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SHIP SLAMMING AND SUPERSONIC AIRFOTL FLOW

ZT[TCD7412~uL
96z
INTRODUCTION

In most analytical treatments of the ship slamming
problem, the water is considered to be incompressible and
nonviscous. A potential osrcblem is thus formulated, the
potential being required to satisfy Laplace's Equation, as
well as boundary conditions on the ship hull and the free
surface. One result is tnat if the tangent plane at the
bottom of the ship is horizontal (as it is with most ships),
the theory predicts infinitely high pressures at the
instant of impact.

In order to correct this result, it is necessary
to drop the assumption of l“ﬂompr6331b111ty In this
process an already difficult problem would seem to become
utterly intractable. However, the time scale for com-
pressibility effects is so grossly different from the time
scale for inertial and gravitational effects that some
ugeful results can be discovered.

This report consists of an elaboration of some
suggestions by Professor R. Timman (Technological University,
Delft, Netherlands) for treating the problem of a body
1mpacting on a compressible fluid. The idealizations are
rather great. However, the working out of a more realistic
model is fairly straightforward, especially if a high speed
computer is available. The methods are well-known to
students of supersonic flow theory.

Essentially, Professor Timman's suggestion is this:
If the problem is linearized in an appropriate way, and if
the effect of the ship's hull is replaced by a condition that .
the fluid has a downward vertical velocity on a section of
the free surface, then in two dimensions the problem can be
made mathematically equivalent to the problem of steady
supersonic flow over a 1lifting surface. The latter problem
has been solved for some years. In fact, most of Chapter
Six of G.N, Ward's book, Linearized Theory of Steady High- :
Speed Flow, (Cambridge, 1955) is devoted tO just this problem,

In the following sections, the linearization is |
carried out, and then Ward's procedurs is adapted to the
slamming problem. Finally, some remarks are included on |
how to introduce other effects that have been ignored. The
treatment is two-dimensional throughout.



2 ONRL-76-62

. f
/v

4
\%

XA = 2 L
/f€=0 / 4=o
Figure 1. The physical problem and its mathematical
idealization.

THE LINEARTIZATION

The most drastic assumption made is that the ship
can be considered to produce a constant vertical velocity
of the fluid at the free surface in the region, -£< x< ¢,
for all time t > O. (It will be mentioned later how some
improvement can be made on this. In particular, we can
have f = A2(t) and V = V(t).)

Since the fluid is considered as nonviscous and it
starts from a state of rest, the motion is irrotational.

Thus, the fluid velocity can be represented as the gradient
of a potential,

T =N,

defined everywhere in the space occupied by the fluid. The
function qu,y,t) satisfies the equation:

c2 "2(_.0 P =ﬁ (vo)® +V<p-[(WP-V)V(f].

(See Ward, op. cit., Section 1.4). ¢ is the velocity of
sound.

Let the equation of the free surface be

¥y -Y (x,t) =0, forix\! > k.
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Then there are two conditions to be satisfied on this surface:
2. -Y e =X, =0 (1)
v . 1 w0 ]
g¥' & W+ S (V@ a=1D (2)

These conditions are derived, for example, in Water Waves,
by J.J. Stoker (Intersciencs, 1957) and in Surface Waves,
by J.V. Wehausen and E.V. Laitone, Handbuch der Physik,
Vol. IX (Springer Verlag, 1960). The first is a kinematic
condition, and the second is Bernouli's Equation, a dynamic
condition. g is the acceleration due to gravity.

To account for the effect of the ship, let:

24 ;
P =¥ ony=0; =fezc P, t >0,
2o
For t < 0, we require « = |v@l| = 0 everywhere.

The problem can be linearized intuitively or syste-
matically. I prefer the latter, although many people will
obtain the same result more quickly by an intuitive argument.
To effect the linearization, nondimensionalize all quantities
as follows. Set

e

©(x,y,t) 22V & (% 1 s Ve

The fourth of these implies that fluid velocities are expected
to be of the order of magnitude of V (rather than, say, of c),
and the third implies that we are interested in what happens
very quickly after impact. (¢, is the acoustic speed in the
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undisturbed fluid). Now substitute the new variables into
the conditions above, express all terms as functions of the
ratio V/e,, and assume that V/cy is very small. Then the
coefficients of the lowest power of V/e, can be set equal
to zero to give a linearized approximation. It will also
be assumed that i '

V2

as V/oo-na O, so that the gravitational term in Bernouilli's
Equation will be lost in the first approximation. The
results are

%

e+ fy - #e =0 Iny<0, t>05

ony - Y(x,t) = 0,

N N

Ix1>£, t > 0.

. Initially, Y(x,t) = 0 and @(x,0,t) = 0. Thus, in
the linearized version, the last conditions above imply that

.,
3

® =0 ony=Y=0, for Ixi> £ 5. 5> 0.

In terms of the original variables, the problem is now
as follows:

7% -

c

n =

@« =0 in < 0;
'tt y 3

®w_=-V, ony=0, - £< x< £, t> 03
(P =0, ony=0, |xﬂ‘>.f, t > 03

= v = 0, everywhere for t < 0.
¢ 3
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Here c has the value cg, that is, the sound speed in calm
water, but the subscript will be omitted from here on.

From the condition that ¢= 0O on y = 0, we can
continue the potential function ieﬁg the upper half space

as a function odd in y. Then 5 is even in y,
Y
while —%DE and ——22- are odd.
9 X t

THE EQUIVALENT SUPERSONIC FLOW PROBLEM

Figure 2 depicts the problem in a three-dimensional
X, ¥4ty Space.

Suppose now that we consider a three-dimensional,

1
steady flow problem. Replace t by z, and let 3 = M2 - 1.

c
The wave equation above becomes:

2 r .
r\oxx+ iwyy - (M7 - 1) ("ZZ =2

which is the linearized differential equation for steady,
supersonic, irrotational flow in the z-direction. M is
the Mach number of the undisturbed flow.

The boundary conditions are unchanged in the new
problem. Physically they are equivalent to imposing a
%iven vertical component of velocity on the plane of a
"wing" and requiring no horizontal velocity component in
the y = O plane outside of the Wing."

The problem may now be compared directly with
Chapter 6 of Ward's book. In particular, Fig. 2 here is
essentially the same as Ward's Figure 6.2, if our t is
replaced by z. We follow Ward closely in the following.

The wave equation for our problem is, of course,
a well-studied equation. If we choose a point (xl,yl,tl),
we can pass through it a conical surface
c2(t - £1)2 - (x-x7)2 - (y-y1)2 =0 ,

which is a characteristic surface of the differential
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equation. The interior of the cone for te« t; is the
dependence domain of (xl,yl,tl) i.e. the phenomena
occurring at X1551 at time t] depend only on disturbances
at points and times X,y,t such that

et < eby - J(.‘.ﬁ-‘:-xl)2 A B Y1)2

The dependence domain for (xy,y is shown in Fig. 2

as far back as t = 0. The res% o% the cone, extending to
the right but not shown in Fig. 2, bounds the influence
domain of (xl,yl,tl),

—

T
I

Figure 2. The dependence domain of the point
(Xl’yl’tl)
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Any disturbance at x3,y; at time tq will have
effects at a point X,y only for times t such that

s 2 S
ct > ct, + ‘/(x xl) + (y Yl) .

These facts follow directiv from study of the wave equa-
tion, although their physical interpretation is rather
obvious.

From the boundary conditions and a relation

quite analogous to Green's Theorem, the following formula
can be deduced for the potential:

R £ 4 2 \
F(x9;58) ”7\;; /’-%
o

¥=0
2z ‘/cz(t-tl)2 - (x-xl) . le, (3)

dt dx

where‘zr is that portion of the y = O plane which is within
the domain of dependence of (xl,yl,tl) and for which t> 0.
(See Ward, Section 6.3). As long as~ 2 includes only a
region in which -f<¢ x< €, this is the final solution for
the potential, since( ® \ is known over this surface.
N oy L.

However, for larger times®ty, the region‘z: includes part
of the y = 0 plane which is outside of 1!&:x<ufz whers

) is not known, and the solution is more involved,

o =0

Howevgé, as will be shown presently, the early stages of
this solution are still fairly simple.

For the very first stage, in whichz is con-
tained in —4&2:{( s> the solution can be obtained by a
simple argument, without performing the above integration
(although that is not difficult either). At such a point,
(xl,yl,t ), no information has arrived indicating the
bounds o% the strip, ;4ﬂrxmgé{ That is, the disturbances
at the ends have not been felt. Then clearly the local
behavior must be the same ag if the whole x-axis were sub-
jected to the same boundary condition, 29 = -V. 1In such

a case, there would be no variation of quantities with x,

and the differential equation would be simply:

99 = L g = 0. The general solution of this equation
JY 2 fptt

C
1ls

ip(y,t) = ?l (et -~ y) + ?2(01; +y).
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But !f must be identically zero* for y<€O0 and ¥, =0 for
y >o0.1 Consider only y<O0, so that =9 (ct + y%. At

y =-0, 7y =% (ct-0) = -V, which is constant for all t>0.
Thus fﬂ(ct +7y) = -V for all (y,t) being considered, and

¥ (et +3) = -V -(ct + 7).

SOLUTION FOR SMALL VALUES OF TIME

The information desired from the solution will
all be contained in ., evaluated on the surface y = 0,
-,@:x(,f, 70, There}-‘ore, in Equation ( 3 ), set ¥ = 0.
Then

Pz, +0, t) = -2 ;J‘(g!ey) dt dx
y=0 \/Lz(t-tl)z-(x-xl)z . (L)

J

M

> is that part of y = 0 for which

ct € ct - X-X
1 i
Now perform a transformation of coordinates to
the characteristic variables in the x-t plane. (See Ward,
Section 6.5.) Let
S b = Xl H
= ct:L + Xl 3
P = et - x 2
Y]' = e¢ct + x
Also, let
-~/ / —_— —}-ﬂ- (—22 .
NCE, ) = 2% \3y :

POE p = j"(xl,+0,tl)

# Otherwise effects would be observed at (x,y,t) arising
from disturbances in the domain of influence of (x,y,t).
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Then

;’nz,q):ﬂ BLE i BT AS T AR,
Z \/(k‘-g')

where 2: is the region

’ '

< <
LR > A

Figure 3 shows some of the lines ¥ = const.,

on the x - t plane. The particular lines

O are those passing through the point

onst

1

Ie

¢
0

i

s
d.
The potential is even in x, and so we concern
ourselves with finding it in the region 0< x([, t>20.

We proceed step-by-step through the regions marked I,
ITT, IV, V in Pig. 3. It will be necessary also to
consider region II, although we are not really interested
in the solution there. To go beyond region V introduces
further difficulty, and a simple analytical result does
not seem possible. However, procedures are available

for obtaining numerical results, and it is here that a
computer would be useful. We shall not consider such
problems here. It will be seen presently that the
boundaryl?etween IV and V is a significant onej; here,

at t = 2£ /c, the pressure is zero for -f<x<f. For
later times, the pressure magnitude will be less than

the previous maximum.

REGION I

The region of integration,é{l is shown in
Fig. lJa. This case has already been discussed above,
where it was shown that ¥ (x;, - 0,t;) = -Vet,. The
same result follows from the integrai formula, (L4 ):

RUT 50 = ] f" LA

Ty L Ty
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Figure 3. Characteristic lines in the plane
y = 0.
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Domains of integration for calculating the
potential, @( ¥, 7) = (f(xl, + 0, 7).
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2
We have used the fact that (f§§£i> = -V. Also,
1
¥y, % 20

we recall that f’is odd in y,, which accounts for the
difference of sign here.

REGION IT

Fi$?re Lb shows the region §: . We note that:
|

(a) N(E!, is identically zero for ¥ ¢-¥£ ; (b)
N(¥',q ) is unknown for n-%5 > 24, ifE»-£;

(c)f (¥ ,n) is identically zero for N-¥ > 24£. We
break the calculation of f (¥ s N ) into two parts:

i (Fi g s
'\‘«E)n)r] ‘/ dr) 20‘

3
L
2 VEE L, V17 7 dp i

The quantity in brackets is identically zero for all §',q
if, in II, we set:

;‘#22
N(§',q')=- v ﬂ'-’]"wl dn" .
2‘7’_2 /ql_E'—ZI -jf" qy_'?tt

Actually we do not use this expression for N( §¥', n' ); all
we need is the knowledge that the sum of the integrals in
brackets above can be set identically equal to zero in the
region:

L > E'>~1) n > '+ 24,

REGION IIT

Ei'is shown in Fig. lc, where it is the union of
the two shaded areas. From the result in Region II, the
small shaded area in the corner contributes nothing, so

that the solution for is:

£ ) A er! "E'E' _gl }7_,)1

= L _ oot et r2x,-24 2Y
= \'/Ctl[f' = Sin ﬁ‘__t_'___:l+? \/{,?-X,Xctl +X‘—,@).

cey




ONRL-76-62 13
REGION IV

The problem here is similar to that in Region
ITI. A result similar to that of Region II may be proved
for the left side of the flghr and then 1t is seen that
the two small shaded areas in ng Ld contribute nothing
to the integral over 4; . lme golution is:

/{~ : ge ot dq
b3 =+
“?( ;']) 27 e e’ . g,j \/,?7 . f!' ( ,/’*7 ,

= —7\—./-{,2 U+x.Xct,-a<.-I) -;—2/(1-)(,,{5: +)',—,€)

ok [‘ ! -c‘t+2)<.+2-? SR ct, +ix. 21]}
<ty

REGION V

When we extend the arguments used in Regions
IIT and IV for ellmlnatlng parts of £ from consideration,
we find in Reglon V {see Fig. le) that we use the contri-
bution of )> twice. mhhs, we must subtract this
contribution a extra tlme, and we obtain:

421 r zP
(P{EY] 21\{'( VE-§/ 2‘0‘/')7 "1 f }
‘\/{ \/(,Pq—xa) cty-¥,- -2) '4'2.\/7 xfc,t +x -2)

-ct [ - CtH-ZX.-ZQ S'l;l' -Ct. +2K‘+22 ]} >
t Ct]

ct)

We npte that this 1s the same expression as that obtained
in Region IV,

PRESSURE ON THE BODY

Bernoulli's Equation for unsteady flow of a
compressible fluid is

- : (7 .)2 P '
ELa + + s ) + d
5, 8y 3 ¥ f ?pj?)

In the linearized model, 2 (p'), can be replaced by its
mean value, and ths 1ntegral term becomes simply p{f s

Il
o
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When the whole equation 1s linearized, we are left with

P=-nw
Sty

Under the restrictions of the linearized theory, this
holds throughout the fluid, in general, and on the
surfaces y; = + 0, in particular.

We have calculated g ( Xy, + 0,t,) for a
range of tl, and so we can now directly ca}culate the
pressure in that range. Since our interest is in the
lower half-space, i.e., ¥1<0, we agaln call attention
tothefactthat;?’x,JrOt)--? --0,t7), and
then we use the prev1ously obualned formulae to T'ind
plx;,-0,t7), for —Afz'xl<

i La p(x3,-0,t3)= oVe 3

: £ = Bt _ 4 cuehsax 22
ITI: p(Xl3 O’tl) g ?VC Lz 7= Sin ! C't: ]

Lo T f oo =2 o ot +2x —2,0]
IV’ ch(xl)—o’tl)— fvc [T itgn _—'i—c?-l-—- ?SH y -

All of the angles defined here are to be taken between
-%/2 and + %7/2.

Figure 5 presents some numerical results for
:@;L[—-O l/u, 1/2, 3/Lh. As mentioned above, it is see
that p(xl,—O t{) changes sign as t; passes the value 2£Fc
This is seen to be generally true from formulae IV and V
above .

VALIDITY OF THE SOLUTION; EXTENSIONS

Physically it is apparent that the mathematical
problem posed above must approach a steady state.
Mathematically in the solution for Region V above (see
Fig. le), we see that the first integral is taken over a
domain shaped like a parallelogram; neither the shape nor
size of this domain nor the integrand changes if we in-
crease the value of tq. Further changes in the value of 7
come about only through the addition of integrals over
domains farther removed from (xl,t ), and, because of the
form of the integrand, these have lesser effect on the
value of the potential. These statements imply then that
the most important compressibility effects are over at a
time of, say, t; = /p
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Figure 5. Pressure as a function of time, for
several values of x3,and y; = -0.
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The most important check on the validity of the
present approach is to compare this time with other time
scales in the problem. For example, when ty = 4Z/c, the
body itself will have entered the water a distance hl(v,)

In any ship slamming problem, the gquantity 4 V/c will
probably be extremely small, and so the replacement of
the boundary condition on the body by one on y = O should
be reasonable. Also, the deceleration of the body should
be rather small in such a time interval, so that the
assumption of constant V is reasonable too.

There 1s another time scale in such problems
which may be more critical: the time scale associated
with local vibrations of the body. Fortunately, such
effects can be incorporated into the solution without
disrupting the linearization scheme. In the procedure
outlined above, the integrals can be evaluated numerically
for arbitrary distributions of normal velocity in the
impact region. If this is accomplished by a step-by-step
procedure in time, the normal velocity can be retained as
an unknown quantity, being determined from differential
equations which also include the structural characteris-
tics of the body. Thus, for example, the vertical
velocity at a point in -#€¢ x<¥£ may be represented as
a sum of the velocities in the various normal modes of
the body (including the purely translational, rigid-body
mode), with the amplitudes of the individual modes
unknown. The pressure force on the body supplies the
forcing function to be used in the differential equation
of each mode, and in the step-by-step numerical solution
of the hydrodynamic problem, the differential equations
would be solved simultaneously.

Unless the body is extremely rigid, it is not
likely that this vibration phenomenon will cause much
difficulty. A time lapse of, say, 4 /£ /c would probably
be a small fraction of the natural period of any vibra-
tional mode of interest. If this is really the case, the
pressure can be calculated on the rigid body model and
integrated appropriately over the body and also in time
to provide an impulss to each normal mode. It would then
not be necessary to solve the hydrodynamical and
structural problems simultaneously. When the time comes
to apply this analysis to actual ships, such an argument
will certainly apply to modes of vibration of the ship
as a whole, in which case the frequencies are relatively
very small.
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Another complication which can be handled to
some extent (with a computer) is the following: How does
one account for the fact that ships do not have rectangular
cross-sections? Obviously, as a ship bow impacts and then
immerses, the width of the free surface which is broken
increases rapidly. In order to have a tractable problem,
let us retain the assumption that the body acts on the
water by imparting a constant vertical velocity to the
water on y = O, i x¢ Z , but now we let,e be a function
of time. This problem is in principle no more difficult
than that already solved. In fact, Ward actually treats
this more general problem. Figure 6 depicts the situation
in the x-y-t space, corresponding to Fig. 2 for the
simpler problem. So long as ths body has a horizontal
tangent plane at the bottom, the solution proceeds exactly
as before. The role of the vertices of the rectangular
region in Fig. 2 is now played by the points at which the
characteristics in the x-t plane are tangent to the
shaded region.

X

Figure 6. The region of integration,E:, in the case
that £ = A(ty). Several characteristics
of each set are shown.
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Of course, the true boundary condition for this
problem would specify the component of velocity normal ta
the body, not a component normal to the x-axis. To the '
extent that this distortion of the formulation propagates
errors, the above statemsent of the boundary value problem
is invalid. However, tractability seems to require that
the boundary condition be stated on the x-axis, and in
this kind of mathematical problem one cannot generally
specify derivatives in a direction non-normal to a
surface. So, there seems to be no way out of specifying
the vertical velocity component on the x-axis. It may
be possible to find a distribution of vertical velocity
which is better than the constant distribution.

Finally, there remains the purely incompressible,
free surface, hydrodynamic problem. After a short time
lapse, the assumptions made above become invalid; in
particular, the free surface boundary condition is not
really ¢ = 0, but the equations (1) and (2). It may be
possible to obtain some information from a linearized
form of these equations, but the linearization will cer-
tainly not be that used here.

It should not be presumed that the compregsible
fluid model discussed here invalidates previous analyses
of the slamming problem. 1In fact, the more valid the
assumptions made here, the less effect the compressible
flow has on the subsequent incompressible flow. Thus, if
the boundary condition can appropriately be stated on
y = 0, the fluid motion before compressible effects be-
come negligible must be very small, and 1t is reasopable
to formulate a completely incompressible fluid model for
the later phenomena. It must only be remembered that the
early predictions of pressure will be grossly wrong.




