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Abstract
The availability of multi-omics data has revolution-
ized the life sciences by creating avenues for inte-
grated system-level approaches. Data integration links
the information across datasets to better understand the
underlying biological processes. However, high dimen-
sionality, correlations and heterogeneity pose statistical
and computational challenges. We propose a general
framework, probabilistic two-way partial least squares
(PO2PLS), that addresses these challenges. PO2PLS
models the relationship between two datasets using
joint and data-specific latent variables. For maximum
likelihood estimation of the parameters, we propose a
novel fast EM algorithm and show that the estimator is
asymptotically normally distributed. A global test for the
relationship between two datasets is proposed, specifi-
cally addressing the high dimensionality, and its asymp-
totic distribution is derived. Notably, several existing
data integration methods are special cases of PO2PLS.
Via extensive simulations, we show that PO2PLS per-
forms better than alternatives in feature selection and
prediction performance. In addition, the asymptotic
distribution appears to hold when the sample size is suf-
ficiently large. We illustrate PO2PLS with two examples
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from commonly used study designs: a large population
cohort and a small case–control study. Besides recov-
ering known relationships, PO2PLS also identified
novel findings. The methods are implemented in our
R-package PO2PLS.

K E Y W O R D S

EM algorithm, global test, heterogeneity, identifiability, latent
variable models, probabilistic O2PLS

1 INTRODUCTION

Many methods have been developed to analyse multiple omics datasets measured on the same
person. Under the hypothesis that these different omics datasets represent different stages of
biological processes, new insights can be obtained when these datasets are jointly analysed
(Richardson et al., 2016). Examples of datasets are: genome-wide DNA markers reflecting the
genetic code, transcriptomics and epigenetics, providing information on expressed and silenced
genes, proteomics measuring the abundance of proteins. Methods to link the information in these
datasets have to address challenges such as high dimensionality of the data, high correlation
between variables within and across datasets, and the presence of heterogeneity among datasets.
The heterogeneity is caused by measuring different biological levels and using different tech-
nologies to measure them. In this paper, we propose a novel probabilistic approach (PO2PLS) to
address these challenges and appropriately model the relationship between two datasets x and y.

The PO2PLS model takes its underlying ideas from the algorithmic O2PLS method (Trygg &
Wold, 2003). O2PLS is a latent variable approach that estimates joint and data-specific compo-
nents, which are linear combinations of the variables in x and y. It identifies these components
sequentially rather than simultaneously, starting with the component that has the largest vari-
ance. The drawbacks of this method are: due to the sequential approach, there is a risk of
overfitting, the components are not uniquely defined, and standard errors have to be obtained via
bootstrapping, which is not feasible in high-dimensional data.

The key innovation of this paper is an alternative probabilistic approach. We assume a mul-
tivariate normal distribution for x and y. By posing mild constraints, all parameters of the model
are identifiable. For parameter estimation, we use maximum likelihood. With likelihood-based
data integration methods, a path from x to y can be explicitly specified, making the estimation
of a relationship more efficient. For maximizing the likelihood, a computationally efficient EM
algorithm is derived that specifically targets high-dimensional data. A global test statistic is for-
mulated for the null hypothesis of no relationship between x and y. Estimating the standard errors
is not straightforward, since the standard regularity conditions of maximum likelihood estima-
tors being asymptotically normally distributed may not hold for overparameterized models (such
as latent variable models) (Sun et al., 2015). We will derive the asymptotic distribution of our esti-
mators as well as the distribution of our proposed test statistic; we apply the mathematical theory
that establishes asymptotic properties of estimators of overparameterized models (Shapiro, 1983).
Note that the size of the resulting asymptotic covariance matrix increases quadratically with the
number of x and y variables; hence we propose an approximation that is very fast to compute.

Other latent variable approaches are available. Examples of algorithmic methods that only
include joint parts are partial least squares (PLS) (Wold, 1973) and canonical correlation
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analysis (CCA) (Hotelling, 1936). A second algorithmic method also incorporating data-specific
parts is JIVE (Lock et al., 2013). JIVE is less flexible than O2PLS as it restricts the joint compo-
nents of x and y to be exactly equal (details are given in Section 2.2). We have recently shown that
when this assumption does not hold, convergence problems may arise, and the performance of
the estimators might be poor (el Bouhaddani, Uh, Jongbloed, et al., 2018).

Examples of other likelihood approaches are envelope regression (Cook & Zhang, 2015) and
probabilistic PLS (PPLS) (el Bouhaddani, Uh, Hayward, et al., 2018). Envelope regression fully
models the covariance structure and is therefore not suited for high-dimensional data. PPLS
uses a simpler covariance structure with fewer parameters and is applicable to high-dimensional
datasets, but does not allow for data-specific components. In contrast to PPLS, SIFA (Li & Jung,
2017) models specific components. However, just as JIVE, SIFA assumes the joint components to
be exactly equal and might not perform well if this condition does not hold. SIFA and PPLS can
be viewed as specific cases of the PO2PLS model.

We will illustrate the method by analysing data from two studies with a different design. The
first study is a population study in which DNA markers ( p ≈ 105) and glycomics (q = 20) data
are available for N = 885 subjects (Wahl et al., 2018). This study has been part of genome-wide
association studies (GWAS), testing associations between a marker and a glycan using single pair
methods. These methods do not take into account the high correlations among the measurements.
We will perform a global test for an association between genetic markers and glycan abundances
interlinking all variables, and delineate which genes and glycans contribute most to this associa-
tion. The second study is a case–control study. It consists of epigenetics and transcriptomics data
( p, q ≈ 104) for 23 subjects, of which 13 suffered from hypertrophic cardiomyopathy (HCM) and
10 are healthy controls. Differential expression analyses are usually performed to test the rela-
tionship between each pair of measurements. Instead, we globally test for an association between
epigenetic activity and gene transcription.

The contributions of this paper are fourfold. First, we propose a novel model, PO2PLS, for
the relationship between two omics datasets. Second, a computationally efficient EM algorithm
is derived to estimate the parameters using maximum likelihood. Third, we formulate a global
test for the null hypothesis of no relationship between x and y. Fourth, the added value of our
methods is demonstrated by applying them to omics datasets from two different studies. Software
code implementing the estimation procedure and global test is freely available as an R package
on GitHub (https://github.com/selbouhaddani/PO2PLS) and will soon be released on CRAN.

The remainder of the article is organized as follows. In Section 2, the PO2PLS model is
formulated, and identifiability of the parameters is proven. Furthermore, maximum likelihood
estimates are derived, and a global test of the relationship between x and y is proposed. In
Section 3, the performance of PO2PLS is studied over a range of simulation scenarios. We focus
on feature selection, prediction performance, type I error and power of the statistical test. In
Section 4, PO2PLS is applied to the case studies to test and describe the relation between two sets
of omics variables. We conclude with a discussion.

2 A PROBABILISTIC DATA INTEGRATION FRAMEWORK

2.1 The PO2PLS model

Let x and y be two random row vectors of size p and q respectively. In the PO2PLS model, both
x and y are expressed in terms of a joint part, a specific part and a noise part. The joint parts

https://github.com/selbouhaddani/PO2PLS
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involve random vectors t and u of size r, with r usually a small number. The specific parts involve
independent random vectors t

⊥
and u

⊥
of size rx and ry respectively. The noise random vectors

are denoted by e (p-dimensional), f (q-dimensional) and h (r-dimensional). Here, h represents
heterogeneity in the joint parts, leading to differences between t and u. More precisely, the
PO2PLS model for x and y is described by

x = tWT + t
⊥

WT
⊥

+ e, y = uCT + u
⊥

CT
⊥

+ f , u = tB + h. (1)

The parameter matrices W (p× r) and C (q× r) are called joint loadings. The matrices W
⊥

( p × rx)
and C

⊥
( q × ry) are referred to as data-specific loadings. The parameter B is a diagonal r × r matrix.

The random vectors e and f are independent multivariate normally distributed, with zero
mean and covariance matrices 𝜎2

e Ip and 𝜎2
f Iq respectively. Furthermore, t, t

⊥
, u

⊥
and h are zero

mean multivariate normally distributed variables, with diagonal covariance matrices Σt, Σt
⊥

, Σu
⊥

and Σh respectively. The covariance matrix of u follows from (1): Σu = BTΣtB + Σh.
All parameters are collected in 𝜃 ∶= [W ,W

⊥
,C,C

⊥
,B,Σt,Σt

⊥

,Σu
⊥

,Σh, 𝜎
2
e , 𝜎

2
f ]. It parameterizes

the distribution of (x, y) ∼𝒩 (0,Σ
𝜃
) (the explicit expression for Σ

𝜃
is given in the supplementary

materials).
Note that the model for the relationship between u and t (the inner relation) is taken asym-

metrically, as often a certain hierarchy is assumed for x and y (Crick, 1970). For instance, it is
reasonable to assume that genetic variability induces glycomic variation and not the other way
around, so a model for u in terms of t better reflects the underlying biology.

2.2 PO2PLS as a general data integration framework

PO2PLS models the relationship between x and y through t and u as described in (1). It can be seen
as a generalization of other models. The first model is SIFA, which assumes that the joint principal
components (JPCs) are exactly equal, that is, u= t. In this case, B= I andΣh = 0, so u and t have the
same scale and the identity as correlation matrix. For heterogeneous datasets, the two sets of JPCs
represent different mechanisms (e.g. genetic vs. glycomic pathways). Therefore, they may not be
perfectly correlated or on the same scale. Also, assuming homogeneity of datasets can negatively
affect estimation performance (el Bouhaddani, Uh, Jongbloed, et al., 2018). The second model
JIVE, assumes u = t and orthogonality between columns in the concatenated loading matrices
(W ,W

⊥
) and (C,C

⊥
). In this case, combinations of variables involved in the joint and specific

parts have to be orthogonal, which is a strong restriction. The third model is the probabilistic PLS
model which is obtained by setting Σt

⊥

and Σu
⊥

to zero in (1).
In the envelope regression (ER) model, the number of noise variance parameters to estimate

is of order O(p + q), whereas PPLS and PO2PLS introduce one 𝜎2
e and 𝜎2

f for x and y respectively.
When the covariance matrix of x or y is singular, the ER estimator is not well-defined.

The estimation approach we adopt in PO2PLS is maximum likelihood. Computationally, we
propose an EM algorithm (details about estimation is found below in Section 2.4). Other proba-
bilistic approaches, such as ER, directly optimize the likelihood over Grassmann manifolds (Cook
& Zhang, 2015). However, calculation of the covariance of (x, y) is not feasible in high dimen-
sions. Alternatively, joint and specific components can be sequentially estimated. For example,
the O2PLS estimator (see el Bouhaddani et al., 2016; Trygg & Wold, 2003) is as follows: first, the
covariance between xW and yC is optimized, then the covariance between xW and x − xWWT

is optimized to get estimates for the specific parts, and finally, after subtracting these parts, the
covariance between x∗W and y∗C is optimized with the star indicating a deflation step. Our EM
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T A B L E 1 Features of several data integration methods. An ‘X’ indicates the presence of a feature. All
methods estimate a joint part. The first row indicates methods that also estimate specific components W

⊥
and

C
⊥

. The second row indicates methods that are based on a probability distribution for x and y. For the next
row, an X is placed if the method does not restrict the model to u = t. The last row indicates methods that can
cope with data where p, q are larger than the sample size

Properties PLS PPLS ER O2PLS JIVE SIFA PO2PLS

Specific X X X X X

Probabilistic X X X X

u = tB + h X X X X X

High-dimensional X X X X X X

implementation of PO2PLS appears to be competitive with fast algorithmic approaches in terms
of memory usage and is reasonably fast in high-dimensional settings (see Section 3). In Table 1,
an overview is shown with several methods and their features.

2.3 Identifiability of the PO2PLS model

Latent variable models are typically unidentifiable due to rotation indeterminacy of the loading
components. For example, given a rotation matrix R such that RRT = I, the models x = tWT and
x = (tR)(WR)T yield the same x while W and WR are not the same. Note that if C

⊥
v(t) is diago-

nal with distinct elements, C
⊥

v(tR) is not diagonal unless R is also diagonal. In PCA, the loading
matrices are restricted to be semi-orthogonal, that is, WTW = I, whereas in factor analysis, the
latent variables are standard normally distributed. In PO2PLS, identifiability can be obtained
using similar assumptions, namely semi-orthogonal loading matrices and diagonal covariance
matrices for the latent variables.

The assumptions in PO2PLS are firstly, WTW = CTC = Ir, WT
⊥

W
⊥
= Irx and CT

⊥

C
⊥
= Iry . Addi-

tionally, [WW
⊥
] and [CC

⊥
] must not have linearly dependent columns. Note that the columns of

W
⊥

and C
⊥

do not have to be orthogonal to the columns of W and C respectively. Second, the
diagonal elements of B are restricted to be positive. This does not restrict the PO2PLS model, as
tkbk is equal to−tkbk in distribution, for k = 1, … , r. Finally, the sequence (𝜎2

tk
bk)rk=1 is assumed to

be strictly decreasing in k. Regarding the number of components, we assume that 0 < r + rx < p
and 0 < r + ry < q, where r is positive and both rx and ry are non-negative.

Given these assumptions, the loading matrices are identified up to sign and the other
parameters in 𝜃 are uniquely identified. The following theorem makes this precise.

Theorem 1. Let r, rx, ry and 𝜃 satisfy the above assumptions. Let Σ
𝜃1 andΣ

𝜃2 be covariance matrices
corresponding to PO2PLS parameters 𝜃1 and 𝜃2, and suppose Σ

𝜃1 = Σ𝜃2 . Then W1 = W2ΔW ,
C1 = C2ΔW , W

⊥1 = W
⊥2ΔW

⊥

, C
⊥1 = C

⊥2ΔC
⊥

for diagonal orthogonal matrices ΔW ,ΔW
⊥

and
ΔC

⊥

, and all other parameters in 𝜃1 and 𝜃2 are equal.

Proof. The part of the proof pertaining to W and C follows from the spectral theorem and its
uniqueness property. Indeed, consider the off-diagonal block of Σ

𝜃
, given by WΣtBCT. This

can be recognized as a spectral decomposition with unique eigenvalues and eigenvectors
up to a sign. The part of the proof pertaining to W

⊥
and C

⊥
uses the linear independence

between W and W
⊥

: one can find vectors orthogonal to W but not to W
⊥

to eliminate W
from the equationΣ

𝜃1 = Σ𝜃2 . Note that the common assumption WTW
⊥
= 0 is not necessary

here. A complete proof is given in the supplementary materials.
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2.4 Maximum likelihood estimation of the parameters

To estimate 𝜃, the following log-likelihood function under the PO2PLS model (1) is maximized

L(𝜃|x, y) = −1
2
{
(p + q) log(2𝜋) + log |Σ

𝜃
| + (x, y)Σ−1

𝜃

(x, y)T
}
. (2)

Note that L is a complicated and highly non-linear function of 𝜃, and its computation requires
computing and storing covariance matrices of size (p + q)2. We implement a memory-efficient
and analytically tractable EM algorithm (Dempster et al., 1977) to obtain maximum likelihood
estimates for 𝜃. Contrary to the sequential O2PLS algorithm, the estimation is simultaneous over
both joint and specific parts.

Denote the complete data vector by (x, y, t,u, t
⊥
,u

⊥
). For each current estimate 𝜃′, the EM

algorithm considers the objective function

Q(𝜃|x, y, 𝜃′) ∶= E
𝜃
′
[
log f (x, y, t,u, t

⊥
,u

⊥
|𝜃)|x, y

]
. (3)

Here, the complete data likelihood can be written (with abuse of notation) as

f (x, y, t,u, t
⊥
,u

⊥
|𝜃) = f (x|t, t

⊥
) f (y|u,u

⊥
) f (u|t) f (t) f (t

⊥
) f (u

⊥
). (4)

These factors depend on distinct sets of parameters. For example f (x|t, t
⊥
) depends only on W ,

W
⊥

and 𝜎2
e , yielding separate optimization problems.

The expectation step involves a conditional expectation of the complete data likelihood. Since
f in (3) is a multivariate normal density, this expectation can be written in terms of the first and
second conditional moments of the latent variables t, u, t

⊥
and u

⊥
given x and y. Focusing on the

first factor in (4), the conditional expectation of log f (x|t, t
⊥
) is given by

−1
2
{Np log(2𝜋) + Np log 𝜎2

e + 𝜎−2
e tr E

𝜃
′ [||x − tWT − t

⊥
WT
⊥

||2F|x, y]}. (5)

This expectation involves first and second conditional moments of the vector (t, t
⊥
) given 𝜃′, x and

y. We give explicit expressions for these terms in the supplementary materials.
In the maximization step, the function in (5) is optimized over all semi-orthogonal matrices W

and W
⊥

. By introducing Lagrange multipliersΛW andΛW
⊥

, maximizing (5) over semi-orthogonal
W and W

⊥
is then equivalent to minimizing the following objective function

E
𝜃
′ [||x − tWT − t

⊥
WT
⊥

||2F |x, y] + ΛW (WTW − Ir) + ΛW
⊥

(WT
⊥

W
⊥
− Irx ). (6)

Note that the objective function involves both W and W
⊥

and cannot be decoupled. Instead
of numerical optimization, we sequentially optimize over W and then W

⊥
, which leads to an

algorithm that converges to the maximum likelihood estimates. Under standard conditions, this
algorithm monotonically approaches a (local) maximum of the observed likelihood L (Meng &
Rubin, 1993).

The above derivation is conditional on the dimensions of the latent spaces. Typically, the num-
ber of components r, rx and ry are unknown a priori. Strategies that can be used to select the
number of PO2PLS components include cross-validation (Geisser, 1993) and eigenvalue (scree)
plots (Mardia et al., 1979).
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The expectation and maximization step for the other parts in (4) are calculated analogously
(see the supplementary material). In this calculation, the orthogonalization operator is used to
obtain semi-orthogonal loading matrices, defined as follows.

Definition 2. Let A be a p × a full rank matrix with singular value decomposition A = UDV T. Let
R = VD. Then we define the operator orth∶ Rp×a → Rp×a as orth(A) = A(RT)−1.

Using this operator, the EM parameter updates are made explicit in Theorem 4 in the
Appendix.

2.5 Statistical inference: Formulation of a global test

One of the statistical challenges in data integration is to assess the statistical evidence for the rela-
tionship between x and y. In our model, this relationship is represented by the equation u= tB+ h
in (1). In general, the matrix B is an r × r diagonal matrix with elements Bk, representing the rela-
tion between joint components tk and uk. Since these components are independent, we propose
the null hypothesis of no relationship for each Bk,

H0 ∶ Bk = 0 against H1 ∶ Bk ≠ 0. (7)

To test this null hypothesis, we propose the following test statistic,

TBk = ̂Bk∕ ̂SE
̂Bk
. (8)

We refer to (7) with (8) as the global test and denote any of the TBk by simply TB. Global here
means across all variables simultaneously, contrary to single variable association studies. To apply
the global test statistic in practice, the asymptotic distribution of all parameters 𝜃, including B,
needs to be derived. Since our model is overparameterized, for example the matrix W contains r
redundant parameters, standard maximum likelihood theory does not hold.

Consistency of the estimator ̂
𝜃N and its asymptotic distribution can still be derived, with

N the number of independent and identically distributed samples drawn from (x, y) under
the PO2PLS model. It is known that the sample covariance matrix SN = 1∕N

∑N
i=1(xi, yi)T(xi, yi)

is consistent and asymptotically distributed. Moreover, SN converges to the PO2PLS covari-
ance matrix Σ

𝜃
almost surely as the sample size goes to infinity. These results can be used to

show that ̂𝜃N is consistent and asymptotically normally distributed, as shown in the following
theorem.

Theorem 3. Let SN be the sample covariance matrix of (xi, yi)Ni=1. Let g be the mapping from any
PO2PLS parameter set 𝜃′ to Σ

𝜃
′ , and F(⋅,⋅) be a discrepancy function from any (SN ,Σ𝜃′ ) to the

set of positive real numbers. Under certain regularity conditions on g and F, we get that Σ
̂
𝜃N

is
consistent and asymptotically normally distributed, that is,

N1∕2(Σ
̂
𝜃N
− Σ

𝜃
) →𝒩 (0,Ξ). (9)

Moreover, the same holds for ̂𝜃N ,

N1∕2( ̂𝜃N − 𝜃) →𝒩 (0,Π
𝜃
). (10)
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Proof. After choosing a suitable F, the proof of the first part in this theorem relies on showing that
in the limit, Σ

̂
𝜃N

is ‘close enough’ to SN . As a result, Σ
̂
𝜃N

is also consistent and asymptotically
normally distributed. The second part can be proven by showing that the mapping g from
𝜃 to Σ

𝜃
is analytic, implying that ̂𝜃N is consistent and asymptotically normally distributed.

Further details are given in the supplementary materials.

Given the asymptotic covariance matrix of ̂𝜃, Π
𝜃
, standard errors are obtained by calculating

the square root of the diagonal elements of Π
𝜃
. An estimate of Π

𝜃
is obtained from the inverse

observed Fisher information matrix given by Louis (1982),


̂
𝜃

= E[B( ̂𝜃)|X ,Y ] − E
[
S( ̂𝜃)S( ̂𝜃)T|X ,Y

]
. (11)

Here, S( ̂𝜃) = ∇L( ̂𝜃) and B(𝜃) = −∇2L( ̂𝜃) are the gradient and negative of the second derivative of
the log likelihood L, respectively, evaluated in ̂

𝜃. The derivation of the Fisher information matrix
for the parameters of the PO2PLS model is given in the supplementary materials.

To obtain standard errors for ̂B, the submatrix of −1
̂
𝜃

with respect to B has to be calculated.
However, this requires inverting a matrix of size O((pqr)2), which is computationally infeasible
even for moderate p and q. Under the assumptions that ̂B and ̂

𝜃/ ̂B are asymptotically independent
and ̂Σh is non-random, the observed Fisher information matrix 

̂B and thus SE
̂B are given by


̂B = ̂Σ−1

h E[tTt|x, y] − ̂Σ−2
h E[(u − t ̂B)TttT(u − t ̂B)|x, y]. (12)

Details of the derivation of this formula are given in the supplementary materials. Note that the
first part on the right-hand side is the Fisher information matrix based on the general linear
model, had t and u been observed. Standard errors for ̂B are given by the square root of the diago-
nal elements of −1

̂B
. Thus, to test the global hypothesis (7), we apply our statistic TB and calculate

the corresponding p-values.

3 SIMULATION STUDY

We conduct a simulation study to evaluate the performance of PO2PLS in terms of feature selec-
tion, prediction and performance of our global test. Four metrics are considered: true positive
rates, root mean squared error of the prediction, type I error and power. We compare PO2PLS to
existing approaches PLS, O2PLS, PPLS and SIFA, covering algorithmic and probabilistic meth-
ods with and without specific parts (see Table 1). We investigate robustness against model
assumptions. Finally, we assess computational efficiency.

For performance in feature selection and prediction ability, we consider combinations of small
and large sample sizes (N = 100, 1000) and low- and high-dimensional data (p = 2000, 10,000;
q = 25, 125). We also include two proportions of noise relative to the total variation: in the ‘small
noise proportion’, we set the variance of e and f to be 40% of the variance of x and y. In the ‘large
noise proportion’, these values are 95% and 5% for x and y respectively. We set B = I and Σh = 0 to
comply with the SIFA assumptions, see Section 2.2. The impact of heterogeneity of joint parts is
considered by increasing the joint residual variance Σh from 0% to 80% of the total joint variance
Σu. Finally, we set r, rx and ry to five components. These scenarios are commonly encountered in
data analysis.

To assess the feature selection performance, we calculate the proportion of true top 25%
features among the estimated top 25% (i.e. true positive rate, TPR). We then average these
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proportions across components to obtain an aggregated measure. Predictive performance is
measured by calculating the RMSEP, defined as the square root of E||y − ŷ||2 with ŷ predicted
from x. The RMSEP is calculated in both training and test data; the test data consist of N = 104

independent samples generated from the same model as the training data.
To evaluate the performance of the PO2PLS global test TB described in Section 2.5, we first

estimate the type I error for increasing sample size of 50, 500, 5000 and 10,000. The dimension
of x is set to 20. The number of simulation replicates here is 50,000. Next, we consider increas-
ing dimensionality, namely p = 20, 200, 2000. The sample size is set to 500, and we replicate 2000
times. The type I error is calculated as the proportion of rejecting the null hypothesis B= 0 at a 5%
level when simulating under this hypothesis. Next, we estimate the power of TB in (8). We com-
pare four procedures, namely using the normal distribution for TB with calculated standard errors
using our approximation of its covariance matrix, with standard errors obtained from parametric
and from non-parametric bootstrapping, and with using the empirical distribution of TB via per-
mutations. The proportion of false and true rejections are reported and compared for increasing
B. We consider a sample size of 50 and 500, and dimensionality p of 20 and 200. The number of
bootstrap and permutation iterations is 250 and 500, respectively, and we repeat 500 times. In all
three simulations, the dimension of y is kept to 5, the noise proportion is 50%, and we set r = 2,
rx = 1 and ry = 0.

Three additional simulation studies are carried out to study the robustness of PO2PLS against
model deviations. PO2PLS is applied to high-dimensional simulated datasets from a selected
case–control study design, mimicking the second data analysis in Section 4. We compare the
error of predicting the outcome using the PO2PLS joint components with aforementioned alter-
natives. Then, we assess the impact of rank misspecification when fitting PO2PLS, by estimating
too few components, and the impact of non-normality of the latent variables, using four com-
monly encountered distributions. Finally, we study the computational efficiency of the PO2PLS
implementation, measured by the CPU time and memory demand of the EM algorithm. Details
of these simulations and results are given in the supplementary materials.

3.1 Simulation results

We first present the accuracy and prediction performance in the low-dimensional setting, see
Figure 1. Boxplots of the accuracy and prediction error are shown across the scenarios. Differ-
ences in accuracy with respect to PO2PLS are also shown. In terms of feature selection, PO2PLS
performed good compared to the other methods. When considering the TPR difference between
each method and PO2PLS per simulation run, PO2PLS generally had the highest TPR. This
difference tends to increase with larger noise proportions and more heterogeneous joint parts set-
tings. The differences between PO2PLS and PPLS are not shown for better visual comparison.
Regarding the prediction error, PO2PLS generally performed better than the other methods. SIFA
had the highest prediction error when heterogeneity between the joint parts was present. Fur-
thermore, PLS and O2PLS seemed to overfit in noisy, small sample size scenarios: the training
error was lower than the test error compared to the other methods. In the high-dimensional set-
tings, similar results were obtained. Details can be found in the supplementary materials. For the
high-dimensional settings, the implementation of SIFA gave ‘out-of-memory’ errors. Hence, we
could not include SIFA in these comparisons.

Results for the global inference are shown in Figure 2. The type I error of the PO2PLS test was
around 5% for increasing sample size and dimensionality. Based on the proportion of rejections
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under the null hypothesis (7), the PO2PLS test had type I error around 5% for all but the smallest
sample size; in that case, the type I error was about 7%. It also had more power under the alterna-
tive than the other approaches, with the permutation test being severely underpowered in small
sample size.

We briefly present the key results of the additional simulations. In the selected case–control
simulation study, PO2PLS had highest TPR, and suffered less from overfitting than PLS and
O2PLS. When estimating one component less than the true number of joint and specific compo-
nents, PO2PLS performed similarly to the algorithmic methods (PLS and O2PLS). Furthermore,
PO2PLS was robust against non-normal distributions. Finally, the increase in CPU time and mem-
ory usage for increasing data dimensionality was similar across the methods. The full findings are
given in the supplementary materials.

4 APPLICATIONS TO OMICS DATASETS

We illustrate the PO2PLS model with datasets from two different studies. First, PO2PLS is applied
to test and estimate genetic contributions to glycomic variation in a population-based cohort.
Second, PO2PLS is used to infer a relation between DNA regulation and gene expression using
data from a case–control study. Here we also investigate whether the joint components reveal the
case–control status and whether the top features overlap with findings in cardiovascular diseases.
For comparison, we also applied O2PLS to these datasets.

4.1 Data integration in a population cohort

Glycosylation is one of the most common post-translational modifications that enrich the func-
tionality of proteins in many biological processes, such as cell signalling, immune response and
apoptosis (Wahl et al., 2018). Previously, GWAS were performed between pairs of single nucleotide
polymorphisms (SNPs) and glycans to investigate genetic regulation of glycosylation (Lauc et al.,
2010; Wahl et al., 2018). However, glycans abundances are highly correlated and associated with
multiple genes. For example, the glycan G0 was found associated with multiple genes, including
FUT8, and this gene was itself associated with multiple glycans (Klarić et al., 2020). There-
fore, a multivariate approach might provide new insights. We first confirm that genetics play a
significant role in regulating of glycans. Then, we investigate whether the joint glycan compo-
nents represent biological structures. Finally, we compare our top genes with genes identified
in GWAS.

Genetic and glycomic data were measured, yielding 333,858 genotyped SNPs and 20 IgG1 gly-
can abundances for N = 885 participants in the Croatian Korcula cohort (Lauc et al., 2010). The
SNPs were aggregated on the gene level by combining SNPs around the same gene with PCA,
yielding a genetic PCs (GPCs) dataset. Then, the GPCs and glycomics datasets were pre-processed,
resulting in datasets X (p = 37,819) and Y (q = 20) respectively. Based on scree plots of the eigen-
values of XTX , XTY and Y TY , five joint, five genetic-specific and no glycan-specific components
were retained.

A global test for the association between genetics and glycans was performed using PO2PLS.
The TB statistic for each component was between four (for the first component) and three (for the
last component). With corresponding p-values of 10−5 and 10−3, there is statistical evidence of a
relationship between genetics and glycans.
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The loading values of each glycan variable for the five joint components are depicted in
Figure 3. Each joint glycan component appears to represent different aspects of glycans and their
molecular structure. While the first component represents the ‘average’ glycan (first component),
the second component represents presence of fucose, the third component represents the pres-
ence of galactose, and the last two components represent GlcNAc (el Bouhaddani, Uh, Jongbloed,
et al., 2018). The top gene in the second joint genetic component is FUT8 which has been linked
to fucosylation (Lauc et al., 2010). Note that the second glycan component reflects ‘presence of
fucose’. The same article reports more genes linked to glycosylation that we did not find, but
their GWAS results are based on imputed genetic data from multiple cohorts. With our joint
approach, several other top genes were found, for example, DNAJC10 and AKAP9, that have links
to synthesis and degradation of glycoproteins or (more generally) with inflammation and immune
responses.

A second independent study of 714 participants from the Croatian Vis cohort is available.
To replicate our findings in the Korcula cohort, we apply PO2PLS to this cohort and compare
the components underlying the genetics and glycomics data. The results from the second study,
shown in the supplementary material, are consistent with the above findings, indicating that the
obtained components are not specific to one study. Finally, we compared the prediction error of
Y given X of the models estimated with PO2PLS and O2PLS in Korcula, evaluated using the data
from Vis. The ratio of training (Korcula) and test (Vis) error appeared to be 5/23 for O2PLS and
20/21 for PO2PLS. This is conform the simulation study that O2PLS is prone to overfitting.

4.2 Data integration in a case–control study

HCM is a rare heart muscle disease negatively affecting blood circulation and leading to heart
failure. Several studies have shown that several molecular factors, such as epigenetics and gene
transcription, play an important role in HCM (Hemerich et al., 2019). We investigate whether epi-
genetic variation affects transcription and test this relationship using PO2PLS. Since the samples
consist of HCM cases and controls, an obvious question is whether one of the joint components
represents this segregation of cases and controls.

Data on epigenetics (DNA regulation) and transcriptomics (gene expression) are available,
obtained from the heart tissue of 13 HCM patients and 10 controls. Epigenetic data were measured
using ChIP-seq, yielding regulation levels of 33,642 regions after pre-processing. Transcriptomics
data were measured using RNA-seq, yielding 15,882 expression levels after pre-processing (TMM
normalization, followed by log transformation). Statistical challenges are the small sample size
of 23 and the large number of features (around 45,000).

PO2PLS is applied to the epigenetics (X) and transcriptomics (Y ) data, using two joint compo-
nents and one specific component for both datasets. These numbers are determined using scree
plots. The TB test statistic for the first component was 9.12, and 2.35 for the second component.
The p-values were smaller than 0.001 for the first component and 0.018 for the second, so the two
component were statistically significant.

To investigate whether the top genes in the joint components are involved in cardiovascular
outcomes, we clustered the 500 genes with highest loading values in the first joint PC using Dis-
GeNET (a database of gene–disease associations (Sabater-Molina et al., 2018)). The top 10 most
significant clusters appear to represent a broad spectrum of cardiovascular diseases (Table 2).

In Figure 4, PO2PLS scores are plotted for the first two joint components, and each dot is
coloured according to its case–control status. The plots indicate that the first joint component
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T A B L E 2 Annotation of genes in the first transcriptomics joint PC in the HCM analysis. Using PO2PLS, the
top 500 genes were clustered using DisGeNET (a database of gene–disease associations). These top 500 genes are
primary drivers of the association with epigenetics across HCM cases and controls. Here, p-values are calculated
with a Fisher exact test and corrected for multiple testing. The 10 most significant clusters are shown

Clusters Disease name p-value (FDR B&H)

Disease cluster 1 Hypertensive disease 2.53e−7

Disease cluster 2 Arteriosclerosis 2.57e−6

Disease cluster 3 Atherosclerosis 2.57e−6

Disease cluster 4 Coronary heart disease 7.42e−6

Disease cluster 5 Arthritis 1.19e−5

Disease cluster 6 Aortic valve stenosis 2.16e−5

Disease cluster 7 Coronary artery disease 2.29e−5

Disease cluster 8 Cardiovascular diseases 2.29e−5

Disease cluster 9 Gestational diabetes 2.67e−5

Disease cluster 10 Heart failure 5.27e−5

picked up the case–control segregation. Additionally, the O2PLS scores are plotted, showing a
similar pattern as PO2PLS.

5 DISCUSSION

We propose probabilistic two-way orthogonal partial least squares (PO2PLS) to model the rela-
tionship between two sets of variables x and y in the presence of data-specific characteristics. Our
method is suited for heterogeneous, high-dimensional, correlated datasets commonly available
in the life sciences. For estimation, we proposed a memory-efficient EM algorithm. For testing,
we derived a global test statistic and its approximate distribution under the null hypothesis of no
relationship between x and y.

Via an extensive simulation study, we showed that PO2PLS often performed better than PPLS,
SIFA, O2PLS and PLS. In terms of feature selection and prediction, it performed better than PLS,
PPLS and SIFA when heterogeneity exists between the datasets. These results were expected
since, contrary to the other methods, PO2PLS incorporates the heterogeneity in the model and,
therefore, better estimates the joint components. PO2PLS performed better than O2PLS and PLS
in terms of prediction when the datasets are small. For noisy and small datasets, PO2PLS also
had a better true positive rate than O2PLS and PLS. PO2PLS had a smaller risk of overfitting,
probably because it models all the available information in the data. This reduction in overfitting
was also confirmed in studying the relationship between genetic data and glycans, for which we
had a replication cohort. The common belief is that PLS and O2PLS, as distribution-free meth-
ods, are more suited for small sample size scenarios than probabilistic methods (Wold, 1985).
Contrary to this belief, in these scenarios, PO2PLS yielded a better true positive rate and predic-
tion performance. Simulations showed that PO2PLS is robust against model deviations such as
using too small a number of components and non-normality of the data. Note that the prediction
performance of all methods can be improved by cross-validation, although less effective in small
sample size scenarios and computationally intensive for the likelihood-based methods.
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We also showed with simulations that our proposed global test statistic for testing the null
hypothesis of no relationship is asymptotically normally distributed and performs well in terms
of type I error and power. In algorithmic latent variable approaches, testing for a relation-
ship is carried out by empirically estimating the distribution of the test statistic. Since this
is time-consuming, evidence for the relevance of the top features (e.g. genes, proteins, gly-
cans) is instead obtained by relating the findings to historical ones (Domingo-Fernández et al.,
2019). For example, it is tested whether specific molecular pathways or interaction networks
are over-represented in the top feature ranking. Such an approach has the advantage that prior
domain knowledge is incorporated. A drawback is a focus on existing findings and a bias against
novel discoveries. Moreover, it is often unclear how much evidence exists for pathways and net-
works in these databases. Each database uses its own scoring mechanisms, often not based on a
formal scoring method. Furthermore, there might be a lack of information in the context for new
diseases or measurement techniques, and using the information on related diseases or datasets
may result in incorrect conclusions about relations (Mubeen et al., 2019). Our proposed testing
procedure quantifies the evidence in a data-driven way; hence it may generate new hypotheses.

PO2PLS was applied to omics data from two case studies. The first one is a typical epidemio-
logical population cohort, designed to identify new molecular drivers and build omics predictors
for common diseases. These studies are also well suited to study relationships between multiple
omics datasets. We applied PO2PLS to genetic and glycomics datasets. The relationship between
genetics and glycomics was statistically significant, which confirmed the known high heritability
of glycans and the multiple hits of GWAS (Zaytseva et al., 2020). We did not replicate all GWAS
findings since we restricted ourselves to genotyped SNPs in a gene’s neighbourhood. On the other
hand, modelling the joint distribution of glycans and genes also led to new findings. We replicated
the estimated components with relevant features in a second cohort study. The second case study
was a small case–control study. To identify molecular markers for rare diseases, omics datasets are
measured in cases and controls. Typically, these datasets have a small sample size, either because
of the limited number of available cases (rare disease) or costs. We applied PO2PLS to epigenetic
and transcriptomic data in HCM cases and controls. The relationship between the two sets was
statistically significant. Clustering of the top genes using DisGeNET showed that the top genes
are in gene clusters associated with several cardiovascular diseases. Moreover, when plotting the
first two joint components against each other, a structure representing case–control status was
evident. This might be expected since all analyses are conditional on the outcome status, and the
outcome is a collider for features of the datasets that affect the outcome variable (Balliu et al.,
2015; Tissier et al., 2017).

There are many future directions along the lines of the current work. First, it is of interest to
include the outcome variable in the model. In omics research, several penalized regression models
have been proposed to identify sets of variables related across the different datasets x or y which
predict an outcome variable z (Vinga, 2020). These approaches do not model the within and across
correlations and are hard to interpret when correlations between x and y are present (Tissier,
2018). Extending the probabilistic O2PLS framework to model the joint distribution of (x, y, z),
addresses these challenges. This joint distribution can be specified conditional on latent joint
and specific variables. In such a framework, the relation between x and y is modelled, and their
association with the outcome z is simultaneously incorporated and estimated. Second, it might be
of interest to model more than two omics datasets. Here, the interest may lie in inferring relations
between three (or more sets) of variables, say x1, x2 and x3 with joint latent variables t1, t2 and t3
respectively. Derivations of estimation and inference for PO2PLS can be extended analogously.
A complication is that the direction of the relationship between the sets of variables needs to
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be specified via inner relationship equations, which might be unknown. The majority of current
data integration approaches for more than two datasets avoid this issue by specifying the same
set of latent variables t for all sets of variables (Meng et al., 2016), similar to SIFA (Section 2.2).
Such an approach does not perform well for heterogeneous datasets, as shown in our simulations
(Section 3). Another approach proposes optimizing a sum of objective functions for each pair of
datasets (Löfstedt & Trygg, 2011) while accounting for heterogeneity in the joint parts. Third, to
improve feature selection, a penalty term can be added to the likelihood function to incorporate
prior belief about which variables are more important or belong together. For the algorithmic
O2PLS, such an extension was recently proposed. For the probabilistic PO2PLS approach, prior
belief can be included by adding a penalty function to the likelihood.
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and C. Hayward and L. Klarić, University of Edinburgh MRC Institute of Genetics & Molecular
Medicine, for providing data from the CROATIA Korcula and Vis cohorts.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available upon request from third parties. The
CROATIA Korcula and Vis data can be obtained upon request directed towards Prof. C. Hayward,
IGMM, University of Edinburgh (caroline.hayward@igmm.ed.ac.uk). For the CVON-DOSIS
HCM data, a request can be sent to Dr. M. Harakalova (m.harakalova@umcutrecht.nl). Restric-
tions apply to the availability of these data, which were used under license for this study.

SUPPORTING MATERIALS
Proofs, simulations and details for PO2PLS (pdf). This document contains additional mate-
rials for the methods, simulation and data analysis sections. First, details and proofs of theoretical
variances and covariances, identifiability, maximum likelihood estimation and asymptotic results
are derived. Then, additional results of the simulation study are shown. Finally, the results of the
extra data analysis are shown.

ORCID
Said el Bouhaddani https://orcid.org/0000-0002-2279-4337

REFERENCES
Balliu, B., Tsonaka, R., Boehringer, S. & Houwing-Duistermaat, J. (2015) A retrospective likelihood approach for

efficient integration of multiple omics factors in case-control association studies. Genetic Epidemiology, 39,
156–165.

el Bouhaddani, S., Houwing-Duistermaat, J., Salo, P., Perola, M., Jongbloed, G. & Uh, H.-W. (2016) Evaluation of
O2PLS in omics data integration. BMC Bioinformatics, 17, S11.

el Bouhaddani, S., Uh, H.-W., Hayward, C., Jongbloed, G. & Houwing-Duistermaat, J. (2018) Probabilistic partial
least squares model: identifiability, estimation and application. Journal of Multivariate Analysis, 167, 331–346.

el Bouhaddani, S., Uh, H.-W., Jongbloed, G., Hayward, C., Klarić, L., Kie lbasa, S.M., et al. (2018) Integrating omics
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Klarić, L., Tsepilov, Y.A., Stanton, C.M., Mangino, M., Sikka, T.T., Esko, T. et al. (2020) Glycosylation of

immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Science
Advances, 6, eaax0301.

Lauc, G., Essafi, A., Huffman, J.E., Hayward, C., Knežević, A., Kattla, J.J. et al. (2010) Genomics meets
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APPENDIX: AN EM ALGORITHM FOR PO2PLS

Theorem 4. Let X and Y be data matrices with N i.i.d. PO2PLS replicates of (x, y) across the rows.
Let r, rx and ry be fixed, satisfyingmax(r + rx, r + ry) < N. The loading matrix W is estimated
with the following iterative scheme in k, given known starting values for k = 0. Here, Ek[⋅] ∶=
E[⋅|X ,Y , 𝜃k].
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The proof is given in the supplementary materials.
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