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'ABSTRACT

The selection of scales for models with short waves,
long waves and unindirectional current is discussed with
particular emphasis on boundary layer motion and movement
of sediment. The paper attempts to outline the present state
of the art and to provide a framework for future research in
the area of coastal sediment transport models at Queen's



"If T succeed in demonstrating with the model that the
originally existing conditions can be reproduced
typically; and if, moreover, by placing regulating
works in the model, the same changes can be reproduced
that were brought about by the training works actually
built, then I am sure that I can take the third and
most important step: namely, of investigating, with
every promise of success, the probable effect of the
projects that have been proposed .... "

- L.F. Vernon-Harcourt

Model technology has not advanced a great deal since
L.F. Vernon-Harcourt, who continued the work of
0. Reynolds made the above statement.

This paper has the purpose to advance the art of

hydraulic modelling, be it ever so little beyond
the above philosophical outlook.

- J.W. Kamphuis
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SYMBOLS

wave orbital amplitude

value of 'a' at the bottom

value of 'a' at the top of the boundary layer

general property, dimensional dependent variable

area of roughness element
Chezy friction factor

depth of water

sediment particle diameter
function

Darcy Weisbach friction factor
force

drag force

Froude number

acceleration resulting from gravity
wave height

bottom roughness

sand grain roughness

eddy coefficient

general length parameter

iii

as a subscript, refers to long waves and unidirectional flow

wave length

as a subscript, refers to the model

scale effect in k resulting from n, #n
scale effect in q resulting from n, #n

when not subscripted, general model scale
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n

when subscripted, scale ( = prototype value / model value )
model distortion ( = n, / n)

distortion of total bottom roughness ( = e / n)
distortion of sand grain roughness ( = nks / n)
pressure

as a subscript, refers tc the prototype

sediment volume transported per unit width per unit time
hydraulic radius

Reynolds number

spacing of roughness elements

as a subscript, refers to short waves

slope of the free surface

surface slope caused by friction on the bed form
surface slope caused by friction on the grains
general time parameter

wave period

horizontal component of wave orbital velocity
maximum value of u

value of u at the bottom

velocity within the boundary layer

as a subscript, refers to the upper region
longshore current velocity

average value of U over the vertical

U at the top of the boundary layer

maximum value of U s

shear velocity ( =t/ p)
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N

volume

sediment fall velocity

general horizontal space parameter

general horizontal space parameter within the boundary layer
dimensionless independent variable (in Eq. 3.2)

general horizontal space parameter

dimensionless dependent variable (in Eq. 3.2)

general ﬂorizontal space parameter within the boundary layer

general vertical space parameter measured upward from
still water level

general vertical space parameter within the boundary layer,
measured upward from the bottom

ripple coefficient

underwater unit weight of sediment [ =( g, =P ) g ]
boundary layer thickness

maximum value of §

laminar boundary layer thickness expression

actual thickness of the laminar boundary layer
viscous sublayer thickness

ripple height

lower limit of velocity distribution ( = ks / 30 )
ripple length

dynamic viscosity of the fluid

kinematic viscosity of the fluid (=u/»p)

drag coefficient

dimensionless dependent variable, dimensionless version of A

density of the fluid
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density of the sediment

shear stress

bottom shear stress

additional shear stress

shear stress resulting from bed form

shear stress resulting from sand grain roughness
effective shear stress

equilibrium beach slope

vi



1. INTRODUCTION

The selection of model scales for hydraulic models involving
wave motion is often done in a relatively arbitrary fashion. In this
report a formal approach is discussed introducing the rationale
related to the theory of dimensions.

It is this tool that is further used to determine scales for
mobile bed wave models, an area of great uncertainty and which
recently * was described as relatively unknown by experts from some
of the world's leading laboratories, in spite of a great deal of
practical experimentation and model analysis.

Practical limitations are kept in mind throughout the report
in order to enhance the practical value of the work.

The report has been written to serve two purposes. A framework
for further study of modelling techniques presently underway at the
Queen's University Coastal Engineering Laboratory was needed and
therefore the report has the appearance of a state of the art paper.
Secondly, the report forms the basic material for lectures on wave

models, hence the didactic style.

* Discussion at 12th Coastal Engineering Conference, Washington,

September 1970.



2. GENERAL DESCRIPTION OF WAVE MOTION

Water waves as they occur in nature are usually classified in
a number of different categories. One distinction that is often
made is between short waves and long waves. Physically this
distinction may be described as follows. For long waves, the vertical
motion (accelerations, velocities and displacements) of particles is
very small compared to the horizontal particle motion and can
therefore be neglected. For short waves this vertical motion must
be taken into account. Thus wind generated waves, both sea and
swell, may be considered short waves, whereas tides, seiches and
tsunamis are long waves. The distinction is of course academic since
waves exist throughout the whole spectrum but it does help in
classifying commonly occurring waves.

For wind generated waves or short waves a further distinction
is usually made with respect to water depth. ''Deep' water is
considered to exist when the water particle motion resulting from
wave action does not extend to the bottom. An approximation to this

condition is given by the relation

d >
T - 0.5 (2.1)
where d is the water depth and L the wave length. Often a more

practical lower limit for deep water is set at

>

0.3 (2.2)

o ¥

The water depth is considered ''shallow' when



%- < 0.05 (2.3)

and of "intermediate depth' when

> >

0.3

on oW

0.05 (2.4)

Again the distinction is rather academic and somewhat related
to the wave theories that are traditionally used to describe wind
generated waves.

It must further be realized that the boundary layer, the layer
adjacent to the bottom within which shear is transferred from the
bottom into the body of water, is a thin layer in the case of the
wind generated wave, whereas it extends the full depth of the body
of water for long waves. Since within the boundary layer the
particle motion is predominantly horizontal, the above statement is

consistent with the definition of long waves given earlier.



3. TEQUATIONS FOR SHORT WAVE MOTION

3.1 General Dimensional Analysis

Any property A of wave motion in a fluid may be described

in its most general form by the following relationship:
A=f #HT,d, k;, 0, 1, 8 X, 5, 2, t) (3.1)

where H and T are the wave parameters - wave height and wave
period, d and k s are the fluid body parameters - depth of fluid
and bottom roughness, p and u are the fluid parameters -

density and viscosity, g is the acceleration resulting from gravity,
X, y and z are general space parameters (z is measured vertically

up from the water surface) and t is the general time parameter

(Fig. 3.1). *
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Fig. 3.1 Nomenclature for Upper Region

Equation 3.1 may be expressed in dimensionless form as

Y o= b X X Xy voes) (3.2)



where Y and Xn are dimensionless variables.
The theory of dimensions and the method of dimensional
analysis used to arrive at this new equation have been discussed in

*
detail elsewhere 1,2,3)

and some knowledge of the methods involved
will be assumed.

Using T, p and g as the repeating variables, Eq. 3.1 may
be written in the dimensionless form of Eq. 3.2 as

k
o H d S U X y z t
HA ¢A(_'2'T»—‘2',_2',—_2_3"—2” 9—7’1") (3-3)

g gT" g1 g7 g g™ T
As example, consider wave length, L , to be the dependent
quantity A in Eq. 3.1. Since L is independent of x, y, z or t,
Eq. 3.1 may be rewritten in dimensionless form equivalent to
Eq. 3.3 as

H a4 k

L S U
e v Ve g A " ’ ; ) (3.4)
L gT ¢ gT2 gT2 gTZ pgz%z

Wavelength is such a common wave parameter that often it is
used instead of T in Eq. 3.1. This results in another dimensionless

relationship

k
i, = 40,8 2 LB X Y I osw$) (3.5)
A ArrrpLﬁrrfr V&

It may be noted that the same result can be achieved by

* Superscripts refer to the references listed in the last chapter.



substituting Eq. 3.4 into Eq. 3.3 . Yet another dimensionless functibn
may be derived using H, T and p as the repeating variables in

Eq. 3.1. This yields

k 2

= S T T X z t
Il ‘¢A(_’ stzﬁgﬁ"ﬁ’é'!ﬁﬁf) (3'6)

jas{ faN

Egs. 3.3, 3.5 and 3.6 all mean the same, but use slightly
different dimensionless variables.

Wave motion may be described as being composed of two definite
layers, the upper region or the main body of fluid and the boundary
layer, the region where viscous effects must be taken into account.
As stated earlier, in the case of. short waves, both these layers are
present, while for long waves only the boundary layer need be

considered since the boundary layer reaches the free surface.

3.2 Upper Region
Egs. 3.3, 3.5 and 3.6 are valid for both the upper region and

the boundary layer, however, in the case of short waves, for the
upper region (above the boundary layer) certain simplifications may
be made, based on the assumptions that the viscosity and the bottom
roughness have negligible effect in this area. These simplifications
result in

H d X z t
Il = U¢ ( ¥ » R VR 70 7> T ) (3°7)
UA A gT gT gT gT gT

v cH d x
UHA =U¢A(r’r’r’%’%’ t[‘g‘) (3'8)
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U“A=u¢K(%»ggr’ﬁ:§:ﬁ,%) (3.9)

where the subscript U refers to the upper region.
As an example, consider the horizontal component of orbital
motion u . This may be expressed in a general dimensionless form,

using Eq. 3.8, as

8.8, 8 (3.10)

(/=¥

M= % =6, (7,

For comparison, from small amplitude wave theory, the expression for

u for two dimensional motion is found to be

2nd |, 2nz

( + —r)
sinh P

It may easily be shown that Eq. 3.11 is a particular expression of
the general relationship represented by Eq. 3.10.
The maximum velocity, u , is obviously not a function of

X, y and t, therefore

HA = P_=¢

u J’g_L u

The comparable expression for two dimensional motion using small

(£,%,2) (3.12)

amplitude wave theory may be derived from Eq. 3.11.

Similarly the orbit amplitude, a , may be expressed as

d z

s T 1) (3.13)

=

n=%=¢(



At the bottom of this upper region, i.e. at the top of the boundary
layer, the particle orbits have degenerated into a horizontal motion.

Here the horizontal velocity may be expressed as

\‘Z—.E-=¢ (1}},%,{-,%,1:\/%) (3.14)

and from small amplitude theory the comparable expression is

wH 2mX 2nt
= cos ( - ) 3.15
"8 T i 20 . S

The amplitude (semi-orbit length) of the bottom motion may be expressed

as

(o fen
(o =
—

(3.16)

Small amplitude wave theory yields

ag = _*_*[ﬂnh 2“ (3.17)

S1

which conforms with Eq. 3.16.

3.3 Boundary Layer

3.3.1 Dimensional Analysis - Within the boundary layer of thickness

& the space co-ordinates are denoted by X, Y and Z as indicated in

Fig. 3.2. Note that Z is measured upward from the bottom. Boundary
layer velocities will be denoted by U . At the top of the boundary
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Fig. 3.2 Nomenclature for Boundary Layer

layer, the particle motion must conform with the motion outside the

boundary layer. Therefore it is possible to write

U UB
§ _ - H d x g
___-—'-‘¢ (—s_)—’ » t ) (3'18)
<3 /-gL UG Bt R f JL
and
a a
16:=-f'=¢a6 (L+1) (3.19)

Eq. 3.18 allows therefore a transfer of motion from the upper region
to within the boundary layer and simply by imposing the correct

horizontal velocity at the top of the boundary layer, it is possible
to model the boundary layer separate from the upper region. Thus it

is possible to write

A=f(U6,ks,p,u,X,Y,Z,t) (3.20)
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where the effect of gravity within the boundary layer is negligible.

In dimensionless form Eq. 3.20 becomes
g s w_ X Y 7
Ty = *(ug» 27" UF * Gyt * Gt ) (3.21)

The concept expressed by Eq. 3.20 is véry attractive but rather
useless in practice since u is a function of both x and t.
A common experimental facility used to model the boundary layer only
is the oscillating water tunnel or equivalent equipment, where a
body of water and a model bottom are displaced relative to each
other. In this case the convective variation of u with x is
not modelled and the total mass of water is moved with respect to
the bottom as a function of time. A further simplification is often
introduced by assuming u to vary sinusoidally with time and
neglecting higher order effects such as mass transport (or introducing

them separately). In this case

lé = £ (ag, T) (3.22)

and Egqs. 3.20 and 3.21 become

A= f(ag T, k,op,u X, Y, 2, t) (3.23)
I, = ¢,(_lis_ wr XY ,2 0t (3.24)
’ ’ &
A ag pa ag ’ag; ag’ T

As an example, consider the shear stress. In the general case
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k

R S U X Y Z
= ¢ ( ) (3.25)
T T T G wE e TR

and in the case of the simplified (practical) model

2

k
T . S T X Y,z ot
6 5

As a further example consider the boundary layer thickness ¢ ,
which is independent of 2

k
R s _u AN ¢
Ut - % (gt 77, UE U (38)

§ é pU‘|s t 8

or in the simplified case

k
[ ' S uT X Y t
—-— = ¢ ( =, =y s W ) (3.28)
a6 8 a(s paaz’ac ag > o

It may be seen that § is a function of the horizontal space
co-ordinates and time. The maximum boundary layer thickness 8 may

therefore be expressed as
.

=03 ’ 3.29
T = %5 (e i) (3.29)

or in the simple ase
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= ' k ;

[ A S 0y
-_— = ¢ (=, ) (3.30)
ag § ag paéz

This definition of maximum boundary layer thickness is rather useful

and allows rewriting of the awkward relationship, Eq. 3.21

k
m o=* (=, uﬂ,§,%,%,%) (3.31)
& U 6 & 8

If it is understood that & is a certain defined boundary
layer thickness, e.g. maximum thickness & , then Eqs. 3.30 and 3.31

may be written in general as

[ 3

[ S uT
i =¢' (——, ) (3°32)
ag § ag paGZ
and
g ks w x Y z t x 3%
a2 % ¢('g-,p—usg,'g,3',3','r) (3.33)

From Eq. 3.32 it may be seen that & is a function only of
relative roughness and viscosity and in the following subsections

Eq. 3.32 is compared with common expressions derived elsewhere.

3.3.2 Laminar Boundary Layer Equations. - For the viscous boundary layer case,

the roughness becomes unimportant, relative to the viscosity effect,

and therefore as a limiting case, Eq. 3.32 may be restated as

s ' T
% = ¢ (——z-p: ) (3.34)
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From small amplitude wave theory, using the laminar

dissipation function it may be seen theoretically (4, pp 81-87) that

=J BL

L = (3.35)

where GL is an expression for the thickness of the laminar boundary
layer. In actual fact if the boundary layer thickness is defined as

the layer where

<
U-Z..0.99 Us

then calling this thickness GL

. A . uT
GL = 5 GL = 5 ‘/ o (3.36)

Either case may be shown to conform with Eq. 3.33.

3.3.3 Rough Turbulent Boundary Layer Equations. - For the rough turbulent

boundary layer case, using Eq. 3.32

S - ¥ (P (3.37)

8
From boundary layer theory and experiment, the following
relationships may be obtained. Flow may be classified as rough
turbulent if the bottom roughness elements protrude through the
viscous sublayer to such an extent that the flow is only a function
of form drag on the roughness elements and no longer depends upon
the viscosity within the boundary layer. For unidirectional flow,
Schlichting(s’ p 580) states empirically that this occurs when the

roughness Reynolds number

Vak
s

= > 70 (3.38)
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where v, is the shear velocity

and v is the kinematic viscosity, wu/p .

Hydraulically smooth flow is defined to exist when the roughness
elements lie wholly within the viscous sublayer layer, and at the
same time do not deform the top of the viscous sublayer to the
extent of disturbing the main flow, This is explained in detail
by Yalin (17, p. 34)

$.¢ § (3.39)

The range

V*ks
5« iy 70 (3.40)

is called the transition regime.
The well known expression (5, p 582) for the velocity
distribution, in fully developed hydraulically rough turbulent flow

in one direction, is

U _ Z _ Z
Ve - 2.5 1In 30 Es = 5.75 log Es+8.5 (3.41)

This expression is approximately applicable to oscillatory motion when
-g% + 0, i.e. near maximum velocity, under a wave crest or through.
A comparison between Eqs. 3.25 and 3.41 indicates that the latter is

a very simplified form of Eq. 3.25. At the top of the boundary



layer, i.e. at Z = & , Eq. 3.41 becomes

% - 2.5 1 308 (3.42)
'i: . rs .

For short waves the velocity distribution within the boundary
layer is relatively unknown and Eq. 3.41 certainly is not applicable
throughout the entire wave period. Only at times when 5_32 + &5
could it approximate the true velocity distribution relatively closely.
Until more accurate measurements show evidence to the contrary it
has been usual (9,10,11) to assume the velocity distribution to be
logarithmic as in Eq. 3.41.

The simplified form of the boundary layer equations

3U W . 13 2y
R*Umr"a’s%*“;z?

may, when neglecting the small convective term, be written as

U _ 18 , 1 o1
3% -aax + o 37 (3.43)

Further it may be stated from small amplitude wave theory that

15
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5 9 '
and combining these equations, the pressure gradient 5% = %& "

may be eliminated to give

) = .1 ot .44
3§ (Usg~U) = "5 & Sl
Integration of Eq. 3.44 yields

o . j S W, - U) &z (3.45)
) It V8 ’

where ¢ is the lower limit of applicability of the velocity

distribution. Jonsson 2 performs this integration for ¢ = .

30

and arrives at the same answer as if € = 0. An expression for

w 5" U) , the velocity deficit may be derived from Eqs. 3.41 and
3.42

(U‘S—-—U-)-=25m‘S (3.46)
Ve : Z X

which is valid in the neighbourhood of

U s

3U 3
w - O

ot

Substitution of Eq. 3.46 into Eq. 3.45 gives

§
0

Y 3 §
—p-"—' j -E(Z.Sv*ln-z)dz

(o)

where € is assumed to be zero. This may be rewritten as
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olo
[
N
(%]
3
e |
N
-
=]
|

[Va (-2Ing+2) ® ]
0

olo
"
N
wn
Q
|

. 3
2.5 55 (Va) (3.47)

olo
[}

and this equation is strictly speaking only valid in the neighbourhood
of g—ltl- = (0. Substitution of Eq. 3.42 into Eq. 3.47

yields
(0.4)2052 St e 0.4 U : P
o DR A - s i
1n2 30 3 1n 30 3

Simplifying Eq. 3.22(to be written at a definite value of & , i.e.
at a definite time) to

3
U6 = cst (-T)

and substituting into Eq. 3.48 gives an expression which can at best

only be considered a gross approximation

2
a -
[} a
cst -;z- s ‘Tg
= cst
m2 30 2 T 1n 30 .Ea
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or

e 8
— = ost (In30¢ ) (3.49)
S

This expression corresponds to the one derived by Jonsson (9, Kq. 4.16)
and conforms with Eq. 3.37, but the number of simplifying assumptions
made in this comparison must be noted carefully!

The criterion for existence of hydraulically rough turbulent
flow under short waves is stated as follows. The data are very
scant and the thinking behind the representation is by no means
complete. Several experimental investigations have been performed
and Li (6) states that the flow may be considered hydraulically rough
when

k

3% > 0.25 (3.50)
while it is smooth for

ks

= < 0.15 (3.51)

L

To ensure turbulent flow within the boundary layer an
additional critical condition is usually given and Brebner, Askew

and Law 7 indicate that

2>

> 100 (3.52)

where UG signifies the maximum value of UG'
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Kalkanis (1)

using Li's equipment expresses approximate agreement
with this equation.
Collins (12) found that on a smooth bottom laminar flow

conditions exist until

= 160 (3.53)

Kajiura (8) states that for smooth boundaries the flow is laminar

if
U, 6
L < 35 (3.54)
while it is turbulent for
U, 6
L > a2 (3.55)

Using the above equations Fig. 3 has been drawn up outlining
the approximate locations of boundary layer flow regimes. These

must be further determined by additional research.
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4. SCALE SELECTION FOR SHORT WAVE MODELS

4.1 General

Dimensionless relationships, such as those written in Chapter 3
are valid for both model and prototype, in fact if the model is
dynamically similar to the prototype all the dimensionless ratios are
identical. The first such ratio in Eq. 3.3 is H/g'I‘2 . If model
and prototype values are denoted by subscripts m and p
respectively, then for dynamically dimilar models

H H
( —— ) = ( g ) (4.1)
8 o e,
or
Hm H
= __Ez (4.2)
&' &Tp

If the scale, n , is defined as the ratio of the prototype
value over the model value in order to obtain convenient integer values,

rather than fractions, for the major scales, then

% ,I,ET )

i s = > - 4.3
nH nT - ng gm ( )
From Eq. 4.2 it may be seen that

2
n, = ngn.r (4.4)

Because ng may usually be approximated by one, Eq. 4.4 may be
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simplified as

By T Y 3)

Eq. 4.5 is therefore one scale law that governs design of a proper
dynamically similar model. Using Eqs. 3.3, 3.5 and 3.6 in a similar
fashion, the following scale laws may be derived for short wave

models.
nH=nL=nd=nk=nx=ny=nz=n (4.6)

where n is the general model scale, which may be freely chosen.
Using the notation of Eq. 3.2, it may be seen that the
dimensionless ratios )(3 and X4 of Eq. 3.6 both give scale laws

with respect to the wave period T :

_ 2 2 ¥
nmn, = nan and np ng ny (4.7)
Since for practical models ng k. P 1, these

expressions present two different relations between np and n, -

This is a familiar situation. )(..5 is a Reynolds number while X4

is a Froude number, leading to the well known classification of
Reynolds number models, neglecting the effect of g and therefore
of X4 , and Froude number models neglecting the effect of viscosity.
The two ratios X3 and X4 are mutually exclusive if n_ = n

g P

Al " 1 and a choice must be made. The choice obviously

depends on the relative importance of viscosity or gravity. As
discussed in Chapter 3, outside the boundary layer in the upper region
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viscosity, and therefore X3, becomes - unimportant. - Eq. 3.6 neglecting

)(3 then yields

np = nH]‘/2 = nl/2 = n, (4.8)

This is in agreement with Eq. 3.9 which was especially written for the
upper region and where viscosity does not appear. Within the boundary
layer, however, )(3 is important. But X4 is also important here
because conditions within the boundary layer result from the motion
outside the boundary layer. Therefore it does not appear possible to
model both the upper flow and the boundary layer flow simultaneously.
Fortunately there is one exception: the common case of fully
established rough turbulent boundary layer flow. In this case the
Viscosity term becomes negligible throughout the boundary layer and
the upper region causing Eq. 4.8 to be valid for this type of model,
not only outside, but also within the boundary layer.

If viscosity is important within the boundary layer, the
problem is more difficult. One solution is to model the boundary
layer separately. This means that the orbital motion outside the
boundary layer is modelled correctly as suggested in Egs. 3.20 to
3.24, thus obviating concern about gravity and consequently about X4 v

4.2 Upper Region Models

For the upper region the following scale laws may be derived
from Egs. 3.7 to 3.9.

nH=nL=nd=nx=l'5,=nz=n (409)
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Further from Eqs. 3.10 and 3.13
- J1/2 _
n, = n n, = n (4.11)

The type of model dealt with in this section is the usual two
or three dimensional wave model, where little concern is expressed
about the effects of bottom boundary layers. In this type of model,
often large plan sizes must be modelled in a limited laboratory
space. At the same time the vertical scale must be small enough so
that wave heights and bottom contours can be modelled and measured
with sufficient accuracy. This introduces the concept of distortion,
i.e. the plan scales are greater than the vertical scales.

The condition expressed in Eq. 3.1, is very general and under
certain circumstances this condition may be relaxed in order to allow
distortion. For instance, a refraction pattern is not affected by
x and y . Thus, for models where refraction is the major
consideration, n and ny need not be the same as n g 2 the scale
that determines the refraction pattern. In general, for a model

where distortion is acceptable Eqs. 4.9 to 4.11 may be rewritten as

H

nL=nd=n=n=n

il
=

n, = n = ng (4.12)

N

T Ty

where N 1is the model distortion



nx - J
N = = = ﬁY- (4.13)
Z Z

Both N and n may be freely chosen, which could be coined as two
""degrees of choice''. n is normally determined by the laboratory
size and the area to be modelled. N is usually a function of the
accuracy of field measurements of depth and wave height, model
accuracies of the same quantities, minimum depths required in certain
model areas and maximum slopes that can be used without causing
additional effects such as separation and vortices. It might appear
that this is an easier model to design since there are two

""degrees of choice''. But the model is now based on a mumber of
additional trade-offs, necessary in order to achieve this extra
choice. These must be carefully evaluated for each model. As an
example consider a refraction-diffraction model. If two ''degrees of
choice', i.e. a distorted model, are insisted upon, the total wave field
consisting of the model diffraction pattern and the model refraction
pattern does not correspond to the prototype wave field. Thus the
effect of this discrepancy must be evaluated and, in the light of
this, the ''degrees of choice' are determined - either one

(undistorted), or two (distorted).

4.3 Boundary Layer Models

In many cases the velocities within the boundary layer are
important and must be modelled correctly. Sediment transport models
fall into this category.



4.3.1 Rough Turbulent Boundary Layer.- If the boundary layer flow

is fully developed rough turbulent in both model and prototype,
viscosity is negligible and Eqs. 4.12 and 4.13 are valid.
From Eqs. 3.21, 3.24 and 3.33 it may be seen that

ng = mn, =m =m0, =n (4.14)

= = = = Nn .
n 1'5, nx nY (4.15)

In practice it is often impossible to satisfy n.ks =n,
because the model particles need to be too small or the model bottom
too smooth. Usually nks < n . Choosing a different nks has some
consequences which should be investigated. A different value of
nks will have little influence on the motion in the upper region.
In the boundary layer, however, the influence will be felt. From

physical concepts it may therefore be argued that if . #n
s
ng # n (4.16)

while

n, = n, =n (4.17)

Not modelling k s to scale represents another ''degree of
choice" and again constitutes certain further limitations imposed on
the model. The ratio of ny /n may be defined as the bottom
roughness distortion Nks . sWhen a larger roughness is used

(usual case), Nk <1 . To gain some insight into the consequences
s
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of distorting the bottom roughness the following approximation is
made

m30A=cst WY for 2<A<100 (4.18)

where A is simply the argument of the logarithmic function.
Thus Eq. 3.49 may be expressed as

a 1/6
8 8
e cot x (4.19)
1 (’Es)
which yields
§ = cstx ag 6/7 ks 1/7 (4.20)
and therefore
ng = n 07 m Y7 . 4 N Y7 < n (4.21)

The boundary layer thickness is therefore increased as a result of
the larger bottom roughness.

It may be noted that the boundary layer thickness is distorted
by the seventh root of the roughness distortion, i.e. the boundary
layer thickness is not seriously affected.

For bottom shear Eqs. 3.25 and 3.26 indicate that

n. = n (4.22)

This may be compared with the expression derived by Kajiura (8), who

assumes that the shear stress may be expressed as
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T=K%J-

where K is a type of eddy coefficient. He states that in the

outer layer
K = £(Ug, ¢ )
yielding
n = nUGn’SL n—z- = n
which is the same as Eq. 4.22.

For the case of roughness distortion one can only rely on

physical equations applicable within the boundary layer. Eq. 3.47

yields
n
) 1/2 1/7
® — = n (4.23)
N, © m &,
and therefore
n. = N 2/7 (4.24)
s
The velocity scales may be derived as follows. Using
Eqs. 3.41, 3.42 and 3.46 it may be seen that for Nk =1
s
n; = nUG = n; = nl/2 (4.25)
but in the case of roughness distortion, Eq. 3.42 yields
P 1/6
§
fy, T vy m 16 T e (. 26)

8 S
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This is as might be expected since U; = up . Kq. 3.41 yields

iy 1/6 1/2

By Fong E- e

S

-1/42 (4.27
N, )

S

This equation obviously does not apply either very close to the
bottom or at Z = & . But in any case the correction factor is

small. Therefore it may be stated that

(4.28)

In summary, the model scales for fully developed rough turbulent

oscillarory boundary layer flow are

By Mol Tolyg T M. Sely & i * 0
= = = = 1/2

W, T MR = iy K
b 1/2 -1/42 1/2

o= n AN n

n = ny BBy = .My = Nn (4.29)
. . 6/7 17 _ 1/7

s Sl b s
. 2/7

n, = nNks
KRR ¥ S V5

nv* =k N
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4.3.2 Laminar Boundary Layer. - In the unusual case where the

prototype boundary layer and the model boundary layer are both
laminar, the viscosity camnot be ignored but the bottom roughness
becomes immaterial, Eq. 3.34. The boundary layer region must be
modelled separately as discussed earlier. Egs. 3.21, 3.24, 3.25,
3.26 and 3.33 apply and from these equations, the following general
scale laws may be derived.

2
n, = n, =1 (4.30)
. |
Wy <D
_ 1
nT = n—z'

The last expression agrees with Yalin (13, Eq. 4.13)

T cst—éﬁ [sin(—T—+ e)+cos(2;'['.t—+ €) ]

and with the work of Iwagaki (14)

A~ 3/2
_ P 2V m
Y8 * g,f_»% ( T )

Note that for this case, within reasonable limits, bottom roughness
distortion does not affect the scaling laws.

The separation of the boundary layer region from the upper
region can only be achieved in an oscillating water tunnel, or

equivalent equipment, with the restriction that convective accelerations
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are not modelled. It may be seen from Eq. 4.30 that for laminar
boundary layers the period scale is equal to the model scale squared.
Even for very small model scales, the period scale mounts rapidly.
This type of model must therefore necessarily have a scale close to
unity, modelling the boundary layer almost at full scale, since
physically it is impossible to work with too large a period scale.
Also a large period scale would result in a turbulent boundary layer
within the model and this is obviously undesirable.

When scaling down a prototype turbulent boundary layer, the
possibility exists that the model boundary layer flow becomes laminar.
While the prototype Reynolds mmber is in the turbulent range, the
model Reynolds number is in the laminar range and therefore viscous
effects camnot be ignored. The boundary layer may be modelled
separately as described above. If this is not done, then the period
scale is forced to be equal to nl/ 2 by the upper layer flow. This
causes a Reynolds number scale which may be derived from Eq. 3.24

n = _n'zr_ = n'3/2 << 1 (4. 31)

s

Thus the Reynolds number becomes greatly exaggerated, e.g. if
n=25,n R ™ T%g . This is an impossible situation and in fact the
model boundary layer will remain turbulent. The model results,
however, are open to question. This phenomenon is even enhanced
when k % is not modelled to scale.

To gain some insight into the effect of modelling a laminar
boundary layer in combination with the upper layer flow, suppose that
the model boundary layer, in spite of Eq. 4.31, is laminar. Eq. 3.35
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then yields
(4.32)

This indicates that for these conditions the model boundary layer
thickness is greatly exaggerated and approaches the prototype boundary
layer thickness.

The reduction of a turbulent boundary layer to a laminar
range is rather common. Eq. 4.31 indicates that the model boundary
layer will likely remain turbulent and this condition is very
difficult to identify and should be avoided or the boundary layer
should be modelled separately.

4.3.3 Boundary Layer Models of Scale 1. - Several times in the

preceding the oscillating water tunnel or equivalent equipment has
been mentioned. It has been shown that this equipment is a valid
method of reproducing laminar boundary layers. It has also been
shown that these models are operated at n = 1 . The usefulness of
this equipment goes far beyond laminar boundary layers, however.

The turbulent boundary layer can also be modelled to almost prototype
scale. This circumvents the problem of roughness distortion and
facilitates measurement within the boundary layer. For mobile bed
models to be discussed later prototype material may be used. The
disadvantage of this type of equipment is that convective

accelerations are not modelled.



5. EQUATIONS FOR LONG WAVES AND UNIDIRECTIONAL FLOW

L | Dimensional Analysis

For long waves it is only necessary to consider the boundary
layer region since the boundary layer occupies the whole depth of the

flow. Therefore

A = f ( U’ T’ d’ ks ’ p’ u’ g’ x’ Y’ Z’ t ) (5'1)
which may be written in dimensionless form as
Y . 2
1T - ( J—é ﬁ ’H,H’ tﬁ) (5'2)

Because the flow in both model and prototype is almost always rough
turbulent (ensured in the design of such a model), +the Reynolds
number effect is negligible and

o= 0 (T‘E ks, X % \]g) (5.3)

@r-‘

5.2 uations
Eqs. 3.38 and 3.41 may be considered valid, i.e.

v.k
(3
J_v > 70 (3.38)
and
U _ Z
N 2.5 1n 30 'E; (3.41)

33
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For long waves and unidirectional flow it is usually easier to deal

with average velocities over the vertical (not time average)

- d
U 1J Z
— = 2.5 In 30 dz
v; I . ( k:)

2.5k d

¥ S Z YA Z

= 2.5 (1n 30 f‘:—-l)

S

U d
ﬁ=2.51n111§ (5.4)

This equation may be written in terms of the Chezy friction

coefficient (C) and the Darcy Weisbach friction factor (f) as

TR N | i d
v____\/;-z.smuk? (5.5)

Shear stress may be computed using the equation of motion

U 00U _ 1 9 32U
% < 5 ot et (5.6)
In the case of long waves and unidirectional flow
1 3p _ _
i R (5.7)

Where S is the slope of the free surface. Neglecting convective

inertia, Eq. 5.6 may therefore be rewritten as



au _ 1 ot
T gs + 5 37 (5.8)
Integration may be performed on Eq, 5.8 to yield

d
O j (g% + gS) dz (5.9)
€

©

Assuming €

R
o
%
<
e
o
-
&

o _ 0 '

5 = 3¢ (Ud) +gsd (5.10)
To 39 d
5 = 25 57 (vd1n 1l k:) + gSd (5.11)

It may be seen that the shear stress has two components; one resulting

from the velocity and one resulting from the slope of the water

surface.

35
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6. SCALE SELECTION FOR LONG WAVES

For long waves, the vertical accelerations are negligible.
Another statement which means the same is that the boundary layer

occupies the entire depth of the water, or
§. 2" d (6.1)

Assuming rough turbulent flow in both the model and the
prototype (always assured in the design of such a model) and assuming
that the model is distorted by a distortion N (almost always a
necessity in order to model miles of plan and feet of depth

simultaneously)

ng = n, =n (6.2)
while

nx=nY=Nn (6.3)

Since it is absolutely essential to model the length of the
long wave correctly in plan, e.g. water level elevations in a tide

or flood model must be geographically correct,

nL=nX=Nn (6.4)

This represents the crucial difference between long wave and short
wave models. However, accepting this ''degree of choice'' means that

Eq. 5.3 is no longer satisfied completely 6 since this equation assumes

no distortion.



The Froude criterion must still be satisfied and therefore

1/2

ny = my = ng/? =

but the time scale and therefore the period scale must be derived

from

and therefore

Using Eq. 5.4 and assuming that

1n 11 A = cst AY8 for 10 < A < 100,000

it is possible to write

and nks and nv* are therefore related by

1/2
L B /8 _ _1/2 1/8
r\r, ;1/3 1"ks B Nks
or
1/4
n,_ = nNks /

37

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

From the expression for shear, Eq. 5.11, it may be seen that

for S=0
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2 - %* nd nd1/8
. n —1/8
S
n, n/2 1y "8 (6.11)
S

Thus for.proper modelling of the shear Eq. 6.11 and Eq. 6.9 lead to

2y U8 _ /2

S

n N1 N -1/8
s

or

N = i‘ (6.12)

s
For the case of zero velocity Eq. 5.11 yields

= n1/2 N-l/Z

Ve (6.13)

and the required bottom roughness distortion may be derived as
N iR n1/2 N-1/2

or

which is the same as eq. 6.12.

Substitution of Eq. 6.12 into Eq. 6.10 yields

n_. = nN (6.14)
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a necessary condition for the Velqcities and current patterns to be
modelled correctly.

From Eq. 6.12 it is also possible to define the bottom roughness
scales required. Using Egs. 5.5 and 6.7

> -1/8 _ 1/2 s |
n. = Nks = N and n‘f = N (6.15)
The first expression is identical to the ones derived by Bijker (1s,V3-1)
and Yalin a, p 119).
In a distorted model, all slopes are magnified by the
distortion N , i.e.
P ) |
ng = N (6.16)

where S is the surface slope. This causes all velocities to be
exaggerated and in order to maintain Eq. 6.5 a very large value of
shear must be introduced. This may be seen when comparing Eq. 6.14
with Eq. 4.24, i.e. the shear for a long wave model is approximately
N times the shear for a short wave model.

This requirement for additional shear may be satisfied either
by using additional bottom roughness, or by introducing roughness in
the form of vertical strips or rods. In any case, with a view to the
subsequent discussion on sediment transport it is important to
distinguish between actual bottom shear and the ''shear'" introduced
by additional vertical roughness elements.

If roughness strips or rods are used in order to satisfy

Eqs. 6.14 and 6.15, the drag on each roughness element may be
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expressed as

where the subscript m refers to the model, where £ is a drag
coefficient which is a function of the shape of the roughness
elements and where A is the cross sectional area of a roughness
element facing the flow. If the spacing of the elements is s ,

then each causes a ''shear"

=2
p pAéUh
s

Tm=?= E_z._

To satisfy Eq. 6.14, ignoring for the moment all bottom shear,

;2=__Tp_=n

s 2 N
m (3 pAéUm
s2
Therefore

2

A, v

e N *

=, = (=) (6.17)

52 13 U p

where the subscript p refers to the prototype.
Using Eq. 5.5 this may be related to the roughness coefficients

as

Ae f
— = & (6.18)
S

™|z
™| =
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Eq. 6.18 may be used as a first estimate of necessary
additional roughness required in the model. It is evident that
Eq. 6.18 assumes that the bottom shear is negligible with respect
to the additional roughness introduced and therefore Eq. 6.18 will
give an overestimate of the number of roughness elements required.
In any case to compute the additional roughness, whether bottom
roughness (Eq. 6.12) or vertical roughness elements, Eq. 6.18 may
be used. This value of additional roughness, needs considerable
adjustment during the calibration stage of the model study.

If roughness strips or rods are used, what value must be
assigned to v, and Tt where it is understood that these values
apply to bottom shear only? If it is assumed that the extra
roughness elements do not interfere with what is basically a
logarithmic velocity profile in the model, caused by actual bottom
roughness, then Eqs. 6.9 and 6.10 may be used inferring that

1/2

nv* = n Nk

V8 ad n = nn M4 (6.19)
S

s
where v, , T and Nk refer to actual bottom shear and roughness
s
distortion.
In summary then it may be said that for long wave and
unidirectional flow models under fully developed rough turbulent

flow conditions

nd nz=n

ny = (6.20)

.2
L-‘:’
)
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- - nl/2
nt = n.r Nn
-4
N = N
ks
_ -1
n_ = nN (6.20)
]
n. = N/ 2 (cont'd)
I |
nf = N
S |
ns = N

These equations apply when all roughness is supplied at the bottom.

If vertical roughness elements are used Nk is a ''degree of choice"

s
and not equal to N4 . In this case

n, = N2

nf = N-l (6.21)
n. = nN 1/4

T
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7. COMBINING SHORT WAVES, LONG WAVES AND UNIDIRECTIONAL FLOW

At times a single model is required to solve problems related
to short waves, long waves and unidirectional flow. For this type of
model, the flow must necessarily be rough turbulent.

It is assumed that the vertical scale is synonymous with the
general scale n . For short waves Eq. 4.29 gives the required
modelling laws while for long waves and unidirectional flow Eqs. 6.20
and 6.21 may be used.

If the two types of waves and the unidirectional flow are
combined, the following scales are self evident from Eqs. 4.29 and
6.20.

My = Mg =m, =W =m0
nx=ny nx=nY=Nn (7.1)

o . _1/2
s 4U T eyt sy TR

w T My

The extra subscript £ refers to long waves and unidirectional flow
while the s refers to short waves.

Two scales of wave length are found

Ny = n Ly = Nn (7.2)

V2 (7.3
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To model the long wave correctly using bottom roughness only

M = N4 (7.4)
S

Since there is no similar roughness requirement for the short wave
model (a conclusion reached by Le Mehauté (18) also) this value of
bottom roughness could be used in a combined model. This means that

ng = n N Y7 o N7 (7.5)
s

i.e s is greater than the geometrically similar s"s by a

factor N4/ 7 . Thus it would appear that in those parts of the model
where wave action is of prime importance the larger bottom roughness
required by the long wave condition would distort the wave model boundary
layer thickness excessively.

Therefore vertical roughness elements must be used. The wave
boundary layer thickness will then be much closer to normal, but it
must be kept in mind that diffraction takes place around each of these
bars. This solution is to be preferred, however, since the roughness
element dimensions are usually very small compared to the wave
dimensions. For this case it is possible to use Eq. 6.21, where

Nk is the same for long waves and short waves. This leads to
s

n_ = nNk and n_ = nNk (7.6)

To achieve the correct wave-current interaction these two shear

stress scales must obviously be the same and it may be seen that for
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small values of N the difference between the two shear stress
scales is small a.ndswithin the range of approximations taken in
Eqs. 4.18 and 6.7.

Other scales obtained from Eqs. 4.29, 6.20 and 6.21 are

Mg = nNkiﬁ 7.7)

nc = Nl/z nf = N

(7.8)
The last scales are a result of the analysis for long waves or
unidirectional current. Bijker (15) , however, correctly points out
that Eq. 7.8 is a necessary condition in three dimensional models

of purely short waves, because of the presence of wave generated

currents.



46

8. EQUATIONS FOR A MOBILE BED

Sediment transport along the bottom may be described by the

following parameters, Yalin , . 6),

A = £ (p, ¥, D, pg, 8 £, Vy) (8.1)

where u and p are the fluid density and viscosity, D and Ps
are the particle diameter and density, g is the acceleration due to
gravity, % is a typical length and v, is the shear velocity

= ¢r°/p » Ty being the shear stress at the bed.
Because gravity affects the system only through submerged unit

weight it is common to use pg - o instead of »p s + Also
Ys = (pg - 0)g (8.2)

may be substituted for g . This results in the following

dimensionless relationship

A0 (H, e s 2y (8.3)

The first two dimensionless variables are the X and Y axes of the
Shields diamgram, shown in Fig. 4, grain size Reynolds Number and the

Shields parameter.
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FIGURE 4 SHIELDS DIAGRAM

For unidirectional flow, Yalin'(l’Ch'6) has discussed the
values of v, and how the bottom shear is a combination of several
components. If the bed form is flat, v, is readily determined and

easily varied in a definable fashion since

vy = (@92 (8.4)

where R is the hydraulic radius of the flow and S the slope of

the water surface. If bed forms are present

S = Sk + Sf (8.5)

where Sk is the slope caused by the friction on the actual grains
s
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and Sg is the slope caused by the bed form. Experimentally the

following two expressions have been derived

E
. (8.6)
Sks (2.5 1n 11 % ) 4
S

2
_ 1 A
Sf = % ¥ F (8.7)
where F 1is the Froude number of the flow

il
8&};

Eq. 8.6 may be derived directly from Eq. 5.5. Eq. 8.7 may be found
in Yalin (1-P167)
Under waves v, is not an easy variable to use and it would

be convenient if Eq. 8.3 could be rewritten as

8
S(\)’YD’O ’D—)) (8'8)

Even for long waves and unidirectional current a more convenient
form of Eq. 8.3 would be
' -

D pU° PsP 4
R.HA - ¢L(\)—’Y—ﬁ’__p_—’ﬁ) (8-9)
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Both as and UG are funct or- Qf other variables as
indicated in Eqs. 3.13 and 3.14 and therefore Eq. 8.8 is a short form
for more extensive equations involving the wave parameters
H, T, L, x, y, 2z and t.

The use of Us and U instead of Vx 1s justified when
Eqs. 8.8 and 8.9 are to be used for deriving model scales, as long

as

y F Rt Tl ng o n (8.10)

Using Eqs. 4.23 and 4.26 it may be seen that

-1/7
s

hy, * s, Mk (8.11)

which indicates that substitution of Us for v, in Eq. 8.3 is

not unreasonable. For long waves and unidirectional current, Egs.

6.5 and 6.19 yield

. -1/8

ng = nv* Nk (8.12)

S

indicating again that the approximation is reasonable, as long as
1/2

vertical roughness elements are used to keep n; = n If all
roughness is bottom roughness :
1/2
ng = :\,*N/ (8.13)

in which case U cannot be substituted for Vg o
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9. SCALE SELECTION FOR SHORT WAVE MODELS WITH A MOBILE BED

9.1 General

In order to model the boundary layer and the wave motion both
simultaneously and correctly, it was seen that the boundary layer
motion must be fully developed rough turbulent in case of the
prototype as well as the model.

Yalin (1,p224) has demonstrated that for proper sediment
transport scaling v, should be used rather than UG and U as
suggested in Chapter 8. The following model scales may be derived
from Eq. 8.3, using ag as the typical length for models of short
waves and assuming n,. = n_ = 1

v T T
n, = %V* (9.1)
an = %‘-2 (9.2)

Rop T Mo T 1 9.3)
ny = 1n_ =n (9.4)
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Eqs. 9.1 and 9.2 ensure that both model and prototype fall
on the same point on the Shields diagram. Valembois (21) combines

these into

Eq. 9.3 states that the density scales for the fluid and the
submerged sediment must be the same. Since n is usually equal
to unity, this leaves the impression that the only proper model
material is the material found in the prototype, a very restricting

(1,p162) states that this is only of importance

concept. But Yalin
when considering the motion of individual grains. When mass
movement of bed form and discharge of material is of interest, this
very stringent scale law can be relaxed.

If the mobile bed is flat, i.e. without bed forms such as
ripples, then from Eq. 4.23 it may be seen that Eqs. 9.1 and 9.2

become

LR wald Rl 9.5)
S
_ 32 37
nY = n Nk (9.6)
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In most sediment transport models the bed is not flat. For
this case, assumptions must be made as to the relative influence of
grain size roughness and bed form roughness. The grain size roughness
appears in all expressions of velocity distribution used so far.

Is it possible to replace this simply by the total roughness or must
it be assumed that the boundary layer follows the bed form so that
the velocity distribution remains a function of grain size roughness
only? If the latter assumption is made, Eqs. 9.5 and 9.6 apply as
they are written. If the assumption is made that the bed form

roughness is responsible for the boundary layer velocity distribution,
then

-1/2

my = a M

(9.7)

3/2

- 3/7
an n Nk

(9.8)

where N refers to the total roughness, bed form and grain size
combined. Both assumptions are incorrect and the preference for
either one or the other depends to a great extent on the nature of
the bed form. For long ripples or dunes Eqs. 9.5 and 9.6 would be
more applicable, whereas for short ripples of small height perhaps
Eqs. 9.7 and 9.8 should be used. In the following Eqs. 9.5 and 9.6
using Nks will be called Assumption I and Eqs. 9.7 and 9.8 using
Nk will be called Assumption II.

It is well known from observations for unidirectional flow



53

with rippled beds that the sediment movement is not related to the
total bed shear but only to a portion of it. Bijker (5) and others

introduce here a ripple factor, a , so that
' = art (9.9)

where T1' is the effective shear stress, i.e. the shear stress
that moves the sediment. In how far this applies to the ripples
under waves remains to be seen and in any case, it is unlikely that
the other properties such as growth of bed form, bed form
dimensions, etc. are dependent on the same o« . Furthermore, it
is found that in most cases n =1. Therefore the ripple factor
has only a small effect on the scaling problem and this approach
becomes synonymous to Assumption II.

When Eqs. 9.4, 9.5 or 9.7 are examined, there appears to be
a conflict in the value of n, . Since n >1 FEq. 9.4 results in
n, < 1 while Eq. 9.5 and 9.7 yields n, > 1 . This is a conflict
which must be resolved for all mobile bed models.

9.2 Large Grain Sizes

One obvious solution occurs when the grain size Reynolds
number both in model and prototype is in the turbulent range. From
the Shields diagram it may be inferred that this occurs approximately
when

"—'32 > 100

For this case the grain size Reynolds number effect can be neglected



54

and Eqs. 4.29,:9.2 and 9.4 yield

(9.10)

where it is understood that Nk refers to total roughness or grain
size roughness, depending on the assumption made. If Nks is used
(Assumption I) the problem becomes relatively simple. Since ks
varies with D , Nk is likely very close to unity. Thus

S

n = 1 (9.11)

and the resulting model bed consists of prototype sand material, but
of much smaller grain size. If Nk is used, however, (Assumption II)
the problem is more complex. Nk is a function of the grain size
diameter, determined by Eq. 9.9 and the model wave conditions which
cause the bed form. At present little is known about the variation
of bed form below waves and research is underway at Queen's
University to determine this. It is very likely that Nk is a
function of an » which means that an iterative procedure may need
to be followed in order to select the correct an even after
expressions for Nks have been determined experimentally.

Preliminary test results indicate that both ripple height A
and ripple length A are functions of ag/D primarily with some effect

of Yg - Thus if Eq. 9.9 is satisfied, Nk could still have
s
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a value close to one, as long as aG/D, dqes not change a great

deal within the model and prototype (see discussion in next section).
Therefore ripple sizes scale down approximately by the model scale
and Eq. 9.11 is valid. In this case Eq. 9.3 is also satisfied and
both mass movement and movement of individual grains are modelled
correctly.

There are obvious lower limits to this type of model. Problems
arise when the model boundary layer becomes smooth and laminar. Also,
when sand size particles are modelled by clay size particles the
condition in Eq. 9.9 must be dropped. This leaves the physical

restriction that

Sl
and therefore
n > 1
Ys

resulting in a situation similar to the one described more extensively

in the next section.

9.3 Smaller Grain Sizes

In most cases the flow around the individual grains is not
turbulent and an assumption must be made as to the relative
importance of Eqs. 9.1 and 9.4. If Eq. 9.4 is considered to be
more important, then one quickly arrives at the situation that D n
becomes too small, as described above. This leads directly to the
obvious choice. Since it is almost impossible to satisfy Eq. 9.4,
especially for the smaller grain sizes, Eq. 9.1 must be considered,

leaving the misrepresentation of Eq. 9.4 to scale effect, where
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scale effect is defined as inaccuracies resulting directly from
not adhering to certain scale laws.

As an example the total bed roughness k , may be considered
since it influences the value of Nk which, under Assumption II,
may be used eventually for scale selection. This is a problem

presently under investigation at Queen's University.

2 p-p a
a K o v pVv S S
I N S 2k it -

Satisfying the scale laws of Eqs. 9.1 and 9.2 and recognizing that
for mass motion Eq. 9.3 need not be considered, it may be stated in

very simplified terms that

M= memy = ;x;‘-igk—m L
S

for Assumption I, while for Assumption II

7/8
s

"k
S B (A (§-14)

Here m is the scale effect with respect to k , resulting from

Eq. 9.4 not being satisfied.

(1,p226)

Yalin and present research at Queen's University

indicate that in models ripple height and length are indeed functions

a
of Dﬁ and that therefore lI;' must also be a function of this
parameter (1,p227) . But a; is also a function of water depth and
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therefore in a single model there are many values of me, each
corresponding to a different depth. Yalin states that one can only
design for one value of m but the use of a single value of m is
rather dangerous since this means that the model is designed for one
distortion of roughness with respect to D . The factor m, must
therefore be thoroughly investigated and that is the reason for the
present work carried out at Queen's University to come to a more
fundamental understanding of this matter.

If Assumption II is made the scale effect m. is found back
in other scale relationships which include Nk ‘

For instance Eq. 4.29 yields

e 2fT .-~ _SI8 1/4
¢ S . e
(9.15)
= 1/7 _ _13/16 _ 1/8
ng = n Nk = n m
and using Egs. 9.7 and 9.8 it may be seen that
™t s
ne My
(9.16)
15/16 _ 3/8
n.YS n My

The smaller powers of m indicate that the influence of the scale
effect is not very serious for ng and N, but the actual value of

m, can conceivably be quite large since for small waves A and A



S8

are direct functions of aG/D , while for prototype waves this
relationship may be decoupled and A and A may be independent of
aG/D .

For Assumption I the comparable equations are the ones used

earlier
_ 2/7
n = nNks (4.24)
n, = nN 17 (4.21)
s
ny = w2y Y7 (9.5)
s
- 3/2  3/7
n = 9.6
Ys . Nks i

The sediment transport scale may also be derived and it may be

seen that
' vyD p\} 2 PP ag
éj A ¢q ( Y +Y ’ —'p"' ’ D_) (9'19)
s

where q is the volume of material transported per unit width, per
unit time. This, by analogy to Eqs. 9.12 to 9.14, may be expressed

as

nq = mq nv’“nD = mq (9.20)

Thus if Eq. 9.4 is not satisfied the sediment transport scale is not
equal to one. Also = is again a function of depth and therefore
n_ is not constant throughout the model. Bijker and Svasek(16’p4)

q
clearly state that it is of the utmost importance that the sediment
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transport scale be constant throughout the model and that model
design should take this into account (I6,p8). Again it is only
possible to design for a single value of mq and the proper choice
is of extreme importance and worthy of additional study.

It must furthermore be noted that the model distortion which
constituted a degree of choice for fixed bed models must now be
chosen more carefully. Since many models involve beaches, the model
equilibrium slope must correspond to the prototype equilibrium slope
so that they are both subjected to the same conditions. If the
equilibrium beach slope is denoted by © then the above condition
may be stated as

N = ny (9.21)

The actual physical meaning of © , for instance, what portion
of the equilibrium beach is to be used, as well as the feasibility
of using an equation similar to Eq. 9.21 at all, are at present also

under investigation at Queen's University.

9.4 Sumnag

The scale relationships for short wave models with a mobile bed

are as follows:
nH=nL‘=nd=nz=nZ=na=n = n

(9.22)



For models with large grain size Reynolds mumber

n, = n
By Nksz/ 7 or n,_ - N7 9.23)
If Nks or N, are near unity
an = 1
e n‘Js (9.24)

However, these models quickly become physically impossible forcing
n, < n. For the more usual models with grain size Reynolds numbers
below the fully turbulent range,

_ .=1/2 -1/7 -5/16 _ -1/8
= n =
np N e, g T
_ 3/2, 37 . _ .15/16 _ 3/8
an n Nks or an n mk
1 -1/2 -1/7. _ . 7/8 -5/16
me = mn VENYT o e w7
(9.25)
- 2/7 5/8 _1/4
ne T BN or m = ntml
< 1/7 13/16 _ 1/8
n s N =
s Nks or ng n m
n = m
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In each case the first expression is valid if Assumption I is made

while the second expression refers to Assumption II.

9.5 Substitutions for v,

As noted in the previous chapter, v, is a difficult quantity
to work with and although v, has been conveniently eliminated
from the scaling problem, the actual experimentation with the model
still depends on the measurement of v, as expressed in Eq. 8.3.
Eq. 8.11 indicates that for short waves, substitution of U g for v,
is not an unreasonable approximation and therefore Eq. 8.8 may be
used as an approximation of Eq. 8.3. Further if the wave motion is

sinusoidal, Eq. 8.8 may be simplified to

' UGD pUg ‘)S-p aG
A = ¢ (T’@’_p—’D_) (9.26)

and since for sinusoidal motion

~

s = cst ( as )
D 2
a pa p-p a
S 8 s [}
n, = ¢ ( ! ; ) (9.27)
s A s VT YSTZD P *D

It must be recognized that the above dimensionless quantities are

‘not entirely constant, for instance:

-1/7

- _ n 1 N
nXl E o ] ;1/?'.nj[;2Nk1/7 ;. Nks L

S
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or

n . 3/16 m 1/8 9.29)

9.6 Distortion of N

At times it is suggested in the literature, e.g. Goddet and
Jaffry (20) that the wave height can be distorted to force proper

sediment transport conditions by waves, i.e.

n, = NHn (9.30)

since an increase in wave height has little influence on the wave
refraction patterns. It must be borne in mind, however, that the
position of the breaker is influenced by this distortion and
therefore the effects on the model results of this ''degree of
choice'" must be studied carefully. Goddet and Jaffry (20) suggest
that

1/4 (9.31)

is permissible.
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10. SCALE SELECTION FOR LONG WAVE AND UNIDIRECTIONAL FLOW
MODELS WITH MOBILE BED

For long waves and unidirectional flow similar reasoning may
be used as in Chapter 9. Using Eq. 8.3 and using the water depth d
as a typical length, Eqs. 9.1, 9.2 and 9.3 are valid while
Eq. 9.4 becomes

n, = n; = n (10.1)

Again, if the mobile bed is flat, i.e. without any bed form v,
in Eqs. 9.1 and 9.2 is as expressed in Eq. 6.14 and these equations

may be rewritten as

n, = w2 yl/2 (10.2)

n o= n/2 \3/2 (10.3)

S

Egs. 10.2 and 10.3 are identical to those derived by Le Mehauté (18,p1091)

for both short wave and long wave and unidirectional models! When
Eqs. 10.2 and 10.3 are multiplied together, Goddet and Jaffry's (20)
expression may be derived as well as Bijker's expression (15,V3-3)
assuming n the ripple factor scale, to approximate one. It must
be recognized that model distortion introduces a requirement for
additional roughness. Eqs. 10.2 and 10.3 presuppose that all this
additional roughness is added in the form of bottom roughness. Also,
once again, there is a conflict between Eqs. 10.1 and 10.2 with
respect to n, . Eq. 10.2 is the basis for a common expression for

(1,p235)

model distortion developed by Yalin From experiment it has

been found that

c -~ (49 (10.4)
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Using Eqs. 6.15 and 10.2 it is possible to derive

1/2

N = n (10.5)

or
ny ,,23/ 2 (10.6)

Yalin (1,p236) has plotted values for model studies performed at
Wallingford which substantiate Eq. 10.6. It may be noted in passing
that Eq. 10.6 may be derived from Lacey's regime equations. These
equations are based on erodible channels in an identical soil medium
where the smaller channels form '"models' of the larger channels.

Le Mehauté (18) calls this the natural distortion and states it is
only valid when prototype material is used in the model, i.e. when
n, and nY in Egs. 10.2 and 10.3 are equal to unity. The above
development, however, indicates that this distortion can be generally
accepted for all long wave models.

Most sediment transport problems do not present a flat bed. In
this case, if the model is distorted, additional roughness may be
added in the form of vertical roughness elements. Thus the total
model roughness is the sum of grain size roughness, bed form roughness

and artificial roughness, i.e.

TR N € T %ot (10.7)

The use of vertical roughness elements in sediment transport
models may be open to question. Roughness strips will cause
substantial scour in their immediate vicinity and also, roughness

strips must be present in the original bottom before erosion has taken
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place. It is felt, however, that the addition of bottom roughness
causes unacceptable conditions since the additional roughness will
alter the bed forming process and causes exaggerated wave bottom
boundary layers. The additional vertical roughness must
undoubtedly consist of a close grid of small elements in order to
bring the local scour problems to a minimum.

The shear acting on the bottom particles and causing sediment
movement surely excludes the artificial roughness. Therefore it is
a function of the actual bottom roughness distortion Nks or Nk

depending on whether Assumption I or II is used. Bgs: 9.1, 9.2 and 6.21

give
s
. T T e 3/8
an n Nks or n.YS n Nk (10.9)

in addition to Eqs. 9.3 and 10.1. As before, if Eq. 10.1 is ignored

me = momy = mn/ Eol/0

S

or m = mks/ 93 o

where m is the scale effect. Once again it is only possible to
design a model for 3 single value of M s while in fact m is a
function of the variation in the water depth d . Again the left
hand equations refer to Assumption I while the right hand ones refer
to Assumption II. For the latter assumption, the determination of
N is rather difficult.

Some indication as to the value of Nk may be obtained from
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using Eqs. 8.6 and 8.7. It has been assumed that Eq. 8.6 applies to
both model and prototype, therefore it is not unreasonable to
assume that Eq. 8.7 applies to both also. This means that

- ¥ 1
nsk = ;z———-; 4 —n———r7-4 (10.12)
s 1n 11 §- ( ng )
s
nks
But T = pgRS
1/4
kg 1/4
Therefore n & n, = : n,. = n (10.13)
Ty nSk d B 173 d Nks
S s d
which is the same as Eq. 6.10.
In a similar fashion
nA2 nA2
= — = — (10.14)
leading to 2
n
B
n‘tf = n, (10.15)

(17,p232) indicates that A is a function of d and independent

Yalin
of D, i.e. ks , while % depends slightly on excess shear but may
be approximated as a constant for model and prototype with considerable

sediment transport. Thus

n = —5 M, =n =n (10.17)
.



67

i.e. the bed form shear scales down with the model scale. Further,
if A 1is independent of grain size, its value will not be affected
by neglecting Eq. 10.1. Therefore m, will be unity. If
is approximately constant and a function of excess shear, it will

not be greatly affected by Eq. 10.1 and therefore A /A) is unity.

This would tend to indicate that mkf would be close to one, where
mkf is the scale effect on the bed form. Since the bed form is
usually considerably larger than the grain size and under Assumption II
it is the combined effect that causes the velocity profile it may be

said that m is close to unity causing

m s n /3 (10.18)

N = n4/3 (10.19)

A more careful study of this phenomenon is certainly warranted.
The scale effect of Eq. 10.11 may be substituted into Egs. 6.19,
10.8 and 10.9 to give

n. = n Nkll 4 or nz/ 3 mkz/ 9 (10.20)
s
n, = n-l/Z Nk-1/8 - n, = n-1/3 mk-1/9 (10.21)
s
3/2 , 3/8 - 1/3
= n or = n (10.22)
an Nks an "k

and comparable expressions for mo = 1 may be deduced from
Eq. 10.20 to 10.22.
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relationships governing long wave and

bed models may be written as
= nZ = n

“hy SN T W

while when vertical roughness elements are used

R

1/4
= 1n Nks

(10.23)

(10.24)

Depending on whether Assumption I or II is used (right or left hand

equations below respectively)

_ .~1/2 ., -1/8
m o= N

_ .3/2 . 3/8
an = n Nks

n-1/3 mk-1/9

_ 1/3
or an n I'I‘I.k

or DD'

(10.25)
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-1/2 ,~1/8 8/9 -1/3
= n = mnm
mo=oma N or n
n. = n Nkll * or n = nZ/ 3 mkz/ 9 (10.25)
" (cont'd)
nq = mq

Again, inherent in the above derivation under Assumption II is the
assumption that n=1, i.e. the ripple factor in the model
approaches that in the prototype.
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11. MOBILE BED MODELS FOR COMBINED SHORT WAVE,
LONG WAVE AND UNIDIRECTIONAL FLOW

From the foregoing discussion it appears that to combine short
waves with the other two, vertical additional roughness elements are
necessary in distorted models. In previous studies Bijker (15),
Goddet and Jaffry (20 and Le Méhauté (18) inherently assume that all
the shear necessary for the long wave model portion is supplied on

the bottom, hence their scale relationships are variations of

n = n N1 (6.14)
n, v n M2 N/2 (10.2)
n = n/2y\3/2 (10.3)
YS

This results, however, in an undue distortion of the short wave

boundary layer

n, = aNY7 (7.6)
Bijker (15) has performed his experiments without additional
roughness. This is the method used for most wave-current models.
For this case he correctly suggests that in order to achieve the
correct wave-current interaction, the long wave o: unidirectiomil

current velocities must be exaggerated. The bottom shear stressus,

resulting from waves and currents, must be the same, i.e.
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n = n (11.1)

This means from Eqs. 4.23, 4.26, 5.5 and 6.15

. P B R
e " Py Mk o Tn T JI2 T oA,
or
ny = N2y VT (11.2)

S §
Bijker's relation 15V3"2) i5 s1ightly more simplified

ng = N2 my, (11.3)
This is also the relationship derived by Goddet and Jaffry (20).

The following scale relationships may be deduced from Eqs. 9.22
and 9.25, and 10.23 to 10.25

s B Bk Tl P W, T
SRR R
N=%=%=%,%,%—1

su- suU, - T M Y s T n2 (11.4)
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- _ 172 - -
s" snT =n R,nt ln'l' Nn

n. = N 1/2 (11.4)

(cont'd)

These scales are based on the assumption that additional

roughness is supplied to cause
n, = N2

If no additional roughness is supplied, U must be exaggerated with
respect to Uy as outlined in Eq. 11.3.
For Assumption I, i.e. velocity distribution is a function of

grain size

_ -1/2 -1/7 o i W2 -1/8
gp - R Nks 2™ P Nks

o w2 M7 - a2y 38
snYS n Nks znys n Nks (11.5)

= -1/2 ,, -1/7 o -1/2 |, -1/8
sk T M ™ Nks 2™ M 0 Nks

- 2/7 1/4
o TN e = n N

- 1/7
s nNk

(3
= n = m
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For Assumption I, i.c. velocity distribution is a function of

the bed form and grain size

P ,-5/16 smk-l/s oo /3 mk-l/g

o, 15/16 smk3/8 A, - mk1/3

o = smk7/8 ,-5/16 P n8/9 -1/3 (11.6)
s * n®/® s“‘kl/4 2 n’/3 "‘kZ/9

o = ,13/16 mk1/8

s'q T s"q 2y T g

It may be seen that although Eqs. 11.5 and 11.6 give slightly different
scales, the short wave and long wave scales are quite close and
relatively similar so that if either one is chosen, the other will

not be very wrong, as long as the additional roughness is supplied by

vertical roughness elements.
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12, TIME

The question of time scales is complex and for a complicated
model study the time scales for sediment transport are determined
by observation of the model. An attempt will be made in this
chapter to outline the various time scales involved in a model.

In Eq. 11.4 two time scales are given

e " ™ n and  on, 2T Nn

1/2 (11.4)

These are the time scales used for the wave motion, the forcing
mechanism in a mobile bed model. For the sediment transport, the

list in Eq. 8.3 may be extended using the general time parameter t ,

resulting in
2 p.P
- vaD | pv. S L Vit
HA ¢(-3_’_Y:U’p 9n’_ﬁ-) (12-1)
giving a time scale
p
n = — (12.2)
t
l\,*
But Iq. 9.1 states
_ -1
Ny o By

Therefore

Va
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where n_ is a function of Assumption I or II and whether or not
roughness strips are used (Eqs. 6.14, 11.5 and 11.6). This may be
considered as the theoretical time scale for motion of individual
grains and bed forms and is therefore denoted by M Depending
on n_, which in any case is greater than one, it may be seen that
it is a fraction
it 5 M
When dealing with erosion or deposition, it is the volume eroded or

deposited which determines the time scale.

n = nan = N%n> (12.4)
where V is the volume.
But
_'Elﬁ=¢ ( YaD ._ﬁ_p"z PsP 2 Y= (12.5)
Vg qQ " v YD Db DB :
and
nq = mqr\,*nn = mq (12.6)

where q is the sediment transport in volumeAmit timgAmit width,

and mq is the scale effect in q because

n, ¥
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Note that mq is different for the short wave and long wave
portions of the model. Therefore, the time scale for erosion or

deposition is

n

P A ¢ . az.7
Yyq q q

Similar time scales may be derived for other model transport
phenomena such as movement of sand waves, transport of tracer
materials, etc.

From Eqs. 11.4, 12.3 and 12.7 it may be noted that

. P A TR R WG T, | (12.8)

This is very fortunate. Changes in bed formation, erosion and
accretion,are very long term processes. Because et is so large,
it is possible to perform model studies on these phenomena in

reasonable time.
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13. BREAKERS AND LONGSHORE CURRENTS

Since sediment motion in a coastal mobile bed model is brought
about mainly by the agitation of sediment in the breaker zone, it is
essential that conditions in this area are modelled correctly. The
breaker position will be correct if n, = ony and the refraction
pattern will be correct if L = N4 while the beach upon which
the waves act will be modelled correctly if N = ne'1 . All these
conditions are incorporated in Eq. 11.4. However, if a simplified
mechanism is envisioned, in which the waves stir up the material
which is subsequently transported by the wave orbital motion and the

longshore current, generated by the wave action, it is essential

that

s SRR X o (13.1)
e my
L
where UL is the longshore current velocity and w is the fall
velocity of the sediment particles. 3
vy D
Yalin (17,p69) shows :—D to be a function of —Sz— . This is
pv
also stated by Valembois (21) " 3
vy.D
For laminar motion (:)’—D < 13 2 < 18)
. pv
Y n?

w = cstz— (13.2)
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wz = cst ' (13.3)

But Eqs. 11.5 and 11.6 indicate that

=3

n = (13.4)
Y. 2D
Therefore
nY D3 = 1 (13.5)
s
pvz
which indicates that
Ny ™ 1 (13.6)
v

for proper reproduction of fall velocity, or

n, = “D-l 13.7)

This relation has also been derived by Bonnefille (22).

(17,P71) 2160 demonstrates that if the X and Y

Yalin
parameters on the Shields diagram are the same for model and prototype,

i.e. Egs. 9.1 and 9.2 are satisfied, then

— = cst (13.8)
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This means that

n, = 1\,* = (13.9)

which is the same as Eq. 13.7.

The above argumentation is based on spherical particles but
could be extended to particles of any shape, as long as the shape
factors in model and prototype are similar.

The conditions expressed in Eq. 13.1 must now be checked.
The longshore current velocity UL is generated by the waves and
many formulas are proposed for the generation of longshore currents,
e.g. Fan and Le Méhauté (19,p22) and preliminary investigation
into this area at Queen's University indicates that many formulations
will fit laboratory results adequately but cammot describe field
results. For small angles of approach, the single factor that
influences the longshore current velocity most is the wave height.

Model tests seem to indicate that

u = £ @/% (13.10)
Therefore it may be assumed that

ng = ny = n (13.11)

and from Eqs. 11.4, 11.5, 11.6, 13.7 and 13.11 it may be seen that
Eq. 13.1 is approximately satisfied. It is not very fruitful to
pursue this line of thought any further until additional research has

shown more clearly what drives the longshore current velocity.
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14. FOOD FOR THOUGHT

Throughout this paper the problem of the proportion of total
shear going into sediment transport has been touched upon as a basic
criterion for similarity in sediment transport. It has been suggested
that the prototype and model points must fall on the same location of
the Shields diagram. It is obvious that if the model falls below the
Shields curve for initiation of motion, while the prototype falls above,
the model will be useless, but it is not entirely clear if Egs. 9.1
and 9.2 are satisfied, that the model will represent the prototype
correctly. The reason for this would be basically a difference in
bed form between the model and the prototype. If the bed form is
identical, @ , the proportion of shear going into sediment transport
will be the same and the model results should represent the
prototype. If the bed form is different, o must be taken into

account and the parallel scale laws may be developed from

n vaz = n al/zv*D = 1 (14.1)
Ysﬁ v

Present sediment transport relationships for unidirectional flow

are usually presented in a form related to

2
| pv.
‘7;15 = f (Y—sﬁ—) (14.2)

i.e. a simple version of Eq. 9.19. The relationships apply to the
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turbulent region of the Shields curve and it is understood that v,
is not the total shear. Therefore, to extend this system using the

present terminology, it is possible to write

_ . 1/2 _ e B PP
= a veD pa'v S 2
.7.29._ = f ('_—Lv : _TLYS T 1=’-) (14.3)

o VgD

The relationship between Y and )(1 and XZ in Eq. 14.3 can be

represented by a modified Shields diagram with axes Xl and Xz
projected into a third dimension thus presenting a surface as shown

in Fig. 5.
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This yields the more complete scaling laws

1/2
n ' my, m = 1
na nV*Z = ]'le nD (14.4)
_ 1/2
b A R M
or
1/2 e
Ny r\r* 1 'n_D
T Ty : 1
« 2 V2 . 14.5
M S THy, T e
nq = 1

The above equations assume no scale effect in q as a result of
n, # n 3

Egs. 14.5 indicate that the derivations used in this paper are limited
to n = 1 . The problem associated with the determination of o
and n, is of course the largest single problem in sediment transport

study. It should be of prime concern, not only to the model builder,



but also to the sediment transport student in general. Under
oscillatory waves, where no dunes appear, the problem may be

relatively simple and is very worthy of intensive investigation.

83



10.

11.

84

15. 'REFERENCES

Yalin, M.S., !'Theory of Hydraulic Models', MacMillan, 1971.

Sedov, L.J., 'Similarity and Dimensional Methods in Mechanics’,
Academic Press, 1959.

Langhaar, H.L., 'Dimensional Analysis and Theory of Models',
Wiley, 1962.

Ippen, A.T. (Ed), 'Coastal and Estuary Hydrodynamics',
McGraw-Hill, 1966.

Schlichting, H., 'Boundary Layer Theory', McGraw-Hill, 6th Ed,
1966.

Li, H., 'Stability of Oscillatory Laminar Flow Along a Wall',
Beach Erosion Board, Tech Memo No. 47, 1955.

Brebner, A., Askew, J.A., and Law, S.W., 'The Effect of
Roughness on the Mass-Transport of Progressive Gravity
Waves', Coastal Engineering, Tokyo, 1966, pp 175-184.

Kajiura, K., 'A Model of the Bottom Boundary Layer in Water
Waves', Earthquake Research Institute, Japan,
Bulletin Vol 46, 1968, pp 75-123.

Jonsson, I.G., and Lundgren, H., ‘'Derivation of Formulae for
Phenomena in the Turbulent Wave Boundary Layer',
Technical University of Demmark, Progress Report No 9,
1964, pp 8-14.

Jonsson, I.G., 'On the Existence of Universal Velocity
Distribution in an Oscillatory Turbulent Boundary Layer',
Technical University of Demmark, Progress Report No 12,
1966, pp 2-10.

Kalkanis, G., 'Transportation of Bed Material due to Wave Action’',
Coastal Engineering Research Centre, Tech. Memo No 2,
1964.



85

12, Collins, J.I., 'Inception of Turbulence at the Bed under
Periodic Gravity Waves', Journal of Geophysical
Regearch, Vol 68, No 1, 1963, pp 6007-6014.

13. Yalin, M.S., and Russell, R.C.H., 'Shear Stresses due to Long
Waves', Journal of Hydraulic Kesearch (IAHR),
Vol 4, No 2, 1966, pp 55-98.

14. Iwagaki, Y., Tsuchiya, Y., and Chen, H., 'On the Mechanism of
Laminar Damping of Oscillatory Waves due to Bottom
Friction', Disaster Prevention Institute, Japan,
Bulletin 16-31, 1967, pp 49-75.

15. Bijker, E.W., 'Some Considerations about Scales for Coastal
Models with Moveable Bed', Delft Hydraulics
Laboratory, Publication No 50, 1967.

16. Bijker, E.W., and Svasek, J.N., 'Two Methods for Determination
of Morphological Changes Induced by Coastal Structures',
Permanent International Association of Navigation
Congress (PIANC), Paris, 1969, pp 181-202.

17. Yalin, M.S., 'Mechanisms of Sediment Transport', Pergamon
Press, 1972 (in Press)

18. Le Méhauté, B., 'Comparison of Fluvial and Coastal Similitude',
Coastal Engineering, Washington, 1970, pp 1077-1096.

19. Fan, L.N., and Le Méhauté, B., 'Coastal Moveable Bed Model
Technology', Tetra Tech, Report No TC-131, 1969.

20. Goddet, J. and Jaffry, P. 'La Similitude des Transports de
Sédiments sould 1'Action Simultaneé de la Houle et des
Courants' La Houille Blanche, 1960, No 2, pp 136-147.

21. Valembois, J., 'Etude sur la Modéle du Transport Littoral:
Conditions de Similitude' Coastal Engineering,
The Hague (1961), pp 277-307.

22. Bomnefille, R., 'L'utilization des Paramétres Adimensionnels
dans 1'Etude de 1'Hydrodynamique des Sédiments',
Deuxigme th&se, Docteur es Sciences, Grenoble, 1968.



C.

€.

C.

.

e

C.

c.

C.

G

C.E.

C.

C.

E.

sE

<E.

Es

«E.

.E.

E.

1B

E-

+Es

.Es

Es

.

E:

E.

E.

E.

E>

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

10.

11.

12.

13,

14.

15.

16.

17.

18.

19.

20.

REPORTS OF THE CIVIL ENGINEERING DEPARTMENT OF
QUEEN'S UNIVERSITY AT KINGSTON

The Evaluation of Highway Bridges, by D.T. Wright,
1956, Queen's University (0.J.H.R.P. Report No. 1).

Proposed Specifications for the Rating of Existing
Bridges, by D.T. Wright (0.J.H.R.P. Report No. 2).

Vehicle Speeds on Ontario Highways, by H.M. Edwards,
(0.J.H.R.P. Report No. 3)

Highway Bridge Vibration: Review of Previous
Studies, by D.T. Wright and R. Green (0.J.H.R.P.
Report No. 4).

Highway Bridge Vibrations Part II. Ontario Test
Programme, by D.T. Wright and R. Green (0.J.H.R.P.
Report No. 5).

The performance and Efficiency of Standard Compacting
Equipment, by D.L. Townsend (0.J.H.R.P. Report No. 6).

Human Sensitivity to Vibration, by D.T. Wright and
R. Green (0.J.H.R.P. Report NO. 7).

Field Construction Performance of Some Southern
Ontario Sands, by D.L. Townsend and B. Hutchinson
(0.J.H.R.P. Report No. 8).

The Generation of Person Trips by Areas Within
the Central Business District, by B.C.S. Harper
and H.M. Edwards (0.J.H. R.P. Report No. 9).

A Theoretical Study of Waves Breaking at Any
Angle with a Shoreline by Dr. B. Le Mehaute.

An Introduction to the Mathematical Theories of
Two-Dimensional Periodic Progressive Gravity
Waves, by Dr. B. Le Mehaute and Dr. A. Brebner.

A Laboratory Study of Pneumatic Breakwaters, by
T.M. Dick and Dr. A. Brebner. '

Clapotis and Wave Reflection, by Dr. B. Le Mehaute

and J.I. Collins.

An Introduction to Coastal Morphology and
Littoral Processes, by Dr. B. Le Mehaute and
Dr. A. Brebner.

The Behaviour of Highway Bridge Floors when
Statically Tested to Failure, by S.D. Lash and
B.B. Hope (0.J.H.R.P. Report No. 13).

A Field Investigation of Littoral Drift in the
Port Hope-Cobourg Area of Lake Ontario, by
P. Donnelly and Dr. A. Brebner.

A Model Investigation of Cobourg Harbour, by
Dr. B. Le Mehaute and J.I. Collins.

Varved Clay: A Selected Bibliography by
J.B. Metcalf and D.L. Townsend.

Wind and Waves at Cobourg, Lake Ontario, by
Dr. A. Brebner and Dr. B. Le Mehaute.

Submerged Breakwater for Silt Deposition
Reduction, by Dr. B. Le Mehaute.



Report No. 21. An Introduction to Aqueous Hydraulic Conveyance
of Solids in Pipe Lines, by Dr. A. Brebner.

Report No. 22. On the Accuracy of Various Methods of Predicting
Wave Climates for Limited Fetches, by Dr. A. Brebner.

Report No. 23. Laboratory Study of Rubble Foundations for
Vertical Breakwaters, by Dr. A. Brebner and
P. Donnelly.

Report No. 24. The Forces Involved in Pulpwood Holding Grounds,
by R.J. Kennedy.

Report No. 25. Manual of Forces Calculation for Pulpwood Holding
Grounds, by R.J. Kennedy.

Report No. 26. Laboratory Test of a Full-Scale Pony Truss Bridge,
Part 1: Tests with Laminated Timber Deck, by
S.D. Lgsh and T.C.R. Joyce (0.J.H.R.P. Report
No. 16).

Report No. 27. A Study of the Effects of Chemicals and Abrasives
in Snow and Ice Removal from Highways, by
H.M. E?wards and D.R. Brohm (0.J.H.R.P. Report
No. 17).

Report No. 28. Compilation of Frost Susceptibility Criteria up
to 1961, by D.L. Townsend and T.I. Csathy
(0.J.H.R.P. Report No. 14).

Report No. 29. Soil Type in Relation to Frost Action, by
D.L. Townsend and T.I. Csathy (0.J.H.R.P.
Report No. 15).

Report No. 30. Shear Lag in Beam and Slab Combinations, by
J.A.N. Lee.

Report No. 31. Model Tests on the Relationship Between Deep-
Water Wave Characteristics and Longshore Currents,
by Dr. A. Brebner and J.W. Kamphuis.

Report No. 32. Relative Density Tests on Some Ontario Sands,
by D.L. Townsend and W. Dohaney (0.J.H.R.P.
Report No. 20).

Report No. 33. Theoretical Considerations of Vertical Pumping
of Mine Products, by Dr. A. Brebner and K. Wilson.

Report No. 34. The Failure of Planning in Ontario, by Norman
Pearson (J.B. Tyrrell Fund in Town Planning).

Report No. 35. Triaxial Shear Tests on Artificial Varved Clays,
by D.L. Townsend and G.C.W. Gay (0.J.H.R.P.
Report No. 27).

Report No. 36. Induced Pore Pressures in Varved Clays, by
D.L. Townsend and G.T. Hughes (0.J.H.R.P.
Report No. 28).

Report No. 37. An Annotated Bibliography on the Design of
Asphaltic Cold Mixes, by W.D. Stewart and
C.D. Holmes (0.J.H.R.P. Report No. 29).

Report No. 38. The Hydraulic Hoisting of a Magnetic Slurry,
by Dr. A. Brebner and P. Kostuik.

Report No. 39. Classification Tests on Some Ontario Varved
Clays, by D.L. Townsend and G.C.W. Gay (0.J.H.R.P.
Report No. 26).



Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

Report

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

No.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

The Effect of Crushed Particles on the Strength
of Base Course Materials, by D.L. Townsend and
J.W. Madill (0.J.H.R.P. Report No. 31).

The Effect of Strain Rate on the Undrained
Strength of a Varved Clay, by D.L. Townsend,
G.P. Raymond and J.A. Cruickshank (0.J.H.R.P.
Report No. 33).

The Effect of Cross-Frame Stiffness and Torsional
Restraint on the Buckling of Pony Truss Bridges,
by J.A.N. Lee (0.J.H.R.P. Report No. 30).

Laboratory Tests of a Full Scale Pony Truss Bridge,
Part II, by S.D. Lash, E.L. Dauphin and P. Moran
(0.J.H.R.P. Report No. 22).

Laboratory Tests of a Full Scale Pony Truss Bridge,
Part III, by S.D. Lash and B.B. Hope (0.J.H.R.P.
Report No. 23).

Prediction of Settlements and Pore Pressure
Beneath a Highway Embankment at New Liskeard,
Ontario, by G.P. Raymond and D. Hilts (0.J.H.R.P.
Report No. 36).

High Strength Reinforcement in Reinforced Concrete
Beams, Part I: A Selective Bibliography, by

S.D. L?sh and W. Blackwell (0.J.H.R.P. Report

No. 37).

High Strength Reinforcement in Reinforced Concrete
Beams, Part 2: Crack Widths Deflections and
Fatigue Strength, by S.D. Lash, N. MclLeod and
W. Blackwell ?O.J.H.R.P. Report No. 38).

Highway Bridge Vibrations III: Cantilever-
Type Structures, by J.A.N. Lee, R. Brown and
L. Windover (0.J.H.R.P. Report No. 39).

Highway Bridge Vibrations IV: The Vibration of
Continuous Highway Bridges, by J.A.N. Lee and
L. Windover (O.J.H.R.P.? Report No. 40).

The Prediction of the Buckling Load of Columns

by Non-Destructive Testing Methods, by J.A.N. Lee,
B.B. H?pe and J.P. McGowan (0.J.H.R.P. Report

No. 41).

Derivation of the Regime Equations From Relation-
ships for Pressurized Flow by Use of the Principle
of Minimum Energy-Degradation Rate, by K.C. Wilson.

Stresses in an Elastic Bar, Having a Mass Attached
to One End, Due to Sudden Deceleration at the
Other End, by F.M. Wood.

A Mathematical Model to Advance the Understanding
of the Factors Involved in the Movement of Bottom
Sediment by Wave Action, by J.W. Kamphuis.

Some Factors Affecting Merging Traffic on the
Outer Ramps of Highways Interchanges by H.M. Edwards
and J.L. Vardon (0.J.H.R.P. Report No. 42).

Regional and Transportation Planning - Short
Course Proceedings 1967.

The Water Transportation of Pulpwood, by R.J.
Kennedy and S.S. Lazier, P.P.R.I.C. Reports No.
367, 409, 439 and 509.



Report No. 57. The Effect of Mineral Filler On the Viscosity of
Asphalt Cement, by C.D. Holmes and W.D. Stewart,
(0.J.H.R.P. Report No. 44).

Report No. 58.

Report No. 59. On Solids and Permeable Submerged Breakwaters,
by T.M. Dick.

Report No. 60. On Floating Breakwater, by Andrew 0. Ofuva.

Report No. 61. General Nater—Hémmer Analysis For Simple Pipe
Lines, by F.M. Wood.

Report No. 62. The Relation of Peak Flow to Excess Rain On
Intermediate Drainage Basins in Southern Ontario,
by R.J. Kennedy and W.E. Watt.

Report No. 63. Characteristics of Three Sensitive Canadian Clays
D.A. Sangrey and D.L. Townsend

Report No. 64. Introduction to Wave Spectrum Analysis
J.W. Kamphuis

Report No. 65. History of Water-Hammer
F.M. Wood

Report No. 66. Flood Frequency Prediction for Intermediate
Drainage Basins In Southern Ontario, by R.B.L.
Stoddart and W.E. Watt.

Report No. 67. Proceedings of the 22nd Canadian Soil Mechanics
Conference.
Report No. 68. Continuous Basin Runoff Simulation for Intermediate

Drainage Basins in Southern Ontario, by C.T. Hsu
and W.E. Watt

Report No. 69. Proceedings of the Symposium on Composite
Construction

Report No. 70 A Relation between Peak Discharge and Maximum
Twenty-four Hour Flow for Rainfall Floods, by
W.E. Watt and C.T. Hsu.






