
Propositions with the Thesis 

Electronic Cleansing for Visualization in CT Colonography 

Iwo Serlie, Delft University of Technology, Tuesday October 9 2007. 

1) Electronic colon cleansing is facilitated by an accurate description of the 
composition around material transitions (this thesis). 

2) 3-D visualization for CT Colonography requires image processing (this thesis). 

3) The unfolded cube combines an omnidirectional viewing frustum with an 
intuitive appearance (this thesis). 

4) Knowledge develops from creativity and creativity from a lack of it. 

5) A single workflow to make a diagnosis does not exist. 

6) Collaboration between an engineering scientist and a medical practitioner is 
difficult because one thinks in terms of new possibilities and the other thinks 
in terms of existing solutions. 

7) Intuitive user-interfaces of systems with a lot of functionality do not exist. 

8) In modern society, the status derived from a device is more important than its 
functionality. 

9) The choice of Lower Rhine societies to assimilate one of their most important 
indigenous gods, Magusanus, with the Roman god Hercules is not based solely 
on its martial aspect. 

10) Wasting energy requires little energy. 

These propositions are considered opposable and defendable and as such have been 
approved by the supervisor, prof.dr.ir. L.J. van Vliet. 



Stellingen behorende bij het proefschrift 

Electronic Cleansing for Visualization in CT Colonography 

Iwo Serlie, Delft University of Technology, dinsdag 9 oktober 2007. 

1) Digitale darmreiniging is mogelijk dankzij een nauwkeurige beschrijving van de 
samenstelling rond materiaalovergangen (dit proefschrift). 

2) 3D visualisatie voor CT Colonografie kan niet zonder beeldverwerking (dit 
proefschrift). 

3) De opengeklapte kubus combineert een omnidirectioneel blikveld met een 
intuïtieve manier van weergeven (dit proefschrift). 

4) Kennis komt voort uit creativiteit en creativiteit uit een gebrek hieraan. 

5) Een eenduidige werkwijze bij het stellen van een diagnose bestaat niet. 

6) De samenwerking tussen een technisch-wetenschappelijk onderzoeker en een 
behandelend geneesheer is moeilijk omdat de een denkt in nieuwe 
mogelijkheden en de ander in bestaande oplossingen. 

7) Intuïtieve user-interfaces van systemen met veel functionaliteit bestaan niet. 

8) In de moderne samenleving is de status die ondeend wordt aan een apparaat 
belangrijker dan zijn functionaliteit. 

9) De keuze van de Neder-Rijnse samenlevingen om één van hun belangrijkste 
goden, Magusanus, gelijk te stellen aan de Romeinse god Hercules, is niet 
gebaseerd op louter het martiale aspect. 

10) Energieverspilling vergt weinig energie. 

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig 
goedgekeurd door de promotor, prof.dr.ir. LJ. van Vliet. 
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Chapter One 

Introduction 

Computed (axial) tomography (CT) is a non-invasive method to generate three-
dimensional (3-D) images of an object [1]. Hounsfield created the CT device in 1972 and 
received the Nobel Prize in medicine in 1979. The first 2-D cross-sections were 
composed of 80 X 80 pixels. Today's 3-D images are composed of 5123 pixels and 
provide details typically in the range of 0.5 — 1.0 mm. Reduction in acquisition time has 
also been responsible for the rise in popularity of CT imaging. The first images were 
acquired in four minutes. Today, multiple contiguous images are acquired in less than one 
second enabling breath-hold imaging and imaging of the heart. 

From this ever increasing source of image based information, it is the medical specialist's 
challenge to effectively and efficiendy extract relevant diagnostic information. Humans 
are well equipped to extract qualitative information, but less equipped to extract 
quantitative information. The main problem is the massive amount of data that needs to 
be searched through to extract relevant diagnostic information. In reply to this problem 
medical image processing aims at assisting the specialist in gaining "insight into the data". 
In order to provide the best assistance we need to get the information from the images in 
a reproducible best manner. 

This thesis focuses on the application of CT colonography that can benefit substantially 
from advances in medical image processing. It is a method that aims at finding the latent 
stage of colon cancer (adenomatous polyp) or colorectal cancer itself. Traditionally, 
getting the diagnostic information is based upon an endoscope that is inserted into the 
digestive system, while CT colonography provides a non-invasive alternative. 

To enable CT colonography to become the preferred primary method for colon 
examination, medical image processing techniques are created to enable the medical 
specialist to focus upon the primary task of discriminating between the normal and 
pafhological condition. 

1.1 Colon Cancer 

Colorectal cancer (CRC) is an often deadly disease in the Western World. It accounts for 
1 1 % to 15% of all cases of cancer in this region (~100,000 diagnosed cases and ~50,000 
deaths in the US every year) [2]. CRC (Figure 1.2c) is a malignant tumor that after a 
relatively long pre-malignant period of localization in the bowel wall invades the wall and 
metastasizes to the lymph nodes and other parts of the body [3]. The risk of CRC 
increases with age and occurs most frequently in the proximal colon [4]. 
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The large bowel or colon (Figure 1.1) is part of the digestive tract and approximately two 
meters long. The main functions of the colon are absorption of water from digested 
materials and absorption of several synthesized vitamins. 

(a) (b) 
Figure 1.1 (a) Structure of the colon and (b) detailed anatomy. 

Figure 1.2 (a) Normal finding in the colon, (b) polyp just about to be removed and (c) a tumor (CRC). 

Colorectal cancer (Figure 1.2c) can be prevented due to two important aspects. 

First, the development from latent to diagnosed disease is understood. Polyps are masses 
of mucosa (Figure 1.2b) found in the colon that differ in clinical importance and 
histology (cellular formation). Genetic alterations are supposed to lead to an overgrowth 
of cells (adenomatous polyps), and further genetic changes are thought to be responsible 
for the progression of these polyps to cancer (Figure 1.2c) [5]. Approximately one-half 
to two-thirds of all polyps are adenomatous (adenomas), although most likely only a 
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minority will develop into cancer [6] [7]. The probability that invasive cancer is contained 
within a colorectal adenomatous polyp increases with the size of the adenoma and the 
degree of dysplasia (abnormal tissue growth) [8]. The progression from the adenoma to 
CRC has a natural history of approximately 10 years [9][10]. However, the duration of 
the pre-symptomatic stage, has been estimated between 4.5 and 5 years [11]. 

Second, a suitable examination may exploit the long pre-malignant stage to detect polyps. 
In addition there is an accepted treatment [12]. It is a relatively simple and painless 
procedure to remove a polyp (Figure 1.2b): there are no nerve endings in the mucosa. 
Detecting and removing adenomas, at an early pre-symptomatic stage, will reduce CRC 
incidence [13]. 

1.2 Colonoscopy 

The standard examination and treatment method is (optical) colonoscopy. A tube with a 
bright light is moved into the distal part of the colon after extensive bowel cleansing. The 
American Cancer Society recommends that every adult over 50 years old, with a family 
history of colon cancer or having pre-existing conditions, should have colonoscopy. 

However, the overall benefit of the method when applied to a screening population with 
low probability of having a polyp does not outweigh the potential harm and discomfort 
from its application. A serious complication associated with this invasive colonoscopy is 
a perforation (1/10,000) that requires immediate surgery [14]. In addition colonoscopy 
requires extensive bowel preparation and demands great technical skills on the part of 
the examiner. 

Another problem arises due to the shape of the colon (Figure 1.1a). With optical 
colonoscopy, due to narrow areas or the curved shape, the proximal colon ('start' of 
colon), is not reached in all procedures [15]. Even if the colonoscope can reach the 
proximal colon, surface parts are out of sight due to the unidirectional nature of the 
colonoscope and the folds in the colon surface [16] (Figure 1.5). 

1.3 CT colonography 

CT colonography is a newer colorectal screening method that uses colon cleansing, 
inflation and non-invasive 3-D imaging to view the inside of the colon. It overcomes 
some important problems of colonoscopy mentioned before. 

The general procedure comprises the following steps. First, the patient's colon is cleansed 
to remove fecal remains. Second, the colon is distended using an automated carbon 
dioxide inflation technique and scanned using multi-detector spiral CT imaging in supine 
and prone orientation. Third, the colon data are examined by a specialist. After having 
been scanned it takes about 15 minutes for the medical specialist to examine a colon 
using CT colonography [17]. If polyps with a 10 mm or larger diameter are found, the 
patient must undergo a conventional colonoscopy so that they can be removed. 
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Figure 1.3 CT images of the colon. Air is black, tissue is grey and intraluminal remains are white if 
tagged or tissue equivalent if not tagged. 

It has been demonstrated that the probability of dying from colorecta! cancer by removing 
polyps is reduced from 3.06 to 2.30 (lifetime %) when participating in a screening program 
[14]. There is a ver)' small potential risk associated with follow up colonoscopy if polyps 
are diagnosed (e.g. due to a perforation) as the probability of death due to colonoscopy is 
0.005 (lifetime %). Because of these risks and the very low likelihood of malignancy in 
polyps with a 5 mm or smaller diameter, these polyps are generally not considered clinically 
important and rescreening should be done at more than five-year intervals. 

1.3.1 2-D and 3-D examination 

The first method to inspect the inside of the colon is direct analysis of axial CT slices 
(Figure 1.3). Virtual-colonoscopy applies image processing to delineate the colon wall 
and surface rendering to create a 3-D view of the colon using a virtual camera 
(Figure 1.4b) mimicking the optical endoscope (Figure 1.4a). The field was pioneered by 
Vining et al. in 1993 on virtual bronchoscopy [18] and in 1994 on virtual colonoscopy 
[19][20], and by Geiger and Kikinis on virtual bronchoscopy in 1994 [21]. This frontier 
work rapidly matured and recent results suggest that the. virtual colonoscopy procedure 
approaches the sensitivity achieved by colonoscopy [22]. 

(a) (b) 
Figure 1.4 (a) Optical colonoscopy (OC) and (b) virtual colonoscopy (VC) showing the same polyp. 
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1.3.2 3-D examination with electronic cleansing 

In virtual colonoscopy fluid layers may block the 3-D view of the colon wall 
(Figure 1.4b). Normally, laxatives are applied to reduce this^ problem. In this thesis image 
processing is applied to transform the medical data into electronically cleansed data 
enabling a clear view of the colon in spite of remaining fluids [23]. Several technologies 
enable 3-D examination in CT colonography: 

Man machine interface. To begin with, visualization (preferably real-time) enables the 
interactive examination of segmented surfaces. The specialist can interact with the 
camera similar to interaction with the optical camera [24]. 

Segmentation of the colon-surface. Segmentation assists the specialist in reducing the 
3-D volume into a 2-D surface. Techniques are developed that allow fully automatic 
determination of the surface. It enables the 3-D display of a segmented surface as visible 
in (Figure 1.4b). 

Automatic path tracking. In addition, image processing assists in defining an optimal 
trajectory through the colon. This trajectory serves two purposes. First, the virtual 
camera navigates along the path in the 3-D volume. Second, the 2-D surface is reduced 
to a 1-D coordinate system with the distance to the endpoint as a variable. This allows 
annotation of the position of a lesion. The distance along the path is an estimate of the 
position in the colon that is used with an (optical) endoscope to remove the polyp. 

Fecal Tagging. Fecal tagging is introduced to mark the fecal remains using orally 
administered contrast to be able to discriminate between tissue and fecal remains 
(Figure 1.3). 

Supine and prone matching. Two images are acquired, one in supine and one in prone 
position to solve the problem of collapsed colon-segments (Figure 1.3). Image 
processing assists in the registration of both images. This may allows the specialist to 
combine information of a single polyp that is present in two images. 

1.4 Research objectives 

Despite clear potential and progress in visualization techniques and image processing, 
two main problems emerged that remain critical to the success of CT colonography. (1) 
The display mode was not optimal and (2) the segmentation of the colon had to be 
enhanced. This thesis focuses on creating image processing tools to solve these problems 
to aLlow the physicians to benefit from the advances in CT imaging. 

The primary requirement of the designed image processing methods is that they allow 
the specialist to focus upon the principle task: discriminate between a normal and a 
pathological condition. 
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1.4.1 Unfolded cube visualization 

Unfolded cube visualization is a medical imaging technique that projects six overview 
directions onto the six sides of the fold-up of a cube. The unfolded cube substantially 
reduces die problem of blinded areas caused by folds when using forward and/or 
backward viewing (Figure 1.5) [25]. 

Figure 1.5 Blinded areas in virtual colonoscopy using bidirectional viewing. 

It has been proven that this 3-D view of a segmented colon using six perspective 
projections is more efficient than browsing through a stack of 2-D image slices. The 
unfolded cube method and validation is described in [17] (chapter three). Otiier 
publications on the unfolded cube are [26] [27] [28]. 

(a) (b) 

Figure 1.6 An example of the unfolded cube rendering using (a) supine and (b) prone acquisitions 
showing a polyp. The visualization is based upon iso material fraction rendering (see 1.4.2). 
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W (b) 

Figure 1.7 (a) An artifact occurs at a junction due to using a two-material model, (b) which is 
suppressed by using a three-material model and iso-material fractions. 

1.4.2 Volume visualization using material fractions 

Volume visualization of a surface with constant tissue fraction is introduced in order to 
better approximate the surface of an object than with standard techniques [29]. It allows 
medical imaging to assist the specialist in automatic segmentation of objects even if they 
connect to more than one other material. Figure 1.6 and Figure 1.7 show colon imaging 
based upon iso-material fraction rendering. 

Traditional volume visualization uses a surface through constant datavalue to 
approximate the object-surface. In 3-D colon imaging this may lead to fluid blocking the 
view of the colon surface. Occlusion of polyps will lower the sensitivity (true-positive 
fraction) and the detection of polyp-like structures will lower the specificity 
(1 — false-positive fraction). 

Two advantages of using iso-material fractions when compared to traditional iso-surface 
imaging are: 

1. Artifacts that typically occur at locations where three materials meet are suppressed. 

2. Traditionally, the user has to manually define an opacity function. Surfaces 
through constant material fraction simplify automatic surface segmentation. 

In general, the method determines the relative contributions of the materials to the 
voxel-value based on a modeled relation of differential invariants across a transition. A 
patent is described in [30]. 

The method to determine relative contributions across two-material transitions is 
described in chapter four. Three-material transitions are addressed in chapter five. An 
evaluation using optical colonoscopic data is conducted and described in chapter six. 
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2.1 Introduction 

Chapter Two 

CT Imaging Characteristics 

This chapter tests several basic assumptions on which the proposed methods in this 
thesis rely. It explores basic aspects of CT imaging for Colonography: the noise 
characteristics, the spatial resolution and the model that describes the CT value across a 
material transition [1], It is important to notice that the image processing discussed in 
this chapter is restricted to the edges of the colon. When applied to other areas or 
sources of data, the assumptions that are made have to be tested again. 

2.1 Introduction 

Computed Tomography (CT) is based upon measuring x-ray attenuation (absorption and 
scattering) characteristics of an object. First, x-ray projections, i.e. transmission 
measurements along lines - actually thin stripes - through the object, are acquired as the 
x-ray source rotates around the object. Second, the projections are used as input data in a 
tomogtaphic reconstruction algorithm to calculate a 3-D CT image consisting of CT 
values on a grid of voxels. 

For mono-energetic radiation, the measured intensity at an x-ray detector is described by 

/*=/0exp(-j//(z)fife) = /0exp(-Z) (2.1) 

where Igis the measured intensity, IQ the intensity of the unattenuated x-ray beam and 
/ / ( z ) t h e attenuation coefficient at position z. (2.2) The integrated beam attenuation Z 
along the path of the ray is given by 

Z = ln 
\JoJ 

(2.2) 

However, the imaging process is not ideal and the detectors have finite sizes. 
Consequently, each measured signal value emanates from a compound of materials 
instead of pure materials. This generally yields an underestimation of the estimated 
density [2]. The larger the attenuation gradients perpendicular to the beam, the larger the 
underestimation will be. 
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Because the x-ray beam is not mono-energetic, and the attenuation coefficients are 
dependent on the energy of radiation, equation (2.1) is only an approximation. Current 
CT reconstruction algorithms use a nonlinear function to map the Z-values determined 
with (2.2) on values expected for mono-energetic radiation. In this mapping procedure, it 
is usually assumed that the attenuating object consists of water. Small errors in the 
reconstructed images are present because of the presence of other materials in the 
attenuating object, for example bone. 

Nearly all CT scans are made nowadays in spiral mode. In this mode the object is not 
stationary, but moves slowly through the imaging plane (z-direction) while the x-ray tube 
rotates continuously. For the reconstruction of a cross section, line integrals have to be 
available in the plane of that cross section. Because of the movement of the object, 
these line integrals are not all available right away. Therefore, in spiral CT, an added 
interpolation step is necessary before the images can be reconstructed. This interpolation 
causes that noise is correlated at an approximately constant rate in the z-direction 
(paragraph 2.2.2). 

The CT value of each voxel is linearly related to the linear attenuation coefficient of the 
material in the volume element corresponding to that voxel flv, with the linear 
attenuation coefficient of water //water serving as a reference: 

CT Number = 1000 / /"~ / /wa tc r (2.3) 
/'water 

Although CT values are dimensionless, they are conventionally expressed as Hounsfield 
Units (HU). This convention is used throughout this thesis. Hence, in all CT scans, the 
CT value of water should be zero, the CT value of soft tissue that attenuates the x-rays a 
few percent more, in the order of 30 HU. The CT value of air, with virtually no 
attenuation, should be — 1000 HU. Slight deviations from these expected values may 
occur due to small calibration errors. Tagging of water with iodine enhances the CT 
value, depending on the concentration of iodine. In this chapter, a mixture was used with 
a CT value of approximately 400 HU. 

2.2 No i se and CT value across image transitions for CT colonography 

The main sources of image degradation are taken to be loss of spatial resolution and 
noise. We will propose models that describe the noise and the CT value across the 
material transitions to deal with these deficiencies in order to obtain reliable 
measurements for CT colonography. 

A primary source of image degradation is noise. Especially in CT colonography imaging 
where the radiation dose is kept to a minimum, excessive noise may be present. The 3-D 
image reconstruction causes that the noise is correlated. We assert, however, that that 
correlation only occurs at a very small scale without hampering the detection of polyps. 
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Furthermore, it is assumed that the amplitude of the noise may be modeled by a zero-
mean Gaussian. 

The edge-spread-function (ESF) is modeled as a 1-D Gaussian with a scale that depends on 
the orientation of the edge. It is demonstrated in this chapter that the erf-function, i.e. a 
step edge convolved with a Gaussian, serves as an excellent approximation to model the 
observed CT value across a transition between tissue/air and tissue/tagging. Note that 
we do not try to recover the specific point-spread-function (PSF), the image produced by 
a delta function, from CT data. The real PSF of a spiral multi-detector CT scanner is a 
complicated, space variant function that reminds of spiral pasta [3]. Hence, the model 
that we apply does not generally hold. The real PSF neither is a separable Gaussian, nor 
may be independent of material and position, thus slightly violating the linear-time-
invariant (LTI) assumptions underneath a convolution model. Since the analysis is limited 
to approximate fixed value transitions, we may assume the ESF to be modeled by an 
anisotropic Gaussian function. 

The approach that we will take is not robust in the presence of extreme artifacts that for 
example occur in the presence of metal prostheses. Strategies to reduce such artifacts are 
outside the scope of this research. Reconstruction errors that occur due to structures in 
patient-data are considered small and are not accounted for. 

2.2.1 Test image 

The validity of the assumptions was checked using CT images of a phantom (Figure 
2.1a-d) and real CT data. The phantom consisted of a Lucite tube (CT number in the 
order of 100 HU) inside a cylindrical barrel with a diameter of 34 cm filled with water. 
Lucite has a CT number that is only slightly higher than that of soft tissue. The tube had 
an internal diameter of 50 mm. The tube was partly filled with a mix of iodine and water 
(CT number in the order of 400 HU); above the liquid was air. 

The phantom was imaged on a 4-slice spiral CT scanner (Mx-8000, Philips Medical 
Systems Nederland B.V.). The scan parameters were: 120 kV, 4 x 1.3 mm collimation, 
pitch 1.25, a 180° interpolation algorithm, a field of view of 256 mm and a slice 
increment of 0.5 mm. 

The image reconstruction kernels available on the Mx-8000 CT scanner are named 
'A', 'B', 'C' and 'D' , with the resulting image sharpness varying from smooth to sharp, and 
the noise from low to high. The choice for a specific kernel depends on the application; 
it is a compromise between the resolution and the noise that may be tolerated. The AMC 
hospital in Amsterdam has chosen kernel 'C' for its CT colonography examinations. 

The raw CT projection data were used to reconstruct the volume of interest containing 
the phantom in an ordinary way, in the same volume of interest as if it was scanned at 
lower doses as well. For that purpose, the raw data were modified in a controlled way. 
The raw transmission measurements were replaced by a realization of the Poisson 
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process given a scaled version of the high-dose datavalue as the expected value. Note 
that the variance and the mean values of the Poisson distribution are identical. The CT 
scan was made at the highest dose level that was available on the CT scanner (400 mAs) 
given the scan parameters described above. The images from this scan were used to 
locate the surface of the tube serving for reference. Simulated images were made with 
average dose (50 mAs) and low-dose (20 mAs) (Figure 2.2). 

It is expected that the scale of the PSF would be different along the z-axis than in the 
xy-plane: the image reconstruction kernels operate in the xy-plane. Accordingly, the tube 
was oriented such that edges along the tube would be affected by both components of 
the PSF (Figure 2.1a,b). 

(a) ^ 50 mm w (c) 

Figure 2.1 • (a),(b) Multi-planar-reformats of the phantom showing in-plane (rj') and out-of-plane (z) 
orientation, (c) Max-intensity projection of the phantom, (d) Volume rendering of the 
phantom. 

W (b) (c) 

Figure 2.2 (a) High-dose, (b) average-dose and (c) low-dose images of the tube phantom. 
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2.2.2 No i se correlation 

CT detectors measure the x-ray transmissions through a patient. The measurements are 
subject to noise due to photon counting statistics. When combining these projection-data 
to reconstruct a 3-D CT image, correlation of noise, the degree to which noise quantities 
are linearly associated, is introduced between a voxel and its neighboring voxels. It is 
tested if the correlation of noise responses is rotation invariant in the xy-plane and 
occurs at a small scale. CT slices of the phantom that only contain water are used. This 
analysis does not consider reconstruction errors due to structure in the data (e.g. edges 
of the colon). 

The noise correlation was analyzed in three dimensions using the autocorrelation 
function (ACF), i.e. the cross-correlation of the signal with itself. Let I =I(x,y,z) be 
the datavalue at a voxel-position (.x,y,z). Then, the sample autocorrelation function for a 
selected area is 

ACF(k,i,m)=-±TY.llll({I(x>y'z)LE(I)}{I(x+k>y+l'z+m)-E<<1)}) (2-4) 
^N x y z 

in which E (I) is the mean datavalue and Syy is the sample variance of /over the entire 
volume. The function has the property of being in the range [—1,1] with 1 indicating 
perfect correlation and .— 1 indicating perfect anti-correlation. The ACF-image displays 
the correlation-coefficient as a function of the voxel-shift in grey-value. 

For clarity reasons, 2-D cross-sectional ACF images are displayed that were derived from 
the 3-D ACF images. Four images obtained along the xy-plane are depicted in Figure 2.3 
(left) and four images along the xz-plane are depicted in Figure 2.3 (right). The 
autocorrelation function was determined from the central 32 by 32 pixel area in a slice 
containing water to only measure the correlation of noise. The aforementioned filters A', 
'B', 'C' and 'D ' were used (paragraph 2.2.1). The ACF-images are displayed using nearest 
neighbor interpolation (pixel-replication) to show the autocorrelation with discrete voxel-
shifts. To further demonstrate the pattern of noise correlation surface-plots are added 
using cubic-spline interpolation (Figure 2.3). In addition, vertical profiles were made 
through the ACF images to visualize the scale of the autocorrelation function (Figure 
2.4). 



16 2.2 Noise and CT value across image transitions for CT colonography 

Filler 

Filter '« 

Filter 'C 

Filter 

"igure 2.3 Autocorrelation functions generated from the central area of CT images in which the 
phantom was not present. The images were reconstructed using the available kernels; k is 
the shift in x-direction, / in ^-direction and m in z-dircction. The voxel-positions are 
displayed as dots. 
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Figure 2.4 Cross-sections of the ACF along the k- /- and m-axis for the four reconstruction-kernels 
of the CT scanner. 

For the recons t ruc t ion filters o f the C T scanner the Full W i d t h at Ha l f M a x i m u m 
( F W H M ) value of the A C F a long the main or ienta t ions are given in Table 2 .1 . 

Table 2.1 Scale measurements on the autocorrelation function in unit voxel. 

FILTER 

A 

B 

C 

D 

FWHM X 

2.40 

1.70 

1.40 

0.98 

FWHM Y 

2.70 

1.94 

1.56 

1.06 

FWHM Z 

2.40 

2.40 

2.40 

2.40 

Autocorrelation results in the cross-correlation of the reconstruction-filter with itself 
resulting in a FWHM for the reconstruction filter 'C' of ~1.48/v2 =1.05 voxel. The 
measured scale of the in-plane ESF (paragraph 2.2.7) is ~0.8 voxel with a FWHM of 
~1.88 voxel. From this we see that the scale of the ESF across edges is dominated by the 
scale of the detectors: Vl.882 -1.052 = 1.56 . 



18 2.2 Noise and CT value across image transitions for CT colonography 

To test the positional variance, the autocorrelation function was determined for an area 
in the center and in the periphery of the image that was created using filter type 'D ' 
(selected for its small scale) (Figure 2.5). 

Figure 2.5 Autocorrelation function of areas in the center and in the periphery of an image created 
using reconstruction filter 'D'. 

The previous results show that the in-plane pattern of noise correlation is small and 
approximately rotation invariant. Apparently, the ACF-image shows only a slight angular 
dependency in the periphery of the image. 
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2.2.3 No i se variance 

It was tested to what extent the noise variance Var(«,) varies over the CT image plane. 
Slices of the phantom-data that only contain water are used. The local noise variance was 
estimated from the 'sample variance' Sfj of N datapoints. The sample variance Sfj for 
Xj, i = \..N is defined by 

1 
s2 -■ 
" M — N- rï£,=,(*/-*)2=7^ï I>2-^(I><)2 (2.5) 

The raw transmission measurements were used to reconstruct four CT images using 
reconstruction kernels 'A'-'D'. For every voxel, N datapoints were collected in a 5 X 5 
local neighborhood of that voxel in the xy-plane. Four images display the log(S'jv) in 
grey-value (Figure 2.6) as an indicator of the noise variance across the image-plane. In 
addition to the four images, 1-D vertical profiles of S^ -values are depicted in Figure 
2.6b using a log-scale along the S^ -axis. 

1000 

Figure 2.6 (a) Spj -images derived from four CT volumes: CT projection-data are reconstructed using 
four CT filters: 'A', 'B', 'C' and 'D'. (b) Vertical profiles across these images. 

From these results we conclude that the noise variance changes over the image-plane. Its 
center/perimeter ratio is ~2 , such that it certainly may not be considered a constant value. 
In a clinical CT image the noise is expected to vary even more due to for example bone 
and is difficult to measure due to absence of homogeneous structures. In this thesis, we 
do not attempt to locally estimate the local absolute noise variance. Our solution to this 
problem is using the relationship between the variance of the noise on measured 
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derivatives and the measured data-value. This relationship only depends on the scale of 
the operator and order of the derivative. 

2.2.4 No i se isotropy 

The gradient magnitude Lw and the second derivative in gradient direction Lww are 
obtained using Gaussian operators with identical scales. However, they may display 
different variances of the noise. Isotropic noise in (L,vlLw,v2Lww) facilitates an isotropic 
metric to be used in fitting functions to the data (chapter 4). The problem is that Vl and 
v2 has to be known in advance. The relation between the noise variance before <Tn/ and 
after convolution <7no with a D-order Gaussian derivative of scale <7 in Af-dimensional 
space is given by [5] 

(2Ö)! 
„N+2D _. N/2 Di2D2N+D (2.6) 

Let a2/ be the variance of the noise on the datavalue after filtering with a Gaussian filter 
of scale (7op . Let <J2iw be the variance of the noise on the gradient magnitude and 
<J2im die variance of die noise on the second derivative in gradient direction. Then 
v, and v2 are obtained from V\ =(Ti I (T/w and V2 =<Ti I (T/,m. Figure 2.7 displays Vx and 
V2 as a function of the scale of the operator <J using solid grey lines. 
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Figure 2.7 Grey-solid lines (a) vl and (b) v2
 a s a function of the scale of the Gaussian operator 

<j0p using equation 2.6. Black solid lines with circles (a) vt and (b) v2 measured from noisy 
data as a function of cr0p ■ Dashed lines with triangles (a) vl and (b) v2 as a function of 
a measured from noisy data that has been pre-filtered using a Gaussian with 
(Jg =0.8 (voxel). Solid lined with triangles (a) v, and (b) v2 as a function of aop*os 

measured from noisy data that has been filtered using a Gaussian with a = 0.8 (voxel). 
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Synthetic 3-D data are used to test (2.6). To begin with, Gaussian noise is added to the 
voxels and K, and V2 are measured as a function of the scale of the operator a . These 
measurements are depicted in Figure 2.7 using black solid lines connected with dots. 
They exacdy follow v, and V2 as described by the model. Secondly, the noisy data are 
filtered using a Gaussian with a = 0.8 voxel, to simulate correlated noise. Again Vx and 
V2 are measured as a function of the scale of the operator a and depicted in Figure 
2.7 using dashed lines with triangles. However, when measuring V] and V2 as a function 
of the effective scale of a convolved with a , then (2.6) is an excellent model for 
V, and V2 , depicted in Figure 2.7 using dashed lines with triangles. From this we 
conclude that scale parameter used in equation 2.6 should include the scale of noise 
correlation as well. 

3-D CT phantom data are used that have been reconstructed using CT filter 'A-D' to test 
(2.6). Both v, and v2 are obtained as a function of the scale of the operator a and 
depicted in Figure 2.8a. In addition K, and V2 are obtained taking into account the degree 
of noise correlation (Figure 2.8b). 

0.8 1.3 1.8 0.8 1 1.2 1.4 1.6 1.8 
Figure 2.8 (a) v{ and (b) v2 measured from CT data as a function of the scale of the Gaussian 

operator aop . (b) V] and (b) V2 measured from CT data as a function of the scale of the 
operator convolved with the degree of noise correlation <7S: aop *<Tg ■ 

From Figure 2.7 we conclude that equation (2.6) is a good model to predict the variance 
of noise on derivatives after convolution with a Gaussian of scale <ro„ . From Figure 2.8 
obtained 3-D CT phantom data we conclude that using the knowledge about correlation 
of noise improves the estimates of V\ and V2 . However, there remains as small bias 
when comparing the model to the measured values of v{ and v2 using real CT data. A 
model that describes this bias is part of future research. 
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2.2.5 No i se distribution 

The assumption of Gaussian distributed noise was tested by creating a histogram using 
measurements obtained in one material at sufficient distance from edges in a local 
neighborhood (see Figure 2.9). Subsequendy, a Gaussian was fitted to the histogram by 
minimizing the squared error. The data that were used were reconstructed using CT 
kernel 'C' as in our CT colonography images. 

Average-dose (50 mAs) 

0.15-|SD=43.4(HU) 

Water 
0.10-

0.05-

0.00J 

-120 -60 0 60 _ 120 
' - U W 

Low-dose (20 mAs) 

120 -60 0 60 
/-A» (HU) 

0.100-

0.075-

Tagged 
material 0.050-

0.025-

0.000-

Figure 2.9 The frequency distributions of datavalue measured in water and tagged material from 
average-dose and low-dose CT scans. The fitted Gaussian function is superimposed on the 
histogram. 

From these results we conclude that the noise distribution resembles a Gaussian. The 
contrast to noise ratio was determined using 

CNR = 20 log 
H-L 

(2.7) 

Along tissue to tagged material the CNR = ~\ 6dB, using L = 100, H - 400 and <JS = 50. 
Along tissue to air the CNR = ~27dB, using L = -1000 HU, H = 100 and Os - 50. 
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2.2.6 Edge model 

We assume that the CT values across transitions between two materials can be modeled 
by the erf-function (2.8): the edge-spread-function. The scale of the underlying Gaussian 
may be anisotropic (i.e. varying with the angle), but it is verified that for each angle it 
remains approximately constant over the image-plane. CT colonography operates only on 
the edges of the colon, so that is what we focus on. 

Six parameters are involved to describe an edge in 3-D by the erf model: (1) L, the 
expected datavalue of low-intensity material; (2) H, the expected datavalue of high-
intensity material; (3) /J, the shortest distance from the model edge to the actual edge-
position; (4) a, the apparent scale of the underlying Gaussian and (5,6) two angles aua2: 

G(w;L,H,a,Ju,a],a2) = L + (H-L) 
1 ! c - + - e r f 
2 2 crV2. 

(2.! 

in which the projection of a voxel v(.r,y,z) onto w (Figure 2.10) is described by 

w = x(cos(or,) cos {a2))-y(sin (a])cos(a2)) + zs\n(a2) (2.9) 

where ax is the angle in the x, y -plane between the projected gradient and x-axis and 
(X2 is the angle between the gradient and the positive z-axis. 

Edge 

Figure 2.10 The projection of voxels onto the gradient-vector. 

The function was fitted to the data and the six' parameters were estimated by 
minimizing £2, which is a function of the sum of the squared errors 
ri=yi-G(wi;L,H,a,ju,al,a2)[4] 

1-exp 
2<7„ 

(2.10) 
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in which <Te is a weight factor that should be set larger than the SD of the noise. We set 
<Te safely to the largest standard deviation encountered (Figure 2.6). This procedure is 
used to control outliers. 

Three types of edges were manually selected in die high-dose CT data reconstructed 
using CT filter 'C' (Figure 2.11 to Figure 2.13, left). The air-tissue transition is considered 
in Figure 2.11, the tagged-tissue transition in Figure 2.12 and the air/tagged material 
transition in Figure 2.13. The function-values (black lines) and the original voxel-values 
(black dots) are plotted in the top rows. The residuals are plotted in bottom rows to 
indicate the quality of the fit. 

Voxel-positions were projected upon the gradient-vector to increase the number of 
sample points. However, only a very small environment is used to avoid problems due to 
curvedness of edges: fitting a model to the data using voxel-values in a small 
neighborhood assumes local flatness of the surface. Results are given for a small 
environment of 2 voxels (left column) and a larger neighborhood of 4 voxels (right 
column). 

Figure 2.14 was based on publicly available data from the Walter Reed Army Medical 
Center (patient number 38). 

Figure 2.11 The datavalue along the indicated edge in the average-dose phantom was modeled by the 
cumulative Gaussian. The parameters of the fitted function were: L = -994 HU, H = 162 HU, 
// = -0.01, a = 0.476, a, = 2.28 Rad, a2= 0.01 Rad, correlation > 0.99. Residuals are plotted in 
the bottom images to indicate the quality of the fit. In the middle column a small 
neighborhood and in the right column a broader neighborhood was used. For the middle 
column the S,v of the residuals is 38 HU. 
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Figure 2.12 As in Figure 2.11. The parameters of the fitted function were: L = 167 HU, H = 635 HU, 
H = 0.1, a - 0.35, ai - 0.892 Rad, a2= 0.01 Rad, correlation > 0.98. For the middle column 
the J',v of the residuals is 38 HU. 

- 2 - 1 0 1 2 - 2 - 1 0 1 2 

Figure 2.13 As in Figure 2.11. The parameters of the fitted function were: L = 34 HU, H = 1727HU, 
H = 0.0, a - 0.58, di = 0.892 Rad, a2 = 0.01 Rad, correlation > 0.99. For the middle column 
the St\ of the residuals is 76 HU. 
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Figure 2.14 As in Figure 2.11, now using patient data. The parameters of the fitted function were 
L = 17 HU, H = 900 HU, /j = 0, a - 0.53, a, = 1.53 Rad, a2 = -0.51 Rad, correlation > 0.99. 
For the middle column the SN of the residuals is 37 HU. 
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Considering the values of the standard deviation of the residuals along tissue transitions 
of 38 HU (bottom-middle column of the Figures 2.11, 2.12 and 2.14) it can be 
concluded that they represent the noise. Hence, the erf-function, the step-edge model 
convolved with the 1-D edge-spread-function, is an excellent model for the observed CT 
value across a two-material transition. 

2.2.7 Edge scale 

In the previous section it was demonstrated that the erf-function is an excellent model to 
describe the edge-spread-function (ESF). 

The 'apparent' size of the underlying Gaussian may depend, though, on the orientation 
of an edge with respect to the edge-spread-function. The latter is expected to have a 
smaller scale in xy-direction (in plane) than in z-direction (out of plane). The effective 
scale of edges in the gradient-direction is modeled as a function of the angle (X between 
the gradient vector and the positive z-axis: 

aw(a) = ̂  (sin (a) crXz) +(cos(ör)ö"2) (2.11) 

where Oz is the scale of the out-of-plane underlying Gaussian edge-spread-function and 
(J±z the scale of the in-plane underlying Gaussian edge-spread-function. 

In this thesis, both <7Z and CTj_z were estimated from die data by fitting equation (2.11) to 
all scale-estimates obtained along edges of the colon. The scale in the gradient direction 
(Tw[a) was used as well for noise-isotropy (Chapter 4). The assumption that this 
approach is valid was tested using the tube phantom and a high-dose reconstruction 
using CT filter 'C'. Notice that the orientation of the tube surface was such that edges 
were affected both by the in-plane and out-of-plane scale. 

First, Gz and (7j_zwere estimated by fitting the erf-function to edges with gradients that 
are in xy-orientation or z-orientation: bottom part of Figure 2.15. Second, <7Z and <7j_z 

were obtained. Third, Gz and C7xzwere computed by fitting (2.11) to <T„, (ör) estimates 
that were obtained from fitting the erf-function to edges with gradients, which were not 
in xy-orientation or z-orientation top of Figure 2.15. 

From Figure 2.15 we conclude that the measured scale is identical to the scale obtained 
from equation (2.11). The graph illustrates the validity of the equation. Fitting equation 
(2.11) to the data results in an in-plane scale of ~0.40 mm and an out-of-plane scale of 
~0.82 mm (0.8 unit voxel). This agrees with the scale measured from only using in-plane 
and out-of-plane gradients (Figure 2.15 b,c). 



2.2 Noise and CT value across image transitions for CT colonography 27 

(b) 

0.2 0.4 

In-plane resolution 

1 1.2 1.4 

Out-of plane resolution (c) 

Figure 2.15 (a) The apparent scale of the erf-function is plotted as a function of orientation. The line 
results from fitting equation 2.14. From the indicated part of the measurements, both the 
histogram of found scales and per scale the average goodness-of-fit are displayed, 
(b) using approximate in-plane orientations and (c) using out-of-plane orientations. 

I t might be expected that the scale o f the E S F is slighdy larger towards die outs ide of 
C T image slices c o m p a r e d to the center. Th i s will be tested in t rue pat ient data. 

T h e main p rob l ems wid i measur ing the scale us ing pat ient data are that the co lon surface 
is curved and that s t ructures close to the surface may slighdy violate the a s s u m p d o n of a 
Gaussian-fi l tered s tep edge model . To measure die t rue scale of the E S F a long edges 
p r o p e r candidates will have to be selected. 
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The erf-function is fitted at each air-tissue transition as described above. Two groups of 
voxels are obtained in the neighborhood of an edge voxel. The first group has a small 
distance to the gradient vector of the edge-voxel (i.e. smaller than 2 voxels). The second 
group has a larger projected distance to the gradient vector (i.e. larger than 2 and smaller 
than 4 voxels). If both groups lead to approximately identical fits measured by the 
standard deviation of the errors, an approximate flat surface with homogeneous contrast 
is assumed. 

The test only focuses on scales that were measured using approximately in-plane image 
gradients. To test the dependency on position in a slice, the estimated scale is plotted as a 
function of the distance to the center of the xy-plane in unit voxel (Figure 2.16). 
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Figure 2.16 The scale is plotted as a function of the distance v to the center of the Ay-plane. A line is 
fitted to the data. 

From the measured scales we conclude that the scale increases slighdy towards the 
perimeter of the image. 

2.3 Conclusion 

It is concluded that for the purpose of CT colonography it may safely be assumed that 
the noise distribution resembles a Gaussian and that the edge-spread-function (ESF) may 
be modeled by a 3-D Gaussian. 

It has been shown in this chapter that the erf-function, the step-edge model convolved 
with the 1-D edge-spread-function, is an excellent model to describe the CT value across 
a two-material transition. This was demonstrated by the residuals showing a random 
pattern and standard deviation that was of the same magnitude as the noise. Additionally, 
it was observed that for a given direction, the edge spread function is approximately 
constant over the image. 

However, the variance of noise varies over the image-plane and may not be assumed 
constant. The variance of noise in CT data with water is smaller in the periphery than in 
the center of the image. 
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The measurements show that the in-plane pattern of noise correlation is approximately 
rotation invariant. The four reconstruction filters at the Mx-8000 have this property, but 
it was shown that filter 'A' is the most rotationally symmetric. The ACF-image shows only 
a slight angular dependency in the periphery of the image. 
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Chapter Three 

Three-dimensional Display Modes for CT 
Colonography: Conventional 3-D Virtual 
Colonoscopy versus Unfolded Cube Projection 

This chapter was based upon a publication in Radiology [1]. For a technical description 
of the visualization method, we refer to [2]. 

The authors compared a conventional two-directional three-dimensional (3-D) display 
for computed tomography (CT) colonography with an alternative method they developed 
on the basis of time efficiency and surface visibility. With the conventional technique, 
3-D ante- and retrograde cine loops were obtained (hereafter, conventional 3-D). With 
the alternative method, six projections were obtained at 90° viewing angles (unfolded 
cube display). Mean evaluation time per patient with the conventional 3-D display was 
significantly longer than that with the unfolded cube display. With the conventional 3-D 
method, 93.8% of the colon surface came into view; with the unfolded cube method, 
99.5% of the colon surface came into view. Sensitivity and specificity were not 
significantly different between the two methods. Agreements between observers were 
K— 0.605 for conventional 3-D display and K= 0.692 for unfolded cube display. 
Consequently, the latter method enhances the 3-D endoluminal display with improved 
time efficiency and higher surface visibility. 
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3.1 Introduction 

Computed tomography (CT) colonography is a widely studied technique for surveillance 
and screening for colorectal cancer. With typical methods for evaluating the data, 
transverse source images, multiplanar reformatted images obtained along the central 
colon axis, or a virtual three-dimensional (3-D) endoscopic display are applied [3] [4]. 
There appears to be no consensus in the literature, however, regarding the appropriate 
method. Most investigators primarily use transverse source images in combination with 
multiplanar reformatted images and/or a 3-D display for problem solving. Findings in 
several studies, however, suggest that primary use of 3-D views results in higher 
sensitivity [5] [6]. Beaulieu et al [5] demonstrate a significantly better outcome with 3-D 
modes after correction for lesion visibility. 

The conventional 3-D method is similar to colonoscopy. Anterograde and retrograde 
cine images are generated off line and display forward and backward viewing planes 
(conventional 3-D) [1]. However, 3-D display methods are time-consuming [7]. Although 
hypotonic agents and adequate distention tend to minimize the problem, haustral folds 
may occlude the wall, thereby reducing sensitivity (Figure 3.1). Other 3-D concepts have 
emerged [8]-[l 1]. Such displays are hampered by distortions that could lead to 
misinterpretation [9] [12]. Drawbacks prohibit large-scale use of 3-D methods. 

To overcome current limitations of 3-D imaging, we developed an alternative 3-D display 
method that renders six planar projections (unfolded cube display) at 90° viewing angles 
from points on the central path [2]. The unfolding of such a cube shows the complete 
field of view at a path position. The aim of the image sequence of unfolded cubes is to 
facilitate rapid exploration of the entire colon wall. 

The purpose of our study was to compare a conventional two-directional 3-D display for 
CT colonography with an alternative method we developed on the basis of time 
efficiency and surface visibility. 

3.2 Materials and methods 

3.2.1 Data acquisition 

Patient population. Thirty patients (13 men, 17 women; mean age, 58 years; age range, 
35—82 years) were included in this study. The patients were selected from a population at 
increased risk for colorectal cancer (a medical or family history of colorectal cancer or 
polyps) who were referred for colonoscopy. The number of patients with polyps was 
representative of the prevalence in this surveillance population (54%, 27 of 50, was 
reported earlier [13]). Lieberman et al. [14] reported a comparable prevalence (50%) in 
another screening population. Selection was based on the presence of polyps, 
irrespective of the location. The sample size (power) was calculated to facilitate our 
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Invisible surface 

Figure 3.1 Schematic shows areas in black that are missed in conventional 3-D view. 

primary aim (i.e., to compare the display methods for time efficiency and surface 
visibility). At colonoscopy, 16 of 30 patients had at least one polyp of any size, with a 
total of 78 lesions. Eight of 30 patients had polyps that were 5 mm or more in diameter, 
with a total of nine such lesions. The CT colonography study was approved by the 
medical ethics committee of the hospital. The patients were informed a priori by letter, 
as well as verbally, about the purpose of the study, and they gave written informed 
consent. 

CT colonography. On the day before the examination, each patient drank 4—6 L of 
macrogol solution (KleanPrep; Helsinn Birex Pharmaceuticals, Dublin, Ireland) for 
bowel preparation. Directly before image acquisition, 20 mg of butyl scopalamine 
(Buscopan; Boehringer, Ingelheim, Germany) was administered intravenously to reduce 
peristalsis. The colon was distended with approximately 2 L of CCb-enriched air (13.4% 
CO2) to enhance resorption and reduce patient discomfort. The air was introduced by 
means of manual insufflation with a balloon-tipped rectal enema tube. The balloon was 
inflated with water. The endpoint of CO2 administration was at maximum patient 
tolerance or when colon filling was considered adequate. The adequacy of distention was 
gauged with a scout view. Multisection spiral CT scans (Mx8000; Philips Medical Systems, 
Best, the Netherlands) were acquired with the patient in prone and supine positions. 
Scanning parameters were 120 kV, 167 mA (100 mAs: {mAx rotation time}/pitch), 
collimation of 4.0 X 2.5 mm, pitch of 1.25, standard reconstruction filter, and a 180° 
interpolation algorithm. Effective section thickness was 3.2 mm with an overlap of 1.6 
mm. The insufflation procedure (including scout imaging) was repeated after the patient 
was repositioned. The delay time between insufflation and the start of scanning was at 
most 30 seconds. All CT scans were obtained within 2 hours before colonoscopy. 

Colonoscopy. Colonoscopy (model CF-1401; Olympus, Tokyo, Japan) was performed by 
an experienced gastroenterologist. Sedation (5 mg of midazolam, Dormicum; Roche, 
Basel, Switzerland) and analgesics (0.05 mg of fentanyl, Fentanyl-Janssen; Janssen 
Pharmaceuticals, Beerse, Belgium) were administered on request. A research fellow, who 
was not involved in the CT colonography evaluation, was present and recorded the study 
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on videotape. Lesion size was estimated with the aid of an opened biopsy forceps. Lesion 
shape was characterized as flat, sessile, or pedunculated. The location of a polyp was 
classified in one of the following segments: cecum, ascending colon, hepatic flexure, 
transverse colon, splenic flexure, descending colon, sigmoid, and rectum. The 
endoscopist was unaware of the CT colonography findings. 

3.2.2 Conventional 3-D display 

Ante- and retrograde cine loops were evaluated for both prone and supine positions of 
each patient; this represents a conventional 3-D display method (EasyVision; Philips 
Medical Systems). The images were volume rendered at positions that were 4 mm apart 
on the central colon path (the sampling rate will be clarified later). The method 
developed by Truyen et al [15] was applied for path generation. With the transfer 
function, an opacity value of 0 was assigned to voxel values less than — 650 HU (making 
such voxels completely transparent) and an opacity value of 1 to voxel values higher than 
— 650 HU. The viewing angle was set to 120° to compromise between image distortion 
and surface visibility. Frame rate was fixed at one image per second. Multiplanar 
reformatted images in any direction were available from the original CT study to verify 
potential lesions (e.g., to check for gas). Typical lung (— 1,250 HU) and level (— 500 HU) 
windows were used. Lesion size was measured on the two-dimensional (2-D) reformatted 
images. 

3.2.3 Unfolded cube projection 

To avoid extreme deformations while showing the full visible field around a position, we 
introduced a series of unfolded cube renderings [2]. The unfolded cubes were also 
generated by means of sampling on the central path through the colon. A cube was 
virtually placed in each such point, and on the cube faces, 90° views from the center were 
projected (Figure 3.2. illustrates the principle). By folding out the six images onto a single 
plane (unfolded cube display), the complete field of view was rendered. 

The sequence of unfolded cubes was shown as cine images. Reformatted views of the 
original CT data became accessible by clicking in the displayed images. Then the cine 
images were stopped, and the physician could manipulate the reformatted images for 
closer inspection of suspicious areas. Lesion size was measured on the 2D reformatted 
images. Real-time rendering of the corresponding wall part also facilitated local 
inspection of the surface by means of adaptation of the virtual camera position and 
orientation. Parameters of the volume-rendering transfer function, sampling and frame 
rate, were identical to those used with conventional 3-D inspection. Figure 3.3 shows the 
interface. 
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Figure 3.2 Unfolded cube display shows the projection of six overview directions onto the six sides 
of a cube. 

Figure 3.3 Graphical user interface shows the sequence of unfolded cubes. 
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3.2.4 Evaluation 

An abdominal radiologist (C.Y.N.) (observer 1) and a research fellow (J.F.) (observer 2) 
independently evaluated the data with both display methods. The observers had previous 
experience with more than 50 CT colonography examinations at the start of the study. 
Both were blinded to findings during colonoscopy, including those for themselves for the 
same patient (conventional 3-D display vs. unfolded cube display) and those for each 
other. Additionally, they were unaware of the prevalence of polyps. We implemented the 
display methods with a proprietary experimental version of the workstation [2], Currently, 
the unfolded cube view is also commercially available. The median interval between two 
evaluations of the same patient for observer 1 was 21 weeks (interquartile range, 12-28 
weeks) and that for observer 2 was 11 weeks (interquartile range, 11—13 weeks). 
Evaluations with an unfolded cube display preceded those with conventional 3-D display. 
The cases were presented in random order. Each suspected polyp was scored with 
respect to size, morphology, and location. Figure 3.4 shows the same polyp in 
conventional 3-D and unfolded cube display. 

3.2.5 Outcome parameters and statistical analysis. 

Evaluation time. Evaluation time per patient was recorded for both observers and 
display modes. Evaluation time included measuring a lesion, imaging it, and generating 
the report. Outcome was stratified according to the presence of colonoscopically proven 
polyps. The classifications were compared by means of a Student paired / test. A P value 
of less than .05 was considered to indicate a statistically significant difference. 
Initialization time for generating the conventional 3-D and unfolded cube display 
sequences was disregarded in the analysis. 

Surface visibility. Surface visibility was tested with a method described previously [12]; 
it was defined as the percentage of colon surface voxels coming into view [5]. To 
measure the visibility, the interior volume of the colon was obtained by means of 
thresholding of the CT volume at — 650 HU. Subsequendy, the surface voxels were 
identified on the basis of their adjacency to the interior. A surface voxel was defined as 
visible if a line could be drawn to a position on the central path that was not obstructed 
by another surface voxel. The Wilcoxon signed rank test was used to compare differences 
in surface visibility for the unfolded cube display and the conventional 3-D display. 

Sensitivity, specificity, and user agreement. Lesions detected during CT 
colonography were matched with the findings at colonoscopy by a research fellow 
(R.E.v.G.) on the basis of the colonoscopic findings and the video registration. The 
fellow was not involved in reading the CT colonography studies. 

A polyp detected at CT colonography was considered true-positive if it matched a 
finding at colonoscopy on the basis of size, shape, location (i.e., colonic segment), and 
anatomic interrelation to haustral folds. A deviation in size of no more than 5 mm was 
accepted to accommodate the inherent inaccuracy of colonoscopic size measurement. 
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(a) (b) 
Figure 3.4 Typical example of polyp (arrow) in (a) conventional 3-D display and (b) unfolded cube 

display. 

A false-negative finding was defined as a polyp that was detected at colonoscopy but was 
not found at CT colonography. A patient was identified correcdy as having polyps if 
there was at least one true-positive finding. The absence of lesions at CT colonography 
was considered true-negative if lesions were also absent at colonoscopy. 

Sensitivity of both display methods was determined per patient and per polyp. Specificity 
of bodi display methods was determined per patient. Lesions detected at colonoscopy 
were divided into two categories: medium and large, polyps 5 mm or more in diameter; and 
small, polyps less than 5 mm in diameter. Analysis was stratified according to polyp 
diameter. 

Differences in sensitivity per patient between the display metiiods were tested with die 
McNemar test. Differences in sensitivity per polyp between the methods were assessed 
with logistic regression with random effects (i.e., a generalized version of the McNemar 
test for clustered data). Logistic regression was used to adjust for clustering of polyps in 
patients. A McNemar test was also applied to compare the specificities of the display 
methods. Agreement between die observers was measured with the K statistic on a per 
segment basis for all detected lesions. The K values were interpreted according to the 
next qualification: K < 0.20, poor agreement; K = 0.21-0.40, fair; K = 0.41-0.60, 
moderate; K = 0.61-0.80, good; and K = 0.81-1.00, very good. 
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Figure 3.5 (a) Conventional 3-D display, (b) Unfolded cube display. 
Areas in black were missed. 

20 15 10 
Sampling distance (mm) 

Figure 3.6 Line graph shows relationship between surface visibility and sampling rate along the 
centra] path for one data set. IP = forward or reverse viewing, 2P = conventional 
3-D display, 6P = unfolded cube display. Surface area coming into view asymptotically 
approximates 99.8% for the unfolded cube display. 
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3.3 Results 
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3.3.1 Evaluation Time 

Mean evaluation time with conventional 3-D display (observer 1, 36 minutes 49 seconds; 
observer 2, 35 minutes 5 seconds) was significantly slower than that with unfolded cube 
display (observer 1, 19 minutes 33 seconds; observer 2, 20 minutes 9 seconds). The 
presence of polyps did not lead to significantly longer evaluation time with either 
technique. Also, the differences in evaluation time between the observers were not 
significant. Table 3.1 lists the mean evaluation time and SD per observer for the 
conventional 3-D and unfolded cube displays stratified on the basis of the presence of 
polyps. 
Table 3.1 Evaluation rime per patient 

Conventional 3D Display Unfolded Cube Display Paired Difference 

Findings at Colonoscopy Observer 1 Observer 2 Observer 1 Observer 2 Observer 1 Observer 2 

Proven polyps 3 8 : 2 2 - 9 : 2 1 38:55 ±17 :38 21:32 2:7:42 21:55 ± 7 : 3 4 16:50 ± 9 : 3 6 17:0 ± 13:36 
No proven polyps 35:1 - 10:30 30:41 x 10:10 1 7 : 6 x 4 : 3 0 1 8 : 8 x 4 : 1 8 1 7 : 4 4 ± 1 0 : 4 6 I2 :33= :9 :2 
With and without polyps 3 6 : 4 9 - 9 : 5 1 35:5 ± 14:59 19:33 ± 6 : 4 0 2 0 : 9 x 6 : 2 7 17:15 ± 9 : S 8 14:55 ± 1 1 : 4 3 

Note.—Data are the mean evaluation time (minutes:seconds) ± SD. 

3.3.2 Surface visibility 

With an anterograde view only, on average, 73% of the colon surface came into view. 
The conventional 3-D display (antero- and retrograde views) resulted in 93.8% visibility. 
The unfolded cube display depicted 99.5% of the bowel surface. All differences were 
significant (P < .05). 

A typical outcome that shows the invisible voxels is given in Figure 3.5 (the unseen parts 
are marked in black). The example bowel wall consisted of 387,225 voxels. With the 
conventional 3-D display, 25,833 voxels remained invisible, the largest cluster of which 
contained 10,685 voxels (the next largest cluster contained 2,070 voxels; mean cluster size, 
190 voxels). This is considerably more than the surface of a polyp, which is 
approximately 500 voxels (on the basis of modeling with a sphere that was 5 mm in 
diameter, with voxel size of 0.62 X l .6 mm). The unfolded cube display shows one 
relatively large area (which consisted of 3,077 voxels) in the rectum, where the path had 
an open end and the tube with the balloon occluded the wall. Except for these elements, 
the next largest cluster contained 316 voxels (mean cluster size, 69 voxels). 
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For one data set, Figure 3.6 shows the relationship between surface visibility and 
sampling rate along the central path. The surface area coming into view asymptotically 
approximates 99.8% for unfolded cube display. The graph illustrates that a sampling rate 
of once every 4 mm yields optimal visibility with the unfolded cube display. Graphs were 
similar for other data sets. 

Sensitivity and specificity 

Sensitivity on a per patient basis for medium and large polyps was not significandy 
different between the two methods for each observer: observer 1 with both displays, 
eight of eight polyps; observer 2 with conventional 3-D display, seven of eight polyps, 
and with unfolded cube display, eight of eight polyps. The difference in sensitivity per 
patient for small polyps between the conventional 3-D and unfolded cube displays was 
not significant for each observer. Table 3.2 contains sensitivities per patient. 

Sensitivities for medium and large polyps were not significantly different between 
conventional 3-D and unfolded cube displays for both observers: observer 1 with both 
displays, nine of nine polyps; observer 2 with both displays, eight of nine polyps. 
Sensitivity for small polyps for observer 1 was significandy worse with conventional 3-D 
display (16 of 69 polyps) than with unfolded cube display (27 of 69 polyps) (logistic 
regression, P < .003). Sensitivity per small polyp for observer 2 was not significantly 
different with the two displays (conventional 3-D display, 26 of 69 polyps; unfolded cube 
display, 24 of 69 polyps). Table 3.3 lists sensitivities per polyp. 

Specificity regarding the correct identification of patients without medium and large 
polyps for observer 1 was 16 of 22 patients with conventional 3-D display and 15 of 22 
patients with unfolded cube display. For observer 2, these findings were 16 of 22 patients 
with conventional 3-D display and 19 of 22 patients with unfolded cube display. 
Differences between display methods were not significant for each observer. Also, 
differences in specificity for patients without any polyp were not significant between the 
methods for each observer. Table 3.4 summarizes the outcome regarding specificity per 
patient. 

On a per segment basis, agreement between the observers with conventional 3-D was 
K = 0.605 (standard error = 0.052) and with unfolded cube display was K = 0.692 
(standard error =0.048). Both /rvalues indicate good agreement. The difference in 
lvalues between the methods was not significant. 
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Table 3.2 Sensitivity per patient 

Conventional 3D Display Unfolded Cube Display No. of Patients 
with Polyps 

Polyp Size (mm) Observer 1 Observer 2 Observer 1 Observer 2 at Colonoscopy 

Any size 14(87) 12(75) 13(81) 13(81) 16 
<5 6(75) 5(62) 5(62) 5(62) 8 
£5 8(100) 7(87) 8(100) 8(100) 8 

Note.—Data are the number of patients with polyps. Numbers in parentheses are percentages of 
findings at colonoscopy. 

Table 3.3 Sensitivit)' per polyp 

Conventional 3D Display Unfolded Cube Display 
No. of Polyps 

Polyp Size (mm) Observer 1 Observer 2 Observer 1 Observer 2 at Colonoscopy 

Any size 25(32) 34(44) 36(46) 32(41) 78 
<5 16(23) 26(38) 27(39) 24(35) 69 
==5 9(100) 8(89) 9(100) 8(89) 9 

Note.—Data are the number of polyps. Numbers in parentheses are percentages of findings at 
colonoscopy. 

Table 3.4 Specificity per patient 

Polyp Size in Conventional 3D Display Unfolded Cube Display No. of Patients 
Patients without without Polyps 

Polyps (mm) Observer 1 Observer 2 Observer 1 Observer 2 at Colonoscopy 

Anysize 7(50) 4(29) 3(21) 5(36) 14 
£5 16(73) 16(73) 15(68) 19(86) 22 

Note.—Data are the number of patients. Numbers in parentheses are percentages of findings at 
colonoscopy. 

3.4 Discussion 

Findings in the present study show that CT colonography with the unfolded cube display 
enables time-efficient inspection (about 15-20 minutes per patient) and comprehensive 
visibility (99.5%) that is superior to that with conventional 3-D display. Sensitivity and 
specificity of the technique are high with a cutoff value of 5 mm, a threshold that is 
commonly applied to distinguish possibly relevant polyps. 

Various alternative display techniques have been introduced to evaluate CT colonography 
data. Initially, the complementary use of 2-D and 3-D images was reported to provide 
the best sensitivity [16] [17]. Later, evidence was given that reformatted 2-D images can 
be just as effective as fly-through 3-D images [18][19]. We opted for a 3-D method 
because significandy better sensitivity was found for the 3-D modes after correction for 
lesion visibility [5]. 
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In previous articles, evaluation times per patient are 20 -26 minutes with only transverse 
reformatted images [17] [19], 15 minutes with only 3-D images [17], and 16—35 minutes 
with a combined approach (primarily 2-D and 3-D display for problem solving) [18] [19]. 
Evaluation times were not specifically recorded by Hara et al [16], but no data set 
evaluation lasted longer than 10 minutes. Beaulieu et al [5] report that die exploration per 
data set was 8 minutes with 2-D display and 12 minutes 5 seconds with 3-D cine images. 

In the current study, outcomes per patient are in the same range for the unfolded cube 
display (17—22 minutes) but are significandy slower with the conventional 3-D display 
(31—39 minutes). Evaluation time could be reduced with a faster fixed frame rate or with 
a user-controlled speed. However, this will probably not change the relative time 
difference between the display methods (the same frame rate was used for both 
techniques). To our knowledge, in no previously published study was the influence of 
frame rate on sensitivity explored specifically. We opted to use a "save" frame rate of one 
image per second at 4-mm intervals to yield optimal surface visibility and to ensure 
detection of lesions. 

The methods that we used differ slighdy from methods described in the literature. In our 
method, 3-D images are used primarily for inspection, while the 2-D reformatted images 
are used for confirmation. Evaluation time is longer with conventional 3-D display versus 
that with unfolded cube display; this is attributed to increased image distortion near the 
edge of the conventional 3-D display (as a result of the larger viewing angle: 120° vs. 
90°). For closer observation of these areas, interactive adjustment of the viewing 
direction is required, which inherendy leads to longer evaluation time. 

Initialization time, such as the generation of cine images, was disregarded because it was 
performed off line in batch mode. Preparation for evaluation (specifically, generation of 
the unfolded cube and 3-D cine loops) was initiated by technicians. Exclusion from the 
analysis of the time for generation is justified because it is done in the background. On 
average, it took us 35 minutes per patient to render the unfolded cube displays. 
Conventional 3-D displays were generated in approximately 12 minutes (one-third of 35 
minutes). Reduced resolution would speed up the generation of displays. If resolution is 
reduced, however, sensitivity may also be reduced. Other initialization times, such as 
those for image loading and path tracking, are on the order of a few minutes. 

Our results for surface visibility confirm earlier findings (with nine data sets) [12]. Paik et 
al [12] reported approximately 75% visibility with either forward or reverse viewing only, 
95% visibility with both, and 98% visibility with Mercator projection. Clearly, visibility is 
important for its direct influence on sensitivity. Beaulieu et al [5] show that sensitivity 
improves significandy after correction for lesion visibility. 

Several methods have been explored for optimization of the amount of colon surface 
coming into view. The viewing angle may simply be increased, but this is at the expense 
of severe deformation toward the edges of the image. A so-called flattening method can 
be used to straighten the colon mathematically [9]. Thus, images of large surface areas of 
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the colon are generated that are similar to gross pathology specimens. Unfortunately, 
such an approach may yield severe distortion, which causes lesions to appear more than 
once in different areas [9][12]. Such repeated appearances are reported to arise whenever 
the central path makes a sharp turn [12]. 

Beaulieu et al [5] propose acquisition of a sequence of unfolded 60° views perpendicular 
to the central path (panoramic viewing). The latter technique results in lateral images 
from the colon wall. Panoramic viewing results in higher sensitivity than that with a 
display of transverse CT images and endoluminal 3-D cine loops [5]. The method may 
not yield full visibility, because the forward and backward viewing directions are not 
included. 

Alternatively, Paik et al [12] studied the use of Mercator and stereography projections. 
They concluded that true-positive findings are better distinguished from the environment 
with Mercator projection compared with panoramic or stereographic viewing modes 
because of the extended field of view in Mercator projection, which enables feature 
tracking over a longer distance. A generally recognized drawback of Mercator projection, 
however, is that the image becomes distorted away from the equatorial region. Such 
image deformation would restrict the sensitivity in areas where the colon is strongly 
curved. 

The unfolded cube display that we evaluated in the present study is most comparable to 
the panoramic technique by Beaulieu et al. [5]. Note that the unfolded cube mode 
includes the forward and backward viewing directions, as well as the lateral directions. 
Consequently, the full field of view is covered, and a feature can be tracked further as it 
moves through the image planes. At the same time, image distortion is limited by the 
rather small viewing angle. 

Sensitivity per patient in the present study is in the high range compared with values 
from the literature (65%—94% for polyps larger than 5 mm and 25%—57% for any polyp 
size) [l]-[24]. Sensitivity per polyp for polyps larger than 5 mm was reported previously 
in the range of 46%— 90% [l]-[24]. Data from our observers are in the upper range. 
Sensitivities for smaller polyps (middle row in Table 3.3) are in concordance with the 
literature (15%-55% [l]-[24]) and confirm the poor results with CT colonography for 
such (perhaps not relevant) lesions. 

Specificities for both observers in the present study are low compared with values 
reported earlier (62%—91% for all polyps and 74%—96% for polyps larger than 5mm [1]-
[24]). The relatively low specificity in our study may be a result of the rather strict 
definitions of true-and false-positive findings that we used. We compared findings at CT 
colonography with those at video colonoscopy on the basis of the anatomic interrelation 
to haustral folds, anatomic segment, size, and morphology, in most studies, a less strict 
criterion concerning location was used: A finding was considered to be true-positive if 
the lesion was found in the same colonic segment at both colonoscopy and CT 
colonography. Since a colonic segment is between 15 and 40 cm long, this may cause 
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erroneous interpretation of CT colonography findings as true-positive while in fact they 
are false-positive because they match other lesions in the colonic segment or they are in 
fact residual stool. Thus, in our opinion, this strategy may result in overestimation of the 
number of true-positive results and underestimation of the number of false-positive 
results at CT colonography. 

Another explanation for the high rate of false-positive findings is the fact that 27% of 
small polyps ( < 5 mm) are missed at colonoscopy [25]. Therefore, some small lesions 
detected during CT colonography may in fact be true-positive findings. Nevertheless, the 
benefit of detecting lesions smaller than 5 mm in a screening setting is dubious because 
very small polyps are known to rarely contain malignant tissue [26]. 

Both the conventional 3-D and unfolded cube display yielded good interobserver 
agreement. Several previous studies were performed with more than one independent 
observer ([5] [6] [12] [16] [19] [22]) with the same evaluation method. Agreement between 
observers with K statistics, however, was reported only by McFarland et al .[6] (K = 0.53— 
1.00) and Pescatore et al. [22] (K =0.56-0.72). The values in die present study are in the 
same range. 

The patient population in the present study included approximately equivalent numbers 
of patients with and without polyps. This is appropriate for our primary objective— 
namely, to compare two display methods regarding time efficiency and surface visibility. 
The sample size (power) was calculated to meet the primary aim. The number of patients 
is relatively small for addressing the (anticipated) small difference in sensitivity and 
specificity. A limitation is that the outcome may be different in a screening population. 
Note that the probability that a polyp resides in an invisible area is only 6.2% with a 
conventional 3-D display because 93.8% of the surface area is visible (the probability is 
0.5% with the unfolded cube display). Consequendy, a much larger population or a 
specifically selected population is needed to demonstrate a significant difference in 
sensitivity. The sample size sufficed to study the unfolded cube display on the basis of 
time efficiency and surface visibility. 

The future role of CT colonography in cancer screening depends on improvement in 
issues such as imaging efficiency, patient acceptance, and effective radiation dose. 
Currendy, one of the main drawbacks of CT colonography is the long evaluation time. 
Computer-aided diagnosis is an important development that could support the practical 
use of CT colonography. Although positive early results were reported with automatic 
polyp detection [27], further research is warranted. We foresee a scheme in which 
potential lesion sites, suggested by the computer algorithm, are checked by a human 
observer. Therefore, a primary 3-D display method may be superior to a primary 2-D 
technique (as findings in several studies indicate). The unfolded cube display method may 
contribute to .such an evaluation strategy. Consequently, it could facilitate the 
implementation of CT colonography in colorectal cancer screening. 
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In conclusion, the unfolded cube display is an alternative method to evaluate 
CT colonography data. The evaluation time was 19.5—20.0 minutes, during which 99.5% 
of the colon wall was inspected. The method is more time efficient and yields better 
surface visibility than does a conventional 3-D technique. The sensitivity for patients with 
medium and large polyps was eight of eight patients, and the specificity for patients 
without medium and large polyps was 15—19 of 22 patients. The method facilitates good 
agreement between observers (K = 0.692). 

The unfolded cube display successfully combines time efficiency and high accuracy; thus, 
it improves the 3-D display for CT colonography. 
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Chapter Four 

Classifying CT Image Data into Material 
Fractions by a Scale and Rotation Invariant 
Edge Model 

This chapter is based upon a paper that is accepted for publication in IEEE Transactions 
on Image Processing [1]. 

A fully automated method is presented to classify three-dimensional CT data into 
material fractions. An analytical scale-invariant description relating the data value to 
derivatives around Gaussian blurred step-edges — arch model - is applied to uniquely 
combine robustness to noise, global signal fluctuations, anisotropic scale, non-cubic 
voxels and ease of use via a straightforward segmentation of 3-D CT images through 
material fractions. Projection of noisy data value and derivatives onto the arch yields a 
robust alternative to the standard computed Gaussian derivatives. This results in a 
superior precision of the method. The arch-model parameters are derived from a small, 
but over-determined, set of measurements (data values and derivatives) along a path 
following the gradient uphill and downhill starting at an edge voxel. The model is first 
used to identify the expected values of the two pure materials (named L and H) and 
thereby classify the boundary. Second, the model is used to approximate the underlying 
noise-free material fractions for each noisy measurement. An iso-surface of constant 
material fraction accurately delineates the material boundary in the presence of noise and 
global signal fluctuations. This approach enables straightforward segmentation of 3-D 
CT images into objects of interest for computer-aided diagnosis and offers an easy tool 
for the design of otherwise complicated transfer functions in high quality visualizations. 
The method is applied to segment a tooth-volume for visualization and electronic 
cleansing for virtual colonoscopy. 
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4.1 Introduction 

Segmentation isolates and delineates objects and structures of interest from their 
surroundings, e.g. an organ, the colon or an arterial tree in a 3-D medical CT image. It is 
a fundamental task in image processing and a requirement for quantification and high 
quality visualization. Segmentation is often complicated by the limited and anisotropic 
resolution of the image modality at hand. The resolution of a multi-slice spiral CT 
scanner is limited by its configuration (size of the detector elements) and the 
reconstruction algorithm [2], The anisotropic space-variant point spread function (PSF) 
resembles spiral pasta [3], but is often modeled by an anisotropic 3-D Gaussian PSF. We 
have shown that the edge spread across tissue transitions can be accurately modeled by the 
erf-function and hence support the use of a 3-D Gaussian PSF (Chapter 2). Modeling the 
PSF by a Gaussian also permits accurate edge detection of curved surfaces |4]. The finite 
resolution causes that contributions of different materials are combined into the value of 
a single voxel. This is generally referred to as the partial volume effect (PVE) [5]. It 
results in blurred boundaries and hampers the detection of small or thin structures. 

In this paper, we present a novel method that models the PVE to estimate material 
fractions in the edge region. The method deals with two-material transitions based on 
locally estimated derivative values. We extended previous work |6] by incorporating the 
invariance to anisotropic noise and anisotropic scale of the data and the generalization to 
an arbitrary order of derivatives. Projection of noisy data value and derivatives onto the 
appropriate arch model yields a robust alternative to the standard computed Gaussian 
derivatives. The method allows slowly varying material intensities at both sides of the 
transition and small structures because pure material voxels are not required to estimate 
model parameters. We will demonstrate how this approach may be used to segment and 
visualize complicated structures of interest in a reproducible and simple way. It also 
facilitates electronic cleansing for virtual colonoscopy. 

4.1.1 Related work 

The method presented here is inspired by the work of Kindlmann [7] and Kniss [8]. 
Kindlmann creates a histogram of the data value / and the gradient magnitude 
|3//3w| = |/„,| (w is along the gradient direction). This yields arch-shaped point clouds for 
edge regions (Figure 4.1a). Figure 4.1b shows such point clouds for a three-material 
phantom scanned with anisotropic resolution. The arch connects the two materials at the 
base line and its height depends on the scale across the edge. The second derivative in the 
gradient direction d'l/dw = Iww is added as a third dimension. Kindlmann estimates 
the first and second derivatives /„, ( / ) and Iww ( / ) as a function of data value / from the 
3-D histogram by slicing it at data value / and finding the centroid of the scatterplot of 
Iw and Imv at that value. Then they apply a mapping of the signal value onto the 
distance w to the nearest edge using w(7) = -<72 / ,„, ,(/)//„,(/) and the estimated 
derivatives. The scale across edges is obtained from the histogram using 
er2 =-w max (/„,)/max (/,,,„). 
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Figure 4.1 (a) Schematic overview of a three material phantom using three multi-planar reformatted 
images through a CT volume. The axial resolution (z-axis) is lower compared to the lateral 
resolution (x,v-plane). (b) Scatter-plot of intensity and gradient magnitude, (c) Scatter-plot 
of intensity and scale-invariant gradient magnitude. Three instantiations of the arch model 
are superimposed corresponding to the three types of material transitions. 

Kindlmann and Kniss use the histogram to visualize boundary information and guide the 
user in designing an opacity transfer function for volume visualization. The user may 
select parts of the histogram to avoid rendering all edges and may specify the opacity as a 
function of distance to the nearest edge. The objective is to visualize regions close to 
selected material transitions as opaque. Rather than rendering the volume based on a 
transfer function that depends on only the measured signal value, Kindlmann's transfer 
function is derived from the triplet {/,/,,,,/„,„,}. The height of the arch-shaped point 
cloud is spread over a wide range due to anisotropic resolution of the scanner. Moreover, 
a global fluctuation in data value hampers the estimation of derivatives from the 
histogram. Consequently, the approximation of Kindlmann's method is limited to data of 
isotropic resolution without global fluctuation in data value. 

Laidlaw [9] proposed a supervised Bayesian method for classification of partial volume 
voxels into material fractions by fitting basis functions to local histograms of voxel values. 
For each voxel, the relative contribution of each basis function yields the material 
fractions. A disadvantage of this method is that the voxel is modeled as a cubic region 
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not explicitly modeling the scale of the data or the blurring operator. Additionally, 
processing a single voxel is susceptible to noise. 

De Vries [10] aims to classify image-data into materials and related interfaces. Radial basis 
functions are used to model the probability of an image intensity to occur given a type of 
material. Material-fractions are estimated by the a posteriori probability, which is 
expressed in the radial basis functions by Bayes' rule. The priors are estimated from a 
local histogram of increasing size until stabilization occurs. Finally, a partial volume 
measurement is classified into pure materials based on the predicted edge position. A 
disadvantage of this method is that it requires sufficient voxels that are not disturbed by 
the PVE to obtain sensible priors for the pure materials in the Bayes rule. Hence, the size 
of the neighborhood may be unfavorably large or the method does not stabilize at all. 
Small objects are likely to be misclassified because the method might stabilize on 
surrounding materials. 

Several problems remain when adopting the methods described above: 
First, problems related to the resolution of the data remain. The size of the structures of 
interest is often of the same scale as the resolution function, the PSF. Hence, it is 
favorable if the image processing does not further degrade the scale. At the same time, 
filtering is usually applied to cope with the noise in the data. A disadvantage of 
Kindlmann's method is that it implicidy assumes data of isotropic resolution. If the data 
is not isotropic, filtering is required to adjust the smallest scale to the largest scale. 

Second, the segmentation of a single material connecting to more than one other material 
cannot be based on a scalar value alone, e.g. due to the PVE. An advantage of 
Kindlmann's method is that it discriminates between different types of boundary voxels 
that share the same range of data values using the higher order image structure as 
obtained by image derivatives. However, the method still requires several transfer 
functions - one for each adjacent material - to visualize one object. In addition to this, 
manually tuned transfer functions are dependent on the expertise of the operator and 
may not be used if reproducible and accurate object delineation is required. 

Third, a typical problem with volume rendering methods is that the transfer function is 
directly applied to the data value. Since all images are hampered by noise, this noise may 
be amplified by the transfer-function in a non-linear manner. 

4.1.2 Objective 

Our objective is to automatically classify scalar-valued 3-D CT images into material-
fractions. Our approach uniquely combines robustness to noise, global signal fluctuations, 
anisotropic resolution, non-cubic voxels and ease of use. An iso-surfaces of constant 
material fraction provides a straightforward way to represent the boundary of a material 
in a reproducible manner. This facilitates straightforward segmentation of images into 
objects of interest for subsequent quantification in CAD or high quality scientific 
visualization. The latter is used to illustrate the benefits of this approach. 
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Our approach is rotation-invariant, uses a narrow strip of voxels in the edge region that 
is smaller than the PSF footprint, does not rely on additional blurring for noise 
suppression and can therefore be applied to segment small and narrow structures. 

The work of Kindlmann et al. is limited to data of isotropic resolution without global 
signal fluctuations, because it is based upon estimating derivatives from a histogram. 
Laidlaw et al. classify data into material fractions. However, a voxel is modeled as a cubic 
region, not explicitly modeling the scale of the data. Additionally, processing a single 
voxel is susceptible to noise. De Vries et al. classify data into material fractions using a 
neighborhood of the voxel. However, the method relies on sufficient voxels that are not 
hampered by the PVE. 

Standard methods for edge detection use the maximum edge strength (Canny) or zero-
crossing contours of the Laplacian-of-Gaussians (Marr-Hildreth). Many methods for 3-D 
edge detection are based on convolutions with Gaussian operators. This can be described 



54 4.2 Methods 

as local fitting of a Gaussian with Gaussian blurred edges with the maximum response at 
the edge position. However, with these methods the matched model is described as a 
function of position. Our approach differs from these methods, because it is based upon 
a model that describes Gaussian derivatives as a function of data value or material 
fraction. This enables straightforward extraction of contours at a constant material 
fraction. In addition, fitting the arch-model to the data does not require an accurate 
estimate of the gradient direction, because the distance to the edge is not a parameter. By 
including knowledge of the expected data value of pure materials our method generates 
contours that border on a specific material. Still, it uses the best of previous methods, 
because it is based upon the Gaussian. 

4.2 Methods 

4.2.1 Outline 

The proposed method (Figure 4.2) employs an analytical expression called arch model, 
which relates the scale-invariant n order derivative to the data value and hence the 
material fractions along transitions. 

A single arch function is parameterized by the expected pure material intensities at 
opposite sides of the edge (L, H) and a scale parameter, the standard deviation cr of the 
apparent Gaussian PSF (depends on the edge orientation for anisotropic PSF of the 
scanner). The parameters and L and H denote respectively the low and high material 
intensities. The apparent scale <T allows us to account for the space-variant, orientation 
dependent resolution of the scanner. The model has been constructed such that it 
directly describes Gaussian derivatives without having the distance to the edge as a 
parameter. In addition, local fitting of this model results in material intensities as 
function parameters (Figure 4.2a). The model is fitted to a set of measurement acquired 
by applying orthogonal Gaussian operators to a set of edge voxels. These edge voxels 
form a path along the gradient direction inside the support of the PSF. This yields local 
estimates for model parameters L, H and C. The /.//-parameter space is represented by 
an /.//-histogram (Figure 4.2b). A peak in the /.//-histogram constitutes one type of 
material transition, i.e. between the L and H values of the cluster. Cluster membership is 
used to classify edge voxels into transition types (Figure 4.2c). 

The measured data value and gradient magnitude for a single voxel are independent, but 
display different noise variances. First, we make them invariant to the edge-orientation 
dependent apparent scale of the data and second we scale them in such a way to obtain 
isotropic noise. Previous work (e.g. [6]) disregards edge-orientation dependent apparent 
scale, which is caused by the anisotropic resolution of the scanner and does not model 
the noise properly. The scaled measurement pair is projected onto the model it has been 
assigned to in the voxel classification step (Figure 4.2d). The projection provides an 
estimate of the underlying noise-free data value and the true gradient magnitude that are 
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less sensitive to noise than an estimate obtained by Gaussian derivative filters of the same 
scale. The relative position of the estimated data value between the local L and H yields 
the material fractions (Figure 4.2e). 

4.2.2 Transition model 

A two-material transition (Figure 4.3a) is modeled by a unit step-function u (4.2) that is 
convolved with a 1-D Gaussian edge spread function (ESF) g (4.3) resulting in a 
cumulative Gaussian distribution G (4.1) (Figure 4.3b). The true edge-location is defined 
at x = 0 . It has been shown that the cumulative Gaussian is an excellent model to 
describe the CT values across a two-material transition (Chapter 2). For a given direction, 
the ESF is approximately constant over the image and, dierefore, has not to be re-
estimated for every voxel (Chapter 2). 
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A compact description of edges in 3-D images is obtained using gauge coordinates, a 
local Cartesian coordinate-system with axis that are aligned to the intrinsic local image 
coordinates. Let w represent the gradient direction, v = Wj_ the basis of the isophote 
surface and <7„, the scale of the Gaussian function along w. Notice that a description of 
transitions in gauge coordinates is by definition both rotation and translation-invariant. 

We assume that (a) materials are pure and only produce mixtures as a result of the 
convolution with the PSF, (b) the scale of the edge spread is known, for instance by 
calibration. Initially, we will assume that (c) the expected data values at opposite sides of 
the transition are 0 and 1 such that / (w; <TW) = G (w; <TW) denotes the data value (4.1) 
and Iw (w;<7w) = g(w;aw) denotes the gradient magnitude (4.3) (in 4.2.5 we generalize 
the model). In the remainder of the text, we occasionally drop the (space-occupying) 
position information for the sake of clarity. When plotting the gradient magnitude 

Iw (w) as a function of data value / ( w ) , arch-shaped point-clouds appear (Figure 4.1b). 
This representation is used by Kindlmann and Kniss for visualization purposes |7]|8]. 
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4.2.3 Scale-normalization 

Scanners with a significantly anisotropic PSF cause that the apparent edge scale <7W and 
therefore the observed gradient magnitude depend heavily on the edge orientation. 
Figure 4.1a contains a three-material phantom after scanning with an anisotropic PSF. 
Consequently, the scatter plot: of intensity and gradient magnitude (/ , /„,) as depicted in 
Figure 4.1b yields a wide range of arches between data values 0 and 1000. All arches 
share the same base along the horizontal axis, but have a height that is inversely 
proportional to <TW. Let <TWIW be the scale-invariant gradient magnitude [11] across a 
transition as depicted in Figure 4.3c. Plotting (/, <Twlw) yields a single, scale and rotation 
invariant arch (Figure 4.1c, Figure 4.3d) of height (2/r)~' . The dashed lines in 
Figure 4.1c are generated by the model. The spread that remains is caused by noise. 

4.2.4 Analytical expression 

In this section, we will derive an analytical expression for the scale-invariant arch-function 
(Figure 4.3d). The arch-function describes the (/ , <TWIW) -relation around the transition 
between two materials in a 3-D image, irrespective of the edge orientation, even in the case 
of an anisotropic PSF and non-cubic voxels. A first step is to determine the inverse 
cumulative Gaussian function G~ . It is obtained by inserting (4.1) in G(G~ ( X ) ) = X 
for xe [0,1]. Solving for G~l (x) yields 

1 1 _r 
—+ - e r f 
2 2 

G-l(x;a) 

v 
o4l 
-1 

■X <=> 

(4.5) 

^ = ~ ^ = e r f ~ ' (2x~0 ** G ~ ' (x'a) = o\ /2erf" ' ( 2 x - l ) 

The final step consists of multiplying (4.3) with <7 to make the gradient-magnitude scale-
invariant and substitution of x with G~ (x) of (4.5) . This yields arch(x): 

arch (x) = crg(G~l (x;o);o\ 

I f r ,2\ (4-6) 
exp - { e r f _ 1 ( 2 x - l ) j 

In 
The arch-function is used to describe the scale-invariant gradient magnitude (JWIW as a 
function of I. Both I and Iw are measured at scale <7W. Note that the function arch ( / ) 
does not depend on a scale parameter. Therefore, the arch efficiendy describes scale-
invariant measurements: an advantage that is also inherited by the IJ-Z-histogram 
(method section 4.2.10). 
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In general, arch,, (x) is the n order scale-invariant derivative (Figure 4.3e) as a function 
of the Gaussian filtered data value (Figure 4.3f). It is obtained using a modified version 
of the Hermite polynomial of order n, Hn . The scale-invariant n order derivative of 
the cumulative Gaussian distribution G becomes: 

d" jn-l 

a" —G(x;a) = a" -—rg{x;a)^a"Hn_](x-(7)g(x-a) 
ax ax 

with #„(x;<7) = ( - l ) n e x p 
( ..2 A 

2<7Z 

d^_ 

dx" 
exp 

' - x 2 ^ 
2al 

(4.7) 

Substitution of x in (4.7) with (4.5) gives arch„ ( x ) . 

arch,, {x)±a"-'Hn_{ (G~1 (X;CT);C7) ag(G~{ (x;cr);cx) 

= a"-iHn_] ( G _ 1 (X;<T);<T) arch (x)„ 

= 5„(x)arch(x) 

(4.8) 

with S„(x) = <7"~'ƒ/,,_! (G~[ (X;CT);<TJ. The arch,, (x) is scale-invariant and one curve 
efficiendy represents all measurements at a transition with the remaining spread caused 
by noise. The Gaussian derivatives of G up to the fourth order and the corresponding 
arch functions are depicted in Figure 4.3e-f. The arch-function is related to the inverse 
cumulative Gaussian (4.9) through its derivative (Appendix I): 

arch'(x) = —arch (x ) = -G~' (x, l) <=> 

f erf x(t)dt=—?=arch 
(4.9) 

It can be concluded that arch (x) closely resembles a parabolic function around the peak, 
where its derivative is approximately linear. Moving away from the peak the function 
deviates more and more from a parabolic function, as indicated by a rapidly changing 
slope of G_ 1 . 

Equation (4.6) is analytical but not in a closed-form. Consequently, evaluating arch(x) is 
cumbersome, since it requires finding the roots of 2x — 1 — erf(j') = 0 . This problem is 
circumvented by considering the inverse function arch - (arch(x)J = x for x e [0,1/2] 
that has a closed-form expression (Appendix I) 

1 1 
2 2 

arch"'(x) = e r fL / - l n (xV2J r ) for x 0, (4.10) 

The inverse arch-function describes the Gaussian filtered data value I as a function of 
scale-invariant gradient-magnitude: I — arch" {<JW1W ) . 
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Figure 4.3 (a) A material transioon modeled by the unit step edge u. (b) The data values are blurred at 
two scales, (c) Scale-invariant gradient magnitude as a funcdon of position, (d) A single 
arch is obtained upon plotting the scale-invariant gradient magnitude as a function of data 
value, (e) Gaussian derivatives (order n = 1, 2, 3, 4) of a step-edge, (f) Arch function (order 
n = 1, 2, 3, 4) express the nlh Gaussian derivative as a function of the Gaussian filtered 
data value. 
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4.2.5 Generalization towards arbitrary intensity levels 

Thus far, we have assumed a transition between materials with expected data values 
0 and 1. The description is now generalized by adding two parameters to represent the 
expected data values L and H \vhhL<H. A two-material edge is modeled as a scaled 
unit-step-function: 

u(w;L,H) = L + (H-L)u(w) (4.11) 

Let I(w;aw,L,H) represent the Gaussian filtered step-edge at scale <TW and 
CTWIW (w;<Jw,L,H) the scale-invariant gradient magnitude at the transition: 

l(w;<Tw,L,H) = L + (H -L)G{w,aw) (4.12) 

awIw (w;aw,L,H) = aw (H-L)g(w,<rw) (4.13) 

The generalized arch-function describes the scale-normalized gradient magnitude (TWIW 

as a function of the intensity / and the expected data values L and H: 

arch( / ;L, / / ) = ( / / - L ) a r c h ( ^ — - ] (4.14) 

4.2.6 No i se isotropy 

Measurements, including (l,<TwIw), yield the noise-free values (step-edge convolved by 
Gaussian PSF) contaminated by noise. The noise is assumed to be Gaussian distributed 
with zero mean and variance Oni (like in [4][12]). An estimate of these noise-free values 
is obtained by mapping the measured values of (/,CM,/U,) onto the 'closest' point on the 
corresponding arch. The distance metric to be used depends on the covariance matrix of 
the noise. The two measurements are obtained by orthogonal operators; hence these 
measurements have cov(/,(TM,/u,) = 0, but may display different variances. An isotropic 
(Euclidean) metric can be used if the derivative is scaled by a factor 9 such that the 
noise in (l,9(TwIw) is isotropic. In that case we can use the orthogonal projection from 
the point (l,9(TwIw) onto the 9-weighted arch. 

The relation between the variances (of the noise) before <Tnj and after convolution <jno 

with a D-order Gaussian derivative of scale <J in ALdimensional space is [4]: 

ol (2D)! 
am <*oP n < D\2 2 

(4.15) 

Typically, for medical images, the sampling along the scanner's z-axis (axial, slice pitch, 
out-of-plane) is often lower when compared to the x- and ^-dimensions (lateral or in-
plane). We would like to use Gaussian derivative filters that are not sampled isotropically 
to minimize additional blurring. Let A denote the sampling pitch of the signal. As a rule 
of thumb, the Gaussian operator should obey (Jop > 0.9A to meet the Nyquist sampling 
criterion [13]. Using smaller scales requires interpolation of the data, which reduces A to 
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satisfy the sampling criterion. Analogous to the PSF, we do not restrict the operator to be 
isotropic in A (i.e. anisotropic sampling of the operator). In three steps we (1) compute 
the variance after anisotropic Gaussian filtering, (2) compute the variance of the gradient 
magnitude as a function of anisotropic Gaussian filtering and edge orientation, and (3) 
increase the gradient magnitude by a scale factor 6 to make the noise in i<I,d<rwIw) 
isotropic. 

First, consider the variance of the noise after (0th order) Gaussian filtering: the first 
dimension of (/,#<7M,/W) and the independent variable of arch(x). Let aopz be the 
axial scale and (7op<±z the lateral scale of the operator with respect to the z-direction. Let 
(7/ be the variance of the noise on I after filtering. The noise-isotropy is a prerequisite to 
using a Euclidean metric to obtain the closest point on the model (arch). The relation 
between the measurements of 0th and /7th order is modeled using arch,,. Hence, absolute 
noise measurements are not required and the variance <7m on the measured input data is 
not needed. Decomposition of the Gaussian filter into an axial and a lateral component 
requires that we apply (4.15) with (oopz,D = 0,N = \\ and (a0Pti_z,D = 0,N = 2\ 
respectively: 

2 2 
ano,z 1 ano,±2 1 ,, «,. 

Given that the two convolutions are applied in series (in arbitrary order since the 
convolution operator is commutative), <7„0 of the first pass is substituted for <T„, of the 
second pass. This gives a fixed variance after filtering in three-dimensions irrespective of 
the orientation of the edge w. 

2 

°no =<?,2= y—~ (4.17) 
2 3 * / 2 < V * a2oPM 

Second, consider the variance of the noise when measuring die gradient magnitude: the 
second dimension of (l,0(TwIw) and the result of arch(jc). This 3-D operation can be 
decomposed into a 1 -D first Gaussian derivative filter in the gradient direction w and a 
2-D Gaussian filter in the plane perpendicular to w. Let <Jop,w be the effective scale of 
the operator in the gradient direction w as a function of the angle a& between z and w. 

<V„. = V(sin (orA) aopM f + (cos (aA) eopz )2 (4.18) 

Applying (4.15) with (aop<w,D = 1, N = 1J and {cT0p,iw,D = 0, N = 21 respectively gives 
2 2 
no.w 1 ^no,lw 1 . . . „. 

~^~=—TTT'—~=—^r (4-19) 

°m- < V > v ^ K <*m aop,±W
 4X 

These two convolutions applied in series provide the variance of the noise after filtering 
in 3-D: 
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\6x/2(T2
oplwcr\pw 

(4.20) 

Note that the variance of the gradient-magnitude remains a function of the edge 
orientation w. Finally, using (4.17) and (4.20), the noise in {I,9<7WIW) is made isotropic 
with 

9 =— 
0",., 

1 

V '« J 

^2c7op~w^op,±w 
„3/2 

4aop,z <r, opA-z 

(4.21) 

Suppose, for example, that a Gaussian operator isotropic in A is used to measure 
derivatives with <7opw = <ToPixw = Oopz = <Jap,±z ■ Then the relation in (4.21) above is 
simplified considerably such that & = (aop\l2)/aw . Assuming the previous isotropy of the 
kernel, the noisy measurements (/,(T0 /M ,v2l are projected onto {aop IOw)arch ( / ) . 
Remember that Gw is the overall (apparent) edge scale aw = Oopw + GPSF w. 

4.2.7 Orthogonal projection on the arch 

The measurements (l,9<7wIw), obtained by orthogonal operators, are combined by 
projection onto the arch. To begin with, it is assumed that L = 0 and H = 1 to keep the 
description simple. The orientation of the projection is steered by the derivative of the 
arch. For this purpose we use the closed-form inverse arch function arch -1 (4.10) and its 
derivative (4.22) as depicted in Figure 4.4a: 

a r c h " 1 ( x ) = - - - e r f ( J - l n ( x V 2 7 r ) 
2 2 

— arch -1 (x) = . 
dx ^ ( - In {2K) - 2 In x) 

(4.22) 

Let y = q{x,C) be the line orthogonal to arch - (x) with slope k and ^-intercept m 
{0<m <]/2) which crosses arch - (x) in point C = {xc,yc). All measurements 
{9awIw,l) on this line are projected onto point C o f the arch - (x) : 

k = 

y = q{x,C) = kx + 

— arch ' (x) 
dx 

-k*xc +arch ' (x c ) 

(*c-*) - + arch ' ( x j 

(4.23) 

(4.24) 

dx 
arch (x) 
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For a particular measured x = 0<TwIw,y = I the unique projection is achieved by 
numerically solving equation (4.24) for xc. The second coordinate yc is found by 
evaluating yc = arch (xc). In general, the projection of a measurement onto the arch 
parameterized by L, H and scaled by 0 requires proper scaling of the axis. This 
operation is written as projarcuL H g\. 

4.2.8 Fitting the arch function 

The projection onto the arch-function requires the expected pure data values L and H at 
opposite sides of a transition to be known in advance. Our method decomposes partial 
volume samples into L and H fractions (as opposed to regarding partial-volume values as 
a problem). 

Let A be a set of 7V + 1 measurement pairs along the gradient direction in the 
neighborhood of an edge sample (Figure 4.4c): 

A„={I,0awIw),ne[O,N] (4.25) 

A 3-D version of Canny's edge detector is used for initial finding of edge samples. 
Because the arch described derivatives as a function of data value and not as a function 
of position (1) an edge sample needs not to be centered exactly at the edge and (2) die 
strip of voxels needs not to be exacdy in the gradient orientation. 

Since an edge is intrinsically translation invariant in the isophote plane, we select nearby 
voxel locations (perpendicular to the gradient direction) rather than apply interpolation. 
Furthermore, let (l',0(TwI'w') be the orthogonal projection of a measurement pair onto 
an arch. By minimizing the summed squared residuals between the arch model and the 
measurements (Figure 4.4d) using the Conjugate Gradient Method [14], the best fitting 
arch is obtained, which then yields the L' and / / 'values that we are looking for: 

» ii i i 7 

{//, / / ' } = arg min £ „ \A„ - P''q/arch( i>Wjö)An ||" (4.26) 

The residual error R may be used as a measure for the quality of the fit. 

4.2.9 Initial values for L and H 

Local minima may occur for (4.26). Consequently, accurate initial values for the L, H 
parameters are required. The estimates for L and H ate obtained from I,Iw,Imv (all 
measured in one voxel) and Ow (assumed to be known after calibration). Let t be the 
distance from the current voxel to the nearest edge, estimated by 
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Figure 4.4 (a) Inverse arch-function showing the projection of values along a line onto a single point 
on the arch, (b) This method is applied to obtain material fractions. Notice that directly 
using intensity yields a different outcome (dashed arrow), (c) This projection is used as 
well to obtain L and H. A set of voxels along a path in gradient direction trajectory both 
uphill and downhill is shown in part of a slice from a CT volume with the voxel under 
investigation marked by (*). (d) L and Ware obtained by fitting an arch model to the set of 
(l,00 1 ) measurements. 
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^ w ww (4.27) 

Equation (4.3) is used to compute I'w(t,aw) that yields the predicted gradient 
magnitude for L = 0 and H = 1. The ratio between the measured Iw and model value 
l'w (t,aw) defines Q = H-L: 

Q = lJl'w=H-L (4.28) 

Now the predicted intensity at position t for L = 0 and H= Q is computed using (4.12) 

I'(t,aw)L = 0,H = Q) = QG{t,aw) (4.29) 

Finally, Z, and / / are determined from 

L = I-I', H = L + Q (4.30) 

The previous derivation leads to analytical expressions for initial guesses of L and H: 

1 + 
<JwIwyfn 

erf 
V2~ 

'&Jww^ 
21,. 

exp 
/ / 

!V5' 
2/ z 

V A1 w J 

1 + oJwJii ( 

4~2 
1 + erf 

j—' 

2/,. exp 
!V2" 

. 2/ -1 

(4.31) 

(4.32) 

4.2.10 L/Z-histogram 

Fitting an arch to all sets of measurement pairs [l,0CTwIw) yields L, H values for all 
voxels in the selected edge regions. All L, H values can be represented in a 2-D 
^//-histogram [6]. An /.//-histogram provides a useful compact description of the data. 
The -///-histogram can be interpreted as the resulting parameter space of a generalized 
Hough transform [15]. The transform is applied to a set of measurements in 
(l,8<JwIw) -space. Disregarding the noise, all samples near a single transition contribute 
to one entry in /.//-space. 

If a material is connected to two or more other materials, their arches share one base 
value. Hence, these transitions cannot be separated in [1,0awIw) -spa.ee. Using higher 
order derivatives does not solve this problem because the arches still meet at a single base 
value. The /.//-histogram however, does show separate peaks for each type of transition 
and allows identification of transition type through clustering. Figure 4.5 shows how 
different transitions yield separate clusters in LH-spo.ce. Four material samples yield 
crossing arches in (I,(JWIW) -space that can easily be separated since they map to 
different clusters in the ///-histogram. 

http://-spa.ee
http://LH-spo.ce
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Unfortunately, the arch-model is not valid at locations where material pockets are smaller 
than the size of the point-spread function as well as at T-junctions. Thin structures 
(smaller than the PSF) suffer heavily from the PVE (partial volume effect). None of its 
voxels represent pure material samples. Consequendy, the thin structure's pure signal 
estimate (L or H) is biased towards the value of its background. A dark thin structure on 
a bright background will lead to horizontal lines between two clusters in the 
Z/Z-histogram (a light structure on a dark background leads to a vertical line). At a three 
material T-junction with material intensities A/, < M2 < M3 , either L or H stays fixed 
depending on M 3 — M2 vs. M2 — Mt. In the ZZZ-histogram, such locations are 
manifested as vertical (constant L) or horizontal (constant H) lines. 

To discard these points from the L/Z-histogram, thresholds are applied to the gradient 
magnitude of both the L-channel and the ZZ-channel. The thresholds are selected 
automatically from the histograms of the L- and ZZ-channel gradients. First, the peak is 
found by searching the maximum values in both histograms. Subsequendy, searching to 
the right, the 90% percentile is located. Because two-material transitions do occur far 
more frequently than three-material transitions, the left parts of both histograms include 
the majority of the two-material transitions. At last, those points are included in the 
£ZZ-histogram, which have gradient magnitudes below the selected thresholds. The 
filtered LZZ-histogram describes the data adhering to the arch-model. Note that the 
LZZ-histogram inherited some important properties of the arch model such as 
translation-, rotation- and scale invariance. 

4.2.11 Classification into material fractions 

A simple clustering technique applied to the filtered LZZ-histogram allows identification 
of transitions [6]. This step implicitly segments the input data into transition types. 
Currendy, we retain the locally obtained LZZ-values to be robust against fluctuations in 
signal intensity. 

With (l',9(JwI'w) the orthogonal projection of the sample onto the selected arch, /?/, 
represent the material fraction corresponding to L and J3M die material fraction 
corresponding to material H (Figure 4.4b). These material fractions are obtained by: 

A"£ï- '"-Sir- A +*- ' (4J3) 

Material fractions remain undefined at positions where the arch model is not valid. 
However, the majority of edges in 3-D images are two-material edges and only a small 
number of applications would benefit from non two-material analysis. We may simply 
ignore such locations or merely select the nearest transition type and apply the previous 
mapping for a first order estimate of true material fractions (we adhere to the latter 
solution in the examples presented). 
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Tooth-image A B C 

L, //-channels ////-histogram 

Figure 4.5 ////-histograms with the corresponding Lr and /-/-channel, the scatter plot of data value 
and scale-invariant gradient magnitude before (a) and after (b) filtering of the 
L- and //-channels, (a) The dashed rectangles mark regions in the L- and //-channels 
where the arch-model is not valid, (b) These invalid regions are detected automatically by 
thresholding the gradient magnitude of the L- and //-channels. The clusters in the colored 
circles of the /.//-histogram have the same color in the scatter plot above. 

4.2.12 Visualization 

The concept of material fractions is useful to cope with a material that borders on two or 
more other materials. The exact, subvoxel location of such edges depends on the type of 
transition. Having a material fraction volume allows one to delineate an object at a single 
isosurface at threshold 0.5. 

The boundary of a single material is visualized directly by defining a surface at such a 
constant material fraction. Cürrendy available ■ rendering engines can be used after 
mapping the material fraction onto integer values. An accurate volume measurement is 
obtained by summing the fractions multiplied by the volume of a voxel [16]. 
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Likewise, the union of two objects may be represented by the boundary where the sum 
of the two material volume fractions is equal to 50%. At last, the 'intersection' (or 
touching) surface between two materials may be identified by the iso-surface where the 
difference of the fractions crosses zero, provided that the first derivative of the 
difference is non zero to reject positions where both fractions are zero. 
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4.3 Results 

We will demonstrate the usefulness of the presented methods using phantom-data, a 
publicly available CT volume of a tooth and abdominal CT data for virtual colonoscopy. 
Typically, the sizes of the data were 5123 voxels. The processing took approximately five 
minutes per volume on an AMD64 2.4 GHz. 

4.3.1 Example I: edge localization 

An important problem is the robustness of edge localization in the presence of noise 
and small deviations in image intensity. For instance, in CT images contrast media will 
never be distributed homogeneously. The accuracy and precision of the edge-localization 
were tested using the tube phantom (Figure 4.1). Reference data were an ultra high dose 
CT image (400 mAs). The raw transmission measurements were replaced by a realization 
of a Poisson process given a scaled version of the data value as the expected value to 
simulate very low dose images (20 mAs, <7„, =~ 60 HU) [17]. Moreover, the resulting low 
dose CT image was modified to contain a small trend in data value to represent 
inhomogeneities. In this way, the higher density of the contrast matter is modeled while 
proceeding from cecum to rectum in the CT colon images. The minimum and maximum 
values of contrast matter were 400 HU and 600 HU respectively. The edge-position was 
estimated in high dose data not containing the trend. Thereafter, the edge-position was 
located in low dose data with the trend added and the smallest displacement (q) was 
retrieved for positions on the contrast-plastic transition. The region of interest was 
manually indicated. 

Kindlmann's method relies on obtaining estimates of IH,(l) and Imv(l) from the 
histogram. The histograms obtained from a high-dose image without a trend in signal 
value are shown in Figure 4.6a,b (with scale 1.4 voxel). For a fair comparison with our 
method (see below), scale normalized derivatives were used. The histograms obtained 
from the low-dose images that did contain a trend are shown in Figure 4.6d,e. Apparently, 
the trend results in errors on Iw{l) and Imt, ( / )due to the distortion of the arches in 
the histogram by noise and the trend in signal value Figure 4.6d,e. The resulting 
localization accuracy and precision are presented in Figure 4.6j,k (grey lines). 

Alternatively, it was tested if a Gaussian mixture model fit through expectation 
maximization can be used to accurately determine the location of the edge in noisy data 
[9]. The resulting localization accuracy and precision measured in low dose data are 
indicated in Figure 4.6j,k by arrows. Only a single point is obtained, since there is no 
kernel involved in the estimation. Figure. 4.6i represents the tissue fraction in grey value 
(light grey means 100% Lucite). From the result it may be concluded that a Gaussian 
mixture model is an excellent method to make a first estimate of a voxel's material 
constituency. However, the edge-spread-function is not explicitly modeled, which is 
visible by sharp boundaries. 
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Figure 4.6 Histograms of (a) / , /„, and (b) / , / m v that are used by Kindlmann to obtain estimates of 
/„.(/) and / „ w ( /) . The graphs are obtained from a high dose CT image of the phantom 
shown in Figure 4.1. (c) LW-histogram by fitting the arch: noise and global signal fluctuations are 
no problem if clusters are separated, (d-f) Similar graphs now obtained from a simulated low 
dose image in which the tagged matter signal values contained a trend, (g) Part of a CT slice; (h) 
Gaussian components of mixture model estimated from the local histogram using the 
expectation maximization method; (i) The estimated Lucite component is indicated in grey 
value (light grey corresponds to 100 % Lucite). (j-k) To compare methods, the smallest distance 
q between the estimated edge position in ultra high dose and low dose is measured. Q The 
mean(<7) and (k) root mean square^) are plotted for (grey line) Kindlmann's method, (black line) 
the arch based method and (gm) the mixture model. 
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The arch-based method relies on being able to separate the clusters in /-//-space 
(Figure 4.6c,f shows the outcome for the tube without and with the trend). Note that 
Kindlmann uses the scatter plots such as Figure 4.6a,b both to obtain the derivatives and 
to classify the data into edges. A fundamental difference with his work is that our 
classification is based on modeled derivatives, local L- and H values obtained from the 
CT data, and the /-//-histogram. The resulting localization accuracy and precision of our 
method are also displayed in Figure 4.6j,k (black lines). Note that the arch-based method 
yields zero-bias throughout all scales and superior precision. The projection of 
measurements onto the 'correct' arch reduces the variance significantly without giving 
rise to a bias term. 

4.3.2 Example II: tooth 

The input data consist of industrial CT data of a human tooth from the National Library 
of Medicine: http://nova.nlm.nih.gov/data/. The samples are spaced 1 mm apart within 
each slice and the slices are 1 mm apart. Three types of materials and background can be 
identified: dark root canals and pulp chamber, grey dentin and cementum and bright 
enamel and crown (Figure 4.7a). Our method is used to extract three material-fraction 
volumes corresponding to the three materials. 

The L- and H parameters for each point are determined by locally fitting the arch-model. 
These L- and H values yield the /^//-histogram (Figure 4.5a). Clusters in the histogram 
correspond to the two-material transitions between tooth-materials. In addition, the 
/-//-histogram in Figure 4.5a shows horizontal and vertical lines connecting the clusters. 
These emanate from thin structures or junctions. An example is the junction of 
background (B), dentin (C) arid enamel (D) marked by the dashed circles in the 
L, //-channels. This structure contains a smooth transition from one /--value to two 
//-values. These locations can be detected (and masked out) by a large gradient 
magnitude in the L- and/or //-channels in Figure 4.5a. A 'filtered' histogram is shown in 
Figure 4.5b. The filtered /-//-histogram is used to segment the image into significant 
material transitions. The clusters within the colored circles in the /-//-histogram of 
Figure 4.5b correspond to similarly colored dots in the scatter-plot, which serves to 
illustrate the histogram's capacity in identifying the various transition types. For example, 
notice how well the volume samples in overlapping areas in the labeled scatter plot 
(dotted squares in Figure 4.5b) are classified into separate clusters in /-//-space. 
Subsequently, the local arch fit of a particular volume sample is used to map it onto 
material fractions as indicated in Figure 4.4b. 

The three resulting material-fraction volumes of root-canal dentin and enamel are used 
for visualization (Figure 4.7). The delineation of the root-canal is compared with a 
reference method of [18] (Figure 4.8). Sereda creates an /-//-histogram in which the 
estimates of L and H are obtained by the result of a local min and a local max filter 
respectively [19] rather than by the arch model. The data value / is mapped on a mixture 
using pL as defined in (4.33). 

http://nova.nlm.nih.gov/data/


4.3 Results 71 

(a) (b) 

(c) (d) 

Figure 4.7 (a) Cross-section of tooth volume, (b) Delineations of the three materials (enamel, dentin 
and root canal) are combined into a single rendering, (c) and (d) show that the root-canal is 
almost completely visualized, (d) Insertion of a clipping plane on the enamel-fraction 
volume enables cutting away the crown and fully visualizing structures below. Thus, special 
pre-processing or complicated transfer function definition are not needed to create high 
quality visualizations. 

N o t e that the est imates for L and H o f small s t ructures will be biased towards the 
background value. This causes a bias in es t imated material fraction, which causes serious 
t runcat ion o f wedge shaped s t ructures . A fundamental difference of ou r m e t h o d w h e n 
c o m p a r e d to the reference m e t h o d is that the data value does no t serve as an i npu t of 
the transfer function. First, it is projected o n t o the material transit ion mode l to use this 
knowledge to deal with the noise in an opt imal manner . Second, L and H are est imated 
us ing partial vo lume values wi thou t requir ing 'pure material ' vo lume samples to be 
present . 
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Consider the root canal as a tube with decreasing diameter. A realistic surface delineation 
should convey this information as well. If we analyze the reference method, the distance 
in intensity between H-L becomes smaller for decreasing root-canal diameters by the 
PVE. When considering (4.33) the resulting mixture will become biased: not providing a 
good visualization (Figure 4.8a,c,e). At parts of the root canal with a decreasing diameter, 
a smaller mixture is found as expected (Figure 4.8b,d,f). The user may still visualize this 
by selecting a smaller threshold on the material mixture. The reference method however, 
even at a threshold of 50% root-material suffers from noise and the PVE (Figure 4.8a). 
It does not reliably convey the dimensions of the root canal. The user has less control of 
creating accurate object delineation. 

4.3.3 Example I I I : CT colonography 

CT colonography [6] [20] [21] (also called virtual colonoscopy) is a relatively new method 
to examine the colon surface for the presence of polyps. An important problem in 
virtual colonoscopy is to visualize the colon surface without being hampered by 
intraluminal remains [6]. Moreover, the partial volume effect may restrict correct polyp 
detection and subsequent quantification (diameter, volume) and accurate display of its 
morphology [22]. Tagging, via an oral contrast agent, is introduced to enhance the signal 
intensity of residue. We have applied our method to derive the fraction of soft tissue, air, 
and tagging in each edge voxel. 

The data are acquired using a multi-slice CT scanner (Toshiba Aquilion). The axial scale 
of the resulting image is 0.95 mm and the lateral scale is 0.80 mm. Rendering opaque 
samples at a 50% tissue-level is assumed to yield an accurate representation of the colon 
surface. It reveals large parts of the colon surface that were previously obscured by fecal 
remains (Figure 4.9c). Analogous to the tooth example intermediate processing results 
are depicted in Figure 4.9a,b. The usefulness of our method is further demonstrated in 
Figure 4.9d, which shows the unfolded cube visualization [23] before and after processing. 

4.4 Conclusion 

We presented a novel approach to automatically classify scalar-valued 3-D CT images 
into material-fractions. Our approach uniquely combines robustness to noise, global 
signal fluctuations, anisotropic resolution, non-cubic voxels and ease of use. The method 
facilitates accurate and reproducible boundary delineation for segmentation and 
visualization. 
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(a) 

(c) 

(e) 

Figure 4.8 The root canal delineated using the reference method (a,c,e) and using the method 
described in this paper (b,d,f). The top row (a,b) shows the root canal rendering of the 
tooth volume using the reference method with threshold 0.2, 0.3 and 0.5 and method with 
threshold 0.1 (dark), 0.2 (intermediate) and 0.5 (bright). The middle row (c,d) shows the 
material mixture along a profile. The bottom row (e,f) shows the material fraction in grey-
value with five delineations superimposed using an iso-matcrial mixture of 0.1, 0.2, 0.3, 0.4 
and 0.5 respectively. 
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Scatter plot 

(a) 

(c) 

Figure 4.9 ////-histogram with corresponding L- and //-channel of abdominal CT data. The scatter-
plot of the image-intensity and scale-invariant gradient magnitude before (a) and after (b) 
filtering the L- and //-channels. Regions in the ////-histogram where the arch-model is not 
valid are automatically suppressed by thresholding the gradient-magnitude of L- and H-
channels. (c) Unfolded cube visualization using original data and (d) electronically cleansed 
data. Notice that the entire colon surface is presented for inspection after processing. 
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We derived an analytical expression for die relation of wth order derivative as a function 
of data value: the arch function. It is applied to approximate the underlying noise-free 
material fractions or derivatives at an image position. Projecting of noisy data value and 
derivatives onto the arch model yields noise-free estimates of the data value and 
derivatives. It yields a robust alternative to the standard computed Gaussian derivatives. 
The arch function is rotation invariant even for anisotropic PSF. It is parameterized 
through the expected material data values (L and H) at opposite sides of the transition. 
The neighborhood of a sample is modeled by an arch trajectory, and not merely a single 
point. This makes the technique extremely robust against erroneous classification due to 
noise. 

Previous work [6] did neither model the noise nor the anisotropy of the data. Including 
higher-order arch models one can obtain estimates of all derivatives up to this order. 
Both the accuracy and precision are superior to the results obtained by Gaussian 
derivatives. The main difference with existing methods for noise suppression such as 
high-order normalized convolution [22] is that an explicit edge model is used. 

The /.//-histogram was shown to be a useful description of the data. Overlaps occurring 
in the (f,d<JwIw) scatter plots were resolved in the /-//-histogram. In addition, we 
demonstrated how to identify samples not adhering to the model's assumptions, e.g. diree 
material crossings and thin layers. The 'filtered' /-//-histogram constructed from masked 
L and H images was used to identify significant material transitions. The arch closest to a 
measurement was used to map it onto material fractions. 

Most applications deal with two-material transitions. Voxels at multiple transition regions 
(more than two materials) are processed using the best two material transition. 
Incomplete processing is reported to leave artifacts at multiple transition regions [24]. 
The size of the artifact is related to the footprint of the PSF. Our current work focuses 
on improved image processing at these multiple transition regions. 

We have demonstrated two visualization examples in which user interaction was merely 
required to decide which material to visualize. Objects of interest were rendered at the 
50% material threshold. Thus, no complicated widgets were needed for transfer function 
selection. Previously described methods assume isotropic resolution. Clearly, anisotropic 
input data may be subject to additional blurring to meet such a requirement. It should be 
noted that our method does not sacrifice resolution because spurious blurring is avoided 
to retain the integrity of die data. 
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4.5 Appendix I 

Evaluating v = arch(x) requires calculation of erf" (2x - l ) , which can only be 
computed indirectly after solving 2x — 1 — erf(y) = 0 for y. A closed-form expression is 
given by the inverse-function arch"' (x) such that x = arch(arch~'(x)) . Substitution of 
(4.6) 

exp(-{er r ' (2arch _ 1 (x) - l ) ] 2 

ln(W27r) = - { e r r ' ( 2 a r c r r ' ( x ) - l ) } < 

-ln(xV2^) =erf_1 (2 arch-1 ( x ) - l ) • 

<=> 

(4.34) 

erfU-ln(W2lF) J = 2arch_1 ( x ) - l 

yields the inverse arch-function: 

2 2 
arch_l(x) = e r f J - l n ( W 2 J r ) for x (4.35) 

Using the differentiation rule for inverse functions (ƒ ') '(x) = (ƒ '(ƒ '(■*))) ' we find 
djdx arch-1 (x), the derivative of arch (x) 

— arch ' (x) = —-
dx JL 

dx 
arch (arch-1 (x)) 

• for x e (4.36) 

in which d/dx arch(x) is proposed by a geometrical argument: 

dx 
arch(x) = -G"1(x;l) = -V2erf~1(2x-l)for xe [0,1] 

Inserting (4.37) in (4.36) we get 

—arch '(x) = —j= 
* p\n[xjht) 

for X G [ 0 , 1 ] 

(4.37) 

(4.38) 

4.6 Appendix II 

The derivative of arch (x) in (4.37) can also be derived using the differentiation rule for 
inverse functions with ƒ~' (x) = arch (x) and (arch- (x)) as in (4.38): 
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— arch (x) = - J - In (2TT) - 2 In (arch (x)) 
(it 

= - - l n ( 2 ; r ) - 2 1 n 
exp( -{e r f " 1 (2x- l )} 2 

In 

= - j - l n ( 2 ; r ) + ln(2;r) + 2 -{erf'' ( 2 x - l ) } (4.39) 

= - V 2 e r r ' ( 2 x - l ) 

= - G - ' ( x ; l ) 

This may be rewritten using (4.5) and (4.6) to give the integral of the inverse error-
function as an alternative to using the method of Parker [25]: 

£ G " ' ( / ; l ) # = -arch(x)<^> 

T V2erf - ' (2 / -1) ^ = - ^ L e x p f - { e r r ^ x - l ) } 2 

V2 X] e r f - ^ O ^ d ^ ^ L e x p f - j e r f - ^ x - l ) } 2 

Substitution of 2x —1 by x yields 

£ erf" l(t)dt = ̂ =Lexp ( - e r F \ x f 

(4.40) 

exp -{erf-W}2 (4.41) 
_ - 2 1 

4l4ln 
= —= arch 

72 I 2 
Hence, the derivative of the arch function is the inverse cumulative Gaussian: 
arch'(x) = — \l2erf~1 ( 2 x - l ) scaled such that the intrinsic scale is normalized to O = 1 as 
opposed to the intrinsic scale of the erf that is o = 4l . 

file:///l2erf~1
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Chapter Five 

Electronic Cleansing for CT Colonography 
by a Rotation and Scale Invariant 
Three Material Model 

A model-based method is presented to determine material fractions around three-
material transitions such as T-junctions. It enables CT colonography to be used with 
contrast enhanced intraluminal remains. The method is applied to partial-volume voxels 
and results into patient specific and reproducible segmentations. The method is scale and 
rotation-invariant, even for data of anisotropic resolution and non-cubic voxels. First, the 
mean values of the pure materials are locally identified (air, tissue and tagged material). 
Second, scale-invariant Gaussian derivatives are computed and scaled to produce equal 
variance of the noise. Third, the model is used to map the Gaussian derivatives onto 
material fractions for each transition voxel. Projection of noisy data value and derivatives 
onto the model yields a robust alternative to the standard computed Gaussian derivatives 
at T-junctions. Surfaces at a constant material fraction are shown to provide an accurate 
and precise representation of the object boundary without artifacts near junctions. It 
advances CT colonography to become effective with tagged data and a 3-D display 
mode. 
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5.1 Introduction 

CT colonography (virtual colonoscopy) is a non-invasive alternative to colonoscopy [1] 
that facilitates screening for polyps. The conventional procedure is to let the patient drink 
a laxative on the day before the examination to remove fecal remains from the colon. 
Immediately before CT imaging, the patient's abdomen is inflated with CC>2-enriched air. 
Virtual colonoscopy images are created using perspective volume rendering to inspect the 
colon-surface [2]. Usually, a threshold around —650 HU is applied to all voxel values to 
segment the colon wall. Unfortunately, the patient preparation is never 'complete'. 
Remains that have a tissue-equivalent data value may occlude or mimic polyps and 
therefore hamper detection. Tagging the intra-luminal remains with an oral contrast 
agent was introduced to discriminate between tissue and remains (Figure 5.1a) [3]. The 
sequence of operations applied to the 3-D CT data that replace the (partial-volume) 
contributions of tagged remains by air is referred to as 'electronic cleansing'. 

Unfortunate!)', positions where the 'fluid'-surface touches die colon wall complicate 
electronic cleansing [4]. Although only a small part of the surface maybe 'obscured' by 
these three-material transitions, segmentation artifacts at these locations may delay or 
impede a proper diagnosis (by mimicking or obscuring polyps) and not stimulate 
confidence by the reader (Figure 5.1a-d). 

The main problem is that the point-spread function (PSF) causes contributions of 
several materials to be mixed into a sample. The latter effect is commonly referred to as 
the partial-volume effect (PVE). In general, the accurate delineation of an object having 
blurred edges is not a trivial task and at locations where three materials are connected, it 
may seem impracticable. If the blurring is not isotropic and noise is added, matters are 
even further complicated. 

In this paper, we present a novel method that implements the inverse operation: 
obtaining the material fractions starting from die data value. We extend previous work [5]. 
by deriving an analytical expression that describes Gaussian derivatives (not as a function 
of space, but) as a function of the three material fractions around T-junctions. We 
incorporate invariance to the anisotropy of the noise (in the space spanned by Gaussian 
derivatives) and to the anisotropic scale of the data (in image space). Projection of noisy 
data value and derivatives onto the model yields a robust alternative to the standard 
computed Gaussian derivatives at T-junctions. The proposed method is applied to 
segmentation of the large bowel for CT colonography. However, it may be equally useful 
for other problems that involve three-material transitions. 

5.1.1 Related work 

Lakare et al. [6] create 23-dimensional feature vectors of local data values that are reduced 
to five dimensions by principal component analysis. Clustering takes place in the low 
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Input Electronically cleansed 

Figure 5.1 (a) Part of a slice from CT-data. L, M and H denote air, tissue and fluid respectively, (b) 
Electronic cleansing replaces H with L. (c) A transfer function based on thresholds leaves 
the fluid interface in (c) opaque: the transition bas a CT-value similar to tissue, (d) If (b) were 
generated, a single threshold would suffice. (e,f) A significant part of tfie image 
corresponds to three-material PV-voxels (LMH), focused upon in this paper. 
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dimensional space using a vector similarity measure and a maximum number of classes. 
A threshold on the average intensity of each class classifies voxels to be tagged remains. 
The method is patient specific and deals with fluctuating contrast concentrations. 

In later work, Lakare et al. [7] address a problem caused by partial-volume voxels 
bordering on the fluid-mask. The intensity profile is considered a unique property of 
each type of transition. Typical edge profiles that are present between all materials, e.g. air 
and tagged material, are identified by rigorously 'exploring' some 3-D CT data sets in a 
separate learning phase prior to the actual cleansing. During cleansing, for each edge 
voxel the profile is selected that best fits encountered intensity profiles. A transfer 
function is defined for each such profile in order to remove the partial-volume problem 
during rendering. The so-called segmentation ray metiHod is fully automatic. A 
disadvantage may be that the segmentation rays are defined for a group of selected CT 
images and are as such not patient specific, which may reduce diagnostic accuracy. In 
addition, only two-material transitions are modeled, which may result in artifacts at 
positions where the fluid touches the colon-surface. 

Zalis et al. [8] construct a binary subtraction mask to segment the opacified bowel 
content and address the partial-volume problem using a colon-surface reconstruction 
routine. Data values represent a distance measure derived from the subtraction mask. 
The surface reconstruction does not directly use the partial-volume values from the data 
so that the resulting transition itself is not patient specific. 

Laidlaw et al. [9] model the local image structure by intensity histograms. A voxel is 
treated as a volume in which the local histogram is obtained by interpolation. The region 
that influences the measurement is determined by the interpolation kernel. A 
parameterized model of histograms is created for different object geometries. 
Subsequendy, the parameterized histogram is fitted to the local voxel histogram. The 
parameters define the materials and geometry in the voxel. This method is used to 
separate two materials. The authors argue that three material transitions might be 
resolved by extending the dimensionality of the histogram (by including more features). 
Neither the image geometry around the junction nor variations in the scale of the data 
are modeled explicitly. 

The method presented in this paper is particularly inspired by the work of Kindlmann 
[10], Kniss [11] and Laidlaw [9]. Kindlmann and Kniss visualize material transitions using 
partial volume voxels to reduce 'jaggy' edges observed with binary techniques. A 
histogram of the data value / and the gradient magnitude |V/| = dl/dw = /„, (w is in the 
gradient direction) is used. This yields a unique arch-shaped point cloud for all voxels 
near the border between two materials. An advantage of this method is that the edge 
region of a particular type of transition can be discriminated from other edge regions by 
selecting a region close to the top of the arch in the histogram. Several problems remain: 
(1) arches coincide near the basis, so that the method works best at positions close to the 
edge region; (2) the approach is not valid near a three-material T-junction; (3) anisotropic 
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resoludon results in broad, overlapping point clouds that complicate the correct 
identification of an edge type; and (4) the method is restricted by local fluctuations in 
data value of tagged material that spread the point clouds as well. 

Inspired by Laidlaw [9] and Kindleman [10], we created an analytical model of the 
previously mentioned arches that are scale as well as rotation-invariant (Chapter 4) in the 
presence of anisotropic resolution and non-cubic voxels. However, our two-material 
transition model needs to be improved to describe three-material transitions. These 
configurations occur in applications like CT colonography, in which the colon is filled 
with both air and tagged fluid that border on the colon tissue. 

Several problems remain with the existing methods. First, the non-isotropic scale of the 
data as generated by many scanners is generally not accounted for. This may be solved by 
low-pass filtering the data to end up with an isotropic scale. However, this is at the 
expense of detail, which may affect the appearance and conspicuity of polyps. Second, 
only two-material transitions are considered, whereas more than two materials also occur 
in voxels. In CT colonography, for instance, at positions where the fluid touches the 
surface, samples contain partial volume fractions of three materials (Figure 5.1e-f). If a 
polyp resides at such a position, its shape and size may not be segmented properly. Third, 
current methods may require considerable user-interaction or, when parameters are set 
beforehand, may not be patient specific. Fourth, existing methods lack a suitable 
geometric model, which is a necessity to exploit the local correlations. Fifth, noise is 
typically not taken into account, which results in unwanted effects such as amplification 
of the noise during rendering. 

5.1.2 Objective 

Our objective is to improve CT colonography to become effective with tagged data using 
a 3-D display mode. Therefore, we aim to classify voxels into material fractions (air, 
tissue, tagged material). In particular, three-material transitions must be accurately solved. 
The method should be invariant to anisotropic resolution (PSF) and anisotropic sampling 
(non-cubic voxels). In addition, the method has to be robust against local variations in 
image intensity of a material (e.g. the intensity of tagged material may vary) and noise. 
Finally, the method should require minimal user interaction to enable reproducibility. 

Segmentation based upon material fractions is less complicated than based upon image 
intensity. It will be shown that surfaces defined at a constant material fraction provide a 
way to represent the object boundary for quantitative image analysis and high quality 
visualizations. 
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5.2 Methods 

5.2.1 Outline 

In earlier work, we proposed a method to relate material fractions to derivative features 
near a two-material transition (Chapter 4). The latter reference implicitly yields a method 
to detect voxels that may participate in three-material transitions. The two-material model 
produces segmentation artifacts at such locations that may obscure polyps and generate 
false-positives. The method presented here solves this problem. 

The novelty of our work is that we derive an analytical (forward) model for the relation 
between the underlying material fractions and the Gaussian derivatives at three-material 
transitions such as T-junctions. It is made scale-invariant to account for the space-variant, 
orientation dependent resolution of the data. Note that an anisotropic PSF yields an 
apparent scale of an edge that depends on the orientation of the edge. At T-junctions we 
measure a Gaussian derivative jet, apply scale-normalization to compensate for the 
effects of the anisotropic PSF and scale the result to make the noise isotropic. After this 
we can employ a Euclidean metric in computing the distance between observations and 
our model. Hence, we find the best match between the measured Gaussian derivative jet 
and the jet produced by our model. The position in model space yields the material 
fractions we were looking'for. The measurements are taken in a local environment by 
sampling along a path that stays parallel to the gradient direction. 

5.2.2 Material fractions 

During image formation, a linear combination of materials is projected onto data value 
(Figure 5.2a). The method presented by us enables the inverse operation (Figure 5.2b): 
retrieving the material fraction from the local image data. 

Assume a linear imaging model in which the image intensity 1 can be written as a linear 
combination of pure material intensities fi m with corresponding material fractions tm. 

We restrict ourselves to three material fractions that correspond to homogeneous 
barycentric coordinates. Thus, each instance ( / i , ^ ,^ ) corresponds to a point P in a 
triangular domain [A,, A2, A2) that is projected onto a data value (Figure 5.2a). 

Considering the CT colonography, let fUx= L represent the expected (low) intensity of 
air, //2 = M the expected (medium) intensity of tissue, and fa = H the expected (high) 
intensity of tagged residual material. 

Typically, most voxels are dominated by pure material (air, tissue and residue): the corners 
of the triangle. Fewer voxels participate in transitions between two materials: the edges 
of the triangle. The smallest number of voxels participates in three-material transitions: 
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J ' Frequency (/) 

Figure 5.2 (a) Image acquisition combines contributions of different materials into the partial volume 
CT value. We represent these contributions as barycentric positions in a triangle, (b) Our 
method enables the inverse operation. The derivatives Jw and lm (not shown here) facilitate 
this step. 

the interior of the triangle. Still, the three-material transitions represent a significant 
fraction of the voxels to be analyzed [12]. We will denote a transition type by a 
combination of the letters L, M and H. Since voxels processed by the three-transition 
model will border on two-material transitions, the model is required to contain a smooth 
extension of a two-material transition model. Finally, trivial as it may seem, a model of 
the transition between two materials should be an extension of a single-material model. 
This is important in order not to produce artifacts or discontinuities. 
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5.2.3 Two-mater ial transit ions 

Let us first consider two-material transitions. This section first summarizes methods 
presented in Chapter 4. The data value across a Gaussian blurred step edge and its first 
derivative are related by an arch-shaped curve. These arches yield the gradient magnitude 
as a function of the data value, c.q. a weighted sum of two materials. Therefore, the 
arches coincide with the edges of the triangle (Figure 5.2b). Deriving an analytical 
expression of the relation starts by modeling a two material transition to be a unit-step-
function u (5.2) that is convolved with a Gaussian g (5.3) resulting in a cumulative 
Gaussian distribution G (5.4). The anisotropic space-variant point-spread function (PSF) 
resembles a spiral pasta [13], but it is often modeled by an anisotropic 3-D Gaussian. We 
found that the cumulative Gaussian is an excellent model to describe the CT values 
across a two-material transition (Chapter 2). Additionally, for a given direction, the edge-
spread function showed to be approximately constant over the image and, therefore, has 
not to be re-estimated for every voxel (Chapter 2). 

G{x;a) = u(x)* g(*;<r) = - + - e r f 
Ty[l, 

(5.2) 

with 

u(x) = 
0 x < 0 

1 x>0 

g(x;a) = —p=exp 
(TV 27C 

' - x 2 A 

v2<7 ■ j 

1 
erf (x) - -j= fexp (-t2)dt 

<n n 

(5.3) 

(5.4) 

(5.5) 

Extension of this model to edge transitions in 3-D is straightforward. Let w represent 
the gradient direction, v = via the basis of the isophote surface, and (7W the apparent 
scale of the (assumed) Gaussian function along w. Notice that a description of 
transitions in gauge coordinates is by definition both rotation- and translation-invariant. 

In general, the expected data values at opposite sides of the transition are L and H such 
that the intensity is defined by I (w;aw) = (H - L)G(w;aw) + L and the gradient 
magnitude is defined by Iw(w,(Jw) = (H — L)g[w;crw) (first derivative in gradient 
direction). 
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The arch-function describes the scale-invariant gradient magnitude (JWIW as a function 
of / at scale <7W: 

V~L 
<V,v = ( # - £ ) arch ^ — - | (5.6) 

arch (x) = <Jwg(G ' (x;aw);<rw) 

e x p ( - { e r r ' ( 2 x - l ) } 2 ) f o r x e [ 0 , l ] 

with 

In 
Notice that the function arch(x) does not depend on a scale parameter. Therefore, it 
describes scale-invariant measurements. Analogously, a generalized arch function was 
derived that relates higher order derivatives as a function of data value (Chapter 4). 

Consider three measurements (I,<7wIw,(T^,Imi,) acquired by Gaussian derivative 
operators (Figure 5.3a) in the edge region around materials L and H. The measurements 
are projected onto the (noise-free) generalized arch functions of order 1 and 2 for given 
L and H (Figure 5.3b). Orthogonal projection is permitted after scaling the measurement 
space {I,C7WIW,(7^,IWW} by respectively {@o,0\,&2} ' n such a way that the standard 
deviation of the noise on 0OI , 6\(JWIW and 92<jl,Iym, is identical. Without loss of 
generality we may set 0Q = 1. The projection yields filtered values for / , /„, and /„,,,, 
(Figure 5.3c). The filter result for / (given L and H) yields the unique two-material 
fractions. 

We will extend the arch-functions to three-material T-junctions to be a function of the 
barycentric coordinates (Figure 5.3d). We find the best match between the scale- and 
noise-normalized measurements and the three-material model. The best match will yield 
the underlying material fractions. 
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Scale-normalized noisy measurements around a pivot point 

Projection of the scale- and noise-normalized measurement -ff onto the model ^ 

Figure 5.3 (a) A Set of measurements along a path in gradient direction. The measurement under 
investigation is marked by '*' (b) Projection onto the arch model, (c) The small deviations from 
the solid lines line correspond to the error in estimated arch position. (d) Derivatives as a 
function of barycentric coordinates near a three-material transition. This data was generated 
using L = -0.5, M - 0, H = 0.5, noise STD = 0.05, input O = 1.7 and operator O = 1.4. 
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Figure 5.4 (a-c) The angle a at which the fluid touches the colon varies, (d) The thin layer between 
two neighboring colon segments forms a three-material transition as well. One typical T-
junction (b) is selected to explain our method. Other angles are analyzed using the same 
paradigm. 

5.2.4 Three-material transitions 

The _LH-surface meets the colon surface at a variety of angles (Figure 5.4a-c) to form a 
three-material transition. We will initially use a T-junction with a = 90 deg to illustrate 
our method. Other angles are analyzed by the same paradigm. Let the junction-model v 
be the intersection of three edges (Figure 5.5a): 

' L x < 0, v > 0 

v(x ,y , z ) = \M ^ < 0 J > 0 

H x>0 
= L + (H-L)u(-x)u(y) + (M-L)u(x) 

(5.8) 

Furthermore, let V represent the junction-model after convolution with a 3-D Gaussian 
(Figure 5.5b). We assume that <7X , Oy , and <TZ denote respectively the effective scale of 
the Gaussian operators in x, y, and z-direction: 

V{x,y,z) = 

L + (H-L)G(-x,ax)G(y,(Jv) + (M-L)G(x,cTx) 
(5.9) 

Vw describes the gradient-magnitude at the junction (Figure 5c): 

Vw(x,y,z)^V(x,y,z)\\ (5.10) 

withi 

S7V(x,y,z) = 

'-{H-L)g{-x,ax)G(y,ay) + {M-L)g{x,<Jxf 

(H-L)G{-x,<Jx)g(y,cjy) 

0 

(5.11) 
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Figure 5.5 (a) A three-material transition is modeled using unit step-edges scaled with L, M and H. (b) 
The step edge values are low-pass filtered, (c) Gradient magnitude as a function of 
position. Only CT-measurements are scale-normalized; hence, the model-values are 
defined at <T = 1 for convenience, (d) Second directional derivative (SDGD) as a function 
of position. 
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Consider an anisotropic PSF. The anisotropy causes the gradient magnitude to vary as a 
function of edge orientation: an effect that complicates the procedure. It is preferred that 
the gradient magnitude exacdy at the edge only varies as a function of the type of 
transition. One might impose additional blurring to obtain isotropic resolution. However, 
this goes at the expense of resolution. Scaling the gradient magnitude by Ow yields the 
scale-invariant gradient magnitude. This results in identical amplitudes of the gradient 
magnitude at the edge for measurements of different scales. However, in the foUowing 
paragraphs we will show that in addition to the scale-normalization, the derivatives have 
to be scaled to have isotropic noise in the space spanned by the Gaussian derivatives. 

Let Vww correspond to the second derivative in gradient direction of the junction-model 
defined in equation (5.8) (Figure 5.5d). Due to the translation-invariance along z we get: 

V2V +V2V +2VVV 
K„,.(*,v,z) = - " >» " » (5.12) 

' x " y 

Similarly to scaling of the first order derivative, multiplication with <7W yields the scale-
invariant second derivative measured at the junction (Figure 5.5d). Notice that although 
the location of maximum gradient magnitude of blurred curved edges is displaced 
inwards [14], the corner point remains at its exact location [15]. 

5.2.5 Parachute function 

The parachute function yields the Gaussian derivatives as a function of material fractions 
(in barycentric coordinates and not as a function of space). The function is named 
parachute, because the surface created by the gradient magnitude as a function of 
material fractions reminds us of a parachute (Figure 5.6a). We will first derive an 
analytical expression of the function and then show that the second derivative is required 
to uniquely identify the material fraction in a three-material sample around a T-junction. 
An analytical expression is used to map material fractions onto a position in image space 
(x,y), after which the derivatives can be computed. Only two barycentic coordinates 
suffice as can be observed from (5.1). 

First, notice that ti (the fraction of material M) does not depend on y (Figure 5.5a). 
Consequently, the inverse cumulative Gaussian relates x to ti ■ 

x = G-l(t2,ax) (5.13) 

The inverse cumulative Gaussian function G_ 1 is obtained by inserting (5.2) in 
G(G~] [x)j = x as explained in Chapter 4. Solving for G~ (x) yields: 

G~' (x;a) = O^Terf"' ( 2 . r - l ) for xe [0,1] (5.14) 
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2 , 
W WW 

P{txM) 

A(T1V7W not unique for fixed J a I 4v 
^w'w 

Figure 5.6 (a) Displaying (TWIW as function of barycentric position reveals a parachute-shaped 
surface. A problem is that probing this surface along fixed intensity (dark line) results in 
equal altitude for two positions; the surface folds back, (b) Projecting the parachute upon 
(/,cT„/w) reveals the overlap-area, (c) Including the second derivative (b) in gradient 
direction (dashed line) solves this problem, (d) This can be seen as equal magnitudes have 
a different second derivative in gradient direction. 

Secondly, tj is regarded. Cons ider ing that 

t3=G{-x,ffx)G(y,ay) 

and 

t2=G(x,ax) <=> l-t2=G(-x,ax) 

equat ion (5.15) is rewri t ten in to 

t3=(l-t2)G(y,*y)~G(y,ay) = j ^ 

(5.15) 

(5.16) 

(5.17) 
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from which we derive 
r t ^ 

3 ^ (5.1 S 

Third, the generalized parachute-function describes the scale-invariant n derivative 
along the gradient direction as a function of material fraction by inserting equations (5.13) 
and (5.18) in either equation (5.9), (5.10) or (5.12) respectively for n = 0, 1 or 2: 

parachute (0, t\, t2, h) = V{x, y, z) 

parachute (\,tut2, h ) = awVw{x,y,z) (5.19) 

parachute {2,1uh,h) = olVww (x, y, z) 

with x and y functions of the material fractions as presented by equations (5.13) and 
(5.18). Note that the orientation of the T-junction was chosen in such a way that all z-
dependencies have vanished. Analogous to (5.19), higher-order derivatives may be 
computed as well. Figure 5.6 a illustrates the first-order parachute-ïunction, showing Vw 

as a function of barycentric coordinates (l —12 ~h'h->h) ■ 

Properties of the first-orderparacbute-fancuon are: 

• the corners of the triangle (nodes) denote pure materials with all partial derivatives 
equal to zero; 

• the edges of the triangle denote mixtures of two materials, the scale-invariant 
gradient magnitude is given by the arch-function (Chapter 4); 

• the interior of the triangle denote three-material mixtures; 

• the model of scale-invariant Gaussian derivatives as a function of material 
fractions around T-junctions; 

• the measurement pair (/,cr„,/M,) leads to ambiguity in material fractions for 
certain combinations. The 'second derivative is unique here and solves the 
confusion (Figure. 5.6); 

• the parachute-model is scale-invariant. Additional blurring of the data only lets 
measurements travel over the parachute surface (towards the center). 

Let us bear in mind that our objective is to classify samples into material fractions, based 
upon measurements from the Gaussian derivative jet. 
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5.2.6 No i se isotropy 

Typically, a measurement triplet such as ll,<TwIw,(Tw Iww) is contaminated with (filtered) 
noise in all three channels. Previous work disregards this aspect of the noise [5]. An 
approximation of the noise-free signal values can be obtained by finding the 'closest' 
point on the model. The distance metric to be used depends on the covariance matrix of 
the noise. The measurements are obtained by Gaussian derivative operators and may 
display different variances. The Euclidean metric can be used if the noise on the features is 
isotropic. In that case one can use an orthogonal projection of the observed 
measurements onto the model to find the 'best' guess for the signal features. Since the 
measurements are produced by filtering the acquired anisotropic volumetric data, we 
need to find the relation between the noise before and after filtering. This relation can be 
obtained by comparing the variances of the signal before <j}ü and after o},0 filtering, i.e. 
convolution with a Z)-order Gaussian derivative with scale <7op in N dimensions [16]: 

°l (20)! 
_2 J + 2 D J / 2 n n O n i V + i ) (5.20) 

op 

The result is used to predict the variances of noise in (l,(Tw]w,(Tw
2Iww) and to 

compensate for the differences. The scaling of die first axis remains unaltered, i.e. OQ = 1. 
The recipe to compute the scaling parameter 9\ for the first derivative is described in 
Chapter 4. The method takes the anisotropic resolution of the data into account. 
Analogously, a second scaling parameter #> f ° r m e second derivative is calculated. 
Therefore, the scaled triplet {l,8\awIw,62(7K}lmA displays isotropic noise. Projecting the 
noisy measurements i.I,a^Jw,aH}lmA onto the parachute model yields a robust 
alternative to the standard computed Gaussian derivatives across T-junctions. 

5.2.7 Mapping image measurements onto material fractions 

Our algorithm for mapping the image-based measurements onto material fractions 
involves the following steps. 

1. Detect three-material transitions by thresholding the gradient magnitude of the 
L,//-channels, which are produced by our two-material edge model (Chapter 4). 
This step can be skipped if one wishes to apply the three-material model to all 
voxels. 

2. Estimate the local values L, M a n d H of pure materials (Chapter 4). 

3. Compute the Gaussian derivative jet up to the second order in the gradient 
direction. Optionally we compute the same triplet of measurements at points 
along a trace that follows the gradient both uphill as well as downhill. 

4. Apply scale- and noise-normalization to all measurements. 
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5. Find the 'closest' point (or trace) on the corresponding parachute models for the 
given values of L, M, and H. This yields the noise-filtered values of the 
measurements. 

6. Assign the (barycentric) coordinates of the 'closest' point found to the material 
fractions. 

A single measurement triplet may be misclassified due to noise. This happens in 
particularly at the basis of the parachute, i.e. near the corners of the triangle at positions 
in which one material dominates (Figure 5.7 a). To solve this problem, a neighborhood 
of samples along w is used. Let {l,0[<jwIw,02(Tw

2lww}(.P) w ' t n P = h--,P be a set of 
P measurements along the orientation of the gradient, with q indicating the measurement 
at the starting voxel. Note that the partial derivatives are normalized by multiplication 
with d\(7w andd2(JK} ■ First, we need to find the trajectory at the parachute that yields 
the shortest Euclidean distance to the set of measurements. Second, the measurement is 
projected onto the selected 1-D parachute trajectory and not onto the 2-D surface. The 
trajectory that best matches the measurements is selected by minimizing the summed 
square residuals: 

t = (Vi ^,2 tq,i) = 

P 2 2 (5.21) 
argmin £ ] > X |<T^ / (" )(/ ,)-Parachute('?»^,i.^,2»^,3)| 

lq,\>,q.2''q.3 p=\ « = 0 

with /*"'(p) the n Gaussian derivative in gradient direction at point p along the trace, 
tpm the material fraction of material m at point p at the trajectory at the parachute, and 
x and y the functions of t2 and t->, as given by equations (5.13) and (5.18) with 

' l = l - ' 2 - ' 3 -

We implemented this minimization problem in a numerical manner as follows. 
Figure 5.7b shows the streamlines generated by uniform sampling of the T-junction 
(Figure 5.4b) followed by tracing the gradient uphill and downhill for a number of steps. 
Each such line corresponds to a curve in barycentric coordinate space via (5.15) and 
(5.16): Figure 5.7c. Notice that the lines cluster along the edges of the triangle, 
reflecting that the samples are rapidly dominated by two-material transitions while 
moving from the center of the T-junction. Alternatively, in Figure 5.7d and Figure 5.7e, 
similar lines are created by maintaining a minimum distance in barycentric coordinate 
space. The latter procedure yields a much more homogeneous distribution of the 
streamlines. Likewise, it allows us to control the resolution in material fraction space 
(Figure 5.7). 

The latter approach was taken to generate a 'code book' of traces. Each entry consists of 
model-computed triplets along a trace of length P, with P = 1, 3, or 5. Subsequently, we 
find the best match between image features (our measurements) and the entries in the 
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code book (representation of the model). The material fractions that are associated with 
that entry yield the desired material fractions. 

5.2.8 Generalization and visualization 

The concept introduced above is generalized by creating separate 'code books' for a 
variety of angles at which the fluid touches the colon (as in Figure 5.5). In the 
subsequent section, we will go into aspects such as how many angles are required and 
how to cope with more than one angle. 

The 'code books' for other angles can be generated in a similar fashion. We have chosen 
to generate these code books numerically. A representation of the selected geometry is 
generated and the Gaussian derivative jet is computed up to order two for single 
positions and traces as mentioned earlier. For each sample (or trace), we know the true 
underlying material fractions by computing the overlap between the Gaussian PSF and 
the model. We store the set of traces that fill the barycentric space in the code book. 

The exact, subvoxel localization of an edge usually depends on the type of transition. 
The concept of material fractions allows a straightforward segmentation of a material 
that borders on two or more other materials. Having a material fraction volume allows 
one to delineate the object via a single iso-surface (e.g. a material fraction threshold 0.5). 
Currently available rendering engines can be used after mapping the material fraction 
onto image values. 

5.3 Results 

We will demonstrate the efficiency of electronic cleansing by application of the 
presented three-material model to CT-data from the Walter Reed Army Medical Center. 
The National Institute of health offers a CT colonography image database complete with 
associated colonoscopy findings (www.vcscreen.com). 

Results are presented along the steps involved in electronic cleansing. First, the colon-
volume is segmented to provide a region of interest (ROI) (5.3.1). Second, the 
parameters used by the three-material model are automatically determined from the data 
(5.3.2). Third, the method is applied to synthetic image data generated using a PSF and 
noise level comparable to real data. This is done to assess the influence of trace length 
and model angle (paragraph 5.3.3). Fourth, electronic cleansing based on the three-
material model is applied to the CT data and results are shown using the unfolded cube 
display mode [2][17] (paragtaph 5.3.4). 

http://www.vcscreen.com
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Figure 5.7 (a) Specifically near the basis of the parachute a measurement may be easily misinterpreted. 
Streamlines in w-direction are used to efficiently sample the model and properly project noisy 
data obtained along w onto the model, (b) Streamlines in ve-direction, starting from a grid of 
points on the T-junction in image space and (c) in barycentric space. Over-sampling occurs in 
barycentric space, which is evident by the high density of lines near the edges of the triangle. 
(d)(e) Streamlines along iv-direction projected into barycentric space until the distance between 
the lines is below a certain minimum: 0.2 respectively 0.05 (distances in material fraction). 
(f)(g) The corresponding streamlines in image space. (h)(i) Typical ardfacts from 
undersampling disappear when changing sampling from 0.2 to 0.05 (distances in material 
fraction). Artificially generated polyps are used with sizes 3,5,7,9,11 mm and O = 1 mm. The 
left part of middle polyps connects to fluid (H) and right part connects to air (L). 
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5.3.1 R O I identification 

The colon volume is automatically segmented [18]. Clearly, an incomplete segmentation 
causes surface-parts to be missed. Figure 5.8 a,b demonstrate the amount of colon 
volume added by the electronic cleansing for a single case. In previous work, we 
demonstrated that in the set of 20 WRAMC patients on average 20% of the colon 
volume consisted of tagged material (Chapter 6). Moreover, the mean surface area 
obscured by tagged material was 23%. A more detailed analysis revealed that 7% of the 
surface area was identified to participate in a three-material junction. 

5.3.2 Electronic cleansing parameters 

Parameters of the parachute model are the mean intensities of the three materials near 
the junction (L, M and H), the (anisotropic) scale of the input data and the scale of the 
operator to calculate the Gaussian derivative jet. 

The intensity of tagged material specifically fluctuates, e.g. due to inhomogeneous mixing 
of the contrast material. To compensate for such variations, the expected material 
intensities are estimated locally. Figure 8c shows for three patients how the intensity 
varies along the path through the colon. The graphs were generated by determining the 
average intensity of tagged material at the colon surface perpendicular to the central path. 

The 3-D PSF of the CT scanner may be known in advance or, otherwise, measured from 
the data. We have found that for a given direction, the edge-spread function (ESF) is 
approximately constant over the image and, that the cumulative Gaussian is an excellent 
model to describe the CT values across a two-material transition (Chapter 2). We 
measured the edge spread by fitting this function to edge profiles at the colon surface 
(thereby assuming an anisotropic, Gaussian PSF). It was found that the in-plane 
resolution of the WRAMC CT-data was <7xy = 0.56 mm and the slice-resolution was 
az = 0.82 mm. The STD on the estimated scale was STD^a^) = 0.03 mm. 

The local values L, M and H of pure materials are estimated using the image-data to 
define the parachute model that describes the local image structure [5]. However, the 
angle at which the fluid surface borders on the colon-surface may vary. The influence of 
variation in model angle is studied in 5.3.3. 
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Figure 5.8 (a),(b) A typical colon volume is given (a) before and (b) after electronic cleansing, (c) The 
expected value of residue along a path through the colon as a function of path-position 
for three different WRAMC data-volumes referred to by exam-number. 
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5.3.3 Model evaluation: trace length and number of angles 

The proposed procedure was applied to synthetic low-pass filtered T-junctions in which 
the angle was varied from 0 to 7t and to which Gaussian noise was added (Figure 5.9a). 
The algorithm used models of three different angles (45, 90, and 135 degrees) and three 
sizes of the trace length (1, 3, and 5 points separated by <7W). After electronic cleansing, 
the largest artifact was determined. This artifact was identified by the largest deviation 
from the true surface (ei, indicated in black). Additionally, its maximum diameter ( £ 2 , 
indicated in grey) was determined by the full width halfway the bulge in the edge profile, 
which is the standard way in colonography [19]. Figure 5.9b-d gives the size of the largest 
artifact (in pixels) after cleansing using each model (45, 90, and 135 degrees) as a function 
of the angle in the synthetic T-junction separately and combined by using the best fit to 
one of die models. The standard deviations on the graphs were obtained by repeating the 
procedure with different noise realizations. Applying the three models simultaneously 
and letting the best match win substantially reduces the size of the artifacts found 
(Figure 5.9e). Figure 5.9f demonstrates that indeed the model is applied of which the 
angle is closest to the angle present in the synthetic data. 

5.3.4 Visualization 

Figure 5.10a illustrates mat simple diresholding is not sufficient to segment of the colon-
surface. Intra-luminal remains obscure significant parts of the colon-surface since at the 
fluid-surface, tissue-equivalent CT-values are found due to the partial-volume effect. A 
two-material based model as proposed earlier leaves artifacts along the line where the 
liquid-air interface touches the colon surface (Figure 5.10b). The diree-material method 
renders the colon surface free of artifacts (Figure 5.10c) with Figure 5.10d as a reference. 

At thin layers of residue as depicted in Figure 5.11, cleansing also gives a satisfying result. 
The additional thin layer model as illustrated in Figure 5.4d prevents that a hole is 
formed through an extremely thin tissue layer that separates two loops of the colon. 

The virtual colonoscopy interface is demonstrated in Figure 5.11. In addition, two polyps 
at T-junctions are depicted in Figure 5.12a-c without cleansing and Figure 5.12b-d with 
cleansing. We demonstrated that using electronically cleansed data rather than the original 
data yields improved observer confidence, time-efficient inspection and no difference in 
the conspicuity of cleansed and uncleansed polyps (Chapter 6). 
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Figure 5.9 (a) An electronic phantom was created in which the angle of the tagged material varied. 
Gaussian distributed noise was added with SD=10 (best case) and SD=50 (worst case). 
The size of the largest artifact after cleansing was measured by way of e l , E2. (b) Result 
using the proposed method as a model of a single angle at 45 degrees is used, (c) similarly 
using a single angle at 90 degrees, and (d) 135 degrees. Vertically is the angle of the 
synthetic junction, horizontally the error expressed in pixels, (e) Result using the best 
match in code books of all three models, (f) Winning code book identified by its angle 
(vertically). 
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Normal finding Polyp 

WRAMC - 35 supine 
pedunculated polyp seen in 

the sigmoid colon that measures 
7 mm in longest dimension. 

(d) 

Figure 5.10 (a) before cleansing, (b) with two-material cleansing and (c) with three-material cleansing 
(left) normal colon and (right) a 7 mm polyp together with its (d) optical colonoscopy 
image just at the moment of removing it. 
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Figure 5.11 (a) Virtual endoscopic view of part of the colon with a thin layer of fluid, (b) Fluid 
segmentation using the three-material transition-model reveals detailed colon-anatomy, (c) 
Virtual endoscopic enhanced 'unfolded' visualization before and (d) after electronic cleansing. 
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(a) CT value at polyp (b) Material fraction at polyp 

Figure 5.12 Two polyps from the Walter Reed AMC data set: nr 333, and 357. (a) Part of the data 
showing the CT value at the polyp and (b) material fraction at the polyp. Visualization of 
(c) original data and (d) using electronic cleansing. 

5.4 Conclusion 

We proposed a model-based approach to determine material fractions in partial-volume 
voxels at tliree-material transitions. It solves the partial-volume effect that hampers 
accurate delineation of materials. The method is translation-, rotation- and scale-invariant 
— even for data with an anisotropic resolution and non-cubic voxels. All model 
parameters are estimated from the data such that the result is patient-specific and 
specifically adapts to the variability regarding the intensity of the intra-luminal remains. 

We derived an analytical expression relating Gaussian derivatives (the features) in gradient 
direction to material fractions at three-material transitions: the parachute model. Triplets 
of Gaussian derivatives were computed from the noisy input image around a voxel in the 
proximity of a three-material transition. The measurements were gathered along a path 
that follows the gradient both uphill and downhill from a voxel under consideration. All 
measurements were properly scaled to compensate for orientation-dependent resolution, 
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(c) lso-surface visualization using 
constant CT value in original data 

(d) lso-surface using constant material 
fraction in cleansed data 

sampling and anisotropy of the noise between the derivatives of different order. The 
scale/noise normalized measurements are compared against 'code books' generated from 
modeled junctions in which the angle is varied. The entry that produces the best match 
to our observations is selected. This yields noise-suppressed Gaussian derivatives as a 
robust alternative to the standard computed Gaussian derivatives. The relative position 
emanating from the matching yields an approximation to the underlying noise-free 
material fractions at three-material transitions in a barycentric coordinate system 

Previously described methods [5] only provided an analytical expression of the two-
material transition and did not model the anisotropy of the data. Clearly, anisotropic 
input data may be blurred to meet such a requirement. It should be noticed that our 
method does not sacrifice resolution like that. 
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In addition, previous work disregarded noise. This work shows how to approximate the 
underlying noise-free material fraction at a three-material transition. Noise is often 
disregarded by visualization-methods. An advantage of projecting measured data onto a 
model is that noise is dealt with before proceeding into the visualization process. Finally, 
we show how to properly sample the three-material transition model for practical use. 
Typically, the data are 5123. However, the method is edge based and needs only to be 
applied to positions not dealt with by a two-material-transition model. On average, our 
implementation adds two minutes to the processing to deal with the junctions. 

The proposed method does not require complicated widgets for transfer function 
selection. The visualization examples involved user interaction merely to decide which 
material to visualize. Objects of interest were rendered at a constant, 0.5 material-fraction 
threshold. 

The proposed method facilitates CT colonography to become effective with tagged data 
in combination with a 3-D display mode. The method is currendy being evaluated in a 
clinic for diagnostic purposes. Our current work focuses on the application of the three-
material model outside the scope of CT colonoscopy. 
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Chapter Six 

Lesion Conspicuity and Efficiency of CT 
Colonography with Electronic Cleansing Based 
on a Three-material Transition Model 

This chapter is based upon a publication that is submitted [1]. 

This chapter reports on the effect on conspicuity of polyps as well as the practical 
efficiency of an electronic cleansing algorithm for CT colonography. 

All patients were included from a public database; they all adhered to an extensive bowel 
preparation scheme. Patient group I consisted of all patients harboring polyps larger than 
6 mm. This group served to assess the. effect of the algorithm on the conspicuity of 
polyps. There were 129 images of polyps in total; 59 partly or completely resided in 
tagged material. Patient group 11 consisted of 19 randomly chosen patients from the 
same database to test the algorithm's efficiency: 10 with polyps larger than 5 mm and 
9 without such polyps. AH polyps from patient group I were rated regarding their 
conspicuity by one experienced observer. We used an enhanced 3-D visualization (the 
"unfolded cube display"). Two experienced observers evaluated all patients from patient 
group II using the enhanced 3-D display both before and after cleansing. 

On average 20% of the colon volume contained fecal material or fluid. The observer 
rated the conspicuity of polyps residing in air not differently from 'cleansed' polyps that 
were partly or fully covered by tagged intraluminal remains (p = 0.6). Median evaluation 
time per patient for the cleansed data was significantly shorter for both observers than 
for the original data (12 minutes versus 17-20 minutes per patient; p < 0.004). Both 
observers rated the assessment effort for the cleansed data significantly smaller 
(p < 0.001) and observer confidence was rated significantly larger for the cleansed data 
(p < 0.007). 

The conspicuity of polyps is identical for partially-covered polyps that were uncovered 
by the proposed electronic cleansing and polyps bordering on air that did not need 
electronic cleansing. The proposed cleansing method sustains a lower evaluation time, 
lower assessment effort and larger observer confidence than a conventional evaluation 
method without cleansing. 
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6.1 Introduction 

Computed Tomography (CT) colonography is a minimally invasive procedure that is 
advocated for polyp screening [2]. Residual fecal material and fluid are well known to 
hinder CT colonography evaluation, especially when using a 3-D display mode. It may 
cover lesions (preventing detection), or reversely, mimic polyps (necessitating superfluous 
2-D verification and possibly reduce specificity). Fecal tagging was introduced to 
discriminate between tissue and fecal material [3][4]. It facilitates a limited bowel 
preparation, which may contribute to a better patient compliance. 

Electronic cleansing aims at replacing tagged materials (i.e. fecal remains and fluid) by air. 
The operation is a prerequisite to evaluate limited bowel preparation data in a primary 
3-D display and it may aid 3-D problem solving with a primary 2-D reading. 

Several electronic cleansing algorithms based on the increased attenuation of tagged 
material were described previously [5] [6]. In our opinion, the variety of presendy 
proposed algorithms reflect that a perfect solution has not been found yet. Accordingly, 
incomplete processing is still reported to leave artifacts [7]. A specifically noticeable 
problem is posed by the distracting 'bumps' emanating from locations where air, soft 
tissue and tagged material meet [7]. An electronic cleansing algorithm was devised aiming 
to improve the accuracy at such three-material junctions [8]. The method adapts to 
patient specific conditions, such as the local variation of the tagged material density, and 
is automated. 

This chapter studies the effect on lesion shape as well as the practical efficiency of the 
electronic cleansing algorithm. The method is primarily tested regarding lesion 
conspicuity, cleansed surface and cleansed volume, evaluation time, assessment effort and 
observer confidence by employing an enhanced, primary 3-D display method without 
and with cleansing. We included patients from a public database that all had undergone 
an extensive preparation [9]. We consider an excellent electronic cleansing performance 
under such circumstances a prerequisite before proceeding to limited preparation CT 
colonography. 

We hypothesize that in a 3-D display the conspicuity of polyps is identical for partially-
covered polyps that were uncovered by electronic cleansing and polyps surrounded by air 
(obviating electronic cleansing). Additionally, we expect that electronic cleansing 
facilitates comprehensive visibility and time efficient inspection in comparison to using 
uncleansed data. Due to this, we anticipate that the assessment effort of observers is 
lower and confidence of observers in their diagnosis is significandy higher. 
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(a) (b) 

Figure 6.1 Images from WRAMC study case 35, prone position', (a) Detail of the CT colonography 
data with air, tissue and tagged material, (b) Electronic cleansing replaces tagged material 
by air. The colors are merely added for illustration purposes to separately indicate the air 
soft-tissue interface and the tagged material-soft tissue interface. The electronic cleansing 
method particularly focuses on three-material junctions. The iso-value is -650 HU. The 
window/level setting of the images is (w = -1250, / = -50). 

6.2 Material and methods1 

6.2.1 Patient population 

We included patients from publicly accessible study data from the Walter Reed Army 
Medical Center (WRAMC) made available by the National Cancer Institute 
(www.vcscreen.com) [9] [10]. 

Patient group I contained all patients from the database harboring polyps larger than 
6 mm in diameter (measured during colonoscopy), irrespective of shape or location. 
There were 36 polyps between 6 and 10 mm in diameter in 32/51 patients and 29 polyps 
larger than or equal to 10 mm in 24/51 patients amounting to 65 polyps in total and 129 
images of polyps in total. The median age of the patients was 57 years (range: 48 - 76 
years), 36 were male and 15 female. Patient group 1 served to explore the effect of 
electronic cleansing on lesion conspicuity. 

Patient group II consisted of 10 randomly selected patients from the aforementioned 
database that contained polyps larger than 5 mm diameter, as well as 9 randomly selected 
patients without such polyps, see Table 6.1. There were 9 polyps between 6 and 10 mm 
in diameter in 7/19 patients and 3 polyps larger than or equal to 10 mm in 3/19 patients 

1 This work was supported by Philips Medical Systems, both financially and by providing equipment. The 
authors had control of the data and information submitted for publication. 

http://www.vcscreen.com
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amounting to 12 polyps in total. The median age of the patients was 55 years (range: 50 -
78 years), 13 were male and 6 female. Patient group II was taken to investigate the 
efficiency of the electronic cleansing algorithm. 

6.2.2 CT colonography 

The patients had undergone a standard, extensive colonic preparation. Patients 
consumed 500 ml of barium (2.1 percent by weight; Scan C, Lafayette Pharmaceuticals, 
Tyco Healthcare/Mallinckrodt, St Louis, MO) and 120 ml of diatrizoate meglumine and 
diatrizoate sodium (Gastrografin, Bracco Diagnostics, Princeton, New Jersey, USA). 
Distension was achieved through patient-controlled insufflation of room air. 

6.2.3 Colonoscopy 

CT colonography findings performed at Walter Reed Army Medical Center were 
disclosed during colonoscopy using segmental unblinding. The colonoscopy findings 
were available via a report that included photographs of each polyp, size measurement, 
morphology (pedunculated, sessile, flat) and location: cecum, ascending colon, transverse 
colon, descending colon, sigmoid and rectum (Figure 1.1a). 

6.2.4 Electronic cleansing 

The electronic cleansing method assumes that a measured CT value arises due to a 
combination of three materials: soft tissue, air and tagged material. Initially, the 
percentage of materials is determined at each voxel. Subsequently, the partial volume of 
tagged material is replaced by air and a new cleansed CT value is calculated. At last, an 
enhanced 3-D method visualizes the colon from an endoluminal perspective as if there 
are no fecal remains (Figure 6.1). 

Consider the profile drawn in (Figure 6.2a). Suppose that one proceeds along this line 
and at each position the data value is recorded as well as the local 'steepness' of the 
transition (mathematically: the gradient or first derivative of the grey value). Plotting this 
in a graph results in arch shaped curves (Figure 6.2b). Thus, each transition type (1,2,3) 
yields its own arch. Consider for instance the arch corresponding to the transition from 
air to tagged material (transition 2). It starts at the Hounsfield unit of air, proceeds over 
the transition, and ends at the Hounsfield unit of tagged material. Moreover, the arch 
from air to tagged material is higher than the arch from air to soft tissue, reflecting the 
steeper data value transition between these materials.' 

The material 'constitution' of a voxel is estimated in the way sketched in Figure 6.2c, |8]. 
Initially, the type of transition is identified (i.e. air-tagged material). Subsequently, the 
nearest point on this arch is taken in order to obtain the material percentages. The latter 
procedure takes into account that the image values of the materials may vary (this 
specifically goes for tagged material). 
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100% air 100% tissue 

Figure 6.2 (a) An arbitrary line in a CT colonography image, (b) Going along this line in the indicated 
order, the image intensity is drawn against the local 'steepness' of the data value profile 
(mathematically: the derivative of the data value profile), (c) A voxel's constitution is 
estimated by first identifying the proper arch. Then, the closest point on the arch is 
selected, which, in turn, enables us to estimate the material percentages. A more detailed 
explanation of the method is given in the electronic cleansing section. 

Simply applying this a lgor i thm to a sample dataset (Figure 6.3a) leads to the 3 -D 
endoluminal view of Figure 6.3b. T h e well visible artifact emana tes from a band- shaped 
area whe re three materials meet , also descr ibed in [7j. A separate mode l was developed 
for such three-material junct ions that , again, relates image value, local ' s t eepness ' of the 
transi t ion, and o the r local intensi ty proper t ies to a voxel's const i tu t ion [8]. Effectively, the 
arch mode l for two materials is ex tended to three materials. T h e junct ion artifacts are 
solved by first de tec t ing these locat ions and then applying the separate mode l to est imate 
the material percentages [8]. Figure 6.3c shows the same render ing after also process ing 
the three-material transit ions. 

T h e cleansing m e t h o d was implemented by us on a proprietary, exper imental vers ion of 
the V i e w F o r u m works ta t ion (Philips Medical Systems, Best , T h e Ne the r l ands ) . Fo r a 
t h o r o u g h descr ipt ion o f the m e t h o d the obse rver may consul t [8]. 

6.2.5 O b s e r v e r s 

A n abdomina l radiologist (observer 1) and a research fellow (observer 2) were involved in 
reading the data. O b s e r v e r 1 had a prev ious exper ience of approximately 1200 
co lonoscopy verified C T co lonography examinat ions at the start o f the study. O b s e r v e r 2 
had a previous exper ience of 350 such examinat ions . 
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6.2.6 Image review to study polyp conspicuity 

The conspicuity study focused on all true polyps larger than or equal 6 mm in as 
indicated in the WRAMC colonography reports from patient group I. Prone and supine 
positions were considered as separate cases. Each case was assessed by a researcher who 
had a background in designing electronic cleansing algorithms. This research fellow 
determined whether the polyp resided in air, or was pardy/fully covered with tagged 
intraluminal remains. 

Observer 2 reviewed all the polyps residing in air (that did not require cleansing) and the 
ones that were uncovered by the electronic cleansing. The cases were presented in a 
random order and the observer was not informed if the polyp had been electronically 
cleansed. 

Each polyp was marked and direcdy presented to the observer by means of the 3-D 
display (unfolded cube display: ViewForum, Philips Medical Systems) [11]. The position 
along the centerline was under control by the observer. 2-D reformatted views of the 
original CT data were initialized by clicking on a position in the 3-D endoluminal images. 
The window/level setting of the reformats was by default (w = 1250, / = -50), but this 
could be freely adapted by the observer. 

6.2.7 Evaluating polyp conspicuity 

Initially, the observer indicated for each case on a five-point scale whether he suspected 
that the polyp did not require cleansing or was uncovered by electronic cleansing (e.g. by 
noticing a smoother polyp-surface due to image processing). On this scale 1 
corresponded with a polyp definitely considered not to be 'cleansed' and 5 with a polyp 
strongly suspected to be 'cleansed'. 

Subsequendy, each polyp was scored with respect to 'conspicuity' on a 5 point Likert 
scale using both the enhanced 3-D display and 2-D reformats: 

1) Inadequate: the lesion is not visible. This lesion will not prompt a 2-D inspection. 

2) Moderate to questionable: the lesion is hardly visible. This location might lead to 
2-D inspection. 

3) Average: it is expected that the lesion is detected and that the location will prompt a 
2-D inspection. 

4) Good: the lesion is well visible and this location should provoke a 2-D inspection. 

5) Excellent: the lesion is very well visible and this location will certainly lead to a 2-D 
inspection. 

Finally, the observer had to indicate for the cases scored as 'inadequate' or 'average' 
whether in his opinion the cleansing algorithm caused the difficulty or if there was 
another cause: 1 inappropriate cleansing; 2 other (e.g. CT artifact, flat lesion). In the latter 
case he was asked to indicate what in his opinion was the reason of the difficulty. 
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Figure 6.3 (a) 3-D endoluminal rendering without applying electronic cleansing (WRAMC study case 
416). (b) Result after applying cleansing by means of the method of Figure 6.2. Nonce the 
artifact at the three-material junction in the purple shaded band, since the method is only 
suitable for two-material edges, (c) Result after applying die described extended cleansing 
method that is applied to the three-material voxels indicated by the shaded band in image (b). 

6.2.8 Outcome parameters and statistical analysis on lesion conspicuity 

The polyps that were scored to reside in air were compared with those pardy or 
completely submerged in fecal material. The difference in the consideration whether a 
polyp was 'cleansed' was tested by means of the Mann-Whitney test (Wilcoxon 
Rank-sum test). Differences in conspicuity between cleansed and uncleansed polyp-data 
were also statistically tested by means of the Mann-Whitney test. Two-sided tests were 
used to assess both diese differences. A/7-value less than or equal to 0.05 was considered 
to correspond to a statistically significant difference 

6.2.9 Image review to study efficiency 

The original, uncleansed data from patient group II was reviewed as follows: 

Part 1: Enhanced three-dimensional cine loops (unfolded cube display) were examined in 
prone and supine position, starting with the former (ViewForum, Philips Medical 
Systems) [11]. The two positions were electronically linked: after clicking in one unfolded 
cube image, the corresponding unfolded cube image of the other position was also 
displayed [12]. The frame rate was under control by the observers. 2-D reformatted views 
of the original CT data became accessible by clicking on a position in the 3-D 
endoluminal images. The window/level setting of the reformats was by default 
(w — 1250, / = -50), but this could be freely adapted by the observers. Lesion size was 
measured by means of electronic calipers on the 3-D view (we used polyp size in 
matching the encountered lesions to the reference standard). 

Part 2: After reviewing the unfolded cube images, the original, axial CT slices were 
inspected to verify surface parts obscured by fecal material and fluid. Again, the applied 
window/level setting was by default (w = 1250, / = -50), but this could be freely adapted. 
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The cleansed data of a patient was reviewed in a similar manner: 

Part 1: 3-D unfolded cube images were generated from the cleansed volume. These images 
were inspected in the same way as the unfolded cube images from the uncleansed volume. 
However, the reformatted views were based on the original (uncleansed) data as 
proposed in [7j. 

Part 2: After reviewing the unfolded cube images, the original, uncleansed axial CT slices 
were inspected in the same way as described previously, again inspired by [7]. 

Figure 6.4 illustrates the interface to read the data. 

6.2.10 Evaluating efficiency 

Observer 1 and observer 2 independendy evaluated the uncleansed data and the cleansed 
data from patient group II. Both were blinded to findings during colonoscopy, findings 
by themselves for the same patient (original versus cleansed) as well as each other's 
findings. Additionally, they were unaware of the prevalence of polyps. The interval 
period between two evaluations of the same patient was at least 4 weeks. The evaluations 
using the uncleansed data preceded those with cleansed data. The cases were presented in 
random order. Each surmised polyp was scored with respect to size, morphology, 
location (colon segment), and lesion confidence. The lesion confidence was qualified on 
a five-point Likert scale: 0 not a lesion and 4 absolute confidence of a lesion. The 
observers were aware that in a clinical setting a confidence of 2 or more would indicate a 
relevant lesion. 

The reviewers were aware that electronic cleansing algorithms may leave artifacts, 
specifically clouds of debris and lines of ridges at junctions. They were instructed to 
report such artifacts and indicate whether it might preclude polyp detection. 

The observers rated the assessment effort per.colon segment on a four-point Likert scale: 
1, extremely easy; 2, good; 3, difficult; 4, extremely difficult. Additionally, they rated their 
confidence in the reading per segment on a three-point Likert scale: 1, confident; 2, in 
doubt; 3, extremely doubtful. All these measures were recorded after complete evaluation 
of a patient. 

6.2.11 Reference standard to study efficiency 

Lesions detected during CT colonography evaluation were matched with the findings in 
the colonoscopy report (see above). This was done by a research nurse (experience > 500 
such matchings) under the supervision of a research fellow (experience > 350 CT 
colonoscopy examinations). Both were not involved in reading the CT colonography 
studies. 
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(b) 2-D secondary axial imaging. 

Figure 6.4 Interface for the CT colonography evaluation (WRAMC study case 393). (a) Initially the 
enhanced 3-D unfolded cube display mode was used. Prone (left) and supine (right) views 
were linked using the colon trajectory, (b) Subsequendy, axial CT images were inspected 
while tracking the colon's centerline. The same interface was employed to read both the 
original and the cleansed data. 

A polyp detected via our CT colonography evaluation was considered true positive if it 
matched a colonoscopy finding with regard to size, morphology and location (i.e. same 
segment). A deviation in size by at most 5 mm was accepted to accommodate with the 
inherent inaccuracy of colonoscopic size measurement. A false negative finding was 
defined as a polyp detected during colonoscopy that did not match any CT colonography 
finding. A CT colonography finding with a lesion confidence of at least 2, larger than or 
equal to 6 mm and not matching a polyp detected during colonoscopy was considered to 
be false positive. All detections smaller than 6 mm or scored with an observer confidence 
lower that 2 were not considered relevant and discarded. 
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6.2.12 Cleansed surface fraction and cleansed volume 

We approximated the 'true' colon's interior volume by thresholding the cleansed volume 
at -650 HU. The 'true' surface voxels border on this volume. Likewise, thresholding the 
original volume at —650 HU identifies the 'uncleansed' colon's interior volume; the 
'uncleansed' voxels border on the latter interior volume. 'Cleansed' surface voxels are 
those that are part of 'true' surface voxels and are not part of the 'uncleansed' surface 
voxels. These conditions aim to select voxels at the tagged-material/soft-tissue transition. 
Similarly, the cleansed volume voxels are those that are part of the 'true' interior volume 
and not part of the 'uncleansed' volume. 

6.2.13 Outcome parameters and statistical analysis on efficiency 

Evaluation time 

The evaluation time per patient was measured for both observers, for the cleansed and 
the original data. The time for evaluating the enhanced 3-D cine loop (Part 1) and the 
axial slices (Part 2) was recorded separately. The measured times included annotation of 
the polyps, i.e. size measurement and indications of location, morphology and lesion 
confidence. 

All evaluation times for the original data were compared with the corresponding times 
for the cleansed data using Wilcoxon's matched pairs signed ranks test. Differences were 
considered significant at P < 0.05. The initialization time (e.g. for loading the data) was 
disregarded in the analysis. 

Assessment effort and observer confidence 

Differences in assessment effort and observer confidence between the original data and 
the cleansed data were statistically tested per segment by means of Wilcoxon's matched 
pairs signed ranks test. Two-tailed P values were used and a P value less than or equal to 
0.05 was considered statistically significant. 

Sensitivity I specificity 

We consider a statistical comparison of sensitivity and specificity between the two 
methods based on the set of 19 patients not possible. Consequently, the measures of 
sensitivity and specificity by itself merely serve as descriptive statistics for polyps > 5 mm. 

The sensitivity of both display methods was determined on a per polyp basis. The 
specificity of both display methods was determined by the false positive rate. 

Cleansed surface fraction and cleansed volume fraction 

The mean cleansed surface fraction is defined as the average number of 'cleansed' 
surface voxels divided by the average number of 'true' surface voxels. It is considered to 
reflect the fraction of 'true' surface added by the cleansing algorithm. 
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Figure 6.5 Histograms of polyp conspicuity. The difference between polyps residing in air and 
those partly or fully residing in tagged fecal material was not significant (p = 0.6). 

The mean cleansed volume fraction is defined by the average 'cleansed' volume divided 
by the average 'true' volume. It is taken to represent the fraction of additionally exposed 
'true' colon volume. 

6.3 Results 

70 (images of) polyps were completely surrounded by air, 18 polyps completely resided in 
tagged intraluminal remains and 41 polyps pardy resided in remains amounting to 59 in 
total that border on tagged material. Two patients (WRAMC: 32, 32) were excluded from 
the study due to inadequate diagnostic quality. Four patients (WRAMC: 26, 98, 220, 256) 
were excluded due to incomplete data. 

6.3.1 Conspicuity 

The observer rated polyps residing in air significantly lower on scale whether he 
suspected that the polyp pardy or fully resided in fecal matter or fluid (p < 0.05). The 
reader reported a slight 'noise' suppression of electronic cleansing, which was apparent 
by a less 'bumpy' surface (see also Figure 6.81 and II). 

The conspicuity was rated identically for partially-covered polyps that were uncovered by 
electronic cleansing and polyps bordering on air that did not need electronic cleansing 
(p = 0.6). Figure 6.5 shows the normalized histogram of the conspicuity. Figure 6.81 and 
II show examples. 

The polyps scored with 'inadequate' or 'moderate to questionable' conspicuity were: 
WRAMC 35 supine, 311 supine and prone and 185 supine. The reader attributed the 
difficulty of all to the complex shape of the polyps (i.e. 'other' and not 'inappropriate 
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cleansing"). One polyp (i.e. WRAMC 35S) was at a fold. The other polyps were at the 
ileocecal valve. 

Images of all polyps are accessible via the Internet [13]. The images are sorted according 
to the conspicuity rated by the observer. 

6.3.2 Evaluation time 

The median evaluation time per patient for inspecting the 3-D unfolded cube images (i.e. 
Part 1) significantly differed between the original (uncleansed) data and the cleansed data 
for observer 1 (p — 0.037) (Table 2). The median evaluation time for Part I was not 
significantly different for observer 2 (p = 0.396). The median time per patient for 
reviewing the axial 2-D slices (i.e. Part 2) was significantly larger for the original 
(uncleansed) data than for the cleansed data for both observers (for both: p < 0.001). 
The median total evaluation time per patient using the original data (observer 1: 20'45" 
min; observer 2: 17'14") was also significantly larger than using the cleansed data 
(observer 1: 12'25" min; observer 2: 11'8") for both observers (observer 1: p < 0.001; 
observer 2: p < 0.004). 

6.3.3 Assessment effort and observer confidence 

Both reviewers reported a "cloud of debris" artifact on one location emanating from 
acquisition artifacts. It was not considered to preclude polyp detection. N o distracting 
lines or ridges at junctions were encountered. 

Both observers rated the assessment effort for inspecting the original data significantly 
larger than for the cleansed data in each segment. Accordingly, the assessment effort over 
all segments was rated significantly larger for the original data than for the cleansed data 
by both observers (for both p < 0.0001). 

Figure 8.6 shows histograms of the assessment effort for both observers. 

The observer confidence over all patients was rated significantly smaller for the original 
data than for the cleansed data (observer \:p < 0.007; observer 2:p < 0.0002). Figure 6.7 
contains histograms of the observer confidence for both observers. 

6.3.4 Sensitivity and Specificity 

The sensitivity per polyp was identical for the original data and the cleansed data and for 
both observer: 10/12 = 0.83. Observer 1 had, in total, five false positive detections in the 
original data and four false positive detections in the cleansed data. Observer 2 had two 
false positive detections in the original data and four in the cleansed data. 
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Figure 6.6 Histograms of the assessment effort of the CT colonography inspection for both 
observers over all segments and patients. Both observers had less effort to inspect 
electronically cleansed data. 
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Figure 6.7 Histograms of observer confidence in the primary 3-D display using original and 
cleansed data for both observers over all patients. The confidence was significantly 
increased using electronically cleansed data. 
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Figure 6.81 Examples of polyps before (a, b) and after (c, d) electronic cleansing from WRAMC: study 
cases 38S (excellent), 192S (good), 226S (average). The rate of conspicuit}' refers to the 
cleansed data. Figure 6.8II contains 35S (questionable) and 185S (inadequate conspicuity). 
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questionable! 

inadequate 

Figure 6.811 Examples of polyps before (a, b) and after (c, d) electronic cleansing from WRAMC study 
cases 35S (questionable) and 185S (inadequate conspicuity). The rate of conspicuity refers 
to the cleansed data. 

6.3.5 Cleansed surface fraction and cleansed volume fraction 

The mean cleansed surface fraction was 269640 voxels/975378 voxels = 0.27 (range: 0.16 
to 0.46) and the mean cleansed volume fraction was 0.36 liter / l .84 liter = 0.20 (range: 
0.12 to 0.45). 
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Figure 6.9 visualizes two examples of the air volume before and after cleansing. The top 
images are from the patient with the highest cleansed volume fraction in both scans 
(patient number: WRAMC 9; supine: 0.44 1 /0.98 1 = 0.45; prone: 0.44 1 /1.33 1 = 0.33); 
the bottom images are from the patient with the lowest cleansed volume fraction in both 
scans (patient number: WRAMC 408; supine: 0.31 1 /2.33 1 = 0.13; prone: 0.30 1 /2.33 1 
= 0.13). 
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Figure 6.9 Visualization of the segmented colonic volume without (left) and with electronic 
cleansing (right) from the colon with the highest cleansed volume fraction (CVF) and 
the colon with the lowest cleansed volume fraction. 
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6.4 Discussion 

This study shows that the conspicuity of polyps is identical for partially-covered polyps 
that were uncovered by the proposed electronic cleansing and polyps bordering on air 
that did not need electronic cleansing. 

It is demonstrated that primary 3-D CT colonography using this cleansing method 
enables comprehensive visibility (mean cleansed surface fraction 27%) and time efficient 
inspection (about 12 minutes per patient) superior to using original data (uncleansed). 
Moreover, the assessment effort of the observers was low and the confidence of the 
observers was high. The sensitivity for polyps larger than 5 mm was high (10/12) and the 
false positive rate low (totally two to four false positive findings in 18 patients). 

It is a complex problem to measure the performance of an electronic cleansing algorithm. 
Effectively, one should like to determine the extent to which the cleansing algorithm 
modifies polyp shape so that it is not detected anymore. To do so, one might consider 
determining the amount of distortion that the algorithm induces to a polyp by 
comparison to a manually or semi-automatically defined reference shape. We did not opt 
to do so since there may be a complex relation between any such deviation and the 
detection accuracy. 

Alternatively, the accuracy of polyp detection after electronic cleansing might be 
compared to the detection accuracy using a primary 2-D method. However, such a 
comparison is confounded by the reading strategy and may not reflect the accuracy of 
the cleansing method. 

It is for this reason that we compared polyp conspicuity of cleansed polyps and those 
residing in air (which are not affected by the algorithm). 

Several previous papers describe technical innovations regarding electronic cleansing 
[5] [6] [14]. Zalis et al. [5] indicated that it will be essential to ascertain how artifacts still 
present in successfully tagged, electronically cleansed data will affect observer 
performance. The complex nature of electronic cleansing is also observed by Pickhardt 
[6] who identified pitfalls in reading electronically cleansed data. A common artifact 
described in the latter reference occurs at locations where air-fluid levels interface with 
the bowel wall. Proper action at these locations is important which is signified by 33/91 
images of polyps found residing at such a location in the present study. The algorithm 
tested by us aims to improve electronic cleansing by finding a solution for this. Our 
reviewers encountered only one artifact in the study part on the efficiency which did not 
result from the cleansing algorithm. We hypothesize that the short average 3-D 
evaluation time, the high confidence, the low assessment effort, and the high specificity 
also signify that there were hardly any artifacts that complicated the reading. 
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Table 6.1 The table summarizes WRAMC study cases that were used to measure the evaluation 
efficiency with and without electronic cleansing. A research fellow indicated whether a polyp 
resided in air (A), pardy resided in fecal matter (P), or fully resided in fecal matter (F). 

WRAMC-
patient number 

8 

9 

11 

19 

20 

32 

35 

38 

56 

60 

64 

81 

138 

193 

180 

393 

408 

416 

437 

Colonoscopically 
proven polyps 

6 mm, sessile, rectum 

none 

7 mm, pedunculated, hepatic fl. 

10 mm, pedunculated, distal asc; 

7 mm, pedunculated, sigmoid 

6 mm, pedunculated, sigmoid 

none 

7mm, pedunculated, sigmoid 

10, round, sigmoid 

8 mm, pedunculated, prox. asc. 

none 

none 

none 

none 

8 mm, pedunculated, hepatic fl.; 

7 mm, sessile, sigmoid 

none 

none 

12 mm, pedunculated, prox. asc. 

none 

6 mm, sessile, rectum 

Location 

Supine 

A 

-
A 

P 

A 

P 

P 

P 

F 

A 

A 

A 

A 

Prone 

A 

-
A 

A 

F 

A 

P 

A 

A 

P 

P 

A 

A 

Table 6.2 Median evaluation time (and interquartile range) per patient using original and cleansed 
data stratified by the primary 3-D part (unfolded cubes) and the 2-D part (axial CT slices) 
of the evaluation. 

Evaluation part: Original data Cleansed data Paired difference 

Observer 1 Observer 2 Observer I Observer 2 Observer 1 Observer 2 
Unfolded 

cubes (Part 1): 

Axial 
CT slices (Part 2): 

Total: 

14'46" 
(6'44") 

5'6" 
(2'22") 

20 '45" 
(6'48") 

11 '47" 
(4'38") 

4 ' 1 7 " 
(P46") 

17'14" 
(5'49") 

11'29" 
(5'12") 

0 '43" 
(0'34") 

I2 '25" 
(5'42") 

10'41" 
(5'30") 

O'O" 
(0'00") 

n'8" 
(5'34") 

2 '54" 
(6'29") 

4 ' 9 " 
(2'4") 

7 '51" 
(7'52") 

1'16" 
(8'24") 

3 '53" 
(1'34) 

5 '58" 
(7'49") 
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We did not find previous results on the effectiveness of electronic cleansing regarding 
cleansed surface fraction or cleansed volume fraction. A related finding on surface 
visibility is that on average 99.5% of the true colon surface becomes visible using the 
unfolded cube image sequences (95% using forward and backward looking image 
sequences) [11]. The average cleansed surface fraction (27%) by far exceeds the missed 
parts in those mentioned display modes. 

We consider the applied, extensive preparation comparable to other such regimes (e.g. 
[15]). The reported cleansed surface fraction may therefore indicate how large an area of 
the colon surface remains covered by fecal matter. Still, a large cleansed surface fraction 
may not be clinically relevant, as it may concern a very thin layer. For that reason, we 
opted to also report the cleansed volume fraction, as a complimentary measure. 

To the best of our knowledge, no previous paper reports reading times of cleansed 
CT colonography data using a primary 3-D display method. A reading time of 
approximately 14 minutes was found with an enhanced 3-D display technique similar to 
the approach employed currently [15]. The previous work did not apply fecal tagging, 
and (therefore) it did not include additional reading of axial 2-D slices for verification of 
obscured parts. The reading time per patient currently found (12 minutes) slightly 
improves compared to the previous work. The difference may be caused by the frame 
rate being under free control by the observers in our work (instead of fixed, as was done 
previously). 

Earlier work using primary 2-D reading report evaluation times of 12 [16] and 16 
minutes [17]. The initialization time was disregarded in the present work, because it was 
performed off line and initiated by technicians. On average the additional time required 
for the cleansing was only 5 minutes per dataset. Other initialization times such as for 
image loading and path tracking, are on the order of a few minutes. 

A previous result on the 'readability' of cleansed CT colonography is that there is an 
improved rating by observers as the homogeneity of the tagged material increases [18]. 
The current findings on assessment effort and observer confidence confirm the accuracy 
of the present method perceived visually by the observers. However, there may well be 
interplay between the preparation regime and the cleansing regime. We observed that 
tagging was locally homogeneous in our population. However, along the colon 
differences in density of tagged material up to 800 Hounsfield Units in one patient are 
common (e.g. WRAMC study cases 19 or 35). One might attribute this to the extensive 
preparation scheme that the patients from WRAMC all had undergone. The algorithm 
employed by us allows for fluctuations in tagging intensity. The effect of a less 
homogeneous tagging warrants further research. 

A limitation is the small study population. As indicated, the findings on sensitivity and 
specificity should merely be regarded as descriptive statistics. We have decided to include 
them, though, to have at least some indication in this respect and avoid the pitfall of 
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being out of the ordinary without notice. The reported sensitivity is in the same range as 
reported in [15], in which paper a similar display method is used. 

Patient population II concerned an equivalent number of patients with and without 
polyps. This is appropriate for our primary objective, namely to compare reading 
cleansed versus original data in a primary 3-D fashion regarding time efficiency, surface 
visibility, assessment effort and observer confidence. The sample size (power) was 
calculated to meet the primary aim. 

At last, a limitation is that our results may not be extrapolated to patients taking a limited 
bowel preparation. It might be expected that a rigorous preparation simplifies electronic 
cleansing somewhat since there may be less tagged material that typically has a 
homogeneous appearance. Still, the complex nature of the problem prompted us to 
initially study the algorithm's performance regarding extensively prepared patients. By 
the way, it should be noticed that a considerable cleansed volume fraction (0.20) was 
found, despite the extensive preparation. The volume and cleansed surface fractions 
might depend on the nature of the preparation. 

Practical application. 

The future role of CT colonography in cancer screening, in our opinion, depends on 
improvement on issues regarding patient compliance, efficiency, and radiation dose. Oral 
contrast material may enhance the patient compliance by facilitating a less rigorous 
purgation regime. We foresee a scheme in which a low dose CT scan of such a patient is 
automatically cleansed, after which a human observer checks potential lesion sites, 
suggested by a computer algorithm. A 3-D representation, either in a primary 3-D 
display or for 3-D problem solving in a primary 2-D display, could aid to do so. Although 
positive results were reported on automatic cleansing in several previous papers, further 
research is still needed. The proposed cleansing method allows for time efficiency, 
extensive surface visibility and a low assessment effort. Therefore, it may contribute to a 
practical evaluation strategy. 
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Chapter Seven 

Visualization of Noisy and Biased Volume 
Data Using First and Second Order Derivative 
Techniques 

This chapter was based upon a paper presented at I E E E Visualization 2003 in Seatde, 
Washington, USA [1]. Other papers that were created in cooperation with the AMC 
hospital in Amsterdam that investigate the problem of noise due to very low doses are 
[2] [3]. 

The quality of volume visualization depends strongly on the quality of the underlying 
data. In CT colonography, data acquired at a low radiation dose results in a low signal-to-
noise ratio. Alternatively, MRI data is acquired without ionizing radiation, but suffers 
from noise and a bias field (global signal fluctuations). Current volume visualization 
techniques often do not produce good results with noisy or biased data. 

This chapter describes methods for volume visualization that deal with these 
imperfections. The techniques are based on specially adapted edge detectors using first 
and second derivative filters. The filtering is integrated into the visualization process. 

The first derivative method results in good quality images but suffers from a significant 
localization bias. The second derivative method yields excellent surface localization, 
especially in highly curved areas. The filter permits fast implementations and the 
rendering shows minimal distortion of detail resulting in a better visualization of polyps. 
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7.1 Introduction 

In recent years, volume visualization has become increasingly accepted and used for 
many applications including CT colonography. Advances in volume visualization have 
resulted in real-time rendering with high image quality. Obviously, the quality of 
visualization strongly depends on the quality of the underlying data (Figure 7.1). 
Unfortunately, high quality input data is not always available. 

Virtual colonoscopy is a non-invasive method to inspect the colon using a CT volume of 
the abdominal region, instead of physically inserting an optical colonoscope. As the data 
is acquired by CT data acquisition, this conventionally involves a significant radiation 
dose. The health risk incurred by ionizing radiation prompted researchers to try low dose 
CT data acquisition. In CT the image quality depends on the product of X-ray tube 
current (mA) and exposure time (s), usually expressed in mAs. A conventional dose for 
CT virtual colonoscopy is about 40 mAs, a low dose is in the order of 1.5 mAs. 
Alternatively, MRI could be used, which is free of ionizing radiation. 

Unfortunately, low dose CT data acquisition yields noisy data. In addition to an increased 
noise level, MRI suffers from global signal fluctuations, generally referred to as the bias 
field. Volume rendering of an iso-surface through a constant datavalue fails to visualize 
true object surfaces in such data (Figure 7.2). Noise or bias can significantly disturb the 
results if not properly accounted for and prohibit polyp detection in images generated by 
direct volume rendering methods [4], as well as by isosurface volume rendering. 

A straightforward solution to reduce the noise is by low-pass filtering the input data (e.g. 
via a Gaussian filter). However, this may results in significant loss of image detail. A 
modification to non-linear Gaussian filtering yields proper visualization of fine details, 
but still requires a fairly high dose at 20 mAs [5]. Another method is to render the 
intensity values semi-transparently using ray casting [6] [7] that amounts to filtering along 
the ray. For semi-transparent volume rendering, complex multi-dimensional transfer 
functions can be generated, which are based on higher-order information to differentiate 
between tissues and emphasize material boundaries. 

Bias field removal has received considerable attention in recent years [8] [9]. The build-in 
regularization of Gaussian derivative filters avoids amplification of the noise in exchange 
for a lower resolution. Alternatively, the use of modern data-driven filtering techniques 
based upon partial differential equations and steered filters is not considered because of 
their high demand on computational resources. The methods should permit a fast 
implementation. 



7.1 Introduction 137 

Figure 7.2 Virtual colonoscopic images based upon MRI-data. (a) Image values in a slice demonstrate 
a bias field. Two isosurface visualizations show that one isosurface cannot segment the 
colon in such data. Either the (b) bottom or the (c) top of the colon is segmented. 

In our approach, the data are preprocessed using first- and second-derivative operators to 
eliminate the effect of bias. Regularization of image derivatives reduces the noise. As the 
main object of interest is the interior surface of the colon, a simple iso-surface rendering 
suffices to visualize the surface. Since no semi-transparent rendering is used, complex 
transfer functions are not needed. The target of the methods is good visualization. 
Hence, the visual impression is leading in the evaluation of the methods. 

The methods that are presented are based on existing first- and second derivative filters. 
The novelty of this work is in the modification of these methods to visualize noisy and 
biased volumetric colonography data described in section 7.2. 
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7.2 Methods 

Many volume-rendering techniques act by directly applying a transfer function to the 
measurement values (i.e. values within a certain range are rendered translucently, the 
others opaquely). We propose two methods that are based on first and second derivatives 
respectively. Henceforth, we will refer to these methods as first-order and second-order 
methods. 

7.2.1 First-order method based on the Canny edge detector 

Canny [10] created a method to detect the position of 2-D straight step edges in the 
presence of additive Gaussian noise. He proposed to compute the gradient magnitude 
using Gaussian derivatives to approximate the filter that optimizes the conflicting 
constraints of a high signal-to-noise ratio (requiring a large filter) and a good localization 
(requiring a small filter). Two problems occur when applying Canny to visualize noisy 
images for colonography. The first problem is that applying Canny results in a pixel-
based segmentation showing jaggy edges. The second problem is that visualization of an 
isosurface through the top of ridges requires a robust surface-normal estimator. 

The solution to the first problem is an extension of the Canny edge detector and 
transforms the CT volume into a normalized gradient magnitude volume in three steps. 

1. Gradient magnitude calculation. Gaussian first-derivative filters with a scale <Jx,y,z are 
used to obtain the gradient at each voxel suppressing the effect of spatially 
uncorrelated noise. 

2. Non-maxima suppression. The edge is located at the maximum of the gradient 
magnitude V/ To permit a fixed threshold t to visualize the local maximum of 
the gradient magnitude across the edge, the gradient magnitude V / is divided by 
its local maximum along the gradient (across the edge): 

E = 
V/ 

max V/ 
(7.1) 

The search window around a voxel extends 2.5 mm in both directions along a path 
in the gradient direction w. The size of the search window corresponds to the size 
of the smallest relevant detail. Due to noise, the normalized gradient magnitude E 
might not exacdy be one at the top of the ridges. In addition, sampling along a ray 
for visualization may lead to missing the top of ridges if a threshold / = 1 is used 
(Figure 7.7a). Using t < 1 results in a small localization error. The responses E are 
raised to a power p for sharpening to decrease the distance between the true edge 
and approximation by t (equation 7.1). The maximum sharpening-value of p is 
steered by the sampling that is required to properly represent the ridges in the data 
(Nyquist). 
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Figure 7.3 (a) Part of a slice in an MRI volume showing the bias from top to bottom and (b) the 
normalized gradient magnitude volume. 

Assuming Gaussian blurred step-edges, the normalized gradient magnitude is 
modeled by the Gaussian function. It is normalized such that gn(0;<j) = \ . When 
expressing the scale of the ridges after filtering the data by crin unit voxel, then 
the maximum allowed sharpening becomes p = cr2;this results in a ridge with a 
scale of exacdy one voxel. 

g„(x;cr) = exp 
s2A 

Tyfl 
(7.2) 

3. Hysteresis Thresholding is applied to all voxels after non-maxima suppression. The 
maximum threshold is chosen to include edges not generated by noise. The lower 
threshold is set higher than the noise level and is used to close the surface. 

The second problem with using Canny for colonography is that visualization of the ridge 
requires a robust surface-normal estimator. After Gaussian first derivative filtering, the 
surface to be visualized is a thin sheet in 3-D (one can visualize it as a ridge in 2-D, 
Figure 7.3). The Gaussian derivative is not a good estimator of the surface normal. A 
solution is obtained using the Structure Tensor [11]. The Structure Tensor (F) is defined 
by the dyadic product of the gradient vector with its transpose 

F = ( V / ) ( V / ) ' = 

TJ~X 
IJy 

IJz 

IJy 

lyly 

lyh 

XJl 
lyh 

Vz 
(7.3) 
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where Ix, Iy and Iz denote the partial derivatives of the data I(x,y, z) that are 
obtained by a convolution with a Gaussian derivative filter. Another Gaussian is used to 
regularize the Structure Tensor (depicted by the overhead bar). The structure tensor F is 
rewritten in 

RTFR 
4 0 0 

0 0 4 
(7.4) 

with ^ = [vj v2 ^3] where Aj are the eigenvalues and v,- the corresponding 
eigenvectors of unit length. The corresponding eigenvalues denote the average gradient 
energy along v; . Note that at a surface point, the first eigenvector points along the 
surface normal, the second and third eigenvectors span the surface. Starting from the 
camera position, positions on a ray before the first local maximum are rendered with an 
opacity set to zero and after the first local maximum widi an opacity set to one. The 
orientation of Vj and the ray are used as parameters of Phong's shading model. 

The first-order method has four parameters: 

1. The threshold on the normalized gradient t: chosen as high as possible, but slighdy 
smaller than 1 to reduce the localization error. 

2. The (sharpening) factor/?: chosen as large as the sampling criteria permits: p = O . 

3. The scale of the Gaussian first-derivative filters <Jx,v,z '■ it is chosen small, to 
correspond as much as possible to the scale of the smallest relevant detail (i.e. the 
smallest features of interest). 

4. The degree of tensor smoothing <JT : chosen small to visualize the surface as 
accurately as possible as well as to suppress influence of normals from 
neighboring surfaces. Remember that the normals are only used in Phong's 
shading model. 

A clear advantage of the method is that it does not depend on the datavalue of a specific 
iso-surface. The parameter influence is shown in section 7.3. 

7.2.2 The second-order method based on the PLUS operator 

Another method for boundary detection that does not depend on a specific isosurface is 
to use the zero-crossing after applying a second derivative operator. Common second 
derivative edge detectors are the Marr-Hildreth detector, defined as the Laplacian of 
Gaussians (LoG), and the second derivative in the gradient direction (SDGD) [12]: 

LoG{l) = I„+Iyy+IB 
(7.5) 

SDGD(I) = 1WW 
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(a) (b) 

Figure 7.4 (a) Part of a slice in an MR1 volume and (b) the result of the PLUS operator. 

in which / „ , Ixy , Izz and Iww are second derivatives of the image ƒ calculated via 
Gaussian derivatives; x, y and z are the main coordinates and w is the direction of the 
gradient vector. 

With curved object boundaries there is always a trade-off between noise suppression and 
surface displacement. A larger filter size reduces noise, but at the expense of increased 
surface displacement. First order derivative filters, such as the Gaussian derivative filter 
of the previous section, cause a surface displacement that is always in the direction of 
positive curvature. Unfortunately, it is generally impossible to compensate for the first-
derivative surface displacement. 

The LoG and SDGD filters have opposite surface displacements. The operators may be 
combined [13] [14] to reduce the effect as the opposite-signed displacements cancel each 
other to a certain extent. The combined edge detector is generally referred to as the 
PLUS operator: 

PLUS{l) = Ixx+Iy),+Izz+Jmv (7.6) 

Figure 7.4 presents MR1 data with contrast fluid injected into the colon. The application 
of the PLUS operator results in a new volume (Figure 7.4) that is referred to as the 
PLUS volume. A transition visible is in Figure 7.4b from negative values (black) to 
positive values (white); in between is the zero crossing. 

The PLUS volume is visualized by a modified ray casting algorithm. Initially, those voxels 
are selected that have a gradient magnitude higher than a certain threshold. Hereby, a 
coarse region of interest is identified. This threshold is applied to reduce noise. We have 
found that the value of the threshold is not very critical to the result. Subsequently, the 
algorithm renders the samples on a ray with an opacity set to zero before the first zero 
crossing and with an opacity set to one after it. The surface normals are calculated by 
Gaussian first derivative filters in the PLUS volume. This is possible because the gradient 
vectors around the transition do not have opposite directions. 
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(a) "(b) 
Figure 7.5 (a) Slice of a high dose 40 mAs CT volume (b) and a simulated low dose 1.5 mAs CT 

volume. 

The second order method has two parameters: 

1. the scale Ox y z of the Gaussian second derivative filters (Equation 7.2); 

2. the width of the Gaussian first derivative filters <7n (used to calculate surface 
normals in the PLUS volume). 

Only tine widths of the second derivatives affect the localization of the surface. The 
second derivative parameter balances noise against surface detail. On merely affects the 
shading. Therefore, <7n should be as small as possible to represent the surface as 
accurately as possible. 

7.3 Results 

The first and second order methods were tested both visually and quantitatively. The 
implementation we used preprocesses the CT volume into the normalized gradient 
volume (Figure 7.3b) and the PLUS volume (Figure 7.4b). This results in a fully 
automatic preprocessing step and a real-time ray casting. 

7.3.1 Data acquisition 

A CT volume was randomly selected from an ongoing virtual colonoscopy study at the 
Academic Medical Center in Amsterdam (the Netherlands) in 2003. The original CT 
scans were acquired at a level of 40 mAs to serve as a reference. The low dose CT scans 
were generated from these normal dose scans. 

Low-dose CT scans were reconstructed at 1.5 mAs by modifying the raw transmission 
data of each spiral CT scan using a simulation technique. The raw transmission 
measurements were replaced by a realization of the Poisson process given a scaled 
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Figure 7.6 (a) Iso-surface volume rendering of high dose CT data, (b) Rendering of low dose CT data 
using the first order method and (c) second order method. 

Figure 7.7 (a) Iso-surface volume renderings using the first-order method at (a) / — 0.9 that is too high 
creating holes in the surface, (b) using I — 0.7 and (c) t — 0.5 that is too low creating excessive 
surface displacement (all images are generated using <Jx,y,z = l - 0 mm and <Jj =1.5 mm). 

version of the 40 mAs datavalue as the expected value. Note that the variance and the 
mean values of Poisson distribution are identical. Typically, the volume consisted of 
512x512x256 voxels at a resolution of 0.6x0.6x1.2 mm3. Example images are shown in 
Figure 7.5 (the noise is correlated). 

An MRl volume was randomly selected from an ongoing study at the Academic Medical 
Center in Amsterdam (the Netherlands) in 2003. The data were acquired via a Siemens 1.5 
Tesla scanner. A typical volume consisted of 256x256x128 voxels sized 1.2x1.2x2.0 mm3. 

The first and second order methods were implemented on an experimentally enhanced 
version of the Philips EasyVision workstation. 
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7.3.2 Choice of parameters 

The 3-D visualizations of the high-dose and low-dose CT data have been made with 
identical viewing parameters (Figure 7.6,7,8,9,10). Figure 7.6a shows an iso-surface 
volume rendering of the high dose CT volume: we consider this the reference standard. 

A 'first-order' method with optimal parameter settings (t — 0.5, <JXtViZ = 1.2 mm, 
Oj = 1.0 mm, p = 8) is illustrated in Figure 7.6b. A 'second-order' method with optimal 
parameter settings ( Gx,y,z ~ 1 -2 mm, a„ =1.0 mm ) is shown in Figure 7.6c. The 
parameter settings are discussed below. Notice that the optimal first and second order 
images are rendered with the same filter sizes. 

The effects of significant parameter adjustments in the first order rendering are depicted 
in Figure 7.7 and Figure 7.8. First, the results of varying the surface localization 
parameter t are shown. Using this parameter each row in Figure 7.8 shows the result as a 
single parameter is varied (from top to bottom: t,Oxvz,Oj ,p respectively). The effects 
of significant parameter adjustments in the second order rendering are depicted in 
Figure 7.9. The optimum parameter setting was determined based on visual inspection of 
these renderings. 

To study the effect of the first-order and second-order method on bias fields, two 
camera positions are selected in an MRI volume. Figure 7.10a shows the result for small 
signal fluctuations and noise, Figure 7.10b for the other camera position with a large bias. 
The parameter settings were again found experimentally. Both images were rendered with 
the same parameter settings. As expected, the iso-surface volume rendering shows holes 
and surface fragments, due to the signal fluctuations (Figure 7.10b, zero-order). 

7.3.3 Localization accuracy 

To measure the localization accuracy, we created a reference image for the CT data by 
iso-surface volume rendering of the (normal) 40 mAs data. The threshold selecting the 
iso-surface was determined by maximizing the sum of gradient magnitudes over all 
threshold positions. The surface displacement between the reference surface and the 
rendered surface was defined as the distance along viewing rays between the reference 
surface and die rendered surface respectively. We have opted for diis approach to 
illustrate the localization accuracy from a typical viewpoint. A reference surface cannot 
be easily defined for MRI data due to lack of a proper standard. For that reason we have 
restricted the quantitative analysis to CT data. 
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Low 

M tv: 
(d) aT = 0.7 

(g)p = 32 

Figure 7.8 Parameter influence on first-order method (all sigma's in mm), (a) Optimal parameter 
settings, (b) Low CTx,v,z , resulting in a noisy surface, (c) high Ox,y,z resulting in a smooth 
surface at the expense of detail, (d) Lower Oj resulting in staircase effects, (e) higher 
Oj resulting in false normals, (f) Low p resulting in surface displacement and (g) high p 
resulting in tiny holes in the surface. 
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High 

Optimal 

W L 
(e) aT = 2.0 

Figure 7.9 Parameter influence on second-order method (all sigma's in mm) (a) Optimal parameter 
settings, (b) Low C.,,v,z , resulting in a noisy surface, (c) high 0XtVjZ resulting in a smooth 
surface at the expense of detail, (d) Lower oy resulting in noisy normals, (e) higher 
Or resulting in loss of detail. 

W 

(b) 

Zero-order First-order Second-order 

Figure 7.10 (a) Result on MRl in area of high contrast and low fluctuation, (b) Result on MRI in area of 
low contrast and high fluctuation, (left) lso-surface volume rendering, (middle) Ray casting of 
normalized gradient volume results in smoothing, (right) Ray casting of PLUS volume. 
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First-order solution 
Reference 

Figure 7.11 Example of a measurement artifact in the surface displacement. 

"2 mm 

0 m m 

Figure 7.12 A greyscale image showing the degree of the surface displacement using the (a) first order 
method and (b) second order method. 

A small percentage (approximately 0.5%) of very large errors was caused by small 
variations in fold thickness (Figure 7.11). Such artifacts were eliminated from the analysis 
by removing the errors larger than 10 mm. 

The mean error in the first-order method was 0.6 mm towards the camera. The errors 
were within 3 mm in 95% of the cases. The second-order method using the PLUS-
operator had a mean localization error-of-0.19 mm; the errors were below 1.0 mm in 
95% of the cases. 

Figure 7.12 depicts the surface displacement for both methods. As expected, the first-
order method has a significantiy larger localization error (Figure 7.12a) than the 
PLUS-based second-order method (Figure 7.12b). 

7.3.4 Performance 

The total rendering time is composed of preprocessing time and the time needed for ray 
casting. The preprocessing for the first order method takes approximately five minutes 
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(which includes calculating the Structure Tensor for the whole volume) and the ray 
casting is real time. The whole data set was preprocessed for the second order method in 
approximately five minutes and the ray casting is real time. These numbers were obtained 
for the CT data using an AMD 2.6 GHz computer with 2 GB of internal memory. For 
other data volumes the preprocessing time is scaled in proportion with volume size. 

7.4 Conclusion 

This chapter reports on progress in volume visualization of data with severe noise levels 
and bias fields. We presented methods for volume rendering based on first and second 
derivatives of the input volumes. 

First, a modified version of the Canny edge detector was applied, to suit application in 
virtual colonoscopy. The modification included a method for robust surface normal 
estimation. This first order technique effectively deals with noise, but introduces a 
surface displacement. 

Next, a visualization method was presented incorporating the PLUS operator that 
combines the second-derivative in gradient direction and the Laplacian of Gaussians. 
This operator yields accurate surface localization, and it is insensitive to global signal 
fluctuations. The visual results show good surface quality and preservation of important 
shape details. 

The methods were tested on simulated low dose CT data (derived from regular dose 
data). The new techniques were compared to iso-surface volume renderings from the 
regular dose data (low noise, no global fluctuations). The comparisons showed good 
agreement in visualization of significant details, such as polyps diagnosed by radiologists. 

The results presented suggest that low dose CT and MRI may become feasible as 
techniques for virtual colonoscopy in the future. This may be a step towards the use of 
virtual colonoscopy in large-scale clinical screening for early diagnosis of colonic polyps. 
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Chapter Eight 

Conclusion 

This thesis addresses visualization and image processing methods that solve two 
problems that are critical to the success of CT colonography; a non-invasive method to 
find the precursors of colon cancer: (8.1) first, visualization methods for displaying the 
complete colon-surface after a perspective transformation; (8.2) second, segmentation 
methods for extracting the colon surface from the data, which can cope with air and 
tagged intraluminal remains that border on soft tissue. Especially, at intersections 
between three materials that are common in CT colonography, image processing 
methods are developed to successfully segment the colon. (8.3) In general, the model-
based techniques that have been created are a robust alternative to the standard 
computed Gaussian derivatives across image transitions. (8.4) Being able to focus on 
specific material transitions has proven to be useful in CT colonography and other 
applications. The LH-histogram (derived from the material transition in data/ gradient 
magnitude space) is a valuable tool to classify voxels into types of transitions in the 
presence of a bias field such as present in MRI data. 



152 8.1 Unfolded cube display 

8.1 Unfolded cube display 

The unfolded cube display [1] yields an omnidirectional projection of the inside of the 
colon. With the viewpoint at the center, on each face of the cube an image is projected 
with a 90° viewing angle. The six images are unfolded onto a 2-D image to examine the 
six faces simultaneously. A series of unfolded cubes obtained along the colon trajectory 
present the bowel surface to the physician in a 'panoramic' way. This facilitates the 
physician to look in all directions at the same rime, as well as providing an intuitive view 
for thorough and rapid inspection. The conventional display involves two antero- and 
retrograde view directions along the colon trajectory that are examined as two series. A 
disadvantage is that this display requires a large viewing angle of typically 120° to expose 
most of the colon surface, which involves excessive artifacts. A second disadvantage with 
the antero- and retrograde viewing directions is that the reader has to switch from one 
image to another and cannot stay 'immersed' in one modus of viewing. 

From the clinical evaluation [2] it follows that the unfolded cube display substantially 
reduces the problem of blinded (occluded) areas. Thirty patients were included. On 
average, the conventional antero- and retrograde display showed 93.8% of the colon 
surface and the unfolded cube display showed 99.5% of the colon-surface. In addition, 
the mean evaluation-time when using the unfolded display (20 minutes) was significantly 
shorter than using the conventional display (36 minutes). Using the conventional antero-
and retrograde (perspective) displays, the radiologists had to manually rotate the camera 
to get a view of blinded areas, never being confident of having seen everything. 

A prototype has been built to examine colon-data and measure lesions using the 
unfolded cube as a primary display and the axial 2-D slices for secondary 2-D reading. 
Part of the prototype has been integrated into the commercial EasyVision software 
(Philips Medical Systems Nederland B.V.). Rendering of the unfolded cube display has 
been made real-time such that preprocessing and storing a series of images is not 
necessary. 

8.2 Electronic cleansing 

In CT colonography, three types of materials occur in the colon region: air, soft tissue 
and intraluminal remains that have been tagged using an oral contrast medium. Hence, a 
measured CT value arises due to a combination of these three materials. Electronic 
cleansing [3] is an image processing method that first estimates the percentage of 
materials that contributes to a CT value and second replaces the (partial-volume) 
contribution of tagged material by air. The processed CT volume is examined as if the 
data do not contain intraluminal remains at all. It solves the problem of (tagged) remains 
blocking the view at the colon surface when using a 3-D display mode such as the 
unfolded cube. Several previous papers did report advances regarding electronic 
cleansing [4][5][6][7]. Zalis et al. [4] indicated that it will be essential to ascertain how 
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artifacts still present in successfully tagged, electronically cleansed data will affect the 
observer's performance. The complex nature of electronic cleansing is observed by 
Pickhardt as well who identifies pitfalls in reading electronically cleansed data [7]. A 
common artifact, described in the latter reference, occurs at locations where the air-fluid 
transitions border on the colon wall, resulting in transitions between three materials. The 
methods that are described in this thesis solve all problems associated with the 
aforementioned problems in electronic cleansing. In addition, in the presence of 
inhomogeneities that for example occur when using tagged bowel contents, the 
classification is improved due to local parameter estimation. 

From a clinical evaluation |8] of our electronic cleansing method it is concluded that it 
enables a more effective and efficient examination of the colon that is superior to the 
unfolded cube display on uncleansed data. Nineteen patients were included from publicly 
available study data by the Walter Reed Army Medical Center [9]. On average, the 
cleansed surface fraction, the surface area that is blinded in a 3-D display when not using 
electronic cleansing, was almost 30%. In addition, the mean evaluation-time decreased 
from approximately 19 to 12 minutes when using the 3-D display and the electronic 
cleansing method. Observers were asked to rank the assessment effort, based on artifacts 
visible in the rendering with and without cleansing. They gave a significandy lower effort 
when using the electronically cleansed data. This confirms the predicted small sizes, 
based on simulated data, of artifacts at locations where the air-fluid transitions border on 
the colon. 

All images of polyps larger than 6 mm confirmed with optical colonoscopy pardy or 
fully residing in tagged intraluminal remains in the WRAMC data [9] (48 images in total) 
have been electronically cleansed. The clinical evaluation shows that the conspicuity of 
these electronically cleansed polyps, when displayed with the unfolded cube display, is the 
same as the conspicuity of polyps residing in air (50 images in total) 

8.3 Edge-processing 

In general, the models that have been created, describe a robust alternative to the 
standard computed Gaussian derivatives across image transitions. 

First, we have shown that the erf-function is an excellent model to describe a two-
material transition in CT data. Second, we have extended the erf-model to relate the 
derivatives across the edge: the 'arch'-model. The function is named 'arch', because the 
line defined by the magnitude of the first derivative as a function of material fraction 
reminds of an arch or catenary. In addition, the arch-function is extended to relate the 
derivatives across the three-material transition: the 'parachute'-model. The function is 
named 'parachute', because die surface created by the first derivative as a function of 
material fractions reminds of a parachute. The projection onto the model of noisy image 
value and derivatives combines measurements to reduce the noise without having to 
increase the aperture of the operator. 
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With regard to CT colonography, the models are used to estimate the fractions of 
materials across transitions that contributed to a CT value. Outside the scope of CT 
colonography, our methods have been applied as well. The two-material transition model 
is fitted to the data and two parameters of the model, the expected values at opposite 
sides of the transition, are used to separate voxels into types of transitions. The expected 
values at opposite sides of the transition are summarized in the i/Z-histogram. It has 
been shown that the /.//-histogram allows easier identification of boundaries than using 
the arches in the domain of scalar value and gradient magnitude as described by 
Kindlmann et al. [10]. Our ///-histogram has been proven a valuable tool to classify 
voxels into types of transitions in the presence of a bias field such as present in MRI 
data [11]. In addition, 2-D transfer functions for visualization have been based on the 
////-histogram by selecting relevant areas and by assigning color and opacity to these areas. 
The /-//-histogram is also successfully applied to region growing of the boundaries, 
based upon the assumption that it is undesirable to grow outside the current boundary, 
into another boundary, into areas of constant intensity, or into small noisy boundaries 
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Summary 

In this thesis visualization and image processing methods are proposed that solve 
problems that are critical to the success of CT colonography; a non-invasive method to 
find the precursors of colon cancer. 

Chapter 1 introduces the field of CT colonography. Traditionally, the diagnosis is based 
upon endoscopy of the digestive system. CT colonography provides a non-invasive 
alternative. Fecal tagging is introduced to be able to discriminate between tissue and 
intraluminal remains. However, these remains may block the 3-D view of the colon wall. 
To solve this problem, image processing techniques were created to enable a 3-D display 
for CT colonography. 

Chapter 2 explores basic aspects of CT imaging for colonography: the noise 
characteristics, the spatial resolution and the model that describes the CT value across a 
material transition. We show that this is a valid model for the purpose of our research. 

Chapter 3 presents a method for displaying the complete colon-surface as well as its 
clinical evaluation. Many existing visualization methods cannot display the areas between 
the folds of the colon. To solve this problem we present an imaging technique that 
projects six overview directions onto the six sides of a cube. Our unfolded cube display 
significantly increases the surface in view and reduces the evaluation time with respect to 
the conventional method. 

Chapter 4 introduces a method to approximate the surface of an object such as the 
colon surface. Existing methods use a surface through constant data value to 
approximate the object-surface of for example the colon. In 3-D colon imaging, this 
leads to fluid blocking the view of the colon surface. To solve this problem we propose 
using iso-material fractions. It allows automatic segmentation even if objects connect to 
more than one material. A robust alternative to the standard computed Gaussian 
derivatives across two-material image transitions is discussed. The method employs the 
arch function, which relates the nth Gaussian derivative to the data value and hence the 
material fractions across transitions. This alternative is translation-, rotation- and scale-
invariant. 

Chapter 5 deals with three-material transitions. Existing segmentation-methods of the 
colon surface may leave artifacts at locations where three materials meet. To solve this 
problem the two-material transition model that is introduced in chapter 4 is extended to 
three-material transitions. Surfaces through constant material fraction simplify automatic 
surface segmentation and artifacts that typically occur at locations where three materials 
meet are suppressed. 
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Chapter 6 reports on a clinical evaluation of electronic cleansing. First it is investigated 
if electronic cleansing for 3-D visualization in CT colonography affect the conspicuity of 
polyps that are pardy or fully covered by tagged remains. In addition, two experienced 
observers evaluated patient data using the traditional method and the CT colonography 
that is improved with the new image processing methods. It is concluded that electronic 
cleansing yields an identical conspicuity of polyps surrounded by air as polyps partly or 
completely residing in tagged material. Furthermore, the proposed cleansing method 
sustains a lower evaluation time, lower assessment effort and larger observer confidence 
than a conventional evaluation method without cleansing. 

Chapter 7 describes methods for volume visualization of noisy data and data with global 
signal fluctuations. In CT colonography, data acquired at a low radiation dose results in a 
low signal-to-noise ratio. Alternatively, MR1 data is acquired without ionizing radiation, 
but suffers from noise and a bias field (global signal fluctuations). Volume visualization 
techniques are described that are based on specially adapted edge detectors using first 
and second derivative filters. 

Iwo Serlie, Delft, October 2007 
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