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ABSTRACT

The effect of finite mass transfer rate in combination with
temporal resolution on the dynamics of caviting flows is
subject of this study. It will be shown that global flow quan-
tities exhibit convergent behaviour with respect to mass
transfer rate and time step size in incompressible pressure-
based simulation of cavitating flows. It is concluded that
large mass transfer rates are required in combination with
sufficiently small time steps to focus the local phase transi-
tion process to time intervals which are small with respect
to both the time scale of the flow (Sezal 2009) and the char-
acteristic cavity collapse time. Koukouvinis & Gavaises
(2015) as well as Bhatt et al (2015) came to similar conclu-
sions. The effect of finite mass transfer is demonstrated by
numerical studies of an isolated bubble collapse and a cav-
itating wedge flow. It is further shown how a conventional
finite mass transfer approach must be modified to achieve
homogeneous equilibrium states as given by an arbitrary
barotropic equation of state in the presence of advective
density change.
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1 INTRODUCTION

The model parameters of finite mass transfer models, typ-
ically incorporated in incompressible pressure-based flow
solvers, are often considered as empirical (Frikha et al 2008
and Charrière et al 2015). The finite mass transfer ap-
proach is referred to as the family of models for which the
mass transfer rate is assumed to be related to the amount by
which pressure is above or below vapour pressure or similar
semi-empirical relations. The magnitude of mass transfer
rate is often tunable by the model constants (Charrière et
al 2015), but the mass transfer rate required to achieve re-
alistic simulation results are typically unknown. Another
family of cavitation models is based on the assumption that
the flow variables always exist in well-posed homogeneous
equilibrium states as given by simple barotropic equations
of state or more advanced thermodynamic considerations.
The characteristic difference in behaviour of both ap-
proaches is seen from the evolution of local density-
pressure trajectories. In case of the homogeneous equilib-
rium approach, the trajectory is unique and must always
follow the curve given by the equation of state, while in

case of the finite mass transfer approach they may depend
on interactions with the flow which are identified in this
study for the mass transfer model by Merkle et al (1998).
The linear dependencies of the Merkle model simplify the
identification of these features, which are then employed to
derive a simple mass transfer source term which is theoreti-
cally able to relax the flow towards equilibrium states given
by a barotropic equation of state.
However, recent research by Koukouvinis & Gavaises
(2015) has indicated that even with the finite mass transfer
approach consistent results can be achieved by theoretically
increasing the transfer rates to infinity. Employing a finite
mass transfer model in an incompressible flow solver, they
were able to reproduce the Riemann solution in the sim-
ulation of a shock tube problem with left-hand liquid and
right-hand vapour state. The influence of mass transfer rate
on both global and local flow dynamics is further investi-
gated in combination with the effect of temporal resolution.
The effect of finite mass transfer rate as discussed in this
study is motivated by the so called equilibrium flow con-
dition. Sezal (2009) defines the equilibrium flow condition
by the time scale of any internal process, e.g. phase transi-
tion, being negligibly small compared to the time scale of
the flow itself.

2 NUMERICAL MODEL

The open source CFD toolbox OpenFOAM (2017) is em-
ployed in the course of this study. To isolate the effect of
source term magnitude on pressure dynamics, viscous ef-
fects are neglected and the Euler equation for momentum
is solved:

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇p (1)

With γ being the liquid volume fraction, defined as

γ = (ρ− ρv) / (ρl − ρv) , (2)

the cavitation model as implemented in the OpenFOAM
solver interPhaseChangeFoam is represented by a source
term Cf (p, γ) in the transport equation of liquid volume
fraction (Asnaghi et al 2015):

∂γ

∂t
+∇ · (γu) =

Cf (p, γ)
ρl

(3)

The constant C is meant to adjust the overall magnitude of
the source term, which is normalised by the liquid density
ρl. Combining the mixture relation given by Equation (2),
the volume fraction transport Equation (3) and the mass



continuity equation

∂ρ

∂t
+ ρ (∇ · u)︸ ︷︷ ︸

mass transfer

+ (∇ρ) · u︸ ︷︷ ︸
advection

= 0, (4)

and further treating the individual phases as incompress-
ible, the local velocity divergence becomes (Asnaghi et al
2015)

∇ · u = kCf (p, γ) , where k =
1
ρl
− 1
ρv
. (5)

The model by Merkle et al (1998) is employed (see Equa-
tion (6)) in the following. For simplification, any model
constant is absorbed in Cc for condensation and Cv for
evaporation. The original model as implemented in Open-
FOAM is slightly modified by dividing the source term by
mixture density ρ. Substituting the modified Merkle source
terms into mass continuity Equation (4), density cancels
out from the mass transfer term, such that the mass transfer
contribution to density change rate dρ/dt only depends on
liquid volume fraction γ and pressure difference p− pv .

Cc,vf (p, γ) =
{
Cvγ (p− pv) /ρ if p ≤ pv
Cc (1− γ) (p− pv) /ρ if p > pv

(6)
Some results obtained from the modified Merkle model are
compared to results obtained from a slightly modified Kunz
model (Kunz et al 2000) as given by Equation (7). The
reason for choosing the Kunz model as an alternative ap-
proach is that it suggests a substantially different conden-
sation process.

Cc,vf (p, γ) =
{
Cvγ (p− pv) /ρ if p ≤ pv
Ccγ

2 (1− γ) if p > pv
(7)

The substantial difference of the Kunz model is that the
condensation source term is only triggered by pressure be-
ing larger than vapour pressure, but that its magnitude does
not depend on pressure. The evaporation process is exactly
the same as in the modified Merkle model and also differs
from the original OpenFOAM implementation by the addi-
tional term 1/ρ and by absorbing any model constant into
Cv . The condensation term is the same as in the original
OpenFOAM implementation, with model constants being
absorbed into Cc.

3 EFFECT OF FINITE MASS TRANSFER

Some important effects of finite mass transfer on the
phase transition behaviour can be discussed from analyti-
cal considerations. The density change per pressure change
dρ/dp, hence the slope of the density-pressure trajectory, is
employed to illustrate the phase transition behaviour. In the
following, this is exemplarily done for the evaporation pro-
cess of the modified Merkle model. Substituting Equation
(2) into the modified Merkle evaporation term In Equation
(5) and then substituting∇·u in Equation (4) by the source
term, yields the following differential equation with time
dependent coefficients a (t) and b (t):

∂ρ

∂t
+ a (t) ρ+ b (t) = 0, (8)

where

a (t) =
kCv
ρl − ρv

(p (t)− pv)

and

b (t) = −a (t) ρv + (ρl − ρv)∇γ · u.

The unknown pressure evolution p (t) is approximated by a
first order Taylor series expansion from p0 at time instance
t0 and with the pressure change rate ṗ being valid at t0,
such that

p (t) = p0 + ṗ (t− t0) +O
(
t2
)
. (9)

With ρ0 being the density at time instance t0 and t0 = 0,
the following expression then provides a solution of Equa-
tion (8), though in a close vicinity of t0 only (t→ 0):

ρ (t) = (ρ0 − c (t)) e−
kCv
ρl−ρv [ 1

2 ṗt
2+(p0−pv)t] + c (t) (10)

where

c (t) = ρv −
(ρl − ρv)2∇γ · u
kCv (ṗt+ p0 − pv)

Solving Equation (9) for t, where t0 = 0, and substituting
back into Equation (10) yields a solution for ρ as a function
of p for small perturbations around p0. Further taking the
pressure derivative and with t→ t0 ⇒ p→ p0 we get

∂ρ

∂p

∣∣∣∣
p0

= −1
ṗ

[kCvγ (p0 − pv) + (ρl − ρv)∇γ · u] .

(11)
Analogous steps for the condensation process result in

∂ρ

∂p

∣∣∣∣
p0

= −1
ṗ

[kCc (1− γ) (p0 − pv) + (ρl − ρv)∇γ · u] .

(12)
Equations (11) and (12) represent the instantaneous slopes
of the density-pressure trajectory during evaporation and
condensation. It becomes evident that the slope of the
density-pressure trajectory is not only proportional to
the evaporation/condensation constants Cv and Cc, but
also proportional to the advective density change rate
(ρl − ρv)∇γ · u = ∇ρ · u and the reciprocal of the pres-
sure change rate ṗ. Thus, an increase of the temporal
pressure change rate has the effect of decreasing the slope
of the density-pressure trajectory, thereby stretching the
phase transition regime to a larger pressure range. Figure
1 depicts density-pressure trajectories for different pres-
sure change rates, starting from the initial condition (pv, ρl)
for evaporation (left) and (pv, ρv) for condensation (right),
where ρl = 1000 kg/m3, ρv = 0.02 kg/m3 and pv = 2340
Pa.

Figure 1: Density-pressure trajectories for different pressure
change rates (compare to Schenke & Van Terwisga 2016)



The corresponding trajectories are obtained by numerical
integration of Equations (11) and (12), respectively. In this
case, advective density change is not considered, but in re-
ality the slope of the trajectory is additionally altered by the
presence of the advective term in Equations (11) and (12).
The temporal density change is obtained by either taking
the time derivative of Equation (10) and again employing
t → 0 ⇒ p → p0, or by directly substituting the mass
transfer term (6) into Equation (4) and employing the rela-
tion γ = (ρ− ρv) / (ρl − ρv), which gives

∂ρ

∂t
= −kCvγ (p0 − pv)−∇ρ · u (13)

for the evaporation process. Analogously, we get

∂ρ

∂t
= −kCc (1− γ) (p0 − pv)−∇ρ · u (14)

for the condensation process.

4 A NEW MASS TRANSFER MODEL

To obtain homogeneous equilibrium states of density and
pressure as given by a barotropic law, the slope of the
density-pressure trajectory must follow a unique compress-
ibility law given by a function ψ such that

∂ρ

∂p

∣∣∣∣
p0

= ψ (ρ (p)) or
∂ρ

∂p

∣∣∣∣
p0

= ψ (p (ρ)) . (15)

For the evaporation process, the left-hand side of Equation
(15) is given by Equation (11). Solving for Cv , substituting
into the evaporation term of Equation (6) and then substi-
tuting the new evaporation source term into Equations (3)
and (4) gives

∂γ

∂t
+∇ · (γu) =

ρv
ρ

[
ṗψ

ρl − ρv
+∇γ · u

]
(16)

and
∇ · u = −1

ρ
[ṗψ +∇ρ · u] . (17)

Equations (16) and (17) represent modified transport equa-
tions of liquid volume fraction and mass. The source term
establishes homogeneous equilibrium states given by the
integrated compressibility law for any flow configuration.
In this case, Equations (16) and (17) were derived from the
evaporation process. However, starting from the condensa-
tion process yields exactly the same result. Substituting the
right-hand side of Equation (17) into Equation (4), we get

∂ρ

∂t
= ṗψ︸︷︷︸

Sψ

+∇ρ · u︸ ︷︷ ︸
Sind

adv

−∇ρ · u︸ ︷︷ ︸
Sadv

. (18)

Thus, the local temporal density change can be decom-
posed into three sources. The term Sψ is related to the
compressibility of the flow. The other two sources cancel
each other out, but formally they can be thought of as a
superposition of an advective change rate Sadv and an ad-
vective change rate induced by phase transition Sind

adv, such
that the mass transfer contribution is given by

SMT = Sψ + Sind
adv. (19)

The overall density change resulting from Equation (18) is
interpreted as the time derivative of the barotropic law:

∂

∂t
[ρ (p (t))] =

∂ρ

∂p

∂p

∂t
= ψṗ (20)

In fact, substituting Equation (20) into Equation (4) and
solving for∇ · u directly yields Equation (17). In case of a
divergence free two-phase flow, Equation (17) implies that
Sψ and Sind

adv cancel out of Equation (18) and the local den-
sity change is only driven by advection then. In contrast
to the density change through finite mass transfer given by
Equations (13) and (14), density change is now given by a
single function, which depends on pressure change rate in-
stead of pressure differences and includes a counterpart to
the advective change rate. In addition, the density change
behaviour can now be adjusted by the choice of the com-
pressibility law for ψ. To demonstrate the capability of the
modified mass transfer model given by Equations (16) and
(17), the following barotropic equation of state is employed
to model the compressibility of the flow (see Koop et al
2006):

ρ (p) =
ρl
2

[
1 +

ρv
ρl

+
(

1− ρv
ρl

)
tanh

(
2 (p− pv)

(ρl − ρv) c2min

)]
(21)

Note that in this case pv denotes the pressure associ-
ated with the minimum speed of sound of the barotropic
law. With cmin being the corresponding minimum speed of
sound in the mixture regime, the compressibility law as a
function of ρ is then given by

ψ (ρ) =
(

2
(ρl − ρv) cmin

)2

(ρ− ρv) (ρl − ρ) . (22)

The constants ρl and ρv denote the incompressible limit
states of Equation (22). For this study, they are arbitrar-
ily chosen to be ρl = 1000 kg/m3 and ρv = 0.02 kg/m3.
The minimum speed of sound is arbitrarily assumed to be
cmin = 0.5 m/s. The equilibrium mass transfer model is ap-
plied to the following, strongly simplifying situation. Im-
posing artificial signals of p (t) and u and numerically in-
tegrating Equation (18) with a first order scheme

p (t+ ∆t) = p (t) + ṗ (t) ∆t (23)

yields a solution for the density pressure trajectory. In case
of a density jump as it would occur across the interface of
a bubble, the density gradient becomes a numerical artifact
because it approaches infinity with increasing spatial res-
olution. For this study, the density gradient is assumed to
be related to a one dimensional control volume size ∆x as
follows:

∇ρ =
ρ− ρv

∆x
(24)

The test case is now considered to be a one dimensional
control volume, which is initially fully occupied by wa-
ter. The compressibility model required as an input of the
source term is given by Equation (22) and the correspond-
ing equation of state is given by Equation (21). An evapo-
ration process with subsequent condensation and with non-
constant pressure change is considered. The pressure signal



is given by a standard distribution stretched by constant a
and shifted to the level of initial pressure by constant p0:

p (t) =
a√
2πσ

e−
1
2 ( t−µσ )2

+ p0 (25)

With a < 0, the pressure signal given by Equation (25) is
associated with evaporation until t = µ. From this time
instant on, the sign switch of the pressure change rate ṗ
causes condensation. It is required that the overall process
shall cover a pressure range ∆p = pT − p0, where p0 is
the pressure at time instance t = 0 and pT the pressure at
t = T . Thus, we get

p (t = µ) = ∆p ⇒ a = ∆p
√

2πσ. (26)

It is assumed that µ = T/2 and σ = T/8. The pressure
time derivative reads as follows:

ṗ (t) = −a (t− µ)√
2πσ3

e−
1
2 ( t−µσ )2

(27)

With ∆t = T−t0 = 20 s, p (t) and ṗ (t) evolve as depicted
by Figure 2.

Figure 2: Pressure (left) and pressure time derivative signal
(right)

In a first case, advective density change is neglected. The
evolution of the individual density change contributions in
Equations (18) and (19) are depicted in Figure 3. The tem-
poral density evolution is only driven by the compressibil-
ity term Sψ . The corresponding density-pressure trajectory
is given by the blue dotted curve in Figure 5 (left). The
barotropic curve given by Equation (21) is represented by
the red solid line. Starting from liquid density, the trajec-
tory computed from the equilibrium mass transfer model
first follows the barotropic curve in direction of decreasing
pressure, which corresponds to the negative density change
in Figure 2. It then turns around in the vapour regime due
to the sign switch of the ṗ signal (see Figure 2 right) and
follows the barotropic curve back to the starting point.

Figure 3: Contributions to density change from Equation
(18) without advective density change

In a second case, advective density change is included,
where u/∆x = 0.5 s−1. From Equation (18) follows that
a positve density gradient in combination with a positive
velocity has a tendency to decrease the local density as
represented by the red dashed Sadv curve in Figure 4. In
the non-cavitating liquid regime, however, the equation of
state requires that density must be almost constant. This
implies that a counterpart to the advective density change
must exist, which is given by the source term induced ad-
vection Sind

adv (see blue dashed line in Figure 4). As evapora-
tion starts, the advective density change rates decrease due
to Equation (24). As the trajectory follows the barotropic
state curve in opposite direction again, they increase dur-
ing condensation accordingly. Note that the overall source
term induced change rate SMT as given by Equation (19)
is smaller during the evaporation process in this case. This
is because the advective density change rate Sadv works in
the same direction as Sψ during evaporation in this case.
In that sense, the overall source term induced change rate
SMT can be seen as the rate of relaxation at which density
is temporarily driven to the equilibrium state.

Figure 4: Contributions to density change from Equation
(18) with advective density change

In both cases, the density-pressure trajectory obtained from
the equilibrium mass transfer model follows the barotropic
reference curve. Small deviations occur which are a result
of the time discretisation errors. In this case, time step size
in Equation (23) is ∆t = 10−3 s.

Figure 5: Density-pressure trajectories (MT) corresponding
to Figures 3 and 4 and barotropic equation of state (EoS)

5 SINGLE BUBBLE COLLAPSE

In the following, the slightly modified Merkle mass transfer
model given by Equation (6) is applied to a single bubble
collapse. Effects of finite mass transfer on the evolution of
density-pressure trajectories are studied and qualitatively
compared to the characteristics predicted by Equation (12).



In addition, a convergence study on local peak quantities
with respect to mass transfer rate and temporal resolution
is carried out.

5.1 Numerical Set-Up of the Bubble Case

The initial bubble radius is R0 = 0.4 mm and the initial
radial pressure distribution, depicted in Figure 6, satisfies
the Laplace equation as found in (Franc & Michel 2004),
where the interior pressure is pv = 2340 Pa. More details
on the numerical set-up are found in (Schenke & Van Ter-
wisga 2016). Analytical reference solutions are obtained
from the Rayleigh-Plesset equation in the absence of vis-
cous forces and surface tension (Franc & Michel 2004).

Figure 6: Computational grid and initial pressure field
(Schenke & Van Terwisga 2016)

5.2 Results of the Bubble Case

Figure 7 depicts curves of radius evolution for three differ-
ent condensation rates and three different time step sizes.

Figure 7: Evolution of the bubble radiusR for different con-
densation rates and time step sizes (compare to Schenke &
Van Terwisga 2016)

In this case the medium condensation rate Cc = 100
kgs/m5 is associated with the smallest collapse time. Both
the larger rate Cc = 1000 kgs/m5 and the smaller rate
Cc = 10 kgs/m5 result in larger collapse times for all time
step sizes, where the latter goes along with a sudden de-
celeration of bubble radius decay at around R/R0 = 0.2.
As already shown by Schenke & Van Terwisga (2016), this
situation goes along with a very pronounced interface dif-
fusivity. This causes a pronounced bulk flow across the
theoretically sharp interface, thereby forming a stagnation
point at the bubble centre due to the symmetry of the flow.
The local peak pressure may then dissolve into the domain

before vapour is fully destroyed, thereby decreasing the
magnitude of the local mass transfer source term drasti-
cally. The only effective means to approach the analytical
Rayleigh collapse time τ is to keep the mass transfer rate
large and to provide sufficient temporal resolution at the
same time. As time step size is decreased, theR/R0-curves
collapse on the curve obtained from the analytical solution,
given that the condensation rate is sufficiently large.
The dependency between condensation rate and steepness
of the density-pressure trajectory as predicted by Equation
(12) is qualitatively confirmed by Figure 8, which depicts
the density trajectories at the observation points in Figure 6
for different time step sizes and condensation rates. As the
bubble centre is approached, the local pressure change is
getting more rapid. Since the slope of the density-pressure
trajectory of the modified Merkle model is proportional to
1/ṗ, the slope is supposed to decrease as the bubble cen-
tre is approached. While being highly dependent on mass
transfer rate, the slopes of density-pressure trajectories are
hardly time step size dependent. The horizontal parts of
the trajectories result from the rebound event. They evolve
horizontally as long as pressure is above vapour pressure.

Figure 8: ρ-p trajectories at the observation points indicated
in Figure 6 for different condensation rates and time step
sizes (compare to Schenke & Van Terwisga 2016)

The effect of time step size on transient phase transition
behaviour is analysed by evaluating the temporal density
change rate dρ/dt at observation point r/R0 = 0.25 indi-
cated in Figure 6. Figure 9 depicts dρ/dt signals for con-
stant condensation rate and variable time step size. It shows
that sufficient temporal resolution is needed to focus the lo-
cal phase transition time to small intervals.
To further investigate the influence of mass transfer rate and
temporal resolution on peak events, a convergence study of
the local phase transition rate with respect to condensation
rate and time step size is carried out. Figure 10 depicts
the evolution of the dρ/dt peak value over condensation



rate and for three different time step sizes and at the three
different observation points indicated in Figure 6. It be-
comes clearly evident that the local phase transition speed
exhibits convergent behaviour with increasing condensa-
tion rate and a fixed time step size. Figure 10 and also
Figure 9 further indicate convergent behaviour of the local
phase transition speed with increasing temporal resolution.

Figure 9: Evolution of dρ/dt at r/R0 = 0.25 for Cc = 250
kgs/m5 and different time step sizes

Figure 10: dρ/dt peak over condensation rate at different
observation points and for different time step sizes

Figure 11: Peak pressure over condensation rate at different
observation points and for different time step sizes

Figure 12: dp/dt peak over condensation rate at different
observation points and for different time step sizes

The same convergence study is applied to peak pressures
(see Figure 11) and peak pressure time derivatives (see Fig-
ure 12) at the observation points indicated in Figure 6. Sim-
ilar to the peak of local density change rate, both quantities

exhibit convergent behaviour with respect to condensation
rate. However, there is no indication of time step size con-
vergence observed, implying that the magnitude of peak
pressures is not reliably predicted.

6 CAVITATING WEDGE FLOW

The effect of finite mass transfer rate and temporal resolu-
tion on cavitating flow dynamics is further investigated for
a wedge flow. In the following, both the slightly modified
Merkle model and the slightly modified Kunz model given
by Equations (6) and (7) is employed.

6.1 Numerical Set-Up of the Wedge Case

Geometry (see Figure 13), ambient pressure and mean flow
velocity for the wedge study are in line with a simula-
tion carried out by Budich et al (2015), using the fully
compressible Riemann-solver CATUM to solve the com-
pressible Euler equations. Budich et al (2015) employed
a barotropic equation of state assuming equilibrium speed
of sound in the mixture regime. Originally, this configu-
ration was investigated experimentally by Ganesh (2015).
The inlet boundary condition is given by a uniform inflow
speed of 8.0 m/s. The outflow passes a diffuser to avoid the
reflection of pressure disturbances at the outlet, where the
pressure boundary condition is imposed.

Figure 13: Geometry and computational grid

Figure 14: Computational domain and instantaneous pres-
sure field

Figure 14 depicts the instantaneous pressure field under
cavitating flow conditions. The outlet pressure is set such
that the pressure downstream from the wedge approxi-
mately matches 52 kPa as reported by Ganesh (2015).
The required diffuser outlet pressure was determined by
Bernoulli’s equation in combination with the mass conti-
nuity equation, which is valid due to the neglect of vis-
cous forces. However, energy is not explicitly conserved
here, which leads to a certain offset of the pressure down-



stream from the wedge. Under wetted flow conditions, the
required pressure was overestimated by 0.88 kPa. Both liq-
uid density ρl and vapour density ρv were evaluated at the
targeted downstream pressure of 52 kPa and an ambient
temperature of 293.15 K. A characteristic cell size of 2 mm
in the vicinity of the wedge turned out to be sufficient to
get a converged shedding frequency. Due to the neglect of
viscous forces, top, bottom and side walls are treated as
slip walls. For the modified Merkle model (see Equation
(6)), the evaporation constant Cv was increased until pres-
sure was prevented from dropping below vapour pressure
pv significantly, which gave Cv = 100 kgs/m5. The con-
densation constant was increased until no significant pres-
sure increases at low densities was observed during con-
densation, which gave Cc = 200 kgs/m5. The evaporation
term of the modified Kunz model is exactly the same as in
the modified Merkle model. Applying the same strategy to
identify an appropriate value for the condensation constant
of the Kunz model resulted in Cc = 1000 kg/(sm3).

6.2 Results of the Wedge Case

The ρ-p trajectories obtained from the modified Merkle and
Kunz models, measured at observation point OP indicated
in Figure 13, are depicted in Figure 15. It becomes appar-
ent that especially the modified Merkle model exhibits a
physical behaviour in the sense that pressure remains close
to vapour pressure in the mixture regime, except for the fi-
nal stage of local condensation. It is generally observed
that the slope of the ρ-p trajectory obtained from the mod-
ified Merkle model tends to be much larger during evap-
oration than during condensation. The difference is ex-
plained by the dependency of the trajectory slope on the
reciprocal of the pressure time derivative ṗ (see Equation
(12)), whose magnitude can get very large during cavity
collapses. Again, no significant influence of time step size
on the shape of the trajectories is observed. It is further
observed that the slope of the condensation trajectory ob-
tained from the Kunz model is even steeper at large densi-
ties, but that it exhibits rather non-physical pressure fluctu-
ations at small densities.

Figure 15: ρ-p trajectories at the observation point in Figure
13 obtained from the modified Merkle model (three differ-
ent time step sizes) and the modified Kunz model

Shedding frequencies are compared with each other by
means of a s-t diagram. The s-t diagram depicts the span-
wise averaged volume fraction in a measurement plane par-
allel at 2 mm distance from the wedge surface (see Figure
13) over time. Figure 16 depicts the results obtained from
the modified Merkle and Kunz model, respectively. Al-
though the volume fraction transport Equation (3) is based
on liquid volume fraction, Figure 16 depicts the vapour
volume fraction for better comparability to the results of
Ganesh (2015) and Budich et al (2015). For the smallest
time step size ∆t = 10−6 s, both the modified Merkle
and Kunz model yield slightly smaller shedding frequen-
cies and overestimation of overall vapour content compared
to the results by Budich et al (2015). It is observed that
temporal resolution significantly affects the global shed-
ding behaviour. As seen in the s-t diagram for the largest
time step size ∆t = 16 · 10−6, large mass transfer rates in
combination with large time steps result in massive over-
estimation of vapour volume and underestimation of shed-
ding frequency. For ∆t = 10−6, the shedding frequen-
cies obtained from the modified Merkle model were found
to be converged. Similar to the cavity shedding frequency,
the frequency of local pressure impacts at observation point
OP obtained from the modified Merkle and the Kunz model
(see Figure 17) is in good agreement with the frequency re-
ported by Ganesh (2015) for the smallest time step size.
Ganesh (2015) measured 19 events per second, which is
equal to 5.5 events per 0.29 seconds. The same time step
size dependency as in the s-t-diagrams is observed for the
modified Merkle model. Taking the wiggles of the ρ-
p trajectory in the low density regime as seen in Figure
15 into account, some peaks up to a magnitude of 15000
Pa obtained from the Kunz model are considered as non-
physical. The rapidness of the local pressure signals de-
creases with increasing time step size.

Figure 16: s-t diagrams measured in the plane indicated in
Figure 13 obtained from the modified Merkle model (three
different time step sizes) and the modified Kunz model



Figure 17: Pressure evolution at the observation point in
Figure 13 obtained from the modified Merkle model (three
different time step sizes) and the modified Kunz model

It should be mentioned that the underestimation of shed-
ding frequency and overestimation of vapour content for
large time steps can be avoided by decreasing the conden-
sation rate. Figure 18 depicts the s-t and ρ-p diagram ob-
tained from the modified Merkle model with the largest
time step size, but with the condensation rate being de-
creased by a factor of 200 compared to Figures 15 and
16. The evaporation rate is still Cv = 100 kgs/m5. How-
ever, results obtained from this configuration are extremely
sensitive to variation of condensation rate. Furthermore,
the density-pressure coupling appears to be non-physical.
Decreasing the evaporation rate as well would eventually
result in the prediction of negative pressures. Figure 19
shows that the local pressure signals are smoothened as
a result of insufficient temporal resolution in combination
with small condensation rates.

Figure 18: s-t diagram (left) and ρ-p trajectory (right) at the
observation point in Figure 13 obtained from the modified
Merkle model with large time step size and small conden-
sation rate

Figure 19: Pressure evolution at the observation point in
Figure 13 obtained from the modified Merkle model with
∆t = 16 · 10−6 s and Cc = 1 kgs/m5

Especially for the modified Merkle model, similar shed-
ding mechanisms as reported by Ganesh (2015) and Bu-
dich et al (2015) are observed. The collapse phase is at
least partially associated with a condensation discontinuity
travelling upstream. Figure 20 indicates the formation of a
left-hand/right-hand side state at the sheet closure, identi-
fied by a jump of both axial velocity and volume fraction
across the condensation front at the closure region. Differ-
ent from a re-entrant jet mechanism, the flow right from the
cavity closure is heading backward across the whole height
of the closure region. The same was found by Budich et al
(2015).

Figure 20: Instantaneous axial velocity field (above) and
volume fraction field (below) at the centre plane at t =
0.066 s obtained from the modified Merkle model with
∆t = 10−6 s and Cc = 200 kgs/m5

Figure 21: Instantaneous vapour structures (γ ≤ 0.5) at
t = 0.066 s obtained from the modified Merkle model with
∆t = 10−6 s and Cc = 200 kgs/m5

Figure 21 depicts the instantaneous three dimensional
vapour structures at the same time instance, also indicat-
ing the formation of a condensation front rather than a thin



re-entering liquid jet. However, it should be noted that
the re-entrant jet mechanism has been observed as well in
this simulation and that it appears to be difficult to always
clearly distinguish those two effects.

CONCLUSIONS & RECOMMENDATIONS

It has been shown that the finite mass transfer approach
incorporated in an incompressible CFD solver is able to
reflect the density-pressure coupling in the cavitating flow
regime to a satisfactory extent. In order to obtain realis-
tic density-pressure coupling, the equilibrium flow condi-
tion (Sezal 2009) must be approached, which requires large
mass transfer rates. Similar conclusions have been drawn
by Koukouvinis & Gavaises (2015) and Bhatt et al (2015).
Increasing the mass transfer rate goes along with a ten-
dency to focus the local phase transition to small time inter-
vals, which requires sufficient temporal resolution within
those time intervals. This suggests that the required tem-
poral resolution is governed by the collapse time of charac-
teristic cavities resolved by the simulation rather than the
Courant number. Distribution and steepness of the density-
pressure trajectory is an indicator of the closeness to the
equilibrium flow condition. With the mass transfer rate be-
ing sufficiently large, the slope of the density-pressure tra-
jectory locally mimics the mixture compressibility as given
by more realistic barotropic equations of state, although
the density-pressure states of the flow are still not unique.
An alternative mass transfer approach that is theoretically
able to relax the flow towards homogeneous equilibrium
states given by an arbitrary barotropic equation of state has
been suggested. The applicability of this approach in the
pressure-based numerical framework will be further inves-
tigated.
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Sezal, I.H. (2009) ‘Compressible Dynamics of Cavitating
3-D Multi-Phase Flows’. Dissertation, Technische Uni-
versität München.


