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SHIP SLAMMING AND SUPERSONIC A1'FOIL FLOW
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INTRODUCTION
1 9 6 z

In most analytical treatments of the ship slamming
problem, the water is considered to be incompressible and
nonviscous. A potential problem is thus formulated, the
potential being required to satisfy Laplace's Equation, as
well as boundary conditions on the ship hull and the free
surface. One result is tnat if the tangent plane at the
bottom of the ship is horizontal (as it is with most ships),
the theory predicts infinitely high pressures at the
instant of impact.

In order to correct this result, it is necessary
to drop the assumption of incompressibility. In this
process an already difficult problem would seem to become
utterly intractable. However, the time scale for com-
pressibility effects is so grossly different from the time
scale for inertial and gravitational effects that some
useful results can be discovered.

This report consists of an elaboration of some
suggestions by Professor R. Timman (Technological University,
Delft, Netherlands) for treating the problem of a body
impacting on a compressible fluid. The idealizations are
rather great, However, the working out of a more realistic
model is fairly straightforward, especially if a high speed
computer is available. The methods are well-known to
students of supersonic flow theory.

Essentially, Professor Timman's suggestion is this:
If the problem is linearized in an appropriate way, and if
the effect of the ship's hull is replaced by a condition that
the fluid has a downward vertical velocity on a section of
the free surface, then in two dimensions the problem can be
made mathematically equivalent to the problem of steady
supersonic flow over a lifting surface. The latter problem
has been solved for some years. In fact, most of Chapter
Six of G,N. Ward's book, Linearized Theory of Steady High-
Speed Flow, (Cambridge, 1955) is devoted to just this problem.

In the following sections, the linearization is
carried out, and then Ward's procedure is adapted to the
slamming problem. Finally, some remarks are included on
how to introduce other effects that have been ignored. The
treatment is two-dimensional throughout.



(ad)

Figure 1. The physical problem and its mathematical
idealization.

THE LINEARIZATION

The most drastic assumption made is that the ship
can be considered to produce a constant vertical velocity
of the fluid at the free surface in the region, --t < x<
for all time t 0. (It will be mentioned later how some
improvement can be made on this In particular, we can
have = ,P(t) and V = V(t),)

Since the fluid is considered as nonviscous and it
starts from a state of rest, the motion is irrotational.
Thus, the fluid velocity can be represented as the gradient
of a potential,

<p)

defined everywhere in the space occupied by the fluid, The
function Cp(x,y,t) satisfies the equation:

c2 2c9 - Ttt =
Dt

vo )2 + c7(o1 v)cf)]

(See Ward, op. cit., Section 1.4), c is the velocity of
sound.

Let the equation of the free surface be

y - Y (x,t) = 0, for Ix >
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Then there are two conditions to be satisfied on this surface:

- Y (0 - Yu = 0 (1)
x ix

gY ( ,f) )2 =
t 2

These conditions are derived, for example, in Water Waves,
by J,J, Stoker (Interscience, 1957) and in Surface Waves,
by J,V, Wehausen and E,V, Laitone, Handbuch der Physik,
Vol, IX (Springer Verlag, 1960), The first is a kinematic
condition, and the second is Bernouli's Equation, a dynamic
condition, g is the acceleration due to gravity

To account for the effect of the ship, let:

= -V on y = 0, x<,?, 0,

For t 0, we require (C, = !\-7C1/i = 0 everywhere,

The problem can be linearized intuitively or syste-
matically. I prefer the latter, although many people will
obtain the same result more quickly by an intuitive argument.
To effect the linearization, nondimensionalize all quantities
as follows, Set

0 (2)

(x,y,t) = 2,,?V e , ,1 ),

The fourth of these implies that fluid velocities are expected
to be of the order of magnitude of V (rather than say, of c),
and the third implies that we are interested in what happens
very quickly after impact, (co is the acoustic speed in the

+ +

t

<
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undisturbed fluid). Now substitute the new variables into
the conditions above, express all terms as functions of the
ratio V/co, and assume that V/co is very small. Then the
coefficients of the lowest power of V/co can be set equal
to zero to give a linearized approximation. It will also
be assumed that

2)g
= 0(1)

V2

as V/(30-- 0, so that the gravitational term in Bernouilli's
Equation will be lost in the first approximation. The
results are

=0 )

=0 )

= 0 in y < 0, t > 0;

on y - Y(x,t) = 0,

t > o.

Initially, Y(x,t) = 0 and 0(x1,5t) = 0. Thus, in
the linearized version, the last conditions above imply that

= 0 on y = Y = 0, for lx1 > , t > 0.

In terms of the original variables, the problem is now
as follows:

1
v2 _ o in y < 0;

c2

(i; = on 7 = 0, - < x< ,e,t > 0;

cP

y

= o, on y = 09 tx,e, t > 0;

Y_

= 05 everywhere for t < 0.

')

.

-

-

-
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Here c has the value co, that is, the sound speed in calm
water, but the subscript will be omitted from here on

From the condition that cp= 0 on y = 0, we can
continue the potential function inkto the upper half space

e0as a function odd in y. Then -- is even in y,
".?Dcp r

while and -- i)-- are odd.
i)x t

THE EQUIVALENT SUPERSONIC FLOW PROBLEM

Figure 2 depicts the problem in a three-dimensional
x,y,t, space,

Suppose now that we consider a three-dimensional,
1

steady flow problem, Replace t by z, and let =
M2

- 1,

The wave equation above becomes:

reXX -I- (1.;'yy 1\112 - 1 ) =zz

which is the linearized differential equation for steady,
supersonic, irrotational flow in the z-direction. M is
the Mach number of the undisturbed flow.

The boundary conditions are unchanged in the new
problem. Physically they are equivalent to imposing a
given vertical component of velocity on the plane of a
"wing" and requiring no horizontal velocity component in
the y = 0 plane outside of the lqing."

The problem may now be compared directly with
Chapter 6 of Ward's book. In particular, Fig, 2 here is
essentially the same as Ward's Figure 6.2, if our t is
replaced by z, We follow Ward closely in the following.

The wave equation for our problem is, of course,
a well-studied equation. If we choose a point (x1,y1,t1),
we can pass through it a conical surface

c2(t _ t1)2 (x_x1)2 (y_y1)2 = 0

which is a characteristic surface of the differential

0 5



ct < ctl - 1(x-x1)2 + (y -

The dependence domain for (x1,y1,t1) is shown in Fig. 2
as far back as t = O. The resf or the cone, extending to
the right but not shown in Fig. 2, bounds the influence
domain of (xl'yl't1),

ej

1\
\ \

\

A

.AII%\%I
_Figure 2. The dependence domain of the point

(xl,y1,t1)
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equation. The interior of the cone for t1 is the
dependence domain of (x1,y1,t1), i.e. the phenomena
occurring at xl,yl at time t1 depend only on disturbances
at points and times x,y,t such that

t<

2
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Any disturbance at xl,y, at time t1 will have
effects at a point x,y only for times t such that

N-
where 4, is that portion of the y = 0 plane which is within
the domain of dependence of (xl,y1,t1) and for which t7.1.0,
(See Ward, Section 6,3), As long as includes only a
region in which 7elrxcj, this is the final solution for
the potential, since( is known over this surface.

)
.

However, for larger times ti, the region 22: includes part
of the y = 0 plane which is outside of -.174::x<47, where

OP)is
not known, and the solution is more involved.

y=0
However, as will be shown presently, the early stages of
this solution are still fairly simple.

For the very first stage, in which Z is con-
tained in --x<Ae, the solution can be obtained by a
simple argument, without performing the above integration
(although that is not difficult either). At such a point,
(xl,y1,t1), no information has arrived indicating the
bounds or the strip, -;,..erx<,1 That is, the disturbances
at the ends have not been felt. Then clearly the local
behavior must be the same as if the whole x-axis were sub-
jected to the same boundary condition, -b( = -V, In such

6a case, there would be no variation of quantities with x,
and the differential equation would be simply:
69 - 1 (9 - O. The general solution of this equation
(YJ 2 I tt

is

ot ct_ -
1(x-x1)2 (y-y1)2

These facts follow directly from study of the wave equa-
tion, although their physical interpretation is rather
obvious.

From the boundary conditions and a relation
quite analogous to Green's Theorem, the following formula
can be deduced for the potential:

c r \
) = -17 1.21._.?.

dt dx
j

y=0 I/ )

2
(t-t ) - (x-x ) Y1 , (3)

22

1 1

,t)
cov,. (ce Y) r2(et Y).

+

(x ,y ,t
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BUt r Must be identically Zero* for y0 and ro ,E0 for
y>0.1' Coonsider only y4=0, so that ?-= 54'(ct + y6f. At
y =-0, /7 =7#(ct-0) = -V, which is constant for all t;r06
Thus 0/(ct + y) = -V for all (y,t) being considere, andr (c-t ± 7) o(ct y).

SOLUTION 'FOR SMALL, VALUES OF TIME

The information desired from the solutiOn will
all be contained in 991_, evaluated on the surface y = 0,

Therefore,, in Equation ( 3 ), set yi = O.
Then

ti).= l'(

2 y=0

,t is that part of y = 0 for which

ct 4;
ct1 1

- Wow perform a transformation of coordinates to
the Characteristic variables in the x-t plane. (See Ward,
Section 6.5.) Let

= ct -.x
1 - 1 -

ct, +-xl

ct ;

I1 = ct + x

. AI. so, let

dt dx

t-t1)2-(x-x1

* .Otherwise effects 'wouldbe observed at '(x,y,0 arising-
-from disturbances in the domain of influence of ,(xjy,t).

. -

I IS

21r, y
y=0

r(xl,+o,t1)

= -V

-

+ 0,

- lx-x

=

=

N( ) =

r( ) =

(4)
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Then

Y
I, ) li( ' , 1') dC ' doliit

f

_t)( 1 1

27
where 1 is the region

'<
)

q' )7,

Figure 3 shows some of the lines 'E = const.,
= const, on the x - t plane, The particular lines

S = 0, r= 0 are those passing through the point
x = t = O.

The potential is even in x, and so we concern
ourselves with finding it in the region 0<x<1, t70.
We proceed step-by-step through the regions marked I,
III, IV, V in Fig. 3. It will be necessary also to
consider region II, although we are not really interested
in the solution there, To go beyond region V introduces
further difficulty, and a simple analytical result does
not seem possible. However, procedures are available
for obtaining numerical results, and it is here that a
computer would be useful, We shall not consider such
problems here. It will be seen presently that the
boundary between IV and V is a significanI one; here,
at t = 2,e/c, the pressure is zero for -1,e<x<1. For
later times, the pressure magnitude will be less than
the previous maximum.

REGION I

The region of integration, L, is shown in
Fig, 4a. This case has already been discussed above,
where it was shown that ?(xl, - 0,t1) = -Vct1° The
same result follows from the integral formula, (4 ):

_24 d )(/ d

F77-/
= V rf df, r

j - F-1
y ( + ? ) = vet, .

2

-
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Figure 3. Characteristic lines in the plane
y = O.



Figure 4.- Domains of 'integration for calculating the
potential,, cp( , 9 )

If
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0, t1).
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We have used the fact that (9 )Gy
1

y1 = + 0

we recall that r is odd in yl, which accounts for the
difference of sign here,

REGION II

Figure 4b shows the region. We note that:
(a) N( 's- ; , ' ) is identically zero for f <-.2,:i ( b )

N( f T , 1 ) is unknown for 1- 2,e, if .7.; 7-,..
( c ) r ( , 1 ) is identically zero for 9 - 7 2,4r. We
break the calculation of r ( , ri ) into two parts:

II a
c1-1-2,12

J \I--Y J jrvis
ir1 l'j(TC11)d'7/ + \1/

f
27i

(-e(f) Yi ) -=

d y? I

V422

The quantity in brackets is identically zero for all
if, in II, we set:

7421?

V

.1
2 rai-2 -ff

Actually we do not use this expression for N( fl'); all
we need is the knowledge that the sum of the integrals in
brackets above can be set identically equal to zero in the
region:

> >J) r? '+2i.

REGION III

is shown in Fig. 4c, where it is the union of
the two shaded areas From the result in Region II, the
small shaded area in the corner contributes nothing, so
that the solution for tr is:

r9
TTE,11)= )

ri-ze 7

= c -
2 "

ct, +2)(1-21 + 2 V 1.40,_

ct,

= -V. Also,

- +2,1

-

N(

xI - )

-

V I



When we extend the arguments used in Regions
IlL and IV for eliminating parts of .,' from consideration,
we find in Region V (see Fig. 4e) that we use the contri-
bution of ',;' twice. Thus, we must subtract this
contribution an extra time, and weobtain:

I q / 1 A

\I r 4 F r an' -2 Xil dc,/
(P` I, 9 - IF i IF- Tr -I r---7. i /Tr; j

'?-9 J

_ {2 (,p ) 2

- cti
cti

We note that this is the sane expression as that obtained
in Region IV.

PRESSURE ON THE BODY

Bernoulli's Equation for unsteady flow of a
compressible fluid is

1 2

5j1 -2 (94')

I5 i rl
- -Ct 4- .ZX1+.2 r?

ct,

dp = 0
( p )

In the linearized model, 9 (p'), can be replaced by its
mean value, and the integral term becomes simply p/y

ONRL-76-62 13

REGION IV

The problem here is similar to that in Region
III. A result similar to that of Region II may be proved
for the left side of the figure, and then it is seen that
the two small shaded areas in Fig. 4d contribute nothing
to the integral over :.. . The solution is:

K/ -1+2. ,-+ ? ', dIl i d'''', + r! dr' r del0)1 ) "" 2-7\6-91 i 7177j \ITT/
7 r

= 2 1(,e-x,Xct,

ct, [s,11;1-1 -ct-1-;X,42-e ct14.2)(6-2,R

ct, cT Ii
REGION V

fc +Xi - X)

r

(
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When the whole equation is linearized, we are left with

p = -
I t1

Under the restrictions of the linearized theory, this
holds throughout the fluid, in general, and on the
surfaces yi = + 0, in particular.

We have calculated 7(x1, + 0,ti) for a
,range of tl, and so we can now directly catculate the

pressure in that range, Since our interest is in the
lower half-space, Le., y14:0, we again call attention
to the fact that r(xl, + 0,t1) = - 0,t1), and
then we use the previously obtained formulae to rind
p( xl, -0, ti ) , for

I: p(x1,-0,t1)= oVc

III: p , -0, ti)= ?Vc - ctv4-2x1-2-2 ;

ctl

IV; V:p( xl, -0, ti )= rye L -L. 34 -c-";1+.2)(14-2.Q 72,slyit

A Ci it Ct

All of the angles defined here are to be taken between
-11/2 and +4772.

Figure 5 presents some numerical results forx,/e= 0, 1/4, 1/2, 3/4. As mentioned above, it is seen
that p(x19-0,t1) changes sign as ti passes the value 21/c.
This is seen to be generally true from formulae IV and V
above.

VALIDITY OF THE SOLUTION; EXTENSIONS

Physically it is apparent that the mathematical
problem posed above must approach a steady state.
Mathematically in the solution for Region V above (see
Fig. )4e), we see that the first integral is taken over a
domain shaped like a parallelogram; neither the shape nor
size of this domain nor the integrand changes if we in-
crease the value of tl. Further changes in the value of
come about only through the addition of integrals over
domains farther removed from (x1,t ), and, because of the
form of the integrand, these have lesser effect on the
value of the potential, These statements imply then that
the most important com ressibility effects are over at a
time of, say, t1 = 41.

S

ct,



o

.9

.7

6

4

. 3

()1\IRL-76-62

= 0.75
0.5

;VJg = 0.25
0.0

o

.x./4 ozj
Figure 5. Pressure as a function of time, . for-

Several values of xl) and yi .= -O.
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The most important check on the validity of the
present approach is to compare this time with other time
scales in the problem, For examrle, when tl = 44c, the
body itself will have entered the water a distance 4/(I )

In any ship slamming problem, the quantity 4 v/c will -
probably be extremely small, and so the replacement of
the boundary condition on the body by one on y = 0 should
be reasonable. Also, the deceleration of the body should
be rather small in such a time interval, so that the
assumption of constant V is reasonable too.

There is another time scale in such problems
which may be more critical: the time scale associated
with local vibrations of the body. Fortunately, such
effects can be incorporated into the solution without
disrupting the linearization scheme, In the procedure
outlined above, the integrals can be evaluated numerically
for arbitrary distributions of normal velocity in the
impact region, If this is accomplished by a step-by-step
procedure in time, the normal velocity can be retained as
an unknown quantity, being determined from differential
equations which also include the structural characteris-
tics of the body, Thus, for example, the vertical
velocity at a point in _,e< xa may be represented as
a sum of the velocities in the various normal modes of
the body (including the purely translational, rigid-body
mode), with the amplitudes of the individual modes
unknown. The pressure force on the body supplies the
forcing function to be used in the differential equation
of each mode, and in the step-by-step numerical solution
of the hydrodynamic problem, the differential equations
would be solved simultaneously.

Unless the body is extremely rigid, it is not
likely that this vibration phenomenon will cause much
difficulty, A time lapse of, say, 4)r/c would probably
be a small fraction of the natural period of any vibra-
tional mode of interest. If this is really the case, the
pressure can be calculated on the rigid body model and
integrated appropriately over the body and also in time
to provide an impulse to each normal mode, It would then
not be necessary to solve the hydrodynamical and
structural problems simultaneously, When the time COMBS
to apply this analysis to actual ships, such an argument
will certainly apply to modes of vibration of the ship
as a whole, in which case the frequencies are relatively
very small,
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Another complication which can be handled to
some extent (with a computer) is the following: How does
one account for the fact that ships do not have rectangular
cross-sections? Obviously, as a ship bow impacts and then
immerses, the width of the free surface which is broken
increases rapidly. In order to have a tractable problem,
let us retain the assumption that the body acts on the
water by imparting a constant vertical velocity to the
water on y = 0, 72x.r , but now we let, be a function
of time. This problem is in principle no more difficult
than that already solved. In fact, Ward actually treats
this more general problem, Figure 6 depicts the situation
in the x-y-t space, corresponding to Fig. 2 for the
simpler problem. So long as the body has a horizontal
tangent plane at the bottoms the solution proceeds exactly
as before. The role of the vertices of the rectangular
region in Fig, 2 is now played by the points at which the
characteristics in the x-t plane are tangent to the
shaded region.

Figure 6. The region of integration,T, in the case
that J!= dt(t1). Several characteristics
of each set are shown,
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Of course, the true boundary condition for this
problem would specify the component of velocity normal to
the body, not a component normal to the x-axis. To the
extent that this distortion of the formulation propagates
errors, the above statement of the boundary value problem
is invalid. However, tractability seems to require that
the boundary condition be stated on the x-axis, and in
this kind of mathematical problem one cannot generally
specify derivatives in a direction non-normal to a
surface° So, there seems to be no way out of specifying
the vertical velocity component on the x-axis. It may
be possible to find a distribution of vertical velocity
which is better than the constant distribution.

Finally, there remqins the purely incompressible,
free surface, hydrodynamic problem. After a short time
lapse, the assumptions made above become invalid; in
particular, the free surface boundary condition is not
really r= 0, but the equations (1) and (2). It may be
possible to obtain some information from a linearized
form of these equations, but the linearization will cer-
tainly not be that used here.

It should not be presumed that the compressible
fluid model discussed here invalidates previous analyses
of the slamming problem. In fact, the more valid the
assumptions made here, the less effect the compressible
flow has on the subsequent incompressible flow. This, if
the boundary condition can appropriately be stated 9n
y = 0, the fluid motion before compressible effects be-
come negligible must be very small, and it is reasopable
to formulate a completely incompressible fluid mode. for
the later phenomena. It must only be remembered that the
early predictions of pressure will be grossly wrong.


