URBAN PLAN

1700 - AMSTERDAM AS MERCHANT CITY

2000 - THE RING ROAD ERA

FUTURE AMSTERDAM - DENSE, INTENSE & INCLUSIVE CITY

Wietse Elswijk
Amstel Admiralty

Complex Projects AMS MID-CITY Graduation Studio

Urden, Adrian
The context
The ring road A10 is constricting Amsterdam. By 2050 mobility will undergo a shift away from individual car ownership towards mobility as a service. Long distance traffic will be redirected through the A9 which is parallel to the A10.

The boulevard
What characterises a boulevard is a wide profile along which shops and restaurants give pedestrians an array of choices to spend their time and money. The height of the buildings should be constrained in order to have the feeling of a wide space.

The activity route
With the densification arise questions about the implications of the pressure on the existing urban fabric, like the public space, but also the urban responsibility of public health. Altogether, how can a densified public space stimulate healthy

The program
The building envelopes sit in the middle of these two urban interventions. Its restrictions provide a rudimentary shape. The program follows from the wish to densify the Amstel area in a mixed way. Contrary to the current spatial planning, which is

The commercial plinth
Creating a building between the boulevard and park makes a connection between these two a must. The passage is marked by high entrance gates which are clearly visible from both sides. The passage is a narrow and high space with tight coming from above. However the height of the building at the boulevard constrains the light.

The orientation
The height at the boulevard creates a shadow on the courtyard. By sloping the building gradually towards this height at the park, a different typology emerges. The apartments in the sloping wings become open to the sun. This opens up the possibility to offer a diverse pallette of apartments in different sizes and costs. High value housing

The atrium
The courtyard lets through light into the space below which is embedded at the heart of the building. It is the center of the public circulation from park to boulevard and vice-versa. Together with the building next to it a third gate is formed. By combining the two buildings at the boulevard the facade is formed. It has been shaped by the taking place there.

Workspace design
As an alternative to the open floor plan office. Single offices in places with abundant amenities are the future. Here people can focus on their work and still be in the middle of all that is happening. This little fleet of boxes floating along the facades at the same time filters the light to the corridors and the atrium below.

The courtyard
By movement of the people through the space, light is filtered and modulated into the spaces behind and below. The facade around the courtyard is made of metal meshing and filled glass. The metal mesh replaces the handrail and smoothens the entire courtyard façade into a greyish blur during the day and a faded semi-

The balconies
The balconies form terraces for more expensive housing, which pays for the cost of social housing. These apartments have wide balconies towards the south. The facades inbetween balconies are positioned towards the sun and therefore ideal to make use of solar heat and electricity with PV cells and sun boilers. It is up to the occupant to

Accessibility
To end a park in a mountain like building entices people to climb it. While this is not possible, they are certainly welcome to take the elevator up to the 21st floor and enjoy a cocktail at the rooftop bar overlooking the park, Amstel and Amsterdam. Residents can use elevators or stairs along the gallery which are shared by those using the

Facade panels
Most buildings in Amsterdam are made of brick. Brick is a warm material made from clay which could be sourced not far from the city. However with the concerns about energy efficiency there are companies making facades which are less energy consuming. One of those ways is by using composites of biological materials, forming
Facade Box Floor
- 10mm Cherry Parquet
- 150mm Insulation & Ventilation
- 100mm Reinforced Concrete

Facade Box Roof
- 30mm Nabasco Facade Panel
- 150mm Insulation & Ventilation
- 120mm CLT Ceiling Panel

Facade Box Outside Facade
- 30mm Cherry Parquet
- 90mm Electric Sunscreen
- 75mm HR++ Glass

Inside

Apartment A
- 10mm Parquet (oak, cherry, cedar)
- 45mm Screed with heating/cooling
- 35mm Impact Sound Insulation
- 30mm Building Services Layer
- 100mm Reinforced Concrete
- 180mm CLT ceiling deck

Apartment B
- 10mm Parquet (oak, cherry, cedar)
- 45mm Screed with heating/cooling
- 35mm Impact Sound Insulation
- 30mm Building Services Layer
- 100mm Reinforced Concrete
- 180mm CLT ceiling deck

Facade
- 12.5mm Gypsum
- 170mm CLT Wall panel
- 140mm Insulation
- Water barrier
- 120mm Nabasco Facade Panels

Ventilation duct

Balcony Floor
- 25mm Wooden Decking
- 30mm Spacers
- Water Barrier
- 150mm Insulation
- 90mm Sand
- 100mm Reinforced Concrete
- 180mm CLT ceiling deck

Drainage
- Metal mesh

Corridor Floor
- Fritted glass
- Steel beams in concrete wrapped in aluminum casing

Facade Box Floor
- 10mm Cherry Parquet
- 150mm Insulation & Ventilation
- 100mm Reinforced Concrete
- 30mm Aluminum Panel: Anodized White

Facade Box Facade
- 90mm Electric Sunscreen
- 75mm HR++ Glass

Facade Box Roof
- 30mm Aluminum Panel: Anodized White
- 150mm Insulation & Ventilation
- 120mm CLT Ceiling Panel

IMPRESSIONS
ELEVATIONS & IMPRESSION