5-193) 



Chapter 5 | Dynamic Global Optimization  93 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 

2
4 2

'
1

3

1 1 1
6 6 3

6

PP P
P P

⎛ ⎞⎛ ⎞+ − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=  (5-194) 

 

3 1

'
2

4

2
2 1

2

P P

P P

− −
= +

−
 (5-195) 

 

22
3 12

4
'

2
4

11
6 3 6

6

P PPP
P P

⎛ ⎞
+ − + +⎜ ⎟

⎝ ⎠=  (5-196) 

 
( )4 2'

3
1

1 4P P
P

P
− −

=  (5-197) 

 

2
4 2

'
3 2

1

1 11
6 6 3

6

PP P
P

P

⎛ ⎞⎛ ⎞− + + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=  (5-198) 

 

3 1

'
4

2

2
2

1
2 2

P P

P P

+
=

−
 (5-199) 

 

2
3 1

'
4

2
2

1
6

1 1
6 2 3

P P

P
PP

− −
=

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

 (5-200) 

The dependency effect was taken into account when writing (5-193)-(5-200).  

Since there are four parameters and just two equations, the procedure explained in Section 
5.2.2.2.4 based on an upper bound on the minimum has to be used. The first step is to prove 
the feasibility of a box P  with respect to the equality constraints. In order to apply Theorem 
4.1, two interval parameters have to be fixed. Since the initial bounds on 1P  and 2P  are 

relatively sharper than the initial bounds on 3P  and 4P  and following the suggestion given in 

Section 5.2.4, 1P  and 2P  were initially fixed. Then, the following procedure was used to prove 

feasibility:  

1) 1, 1( )mP m P=  (5-201) 

2) 2, 2( )mP m P=  (5-202) 



94  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

3) 

2,
4 2,

'
3 2

1,

1 11
6 6 3

6

m
m

m

P
P P

P
P

⎛ ⎞⎛ ⎞
− + + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠=  (5-203) 

4) 

'
3 1,

'
4

2,

2
2

1
2 2

m

m

P P

P P

+
=

−
 (5-204) 

5) If '
3 3P P⊂  and '

4 4P P⊂ , then Theorem 4.1 guarantees that there is a solution of (5-185) 

and of (5-192) inside ' ' '
1, 2, 3 4

T

m mP P P P P⎡ ⎤= ⎣ ⎦ . Thus, 'P  can be used to update J . 

Note that (5-203) and (5-204) are not affected by dependency. 

After a few tests, it became apparent that proving feasibility with the above procedure was not 
possible, reinforcing the idea that the suggestions given in Section 5.2.4 should not be taken 
as general rules. After some trial-and-error, the following procedure was devised: 

1) 1, 1( )mP m P=  (5-205) 

2) 3, 3( )mP m P=  (5-206) 

3) 

2
3, 1,

'
4

2
2

1
6

1 1
6 2 3

m mP P

P
PP

− −
=

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

 (5-207) 

4) 

3, 1,

'
2 '

4

2
2 1

2

m mP P

P
P

− −
= +

−
 (5-208) 

5) If '
4 4P P⊂  and '

2 2P P⊂ , then Theorem 4.1 guarantees that there is a solution of (5-185) 

and of (5-192) inside ' ' '
1, 2 3, 4

T

m mP P P P P⎡ ⎤= ⎣ ⎦ . Thus, 'P  can be used to update J . 

(5-208) is not affected by dependency but (5-207) is.  

Trial-and-error also showed that the above procedure yields good results with 

[ ]0 2 2 0 T
splitN = .   

Proving that 'P  is feasible with respect to the equality constraints (5-185) and of (5-192) is 

only the first step. 'P  must also be proven feasible with respect to the inequality constraint 

(5-166). So sharp bounds on ( )2x t  could be calculated, or in other words, to reduce the 

dependency effect, (5-186) was rewritten as follows: 



Chapter 5 | Dynamic Global Optimization  95 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )
( )

1
2 3 1

1

2 3 1
2 1 1

2
3 3 1 3 1

2 1 2

4 1 2 2
2 3 1 2 4 2 2 2

3
5

2 4
2

1 1 , 0,
6 2

1 ,
3

1 ,
2 6

2 1 1 ,
6 2 3 3 3

1
1

6 1 2

Tx T T PT T P
P

P Px t P t P

P P P Px t t P t P

P P Px t P P P P P P t P

T Tx T P
P

⎛ ⎞⎛ ⎞ ⎡ ⎤= − + + =⎜ ⎟⎜ ⎟ ⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

⎛ ⎞= + − ≤ ≤⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + ∪ − + − + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

− ⎛= + −
− ⎝

2
1 1 , ,1
2

T T T P

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪ ⎛ ⎞⎞⎪ ⎡ ⎤⎜ ⎟+ − + =⎜ ⎟ ⎣ ⎦⎪ ⎜ ⎟⎠⎝ ⎠⎩

 (5-209) 

Note that ( ) ( )3
2x t  is a linear function of t . Therefore, it is not necessary to check if: 

 ( ) ( )3
2 0.125x t ≤  (5-210) 

for every 1 2P t P≤ ≤ . It is enough to check if ( ) ( )2
2x t  and ( ) ( )4

2x t  satisfy the inequality 

constraint. 

To reduce the dependency effect due to T  in the calculation of ( ) ( )1
2x T  and ( ) ( )5

2x T , the 

time intervals 10, P⎡ ⎤⎣ ⎦  and 2 ,1P⎡ ⎤⎣ ⎦  were divided in ineqN  subintervals each, as explained in 

Section 5.2.2.1. 

In Example 4, ineqN  is chosen as a (big) constant. As a consequence, during the first cycles 

of the algorithm, when the bounds on the parameters are still wide, an unnecessarily high 
effort is put on splitting the time intervals T : there is no point in dividing the time intervals 
T  in very sharp subintervals if the bounds on the parameters are still relatively wide. 
Therefore, ineqN  should be dynamically chosen every cycle taking into account how sharp are 

the bounds on the parameters. While the idea itself makes sense, many different formulas can 
be suggested for ineqN . After some trial-and-error, ineqN  was empirically defined as follows: 

 
( )( )
( )( )( )

mean
round , 1,...,

max mean

10

i

i
ineq i

jj i

w T
N j l

w P

⎛ ⎞
⎜ ⎟
⎜ ⎟

= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (5-211) 

where the function ( )round x  rounds x  to the nearest integer. i
jP  represents the j -th 

parameter of the i -th box. The function mean
i

 calculates the mean value with respect to all 

the boxes. 



96  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Example 4 can be solved in 284s, instead of the 554s showed in Table C.4, by substituting 

1000ineqN =  with (5-211) using 10,T P⎡ ⎤= ⎣ ⎦ . 

Example 5 is solved using (5-211) with 10,T P⎡ ⎤= ⎣ ⎦ . The time interval 2 ,1P⎡ ⎤⎣ ⎦  is divided in 

the same number of subintervals as 10, P⎡ ⎤⎣ ⎦ .   

(5-209) is used both for proving feasibility of a box 'P  and for proving infeasibility of a box 
P  with respect to the inequality constraint. 

The performance index can be calculated as follows: 

( )

( )

1 1

1

2

1

221
2 3 3

3 3
1 10 0

1 2

2

0.5 0.5 0.5 0

0.5 0

st nd

P P

P

parcel parcel

P

P

P PJ u dt t P dt t P dt
P P

dt

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
= = + + + ∪ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

+

∫ ∫ ∫

∫

����	���
 ������	�����


( ) ( ) ( )
2

2 2

2 21
4 4

4 4
2 2

543

0.5 0 1 0.5 1
1 1

ththrd

P

P P

parcelparcelparcel

P Pt P dt t P dt
P P

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ ∪ − + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
∫ ∫

�����	����
�������	������
��	�


 (5-212) 

The first and fifth parcels were calculated analytically. The second and the fourth were 
calculated using the rectangular method with int 1N = .  

( )
( )

( )
( )

( )( )

2 2 22 2
1 3 1 1 1 1 3 4

1 3 1 2 4 22
1 1 2

1 2 4

2
22 4 2

2 2 2 2 22
2

5

3 3
0.5 0.5 1

6 1

1
3 3 1 1

6 1

st nd th

th

parcel parcel parcel

parcel

P
J

P P P P P P PP P P P P P
P P P

P P
P P P P P

P

=
− + ⎛ ⎞ ⎛ ⎞−

+ + + − + −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−
− − + + + +

−

�����	����
 ����	���
 �����	����


���������	��������


 (5-213) 

Note that: 

 3
3 1

1

0 ,P t P t P
P

∈− + =  (5-214) 

and: 

 ( )4
4 2

2

0 1 ,
1

P t P t P
P

∈ − + =
−

 (5-215) 

were used to write (5-213). Dependency was also taken into account when writing (5-213).  

 

 



Chapter 5 | Dynamic Global Optimization  97 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

5.7.3 Comparing the algorithms 
 

The inputs given to the developed algorithm are shown in Table 5.13. 

Table 5.13: User inputs in Example 5. 

Designation Symbol Value 

New boxes per old box splitN  [ ]0 2 2 0 T
 

Initial upper bound on the minimum J  +∞  

1P
ε  +∞  

2Pε  +∞  

3Pε  +∞  
Pε

4Pε  +∞  

Stopping criteria 

Jε  1.29e-1 

absε  0.01 
Hull consistency stopping criteria 

relε  0.05 

In Table 5.14, the results produced by the developed algorithm are compared with the 
sharpest results presented in [Chu, 2007]. 

Table 5.14: Comparative results for Example 5. 

  The developed algorithm Chu’s algorithm 

Designation Symbol Result Width Result Width

Bounds on the 
minimum 

IJ  [ ]3.46,3.59  1.2e-1 [ ]3.48,3.62  1.3e-1 

1
IP  [ ]0.350,0.391  4.1e-2 [ ]0.3500,0.357  6.3e-3 

2
IP  [ ]0.609,0.651  4.1e-2 [ ]0.605,0.650  4.5e-2 

3
IP  [ ]5.63, 5.21− −  4.1e-1 [ ]13.5,14.8  1.2 

4
IP  [ ]5.64, 5.20− −  4.4e-1 [ ]5.44, 5.24− −  1.9e-1 

5
IP  N/A N/A [ ]13.88, 13.59− −  2.8e-1 

Bounds on the 
solution point 

IP  

6
IP  N/A N/A [ ]8.34,8.63  2.8e-1 

CPU time [ ]CPUt sΔ  134 (≈2m) N/A 4580 (≈1h16m) N/A 

Number of 
remaining boxes remainingN  3893 N/A 6158 N/A 

While the developed algorithm correctly bounds *P , Chu’s algorithm does not. Furthermore, 
the developed algorithm is approximately 34 times faster. 

The following comments are in order: 

1) Unlike in Example 4, here, the initial bounds on the two intervals representing time, 1P  

and 2P , were successfully reduced. Most probably, due to the adequateness of (5-193)-

(5-196).  



98  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

2) Like in Example 4, no box P  containing *P  can ever be proved feasible with respect to 

the inequality constraint. To understand why, the limit case is considered: *P P= . By 

replacing P  with *P  in (5-209) for *
1 0.375t P= = , for example, one would obtain: 

 ( ) [ ]*
2 1 2 20.375 , 0.124999,0.125001x t P X X⎡ ⎤= = = =⎣ ⎦  (5-216) 

Since the number 0.125 cannot be exactly represented in a computer, outward rounding must 

be used. (5-216) is the sharpest non-thin interval containing 0.125. Since 2 0.125X > , 
*P P=  cannot be proved feasible with respect to the inequality constraint. Moreover, due to 

fundamental theorem of interval analysis (see (3-42)), no box containing *P  can ever be 
proved feasible with respect to the inequality constraint. This makes calculating sharp bounds 

on *J  and *P  a lot harder. 

3) Using the same inputs as before (see Table 5.13) together with 100shrinkingN =  and 

0.1shrinkingε = , adding a shrinking phase results in an increase of the CPU time from 

approximately 134s to 408s, for the same desired accuracy. Even with four parameters, it is 
still faster not to use a shrinking phase. 

4) Using the same inputs as before (see Table 5.13), using 1000ineqN =  instead of (5-211) 

results in an increase of the CPU time from approximately 134s to 293s, for the same desired 
accuracy. 

5) In Table 5.15, CPUtΔ  is given as a function of splitN . All other inputs are kept constant 

(see Table 5.13). 

As predicted by rule of thumb (5-41), splitting two parameters yields the fastest results. It is 
also interesting to see that 1P  and 2P  are the best parameters to split, as they both represent 

time. This was already seen in Example 4, where 1P , the only parameter representing time, 

must be split to solve the problem as fast as possible, as shown in Table C.5. 

6) As said before, in most real life applications, a point p  must be selected from IP . This 

will now be done. Since JJ < , p  is chosen as the midpoint of the box where the last upper 

bound on the minimum J  was calculated, as explained in Section 5.2.5. This yields the 
following point: 

 [ ]0.3766 0.6304 5.3269 5.3940 Tp = − −  (5-217) 

The control function and the states of the system produced by the approximate solution p  

and by the optimal solution point *P  can be plotted together by substituting P  with p  and 
*P  in (5-172), (5-180) and (5-186). This is done in Figure 5.5, Figure 5.6 and Figure 5.7.  

A first naked eye analysis of the figures shows an apparently good correspondence between 

the plots generated by p  and *P . A closer examination also shows that: 

i) the control function ( ),u p t  is continuous for 0 1t≤ ≤ . This condition was used to write 

(5-172). 



Chapter 5 | Dynamic Global Optimization  99 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

ii) ( )1 ,x p t  and ( )2 ,x p t  start and end exactly at the prescribed initial and final states. The 

initial and final states were used to write (5-180) and (5-186). 

Table 5.15: CPU time as a function of splitN  in Example 5.  

Number of parameters 
being split 

New boxes per old box 

splitN  
CPU time 

[ ]CPUt sΔ  

[ ]2 0 0 0 T
 No convergence after 500s 

[ ]0 2 0 0 T
 No convergence after 500s 

[ ]0 0 2 0 T
 No convergence after 500s 

1 

[ ]0 0 0 2 T
 No convergence after 500s 

[ ]2 2 0 0 T
 85 

[ ]2 0 2 0 T
 No convergence after 500s 

[ ]2 0 0 2 T
 No convergence after 500s 

[ ]0 2 2 0 T
 134 

[ ]0 2 0 2 T
 418 

2 

[ ]0 0 2 2 T
 No convergence after 500s 

[ ]2 2 2 0 T
 198 

[ ]2 2 0 2 T
 No convergence after 500s 

[ ]2 0 2 2 T
 No convergence after 500s 

3 

[ ]0 2 2 2 T
 451 

4 [ ]2 2 2 2 T
 No convergence after 500s 

iii) ( )1 ,x p t  and ( )2 ,x p t  are continuous at 1t p= . This condition was used to write (5-180) 

and (5-186). 

iv) ( )1 ,x p t  and ( )2 ,x p t  are discontinuous at 2t p=  since p  does not exactly satisfy 

(5-185) and (5-192). As explained in Section 5.5.3, it is guaranteed that:  

 ( ) ( ) ( ) ( ) ( )( )2 3
1 2 1 2 1, ,x p t p x p t p mag q p= − = ≤  (5-218) 

 ( ) ( ) ( ) ( ) ( )( )2 3
2 2 2 2 2, ,x p t p x p t p mag q p= − = ≤  (5-219) 

In this particular case: 

 ( )( )1 5.1 8mag q p e= −  (5-220) 



100  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

0 0.2 0.4 0.6 0.8 1
-6

-5

-4

-3

-2

-1

0

1

t [-]

u(
t) 

[-]

P*

p

 

Figure 5.5: Control function for p  and *P . 

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

t [-]

x 1(t)
 [-

]

P*

p

 

Figure 5.6: First state for p  and 
*P . 

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t [-]

x 2(t)
 [-

]

P*

p

 

Figure 5.7: Second state for p  and 
*P . 



Chapter 5 | Dynamic Global Optimization  101 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( )( )2 2.4 6mag q p e= −  (5-221) 

Two new stopping conditions for the dynamic optimization algorithm can be suggested based 
on (5-218) and (5-219): 

 ( )( )
11 eqmag q p ε≤  (5-222) 

 ( )( )
22 eqmag q p ε≤  (5-223) 

where the parameters 
1eqε  and 

2eqε  would be given by the user. 

Now, it should be easier to understand point 5) of Section C.2.3.  

v) ( )2 ,x p t  satisfies the inequality constraint (5-166).  

Moreover, it is guaranteed that: 

 ( ) ( )*, J 1.2 1I
JJ p t J J w J e ε− ≤ − = = − ≤  (5-224) 

This is indeed true as: 

 ( ) *, 1.8 2J p t J e− = −  (5-225) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102  Chapter 5 | Dynamic Global Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 



Part II | Terminal Area Energy Management Trajectory Optimization 103 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part II | Terminal Area Energy Management 
Trajectory Optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104  Part II | Terminal Area Energy Management Trajectory Optimization 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 



Chapter 6 | The TAEM Phase  105 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 6 | The TAEM Phase 
 

In its descent flight, a Reusable Launch Vehicle (RLV) undergoes three phases: 

1) The Atmospheric Re-entry Phase; 

2) The Terminal Area Energy Management (TAEM) Phase; 

3) The Landing Phase. 

The initial condition of the Atmospheric Re-entry Phase is normally a low-Earth orbit. During 
this phase, the RLV decelerates to approximately Mach 2.5. The vehicle’s maximum heat load 
and maximum heat rate are the main design drivers during this phase. 

The TAEM phase is in charge of managing the vehicle’s kinematic and potential energies and, 
at the same time, aligning the vehicle with the runway. The start of the TAEM phase is 
commonly referred to as the Terminal Entry Point (TEP) and its end as the Auto-Landing 
Interface (ALI). 

At the start of the landing phase, around Mach 0.5, the total energy of the vehicle should 
already be consistent with a safe landing. During the landing phase, the vehicle transits from a 
steep glideslope to a shallow glideslope, before finally landing on the runway. 

During this study, the focus will be on the TAEM phase. Figure 6.1 shows how the TAEM 
phase fits between the re-entry and the landing phase and shows typical altitude ( h ) and 
Mach number ( M ) values at TEP and ALI found in literature, e.g., [Moore, 1991], [Mayanna 
et al., 2006] and [Chartres et al., 2005b], for different RLVs. These values are shown here to 
give the reader a feeling of the problem. 

Runway

ALI

TEP
Re-entry

TAEM

Landing

[ ]
[ ]

1.5,2.5

15,30
TEP

TEP

M

h km

=

=

[ ]
[ ]

0.4,0.6

1.5,3
ALI

ALI

M

h km

=

=

 

Figure 6.1: The TAEM phase. 

During the TAEM phase, as the vehicle’s velocity decreases from supersonic ( 1M > ) to 
subsonic ( 1M < ), the RLV undergoes the so-called transonic flight regime ( 1M ≈ ). The 
transonic flight regime is characterised by a rapid change of the vehicle’s aerodynamic 
characteristics. This, and the fact that RLVs are typically bad gliders, i.e., they typically have 
low lift-to-drag ratios ( /L D ), makes TAEM trajectory design a challenging task [Câmara, 
2003]. 

In this chapter, a brief introduction to the TAEM trajectory design problem is given. First, the 
Space Shuttle’s TAEM guidance strategy and the most recent advances in this field are 



106  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

described. Then, the equations of motion modelling the movement of a RLV during the TAEM 
phase are derived. 

 

6.1 The Space Shuttle’s TAEM Guidance 
 

As far as the author knows, the only TAEM guidance strategy fully operational today is the one 
of NASA’s Space Shuttle. The trajectory is composed by four different branches/phases 
[Moore, 1991], as depicted in Figure 6.2.  

 

Figure 6.2: Space Shuttle TAEM guidance phases. 

The Space Shuttle’s TAEM guidance scheme is based on four Heading Alignment Cylinders (in 
earlier versions) or Cones (in more recent versions), also known as HACs. These HACs, which 
are illustrated in Figure 6.2, are classified as overhead or straight-in and as nominal entry 
point or minimum energy point. Depending on the vehicle’s energy at TEP, the pilot can 
choose which HAC to fly.  

Overhead

Straight-in

Nominal 
Entry 
Point

Minimum 
Energy 
Point

Runway

Approach Direction
 

Figure 6.3: Space Shuttle’s HACs. 

The Space Shuttle’s TAEM guidance phases are the following: 

Phase 1 -  Energy dissipation S-turn: if the vehicle’s energy at TEP is too high, an initial S-
turn is performed to dissipate the excess energy at maximum bank angle. 



Chapter 6 | The TAEM Phase  107 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Phase 2 - HAC acquisition: the vehicle’s heading angle, χ , is changed until its tangent to 
the HAC. 

Phase 3 - HAC: the vehicle is aligned with the runway by following a cylinder or a cone. The 
vehicle describes a spiral trajectory. The radius of the cylinder/cone can be 
changed.   

Phase 4 - Prefinal: straight flight until the auto-landing glide slope is intercepted. 

The lateral and the longitudinal motions are treated separately by the Shuttle’s TAEM guidance 
system (only the lateral motion has been mentioned so far). The longitudinal guidance consists 
basically on predefined altitude and dynamic pressure reference profiles. The altitude 
reference profile is composed by two linear segments and one cubic segment, while the 
dynamic pressure reference profile is composed by two limited linear segments, as depicted in 
Figure 6.4:  

 

Figure 6.4: Space Shuttle’s TAEM guidance longitudinal reference profiles. 

The flight-path angle reference is obtained by differentiating the altitude reference profile. 

Three loops are used by the Space Shuttle’s TAEM path controller to follow the longitudinal 
and the lateral reference profiles: 

1) An angle-of-attack controller; 

2) A bank angle controller. 

3) An energy/velocity/dynamic pressure controller (using the speedbrakes as actuator).  

In the calculation of the nominal reference trajectories, the speedbrakes are assumed to be 
partially deployed during the subsonic flight regime. The speedbrakes deflection can be further 
increased or decreased in-flight to compensate for disturbances [Costa, 2003]. 

The reader is referred to [Moore, 1991] for more details about the Space Shuttle’s TAEM 
guidance system. 

 

6.2 State-Of-The-Art 
 

Hereafter, a quick overview of the current status of TAEM trajectory design is presented. 

 

 



108  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Reference 
[Costa, 2003] COSTA, R. R. da, "Studies for Terminal Area GNC of 
Reusable Launch Vehicles", American Institute of Aeronautics and 
Astronautics, Paper 2003-5438, 2003. 

Overview 

In [Costa, 2003], Rodrigo da Costa decouples the longitudinal from the lateral motion. The 
longitudinal reference profile is defined exactly as the mid-corridor between the maximum dive 
and the maximum glide trajectories. The lateral reference profile is calculated from the 

constrained optimization of 
h
χ∂
∂

 parameterized as two cubic polynomials using the final distance 

to the target ALI and the final heading error as performance index. 

This method does not allow the final velocity at ALI to be specified by the user. 

 

Reference 

[Mayanna et al., 2006] MAYANNA, Anand, GRIMM, Werner, and WELL, 
Klaus H., "Adaptive Guidance for Terminal Area Energy Management 
(TAEM) of Reentry Vehicles", presented as paper AIAA 2006-6037 at 
the AIAA Guidance, Navigation, and Control Conference and Exhibit, 
Keystone, Colorado, 21-24 August 2006. 

Overview 

In [Mayanna et al., 2006], the longitudinal and the lateral motions are also decoupled. The 
longitudinal reference profile is chosen somewhat between the maximum dive and the maximum 
glide trajectories. However, unlike [Costa, 2003], the velocity and altitude boundary conditions 
at ALI are taken into account in the definition of the longitudinal reference profile. 

The lateral reference profile is defined by three circular arcs and three straight lines disposed 
like in Figure 6.5. 

a

 

Figure 6.5: Lateral reference profile suggested in [Mayanna et al., 2006]. 

The radius and the position of the three circles are fixed except for the distance a , which is 
calculated in order to make the length of ground track equal to the downrange of the 
predefined vertical reference profile. 

This algorithm is suitable for real-time on-board use. 

 

Reference 

[Chartres et al., 2005b] CHARTRES, J. T. A., GRÄBLIN, M. H., and 
SCHNEIDER, G., "Optimisation of the Terminal Flight Phase for a 
Future Reusable Launch Vehicle", presented as paper AIAA 2005-6060 
at the AIAA Guidance, Navigation, and Control Conference and Exhibit, 
San Francisco, 15-18 August 2005. 

Overview 

In [Chartres et al., 2005b], an optimized reference trajectory is calculated through a Nonlinear 
Programming (NLP) optimiser.  



Chapter 6 | The TAEM Phase  109 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

The optimization problem is characterized by: 

- Seven states: the six states from the complete three degrees of freedom equations of 
motion (longitudinal and lateral motions coupled) and the vehicle mass. 

- Three inputs: angle of attack, bank angle and speedbrake setting. 

- Several constraints: 

- Limited inputs. 

- Required initial and final states. 

- Limited lateral loads. 

- Limited heat flux and heat load. 

- Limited dynamic pressure. 

- Performance index: final state error. 

The drawbacks of using a NLP optimizer are: 

1) An initial guess must be supplied. 

2) The optimizer might converge to a local minimum. 

3) As a consequence of 1) and 2), the final solution might be dependent on the initial 
guess. 

[Chartres et al., 2005b] makes an interesting observation: during the optimizations, the 
solutions seem to follow some characteristic shapes. Figure 6.6 shows three such shapes taken 
from [Chartres et al., 2005b]. 

 

Figure 6.6: Characteristic shapes taken from [Chartres et al., 2005b].  

The RLV performs only two turns: one left turn followed by a right turn or vice-versa. 

 

Reference 

[Chartres et al., 2005a] CHARTRES, J., GRÄBLIN, M., and SCHNEIDER, 
G., "A New Method For Terminal Area Guidance For Future Reusable 
Launch Vehicles", presented as paper IAC-05-C1.8.05 at the 56th 
International Astronautical Congress, 2005. 

Overview 

In [Chartres et al., 2005a], the authors of [Chartres et al., 2005b] suggest an adaptation to 
their NLP guidance algorithm to make it suitable for real-time on-board use. 

An optimal reference trajectory is first calculated off-line and loaded into the RLV as an initial 
guess. During the TAEM flight, the on-board software updates the reference trajectory taking 
into account off-nominal conditions such as atmospheric disturbances, sensor errors and 
modelling errors. The new trajectory is kept as close as possible to the initial optimal solution. 



110  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Reference 
[Barton, 2002] BARTON, G. H., "New Methodologies For Onboard 
Generation Of TAEM Trajectories For Autonomous RLVs", presented at 
the Core Technologies for Space Systems Conference, 2002. 

Overview 

In [Barton, 2002], Barton presents two real-time methodologies fully coupling the longitudinal 
and the lateral motions. The first one is restricted to the subsonic flight regime and is based on 
a fixed number of geometric shapes. The longitudinal and the lateral geometries are shown in 
Figure 6.7. The required angle of attack and bank angle to keep the vehicle on the reference 
trajectory are adjusted via an iterative process referred to as balancing the dynamics. 

 

Figure 6.7: Longitudinal and lateral geometries taken from [Barton, 2002]. 

The second methodology does not rely on a predefined fixed geometry and is valid over the 
entire TAEM phase. First, a suboptimal dynamic pressure profile is selected satisfying both path 
(maximum dive and maximum glide) and final state constraints (final position and velocity). 
Then, the three-dimensional trajectory geometry is continuously adjusted from node to node via 
an iterative process (balancing the dynamics) to follow the specified dynamic pressure profile 
without violating the maximum loads supported by the vehicle. This methodology provides 
suboptimal solutions and is still in a development phase. The coupling between longitudinal and 
lateral motions is estimated. 

 

Reference 
[Burchett, 2004] BURCHETT, B. T., "Fuzzy Logic Trajectory Design and 
Guidance for Terminal Area Energy Management", Journal of 
Spacecraft and Rockets, Vol. 41, No. 3, May-June 2004. 

Overview 

In [Burchett, 2004], fuzzy logic methods are used to create real-time TAEM guidance systems 
which, in theory, can even cope with control surfaces failures. Guidance commands are 
generated for the bank angle and for the negative z -axis acceleration. 

Fuzzy logic methods can choose from a continuum of possible trajectory parameter values. They 
also allow multiple constraints and objectives to be balanced into a single decision.  

The lateral motion is based on a typical TACtical Air Navigation (TACAN) approach flown by 
military aircraft and shown in Figure 6.8. 

All the turns are designed as circular arcs. The only adjustable parameters are XHAC and YHAC, 
i.e., the centre of the HAC.  

The altitude reference profile is defined as a cubic polynomial with one arbitrary fixed 
coefficient and one adjustable coefficient. A linear velocity profile is used to predict the velocity 
at the beginning of the HAC. 

Some experience is required to tune the final fuzzy logic system via trial-and-error. The 
longitudinal and lateral motions are considered completely decoupled. 



Chapter 6 | The TAEM Phase  111 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 

Figure 6.8: Lateral geometry taken from [Burchett, 2004]. 

 

Reference 
[Vernis and Ferreira, 2006] VERNIS, P. and FERREIRA, E., "On-Board 
Trajectory Planner for the TAEM Guidance of a Winged-Body", EADS 
SPACE Transportation, 2006. 

Overview 

The method presented in [Vernis and Ferreira, 2006] is a real-time TAEM guidance system 
based on Buran’s (the Russian space shuttle) reference trajectory geometry shown in Figure 
6.9. The longitudinal and the lateral motions are considered fully coupled. 

 

Figure 6.9: Reference trajectory geometry of the Buran shuttle (taken from [Vernis and Ferreira, 2006]). Here, the 
acronym NEP (Nominal Entry Point) is used instead of ALI. 

The suggested TAEM planner performs the dynamic placement of a fixed length 3D curve 
between the TEP and the ALI points using only closed-form computations of some waypoints, 
i.e., without resorting to optimization techniques. The length of the curve is directly dependent 
on the energy level that needs to be dissipated. 

Two different tools are described in [Vernis and Ferreira, 2006]: one that given the ALI point 
and the HAC parameters calculates the TAEM entry gate, and another one that given the TEP 
and ALI points calculates the HAC parameters. 

The /L D  ratio is assumed constant during each TAEM sub-phase. 

 



112  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

6.3 The Equations of Motion 
 

This section is dedicated to the derivation of the equations of motion modelling the movement 
of a RLV during the TAEM phase. These equations have a set of assumptions associated with 
them, which are enumerated in Section 6.3. The coordinate systems in which the equations of 
motion are based are described and illustrated in Section 6.3.2. The models used to 
characterize the Earth’s atmosphere and the RLV’s aerodynamic behaviour are specified in 
Sections 6.3.3 and 6.3.4, respectively. Ultimately, the equations of motion are mathematically 
derived in Section 6.3.5. 

 

6.3.1 Assumptions 
 

To reduce the computation load, simpler models are normally used during the so-called 
Optimization Phase. Afterwards, more sophisticated and accurate models are used to verify 
and validate the solutions in what is typically called the Simulation Phase.  

The equations of motion used during the Simulation Phase take into account the following 
assumptions: 

1) The vehicle is assumed to be a point mass. 

2) The gravity acceleration is assumed to be constant. 

3) The Earth is assumed to be flat, non-rotating and inertial. 

4) All the turns are assumed to be coordinate turns, i.e., there are no aerodynamic side 
forces since the sideslip angle β  is assumed to be zero. 

5) The wind velocity is assumed to be negligible. 

6) The mass of the vehicle is assumed to be constant. 

 

6.3.2 Coordinate Systems 
 

Before the equations of motion can be derived, four coordinate systems need to be defined: 
the runway reference frame, the local-horizontal local-vertical reference frame, the kinematic 
reference frame and the body-fixed reference frame.  

 

6.3.2.1 Runway Reference Frame 
 

The Runway Reference Frame ( )ALIxyz  is illustrated in Figure 6.10: 



Chapter 6 | The TAEM Phase  113 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

ALI

x

y
z

Runway

gG

 

Figure 6.10: Runway Reference Frame. 

where: 

- ALI is the Auto-Landing Interface point; 

- x  is aligned with the runway’s centreline; 

- z  is aligned with the gravity’s acceleration vector; 

- y  completes the right-orthogonal reference frame. 

The runway reference frame inherits the same properties assumed for planet Earth: flat, non-
rotating and inertial. 

 

6.3.2.2 Local-Horizontal Local-Vertical Reference Frame 
 

The Local-Horizontal Local-Vertical Reference Frame ( )h h hGx y z  has the same orientation has 

the runway reference frame but has its origin at the vehicle’s centre of mass G , as illustrated 
in Figure 6.11: 

x

y
z

gG

hx

hy
hz

G

 

Figure 6.11: Local-Horizontal Local-Vertical Reference Frame. 

 



114  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

6.3.2.3 Kinematic or Flight-Path Reference Frame 
 

The equations of motion are written with the help of the so-called Kinematic or Flight-Path 
Reference Frame ( )k k kGx y z  [Mulder et al., 2007]. The flight-path reference frame is 

associated with the vehicle’s ground velocity or flight-path velocity kV
G

, i.e., with the vehicle’s 

velocity relative to the ground. The relation between the flight-path reference frame and the 

local-horizontal local-vertical reference frame ( )h h hGx y z  is illustrated in Figure 6.12 where: 

- kx  has the same direction as kV
G

; 

- kz  is in the vehicle’s symmetry plane and points downwards; 

- ky  completes the right-orthogonal reference frame; 

- rχ  (or simply χ ) is the vehicle’s heading relative to the runway centreline; 

- γ  is the vehicle’s flight-path angle; 

- kμ  is the flight-path bank angle. 

hx
hy

hz

rχ−
rχ−

kμ

kμ
ky kz

kx
kV
G

γ

γ

Horizontal 
plane

Vertical 
plane

Vehicle’s 
symmetry plane

G

k kGy z plane

L
G

D
G

W
G

 

Figure 6.12: Relation between the Flight-Path Reference Frame and the Local-Horizontal Local-Vertical Reference 
Frame (figure adapted from [Mulder et al., 2007]). 



Chapter 6 | The TAEM Phase  115 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

6.3.2.4 Body-Fixed Reference Frame 
 

The angle-of-attack (α ) and the sideslip angle ( β ) are defined using the Body-Fixed 

Reference Frame ( )b b bGx y z . The relation between the body-fixed reference frame and the 

flight-path reference frame ( )k k kGx y z  assuming no wind is illustrated in Figure 6.13 where: 

- bx  is in the vehicle’s symmetry plane and points forward; 

- bz  is in the vehicle’s symmetry plane and points downwards; 

- by  completes the right-orthogonal reference frame. 

If there is no wind, the airspeed velocity vector aV
G

 is equal to the flight-path velocity vector 

kV
G

. V
G

 will be used to denote both them. 

kV
G

bx

by

bz
kx

kz
α

α
β

ky

β
G

 

Figure 6.13: Relation between the Body-Fixed Reference Frame and the Flight-Path Reference Frame. 

 

6.3.3 Atmospheric Model 
 

To reduce the computational load, the simple and time-invariant Exponential Atmospheric 
Model is used to simulate the atmosphere. The exponential model assumes that the air density 
ρ  decreases exponentially with increasing altitude [Vallado, 2007] as follows: 

 ( ) 0
0 exp h hh

H
ρ ρ −⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (6-1) 



116  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

where 0ρ  is the air density at the reference altitude 0h  and H  is the so-called scale height. 

These parameters are given in [Vallado, 2007] for different altitude ranges. The numerical 
values assumed for 0ρ , 0h  and H  are shown in Table 6.1. These values are the ones given 

in [Vallado, 2007] for an altitude range going from 0 to 25 km. This altitude range covers 
almost completely the altitude range flown during the TAEM phase. 

Table 6.1: Parameters of the Exponential Atmospheric Model. 

Parameter Symbol Value 

Reference altitude 0h  0 km 

Reference density 0ρ  1.225 kg/m3 

Scale height H  7.249 

The speed of sound a  is assumed to be constant and equal to 340.29 m/s, the value at mean 
sea level according to the 1976 Standard Atmosphere Model. Since the speed of sound is 
strongly dependent on temperature, assuming a constant speed of sound is essentially 
equivalent to assuming an isothermic atmosphere. 

 

6.3.4 Vehicle Model 
 

In this study, the only aerodynamic forces considered are the lift ( L ) and the drag ( D ). The 
sideslip angle β  is assumed to be zero at all times, i.e., the aerodynamic side forces ( Y ) 

along the ky -axis are assumed to be zero. 

Many authors (e.g., [Chu, 2007], [Câmara, 2003], [Vrijbergen, 2004], [Barton and Tragesser, 
1999], [Mayanna et al., 2006] and [Costa, 2003]) assume that the aerodynamic lift and drag 
coefficients, respectively: 

 L
LC
qS

=  (6-2) 

 D
DC
qS

=  (6-3) 

where S  is some reference area, typically the wing area, and q  is the dynamic pressure, 
given by: 

 21
2

q Vρ=  (6-4) 

are only dependent on the angle-of-attack α  and on the Mach number M , given by: 

 
VM
a

=  (6-5) 

The same assumption is made in this thesis. 

In theory, the current TAEM tool is not limited to a specific RLV. The software should be able 
to calculate proper reference trajectories for any vehicle given their mass ( m ), reference area 



Chapter 6 | The TAEM Phase  117 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

( S ), aerodynamic coefficients ( ( ),LC Mα  and ( ),DC Mα ) and minimum and maximum 

trimmable angles-of-attack: ( )min Mα  and ( )max Mα , respectively. Additionally, the tool is 

prepared to receive the following vehicle-dependent inputs: 

- the vehicle’s maximum supported dynamic pressure: maxq ; 

- the vehicle’s minimum supported load factor along the negative z -body axis: ,minzn  

- the vehicle’s maximum supported load factor along the negative z -body axis: ,maxzn  

In practice, the HORUS-2B (Hypersonic Orbital Research and Utilization System) illustrated in 
Figure 6.14 was the only spacecraft used during the tool’s prototyping.  

 

Figure 6.14: The HORUS spacecraft shown on top of the Sänger (taken from [Space Services Koellen, 2008]). 

The HORUS-2B was originally developed by the German company Messerschmitt-Bölkow-Blohm 
(MBB) as a fully reusable second stage for the Ariane-5 launcher [Mooij, 1998]. The initial 
design was essentially unpowered, apart from a deorbitation engine and some attitude-control 
thrusters. Later on, a rocket engine was added and HORUS became the second stage of 
Sänger, the German TSTO (Two-Stage-To-Orbit) flag vehicle, also represented in Figure 6.14. 
The original winged, unpowered re-entry vehicle design is used in this study. 

The HORUS control surfaces are schematically represented in Figure 6.15. The rudders can 
only move outwardly, which means that only one rudder is moved at a time during yaw 
manoeuvres. Deflecting both rudders at the same time results in the so-called speedbrake 
function. 

The aerodynamic database of the HORUS-2B was gently provided by Dr. Erwin Mooij of the 
Delft University of Technology, Faculty of Aerospace Engineering. It is based on figures shown 
in [MBB, 1988]. The numerical values of the supersonic and hypersonic regimes are given in 
[Mooij, 1995].  



118  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Top view
Right rudder

Right elevon

Body flap

Left elevon

Left rudder
 

Figure 6.15: Control surfaces of the HORUS-2B (taken from [Mooij, 1998]). 

In the aerodynamic database provided by Dr. Mooij, the trimmed supersonic, transonic and 
subsonic aerodynamic lift and drag coefficients are given in the format of lookup tables as a 
function of α  and M . Also given are: 

- the subsonic aerodynamic drag coefficient increase due to the deflection of the left 
rudder as a function of its deflection angle ,r lδ  and M ; 

- the aerodynamic drag coefficient decrement due to altitude as a function of h  and M . 

These last two effects were not considered as they were deemed neglectable. 

In this study, the speedbrake function, which corresponds to deflecting both rudders at the 
same time by rδ  degrees, is not considered, in order to simplify the trajectory generation 

problem. Ideally, rδ  should also be treated as a time-variant control function and its optimal 

time-history should also be calculated by the optimization process. 

In Figure 6.16, the lift-over-drag ratio L

D

CL
D C=  of the HORUS-2B RLV is plotted as a 

function of α  and M . Linear interpolation will recurrently be used to fill up the gaps. 

Figure 6.16 shows why one of the usual requirements imposed on the TAEM phase is a fast 
sonic transition [Costa, 2003]: 

- Like most RLVs, the HORUS-2B has worse gliding capabilities, i.e., a smaller L
D , 

during the supersonic regime. 

- During the transonic regime, it is harder to trim the vehicle, as can be seen from the 
small α  corridor around 1M = . 

Another component of the HORUS-2B aerodynamic database is the minimum and maximum 
trimmable α  as a function of M . These bounds are illustrated in Figure 6.17.  

The re-entry mass m  and wing area S  of the HORUS-2B are given in Table 6.2 [Mooij, 
1998]. 



Chapter 6 | The TAEM Phase  119 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

0
1

2
3

4
5 0

10
20

30
40

50

-1

0

1

2

3

4

α (deg)M (-)

L/
D

 (-
)

 

Figure 6.16: Lift-over-drag ratio of the HORUS-2B. 

0 1 2 3 4 5 6
-5

0

5

10

15

20

25

30

35

40

45

50

M (-)

α 
(d

eg
)

 

 
lower bound
upper bound

 

Figure 6.17: Minimum and maximum allowed angle-of-attack. 

Table 6.2: HORUS-2B main characteristics. 

Parameter Symbol Value 

Re-entry mass m  26,029 kg 

Wing area S  110 m2 

Due to the unavailability of more representative values, the path constraints assumed for the 
HORUS are the ones specified in [Chartres et al., 2005b] for the Hopper RLV. These values are 
given in Table 6.3. 



120  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Table 6.3: Path constraints assumed for the HORUS-2B. 

Parameter Symbol Value 

Maximum dynamic pressure maxq  40 kPa 

Minimum load factor along the negative z -body axis ,minzn  -0.75 g 

Maximum load factor along the negative z -body axis ,maxzn  2.5 g 

 

6.3.5 Derivation of the Equations of Motion 
 

All the blocks necessary to derive the equations of motion have now been described: the 
assumptions, the coordinate systems, the atmospheric model and the vehicle model. 

Under the assumptions presented in Section 6.3.1, the only external forces acting on the 

vehicle are the aerodynamic force and the gravitational force W
G

. The aerodynamic force can 

be decoupled into two components: one with the same direction as aV
G

, the drag force D
G

, and 

another one perpendicular to aV
G

, the lift force L
G

. These forces are represented in Figure 

6.18.  

Vertical Plane

HorizontalV
er

tic
alPerp

en
dic

ula
r

W
G

γ
kV
G

D
G

L
G

γ kμ

γ

rχ
G
�

 

Figure 6.18: External forces acting on the vehicle. 

Applying Newton’s second law: 



Chapter 6 | The TAEM Phase  121 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 F ma=
G G

 (6-6) 

where F
G

 is the vector sum of all external forces and aG  is the acceleration of the centre of 
mass G  with respect to the inertial reference frame (the runway reference frame in this case) 
to the configuration shown in Figure 6.18 results in three equations describing the dynamics 
of the system: 

 sinDV g
m

γ= − −�  (6-7) 

 
1 cos cosk

L g
V m

γ μ γ⎛ ⎞= −⎜ ⎟
⎝ ⎠

�  (6-8) 

 
sin

cos
k

r
L

mV
μχ
γ

=�  (6-9) 

In addition, three kinematic equations rise from the coordinate transformation of the velocity 

vector V
G

 from the flight-path reference frame to the runway reference frame: 

 cos cos rx V γ χ=�  (6-10) 

 cos sin ry V γ χ=�  (6-11) 

 sinh z V γ= − =� �  (6-12) 

The equations of motion (6-7)-(6-12) can be rewritten in a more useful form by: 

1) Substituting L  and D  by ( ),LC Mα  and ( ),DC Mα  via (6-2) and (6-3). 

2) Substituting the velocity V  by the dynamic pressure q  via (6-4). This change is 
defended in [Barton and Tragesser, 1999], [Costa, 2003] and [Barton, 2002] due to 
three reasons: 

- The equations of motion become better behaved since dynamic pressure is a more 
slowly varying parameter than velocity. 

- The dynamic pressure path constraint can be directly imposed on the optimization 
problem. 

- Controllers based on dynamic pressure are more extensively available in literature 
than flight path velocity controllers [Costa, 2003]. 

3) Substituting time by altitude as independent variable via (6-12). This change is 
defended in [Barton and Tragesser, 1999], [Costa, 2003] and [Barton, 2002] due to 
two reasons: 

- It is easier to define the integration stopping condition in terms of altitude than in 
terms of time since it is the altitude and not the duration of the TAEM phase that 
is limited. 

- The time history of the trajectory is of little concern. 

Applying these changes to (6-7)-(6-12) yields the following equations of motion:  



122  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 
1

sin
DSCdq d q g

dh dh m
ρρ ρ

ρ γ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 (6-13) 

 
cos cos

2sin
L kC Sd g

dh m q
μγ ρ γ

γ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (6-14) 

 
( )
sin

sin 2
L kr SCd

dh m
ρ μχ

γ
=  (6-15) 

 
cos
tan

rdx
dh

χ
γ

=  (6-16) 

 
sin
tan

rdy
dh

χ
γ

=  (6-17) 

 
1

2 sin

dt
dh q γ

ρ

=  (6-18) 

Using altitude as independent variable also has its own problems: a singularity at 0γ =  
appears which did not exist in the time formulation. To have the best of both worlds, a new 
independent variable is suggested in [Chartres et al., 2005b] and [Kluever, 2007]: energy. 
Since the true velocity and altitude at TEP and the desired altitude and velocity at ALI are 
known, it is straightforward to define the starting and stopping conditions in terms of energy, 
which is a monotonically decreasing function of time for an unpowered glider. 

In this thesis, the normalized energy E  is defined as the sum of the vehicle’s potential energy 
with the vehicle’s kinematic energy normalized by the vehicle’s mass, i.e.: 

 21
2

E gh V= +  (6-19) 

E  has the units of J/kg. Differentiating (6-19) with respect to time yields: 

 
dE VD
dt m

= −  (6-20) 

Multiplying (6-7)-(6-12) with the inverse of (6-20) and rearranging the equations to reduce the 
dependency effect yields the final 3 degrees of freedom (DOF) equations of motion describing 
the vehicle’s movement during the TAEM phase and used during the optimization process:  

 
sin 1

D

dq m d g
dE C S dh q

γ ρ ρ ρ
ρ

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠
 (6-21) 

 ( )2 cos cos
2 L k

D

d C qS mg
dE q C S
γ ρ μ γ= − +  (6-22) 

 
sin

2 cos
L kr

D

Cd
dE C q

ρ μχ
γ

= −  (6-23) 



Chapter 6 | The TAEM Phase  123 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 
cos cos r

D

mdx
dE C qS

γ χ
= −  (6-24) 

 
cos sin r

D

mdy
dE C qS

γ χ
= −  (6-25) 

 
sin

D

dh m
dE C qS

γ
= −  (6-26) 

where ( )( )h Eρ ρ= , 
( )( )h Ed

dh H
ρρ

= − , ( ) ( )( ),L LC C E M Eα=  and 

( ) ( )( ),D DC C E M Eα= .  

If of interest, the mission elapsed time can be retrieved from (6-20) through: 

 
32

D

dt m m
dE VD q C S

ρ

= − = −  (6-27) 

Finally, the load factor along the negative z -body axis, zn , can be calculated as follows 

[Kluever, 2007]: 

 
cos sincos sin L D

z
C qS C qSL Dn

mg mg
α αα α ++

= =  (6-28) 

From (6-21)-(6-27), it is easy to see that the states of the system are: 

 [ ]Trx q x y h tγ χ=  (6-29) 

where the last state, t , is optional. The system has two inputs: 

 [ ]ku α μ=  (6-30) 

 

 

 

 

 

 

 

 

 



124  Chapter 6 | The TAEM Phase 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 125 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 7 | TAEM Trajectory Optimization using 
Interval Analysis 
 

During the course of this thesis, two different TAEM trajectory design methodologies were 
developed and tested. The first one assumes no coupling between the longitudinal and lateral 
motions and it is in a much higher level of operational readiness. The second one is more 
general in the sense that it works with the fully coupled 3-DOF equations of motion, but it is 
still in a preliminary stage. Both methodologies are explained in this chapter. 

All the results presented in this part (Part II) were obtained using a computer equipped with 
Intel Core 2 Duo processors running at 2x2.5GHz and with 4GB of RAM. The OS running on the 
machine was Microsoft Vista Ultimate 32-bit with Service Pack 1 installed. Version 7.6.0.324 
(R2008a) of MATLAB and 5.5 of INTLAB were used.  

 

7.1 1-DOF Methodology 
 

In the 1-DOF TAEM trajectory design methodology, the longitudinal motion is assumed to be 
decoupled from the lateral motion. The basic principle consists on first fixing the longitudinal 
profile, namely, the q , γ , LC , DC , ρ  and E  time histories10, and then use them in the 

optimization of the lateral profile, which is done with interval analysis. The same basic 
principle is used in [Costa, 2003]. 

Two different tools were developed using the 1-DOF methodology: one that determines the 
Terminal Entry Gate (TEG) and another one that designs optimal11 TAEM trajectories. 

The Terminal Entry Gate is defined as the set of all feasible TEP states, i.e., the set of all TEP 
states from which the suggested guidance scheme is able to steer the RLV safely until an 
acceptable ALI state. 

 

7.1.1 Terminal Entry Gate Determination 
 

In Figure 7.1, a flowchart representing the main blocks of the TEG determination algorithm is 
given. The blocks are described in the forthcoming sections. 

 

7.1.1.1 Input File 
 

Table 7.1 summarizes all the main inputs of the TEG determination tool and the values used 
during the subsequent simulations. The exact structure of the input file and an example are 
given in Appendix B. 

                                                     

10 Even though the term time history is used here and in other places along the text, the reader should 
keep in mind that the independent variable is in fact normalized energy and not time, as explained in 
Section 6.3.5. 
11 The TAEM trajectories are optimal in the sense that the final state error is minimized. This subject is 
readdressed in Section 7.1.2. 



126  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Calculate longitudinal profile

Read input file

Calculate mid-corridor

Calculate suboptimal subsonic 
angle-of-attack

Calculate longitudinal time histories

Branch interval parameters

Backwards interval propagation of 
the lateral profile

End

Input file

Plot TEG

Calculate lateral profile

 

Figure 7.1: TEG Determination Algorithm Flowchart. 

Table 7.1: Main inputs of the TEG Determination Tool. 

Input Symbol Format Value Units 

Acceptable relative 
heading angle 
(interval) at ALI 

,r ALIχ  interval  [ ]3,3−  deg 

Acceptable x -position 
(interval) at ALI ALIx  interval  [ ]1000,1000−  m 

Acceptable y -position 
(interval) at ALI ALIy  interval  [ ]1000,1000−  m 

Flight-path bank angle 
(interval) during sub-
phase 1 

1μ  interval  [ ]60,60−  deg 

Flight-path bank angle 
(interval) during sub-
phase 3 

2μ  interval  [ ]60,60−  deg 

Number of subintervals 
in which 1μ  is split 1

Nμ  int  12 - 

Number of subintervals 
in which 2μ  is split 2

Nμ  int  140 - 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 127 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Input Symbol Format Value Units 

Reference area of the 
vehicle S  float  110 m2 

Re-entry mass of the 
vehicle 

m  float  26,029 kg 

Aerodynamic lift 
coefficient ( ),LC Mα  float  N/A - 

Aerodynamic drag 
coefficient ( ),DC Mα  float  N/A - 

Minimum and 
maximum trimmable 
α  as a function of M  

( )min Mα  

and 

( )max Mα  

float  N/A deg 

Mach number at TEP TEPM  float  1.5 - 

Mach number at ALI ALIM  float  0.5 - 

Altitude at TEP TEPh  float  15,000 m 

Altitude at ALI ALIh  float  3,000 m 

Number of integration 
steps intN  int  3,000 - 

Flight-path angle at 
TEP TEPγ  float  -10 deg 

Minimum α  during 
subsonic regime ,minsubα  float  0 deg 

Maximum α  during 
subsonic regime ,maxsubα  float  30 deg 

Subsonic α  search 
step 

αΔ  float  1 deg 

Maximum subsonic M  subsonicM  float  0.75 - 

Maximum dynamic 
pressure supported by 
the vehicle 

maxq  float  40,000 Pa 

Minimum load factor 
along the negative z -
body axis supported by 
the vehicle 

,minzn  float  -0.75 - 

Minimum load factor 
along the negative z -
body axis supported by 
the vehicle 

,maxzn  float  2.5 - 

Sub-phases relative 
length ,rel sub phasesE −Δ  float  [ ]0.44 0.05 0.5 0.01  - (%) 

Most of the variables appearing for the first time in Table 7.1 are related with the control 
function parameterization. The next section is dedicated to this subject.  

 

7.1.1.2 Control Function Parameterization 
 

As discussed in Section 6.3.5, the control function, u , of the 3-DOF equations of motion (6-
21)-(6-27) is: 



128  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 [ ]Tku α μ=  (7-1) 

α  and kμ  are independently parameterized. This can be done since the longitudinal and 

lateral motions are assumed to be decoupled. 

 

7.1.1.2.1 Angle-Of-Attack Parameterization 
 

Several authors, e.g., [Costa, 2003] and [Mayanna et al., 2006], define the longitudinal profile 
of the TAEM phase as some type of average between the maximum dive and maximum glide 
profiles. 

[Costa, 2003] and [Mayanna et al., 2006] define the maximum dive profile as the trajectory 
producing the shortest covered distance while respecting the vehicle’s constraints, namely, the 
maximum supported dynamic pressure. On the other hand, the maximum glide profile is 
defined as the trajectory producing the longest covered distance, which corresponds to flying 

straight ( 0μ = ) at an angle-of-attack yielding maximum L
D  throughout the TAEM phase. 

The SIMULINK model represented in Figure 7.2 was used to simulate the maximum glide and 
the maximum dive profiles of the HORUS-2B under the conditions established in Table 7.1. 
MATLAB’s ode45 solver, set with a relative tolerance of 1e-6, was used to propagate the 
vehicle’s trajectory. 

 

Figure 7.2: 3-DOF SIMULINK model. 

In this thesis, the maximum dive and maximum glide angle-of-attack profiles are computed as 

the angles-of-attack yielding the minimum and maximum 
( )

( )
,

,
L

D

C M
C M

α
α  for each 

Mach number, respectively. Linear interpolation is used to fill up the gaps between different 
Mach numbers. The bank angle kμ  is kept equal to zero. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 129 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

The seven states of the system and two output variables, M  and zn , associated with the 

maximum dive and maximum glide profiles, are plotted in Figure 7.3. In Figure 7.4, the 
corresponding angle-of-attack profiles as a function of M  are given. 

0 100 200 300 400
0

20

40

60

Time (s)

q 
(k

Pa
)

0 100 200 300 400
-100

-50

0

50

Time (s)
γ 

(d
eg

)
0 100 200 300 400

-1

-0.5

0

0.5

1

Time (s)

χ 
(d

eg
)

0 100 200 300 400
0

20

40

60

80

Time (s)

x 
(k

m
)

0 100 200 300 400
-1

-0.5

0

0.5

1

Time (s)

y 
(k

m
)

0 100 200 300 400
0

5

10

15

20

Time (s)

Al
tit

ud
e 

(k
m

)

0 100 200 300 400
-2

0

2

4

6

Time (s)

n z (-
)

0 100 200 300 400
0

0.5

1

1.5

Time (s)

M

0 100 200 300 400
0

1

2

3
x 10

5

Time (s)

E 
(J

/k
g)

 

 

maximum glide
maximum dive

 

Figure 7.3: Maximum glide and maximum dive profiles. 

0 1 2 3 4 5 6
-5

0

5

10

15

20

25

30

35

40

45

M (-)

α 
(d

eg
)

 

 αmin
αmax
mid-corridor
maximum glide
maximum dive

 

Figure 7.4: Maximum glide and maximum dive angle-of-attack profiles. 



130  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

As the reader can see, the maximum dive profile violates the maxq  constraint, while the 

maximum glide profile violates the ,maxzn  constraint, due to a sudden initial pull-up 

manoeuvre. Both of them violate the trimmable angle-of-attack boundaries defined by minα  

and maxα .  

Upon these results and to maximize safety, the longitudinal motion was defined based on the 
mid-corridor angle-of-attack profile shown in Figure 7.4 and not as some type of average 
between the maximum dive and maximum glide profiles, as in [Costa, 2003] and [Mayanna et 
al., 2006]. The states and outputs associated with the selected solution are given in Figure 
7.5. 

0 100 200 300 400
0

20

40

60

Time (s)

q 
(k

Pa
)

0 100 200 300 400
-100

-50

0

50

Time (s)

γ 
(d

eg
)

0 100 200 300 400
-1

-0.5

0

0.5

1

Time (s)

χ 
(d

eg
)

0 100 200 300 400
0

20

40

60

80

Time (s)

x 
(k

m
)

0 100 200 300 400
-1

-0.5

0

0.5

1

Time (s)

y 
(k

m
)

0 100 200 300 400
0

5

10

15

20

Time (s)

Al
tit

ud
e 

(k
m

)

0 100 200 300 400
-2

0

2

4

6

Time (s)

n z (-
)

0 100 200 300 400
0

0.5

1

1.5

2

Time (s)

M

0 100 200 300 400
0

1

2

3
x 10

5

Time (s)

E 
(J

/k
g)

 

 
mid-corridor
maximum glide
maximum dive

 

Figure 7.5: Mid-corridor profile. 

As can be seen from the figure, all path constraints are satisfied and the resulting longitudinal 
motion is acceptable. However, the altitude and Mach number at ALI are not the desired ones. 
In order to give the tool the freedom it needs to adjust these two variables, the subsonic 
angle-of-attack was defined as an optimizable parameter. The respective first-order angle-of-
attack parameterization is represented in Figure 7.6, where the maximum subsonic Mach 
number subsonicM  and the subsonic angle-of-attack interval: 

 ,min ,max,subsonic sub subα α α⎡ ⎤= ⎣ ⎦  (7-2) 

are inputs of the tool. subsonicM  is kept free to allow the user to choose where to place the 

boundary between the subsonic and the transonic flight regimes. 

Although Figure 7.6 might give the idea that the subsonic flight regime is relatively short (in 
terms of duration), a careful look into Figure 7.5 shows that, in fact, during the biggest part 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 131 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

of the TAEM phase, the RLV is flying under subsonic conditions. Therefore, the idea that the 
desired Mach number at ALI can be achieved by selecting an adequate subsonic angle-of-
attack seems reasonable. This is proved in Figure 7.7, where the Mach number at ALI is 
plotted as a function of subsonicα . The path constraints were never violated. 

0 1 2 3 4 5 6
0

5

10

15

20

25

30

M (-)

α
 (d

eg
)

Msubsonic

αsubsonic

 

Figure 7.6: Angle-of-attack parameterization. 

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

αsubsonic (deg)

M
A

LI
 (-

)

 

Figure 7.7:  Mach number at ALI as a function of subsonic angle-of-attack. 

Since typical values of ALIM  are comprehended between 0.4 and 0.6, as shown in Figure 

6.1, the suggested first-order angle-of-attack parameterization is acceptable, as enough 
freedom is given to the optimiser. 

Since the stopping condition is defined in terms of normalized energy, which is a function of 
altitude and Mach number, if the correct Mach number at ALI is attained, the altitude at ALI 
will also be the correct one. 

 

7.1.1.2.2 Flight-Path Bank Angle Parameterization 
 

The results presented in [Chartres et al., 2005b] (see Section 6.2) were taken into account 
when parameterizing kμ . The authors of this article use an NLP optimiser to calculate an 



132  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

optimal TAEM trajectory. This work outstands itself from the rest of the examined literature for 
being the one that follows the most general approach: the complete 3-DOF equations of 
motion are considered which means that, for example, no fixed geometry is assumed for the 
longitudinal and/or lateral profiles of the TAEM phase. Moreover, different path constraints, 
independent variables and cost functions are tested, making it a very serious and extensive 
work on TAEM trajectory optimization. 

While an NLP optimiser might converge to a local minimum and, therefore, be dependent on 
the initial guess, it allows higher order parameterizations of the control functions than an 
interval analysis optimiser. Therefore, it is instructive to analyse the solutions of the former 
for defining an appropriate parameterization for the latter. 

One of the observations made in [Chartres et al., 2005b] is that the NLP solutions seem to 
follow some characteristic shapes. Three of these shapes are given in the original article. 
These same shapes are reproduced in Figure 6.6. An interesting characteristic of these 
solutions is that only two turns are performed during the TAEM phase: one left turn followed 
by a right turn or vice-versa. Taking this result into account, the flight-path bank angle was 
parameterized according to Figure 7.8. 

E (J/kg)

μ k (d
eg

)

ETEPEALI Ethres,3 Ethres,2 Ethres,1

μ1

μ2

0

sub-phase 1

sub-phase 4
sub-phase 2

sub-phase 3

 

Figure 7.8: Flight-path bank angle parameterization. 

where 1μ  and 2μ  are interval parameters given directly by the user and ,1thresE , ,2thresE  and 

,3thresE  are real variables given indirectly by the user through ,rel sub phasesE −Δ : 

 

,

,1 ,1 ,2 ,2 ,3 ,3 100%

rel sub phases

TEP thres thres thres thres thres thres ALI

TEP ALI TEP ALI TEP ALI TEP ALI

E

E E E E E E E E
E E E E E E E E

−Δ

=

− − − −⎡ ⎤
×⎢ ⎥− − − −⎣ ⎦

 (7-3) 

In simple terms, ,rel sub phasesE −Δ  specifies how much energy should be dissipated in each TAEM 

sub-phase relatively to the total energy loss taking place during the TAEM phase, EΔ , which, 
in its turn, is given by: 

 TEP ALIE E EΔ = −  (7-4) 

where TEPE  and ALIE  are the normalized energy at TEP and ALI, respectively. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 133 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

The second-order parameterization specified in Figure 7.8 allows the RLV to perform two 
independent turns like in the characteristic shapes of [Chartres et al., 2005b]. However, these 
turns must be performed with a constant kμ , which is a limitation of the parameterization. 

Moreover, the length of each sub-phase is fixed in terms of energy loss which is yet another 
limitation. Eventually, these limitations could be overcome by increasing the order of the 
parameterization, e.g., by treating ,1thresE , ,2thresE  and ,3thresE  as optimizable parameters. To 

keep the computational times within manageable values, the bank angle parameterization was 
chosen as simple as possible. 

During sub-phase 2 and sub-phase 4, the bank angle is set to zero to allow a smoother 
transition between turns, in the first case, and to keep the RLV aligned with the runway during 
the period that immediately precedes the landing phase, in the second case. 

The lengths of sub-phases 2 and 4 should be relatively small when compared with the lengths 
of sub-phases 1 and 3, to give the optimiser as much freedom as possible. Especially 
important is the length of sub-phase 3 since it is during this period, i.e., during the subsonic 
regime, that the vehicle achieves its highest turning capability. This can be seen in Figure 
7.9. 

0 10 20 30 40 50 60
-20

-15

-10

-5

0

5

10  

x (km)
 

y 
(k

m
)

μ1=-μ2= 0 deg

μ1=-μ2= 5 deg

μ1=-μ2=10 deg

μ1=-μ2=15 deg

μ1=-μ2=20 deg

μ1=-μ2=25 deg

μ1=-μ2=30 deg

μ1=-μ2=35 deg

μ1=-μ2=40 deg

μ1=-μ2=45 deg

μ1=-μ2=50 deg

μ1=-μ2=55 deg

μ1=-μ2=60 deg

 

Figure 7.9: Lateral profile for different values of 1μ  and 2μ . 

Another instructive plot is shown in Figure 7.10 where the states and outputs of the system 
are given as a function of 1μ  and 2μ . The increase of the absolute value of 1μ  and 2μ  may 

lead to the violation of the path constraints. The 1-DOF methodology does not take this effect 
into account as the longitudinal and lateral motions are assumed to be decoupled. 

Sometimes, to avoid highly populated areas, it is desirable to approach the landing localizer 
from one particular side (left or right). Adding this constraint to the optimization problem is 
relatively simple: a left-side approach corresponds to 2 0μ ≤  and a right-side approach 

corresponds to 2 0μ ≥ . 



134  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

7.1.1.3 Longitudinal Profile Calculation 
 

In the 1-DOF methodology, the longitudinal profile is computed through a simple Monte Carlo 
optimization. Interval analysis is only used to generate the lateral profile.  

0 100 200 300
0

10

20

30

Time (s)

q 
(k

Pa
)

0 100 200 300
-40

-30

-20

-10

0

Time (s)

γ 
(d

eg
)

0 100 200 300
-300

-200

-100

0

100

Time (s)

χ 
(d

eg
)

0 100 200 300
0

20

40

60

Time (s)

x 
(k

m
)

0 100 200 300
-20

-10

0

10

Time (s)

y 
(k

m
)

0 100 200 300
0

5

10

15

Time (s)

Al
tit

ud
e 

(k
m

)

0 100 200 300
0.5

1

1.5

2

2.5

Time (s)

n z (-
)

0 100 200 300
0

0.5

1

1.5

2

Time (s)

M

0 100 200 300
0

1

2

3
x 10

5

Time (s)

E 
(J

/k
g)

 

 

μ1
=-μ2

= 0 deg

μ1
=-μ2

= 5 deg

μ1
=-μ2

=10 deg

μ1=-μ2=15 deg

μ1
=-μ2

=20 deg

μ1
=-μ2

=25 deg

μ1=-μ2=30 deg

μ1
=-μ2

=35 deg

μ1
=-μ2

=40 deg

μ1
=-μ2

=45 deg

μ1
=-μ2

=50 deg

μ1
=-μ2

=55 deg

μ1
=-μ2

=60 deg

 

Figure 7.10: States and outputs for different values of 1μ  and 2μ . 

The following steps describe the longitudinal profile calculation algorithm: 

1) The mid-corridor angle-of-attack profile represented in Figure 7.4 is calculated. 

2) The Mach number at ALI is calculated as a function of subsonicα , creating a plot similar 

to Figure 7.7. ALIM  is evaluated every αΔ  degrees between  ,minsubα  and ,maxsubα . 

Subsonic angles-of-attack which violate the path constraints are not considered.  

3) The subsonic angle-of-attack that yields the desired ALIM  (and ALIh ) is calculated 

through linear interpolation from Figure 7.7. 

4) A last simulation is performed with the previously calculated subsonicα . The q , γ , LC , 

DC , ρ  and E  time histories are saved. They are later used in the generation of the 

lateral profile. 

Applying these steps to the values given in Table 7.1 yields a subsonic angle-of-attack of 
approximately 5.3 degrees and produces the states and outputs illustrated in Figure 7.11. 
The Mach number and altitude at ALI are 0.4987 and 3008m, respectively. The associated 
relative error is of 0.26% in both quantities. The algorithm runs in approximately 57 seconds. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 135 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

The reader might be asking: “why wasn’t the longitudinal motion also optimized with interval 
analysis? subsonicα  is even given as an interval!” The fact is, optimizing the longitudinal motion 

with interval analysis would require more or less the same effort as optimizing the complete 
coupled system: an IVP (Initial Value Problem) ODE (Ordinary Differential Equation) problem 
would have to be solved numerically through interval analysis. Therefore, the decision was 
made to move directly into the complete problem, i.e., to move directly into 3-DOF 
methodology, instead of upgrading the 1-DOF methodology with an interval analysis 
optimization of the longitudinal profile.     

0 100 200 300
5

10

15

20

25

Time (s)

q 
(k

Pa
)

0 100 200 300
-20

-15

-10

-5

Time (s)

γ 
(d

eg
)

0 100 200 300
-1

-0.5

0

0.5

1

Time (s)

χ 
(d

eg
)

0 100 200 300
0

20

40

60

Time (s)

x 
(k

m
)

0 100 200 300
-1

-0.5

0

0.5

1

Time (s)

y 
(k

m
)

0 100 200 300
0

5

10

15

X: 228.2
Y: 3.008

Time (s)

Al
tit

ud
e 

(k
m

)

0 100 200 300
0.5

1

1.5

2

Time (s)

n z (-
)

0 100 200 300
0

0.5

1

1.5

2

X: 228.2
Y: 0.4987

Time (s)

M

0 100 200 300
0

1

2

3
x 10

5

Time (s)

E 
(J

/k
g)

 

Figure 7.11: Nominal longitudinal profile.  

A more careful reader might be wondering why TEPγ  is asked as an input instead of ALIγ . This 

is associated with the fact that the longitudinal motion, contrarily to the lateral motion (see 
Section 7.1.1.4), is propagated forward in time and not backwards. While conceptually it would 
probably make more sense to propagate the longitudinal motion backwards in time, since the 
objective is to determine the Terminal Entry Gate, it would be harder for the user to find a 
viable ALIγ . This idea is better explained with the help of Figure 7.12 and Figure 7.13. 

The influence of TEPγ  and ALIγ  on the time histories of q  and γ  is shown in Figure 7.12 

and Figure 7.13, respectively. In the first figure, the longitudinal motion is propagated 
forward in time while, in the second one, the longitudinal motion is propagated backwards in 
time. The previously calculated angle-of-attack profile is used together with the boundary 
conditions specified in Table 7.1. Figure 7.12 shows that, for a relatively high range of TEPγ  

(-40 to -10 degrees), the trajectories do not violate the maxq  constraint and they all converge 

to similar values of ALIq  and ALIγ . On the other hand, Figure 7.13 shows that, for a 



136  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

relatively small range of ALIγ  (-15 to -10 degrees), the maxq  constraint is sometimes violated 

and TEPq  and TEPγ  are spread over a large area. 

As a consequence, if the longitudinal profile was propagated backwards in time, i.e., if ALIγ  

was the input and not TEPγ , it would be harder for the tool and for the user to find a matching 

subsonicα  and ALIγ  satisfying all path and boundary constraints. Since the main concern here is 

the lateral profile (which is the one in which interval analysis is applied) the simplest solution 
was adopted: propagating the longitudinal profile forward in time. 

0 1 2 3
x 105

8

10

12

14

16

18

20

22

E (J/kg)

q 
(k

P
a)

0 1 2 3
x 105

-40

-35

-30

-25

-20

-15

-10

-5

E (J/kg)

γ (
de

g)

 

 
γTEP=-40 deg

γTEP=-35 deg

γTEP=-30 deg

γTEP=-25 deg

γTEP=-20 deg

γTEP=-15 deg

γTEP=-10 deg

 

Figure 7.12: Influence of TEPγ  on the time histories of q  and γ . 

0 1 2 3
x 105

0

10

20

30

40

50

60

70

E (J/kg)

q 
(k

P
a)

0 1 2 3
x 105

-50

-40

-30

-20

-10

0

10

20

E (J/kg)

γ (
de

g)

 

 
γALI=-15 deg

γALI=-14 deg

γALI=-13 deg

γALI=-12 deg

γALI=-11 deg

γALI=-10 deg

 

Figure 7.13: Influence of ALIγ  on the time histories of q  and γ . 

 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 137 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

7.1.1.4 Lateral Profile Calculation 
 

The calculation of the lateral profile is the last step in the determination of the Terminal Entry 
Gate. This last step is composed by two operations:  

1) Branching of the intervals 1μ  and 2μ  in 
1

Nμ  and 
2

Nμ  subintervals, respectively. 

2) Simultaneous backwards interval propagation of the lateral profile associated with 
each combination of 1μ  and 2μ  subintervals. 

The branching algorithm used in this chapter is the same branching algorithm used in Chapter 
5. 

Since the longitudinal profile is assumed to be decoupled from the lateral profile, the state 
dynamics equations (6-21), (6-22) and (6-26) are of no interest for the calculation of the 
lateral profile. 

From Section 7.1.1.3, the discrete time histories of ( )Eρ , ( )LC E , ( )DC E , ( )q E  and 

( )Eγ  are known at the time steps: 

 ( ) int
int

1 , 1,..., 1TEP ALI
i TEP

E EE E i i N
N
−

= + − = +  (7-5) 

These points can be connected through linear interpolation, making ( )Eρ , ( )LC E , 

( )DC E , ( )q E  and ( )Eγ  defined at every [ ],ALI TEPE E E∈ . As a consequence, the right-

side of (6-23) becomes completely defined at every [ ],ALI TEPE E E∈ . This means that a 

numerical interval integration method can be used to calculate ( )r Eχ  at every 

[ ],ALI TEPE E E∈ : an interval IVP ODE solver is not needed to do this. Moreover, with ( )r Eχ  

for every [ ],ALI TEPE E E∈  available, ( )x E  and ( )y E  can also be numerically integrated 

from (6-24) and (6-25). Avoiding an interval IVP ODE solver is the main reason behind the 1-
DOF simplification. 

The developed tool calculates the relative heading angle at TEP, ,r TEPχ , from (6-23) using the 

interval rectangular integration method described in Section 3.6 as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

int

, , ,
1

sin

2 cos

I I INTEP i L i k i Ir
r TEP r ALI r ALI iI I IALI

i D i i i

E C E Ed E dE w E
dE C E q E E

ρ μχχ χ χ
γ=

= + = + −∑∫  (7-6) 

where: 

 ( ) ( ) ( )
int

int int

1 , , 1,...,TEP ALI TEP ALII
i ALI ALI

E E E E
E E i E i i N

N N
− −⎡ ⎤

= + − + =⎢ ⎥
⎣ ⎦

 (7-7) 

and where ( )I
iw E  in (7-6) should be understood as the smallest interval containing the real 

value of ( )I
iw E  since ( )I

iw E  might not be a machine-representable number.  



138  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

In practice, since the same number of integration steps is used to calculate the longitudinal 

and lateral profiles, the lower and upper bounds of I
iE  are directly the sampling points iE . 

Analogously, the lower and upper bounds of ( )I
iEρ , ( )I

L iC E , ( )I
D iC E , ( )I

iq E  and 

( )I
iEγ  are directly the discrete time history points computed in Section 7.1.1.3. In Figure 

7.14, this mechanism of extending a discrete time history into an interval time history is 
exemplified using the dynamic pressure profile shown in Figure 7.11. 

0 1 2 3
x 105

8

10

12

14

16

18

20

22

E (J/kg)

q 
(k

P
a)

2 2.002 2.004
x 105

10.8

10.81

10.82

10.83

10.84

10.85

10.86

10.87

10.88

10.89

E (J/kg)

q 
(k

P
a)

Ei
I

Linear segment

Ei

Ei+1

 

Figure 7.14: Left: interval wrapping of ( )q E . Right: zoom-in. 

Since the longitudinal profiles need to be enclosed inside interval boxes, the results produced 
by the interval integration algorithm are affected by the wrapping effect, by definition. 

The relative heading angle during the normalized energy interval I
iE  is evaluated as follows: 

 

( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )( )

,

1

1

sin

2 cos

sin
inf

2 cos

I
r i r TEP

I I Ii
j L j k j I

jI I I
j D j j j

I I I
i L i k i I I

i iI I I
D i i i

E

E C E E
w E

C E q E E

E C E E
E E

C E q E E

χ χ

ρ μ

γ

ρ μ

γ

−

=

= +

+ − +

⎛ ⎞
⎜ ⎟+ − −
⎜ ⎟
⎝ ⎠

∑  (7-8) 

After computing ( )I
r iEχ , the x - and y -positions at TEP are calculated in the same way as 

,r TEPχ : 

 
( ) ( ) ( )

( ) ( ) ( )
int

1

cos cosI INTEP i r i I
TEP ALI ALI iI IALI

i D i i

m E Edxx x E dE x w E
dE C E q E S

γ χ

=

= + = + −∑∫  (7-9) 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 139 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 
( ) ( ) ( )

( ) ( ) ( )
int

1

cos sinI INTEP i r i I
TEP ALI ALI iI IALI

i D i i

m E Edyy y E dE y w E
dE C E q E S

γ χ

=

= + = + −∑∫  (7-10) 

Note that the form of (6-23), (6-24) and (6-25) is already optimal in terms of dependency. 

In order to validate the interval integration algorithm, a new SIMLULINK model was built to 
calculate the lateral profile based on the 1-DOF methodology. This SIMULINK model is shown 
in Figure 7.15. It linearly interpolates the longitudinal profile values calculated in Section 
7.1.1.3 to compute rχ , x  and y , just like its interval counterpart. Like the SIMULINK model 

of Figure 7.2, it uses MATLAB’s ode45 solver with a relative tolerance of 1e-6. 

 

Figure 7.15: 1-DOF SIMULINK model. 

The 3-DOF and the 1-DOF SIMULINK models are compared in Figure 7.16. As expected, the 
two models yield the same states and outputs for 1μ = 2μ =0 degrees. For 1μ =- 2μ =60 

degrees, the lateral states x , y  and rχ  produced by the two models are no longer the 

same. As expected, the 1-DOF model overestimates the TAEM flight duration since it does not 
take into account the reduction of the vertical component of the lift force when the vehicle 
turns. 

In Figure 7.17, the results produced by the interval integration algorithm are compared with 
the ones produced by the 1-DOF SIMULINK model for , 0r ALI ALI ALIx yχ = = =  and 

1 2 60ºμ μ= − = . As can be seen, the SIMULINK solution is correctly bounded by the interval 

solution, verifying the correctness of the interval integration algorithm. 



140  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

0 100 200 300
0

10

20

30

Time (s)

q 
(k

Pa
)

0 100 200 300
-40

-30

-20

-10

0

Time (s)

γ 
(d

eg
)

0 100 200 300
-400

-200

0

200

Time (s)

χ 
(d

eg
)

0 100 200 300
-5

0

5

10

Time (s)

y 
(k

m
)

0 100 200 300
0

5

10

15

Time (s)

Al
tit

ud
e 

(k
m

)
0 100 200 300

0.5

1

1.5

2

2.5

Time (s)

n z (-
)

0 100 200 300
0

0.5

1

1.5

2

Time (s)

M

0 100 200 300
0

1

2

3
x 10

5

Time (s)

E 
(J

/k
g)

 

 3-DOF μ1
=μ2

=0

1-DOF μ1
=μ2

=0

3-DOF μ1
=-μ2

=60 deg

1-DOF μ1
=-μ2

=60 deg

0 100 200 300
0

20

40

60

Time (s)

x 
(k

m
)

 

Figure 7.16: 3-DOF versus 1-DOF SIMULINK model. 

0 1 2 3

x 105

0

50

100

150

200

250

300

350

400

E (J/kg)

χ 
(d

eg
)

0 1 2 3

x 105

-25

-20

-15

-10

-5

0

5

10

E (J/kg)

x 
(k

m
)

0 1 2 3

x 105

-10

-5

0

5

E (J/kg)

y 
(k

m
)

 

Figure 7.17: Correctness verification of the interval integration algorithm. 

Mostly due to the wrapping effect, ,r TEPχ , TEPx  and TEPy  are not as sharp as one would like 

them to be. Their widths are approximately 0.78º, 356m and 520m, respectively. It should be 
noted that these results were obtained for 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 141 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

( ) ( ) ( ) ( ) ( ), 1 2 0r ALI ALI ALIw w x w y w wχ μ μ= = = = = . As a consequence, the size of the 

Terminal Entry Gate will be overestimated. There will also be some consequences for the TAEM 
optimal trajectory design but these will be mentioned in Section 7.1.2. 

Sharper results would require more sophisticated interval integration methods than the 
rectangular method, like the ones explained in [Moore, 1966]. In this thesis, solving the more 
complex 3-DOF problem and finding an appropriate interval IVP-ODE solver was given priority 
over this. The 1-DOF methodology was developed more as a feasibility study than as an 
operational tool. Therefore, upgrading the 1-DOF tool with a more accurate interval 
integration method was deemed unnecessary and unproductive.  

 

7.1.1.5 Results 
 

Now that the theory has been explained, some results can finally be shown. 

The subsequent plots were created using the values given in Table 7.1. The lateral profile 
calculation algorithm runs in approximately 74 seconds. 

Figure 7.18 shows the position of the Terminal Entry Gate. The plane represented in Figure 
7.18 is a plane of constant normalized energy, equal to TEPE . Since the longitudinal profile is 

fixed, the plane represented in Figure 7.18 is also a plane of constant altitude and Mach 
number, respectively equal to TEPh  and TEPM . 

-60 -40 -20 0 20 40
-50

-40

-30

-20

-10

0

10

20

30

40

50

x (km)

y 
(k

m
)

ALI

 

Figure 7.18: Position of the Terminal Entry Gate.  

Each square represented in Figure 7.18 is obtained by propagating backwards in time the 
lateral state at ALI, namely, ,r ALIχ , ALIx  and ALIy , from ALIE  until TEPE  using interval 

integration. Each square is associated with a particular combination of 1μ  and 2μ  angles. 

Each combination results from splitting the original 1μ  and 2μ  intervals given in Table 7.1 

into 
1

Nμ  and 
2

Nμ  subintervals, respectively.  



142  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

In Figure 7.19, the squares are transformed into cubes by plotting them against the 1μ  and 

2μ  subintervals associated with each of them. There are two reasons why the plot associated 

with 2μ  looks more like a spiral than the plot associated with 1μ : 

1) 
2 1

N Nμ μ>  and; 

2) As already noticed in Section 7.1.1.2.2, the shape of the trajectories is more affected 
by 1μ  than by 2μ . 

-100
-50

0
50

-50

0

50
-100

-50

0

50

100

x (km)y (km)

μ 1 (d
eg

)

-100
-50

0
50

-50

0

50
-100

-50

0

50

100

x (km)y (km)

μ 2 (d
eg

)

 

Figure 7.19: 1μ  and 2μ  subintervals associated with each square.  

There is also an ,r TEPχ  interval associated with each square represented in Figure 7.18. This 

basically means that if the RLV starts the TAEM phase in a certain square, the guidance 
scheme will only be able to correctly steer the vehicle until the auto-landing interface point, if 
the relative heading angle of the RLV at TEP is within certain bounds. These bounds are given 
in Figure 7.20. 

-60
-40

-20
0

20
40

-50

0

50
-500

0

500

x (km)y (km)

χ 
(d

eg
)

 

Figure 7.20: ,r TEPχ  intervals associated with each square. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 143 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

It should be noted that the squares represented in Figure 7.18 and the cubes represented in 
Figure 7.20 are an overestimation of the true TEG. However, due to the properties of interval 
analysis, the true TEG is mathematically guaranteed to be contained inside the calculated TEG. 
This means that, for example, the trajectory design algorithm described in Section 7.1.2 will 
not able to prove the feasibility of a TEP point laying outside the volume represented in 
Figure 7.20. A feasible TEP point should be understood as a TEP point from where the 
suggested guidance scheme is able to steer the vehicle until an acceptable ALI point12 while 
satisfying all path constraints. But what the trajectory design algorithm can do is sometimes 
prove the feasibility or infeasibility of a TEP point contained inside the volume represented in 
Figure 7.20.  

A Monte Carlo analysis was performed in order to attest how many points inside the calculated 
TEG shown in Figure 7.20 could be proved feasible or infeasible. A total of 100 simulations 
were run. The TEP points ( ,r TEPχ , TEPx  and TEPy ) were chosen completely randomly from the 

calculated TEG gate. Three criteria were used to stop the simulations: 

1) feasibility could be proved; 

2) infeasibility could be proved; 

3) Number of boxes exceeds 1500.  

The entire range of 1μ  and 2μ  was searched in each simulation, i.e., [ ]1 2 60,60μ μ= = −  

degrees, to take advantage of the fact that several cubes in Figure 7.20 share the same 
volume. The boxes were branched based on 

1
2Nμ =  and 

2
2Nμ = . The results are shown in 

Figure 7.21. 

-100 -50 0 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

x (km)

y 
(k

m
)

ALI

-100 -50 0 50
-500

-400

-300

-200

-100

0

100

200

300

400

500

x (km)

χ 
(d

eg
)

 

 

ALI

infeasible
undetermined
feasible

 

Figure 7.21: Feasibility Monte Carlo analysis: random TEP points. 

From the 100 tested TEP points, 38% could be proved feasible, 50% could be proved 
infeasible and 12% could neither be proved feasible or unfeasible. 

Another Monte Carlo analysis is shown in Figure 7.22. This time, instead of choosing 
completely random points, only the centres of the cubes represented in Figure 7.20 were 
selected as possible starting points. All of them could be proved feasible. 

                                                     

12 The meaning of acceptable ALI point is mathematically defined in Section 7.1.2.3. 



144  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Some might defend that calculating a TEG gate in which there are not any infeasible points 
would be a more significant result. While the current TEG determination methodology cannot 
give such guarantee, the sharpness of the TEG enclosure can be controlled by:  

1) changing the interval integration algorithm: a more sophisticated interval integration 
method would reduce the wrapping effect and produce sharper bounds on the TEG; 

-100 -50 0 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

x (km)

y 
(k

m
)

ALI

-100 -50 0 50
-500

-400

-300

-200

-100

0

100

200

300

400

500

x (km)

χ 
(d

eg
)

 

 

ALI

infeasible
undetermined
feasible

 

Figure 7.22: Feasibility Monte Carlo analysis: random midpoints. 

2) increasing intN : increasing intN  reduces the wrapping effect inherent to the 

rectangular interval integration method. For example, for int 3000N = , all the cubes 

shown in Figure 7.20 can be enclosed by a bigger cube with a volume of 
approximately 1.328e11rad.m2. For int 5000N = , the volume of this cube reduces to 

1.326e11rad.m2, which corresponds to a decrease of approximately 0.2%. 

3) increasing 
1

Nμ  and/or 
2

Nμ : increasing 
1

Nμ  and/or 
2

Nμ  decreases the wrapping 

effect inherent to the discretization in cubes of the total volume of the TEG. In other 
words, the bigger the number of subintervals in each 1μ  and/or 2μ  are divided, the 

bigger will be the resolution of Figure 7.20, i.e., the smaller will be the cubes 
shaping the TEG. However, one should take into account that the minimum dimension 
of each cube is limited by the wrapping effect associated with the interval integration 
algorithm. For example, for 

2
140Nμ = , all the cubes shown in Figure 7.20 can be 

enclosed by a bigger cube with a volume of approximately 1.328e11rad.m2. For 

2
280Nμ = , the volume of this cube reduces to 1.317e11rad.m2, which corresponds to 

a decrease of approximately 0.8%. 

Another positive feature added by interval analysis to the TEG determination problem is the 
possibility of defining ,r ALIχ , ALIx  and ALIy  either as intervals or as real values. This 

simplifies, for example, the execution of sensitivity analysis studies about the size of the ALI 
gate. As an example, in Figure 7.23, the position of the TEG for , 0r ALI ALI ALIx yχ = = =  is 

plotted. It is easy to see the reduction in area with respect to Figure 7.18. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 145 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

-60 -50 -40 -30 -20 -10 0 10 20 30
-50

-40

-30

-20

-10

0

10

20

30

40

50

x (km)

y 
(k

m
)

ALI

 

Figure 7.23: Position of the TEG for , 0r ALI ALI ALIx yχ = = = . 



146  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

7.1.2 TAEM Optimal Trajectory Design 
 

The 1-DOF TAEM trajectory design tool described hereafter assumes no coupling between the 
longitudinal and lateral movements. Like the aforementioned TEG determination tool, it uses a 
simple Monte Carlo optimization algorithm to fix the longitudinal motion. The lateral motion is 
then optimized using interval analysis and a performance index based on the final state error.  

In Figure 7.24, a flowchart representing the main blocks of the trajectory design algorithm is 
given. For the longitudinal profile calculation algorithm, the reader is referred to Section 
7.1.1.4. Likewise, for the lateral profile interval propagation algorithm, the reader is referred 
to Section 7.1.1.4. The same concepts, apart from some minor sign changes, are used to 
propagate the lateral profile forward and backwards in time. 

The remaining blocks of Figure 7.24 are described hereafter. 

 

7.1.2.1 Input File 
 

Table 7.2 summarizes all the main inputs of the trajectory design tool and the values used 
during the subsequent simulations. The exact structure of the input file and an example are 
given in Appendix B. 

Note that ,r TEPχ , TEPx  and TEPy  are defined in Table 7.2 as point intervals. This is the 

typical case of interest.  

The only variables in Table 7.2 that are completely new are ,r weightχ , weightx  and weighty . 

They are related with the performance index. Their meaning is explained in Section 7.1.2.3. 

 

7.1.2.2 Branching 
 

The algorithm of Section 5.2.4 is used to branch 1μ  and 2μ  with 
1 2

T

splitN N Nμ μ⎡ ⎤= ⎣ ⎦ . 

Since the state dynamics equations need to be integrated numerically (in Chapter 5 they were 
integrated analytically) due to their complexity, HC cannot be used to shrink the initial search 
region of 1μ  and 2μ . In order to do that, both parameters need to be branched, since only 

box deletion techniques are available. 

The influence of splitN  on the computational time is studied in Section 7.1.2.9. 

 

7.1.2.3 Final State Constraint 
 

In Chapter 5, the final state constraint was used together with HC to shrink the boxes iP , 

where i  indexes all the boxes created by the branching algorithm during a certain cycle. Since 
the state dynamics equations are now numerically integrated, applying HC to the final state 
constraint is no longer an option. However, the final state constraint can still be used to delete 
certainly infeasible boxes with respect to the final state constraint. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 147 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 

Read input file

Calculate longitudinal profile

Branch interval parameters

Final state constraint

End

Input file

Upper bound on the minimum

Were all the 
boxes deleted?

Yes

No

Are the stopping 
criteria met?

Yes

No

Plot TAEM trajectory

Optimize lateral profile

Forward interval propagation of 
the lateral profile

Verify contiguousness

Select solution point

 

Figure 7.24: TAEM Optimal Trajectory Design Algorithm Flowchart. 

 



148  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Table 7.2: Main Inputs of the TAEM Optimal Trajectory Design Tool. 

Input Symbol Format Value Units 

Relative heading 
angle at TEP ,r TEPχ  interval  [ ]220, 220  deg 

x -position at TEP TEPx  interval  [ ]25000, 25000  m 

y -position at TEP TEPy  interval  [ ]0,0  m 

Flight-path bank 
angle (interval) 
during sub-phase 1 

1μ  interval  [ ]60,60−  deg 

Flight-path bank 
angle (interval) 
during sub-phase 3 

2μ  interval  [ ]60,60−  deg 

Number of 
subintervals in which 

1μ  is split 
1

Nμ  int  2 - 

Number of 
subintervals in which 

2μ  is split 
2

Nμ  int  4 - 

Reference area of the 
vehicle S  float  110 m2 

Re-entry mass of the 
vehicle 

m  float  26,029 kg 

Aerodynamic lift 
coefficient ( ),LC Mα  float  N/A - 

Aerodynamic drag 
coefficient ( ),DC Mα  float  N/A - 

Minimum and 
maximum trimmable 
α  as a function of 
M  

( )min Mα  

and 

( )max Mα  

float  N/A deg 

Mach number at TEP TEPM  float  1.5 - 

Mach number at ALI ALIM  float  0.5 - 

Altitude at TEP TEPh  float  15,000 m 

Altitude at ALI ALIh  float  3,000 m 

Number of 
integration steps intN  int  3,000 - 

Flight-path angle at 
TEP TEPγ  float  -10 deg 

Minimum α  during 
subsonic regime ,minsubα  float  0 deg 

Maximum α  during 
subsonic regime ,maxsubα  float  30 deg 

Subsonic α  search 
step 

αΔ  float  1 deg 

Maximum subsonic 
M  subsonicM  float  0.75 - 

Maximum dynamic 
pressure supported 
by the vehicle 

maxq  float  40,000 Pa 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 149 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Input Symbol Format Value Units 

Minimum load factor 
along the negative 
z -body axis 
supported by the 
vehicle 

,minzn  float  -0.75 - 

Minimum load factor 
along the negative 
z -body axis 
supported by the 
vehicle 

,maxzn  float  2.5 - 

Sub-phases relative 
length ,rel sub phasesE −Δ  float  [ ]0.44 0.05 0.5 0.01  - (%) 

rχ  cost function 

weight 
,r weightχ  float  3 deg 

x -position cost 
function weight weightx  float  1,000 m 

y -position cost 
function weight weighty  float  1,000 m 

Initial upper bound 
on the global 
minimum 

J  float  Inf  - 

Stopping criterion 
based on the width 
of the parameters 

Pε  float  
1

Infμε =  
2

Infμε =  deg 

Stopping criterion 
based on width of 
the cost function 

Jε  float  0.3 - 

The most general case of an equality constraint ( )f P a= , where ( ) : l rf P →\ \  and 

ra∈\  is a non-degenerate interval vector, [ ],a a a= , will be considered. In the case at 

hand, 3r =  ( ,r ALIχ , ALIx  and ALIy ) and 2l =  ( 1μ  and 2μ ). After evaluating ( )f P  over a 

box iP , ( ) ( ) ( ),i i if P f P f P⎡ ⎤= ⎣ ⎦ , it is said that: 

1) iP  is (certainly) feasible if ( )j i jf P a⊆  for all 1,...,j r=  and that iP  is (certainly) strictly 

feasible if ( )j i jf P a⊂  for all 1,...,j r= . 

2) iP  is (certainly) infeasible if ( )j i jf P a⊄  for any 1,...,j r= . 

Any infeasible box iP  can be safely deleted as it does not satisfy the equality constraint. 

According to the fundamental theorem of interval analysis, all the points contained inside a 
feasible box satisfy the equality constraint. 

Note that if ra∈\  is a degenerate interval vector, then the above definition cannot be used 

to prove that a box iP  is feasible with respect to the equality constraint ( )f P a= , except in 

the very unlikely event that ( )if P  is also a degenerate interval vector exactly equal to a . 

In Chapter 5, ra∈\  could be defined as a point interval vector since HC and Theorem 4.1 
were used to prove feasibility with respect to the equality constraints. Since now the equations 



150  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

of motion have to be numerically integrated, Theorem 4.1 can no longer be applied and there 
is no choice but to define ,r ALIχ , ALIx  and ALIy  as intervals. 

Since most of the time, satisfying a certain ALI point is not a concern, only a certain ALI gate, 
i.e., the nominal ALI point does not need to be strictly satisfied, only the tolerances prescribed 
on the final state, there is no major consequence in having to define ,r ALIχ , ALIx  and ALIy  as 

intervals. Thus, while a certain box cannot be guaranteed to satisfy a certain nominal ALI 
point, it can be guaranteed to satisfy the prescribed tolerances on the final state. 

,r ALIχ , ALIx  and ALIy  are given in the following format to the tool: 

 , , ,,r ALI r weight r weightχ χ χ⎡ ⎤= −⎣ ⎦  (7-11) 

 ,ALI weight weightx x x⎡ ⎤= −⎣ ⎦  (7-12) 

 ,ALI weight weighty y y⎡ ⎤= −⎣ ⎦  (7-13) 

where ,r weightχ ,  weightx  and weighty  are the tolerances associated with ,r ALIχ , ALIx  and ALIy , 

respectively. An acceptable ALI point is therefore a point contained inside (7-11), (7-12) and 
(7-13). 

The wider ,r ALIχ , ALIx  and ALIy  are, the easier it will be to prove feasibility, but the harder it 

will be to prove infeasibility. 

 

7.1.2.4 Cost Function 
 

In [Chartres et al., 2005b], several cost functions are tested, e.g., maximizing or minimizing 
range, maximizing or minimizing flight time, minimizing control effort or combinations of 
these. At the end, their conclusion is that, while the loads and the dynamic pressure should be 
minimized, the primary concern should be to minimize the final state error, as this is the most 
difficult constraint to meet. 

Therefore, and following the steps of [Costa, 2003] and [Kluever, 2007], the final state error 
was defined as the cost function as follows: 

( ) ( ) ( ) ( )
2 2 2

, , , , ,

,

r ALI i r ALI nom ALI i ALI nom ALI i ALI nom
i

r weight weight weight

P x P x y P y
J P

x y
χ χ

χ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −

= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (7-14) 

where: 

- ( ),r ALI iPχ , ( )ALI ix P  and ( )ALI iy P  are the calculated values of rχ , x  and y  at 

ALI for a certain box iP ; 

- ,r weightχ ,  weightx  and weighty  are used to undimensionalize the cost function and; 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 151 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

- , , , , 0r ALI nom ALI nom ALI nomx yχ = = =  are the nominal values of rχ , x  and y  at ALI13. 

The cost function (7-14) is constituted only by an end-cost term, as can be easily seen by 
comparing (7-14) with (5-1). 

An approximate graphical representation of (7-14) is given in Figure 7.25 based on the 
values shown in Table 7.2. The SIMULINK model of Figure 7.15 was used to propagate the 
TAEM trajectory. 

As the reader can see, the cost function (7-14) has several local minima. If this problem was 
solved with a standard gradient-based optimization method, the final solution might have been 
a local minimum, depending on the initial guess. However, with interval analysis, the global 
optimum is guaranteed to be correctly bounded.  

According to Figure 7.25, the global minimum is: 

 

Figure 7.25: Cost function. 

 * 0.14418J ≈  (7-15) 

the global minimum point is: 

 *
1 10.41ºμ ≈  (7-16) 

 *
2 30.50ºμ ≈ −  (7-17) 

and the associated final state is: 

 ( )* 0.49ºr ALIEχ ≈ −  (7-18) 

 ( )* 334ALIx E m≈ −  (7-19) 

                                                     

13 Note that the nominal value of rχ  at ALI is actually equal to , , 0 2 ,r ALI nom k kχ π= + ∈] . 



152  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( )* 80ALIy E m≈ −  (7-20) 

(7-15)-(7-20) will be used in Section 7.1.2.9 to verify the results of the global optimizer. 

 

7.1.2.5 Using an upper bound on the minimum 
 

As mentioned in Sections 4.2.2.2 and 5.2.2.2, any box iP  for which iJ J> , where iJ  is 

calculated from ( ) ,i i iJ P J J⎡ ⎤= ⎣ ⎦ , can be safely deleted. The only condition is that J  can 

only be updated using boxes that contain at least one point satisfying all equality and 
inequality constraints, i.e., feasible boxes. 

Assume a box feasP  has been proved feasible with respect to the final state constraint 

according to the definition of Section 7.1.2.3. Then, all the points of feasP  are guaranteed to 

satisfy the final state constraint by the fundamental theorem of interval analysis. Since no 

other constraint exists, any point of feasP  can be used to update J . Just like in an 

unconstrained problem, evaluating the performance index at the midpoint of feasP , 

( )( ) , ,,feas feas mid feas midJ m P J J⎡ ⎤= ⎣ ⎦ , instead of over the entire box feasP , 

( ) ,feas feas feasJ P J J⎡ ⎤= ⎣ ⎦ , should result in a smaller upper bound on the minimum, i.e.: 

 ,feas mid feasJ J≤  (7-21) 

The only inconvenience is that the equations of motion need to be integrated twice: a first 

time using iP  to prove feasibility/infeasibility and second time using ( )feasm P  to update J . 

If J  was calculated using the entire boxes feasP , then the equations of motion would only 

have to be integrated once. 

Integrating the equations of motion is by the far the most computationally demanding 
operation of the optimization algorithm. Therefore, it might not compensate to use the 

midpoints of feasP  to update J . In the case at hand, it does, as it will be demonstrated in 

Section 7.1.2.9, but it is doubtful that this conclusion can be generalized to other problems.   

 

7.1.2.6 Stopping Criteria 
 

The optimization algorithm is interrupted when the stopping criteria described in Chapter 5, 
namely: 

1) ( )( ) ( )( )max sup min inf , 1,...,
j

j j
i i Pii

P P j lε− ≤ =  (5-49) 

2) ( )min , J J JJ ε− ≤  (5-50) 

are simultaneously met.  



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 153 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Since 
1μ

ε  and 
2μ

ε  were always chosen equal to infinite during the optimizations, (5-50) was 

the only stopping criterion effectively used.  

Since the minimum value of ( )min , J JJ −  is limited by dependency and by the wrapping 

effect, as demonstrated in Figure 7.17, some care was taken not to choose Jε  too small. 

The stopping criteria (5-49) and (5-50) are based on the width of the guaranteed bounds on 
*P  and *J , respectively. Another stopping criterion could be suggested based on the width of 

the guaranteed bounds on the final state constraint, i.e., based on the width of the 

guaranteed bounds on ( )*
r ALIEχ , ( )*

ALIx E  and ( )*
ALIy E . Using the nomenclature of 

Section 7.1.2.3, this stopping criterion would be: 

 ( )( ) ( )( )max min , 1,...,
jj i j i fii

f P f P j rε− ≤ =  (7-22) 

where 0
jfε >  ( r  parameters) would be given by the user.  

In some problems, it might be easier to define 
jfε  than Jε . For example, in the case at hand, 

the physical meaning of 
jfε  is easier to understand than the one of Jε . 

(7-22) still needs to be implemented in the optimization algorithm and duly tested. 

 

7.1.2.7 Contiguousness Verification 
 

At the end of the optimization loop, *P  is guaranteed to be inside a (multidimensional) box 
with an volume smaller than 

1 2
...

lP P Pε ε ε× × × , i.e., the so-called hull of the solution set. 

However, if the hull of the solution set contains (multidimensional) gaps, it might be possible 

to calculate sharper bounds on *P . In order to do that, after the optimization loop, the 
remaining boxes are checked for contiguousness, i.e., the (multidimensional) region defined by 
the remaining boxes is checked for (multidimensional) gaps. The contiguousness verification 
routine then returns the hull of any contiguous cluster of boxes contained inside the solution 
set.  

The developed contiguousness verification routine can handle an arbitrary high number of 
dimensions.   

To shed some light on the above, a three-dimensional example is given in Figure 7.26. Since 
*P  must be contained inside one of the remaining boxes, *P  must also be contained inside 

one of the clusters, which are a smaller enclosure of *P  than the entire hull of the solution 
set. 



154  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

7.1.2.8 Solution Point Selection 
 

As mentioned in Section 5.2.5, interval solutions per se are not very useful. For example, in 
the case at hand, real (and not interval) values of 1μ  and 2μ  are required to feed the 

HORUS’s onboard flight computer. 

0

2

4

0
2

4
6
0

1

2

3

4

5

6

7

8

 

x1x2

 

x 3

remaining boxes
hull of the solution set

0
1

2
3

4

0
2

4
6
0

1

2

3

4

5

6

7

8

 

x1x2

 

x 3

remaining boxes
clusters

 

Figure 7.26: Contiguousness verification. 

Therefore, the following method for selecting a solution point p  from the guaranteed bounds 

on *P  was devised: 

1) if J  has been updated at least once during the optimization loop, the midpoint of the 

box last used to update J  is selected. This guarantees that (5-48) is satisfied. 

2) otherwise, the midpoint of the first (and possibly only) remaining box is taken as the 
solution point p . This guarantees that (5-47) is satisfied. 

Note that the last box used to update J  will always be one of the remaining boxes at the end 
of the optimization loop illustrated in Figure 7.24. The same cannot be said about the 
optimization loops illustrated in Figure 4.1 and Figure 5.1.  

 

7.1.2.9 Results 
 

For the input values given in Table 7.2, the optimization results are summarized in Table 
7.3. 

As can be seen, the values of *J , *
1μ , *

2μ , ( )*
r ALIEχ , ( )*

ALIx E  and ( )*
ALIy E  given in 

Section 7.1.2.4 are correctly bounded by IJ , 1
Iμ , 2

Iμ , ( )I
r ALIEχ , ( )I

ALIx E  and 

( )I
ALIy E , respectively. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 155 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

The remaining boxes form only one contiguous cluster. The hull of this cluster is equal to the 

hull of the solution set IP . 

Table 7.3: Optimization results. 

Result Symbol Value Width Units 

Bounds on the minimum IJ  [ ]0.000,0.274  2.7e-1 - 

1
Iμ  [ ]7.50,13.13  5.6 deg Bounds on the solution 

point 
IP  

2
Iμ  [ ]31.03, 29.88− −  1.1 deg 

( )I
r ALIEχ [ ]3.74,3.57−  7.3 deg 

( )I
ALIx E  [ ]1.39,0.64−  2.0 km Bounds on the final state IX  

( )I
ALIy E  [ ]1.33,1.26−  2.6 km 

Optimization loop 
duration CPUtΔ  217 (≈4m) N/A s 

Number of remaining 
boxes remainingN  76 N/A - 

Number of clusters clustersN  1 N/A - 

1
pμ  ≈10.31 N/A deg 

Selected solution point p  

2
pμ  ≈-30.48 N/A deg 

Several boxes were proved feasible during the course of the optimization loop. As a result, the 

selected solution point is the midpoint of the box last used to update J , in accordance with 
rules expressed in Section 7.1.2.8.  

The absolute error between 1
pμ  and the global minimum *

1μ  is 0.1 degrees and the absolute 

error between 2
pμ  and the global minimum *

2μ  is 0.02 degrees. Both errors are smaller than 

the widths of the guaranteed bounds on the solution point, as expected. 

In Figure 7.27, with the help of the 1-DOF SIMULINK model shown in Figure 7.15, the 

lateral profile produced by the selected flight-path bank angles ( 1
pμ  and 2

pμ ) is verified 

against the optimal trajectory produced by *
1μ  and *

2μ .     

-10 -5 0 5 10 15 20 25
-18

-16

-14

-12

-10

-8

-6

-4

-2

0  

x (km)

ALI

 

y 
(k

m
)

p
P*

 

Figure 7.27: Verification of the optimization results.  



156  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

The two trajectories are hardly distinguishable. The final lateral state associated with p  is 
given by: 

 ( ) 0.45ºp
r ALIEχ ≈ −  (7-23) 

 ( ) 347p
ALIx E m≈  (7-24) 

 ( ) 47p
ALIy E m≈ −  (7-25) 

Compared with the optimal final lateral state ( )*
r ALIEχ , ( )*

ALIx E  and ( )*
ALIy E , the 

absolute errors are 0.04 degrees, 13 meters and 33 meters, respectively. These errors are 
smaller than the widths of the guaranteed bounds on the final state, as expected. 

Evaluating the performance index at p  yields: 

 0.14491pJ ≈  (7-26) 

The absolute error with respect to *J  is 0.00073, which is smaller than the width of the 
guaranteed bounds on the minimum, as expected. 

In Figure 7.28 and Figure 7.29, the 1-DOF and the 3-DOF trajectories generated by p  are 
compared as a validation test. The 3-DOF trajectory is calculated using the SIMULINK model of 
Figure 7.2.  

0 100 200 300
5

10

15

20

25

Time (s)

q 
(k

Pa
)

0 100 200 300
-25

-20

-15

-10

-5

Time (s)

γ 
(d

eg
)

0 100 200 300
-100

0

100

200

300

Time (s)

χ 
(d

eg
)

0 100 200 300
-10

0

10

20

30

Time (s)

x 
(k

m
)

0 100 200 300
-20

-15

-10

-5

0

Time (s)

y 
(k

m
)

0 100 200 300
0

5

10

15

Time (s)

Al
tit

ud
e 

(k
m

)

0 100 200 300
0.5

1

1.5

2

Time (s)

n z (-
)

0 100 200 300
0

0.5

1

1.5

2

Time (s)

M

0 100 200 300
0

1

2

3
x 10

5

Time (s)

E 
(J

/k
g)

 

 

1-DOF
3-DOF

 

Figure 7.28: Validation of the optimization results against the 3-DOF model: states and outputs. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 157 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

-10 -5 0 5 10 15 20 25
-18

-16

-14

-12

-10

-8

-6

-4

-2

0  

x (km)

ALI

 

y 
(k

m
)

1-DOF
3-DOF

 

Figure 7.29: Validation of the optimization results against the 3-DOF model: lateral profile. 

The two trajectories are visibly different. Inserting p  into the 3-DOF model yields the 
following final lateral state: 

 ( )3 25ºDOF
r ALIEχ − ≈  (7-27) 

 ( )3 1.54DOF
ALIx E km− ≈ −  (7-28) 

 ( )3 1.65DOF
ALIy E km− ≈ −  (7-29) 

which is well outside the ALI gate specified by (7-11)-(7-13). This means that the calculated 

flight-path bank angles 1
pμ  and 2

pμ  cannot be used directly to fly the RLV from TEP to ALI. 

While it is true that the 1-DOF trajectory illustrated in Figure 7.29 does satisfy the specified 
final state constraints (both longitudinal and lateral), it is not guaranteed that an automatic 
flight control system will be able to follow it without violating the vehicle’s path constraints. 

What one would like to have is directly the flight-path bank angles 1
pμ  and 2

pμ  the vehicle 

must follow to fly from TEP to ALI without violating the vehicle’s path constraints. For that, 
the complete 3-DOF equations of motion need to be solved through an interval ODE solver. 
This topic is addressed in Section 7.2. 

In Table 7.4, the influence of splitN  on CPUtΔ  is analysed. 

Table 7.4: Influence of splitN  on CPUtΔ . 

splitN  CPUtΔ  

[ ]2 2 T
 397s (≈7m) 

[ ]4 2 T
 

Maximum number of boxes exceeded14 
before convergence 

[ ]2 4 T
 217s (≈4m) 

                                                     

14 If the number of boxes becomes too large, the optimization loop will run out of memory. 



158  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Since the shape of the trajectory is more sensible to variations of 2μ  than of 1μ , as 

demonstrated in Figure 7.9, it makes sense that dividing 2μ  in more boxes than 1μ  leads to 

a faster convergence of the optimization loop.  

In Table 7.5, the two methods described in Section 7.1.2.5 for updating J  are compared in 

terms of CPUtΔ  for [ ]2 2 T
splitN = . 

Table 7.5: Influence of the method used to update J  on CPUtΔ . 

J  updated using: CPUtΔ  

feasP  439s 

( )feasm P  397s 

As shown, updating J  with the midpoints of the feasible boxes instead of with the entire 
feasible boxes leads to a faster convergence of the optimization loop. Like expressed in 
Section 7.1.2.5, it is doubtful that this conclusion can be generalized to other problems. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 159 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

7.2 3-DOF Methodology 
 

In the 3-DOF methodology, the longitudinal and lateral motions of the vehicle are assumed 
fully coupled. Thus, it is no longer possible to optimize each motion separately like in Section 
7.1. 

The reason why the longitudinal motion is calculated before the lateral motion in Section 7.1 is 
to allow the relative heading angle to be numerically integrated from (6-23). Without knowing 
the longitudinal motion beforehand, an interval IVP-ODE solver is required to calculate the 
lateral (and the longitudinal) motion. 

 

7.2.1 Chu’s method 
 

In [Chu, 2007], the equations of motion are propagated not by an guaranteed interval IVP-
ODE solver but by a Runge-Kutta method based on real arithmetics15. The algorithm itself is 
not explained in [Chu, 2007], but the ideas behind it were transmitted to the author directly 
by Weiwei Chu via personal communication [Chu, 2008]. 

Chu’s method starts by assuming that all the states of the equations of motion are monotonic 
functions. Then, the lower and upper bounds of the initial state are propagated independently 
using an IVP-ODE solver based on real arithmetics, like for example, a Runge-Kutta method. 
Without entering in too much detail, this brief description should already be sufficient for the 
reader to understand why Chu’s method will never be able to perform rigorous global 
optimization. 

First of all, it is wrong to assume that all the states of the equations of motion are monotonic 
functions since in general this is not the case. Figure 7.9 is given as an example. Secondly, 
even if they were, an off the shelf IVP-ODE solver based on real arithmetics cannot yield 
guaranteed bounds on the time histories of the states, e.g., because the numerical errors are 
not accounted for. Therefore, the time histories enclosures produced by Chu’s method are just 
numerical approximations of the true enclosures and are not guarantee bounds on the latter. 
Without the assurance of guarantee bounds, the fundamental theorem of interval analysis 
cannot be applied and global optimization cannot be performed.   

 

7.2.2 Interval ODE solvers 
 

After identifying the need for an interval ODE solver, several options were investigated.  

In a first phase, a first-order ( 1p = ) and a second-order ( 2p = ) interval ODE solver were 
built based on the theory developed in Chapter 10 of [Moore, 1966]: the so-called traditional 
method. Integrating the fully coupled 3-DOF equations of motion (6-21)-(6-26) with these 
solvers revealed itself to be impossible as the guaranteed bounds on the time histories of the 
states would explode before reaching the final condition, even for relatively small time steps. 
For details about the traditional method, the reader is referred to [Moore, 1966] and to 
[Nedialkov, 2006b]. As a side note, even VNODE-LP, a high-order ( 3 50p≤ ≤ ) interval ODE 
solver based on the same theory, explodes before reaching the final condition, as will be 
shown in Section 7.2.3. 

                                                     

15 At a certain point in [Chu, 2007], one can even read that dynamic trajectory optimization can be 
performed without an ODE solver of any kind. 



160  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

In a second phase, developing from scratch a high-order interval ODE solver based either on 
the traditional method or on Taylor models was considered. However, with approximately one 
month left for coding, implementing and testing such a complex algorithm in the available time 
slot was deemed unrealistic. For example, interval automatic differentiation based on operator 
overloading would need to be implemented. It is the author’s belief that developing such a 
solver would require at least the time normally allocated to a Master of Science thesis, just by 
itself. 

Taking the above into consideration, it was decided that an existing high-order interval ODE 
solver would be used to integrate the equations of motion, to quickly test the capabilities of 
the existing interval theory for solving IVP-ODE problems. 

A survey about high-order interval ODE solvers was realized and several tools identified. Table 
7.6 summarizes the gathered information. Most of it was retrieved from [Nedialkov, 2006b]. 

Also given in [Nedialkov, 2006b] is a list of past applications of interval ODE solvers. Of these, 
the following ones are emphasized: 

1) rigorous computation of asteroid orbits [Berz et al., 2001]; 

2) rigorous multibody simulations [Auer et al., 2004]; 

3) global optimization for parameter estimation in chemical engineering [Lin and 
Stadtherr, 2006a]. 

The first two applications were selected due to their relevance to aerospace engineering. The 
third one was selected due to its relevance to the present work.  

In [Lin and Stadtherr, 2006a], a dynamic global optimization problem related with chemical 
engineering is solved using interval analysis. The theory described there is completely 
applicable to the current trajectory optimization problem. Like in this thesis, they apply a 
branch and bound method. They also delete boxes that do not satisfy the equality constraints. 
However, they introduce a novel theory based on Taylor models capable of shrinking the boxes 
and of proving feasibility with respect to equality and/or inequality constraints. This theory is 
very similar to the HC method described in previous chapters but, unlike HC, it does not 
require the state equations to be analytically solved. The same theory is used in [Lin et al., 
2008] to enclose all the solutions of Two-Point Boundary Value Problems (TPBVP). VSPODE is 
used in both papers to integrate the dynamic equations. 

It is the author’s conviction that VSPODE is the most suitable high-order interval ODE solver 
for dynamic global optimization currently available. First of all, it uses Taylor models to 
integrate the dynamic equations, which according to [Nedialkov, 2006b], are more effective 
than traditional methods at producing tight enclosures when the interval parameters are wide 
(which is the case) and the integration intervals are long. As a setback, they can only handle 5 
to 10 equations, typically, while traditional methods can deal with a few hundred equations. 
Since the 3-DOF equations of motion are constituted only by 6 equations, this should not be a 
problem. Secondly, the HC-type method described in [Lin and Stadtherr, 2006a] has so far 
only been applied with VSPODE, although, it should work with other interval ODE solvers 
based on Taylor models. 

While VSPODE may seem the obvious choice, VNODE-LP was selected to integrate the 3-DOF 
equations of motion due the following reasons: 

1) Since this thesis was done in collaboration with the European Space Agency (ESA), 
more particularly, with the TEC-ECM section of ESA/ESTEC (European Space Research 
and Technology Centre), it was given preference to interval ODE solvers developed in 
ESA member states. VNODE-LP was developed in Canada, which is an ESA member 
state. 

2) Tools coded in C++ or with a C++ interface were given preference. VNODE-LP is 
coded is C++. 

3) Only available tools were considered. VNODE-LP is free to download. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 161 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Table 7.6: High-order interval ODE solvers. 
Adjacent 
Theory Solver Year Language Developer Availability Reference 

AWA 1988 Pascal-XSC 

R. J. Lohner 
(Universität 
Karlsruhe, 
Germany) 

Free [Lohner, 1988] 

ADIODES 1997 C++ 

Ole Stauning 
(Technical 

University of 
Denmark, 
Denmark) 

Unavailable [Stauning, 
1997] 

VNODE 2001 C++ 

N. S. 
Nedialkov and 
K. R. Jackson 

(McMaster 
University, 
Canada) 

Free [Nedialkov and 
Jackson, 2002] 

VODESIA 2003 Fortran-XSC 

S. Dietich 
(University of 

Karlsruhe, 
Germany) 

Unavailable [Dietich, 2003] 

Traditional 
methods 

VNODE-LP 2006 C++ 

N. S. 
Nedialkov 
(McMaster 
University, 
Canada) 

Free [Nedialkov, 
2006a] 

Taylor 
models COSY-VI 2006 Fortran 

C++ interface 

Center for 
Dynamical 
Systems, 

Department of 
Physics and 
Astronomy, 

Michigan State 
University, 

USA 

Free for non-
commercial 

users 

[Berz and 
Makino, 2006] 

Mixture of 
traditional 
methods 

with 
Taylor 
models 

VSPODE 2005 C++ 

Y. Lin and M. 
A. Stadtherr 

(University of 
Notre Dame, 

USA) 

By request 
from the 
authors 

[Lin and 
Stadtherr, 

2006b] 

Based on 
the 

Jacobian 
of the 
state  

equations 

ValEncIA-
IVP 2005 C++ 

E. Auer 
(University of 

Duisburg-
Essen, 

Germany) and 
A. Rauh 

(University of 
Rostock, 
Germany)  

By request 
from the 
authors 

[Rauh and 
Auer, 2008] 

4) VNODE and COSY-IV are the most popular interval ODE solvers currently available, 
according to [Nedialkov, 2006b]. For example, VNODE is used in [Lin and Stadtherr, 
2006b] and in [Rauh and Auer, 2008] to validate other interval ODE solvers.    

5) VNODE-LP is an updated version of VNODE. 

In Section 7.2.3, it will be shown that VNODE-LP is not suitable for solving the 3-DOF TAEM 
trajectory optimization problem. It is the author’s belief that future attempts to solve this 
problem should focus on VSPODE. 

 



162  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

7.2.3 VNODE-LP 
 

VNODE-LP was developed by Prof. Nedialkov from the McMaster University located in Canada. 
It is the successor of VNODE, a well-known interval ODE solver referred across literature. For 
documentation, the reader is referred to [Nedialkov, 2006a].   

The following free packages must be installed before VNODE-LP: 

1) Interval arithmetics C++ package: FILIB++ [Lerch et al., 2008] or PROFIL/BIAS 
[Rump, 2008]. 

2) Linear algebra packages: LAPACK [LAPACK, 2008] and BLAS16 [ATLAS, 2008]. 

PROFIL/BIAS was selected over FILIB++ since, to date, the only successful installation of 
VNODE-LP on Windows has been with PROFIL/BIAS and Cygwin [Cygwin, 2008], a Linux-like 
environment for Windows. For a step-by-step description of the installation process of VNODE-
LP, the reader is referred to [Nedialkov, 2006a]. 

Additionally to the abovementioned packages, VNODE-LP already comes with FADBAD++, a 
free C++ automatic differentiation package [Stauning and Bendtsen, 2008].  

At each step, VNODE-LP automatically calculates the integration time step. The following three 
parameters give the user a gross control over it: 

1) the order of the integration, p ; 

2) the absolute error tolerance;  

3) the relative error tolerance. 

The effect of each parameter is analysed in [Nedialkov, 2006a]. 

The flowchart of Figure 7.30 describes how VNODE-LP is used to integrate the 3-DOF 
equations of motion. First, the trajectory is propagated using a SIMULINK model similar to the 
one of Figure 7.2 and configured in the same way. Then, a C++ executable file is called and 
the equations of motion are integrated with VNODE-LP. The two solutions are then compared 
within MATLAB. 

Especial care must be taken when reading and writing intervals into text files: outward 
rounding must always be assured. For example, the bounds of an interval are usually written 
into a text file with less precision than on the computer’s memory. Therefore, when copying an 
interval from the computer’s memory into a text file, the bounds have to be outwardly 
rounded. Otherwise, the mathematical rigor of interval analysis is lost. In the same way, when 
reading an interval, one of the bounds might not be exactly representable by the computer. In 
that case, outward rounding must also be enforced. Luckily, both INTLAB and PROFIL/BIAS 
(the interval arithmetics package used by VNODE-LP) provide functions that allow intervals to 
be correctly read and written into text files. 

Table 7.7 summarizes all the main inputs of the 3-DOF methodology script and the values 
used during the subsequent simulations. The exact structure of the input file and an example 
are given in Appendix B. 

Unlike in Section 7.1, the time histories of LC  and DC  are no longer calculated from lookup 

tables but are assumed constant during each TAEM sub-phase. This has to do with one of the 
limitations of VNODE-LP and is further discussed in Section 7.2.3.1.   

                                                     

16 The non-optimized version of BLAS that comes with LAPACK was used. Optimized versions of BLAS are 
sold by several hardware brands.  



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 163 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

MATLAB

Read input file

Propagate trajectory with Simulink

Write input file of C++ executable

Call C++ executable

Read output file of C++ executable

Compare results

End

Input file

MATLAB

Propagate trajectory with VNODE-LP

C++

 

Figure 7.30: Integration of the 3-DOF equations of motion with VNODE-LP. 

Table 7.7: Main Inputs of the 3-DOF Methodology Script. 

# Input Symbol Format Value Units

1 

Flight-path bank 
angle (interval) 
during sub-
phase 1 

1μ  interval  [ ]60,60  deg 

2 

Flight-path bank 
angle (interval) 
during sub-
phase 3 

2μ  interval  [ ]60, 60− −  deg 

3 Reference area 
of the vehicle S  float  110 m2 

4 Re-entry mass 
of the vehicle 

m  float  26,029 kg 

5 Mach number at 
TEP TEPM  float  1.5 - 

6 Mach number at 
ALI ALIM  float  0.5 - 

7 Altitude at TEP TEPh  float  15,000 m 

8 Altitude at ALI ALIh  float  3,000 m 



164  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

# Input Symbol Format Value Units

9 

Number of 
integration steps 
used by 
SIMULINK 

intN  int  3,000 - 

10 Flight-path 
angle at TEP TEPγ  float  -10 deg 

11 Relative heading 
angle at TEP TEPχ  float  0 deg 

12 
x -position at 
TEP TEPx  float  -65,000 m 

13 
y -position at 

TEP TEPy  float  34,000 m 

14 Sub-phases 
relative lengths ,rel sub phasesE −Δ float  [ ]0.44 0.05 0.5 0.01  - (%) 

15 
Aerodynamic lift 
coefficient per 
sub-phase 

LC  float  [ ]0.3 0.2 0.2 0.2  - 

16 
Aerodynamic 
drag coefficient 
per sub-phase 

DC  float  [ ]0.14 0.14 0.11 0.05  - 

17 
Integration 
order used by 
VNODE-LP 

p  int  7 - 

 

7.2.3.1 Limitations of VNODE-LP 
 

VNODE-LP suffers from the following limitations: 

1) The biggest and foremost problem of VNODE-LP is that it cannot handle wide interval 
initial conditions/parameters. Moreover, it cannot handle long integration time intervals.  

VNODE-LP was designed to produce tight bounds on the solution of IVP-ODE problems with 
point initial conditions/parameters or with interval initial conditions/parameters with a 
sufficiently small width, over not very long time intervals. This limitation is common to all 
interval ODE solvers based on traditional methods. If these conditions are not satisfied, the 
manual of VNODE-LP suggests using COSY, which is based on Taylor models. 

Figure 7.31 and Figure 7.32 illustrate for the problem at hand, which are the maximum 
widths of 1μ  and 2μ  that VNODE-LP can handle. In the first figure, 1μ  and 2μ  are defined 

as point intervals: º6021 =−= μμ . As can be seen, VNODE-LP does not have any problem 
integrating the equations of motion in this case. The numerical results produced by SIMULINK 
and by VNODE-LP for º6021 =−= μμ  are presented in Table 7.8. The intention is not to 
directly compare the computational accuracy and time of the two algorithms (which is not a 
trivial task) but to show that both algorithms yield results of the some order of magnitude. 

The interval final state calculated by VNODE-LP is guaranteed to contain the true final state 
(assuming the algorithm is correct). Moreover, the width of the bounds on the final state can 
be controlled by, e.g., increasing the integration order. On the other hand, the crisp final state 
calculated by SIMULINK is only an approximation of the true final state and its accuracy is 
unknown. While, in theory, decreasing the relative tolerance of the ode45 solver used by 
SIMULINK should produce more accurate results, the truth is, a certain accuracy can never be 
guaranteed. This is, according to the author, the biggest advantage of using an interval ODE 
solver. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 165 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

0 1 2 3

x 105

5

10

15

20

25

E (J/kg)

q 
(k

P
a)

0 1 2 3

x 105

-50

-40

-30

-20

-10

0

E (J/kg)

γ 
(d

eg
)

0 1 2 3

x 105

-150

-100

-50

0

50

100

E (J/kg)

χ 
(d

eg
)

0 1 2 3

x 105

-70

-65

-60

-55

-50

-45

E (J/kg)

x 
(k

m
)

0 1 2 3

x 105

30

35

40

45

50

E (J/kg)

y 
(k

m
)

0 1 2 3

x 105

0

5

10

15

20

E (J/kg)
h 

(k
m

)
 

Figure 7.31: Bounds calculated by VNODE-LP when point interval parameters are used. 

 

0 1 2 3

x 10
5

0

10

20

30

40

50

E (J/kg)

q 
(k

Pa
)

0 1 2 3

x 10
5

-100

-50

0

50

E (J/kg)

γ 
(d

eg
)

0 1 2 3

x 10
5

-800

-600

-400

-200

0

200

E (J/kg)

χ 
(d

eg
)

0 1 2 3

x 10
5

-70

-65

-60

-55

-50

-45

-40

E (J/kg)

x 
(k

m
)

0 1 2 3

x 10
5

30

35

40

45

50

E (J/kg)

y 
(k

m
)

0 1 2 3

x 10
5

0

5

10

15

20

E (J/kg)

h 
(k

m
)

 

Figure 7.32: Bounds calculated by VNODE-LP when non-point interval parameters are used. 



166  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Table 7.8: Final state computed by SIMULINK and by VNODE-LP. 

   Simulink VNODE-LP 

Result Symbol Unit Value Value Width 

ALIq  kPa 19.8525 [ ]852795.19,852792.19  2e-6 

ALIγ  deg -32.86 [ ]859734.32,859739.32 −−  4e-4 

ALIχ  deg -134.57 [ ]5538.134,5540.134 −−  1e-4 

ALIx  km -47.06 [ ]05983.47,05986.47 −−  2e-5 

ALIy  km 42.323 [ ]32296.42,32294.42  2e-5 

Final state 

ALIh  km 2.2281 [ ]228801.2,228793.2  6e-6 

CPU time CPUtΔ  s 0.04 0.3 N/A 

In Figure 7.32, 1μ  and 2μ  are defined as [ ]0.60,9.59  and [ ]9.59,0.60 −−  degrees, 

respectively. As can be seen, the bounds on the states explode before ALIE  is reached. Notice 
the decreasing size of the integration time steps as the integrator explodes. Attempts to 
overcome this problem by changing the integration order and the error tolerances of VNODE-
LP were not successful.  

In [Lin and Stadtherr, 2006b], a possible solution is suggested: time-invariant interval 
parameters (like 1μ  and 2μ ) should be treated as additional state variables with zero first-
order derivatives. They base their suggestion on the fact that VNODE-LP can handle better 
interval initial states than parameters. In the case at hand, the visible effects of defining 1μ  

and 2μ  as states were that the integrator would explode closer to ALIE  but still short of the 
final condition. 

Through personal communication, Prof. Nedialkov [Nedialkov, 2008], the creator of VNODE-LP, 
has confirmed that VNODE-LP was not designed to deal with wide interval parameters. 
According to him, the only solution is to split them into smaller subintervals and to integrate 
each subinterval independently. However, in case at hand, this would be unaffordable in terms 
of computational time. For example, if integrating a subbox of 0.1x0.1 degrees takes 0.3 
seconds (like in Table 7.8), covering an initial search box equal to [ ]60,6021 −== μμ  
would take approximately 5 days. 

As of this time, no solution has been found to overcome this limitation of VNODE-LP.   

2) Another problem of VNODE-LP is that it does not allow LC  and DC  to be directly 

calculated from lookup tables as a function of α  and M . 

In order to integrate the 3-DOF equations of motion, VNODE-LP requires the right side of (6-
21)-(6-26) to be at least p -times differentiable (where p  can be as big as 50) during each 
integration time step and to be completely defined at the time of compilation. Therefore, the 
only way to define LC  and DC  by branches is to allocate a single branch to each time step. 

Since the user cannot directly control the size of the time steps and LC  and DC  are a 

function of M , which depends on q  (one of the states of the system), there is no way of 
allocating a single branch to each time step. 

One possible solution would be to approximate LC  and DC  by multidimensional splines 
calculated from the lookup table points. The entire integration time interval would have to be 
covered by a single multidimensional spline. 



Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 167 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Figure 7.31 and Figure 7.32 were created assuming LC  and DC  constant during each 
TAEM sub-phase. The same assumption is done in [Vernis and Ferreira, 2006]. Since the 
integration stopping condition is defined in terms of E , just like the TAEM sub-phases, it is 
possible to attribute a constant LC  and DC  to each TAEM sub-phase. 

3) VNODE-LP does not allow all the boxes to be integrated at the same time, i.e., in parallel. 
The boxes have to be integrated sequentially. This is partially due to the fact that VNODE-LP 
does not exploit PROFIL’s matrix and vector operations, which are optimized in terms of 
minimizing rounding mode switches. If it did, the running time would have been reduced 
[Nedialkov, 2006b]. This decision was taken in order to allow the user to choose between 
PROFIL/BIAS and FILIB++. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168  Chapter 7 | TAEM Trajectory Optimization using Interval Analysis 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 



Chapter 8 | Conclusions  169 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 8 | Conclusions 
 

The main conclusions and accomplishments of this Master of Science thesis will not be 
synthesized. 

In Chapter 2, the reader was introduced to the unique characteristics of interval analysis and 
to the reasons why it is currently a hot topic in the scientific world. Guaranteed global 
optimization, simplified uncertainty and sensibility analyses and the nonexistence of undefined 
forms such as 0 / 0 , ∞−∞ , 0×∞  and /∞ ∞ , make it a very promising technique for the 
future. As computers become faster and special hardware chips for computing with intervals 
become available, the slowness of interval analysis becomes less of an issue. 

In Chapter 3, outward rounding was shown to be essential for the mathematical rigor of 
interval analysis. In other words, if a single roundoff error is not taken into account, the 
mathematical rigor of interval analysis is lost and the fundamental theorem of interval analysis 
is no longer valid.  

The accuracy/sharpness of interval arithmetics is influenced by the dependency problem and 
the wrapping effect. Dependency can be reduced by rewriting expressions in a different form. 
The wrapping effect is harder to control and the operation most susceptible to it is integration. 
Taylor models are normally used to suppress it. 

In Chapter 4, a novel static global optimization algorithm based on interval analysis was 
developed in MATLAB. Further developments of the code will now be expedited by MATLAB’s 
simplicity and portability. The algorithm exploits INTLAB’s vector and matrix operations in 
order to reduce the computational time. Taking advantage of the fact that all the boxes are 
processed at the same time every iteration, new stopping criteria were conceived that 
guarantee that, at termination, the widths of the bounds on the global minimum and minimiser 
are below certain user-specified thresholds.  

The interval results produced by the developed algorithm were proved to be rigorous even 
when the global minimum is surrounded by multiple local minima. At the same time, several 
flaws were identified in the static global optimization algorithm presented in [Chu, 2007]. For 
example, the incorrectness of the equality-constraint-feasibility-test was demonstrated. Chu’s 
algorithm was proved to be unsuitable for calculating guaranteed bounds on the global 
minimum. 

By means of several benchmark problems, it was shown that the developed algorithm needs 
less time than Chu’s to reach the same accuracy/sharpness, mostly thanks to hull consistency. 
In addition to quickening the algorithm, hull consistency is also used to prove feasibility with 
respect to the equality constraints. 

Static global optimization using interval analysis is already in a level of operational readiness 
where it is a viable and competitive alternative to traditional static optimization methods based 
on real arithmetics.   

In Chapter 5, a novel dynamic global optimization algorithm based on interval analysis was 
developed. It shares many characteristics with its static older brother: both of them were 
programmed in MATLAB using INTLAB’s vector and matrix operations; both of them are only 
terminated when the widths of the bounds on the global minimum and minimiser are below 
certain user-specified thresholds; both of them were proved to yield rigorous results; both of 
them were proved to be faster than the algorithms presented in [Chu, 2007]. 

The same mistakes found in the static version of Chu’s global optimization algorithm were 
found in the dynamic version. Moreover, in [Chu, 2007], the time dependent state equations 
are integrated using a crisp ODE solver and not a guaranteed interval ODE solver. 

In Chapter 5, the IVP-ODE problems were solved analytically and not numerically. Hull 
consistency was used to prove feasibility with respect to the equality constraints and to shrink 
the search region.  



170  Chapter 8 | Conclusions 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

In Chapter 6, the 3-DOF equations of motion describing the movement of a reusable launch 
vehicle during the TAEM phase were deduced. Normalized energy was proved to be a better 
independent variable than time and altitude. 

In Chapter 7, two different TAEM trajectory design methodologies were developed and tested: 
a 1-DOF and a 3-DOF methodology. 

Two different tools were developed within the 1-DOF methodology: a terminal entry gate 
(TEG) determination tool and a TAEM optimal trajectory design tool. Interval analysis was only 
used in the determination/optimization of the lateral motion. The equations of motion were 
integrated numerically and not analytically like in Chapter 5. HC could not be used to prove 
feasibility or to shrink the search region. A new equality-constraint-feasibility-test was devised 
which does not depend on HC.  

Due to the properties of interval analysis, the true TEG is mathematically guaranteed to be 
contained inside the calculated TEG, under the given assumptions and assuming the interval 
algorithm was encoded correctly.  

The TAEM optimal trajectory design tool was able to find the global optimal of a cost function 
with several local minima.   

A survey about high-order interval ODE solvers (the most essential component of a dynamic 
global optimization algorithm) was realized and several tools identified within the 3-DOF 
methodology. One of them, VNODE-LP, was used to integrate the 3-DOF equations of motion. 
It was shown that VNODE-LP and other interval ODE solvers based on traditional methods are 
unable to cope with the large interval parameters required by dynamic global optimization. 

VSPODE, an interval ODE solver based on Taylor models, was identified as the most promising 
interval ODE solver currently available. Dynamic global optimization was already performed 
with it in [Lin and Stadtherr, 2006a]. The same paper also explains how the HC techniques 
developed in Chapter 5 based on analytical integration can be readapted to work with VSPODE 
and with Taylor-model-based numerical integration.  

 

 

 

 

 



Chapter 9 | Recommendations  171 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Chapter 9 | Recommendations 
 

A collection of interesting future research topics in the field of static and dynamic global 
optimization using interval analysis is given below: 

• First and foremost, check if VSPODE is indeed capable of integrating the 3-DOF 
equations of motion with non-point interval parameters. If so, use VSPODE to solve 
the 3-DOF TAEM trajectory optimization problem. At the same time, implement the HC 
techniques described in [Lin and Stadtherr, 2006a] based on Taylor models. 

• Investigate other methods of parameterizing the control function, e.g., using neural 
networks. 

• Implement extended interval arithmetics in INTLAB. 

• Improve the static global optimization algorithm by solving the John conditions. More 
information about the John conditions can be found in [Hansen and Walster, 2004]. 

• Check every box for the existence of gaps and investigate how that can be used to 
optimize the algorithms. Some suggestions are given in [Hansen and Walster, 2004]. 

• Investigate if or when processing all the boxes at the same time is better than 
processing them one by one.  

• Investigate if interval analysis can be used to make indirect methods yield global 
minima. 

• Investigate if the HC equation (5-47) can be used to shrink the boxes. 

• As a suggestion for a new line of research, develop a global optimization algorithm 
using interval analysis for solving mixed-integer nonlinear programming problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



172  Chapter 9 | Recommendations 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

 

 

 

 

 

 

 

 

 

 



Bibliography  173 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Bibliography 
 

[ATLAS, 2008]  ATLAS, "Automatically Tuned Linear Algebra Software (ATLAS)", retrieved 
October 2008, from http://math-atlas.sourceforge.net/ 

[Auer et al., 2004]  Auer, E., Kecskeméthy, A., Tändl, M., and Traczinski, H., "Interval 
algorithms in modelling of multibody systems", Numerical Software with Result 
Verification, Vol. 2991 of LNCS, Springer-Verlag, pp. 132-159, 2004.  

[Barton, 2002]  Barton, G. H., "New Methodologies For Onboard Generation Of TAEM 
Trajectories For Autonomous RLVs", presented at the Core Technologies for Space 
Systems Conference, 2002.  

[Barton and Tragesser, 1999]  Barton, G. H. and Tragesser, S. G., "Autolanding Trajectory 
Design for the X-34", presented as paper AIAA-99-4161 at the AIAA Atmospheric Flight 
Mechanics Conference and Exhibit, Portland, Oregon, 9-11 August 1999.  

[Berz and Makino, 2006]  Berz, M. and Makino, K., "COSY INFINITY 9.0 - Programmer's 
Manual", Michigan State University, MSU Report MSUHEP 060803, August 2006. 
Retrieved from: http://bt.pa.msu.edu/index_cosy.htm  

[Berz et al., 2001]  Berz, M., Makino, K., and Hoefkens, J., "Verified integration of dynamics in 
the solar system", Nonlinear Analysis: Theory, Methods & Applications, Vol. 47, pp. 
179-190, 2001.  

[Berz, 2007]  Berz, Martin, "Verified ODE and DAE integration controlling the wrapping effect", 
retrieved November 2007, from 
http://pims.math.ca/science/2001/scicade/18/BerzMartin241.pdf 

[Bryson Jr. and Ho, 1975]  Bryson Jr., A. E. and Ho, Y.-C., Applied Optimal Control, 
Optimization, Estimation and Control, Revised Printing, Great Britain: Taylor & Francis 
Group, 1975. 

[Burchett, 2004]  Burchett, B. T., "Fuzzy Logic Trajectory Design and Guidance for Terminal 
Area Energy Management", Journal of Spacecraft and Rockets, Vol. 41, No. 3, May-
June 2004.  

[Câmara, 2003]  Câmara, F. M. C., "Development and Design of the Terminal Area Energy 
Management Guidance for a Reusable Launch Vehicle", Master of Science Thesis, 
Control and Simulation Division, Faculty of Aerospace, Delft University of Technology, 
Delft, February 2003. 

[Chartres et al., 2005a]  Chartres, J., Gräblin, M., and Schneider, G., "A New Method For 
Terminal Area Guidance For Future Reusable Launch Vehicles", presented as paper 
IAC-05-C1.8.05 at the 56th International Astronautical Congress, 2005a.  

[Chartres et al., 2005b]  Chartres, J. T. A., Gräblin, M. H., and Schneider, G., "Optimisation of 
the Terminal Flight Phase for a Future Reusable Launch Vehicle", presented as paper 
AIAA 2005-6060 at the AIAA Guidance, Navigation, and Control Conference and 
Exhibit, San Francisco, 15-18 August 2005b.  

[Chu, 2007]  Chu, W., "Interval Analysis Applied to Re-Entry Flight Trajectory Optimization", 
Master of Science Thesis, Control and Simulation Division, Faculty of Aerospace, Delft 
University of Technology, Delft, July 2007. 

[Chu, 2008]  Chu, Weiwei (private communication), September 2008. 



174  Bibliography 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

[Computer Science, 2007]  Computer Science, University of Texas at El Paso, "Interval and 
Related Software", retrieved October 2007, from http://www.cs.utep.edu/interval-
comp/intsoft.html 

[Costa, 2003]  Costa, R. R. da, "Studies for Terminal Area GNC of Reusable Launch Vehicles", 
American Institute of Aeronautics and Astronautics, Paper 2003-5438, 2003.  

[Cygwin, 2008]  Cygwin, "Cygwin", retrieved October 2008, from http://www.cygwin.com/ 

[Deb, 1999]  Deb, K., "Multiobjective genetic algorithms: Problem difficulties and construction 
of test problem", Journal of Evolutionary Computation 7(3), The MIT Press, pp. 205-
230, 1999.  

[Dietich, 2003]  Dietich, S., "Adaptive verifizierte Lösung gewöhnlicher 
Differentialgleichungen", PhD thesis, University of Karlsruhe, Karlsruhe, Germany, 
February 2003. 

[Erb, 2008]  Erb, Sven, "GESOP Training Course" Presentation Slides, ESA/ESTEC, 20 June 
2008.  

[Filipe, 2008]  Filipe, Nuno, "Static and Dynamic Global Optimization using Interval Analysis", 
Preliminary Master of Science Thesis, Control and Simulation Department, Delft 
University of Technology, Faculty of Aerospace Engineering, Delft, February 16, 2008. 

[Hansen and Walster, 2004]  Hansen, E. and Walster, G. W., Global Optimization Using 
Interval Analysis, Second Edition, Revised and Expanded, United States of America: 
Marcel Dekker, Inc., 2004. 

[Hargreaves, 2002]  Hargreaves, G. I., "Interval Analysis in MATLAB", Manchester Centre for 
Computational Mathematics, University of Manchester, Manchester, Numerical Analysis 
Reports, No. 416, December 2002.  

[Jaulin et al., 2001]  Jaulin, L., Kieffer, M., Didrit, O., and Walter, E., Applied Interval 
Analysis, Great Britain: Springer, 2001. 

[Kearfott et al., 2007]  Kearfott, R. B., Dawande, M., Du, K., and Hu, Ch., "INTLIB: A Portable 
FORTRAN 77 Interval Standard Function Library", retrieved November 2007, from 
interval.louisiana.edu/preprints/intlib_toms_algorithm.ps 

[Kluever, 2007]  Kluever, C. A., "Terminal Guidance for an Unpowered Reusable Launch 
Vehicle with Bank Constraints", Journal of Guidance, Control, and Dynamics, Vol. 30, 
No. 1, January-February 2007.  

[LAPACK, 2008]  LAPACK, "LAPACK - Linear Algebra PACKage", retrieved October 2008, from 
http://www.netlib.org/lapack/ 

[Lerch et al., 2008]  Lerch, M., Tischler, G., Gudenberg, J. Wolff von, Hofschuster, W., and 
Krämer, W., "FILIB++", retrieved October 2008, from http://www.math.uni-
wuppertal.de/~xsc/software/filib.html 

[Liberti, 2006]  Liberti, L., Introduction to global optimization, Italy: DEI, Politecnico de 
Milano, February 2006. 

[Lin et al., 2008]  Lin, Youdong, Enszer, Joshua A., and Stadtherr, Mark A., "Enclosing all 
solutions of two-point boundary value problems for ODEs", Computers & Chemical 
Engineering, Vol. 32, Issue 8, pp. 1714-1725, 22 August 2008.  

[Lin and Stadtherr, 2006a]  Lin, Youdong and Stadtherr, Mark A., "Deterministic Global 
Optimization for Parameter Estimation of Dynamic Systems", Industrial & Engineering 
Chemistry Research, Vol. 45, pp. 8438-8448, 2006a.  



Bibliography  175 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

[Lin and Stadtherr, 2006b]  Lin, Youdong and Stadtherr, Mark A., "Validated solution of initial 
value problems for ODEs with interval parameters", Department of Chemical and 
Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA, 
2006b.  

[Lohner, 1988]  Lohner, R. J., "Einschließung der Lösung gewöhnlicher Anfangs- und 
Randwertaufgaben und Anwendungen", PhD thesis, 1988, http://www.math.uni-
wuppertal.de/~xsc/xsc/pxsc_software.html#awa. 

[Mayanna et al., 2006]  Mayanna, Anand, Grimm, Werner, and Well, Klaus H., "Adaptive 
Guidance for Terminal Area Energy Management (TAEM) of Reentry Vehicles", 
presented as paper AIAA 2006-6037 at the AIAA Guidance, Navigation, and Control 
Conference and Exhibit, Keystone, Colorado, 21-24 August 2006.  

[MBB, 1988]  MBB, Space Communication and Propulsion Systems Division, "Study on re-entry 
guidance and control - Final report", MBB, Munich, ESA report reference: ESA CR (P) 
2652, 1988.  

[Mooij, 1995]  Mooij, E., "The HORUS-2B reference vehicle", Delft University of Technology, 
Faculty of Aerospace Engineering, Memorandum M-692, 1995.  

[Mooij, 1998]  Mooij, Erwin, "Aerospace-Plane Flight Dynamics - Analysis of Guidance and 
Control Concepts", PhD Thesis, Delft University of Technology, June 1998. 

[Moore, 1966]  Moore, R., Interval Analysis, Englewood Cliffs, New Jersey: Prentice-Hall, 
1966. 

[Moore, 1991]  Moore, Thomas E., "Space Shuttle Entry Terminal Area Energy Management", 
NASA, NASA Technical Memorandum 104744, November 1991.  

[Mulder et al., 2007]  Mulder, J. A., Staveren, W.H.J.J. van, Vaart, J.C. van der, and Weerdt, 
E. de, Flight Dynamics: Delft University of Technology, February 5 2007. 

[Nedialkov, 2006a]  Nedialkov, N. S., "VNODE-LP - A Validated Solver for Initial Value 
Problems in Ordinary Differential Equations", Department of Computing and Software, 
McMaster University, Hamilton, Ontario, Canada, L8S 4K1, Technical Report CAS-06-
06-NN, November 2006a. Retrieved from: 
http://www.cas.mcmaster.ca/~nedialk/vnodelp/  

[Nedialkov, 2008]  Nedialkov, N. S. (private communication), September-October 2008. 

[Nedialkov and Jackson, 2002]  Nedialkov, N. S. and Jackson, K. R., "The design and 
implementation of a validated object-oriented solver for IVPs for ODEs", Software 
Quality Research Laboratory, Department of Computing and Software, McMaster 
University, Hamilton, Canada, L8S 4K1, Technical Report 6, 2002. Retrieved from: 
http://www.cas.mcmaster.ca/~nedialk/Software/VNODE/VNODE.shtml  

[Nedialkov, 2006b]  Nedialkov, Nedialko S., "Interval Tools for ODEs and DAEs", Dept. of 
Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada, CAS 
06-09-NN, November 2006b.  

[Rauh and Auer, 2008]  Rauh, Andreas and Auer, Ekaterina, "ValEncIA-IVP - VALidation of 
state ENClosures using Interval Arithmetic for Initial Value Problems", retrieved 
October 2008, from http://valencia-ivp.com/ 

[Rump, 2007]  Rump, S. M., "INTLAB - INTerval LABoratory", retrieved October 2007, from 
http://www.ti3.tu-harburg.de/rump/intlab/index.html 

[Rump, 2008]  Rump, S. M., "PROFIL/BIAS", retrieved October 2008, from http://www.ti3.tu-
harburg.de/Software/PROFILEnglisch.html 



176  Bibliography 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

[Space Services Koellen, 2008]  Space Services Koellen, "Project Saenger II", retrieved 
October 2008, from http://www.ottmar-koellen.de/saenger_2/saenger1.html 

[Speyer and Bryson Jr., 1968]  Speyer, J. L. and Bryson Jr., A. E., "Optimal Programming 
Problems with a Bounded State Space", AIAA Journal, Vol. 6, pp. 1488-1491, 1968.  

[Stauning, 1997]  Stauning, O., "Automatic Validation of Numerical Solutions", PhD thesis, 
Technical University of Denmark, DK-2800, Lyngby, Denmark, October 1997, 
http://www2.imm.dtu.dk/documents/ftp/phdliste/phd36.abstract.html. 

[Stauning and Bendtsen, 2008]  Stauning, Ole and Bendtsen, Claus, "FADBAD++ - Flexible 
Automatic differentiation using templates and operator overloading in C++", retrieved 
October 2008, from http://www.fadbad.com/fadbad.html 

[Than et al., 2003]  Than, K. C., Khor, E. F., Lee, T. H., and Yang, Y. J., "A Tabu-Based 
exploratory algorithm for multiobjective optimization", Artificial Intelligence Review 19, 
Kluwer Academic Publishers, pp. 231-260, 2003.  

[Vallado, 2007]  Vallado, D. A., Fundamentals of Astrodynamics and Applications, Third 
Edition, USA: Space Technology Library, 2007. 

[Vernis and Ferreira, 2006]  Vernis, P. and Ferreira, E., "On-Board Trajectory Planner for the 
TAEM Guidance of a Winged-Body", EADS SPACE Transportation, 2006.  

[Visser, 2007]  Visser, H. G., Aircraft Performance Optimization - Part 1, Delft: Faculty of 
Aerospace, Delft University of Technology, 2007. 

[Vrijbergen, 2004]  Vrijbergen, M. R., "TAEM Path Controller Design using Feedback 
Linearization and Constrained Model Predictive Control", Master of Science Thesis, 
Control and Simulation Division, Faculty of Aerospace, Delft University of Technology, 
Delft, 2004. 

[Wikipedia, 2007]  Wikipedia, "Branch and Bound", retrieved November 2007, from 
http://en.wikipedia.org/wiki/Branch_and_bound 

[Wikipedia, 2008a]  Wikipedia, "Optimal control", retrieved November 2008, from 
http://en.wikipedia.org/wiki/Optimal_control 

[Wikipedia, 2008b]  Wikipedia, "Optimization (mathematics)", retrieved November 2008, from 
http://en.wikipedia.org/wiki/Optimization_(mathematics) 

[Wikipedia, 2008c]  Wikipedia, "Trajectory Optimization", retrieved November 2008, from 
http://en.wikipedia.org/wiki/Trajectory_optimization 

[Yokoyama and Suzuki, 2005]  Yokoyama, N. and Suzuki, S., "Modified Genetic Algorithm for 
Constrained Trajectory Optimization", Journal of Guidance, Control, and Dynamics, 
Vol. 28, No. 1, January-February 2005.  

 
 
 

 

 

 



Appendix A | Some practical issues of INTLAB  177 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Appendix A | Some practical issues of INTLAB 
 

The next two sections report two practical problems that may arise during the normal 
utilization of INTLAB. Possible solutions are presented. 

 

A.1 The difference between intval(0.1) and intval(‘0.1’) 
 

INTLAB’s command ( )intval x  can be used to convert a real number x  into a thin interval 

[ ],x x . 

If x  is a machine-representable number, then the commands ( )intval x  and ( )' 'intval x  are 

completely equivalent and: 

 x x=  (A-1) 

However, if x  is not a machine-representable number, like for example 0.1x = , then the 

commands ( )intval x  and ( )' 'intval x  yield different outputs.  

Long story short, to correctly bound a number like 0.1 , the right command is ( )'0.1'intval . 

That will produce an interval [ ],x x  satisfying: 

 0.1x x≤ ≤  (A-2) 

On the other hand, the bounds produced by the command ( )0.1intval  might not contain 0.1 . 

With INTLAB, checking if a real number x  is machine representable or not is easy.  If it is, 
then: 

 ( )( )' ' 0diam intval x =  (A-3) 

( )diam x  is the INTLAB command to calculate the width of an interval. If it is not, then: 

 ( )( )' ' 0diam intval x >  (A-4) 

 

A.2 Rigorous bounds on a result  
 

The next example was taken from MATLAB. To access it, type: help intval. 

The idea is to calculate rigorous bounds on: 



178  Appendix A | Some practical issues of INTLAB 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 10.125 10x = +  (A-5) 

which is equal to 0.225 . Writing (A-5) as: 

 ( ) 10.125 10X intval= +  (A-6) 

will not work. According to the priority rules of real and interval arithmetic, division has 

priority over addition. Therefore, 1
10  will be the first term to be calculated. Since both the 

numerator and the denominator are real numbers, interval arithmetic will be used to calculate 
1
10 , making it impossible for X  to contain 0.225 . 

A correct way of calculating (A-5) is: 

 
( )1

0.125
10

intval
X = +  (A-7) 

Again, 
( )1

10
intval

 will be the first term to be calculated. The difference is that now the 

numerator is an interval, forcing MATLAB to use interval arithmetic. Adding a real number with 
an interval also requires interval arithmetic. At the end, 0.225  will belong to X . 

To make sure the true result is always correctly bounded, the easiest way is to define all 
quantities in an expression as intervals, i.e.: 

 ( ) ( )
( )

1
0.125

10
intval

X intval
intval

= +  (A-8) 

 

 

 

 

 



Appendix B | Input Files  179 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Appendix B | Input Files 
 

During this thesis, three software tools were developed: 

1) A TEG determination tool; 

2) A TAEM optimal trajectory design tool; 

3) A 3-DOF methodology script. 

Each tool has its own input file. The structure of these input files is detailed in the subsequent 
sections. 

 

B.1 TEG Determination Tool Input File 
 

The input file of the TEG determination tool is called inputfileTEGdimensioning.in and its 
structure is explained in Table B.1. 

Table B.1: TEG Determination Tool Input File Structure. 

# Input Symbol Format Units

1 
Acceptable relative 
heading angle 
(interval) at ALI 

,r ALIχ  interval  deg 

2 
Acceptable x -position 
(interval) at ALI ALIx  interval  m 

3 
Acceptable y -position 
(interval) at ALI ALIy  interval  m 

4 
Flight-path bank angle 
(interval) during sub-
phase 1 

1μ  interval  deg 

5 
Flight-path bank angle 
(interval) during sub-
phase 3 

2μ  interval  deg 

6 
Number of intervals in 
which 1μ  is split 1

Nμ  int  - 

7 
Number of intervals in 
which 2μ  is split 2

Nμ  int  - 

8 Reference area of the 
vehicle S  float  m2 

9 Re-entry mass of the 
vehicle 

m  float  kg 

10 

Number of 
rows/angle-of-attack 

points of ( ),LC Mα  

and ( ),DC Mα  

N/A int  - 

11 

Number of 
columns/Mach number 

points of ( ),LC Mα  

and ( ),DC Mα  

N/A int  - 



180  Appendix B | Input Files 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

# Input Symbol Format Units

NaN M  ( float ) 
12 Aerodynamic lift 

coefficient ( ),LC Mα  
α  ( float ) LC  ( float ) 

- 

NaN M  ( float ) 
13 Aerodynamic drag 

coefficient ( ),DC Mα  
α  ( float ) DC  ( float ) 

- 

14 

Number of rows/Mach 
number points of 

( )min Mα  and 

( )max Mα  

N/A int  - 

15 

Minimum and 
maximum trimmable 
α  as a function of 
M  

( )min Mα  

and 

( )max Mα  

M  
( float ) minα  ( float ) maxα  

( float ) 
deg 

16 Mach number at TEP TEPM  float  - 

17 Mach number at ALI ALIM  float  - 

18 Altitude at TEP TEPh  float  m 

19 Altitude at ALI ALIh  float  m 

20 Number of integration 
steps intN  int  - 

21 Flight-path angle at 
TEP TEPγ  float  deg 

22 
Minimum α  during 
subsonic regime ,minsubα  float  deg 

23 
Maximum α  during 
subsonic regime ,maxsubα  float  deg 

24 
Subsonic α  search 
step 

αΔ  float  deg 

25 
Maximum subsonic 
M  subsonicM  float  - 

26 
Maximum dynamic 
pressure supported by 
the vehicle 

maxq  float  Pa 

27 

Minimum load factor 
along the negative z -
body axis supported 
by the vehicle 

,minzn  float  - 

28 

Minimum load factor 
along the negative z -
body axis supported 
by the vehicle 

,maxzn  float  - 

29 Sub-phases relative 
length ,rel sub phasesE −Δ

Sub-
phase 1 
length 

( float )

Sub-
phase 2 
length 

( float )

Sub-
phase 3 
length 

( float ) 

Sub-
phase 4 
length 

( float ) 

- (%) 

 



Appendix B | Input Files  181 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

An example is given in Figure B.1: 

[-3,3] 
[-1000,1000] 
[-1000,1000] 
[-60,60] 
[-60,60] 
12 
140 
110 
26029 
13 
12 
NaN 0.2 0.6 0.8 0.9 0.95 1.05 1.1 1.2 1.5 2 3 5 
0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 -0.08 -0.08 -0.08 -0.08 -0.08 
2.5 0.2 0.1 0.2 0.2 0.2 0.13 0.13 0.023 NaN NaN NaN NaN 
5 0.19 0.19 0.19 0.19 0.19 0.3 0.3 0.3 0.09 0.07 0.06 0.05 
7.5 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 NaN NaN NaN NaN 
10 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.36 0.27 0.22 0.19 0.17 
12.5 0.45 0.45 0.45 0.5 0.42 NaN NaN NaN NaN NaN NaN NaN 
15 0.6 0.6 0.6 0.5 0.5 NaN NaN 0.67 0.5 0.4 0.4 0.3 
20 0.7 0.7 0.7 0.6 0.6 NaN NaN 1.0 0.7 0.6 0.5 0.5 
25 0.8 0.8 0.7 0.6 0.6 NaN NaN 1.3 1.0 0.8 0.7 0.7 
30 0.9 0.8 0.8 0.7 0.6 NaN NaN 1.3 1.3 1.0 0.8 0.8 
35 NaN NaN NaN NaN NaN NaN NaN 1.3 1.4 1.1 0.93 0.9 
40 NaN NaN NaN NaN NaN NaN NaN 1.3 1.32 1.19 1.03 0.94 
45 NaN NaN NaN NaN NaN NaN NaN 1.3 1.31 1.3 1 1 
NaN 0.2 0.6 0.8 0.9 0.95 1.05 1.1 1.2 1.5 2 3 5 
0 0.06 0.06 0.06 0.2 0.2 0.5 0.5 0.4 0.3 0.2 0.2 0.1 
2.5 0.05 0.04 0.05 0.07 0.2 0.3 0.3 0.07 NaN NaN NaN NaN 
5 0.06 0.05 0.06 0.08 0.2 0.3 0.25 0.16 0.11 0.09 0.09 0.08 
7.5 0.08 0.07 0.07 0.2 0.2 0.3 0.3 0.2 NaN NaN NaN NaN 
10 0.1 0.1 0.1 0.2 0.2 0.23 0.2 0.2 0.1 0.1 0.1 0.08 
12.5 0.1 0.22 0.23 0.17 0.23 NaN NaN NaN NaN NaN NaN NaN 
15 0.1 0.1 0.1 0.2 0.2 NaN NaN 0.3 0.3 0.2 0.2 0.2 
20 0.3 0.3 0.3 0.4 0.5 NaN NaN 0.5 0.4 0.3 0.3 0.2 
25 0.3 0.3 0.4 0.5 0.5 NaN NaN 0.7 0.5 0.5 0.4 0.3 
30 0.5 0.5 0.45 0.5 0.67 NaN NaN 0.8 0.7 0.6 0.5 0.6 
35 NaN NaN NaN NaN NaN NaN NaN 1.0 1.0 0.8 0.7 0.7 
40 NaN NaN NaN NaN NaN NaN NaN 1.1 1.1 1.1 0.9 0.9 
45 NaN NaN NaN NaN NaN NaN NaN 1.3 1.3 1.4 1.2 1.1 
9 
0 0 30 
0.75 0 30 
0.95 0 10 
1.2 0 10 
1.5 1.5 15.5 
2 3.5 22.5 
3 6.5 32.5 
5 10 45 
6 10 45 
1.5 
0.5 
15000 
3000 
3000 
-10 
0 
30 
1 
0.75 
40000 
-0.75 
2.5 
0.44 0.05 0.5 0.01 

Figure B.1: TEG Determination Tool Input File Example. 

 



182  Appendix B | Input Files 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

B.2 TAEM Optimal Trajectory Design Tool Input File 
 

The input file of the TAEM optimal trajectory design tool is called inputfileHACoptimizer.in and 
its structure is explained in Table B.2. 

Table B.2: TAEM Optimal Trajectory Design Tool Input File Structure. 

# Input Symbol Format Units

1 Relative heading angle 
at TEP ,r TEPχ  interval  deg 

2 x -position at TEP  TEPx  interval  m 

3 y -position at TEP TEPy  interval  m 

4 
Flight-path bank angle 
(interval) during sub-
phase 1 

1μ  interval  deg 

5 
Flight-path bank angle 
(interval) during sub-
phase 3 

2μ  interval  deg 

6 
Number of intervals in 
which 1μ  is split 1

Nμ  int  - 

7 
Number of intervals in 
which 2μ  is split 2

Nμ  int  - 

8 Reference area of the 
vehicle S  float  m2 

9 Re-entry mass of the 
vehicle 

m  float  kg 

10 

Number of 
rows/angle-of-attack 

points of ( ),LC Mα  

and ( ),DC Mα  

N/A int  - 

11 

Number of 
columns/Mach number 

points of ( ),LC Mα  

and ( ),DC Mα  

N/A int  - 

NaN M  ( float ) 
12 Aerodynamic lift 

coefficient ( ),LC Mα  
α  ( float ) LC  ( float ) 

- 

NaN M  ( float ) 
13 Aerodynamic drag 

coefficient ( ),DC Mα  
α  ( float ) DC  ( float ) 

- 

14 

Number of rows/Mach 
number points of 

( )min Mα  and 

( )max Mα  

N/A int  - 

15 

Minimum and 
maximum trimmable 
α  as a function of 
M  

( )min Mα  

and 

( )max Mα  

M  
( float ) minα  ( float ) maxα  

( float ) 
deg 

16 Mach number at TEP TEPM  float  - 

17 Mach number at ALI ALIM  float  - 



Appendix B | Input Files  183 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

# Input Symbol Format Units

18 Altitude at TEP TEPh  float  m 

19 Altitude at ALI ALIh  float  m 

20 Number of integration 
steps intN  int  - 

21 Flight-path angle at 
TEP TEPγ  float  deg 

22 
Minimum α  during 
subsonic regime ,minsubα  float  deg 

23 
Maximum α  during 
subsonic regime ,maxsubα  float  deg 

24 
Subsonic α  search 
step 

αΔ  float  deg 

25 
Maximum subsonic 
M  subsonicM  float  - 

26 
Maximum dynamic 
pressure supported by 
the vehicle 

maxq  float  Pa 

27 

Minimum load factor 
along the negative z -
body axis supported 
by the vehicle 

,minzn  float  - 

28 

Minimum load factor 
along the negative z -
body axis supported 
by the vehicle 

,maxzn  float  - 

29 Sub-phases relative 
lengths ,rel sub phasesE −Δ

Sub-
phase 1 
length 

( float )

Sub-
phase 2 
length 

( float )

Sub-
phase 3 
length 

( float ) 

Sub-
phase 4 
length 

( float ) 

- (%) 

30 rχ  cost function 

weight 
,r weightχ  float  deg 

31 
x -position cost 
function weight weightx  float  m 

32 
y -position cost 

function weight weighty  float  m 

33 Initial upper bound on 
the global minimum J  float  - 

34 
Stopping criterion 
based on the width of 
the parameters 

Pε  
1μ

ε  ( float ) 
2μ

ε  ( float ) deg 

35 
Stopping criterion 
based on width of the 
cost function 

Jε  float  - 

 

 

 



184  Appendix B | Input Files 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

An example is given in Figure B.2: 

[240,240] 
[26000,26000] 
[0,0] 
[-60,60] 
[-60,60] 
2 
4 
110 
26029 
13 
12 
NaN 0.2 0.6 0.8 0.9 0.95 1.05 1.1 1.2 1.5 2 3 5 
0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 -0.08 -0.08 -0.08 -0.08 -0.08 
2.5 0.2 0.1 0.2 0.2 0.2 0.13 0.13 0.023 NaN NaN NaN NaN 
5 0.19 0.19 0.19 0.19 0.19 0.3 0.3 0.3 0.09 0.07 0.06 0.05 
7.5 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 NaN NaN NaN NaN 
10 0.4 0.4 0.4 0.4 0.4 0.5 0.4 0.36 0.27 0.22 0.19 0.17 
12.5 0.45 0.45 0.45 0.5 0.42 NaN NaN NaN NaN NaN NaN NaN 
15 0.6 0.6 0.6 0.5 0.5 NaN NaN 0.67 0.5 0.4 0.4 0.3 
20 0.7 0.7 0.7 0.6 0.6 NaN NaN 1.0 0.7 0.6 0.5 0.5 
25 0.8 0.8 0.7 0.6 0.6 NaN NaN 1.3 1.0 0.8 0.7 0.7 
30 0.9 0.8 0.8 0.7 0.6 NaN NaN 1.3 1.3 1.0 0.8 0.8 
35 NaN NaN NaN NaN NaN NaN NaN 1.3 1.4 1.1 0.93 0.9 
40 NaN NaN NaN NaN NaN NaN NaN 1.3 1.32 1.19 1.03 0.94 
45 NaN NaN NaN NaN NaN NaN NaN 1.3 1.31 1.3 1 1 
NaN 0.2 0.6 0.8 0.9 0.95 1.05 1.1 1.2 1.5 2 3 5 
0 0.06 0.06 0.06 0.2 0.2 0.5 0.5 0.4 0.3 0.2 0.2 0.1 
2.5 0.05 0.04 0.05 0.07 0.2 0.3 0.3 0.07 NaN NaN NaN NaN 
5 0.06 0.05 0.06 0.08 0.2 0.3 0.25 0.16 0.11 0.09 0.09 0.08 
7.5 0.08 0.07 0.07 0.2 0.2 0.3 0.3 0.2 NaN NaN NaN NaN 
10 0.1 0.1 0.1 0.2 0.2 0.23 0.2 0.2 0.1 0.1 0.1 0.08 
12.5 0.1 0.22 0.23 0.17 0.23 NaN NaN NaN NaN NaN NaN NaN 
15 0.1 0.1 0.1 0.2 0.2 NaN NaN 0.3 0.3 0.2 0.2 0.2 
20 0.3 0.3 0.3 0.4 0.5 NaN NaN 0.5 0.4 0.3 0.3 0.2 
25 0.3 0.3 0.4 0.5 0.5 NaN NaN 0.7 0.5 0.5 0.4 0.3 
30 0.5 0.5 0.45 0.5 0.67 NaN NaN 0.8 0.7 0.6 0.5 0.6 
35 NaN NaN NaN NaN NaN NaN NaN 1.0 1.0 0.8 0.7 0.7 
40 NaN NaN NaN NaN NaN NaN NaN 1.1 1.1 1.1 0.9 0.9 
45 NaN NaN NaN NaN NaN NaN NaN 1.3 1.3 1.4 1.2 1.1 
9 
0 0 30 
0.75 0 30 
0.95 0 10 
1.2 0 10 
1.5 1.5 15.5 
2 3.5 22.5 
3 6.5 32.5 
5 10 45 
6 10 45 
1.5 
0.5 
15000 
3000 
3000 
-10 
0 
30 
1 
0.75 
40000 
-0.75 
2.5 
0.44 0.05 0.5 0.01 
3 
1000 
1000 
Inf 
Inf Inf 
0.3 

Figure B.2: TAEM Optimal Trajectory Design Tool Input File Example. 



Appendix B | Input Files  185 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

B.3 3-DOF Methodology Script Input File 
 

The input file of the 3-DOF methodology script is called inputfilevnodelp3dof.in and its 
structure is explained in Table B.3. 

Table B.3: 3-DOF Methodology Script Input File Structure. 

# Input Symbol Format Units

1 
Flight-path bank angle 
(interval) during sub-
phase 1 

1μ  interval  deg 

2 
Flight-path bank angle 
(interval) during sub-
phase 3 

2μ  interval  deg 

3 Reference area of the 
vehicle S  float  m2 

4 Re-entry mass of the 
vehicle 

m  float  kg 

5 Mach number at TEP TEPM  float  - 

6 Mach number at ALI ALIM  float  - 

7 Altitude at TEP TEPh  float  m 

8 Altitude at ALI ALIh  float  m 

9 
Number of integration 
steps used by 
SIMULINK 

intN  int  - 

10 Flight-path angle at 
TEP TEPγ  float  deg 

11 Relative heading angle 
at TEP TEPχ  float  deg 

12 x -position at TEP TEPx  float  m 

13 y -position at TEP TEPy  float  m 

14 Sub-phases relative 
lengths ,rel sub phasesE −Δ

Sub-
phase 1 
length 

( float )

Sub-
phase 2 
length 

( float )

Sub-
phase 3 
length 

( float ) 

Sub-
phase 4 
length 

( float ) 

- (%) 

15 
Aerodynamic lift 
coefficient per sub-
phase 

LC  

LC  at 

sub-
phase 1 
( float )

LC  at 

sub-
phase 2 
( float )

LC  at 

sub-
phase 3 
( float ) 

LC  at 

sub-
phase 4 
( float ) 

- 

16 
Aerodynamic drag 
coefficient per sub-
phase 

DC  

DC  at 

sub-
phase 1 
( float )

DC  at 

sub-
phase 2 
( float )

DC  at 

sub-
phase 3 
( float ) 

DC  at 

sub-
phase 4 
( float ) 

- 

17 Integration order used 
by VNODE-LP 

p  int  - 

 

 

 



186  Appendix B | Input Files 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

An example is given in Figure B.3: 

[60,60] 
[-60,-60] 
110 
26029 
1.5 
0.5 
15000 
3000 
3000 
-10 
0 
-65000 
34000 
0.44 0.05 0.5 0.01 
0.3 0.2 0.2 0.2 
0.14 0.14 0.11 0.05 
7 

Figure B.3: 3-DOF Methodology Script Input File Example. 

 

 

 



Appendix C | More dynamic global optimization examples 187 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

Appendix C | More dynamic global optimization 
examples 
 

In Chapter 5, two dynamic global optimization examples were mentioned but not solved: 
Example 2 and Example 4. These two examples are solved here. 

 

C.1 Example 2 
 

The only difference between Example 2 and Example 1 is that now there are some 
constraints on the control function: 

Performance index: ( ) ( )( ) ( ) ( )( )
1

2

0

, , 0.5J x t u t t u t x t dt= +∫  (C-1) 

State dynamics: ( ) ( )x t u t=�  (C-2) 

Initial state: ( )0 0x =  (C-3) 

Final state: ( )1 1x =  (C-4) 

Control function constraints: ( )0.75 1.25u t≤ ≤  (C-5) 

According to [Visser, 2007], the solution is: 

Optimal control function: ( )*

0.75 ,0 0.25
0.5 ,0.25 0.75

1.25 ,0.75 1

t
u t t t

t

≤ ≤⎧
⎪= + ≤ ≤⎨
⎪ ≤ ≤⎩

 (C-6) 

Global minimum: * 0.963542J ≈  (C-7) 

Example 2 has a higher global minimum *J  than Example 1 because of (C-5).  

 

C.1.1 Description of Chu’s algorithm 
 

The following parameterization is suggested in [Chu, 2007]:   



188  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 ( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

1 2 1 3

1 2 1 3

1 2 1 3

0.75 ,0 0.2
0.75 0.75 1.25 ,0.2 0.4

0.75 1.25 ,0.4 0.6

1.25 0.75 1.25 ,0.6 0.8

1.25 ,0.8 1

t
P t P P t P t

P t P P t P tu t
P t P P t P t

t

≤ ≤⎧
⎪ ∩ − + ∩ − + < <⎪
⎪ − + ∩ − + ≤ ≤= ⎨
⎪ ∩ − + ∩ − + < <⎪
⎪ ≤ ≤⎩

 (C-8) 

with: 

 

[ ]
[ ]
[ ]

0,1
0.2,0.4
0.6,0.8

initialP
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (C-9) 

and: 

 *

1
0.25
0.75

P
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (C-10) 

Take 0.3t =  for example. According to (C-8), the control function ( )u t  can only be equal to 

0.75 or to ∅ . Either way, the result is wrong. Finding *P  with (C-8) is therefore impossible. 

As for the algorithm itself, the only differences relatively to Section 5.3.1.2 are that: 

1) a shrinking phase is used. 

2) the constraint is checked. No details are given about how this is done.  

3) IJ , IP  and IX  could be calculated for Chu’s algorithm. 

As a final remark, it is not explained in [Chu, 2007] how exactly are the final state and the 
performance index calculated in this particular example. 

 

C.1.2 Description of the developed algorithm 
 

Without making further assumptions, the 3rd order parameterization (C-8) can be rewritten as 
a 2nd order parameterization as follows: 

 ( ) ( )
1

1 1 2
2 1

2

0.75 ,0
0.5 0.75 ,

1.25 , 1

t P

u t t P P t P
P P

P t

⎧ ≤ ≤
⎪
⎪= − + ≤ ≤⎨ −⎪
⎪ ≤ ≤⎩

 (C-11) 

or in a more detailed form: 



Appendix C | More dynamic global optimization examples 189 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( )

( )

( )

( )

1

1 1 1
2 1

1 1 2
2 1

1 2 2
2 1

2

0.75 ,0

0.50.75 0.75 ,

0.5 0.75 ,

0.5 0.75 1.25 ,

1.25 , 1

t P

t P P t P
P P

t P P t Pu t
P P

t P P t P
P P

P t

≤ ≤⎧
⎪

⎛ ⎞⎪ ∪ − + ≤ ≤⎜ ⎟⎪ −⎝ ⎠⎪
⎪⎪ − + ≤ ≤= ⎨ −⎪
⎪⎛ ⎞
⎪ − + ∪ ≤ ≤⎜ ⎟−⎪⎝ ⎠
⎪

≤ ≤⎪⎩

 (C-12) 

where: 

 * 0.25
0.75

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (C-13) 

The meaning of 1P  and 2P  can be understood from Figure C.1, where 1P  and 2P  are 

assumed to be point interval variables. 

From Figure C.1, an intuitive choice for initialP  is: 

 
[ ]
[ ]
0,0.5
0.5,1initialP

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (C-14) 

Like Example 1, this problem is completely solvable by HC. Since there are only two 
parameters, two interval equations are sufficient. 

0          1
0.7

0.75
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

t [-]

u(
t)

P1 P2
 

Figure C.1: Illustration of the parameterization used to solve Example 2. 

The first one results from the initial and final state. For 10 t P≤ ≤ , the following is true: 

 ( ) ( ) ( )0 0 00.75 0.75 0.75x Ax u x t t A x t t= ⇒ == = ⇔ = + ⎯⎯⎯⎯⎯→ =�  (C-15) 

For 1 2P t P≤ ≤ : 



190  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

( )

( ) ( )

1
2 1

2
1

2 1

0.5 0.75

0.5 0.75
2

x u t P
P P

t P
x t t B

P P

= = − +
−

−
⇔ = + +

−

�

 (C-16) 

Equalizing (C-15) with (C-16) at 1t P=  yields: 

 1 10.75 0.75 0P P B B= + ⇔ =  (C-17) 

meaning that, for 1 2P t P≤ ≤ :  

 ( ) ( )2
1

2 1

0.5 0.75
2

t P
x t t

P P
−

= +
−

 (C-18) 

Finally, for 2 1P t≤ ≤ : 

 ( )1.25 1.25x u x t t C= = ⇔ = +�  (C-19) 

Equalizing (C-18) with (C-19) at 2t P=  yields: 

 ( ) ( )2 1 2 2 1 20.25 0.75 1.25 0.25P P P P C C P P− + = + ⇔ = − +  (C-20) 

meaning that, for 2 1P t≤ ≤ : 

 ( ) ( )1 21.25 0.25x t t P P= − +  (C-21) 

The condition ( )1 1x =  implies that: 

 ( )1 2 1 21.25 0.25 1 1P P P P− + = ⇔ + =  (C-22) 

Expression (C-22) is the first equation. The second one is a consequence of (5-4) and (5-5). 
Defining the Hamiltonian as explained in Section 5.1.4 yields: 

 

( )

( )

2
1 1

2
1 2

2
2 2

0.5 0.75 ,0
0.5 ,
0.5 1.25 , 1

u x u u t P
H u x u P t P

u x u u P t

λ μ
λ
λ μ

⎧ + + + − + ≤ ≤
⎪= + + ≤ ≤⎨
⎪ + + + − ≤ ≤⎩

 (C-23) 

From (5-4), it follows that: 

 ( )1 ,0 1H t t D t
x

λ λ∂
= − = − ⇔ = − + ≤ ≤

∂
�  (C-24) 

On the other hand, from (5-5) it follows that for 1 2P t P≤ ≤ : 



Appendix C | More dynamic global optimization examples 191 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 0 0H u u
u

λ λ∂
= ⇔ + = ⇔ = −

∂
 (C-25) 

Equalizing (C-24) with (C-25) at 1t P=  and at 2t P=  yields, respectively: 

 1 0.75P D− + = −  (C-26) 

 2 1.25P D− + = −  (C-27) 

Eliminating D  between (C-26) and (C-27) results in the second equation: 

 2 1 0.5P P− =  (C-28) 

The following subroutine was then implemented to solve (C-22) and (C-28) through HC: 

 '
1 21P P= −  (C-29) 

 '
1 1 1P P P= ∩  (C-30) 

 '
1 2 0.5P P= −  (C-31) 

 '
1 1 1P P P= ∩  (C-32) 

 '
2 11P P= −  (C-33) 

 '
2 2 2P P P= ∩  (C-34) 

 '
2 10.5P P= +  (C-35) 

 '
2 2 2P P P= ∩  (C-36) 

Since this problem is very simple, introducing a shrinking phase would not improve the results. 

The final state can be calculated, without being affected by dependency, through (C-21). 

Calculating the performance index is more complex. The integral (C-1) needs to be divided 

into 5 different parts, each one corresponding to a different section of ( )u t , as defined in 

(C-12). Writing out the different parcels of the performance index results in (C-37). 



192  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

( )

( ) ( )( )

( )

( ) ( )

1

1

1

1
2

0

2

0

1

2

1
2 1

2
1

2 1

2

0.5

0.5 0.75 0.75

0.50.5 0.75 0.75

0.50.75 0.75
2

0

st

nd

P

parcel

P

P

parcel

J u x dt

t dt

t P
P P

dt
t P

t t
P P

= + =

= + +

⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟∪ − + +⎨ ⎬⎜ ⎟−⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
⎜ ⎟+ +

⎧ ⎫⎛ ⎞⎜ ⎟−⎪ ⎪⎜ ⎟+ ∪ +⎜ ⎟⎨ ⎬⎜ ⎟−⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭⎝ ⎠

+

∫

∫

∫

�����	����


���������	��������


( )

( )

( )

( ) ( )( )

2

1

2

1
2 1

2
1

2 1

3

2

1
2 1

2
1

1 2
2 1

0.5.5 0.75

0.5 0.75
2

0.50.5 0.75 1.25

0.5 0.75 1.25 0.25
2

rd

P

P

parcel

t P
P P

dt
t P

t
P P

t P
P P

t P
t t P P

P P

⎛ ⎞⎛ ⎞
⎜ ⎟− + +⎜ ⎟−⎜ ⎟⎝ ⎠

+⎜ ⎟
⎛ ⎞−⎜ ⎟
⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎧ ⎫⎛ ⎞⎪ ⎪− + ∪ +⎨ ⎬⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
+

⎧ ⎫⎛ ⎞−⎪⎜ ⎟+ + ∪ − +⎨ ⎬⎜ ⎟−⎪⎝ ⎠⎩

∫

�������	������


( ) ( )( )( )

2

2

2

4

1
2

1 2

5

0.5 1.25 1.25 0.25

th

th

P

P

parcel

P

parcel

dt

t P P dt

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟ +
⎜ ⎟⎪⎜ ⎟
⎜ ⎟⎪⎭⎝ ⎠

+ + − +

∫

∫

������������	�����������


��������	�������


 (C-37) 

The first parcel and the last were analytically calculated as follows:  

1st parcel: ( ) ( )( )
1 2

2 12
1

0

0.75
0.5 0.75 0.75 0.5 0.75

2

P P
t dt P+ = ⋅ ⋅ +∫  (C-38) 

5th parcel: 

( ) ( )( )( )
( )( )

2

1
2

1 2

2
1 2 2 2 2

0.5 1.25 1.25 0.25

1 5 25 45
4 8 32 32

P

t P P dt

P P P P P

+ − + =

+ −
= − − +

∫
 (C-39) 

The other ones were integrated using the rectangular method (3-39) described in Section 3.6. 
The integration limits of the 2nd, 3rd and 4th parcels were divided into intN  subintervals each. 

No special care was taken to reduce the dependency effect in the calculation of (C-37). 



Appendix C | More dynamic global optimization examples 193 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

C.1.3 Comparing the algorithms 
 

Table C.1 shows all the inputs not yet mentioned.  

Since the parameterization used here is different from the one used in [Chu, 2007], the 
accuracy of the two algorithms can only be compared in terms of the width of the “guaranteed 

bounds” on *J . The stopping criteria were chosen accordingly.  

Table C.1: User inputs in Example 2. 

Designation Symbol Value 

Number of time subintervals used for integration   intN  500 

New boxes per old box splitN  [ ]0 2 T
 

1P
ε  +∞  

Pε
2Pε  +∞  Stopping criteria 

Jε  2.0e-3 

absε  2 
Hull consistency stopping criteria 

relε  1.01 

The HC stopping criteria were chosen deliberately high to optimize the CPU time.  

In this particular case, choosing [ ]splitN = − , in accordance to (5-41), would not work. At 

least one parameter must be split for the algorithm to converge.  

In Table C.2, the two algorithms are compared. 

Table C.2: Comparative results for Example 2. 

  The developed algorithm Chu’s algorithm 

Designation Symbol Result Width Result Width

Bounds on the 
minimum 

IJ  [ ]0.9630,0.9641  1.0e-3 [ ]0.9623,0.9650  2.6e-3 

1
IP  [ ]0.249,0.251  0 [ ]0.820,0.910  9e-2 

2
IP  [ ]0.749,0.751  0 [ ]0.200,0.220  2e-2 

Bounds on the 
solution point 

IP  

3
IP  N/A N/A [ ]0.7784,0.8000  2.2e-2 

Bounds on the 
final state 

IX  [ ]1,1  0 [ ]0.9991,1.0001  1.8e-3 

CPU time [ ]CPUt sΔ  0.98 N/A 7.32 N/A 

Number of 
remaining 
boxes 

remainingN  2 N/A 2 N/A 

Comparing Chu’s result with (C-10) shows that *P  is not contained inside the hull of the 

solution set IP . This proves, without a doubt, that the algorithm given in [Chu, 2007] is 
unable to give guaranteed bounds on the solution point. 



194  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

On the other hand, the developed algorithm correctly bounds *P  and only needs 

approximately 1
7  of the time to achieve the same accuracy. 

The developed algorithm produces relatively wide bounds on IJ , especially considering that 
IP  is a point interval. This is due to the wrapping effect that affects the calculation of (C-37). 

A relatively big value of intN  was chosen in order to minimize this effect, with obvious 

consequences to the algorithm’s speed. Only a new integration technique could improve these 
results. 

This example served to show the capabilities of HC. 

 

C.2 Example 4 
 

The only difference between Example 4 and Example 3 is the state inequality constraint 
(C-47).  

Performance index: ( ) ( )( ) ( )
1

2

0

, , 0.5J x t u t t u t dt= ∫  (C-40) 

State dynamics: ( ) ( )1x t u t=�  (C-41) 

 ( ) ( )2 1x t x t=�  (C-42) 

Initial state: ( )1 0 1x =  (C-43) 

 ( )2 0 0x =  (C-44) 

Final state: ( )1 1 1x = −  (C-45) 

 ( )2 1 0x =  (C-46) 

State inequality constraint: ( )2 0.2 ,0 1x t t≤ ≤ ≤  (C-47) 

The analytical solution is given in [Bryson Jr. and Ho, 1975]: 

Optimal control function: ( )* 4.8 3.2 ,0 0.5
4.8 1.6 ,0.5 1

t t
u t

t t
− ≤ ≤⎧

= ⎨− + ≤ ≤⎩
 (C-48) 

Global minimum: * 2.24J =  (C-49) 

Example 4 has a higher global minimum *J  than Example 3 because of (C-47).  

 



Appendix C | More dynamic global optimization examples 195 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

C.2.1 Description of Chu’s algorithm 
 

The following parameterization is suggested in [Chu, 2007]:   

 ( ) ( ) ( )
2 3 1

2 3 4 5 1 1

4 5 1

,0

,

, 1

P t P t P

u t P t P P t P P t P

P t P P t

+ ≤ ≤⎧
⎪⎪= + ∩ + < <⎨
⎪

+ ≤ ≤⎪⎩

 (C-50) 

with: 

 

[ ]
[ ]

[ ]
[ ]
[ ]

0.45,0.55
3.0,5.0
5.0, 2.0
5.0, 3.0
0.0,2.0

initialP

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −
⎢ ⎥
− −⎢ ⎥

⎢ ⎥
⎣ ⎦

 (C-51) 

and: 

 [ ]* 0.5 4.8 3.2 4.8 1.6 TP = − −  (C-52) 

Assume that ( ) ( )1
2 3u t P t P= +  and ( ) ( )2

4 5u t P t P= +  are represented by the blue and red 

regions illustrated in Figure C.2, respectively. 

( ) ( )1
2 3u t P t P= + ( ) ( )2

4 5u t P t P= +

1P 1P t
 

Figure C.2: ( )u t  for 1t P∈ . 

For any 1t P∈  outside the pink area, ( )u t =∅ . Obviously, this is not acceptable. The 

parameterization used in [Chu, 2007] is therefore incorrect. 

This example was solved in [Chu, 2007] using the algorithm explained in Section 5.3.1.2 with 
the modifications enumerated in Section C.1.1. 

 



196  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

C.2.2 Description of the developed algorithm 
 

Without making further assumptions, the 5th order parameterization (C-50) can be rewritten 
as a 4th order parameterization as follows: 

 ( )
( )

3 2
2 1

1

4 3
4 1

1

,0

1 , 1
1

P P t P t P
P

u t
P P t P P t

P

−⎧ + ≤ ≤⎪⎪= ⎨ −⎪ − + ≤ ≤
⎪ −⎩

 (C-53) 

or in a more detailed form: 

 ( ) ( )

( )

3 2
2 1

1

3 2 4 3
2 4 1 1

1 1

4 3
4 1

1

,0

1 ,
1

1 , 1
1

P P t P t P
P

P P P Pu t t P t P P t P
P P

P P t P P t
P

−⎧ + ≤ ≤⎪
⎪
⎪⎛ ⎞ ⎛ ⎞− −⎪= + ∪ − + ≤ ≤⎨⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎪
⎪ −

− + ≤ ≤⎪
−⎪⎩

 (C-54) 

where: 

 [ ]* 0.5 3.2 0.8 3.2 TP = − − −  (C-55) 

The meaning of 1P , 2P , 3P  and 4P  can be understood from Figure C.3, where they are 

assumed to be point interval variables. 

0          1
 

 

 

 

 

 

 

 

 

 

 

t [-]

u(
t) 

[-]

P
1

P
2

P
3

P4

 

Figure C.3: Illustration of the parameterization used to solve Example 4.  

By looking at (C-50) and (C-54), it is possible to relate Chu’s parameterization (identified by 

the superscript C ) with the one used in this thesis (superscript F ).  

 1 1
F CP P=  (C-56) 

 ( ) ( ) 2 30 0F C F Cu t u t P P= = = ⇔ =  (C-57) 



Appendix C | More dynamic global optimization examples 197 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 ( ) ( )1 1 3 2 1 3
F F C C F C C Cu t P u t P P P P P= = = ⇔ = +  (C-58) 

 ( ) ( ) 4 4 51 1F C F C Cu t u t P P P= = = ⇔ = +  (C-59) 

For the comparison with [Chu, 2007] to be valid, the initial box used in this thesis must be 
equivalent to Chu’s initial box. Therefore, (C-51) was inserted into (C-56)-(C-59) and the 
result taken as the initial box used in this thesis: 

 

[ ]
[ ]

[ ]
[ ]

0.45,0.55
5, 2

3.65,0.75
5, 1

initialP

⎡ ⎤
⎢ ⎥− −⎢ ⎥= ⎢ ⎥−
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 (C-60) 

Two interval equations can be deduced from the state dynamics and the initial and final 
states. Integrating (C-41) yields: 

 

( )

( ) ( )

( ) ( ) ( ) ( )

3 2
1 2 1

1

4 3
1 4 1

1

1 23 2
1 2 1

1

22 4 3
1 4 1

1

,0

1 , 1
1

,0
2

1 , 1
2 1

P Px u t P t P
P

P Px u t P P t
P

P Px t t P t A t P
P

P Px t t P t B P t
P

−⎧ = = + ≤ ≤⎪⎪
⎨ −⎪ = = − + ≤ ≤
⎪ −⎩

⇔

−⎧ = + + ≤ ≤⎪
⎪
⎨ −⎪ = − + + ≤ ≤
⎪ −⎩

�

�

 (C-61) 

The superscripts ( )
1

 and ( )2
 are only used here to identify the different phases. 

A  and B  can be determined by imposing (C-43) and (C-45): 

 ( )1 0 1 1x A= ⇔ =  (C-62) 

 ( )1 41 1 1x B P= − ⇔ = − −  (C-63) 

The first equation follows from equalizing the two branches of (C-61) at 1t P= , i.e.: 

 ( ) ( ) ( ) ( )1 2
1 1 1 1x P x P=  (C-64) 

resulting in: 

 32 1 4 4 12 0
2 2 2 2

PP P P P P
− − − + − =  (C-65) 

On the other hand, integrating (C-42) yields:   



198  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

23 2
2 1 2 1

1

24 3
2 1 4 4 1

1

1 3 23 2 2
2 1

1

32 24 3 4
2 4 1

1

1 ,0
2

1 1 , 1
2 1

,0
6 2

1 1 , 1
6 1 2

P Px x t P t t P
P

P Px x t P t P P t
P

P P Px t t t t C t P
P

P P Px t t t P t D P t
P

−⎧ = = + + ≤ ≤⎪
⎪
⎨ −⎪ = = − + − − ≤ ≤
⎪ −⎩

⇔

−⎧ = + + + ≤ ≤⎪
⎪
⎨ −⎪ = − + + − − + ≤ ≤
⎪ −⎩

�

�

 (C-66) 

C  and D  can be determined by imposing (C-44) and (C-46): 

 ( )2 0 0 0x C= ⇔ =  (C-67) 

 ( ) 4
2 1 0 1

2
Px D= ⇔ = +  (C-68) 

The second equation follows from equalizing the two branches of (C-66) at 1t P= , i.e.: 

 ( ) ( ) ( ) ( )1 2
2 1 2 1x P x P=  (C-69) 

resulting in: 

 
2 2

3 1 32 1 4 4 1 1 4
1

22 1 0
3 3 6 3 3 3

P PPP P P P P PPP− − + + − − + =  (C-70) 

HC was applied to (C-65) and to (C-70) in the following way (the intermediate intersection 
steps are not shown here):  

 

31
4

'
1

2

12
2 2 2

2

PPP
P P

⎛ ⎞− − − + −⎜ ⎟
⎝ ⎠=  (C-71) 

 

2
32 1 1

4 1
'

1
3

1 2 1
3 3 3 3 6

2
3

PP P PP P
P P

⎛ ⎞⎛ ⎞− + + − + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
+

 (C-72) 

 

3 1
4

'
2

1

12
2 2 2

2

P PP
P P

⎛ ⎞− − + − +⎜ ⎟
⎝ ⎠=  (C-73) 



Appendix C | More dynamic global optimization examples 199 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 

1 1
3 4 1 1

'
2 2

1

1 1 2 2 1
6 3 3 3 3

3

P PP P P P
P

P

⎛ ⎞⎛ ⎞ ⎛ ⎞− + + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠=  (C-74) 

 ' 1 2 1
3 4

12 2
2 2 2

P P PP P⎛ ⎞⎛ ⎞= − + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (C-75) 

 ' 3 2 1 1
3 1 4 1

1 26 2 1
3 3 3 3 3
P P P PP P P P

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= − − − − + + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (C-76) 

 

32 1

'
4

1

2
2 2
1
2 2

PP P

P P

− − −
=

−
 (C-77) 

 

1 1 2
3 1

'
4

1
1

1 1 2
6 3 3

1 2
3 3 3

P PPP P
P

PP

⎛ ⎞ ⎛ ⎞− + + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞− + − +⎜ ⎟
⎝ ⎠

 (C-78) 

The dependency effect was taken into account when writing (C-71)-(C-78). The form of the 
equations prevents the denominators from containing zero. 

Since there are four parameters and just two equations, the procedure explained in Section 
5.2.2.2.4 based on an upper bound on the minimum has to be used. The first step is to prove 
the feasibility of a box P  with respect to the equality constraints. In order to apply Theorem 
4.1, two interval parameters have to be fixed. Since the initial bounds on 1P  are relatively 

sharp, 1P  was chosen as one of those parameters. By also fixing 2P , feasibility can be proved 

in the following way: 

1) 1, 1( )mP m P=  (C-79) 

2) 2, 2( )mP m P=  (C-80) 

3) 1,'
3 4 2, 1,

12 4
2 2

m
m m

P
P P P P

⎛ ⎞
= − + − −⎜ ⎟

⎝ ⎠
 (C-81) 

4) 

1, 1, 2,'
3 1,

'
4

1,
1,

1 1 2
6 3 3

1 2
3 3 3

m m m
m

m
m

P P P
P P

P
P

P

⎛ ⎞ ⎛ ⎞
− + + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=
⎛ ⎞

− + − +⎜ ⎟
⎝ ⎠

 (C-82) 

5) If '
3 3P P⊂  and '

4 4P P⊂ , then Theorem 4.1 guarantees that there is a solution of (C-65) 

and of (C-70) inside ' ' '
1, 2, 3 4

T

m mP P P P P⎡ ⎤= ⎣ ⎦ . Thus, 'P  can be used to update J . 



200  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

Note that (C-81) and (C-82) are not affected by dependency. 

At this point, and following the suggestion given in Section 5.2.4, it was decided that 1P  and 

2P  would be the parameters split during the branching phase. 

Proving that 'P  is feasible with respect to the equality constraints (C-65) and (C-70) is only 

the first step. 'P  must also be proved feasible with respect to the inequality constraint (C-47). 

So sharp bounds on ( )2x t  could be calculated, or in other words, to reduce the dependency 

effect, (C-66) was rewritten as follows: 

( )

( )

( ) ( )
( )

3 2 2
2 1

1

3 2
2 1 1

1 1
3 1 4 1 1 1

4 3
2 4

1

1 , 0,
6 2

1
6 3

1 1 1 2
1 ,

6 6 3 3 3 3

1 1 1
1

6 2 2 6 1 2

P P P
x T T T T T P

P

P P
x t P P

P P
P P P P P t P

P PT T
x T T T P T

P

−
= + + =

= + + ∪

∪ + − + + − − + =

−
= − + − + −

−

⎛ ⎞⎛ ⎞ ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

1

1
1 , ,1

2
T T P+ − + =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ ⎛ ⎞⎛ ⎞ ⎡ ⎤⎜ ⎟⎜ ⎟⎪ ⎣ ⎦⎝ ⎠⎝ ⎠⎩

 (C-83) 

where the main priority was to factor out 3P  and 4P . Since 1P  and 2P  are split during the 

branching phase, all the boxes should have sharper bounds on 1P  and 2P  than on 3P  and 4P . 

Moreover, 1P  and 2P  are replaced by thin intervals in (C-79) and (C-80). Thus, it is more 

important to factor out 3P  and 4P  than 1P  and 2P . In this way, sharper bounds on ( )2x t  can 

be calculated. 

Factoring out 3P  and 4P  for 10 t P≤ ≤  and 1 1P t≤ ≤  has a problem though: the dependency 

due to T  increases considerably. As explained in Section 5.2.2.1, to deal with this, 10, P⎡ ⎤⎣ ⎦  

and 1,1P⎡ ⎤⎣ ⎦  are divided in ineqN  subintervals each. 

(C-83) is used both for proving feasibility of a box 'P  and for proving infeasibility of a box P  
with respect to the inequality constraint. 

The performance index is calculated through (C-84). The rectangular method was used to 
calculate the second parcel. The first and third parcels are calculated analytically via (C-85) 
and (C-86). 3P  and 4P  were factored out to reduce the dependency effect. 

 

C.2.3 Comparing the algorithms 
 

The inputs given to the developed algorithm are shown in Table C.3. 



Appendix C | More dynamic global optimization examples 201 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

 
( )

( )

1

1

1

1

1
2

0
2

3 2
2

10

1

2

3 2 4 3
2 4

1 1

2

21
4 3

4
1

3

0.5

0.5

0.5 1
1

0.5 1
1

st

nd

rd

P

parcel

P

P

parcel

P

parcel

J u dt

P P t P dt
P

P P P Pt P t P dt
P P

P P t P dt
P

= =

⎛ ⎞−
= + +⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
+ + ∪ − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞−
+ − +⎜ ⎟−⎝ ⎠

∫

∫

∫

∫

�����	����


����������	���������


������	�����


 (C-84) 

( )( ) ( )( )( )
1 2

1 2 2 223 2
2 3 2 1 1 1 1 3 2 1 1 1 12

1 10

0.5 3 2 3
6

P PP P
t P dt P P P P P P P P P P P P

P P
−

+ = − + − +
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫  (C-85) 

( )
( )
( )

( )( )
( )( )

( )
1

2

4 1 1 1 1 1
21 41 24 3

4 2 3 1 1 1 1
1 1

22
3 1

3 3 3 1
1

0.5 1 3 3 2 1
1 6 1

1
P

P P P P P P
PPP P

t P dt P P P P P
P P

P P

− − + + + +
+− +−

− + = + − − + +
− −

+ −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

∫  (C-86) 

Table C.3: User inputs in Example 4. 

Designation Symbol Value 

New boxes per old box splitN  [ ]2 2 0 0 T
 

Initial upper bound on the minimum J  +∞  

Number of time subintervals used for integration intN  1 

Number of time subintervals used for inequality 
constraints ineqN  1000 

1P
ε  +∞  

2Pε  +∞  

3Pε  +∞  
Pε

4Pε  +∞  

Stopping criteria 

Jε  6.3e-2 

absε  1.0e-5 
Hull consistency stopping criteria 

relε  0.05 

The intended performance could only be achieved by choosing a relatively high value for 

ineqN . 



202  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

In Table C.4, the results produced by the developed algorithm are compared with the 
sharpest results presented in [Chu, 2007]. 

Table C.4: Comparative results for Example 4. 

  The developed algorithm Chu’s algorithm 

Designation Symbol Result Width Result Width

Bounds on the 
minimum 

IJ  [ ]2.206, 2.256  4.9e-2 [ ]2.201, 2.265  6.4e-2 

1
IP  [ ]0.450,0.550  1e-1 [ ]0.478,0.513  3.4e-2 

2
IP  [ ]3.41, 3.08− −  3.2e-1 [ ]4.53,5.00  4.7e-1 

3
IP  [ ]0.87, 0.71− −  1.5e-1 [ ]3.26, 3.15− −  1.0e-1 

4
IP  [ ]3.43, 3.03− −  3.9e-1 [ ]4.82, 4.32− −  4.8e-1 

Bounds on the 
solution point 

IP  

5
IP  N/A N/A [ ]1.24,1.62  3.8e-1 

CPU time [ ]CPUt sΔ  554 (≈9m) N/A 9994 (≈2h47m) N/A 

Number of 
remaining boxes remainingN  8345 N/A 1214 N/A 

In this particular case, both algorithms correctly bound *P . However, the algorithm developed 
in this thesis is approximately 18 times faster. 

The following comments are in order: 

1) The initial bounds on 1P  were not reduced. An experiment was made where Jε  was set to 

zero and the algorithm was allowed to run indefinitely. After approximately 24 hours, the 

width of IJ  was 1.95e-2 but the bounds on 1P  were still unchanged. The reason why it is so 

difficult for the developed algorithm to reduce the initial bounds on 1P  is, in the author’s 

opinion, due to the suboptimal form of (C-71) and (C-72). Ideally, these two HC equations 
designed for reducing the bounds on 1P  should not have linear terms of 1P  in the right hand 

side. However, to prevent the denominators from containing zero, these suboptimal forms had 
to be chosen. This makes it harder to reduce the bounds on 1P . If extended intervals analysis 

was available, the optimal forms could have been used. 

2) No box P  containing *P  can ever be proved feasible with respect to the inequality 

constraint. To understand why, consider the limit case: *P P= . By replacing P  with *P  in 

(C-83), one would obtain for *
1 0.5t P= = : 

 ( ) [ ]*
2 1 2 20.5 , 0.1999,0.2001x t P X X⎡ ⎤= = = =⎣ ⎦  (C-87) 

Since the number 0.2 cannot be exactly represented in a computer, outward rounding must be 

used. (C-87) is the sharpest non-thin interval containing 0.2. Since 2 0.2X > , *P P=  cannot 

be proved feasible with respect to the inequality constraint. Moreover, due to fundamental 

theorem of interval analysis (see (3-42)), no box containing *P  can ever be proved feasible 

with respect to the inequality constraint. This makes calculating sharp bounds on *J  and *P  
a lot harder. 



Appendix C | More dynamic global optimization examples 203 

M.Sc. thesis  Nuno Ricardo Salgueiro Filipe 

3) Using the same inputs as before (see Table C.3) together with 100shrinkingN =  and 

0.1shrinkingε = , adding a shrinking phase results in an increase of the CPU time from 

approximately 554s to 1152s, for the same desired accuracy. Even with four parameters, it is 
still faster not to use a shrinking phase.  

4) In Table C.5, CPUtΔ  is given as a function of splitN . All other inputs are kept constant 

(see Table C.3). 

Table C.5: CPU time as a function of splitN  in Example 4.  

Number of parameters 
being split 

New boxes per old box 

splitN  
CPU time 

[ ]CPUt sΔ  

[ ]2 0 0 0 T
 No convergence after 800s 

[ ]0 2 0 0 T
 No convergence after 800s 

[ ]0 0 2 0 T
 No convergence after 800s 

1 

[ ]0 0 0 2 T
 No convergence after 800s 

[ ]2 2 0 0 T
 554 

[ ]2 0 2 0 T
 No convergence after 800s 

[ ]2 0 0 2 T
 481 

[ ]0 2 2 0 T
 No convergence after 800s 

[ ]0 2 0 2 T
 No convergence after 800s 

2 

[ ]0 0 2 2 T
 No convergence after 800s 

[ ]2 2 2 0 T
 No convergence after 800s 

[ ]2 2 0 2 T
 595 

[ ]2 0 2 2 T
 No convergence after 800s 

3 

[ ]0 2 2 2 T
 No convergence after 800s 

4 [ ]2 2 2 2 T
 No convergence after 800s 

As predicted by rule of thumb (5-41), splitting two parameters yields the fastest results. 

On the other hand, in Section 5.2.4, it is suggested that, in this case, 1P  and 2P  would be the 

best parameters to split, as a result of (C-79) and (C-80). However, Table C.5 shows that the 
best results are obtained by splitting 1P  and 4P . Why this is the case is hard to say. 

Nevertheless, dividing 1P  and 2P  is still a good initial guess. 

5) The reader might have noticed that in Table C.4, for the first time, the guaranteed bounds 
on the final state are not given. In the previous examples, non-thin bounds on the final state 
meant, apart from dependency, that the equality constraints could not be exactly satisfied. 



204  Appendix C | More dynamic global optimization examples 

Nuno Ricardo Salgueiro Filipe  M.Sc. thesis 

However, in this example, since the final state is used to determine B  and D  in (C-61) and 
(C-66), the only consequence of not exactly satisfying (C-65) and (C-70) will be that (C-64) 
and (C-69) will also not be exactly satisfied. Therefore, it would not be fair to compare the 
bounds on the final state obtained in this thesis with the bounds given in [Chu, 2007] (since 
the final state might be calculated in a different way). More details about this are given at the 
end of Example 5. 

 

 




