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Abstract

The number of road accidents is increasing all over the world. When Vulnerable Road
Users (VRU) are involved in an accident, they are prone to more serious injuries. Half of
the fatalities around the world involve VRUs. One way of mitigating the severity and the
number of VRU accidents is the introduction of Advanced Driver Assistance Systems (ADAS)
functionalities. Such systems must be validated before being introduced on the market. Real-
life tests for validating the system would imply driving around for millions of operational hours
which would be very time consuming and therefore expensive. For this purpose, TNO has
developed a scenario generation method and is currently extending it. The objective of this
study was to develop a vehicle-cyclist interaction model which would then be used along the
existing scenario generation method or for validating generated scenarios. The preceding lit-
erature study to this Master Thesis, from which the architecture of the models was developed
and potential input parameters were defined, was used as a starting point. Based on the
architecture, the interaction model was first developed with the help of a Hidden Markov
Model (HMM). First, a sensitivity analysis was performed from which it was concluded that
speed, acceleration, and steering angle are important parameters for a cyclist, whereas speed
acceleration and yaw rate are important for a vehicle’s intent recognition. Furthermore, this
analysis also indicated that distance to the center of the crossing is a very good interaction
parameter. After selection of the parameters, the model was trained and cross-validated
using data earlier recorded at TNO. The cross-validation results of the interaction model
showed that the intent recognition is more constant for the whole observation sequence and
an improved performance is seen for a prediction time of more than 2s compared to a HMM
without interaction parameters. From this study, the kinematic input parameters for the
cyclist and the vehicle, as well as the interaction parameters, were defined that need to be
included in the vehicle-cyclist interaction model. However, the model developed in this study
needs to be further validated using naturalistic vehicle-cyclist kinematic data, and for all type
of vehicle-cyclist scenarios.
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Chapter 1

Introduction

The number of road accidents and fatalities is increasing all over the world [1]. Each year
more than 1.2 million people are killed and around 50 million people get injured worldwide
in road accidents [2]. According to a study by World Health Organization (WHO), road acci-
dents were ranked 9th for the causes of the death among people of all ages in 2015, and it is
predicted that this rank will change to the 7th position by 2030 [3]. Hence, there is an urgent
need to stop the trend of increasing number of accidents and to take measures to reduce the
loss of life and properties.

Vulnerable Road Users (VRU), such as pedestrians and cyclist are exposed to the highest
level of risk if an accident occurs. Nearly 50% of the people who die in accidents worldwide
are VRU [4]. In The Netherlands, around 600 fatalities in road traffic occurred in 2013 as
well as in 2014, out of which 190 cases are cyclists, which is almost 32%. The number of
road accidents kept on increasing in 2015 and 2016. This makes the Netherlands ranked first
in cyclist fatalities followed by Hungary and Denmark [5],[6]. However, per km ride The
Netherlands is the safest country to ride a bike [6]. The fact that cycling is very popular in
The Netherlands increases the chances of a cyclist having an accident even though cycle paths
are present almost everywhere. In 2015, passenger cars, vans, trucks or buses were involved
in 70% of the road deaths and 20% of serious road injuries among cyclists [7]. Approximately
90% of road accidents occur due to human error or negligence [8] and Advanced Driver
Assistance Systems (ADAS) are being introduced to mitigate this [9]. ADAS functionalities
are developed to not only help to increase the comfort and safety of the driver but also
increase the safety of vulnerable road users [10]. Also, autonomous vehicles are thought to
be the future solution for increasing safety and comfort as well as reducing traffic jams and
carbon dioxide emission [11].

1-1 Problem Definition

The development of more ADAS functionalities are very promising steps towards autonomous
driving however, their introduction brings along a lot of responsibilities. One of the main
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2 Introduction

challenges is to test the functionality and give the approval for it to be introduced on the
market. TNO works on the development and testing of ADAS functionalities to ensure the
safety of the driver and the VRU. There are several ways of testing of an ADAS, namely
testing in prescribed conditions in a test laboratory (e.g. Euro NCAP Cyclist-AEB tests),
driving around in a car equipped with the ADAS, Simulation in the Loop (SIL) and Hardware
in the Loop (HIL). Driving in a car for real-life and human-in-the-loop testing is very time
consuming and expensive as a very large number of scenarios should be tested. Also, it is
predicted that at least one billion operational hours would be required for the verification of
an ADAS, which is not feasible. [12],[13].

By means of simulations, the interaction of the car with the other road users could be created
virtually, and the performance of the specific ADAS could be assessed for many scenarios
[14]. The design of the ADAS consists of creating a controller which stabilizes the vehicle
in critical situations. Hence, virtual testing is preferred for assessing the stability of the
controller at an initial design phase. Virtual testing offers the possibility of simulating many
normal and critical scenarios in a short time period where real life test would have more
serious implications. Critical situations such as a near miss or an accident could involve
serious injuries which are not acceptable during the test phase. Hence, safety considerations
make these scenarios untestable in HIL and real-life testing.

For the HIL, a vehicle equipped with a specific ADAS is coupled to a simulation environ-
ment. The road interaction for the car under test is simulated using a dynamometer and
robot vehicles simulate the surrounding traffic [15]. HIL offers the benefit of testing the
ADAS functionality in a real car under controlled conditions. The performance of the con-
troller also depends on the sensors present in the vehicle. The best way to assess the vehicle’s
perception of the surroundings is to use physical sensors. In this way, the potential of the
algorithms developed for extracting the useful information from the real sensors can be as-
sessed. The sensors impose limitations such as noise, lack of accuracy, and clarity, etc, which
the algorithms have to overcome to provide a robust perception of the environment for the
controller to act in critical situations. In case of a bicycle, HIL can still be used, but the
system is much simpler compared to a vehicle. The bicycle is also coupled to a simulation
environment which acts as an input to the cyclist. Hence, HIL could be used to assess the
cycling behavior or to check the working of controllers and actuators, such as roll stabilizers.

A combination of simulations and HIL in the development process will reduce the time and
costs for prototyping thereby resulting in a more robust design [15]. The conventional meth-
ods of validation of ADAS will still need to be performed in order to test the system as a
whole (the car including sensors, controllers, etc.) However, the scenarios to be tested might
change when adding virtual testing. With virtual testing, standard scenarios (most common
ones) might be replaced by more challenging ones by selecting scenarios based on the virtual
testing results. To validate for the safety and performance of ADAS, a scenario-based method
is thought of being a good option [16],[17],[18]. In a scenario-based method, the generated
scenarios should be realistic, hence physically possible and close to accidents happening in
real-life.
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1-2 Objective

TNO is developing a scenario database to be used for the virtual assessment of ADAS (SIL
and HIL). The aim of TNO is to collect a limited amount of data and to define scenarios
that were encountered as well as create realistic variations of these scenarios which were
not recorded. TNO developed the parametrization method for scenario generation where
the important parameters are extracted and fitted to a distribution using Kernel Density
Estimation (KDE). The objective of this MSc project is to develop a vehicle-cyclist interaction
model for the generation of realistic variations on vehicle-cyclist crossing scenarios (see Figure
1-1). Like in the current physical testing of ADAS, the scenarios to be generated will be at an
unregulated intersection since most fatal cyclist accidents take place there. The interaction
model should capture on what parameters a driver and a cyclist base their decision to proceed
or to stop, and the influence of the parameter variations. In other words, the model will
capture the behavior of the driver and a cyclist and can be adapted with ADAS features for
the development of ADAS functionalities.

This model can be further used in a framework where scenarios are generated from a database,
or this model could be used for checking the validity of a scenario which has been created by
TNO’s method of scenario generation. As a vehicle-cyclist interaction model will be developed,
this will help TNO in testing ADAS and Automated Driving Systems (ADS). As a scenario-
based method is used, the effort and investment will be greatly reduced. Furthermore, as the
ADAS will be tested rigorously, the number of vehicle-cyclist accidents can further decrease.
As the models can be extended to validate ADS, the transition to autonomous driving can
be smooth as acceptability can be increased with other road users. Hence, this will be in
line with the efforts of the Ministry of Transport, Public Works and Water Management in
improving the safety of the roads of the Netherlands for all users [19].

Real-life
Vehicle data

Reference 
Measurements

Scenario 
database

Run 
classification 
algorithms

Raw vehicle 
data storage

Data 
Conversion

Safety 
Evaluation

Performance 
Evaluation

Develop 
Classification 
Algorithms

Virtual testing of automated driving
systems based on traffic behavior models

TNO Car-Cyclist Model

Scenario Generation Scenario Validation

Car Cyclist

Figure 1-1: Testing of ADAS using scenarios
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4 Introduction

1-3 Thesis Outline

The thesis is structured as follows: Chapter 2 provides the summary of the Literature survey
as described in [20], which is about other car-cyclist interaction models as well as on modeling
techniques that might be appropriate for the development of a car-cyclist interaction model for
the application of scenario generation. Chapter 3 explains the development of the interaction
model. Chapter 4 describes the source and the characteristics of the data that is used for
training the model as well as testing its performance. Next, Chapter 5 shows and discusses
the results of the car-cyclist interaction model. Chapter 6 describes the conclusions drawn
from this study as well as recommendations for future work.
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Chapter 2

Literature Survey

The selection of the appropriate parameters and modeling techniques is prime for the develop-
ment of the interaction model. Considering the fact that different parameters and models are
required for predicting the driver and cyclist intentions, the interaction model is subdivided
into two parts, namely the driver and the cyclist. Hence, the literature study was focused on
models for intention recognition for each of these types of road users. A lot of research has
been carried out to recognize driver intentions while limited research has been performed for
recognition of cyclist intentions. Vehicle-cyclist interaction models for scenarios generation do
not exist yet. Vehicle-cyclist models were mainly developed for traffic-flow models, however
these have another time-scale, as such cannot be used for this study.

2-1 Selection of parameters and modeling techniques

After an extensive review of the literature on the methods for recognition of driver intentions,
it was concluded that probabilistic models cannot be considered as they are helpful only in
simple situations. The same is observed with the model based on fuzzy logic. These models
cannot be easily extended to recognize the intentions of a driver at intersections compared to
machine learning algorithms. The two most popular and commonly used machine learning
models are Support Vector Machine (SVM) and Hidden Markov Model (HMM). SVM are
useful in the classification of behavior in a relatively simple situation, where the decisions are
already defined. Nevertheless, existing training algorithm, like Forward and Viterbi algorithm,
can be easily applied to HMM, making it a more suitable method for modeling driver behavior.
Hence, two tasks, namely segmenting and classifying the behavior, can be combined in one
step. The models based on HMM, can be understood by a person and they make use of
history which is not the case for the other models. The decisions taken by drivers are usually
not defined and can be considered as internal states. HMM can be trained with data to
facilitate the estimation of these states and better predict the behavior. In this way, HMM is
selected for continuously estimating the driver intention. Table 2-1 [20] shows a summary of
the models used previously in predicting driver intention. Most of the studies have used data
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collected from the CAN-Bus, as it is a cheap source and easily available. The combination of
vehicle speed, acceleration and yaw rate gives the best indication of the vehicle states. Hence,
this combination is selected for training and testing purposes for the driver intention.

Type of Model Type of data usedMethods
(No. of studies) Intent Interaction

Type of Vehicle
Detected CAN Camera GPS/

Map
Lidar/
Radar Simulations

Hidden Markov
Model (12) X

Ego
Cars,Trucks* 9 2 - 1 -

Support Vector
Machine (4) X

Ego
Cars, Trucks* 2 - - 2 -

Fuzzy Model (4) X
Ego

Cars, Trucks* 2 2 - - -

Gaussian Mixture
Model (2) X Ego 2 - - - -

Cellular Automata
Model (1) X Ego 1 - - - -

Hybrid Dynamical
System (2) X Ego 2 - - - -

Intelligent Driver
Model (2) X All vehicles - - 1 - 1

Binary Probit
Model (2) X Ego 2 - - - -

Probabilistic
Models (7) X

Ego
Cars, Trucks* 5 1 1

* These vehicles were detected with Camera/GPS/Map/Lidar/Radar/Simulations

Table 2-1: Comparison of driver intention models

Limited research has been carried out on cyclists and the studies found were mainly focused
on assessing their influence on traffic flow. Some studies were carried out for recognizing
violating behavior in simple situations, however these models cannot be used or adapted for
predicting intentions at intersections. Table 2-2 [20] presents a summary of the study on
cyclist intention models. As HMM is good at determining the internal hidden states required
in decision making, it is selected with the same motivation. For the cyclist intention, the
parameters were selected based on the work carried out by TNO in the European project,
Prospect [21]. Considering these factors, the velocity and steering angle were selected. For
both cases, the distance to the intersection was considered the best way to describe the
interaction as in real life, a driver or cyclist base their decision on the perceived distance.
The conclusion of the Literature study is summarized in Table 2-3 [20]. Studies carried out
for recognizing driver intentions are briefly summarized in the next section.

Methods
(No. of studies)

Type of Model Type of Bicycles
Detected

Type of data used
Effect on
traffic

Intention
(violating) CAN Camera GPS/

Map
Lidar/
Radar Simulations

Data Analysis (3) X All bicycles 1 2 - - -

Duration Model (2) X
Ego bicycles
All bicycles* - 2 - - -

* These bicycles were detected with Camera/GPS/Map/Lidar/Radar/Simulations

Table 2-2: Comparison of cyclist intention models
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Type of Study Research Done Selected Parameters Selected Model Interaction Parameters
Driver Intention Recognition Extensive Velocity, Acceleration, Yaw rate HMM Distance to the intersection
Cyclist Intention Recognition Limited Velocity, Steering angle HMM Distance to the intersection

Table 2-3: Summary of the Literature Study

2-2 Previous Work on Driver Modeling using Hidden Markov Model

Amsalu and Homaifar [22] selected the scenario of a road intersection with traffic lights and
described the driver behavior modeling near it using HMM. The model had to estimate the
driver’s intention (ego vehicle) when approaching the intersection. Hence, the aim of this
work was to develop a driver model to be able to recognize the possible actions of the driver
(to stop, go straight, take a left or right).

A combination of Genetic Algorithm (GA) and Baum-Welch Algorithm [22] was used for
training the HMM on real-world data. Usually, HMM are trained using the Baum-Welch
Algorithm with a guess of the initial values for the parameters and these are updated after
each iteration until the algorithm converges. Nonetheless, the drawback of using only the
Baum-Welch is that the algorithm does not always converge to the global maximum (required
solution) but keeps oscillating around a local maxima (close to the initial guess) [23]. Hence,
Amsalu and Homaifar [22] chose this combination as the GA extends the local search to the
entire solution space. In this way, the GA ensures that the optimum parameters are found for
the training of the best HMM. For faster convergence, the Baum-Welch is used in between
each iteration with the GA.

With the help of the Hybrid-State System (HSS) [24], it is possible to describe the vehicle
dynamics as a continuous-state system (CSS) and to describe the decisions of the driver as a
high level discrete-state system (DSS) (see Figure 2-1) [22]. By using HMMs for the modeling,
changes in the CSS result in a modification in the DSS, which were not previously defined.
The changes in the driver states were found by using the observation data to train the model.
The observations were made based on sensors installed on the ego-vehicle. The HMM used
in this case can be described using a set of three parameters, namely the prior probability
distribution π, the transition probability matrix A and observation probability matrix B.
Using the Baum-Welch algorithm, the driver state at a given time t can be expressed as

S(t) = arg max
i

P (o1, o2, . . . , ot|λi) i = 1, . . . , n. (2-1)

where o1, o2, . . . , ot are the observations data for the chosen signals (velocity, acceleration and
yaw-rate), λi are the models that are to be trained and i are the estimated driver states.

Real world data was collected using a car equipped with sensors (GPS unit, CAN bus and
cameras). Some specific paths were selected to represent urban conditions. The road inter-
sections were most relevant to this study and 6 left turns, 18 straight, 5 right turn and 21
stop maneuvers were recorded. Three observations from the recorded data, namely velocity
(0 − 15m/s), yaw rate (−35 to 25◦/s) and acceleration (−3 to 4m/s2) were selected as the
dataset to train and test the model. The confusion matrix was generated using the testing
set, which accounts for 30% of the data set. The ground truth was found by watching the
recorded videos and manually registering the drivers’ decisions.
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Hybrid State System

Discrete State System

Continuous State System

S1

S2

S4
S3X

𝑥

Figure 2-1: Hybrid State System
[22]

Amsalu and Homaifar [22] compared the HMM trained with the combination of GA and
Baum-Welch algorithm to the HMM trained with just the Baum-Welch algorithm. A confu-
sion matrix consists of rows and columns, where each row shows the number of instances in an
actual class and each column represents the number of instances in a predicted class [22]. The
model gives a prediction of the driver’s intention every 0.1s. The GA had an overall accuracy
of 76.33% at predicting straight, stop, left and right turn maneuvers while the Baum-Welch
algorithm achieved an overall accuracy of only 62.03% at recognizing the same intents. It
was concluded from the results that recognizing the final intention occurred quite near to
the intersection (approx 1 second before). Hence, a combination of GA and Baum-Welch
algorithm resulted in an improvement of 14.3% over the training done only with Baum-Welch
algorithm. Furthermore, this work could be extended to other driving scenarios such as lane
change, merging, entering ramps and so on.

Gadepally et al. [25] also presented a framework based on both HSS and HMM for recognizing
the driver’s intentions at intersections. Gadepally et al. [25] selected the same scenario as
Amsalu and Homaifar [22] for data collection. GPS, CAN bus and video data were recorded
from the inbuilt and other installed sensors in the ego vehicle. This was done to find the good
combination of signals for training and testing the model and the ground truth was found
out manually by analyzing the data. 10 straight, 10 right, 10 left, and 10 stop maneuvers
were successfully recorded. Out of all the signals recorded, the combination of velocity,
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2-2 Previous Work on Driver Modeling using Hidden Markov Model 9

acceleration and yaw rate was the best fit to carry out the intent recognition of the ego
vehicle. The model was trained using the Baum-Welch and Viterbi algorithm to find the
optimal HMM parameters and the future state respectively. An estimate of the intent is
given at a regular interval of 0.1-0.2 s (depending on the sequence) for each one of 40 recorded
maneuvers. The proposed model (HMM+HSS) was compared to the traditional method (K -
nearest neighbor (KNN)) and the manual marking. Out of the HMM+HSS and KNN, the
proposed model was more superior and outperformed the traditional model as HMM made
use of history. When the HMM+HSS and the human marking were compared, it was seen
that the HMM was able to detect the behavior much faster(1-2 s ahead) as it had access to
the kinematics of the vehicle. In general, the proposed framework was proved to be quite
promising.
In the same context, Amsalu et al. [26] carried out a study where discrete HMM and HSS were
used for modeling the driver behavior. Compared to [22] and [27], it was seen that acceleration
was not very useful to find the difference between the different driving maneuvers. The ground
truth was found out manually from the recorded videos and the driver’s actions were noted
for the highway merging, entering/exiting a ramp and for road intersections (straight, stop,
left and right turn). A total of 9 straight, 6 left turns, 5 right turns, and 7 stop maneuvers
were recorded. Velocity (0 − 13 m/s) and yaw rate (−20 to 25◦/s) were the observations
mostly used for predicting behavior at road intersections. The real world data was divided
into six categories based on different combinations of speed and the driver’s action. The
continuous data was discretized (0.1 s time step) to train (using the traditional Baum-Welch
algorithm) and validate the model. Similar to Amsalu and Homaifar [22], Amsalu et al. [26]
used a confusion matrix to assess the results. Using 30% of the data for testing, it was seen
that this method attained an overall accuracy of 89.45% at estimating the behavior at the
road intersections. The model had an updated estimation every 0.1 s and was able to carry
out the intent recognition 1-2 s before arriving at the intersections. Hence, it was concluded
that the discrete HMM were more accurate than continuous HMM.
HMM can also be used with two different approaches, namely top-to-bottom (starting with the
whole route and identifying some maneuvers) and bottom-to-top (starting with the maneuver
recognition to get an essence of the whole picture). In a study by Sathyanarayana et al. [28],
an improved method of Pentland and Liu [29] was used to formulate a framework to be used
for recognizing maneuvers of the driver and routes. Two routes (residential and commercial
regions) each containing right turn, left turn, lane change, cruising and car following conditions
are selected for data collection. The chosen routes allowed the total collection of 112 right
turns, 29 left turns, and 70 lane change. The signal channels of the ego vehicle included
cameras (to monitor the driver and road), microphone, GPS, CAN, pedal actuation. The
CAN-Bus data was preferred over the other signals as it is a low-cost solution for modeling.
Hence, the vehicle speed, steering wheel angle and brake/acceleration pedal actuation were
selected to train and validate the model.
For the bottom-to-down approach, 8, 16, 32, and 64 Gaussian mixtures were used for training
the continuous HMM. The best results were obtained with 64 mixtures and 4 states. For
the right turns, left turns and the lane change an accuracy of 100%, 93% and 81% were
obtained respectively which proved to be very encouraging to also test the continuous model
on distracted driving. For the distracted driving, the model achieved an accuracy of 100%
for left turn and lane change but the performance decreased for right turns. This could have
been due to the distracted data being set too close to the neutral rather than distracted
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driving. The same data was used for training the discrete HMM and 4, 8, and 12 sized
code-books were used for the symbol representation. On increasing the size, the performance
of the discrete model improved. With a code-book size of 12, an accuracy of 100%, 87%
and 75% was observed for neutral right turn, lane change and left turn respectively. With
an accuracy of 95% for the distracted driving, Sathyanarayana et al. [28] deduced that if a
maximum-likelihood algorithm was used, maneuvers can be detected properly. By comparing
the continuous and discrete HMM, detection of maneuvers was better performed using the
continuous model.
Wu et al. [30] did a study to predict the possible steering action of a driver. This study was
closely aligned with driver behavior modeling as the authors wanted to develop a model to
estimate the steering action at a certain time. Wu et al. [30] collected video data and extracted
two main parameters namely the vehicle speed and direction. The selected scenario was at
a four-way road junction with traffic lights. The HMM were trained using the traditional
method (Baum-Welch algorithm) to find the HMM parameters. The study showed that the
HMM was able to predict the steering action quite well. Some maneuvers were detected 10
frames ahead while some were detected with a delay of 10 frames. Hence, better results could
be obtained if the number of states was increased and if there was less interference.
Mitrovic [31] presented a discrete HMM model to recognize and predict driving events. The
concerned vehicle had to interact with its environment and other vehicles (e.g making a left
or right turn, stopping, etc). No particular routes were selected for this experiment, but
there was an attempt to include the main features of urban areas. Mitrovic [31] used a left-
to-right model over the general model as the latter was better able to capture the changing
characteristics of the data. The relevant data collected for training and validation were the
vehicle speed, longitudinal and lateral acceleration. In total, 238 maneuvers including 41 right
curve, 16 right on the roundabout, 36 right turns, 56 left curves, 20 left on a roundabout, 59
left turns, 10 straight on a roundabout, were recorded as the dataset. The codebook size of
16 was selected based on a trade-off between recognition accuracy and error. For the training
purpose, Mitrovic [31] used 30% of the original data, and the rest was used for testing of the
model. The commands were presented to the driver (for e.g stop, turn left or right on the
next intersection, change line, and pass the car in front). The HMMs were trained to be able
to recognize the driver’s intent 2 s after the text command was presented to him. A limited
number of sensors were used and the results showed that the model was still quite accurate
(an overall accuracy of 98.3% was obtained), robust and trustworthy. This framework was
different from the previous work carried out as the data collection was done by inexpensive
sensors present on board on the car preferably.
The use of HMM to detect driver intention was also made by Berndt et al. [32]. The selected
scenario for this research included road intersections, lane change and turn maneuvers. The
critical instance when a maneuver has to be detected is at the start. This part is very relevant
as it could be used to alert the driver of any illegal action or behavior to prevent accidents.
Three hours of freeway driving were used to extract 100 and 50 lane change maneuvers for
training and testing respectively. Several hours of urban driving resulted in 60 and 35 turn
maneuvers for training and testing respectively. A window size of about 4 and 2 s was used
for the turn and lane change maneuvers respectively. Steering wheel angle and yaw rate
were used during the study. A left-to-right model was used which allowed the use of the
same parameters as the overall model for the extracted sub-models. HMMs with six, nine
and twelve states were used and Berndt et al. [32] found that the model with nine states
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performed better than the rest. For the training purpose at intersections, the third until
the sixth states were extracted from the overall model. But, as the first two states were
not extracted, the turning action was detected a bit late. Berndt et al. [32] also wanted to
find the best combination of the observation signals for the model, but incorporating other
signals didn’t improve the performance. As the amount of data available was restricted, it
was possible that the performance was not properly determined and having more data could
help solve this issue. Berndt and Dietmayer [33] carried a similar study and promising results
were obtained as Berndt et al. [32].

Boyraz et al. [34] presented a framework based on HMM to recognize the driver’s intentions
in urban conditions and to classify it as good or bad. The speed and steering wheel angle
data was collected from a driving simulator. Twenty drivers took part in the experiment and
hence, the collected data promised to be interesting due to the diversity. 5 right turn, 5 left
turns, 5 U-turn and 5 roundabouts were collected for training and testing. Results showed
that the model was able to capture the maneuvers and also classify the driving as good or
bad based on the class division done.

Moreover, Zou and Levinson [35] used the HMM approach to describe conflicting and non-
conflicting driving behaviors. Only the intersection and left-turn maneuvers were considered
at road intersections. Fourteen radar and two lidar sensors were placed at the intersections.
The radar sensors captured the vehicle speed and position while the lidar sensors gave an
indication of the vehicle size. In total, six states were chosen to keep the analysis simple and
yet interesting. A single HMM was initially used to model the whole data set of five hours of
driving. 1963 vehicles were extracted from the data for estimating the intent with a frequency
of 10 Hz. Initial results showed that one HMM could not be used for both conflicting and
non-conflicting vehicles. Hence, two different HMMs were then used for conflicting and non-
conflicting vehicles. Some part of the sequence was extracted to train the model to estimate
to which cluster the sequence belonged. The rest was used for validation that is, to check
really to which cluster it belonged to. In this way, 30% was used for estimation and 70% was
used to check in reality. The results obtained from the clustered HMM showed that the new
approach is more accurate than the traditional Gipps model. The Gipps model was selected
for comparison as it uses the same data signal as the proposed model.

Tang et al. [36] tackled the modeling of a dynamic and complex decision-making process
using HMMs. This is quite common at road intersections due to the high interaction between
vehicles and other road users and hence making this study relevant for consideration. The
traditional method (Baum-Welch algorithm) was used for the training of the HMM while
the decoding was done based on the Viterbi algorithm. Four cases were considered at three
different intersections for the collection of video data. A total of 698 vehicle trajectories
including 179 trucks and 519 passenger cars were extracted for training and testing. The
vehicle speed and acceleration were divided into different categories to facilitate the training
and intent recognition. Results showed that the HMM was able to predict the intention of
the driver with a high accuracy and half of the drivers used a two-step decision making. This
conclusion helped to consolidate the belief of Tang et al. [36] that the driver does not use a
single-step decision as assumed for the conventional models.

Meng et al. [37] presented a new architecture for modeling driving behavior which could be
used in controlling the number of thefts. The application might be different, but the method
used was to distinguish between the driving behavior of the owner and a thief. Hence, this
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study is very important and interesting for this review. Meng et al. [37] used a simulator
to collect acceleration, braking, and steering angle data in urban scenarios. For each driver,
a different HMM was trained to find the optimal parameters and the model could be used
to identify any unknown driver. Six states were chosen for each driver and a total of seven
HMMs were created for the seven drivers. The results obtained were very promising as for
some drivers, the model attained a highest success rate of 100% and a lowest rate of 40%.
For the application of identifying an unknown driving behavior, the model attained a success
rate of 80%.

Kuge et al. [38] assessed the driving behavior when performing a lane change and pioneered
the research on the performance of HMM in capturing human behavior. A driving simulator
with a motion system was set up for the collection of behavior data. Different subjects were
asked to drive in the simulator for different lane change situations. Again, the Viterbi and the
Baum-Welch algorithm were used in the training of the HMM to find the optimal parameters.
When the models were trained with the steering angle and steering angle velocity, a recognition
rate of 100% was recorded for lane change and lane keeping. Results also showed that the
HMM were able to learn the behavior and the models were able to predict the behavior at an
early stage with a time interval of 5 ms.
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Chapter 3

Methodology

This chapter will focus upon the development of the interaction model and the intent recogni-
tion using Hidden Markov Model (HMM). HMM have been established in the field of speech
recognition, pattern recognition [28] and robotics [39]. HMM is gaining ground in the field
of driver behavior modeling and recognition of intent, route, violation and distraction. Many
studies have shown that a decision-making process can be considered as a sequence of internal
states, for example, a lane change maneuver or stopping at an intersection [29]. Hence, the
internal states of the driver or cyclist can be recognized by training the HMM.

3-1 Developing the Interaction Model

An interaction between road users is defined as a complex decision-making process where
different road users cross each other and interact over a certain time period. This process
occurs in such a way that the road users are most of the time able to use the road without
collision [40]. Hence, the name "interaction model" was coined as it is a method used for
describing the detection of another road user and its decision influenced by the ego vehicle.

There are different parameters which help a road user to take a decision at an unregulated
intersection, for example, the traffic rules, hand gestures, estimating the distance to the
intersection and the speed of other road users. In this study, normal traffic rules are considered
where the right way has priority while hand gestures are excluded. Since the distance to the
intersection (center) and the speed of other road users seem to be predictive parameters, these
will be used for the interaction model as well.

Table 2-3 describes the parameters (including the interaction parameters) selected based on
the Literature study. These parameters will be used like another road user would estimate
them, to define the architecture of the interaction model. For example, a driver approaching
an intersection will estimate how fast another road user is approaching from another direction.
The architecture of the interaction model is shown in Figure 3-1.
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Figure 3-1: Input and output parameters of the cyclist and vehicle HMM models.

3-2 Brief Introduction to Hidden Markov Model

HMM is an extension of discrete Markov models. Simple Markov models consist of states,
an observation (i.e., an event) corresponding to each state, and transition probabilities rep-
resenting the switch between each state. This way of modeling has some limitations to many
practical applications. Hence, this concept is extended to represent the observation as a prob-
abilistic function of the state. Hence, instead of having a direct mapping of the observation
to the state, the process is stochastic (i.e., hidden) in nature.
A HMM can be characterized as follows:

1. N, the number of distinct states present in the model.
Even though the states of a HMM are hidden, for many applications the states have a
physical meaning associated with the states. For this research, the states attached to
the cyclist Ncyclist = 3 are straight, turn right or stop, while the states for the vehicle
Nvehicle = 2 are straight and right turn. The states are connected in a way that a
state can be reached from another state (i.e., an ergodic model). The state at time t is
denoted as qt and individual states are defined as

S = {S1, S2, . . . , SN} (3-1)

2. M, number of distinct observation symbols for each state.
The observation symbols are the outputs (measured) of the system that is being studied.
The symbols are denoted by

V = {v1, v2, . . . , vM} (3-2)

3. State transition probabilities, A = {aij} where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (3-3)

These present the probability of switching from state i to j and for this research aij > 0,
as all the states are reachable.
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4. Observation probability distribution function in state j, B = {bj(k)}, where

bj(k) = P [vk at t|qt = Sj ], 1 ≤ j ≤ N
1 ≤ k ≤M (3-4)

5. Initial state distribution π = {πi} where

πi = P [q1 = Si], 1 ≤ i ≤ N (3-5)

After the appropriate values of N,M,A,B, andπ, the HMM can be used for determining how
well it matches the given observation sequence. The steps are given below:

1. Determine the initial state q1 = Si based on the initial state distribution π.

2. Set t = 1.

3. Choose Ot = vk based on the symbol probability distribution function in state Si, i.e.,
bi(k).

4. Switch to a new state qt+1 = Sj based on the state transition probability distribution
for the prior state Si, i.e., aij.

5. Set t = t+ 1; Go to Step 3 if t < T ; otherwise terminate.

Based on the description above, the specification of an HMM includes two the model parame-
ters (NandM) and three probability distributions A,Bandπ. The parameter set for updating
are defined as follows for convenience

λ = (A,B, π) (3-6)

3-3 Developing the HMM-based Intent Recognition System

3-3-1 The Basic Problems of HMM

Based on the description of the HMM in Section 3-2, there exists three problems that must
be solved to be able to implement the HMM in a real life application. The problems are listed
as follows (refer to [41]):

Problem 1: How to determine P (O|λ), the probability of having a sequence (O = O1O2
. . . OT ) given a model λ = (A,B, π).

Problem 2: How to determine the state sequence Q = q1q2 . . . qT which is optimal for a
given observation sequence O = O1O2 . . . OT and model λ = (A,B, π).

Problem 3: How to update the model parameters λ = (A,B, π) to maximize P (O|λ)
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3-3-2 Solutions to The Basic Problems of HMM

A. Solution to Problem 1

Solution to Problem 1 involves finding the probability that the observation sequence O =
O1O2 . . . OT was generated by the model λ (i.e., choosing the model which best describes
the observations). A possible way of doing this by defining all the possible state sequence of
length T . Consider a fixed state sequence as follows:

Q = q1 q2 . . . qT (3-7)

where q1 is the state at t = 1. The probability of having an observation sequence O for the
state sequence defined in Equation 3-7 can be expressed as

P (O|Q,λ) =
T∏

t=1
P (Ot|qt, λ) (3-8)

Assuming that the observations are statistically independent, Equation 3-8 simplifies to

P (O|Q,λ) = bq1(O1) · bq2(O2) . . . bqT (OT ) (3-9)

The probability of having such a sequence Q with the model λ can be expressed as

P (Q|λ) = πq1aq1q2aq2q3 . . . aqT −1qT (3-10)

The probability that both O and Q occur simultaneously is the product of Equation 3-9 and
3-10

P (O,Q|λ) = P (O|Q,λ)P (Q|λ) (3-11)

The probability of having the observation sequence O given the model λ is obtained by
summing the joint probability for all possible state sequence q

P (O|λ) =
∑
allQ

P (O|Q,λ)P (Q|λ) (3-12)

=
∑

q1,q2...,qT

πq1bq1(O1)aq1q2bq2(O2) . . . aqT −1qT bqT (OT ) (3-13)

Equation 3-13 is not computationally possible as it requires (2T − 1)NT multiplications and
NT − 1 additions. Hence, a more effective solution named forward-backward procedure will
be used. Consider a forward variable αt(i) defined as

αt(i) = P (O1O2 . . . Ot, qt = Si|λ) (3-14)

αt(i) is the probability of having a partial observation sequence for time t given being in state
Si and the model λ. The following steps can be used to solve for αt(i):
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1. Initialization

α1(i) = πibi(O1), 1 ≤ i ≤ N. (3-15)

2. Induction

αt+1(j) =
[

N∑
i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1

1 ≤ j ≤ N. (3-16)

3. Termination

P (O|λ) =
N∑

i=1
αT (i) (3-17)

In a similar way, consider a backward variable βt(i) defined as

βt(i) = P (Ot+1Ot+2 . . . OT , qt = Si|λ) (3-18)

βt(i) is the probability of having a partial observation sequence from time t + 1 to T given
being in state Si at time t and the model λ. The following steps can be used to solve for βt(i):

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N. (3-19)

2. Induction

βt(i) =
N∑

j=1
aijbj(Ot+1)βt+1(j), t = T − 1, T − 2, . . . 1

1 ≤ i ≤ N. (3-20)

Using the variables αt(i) and βt(i) reduced the overall computation to 2N2T .

B. Solution to Problem 2

The solving Problem 2 involves finding the best state sequence corresponding to the given
observation sequence. The challenge is to find the best optimality criterion. One possible
solution is to select the states qt which are individually most probable. To apply this solution,
consider the variable
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γt(i) = P (qt = Si|O, λ) (3-21)

γt(i) represents the probability of being in state Si at time t given an observation sequence
O, and a model λ. Using the forward-backward terms, Equation 3-21 can be simplified as
follows:

γt(i) = αt(i)βt(i)
P (O|λ) = αt(i)βt(i)

N∑
i=1

αt(i)βt(i)
(3-22)

Being in state Si at time t, αt(i) and αt(i) takes into account the partial observation sequences
O1O2 . . . Ot and Ot+1Ot+2 . . . OT respectively. P (O|λ) acts as a normalizing factor so that

N∑
i=1

γt(i) = 1 (3-23)

Solving for the most probable individual state qt at time t, can be expressed as

qt = arg max
1≤i≤N

[γt(i)], 1 ≤ t ≤ T (3-24)

The drawback of using Equation 3-24 is that the resulting state sequence might not be a
practical solution. The technique used to solve Problem 2 is called Viterbi algorithm, and it
involves finding the best state sequence Q = q1q2 . . . qT . Consider δt(i) as follows:

δt(i) = max
q1,q2,...,qt−1

P [q1q2 . . . qt = i, O1O2 . . . Ot|λ] (3-25)

Using induction,

δt+1(j) = [max
i
δt(i)aij ] · bj(Ot+1) (3-26)

To obtain the best state sequence, the argument which maximized Equation 3-26 must be
checked. This is done by introducing the array ψt(i). The Viterbi algorithm is described as
follows:

1. Initialization

δ1(i) = πibi(O1), 1 ≤ i ≤ N. (3-27)
ψ1(i) = 0 (3-28)

2. Recursion
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δt(j) = max
1≤ i≤N

[δt−1(i)aij ]bj(Ot), 2 ≤ t ≤ T

1 ≤ j ≤ N (3-29)
ψt(j) = arg max

1≤ i≤N
[δt−1(i)aij ] 2 ≤ t ≤ T

1 ≤ j ≤ N (3-30)

3. Termination

P ∗ = max
1≤ i≤N

[δT (i)]

q∗t = arg max
1≤ i≤N

[δT (i)] (3-31)

4. Path backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, . . . , 1. (3-32)

C. Solution to Problem 3

Solution to Problem 3 involves adjusting the model parameters (A,B, π) to optimize the
probability of an observation sequence given the model. The Baum-Welch (or the expectation-
maximization (EM)) method Consider ξt(i, j) which is the probability of being in state Si at
time t and state Sj at time t+ 1, given the observation sequence and model,

ξt(i, j) = P (qt = Si, qt+1 = Sj |o, λ) (3-33)

Using the forward and backward variables, Equation 3-33 can be written as

ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
P (O|λ)

= αt(i)aijbj(Ot+1)βt+1(j)
N∑

i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)
(3-34)

As γt(i) was defined as the probability of being in state Si at time t given an observation
sequence O, and a model λ, γt(i) and ξt(i, j) can be related as

γt(i) =
N∑

j=1
ξt(i, j) (3-35)

The number of transitions from Si is obtained if γt(i) is summed over time t, while the number
of transitions from Si to Sj is obtained if ξt(i, j) is summed over time t.
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T−1∑
t=1

γt(i) = Number of transitions from Si

T−1∑
t=1

ξt(i, j) = Number of transitions from Si to Sj (3-36)

Using the Equations defined above, the re-estimation equations for λ,A and B can be ex-
pressed as

π̄i = Number of times in state Si at time (t = 1)
= γ1(i) (3-37)

āij = Number of transitions from Si to Sj

Number of transitions from Si

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)
(3-38)

b̄k = Number of times in state j and observing symbol vk

Number of times in state j

=

T−1∑
t=1

s.t.Ok=vk

γt(i)

T−1∑
t=1

γt(i)
(3-39)

If the current model is defined as λ = (A,B, π) and is used to calculate re-estimated parame-
ters, the re-estimated model can be expressed as λ̄ = (Ā, B̄, π̄). If λ̄ is used in place of λ, and
the re-estimation procedure is repeated, the probability of O being observed with the model
can be increased until a saturation point. The final outcome of the re-estimation procedure
is called the maximum likelihood estimate of a HMM.

3-3-3 Using Continuous Observation Densities

The observation used for modeling are continuous in nature and hence, some restrictions
must be used on the Probability Density Function (PDF). This is to ensure that the HMM
parameters can be re-estimated. The PDF can be expressed in a finite mixture as

bj(O) =
M∑

m=1
cjmζ[O, µjm, Ujm], 1 ≤ j ≤ N (3-40)

where O is the model vector, cjm is the mixture coefficient for the mth mixture and ζ is
a Gaussian distribution with mean µjm and covariance matrix Ujm The mixture coefficient
satisfies the stochastic constraint as follows
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M∑
m=1

cjm = 1, 1 ≤ j ≤ N (3-41)

cjm ≥ 0, 1 ≤ j ≤ N, 1 ≤ m ≤M (3-42)

Equations 3-41 and 3-42 allows the PDF to be normalized

∫ ∞
−∞

bj(x)dx = 1, 1 ≤ j ≤ N. (3-43)

3-3-4 Using Multiple Observation Sequences

The derivation carried out above was for a model with a single observation sequence. Some
applications require the use of multiple observation sequences. As shown in Figure 3-1, 3
observations would be used for the cyclist while 4 observations (including the interaction
parameters) would be utilized for the vehicle intentions prediction. Hence, the re-estimation
procedure must be modified to accommodate the use of multiple sequences. Consider a set
of K observation sequences

O = [O(1),O(2), . . . ,O(k)] (3-44)

where O(k) = [O(k)
1 O

(k)
2 . . . O

(k)
Tk

] is the kth observation sequence. It is assumed that each
observation sequence is independent of the other observation sequence. The goal is to update
the parameters to maximize

P (O|λ) =
K∏

k=1
P (O(k)|λ) (3-45)

=
K∏

k=1
Pk (3-46)

As the re-estimation formulas depend on the number of occurrence of different events, the
formulas for the multiple sequences are adjusted by summing the individual occurrence for
each sequence. The modified equation can be expressed as
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π̄i = πi (3-47)

āij =

K∑
k=1

1
Pk

Tk−1∑
t=1

αk
t (i)aijbj(O(k)

t+1)βk
t+1(j)

K∑
k=1

1
Pk

Tk−1∑
t=1

αk
t (i)βk

t (i)
(3-48)

b̄j(`) =

K∑
k=1

1
Pk

Tk−1∑
t=1

s.t. Ot=v`

αk
t (i)βk

t (i)

K∑
k=1

1
Pk

Tk−1∑
t=1

αk
t (i)βk

t (i)
(3-49)

The parameter πi is not re-estimated as π1 = 1, πi = 0, i 6= 1.

3-3-5 Equal-width Binning

Discretization is needed for the signal, namely distance to the intersection. Discretization
will allow the use of bins which improves the training of the HMM for the intent prediction.
For this purpose, the equal-width discretization technique is used where data is divided into
K number of bins as defined by Equation 3-50. Equal width bins are bins having the same
width for the entire observation sequence. Based on [21], a bin size of 0.1m is selected for
the distance to the intersection while the other observation sequences remain continuous in
nature.

W = dmax − dmin

K
(3-50)

Based on the formulation described above, discretization allows the flexibility to give a higher
weighting to the original parameters (λ = (π,A,B)) compared to the re-estimated parameters
(λ̄ = π̄, Ā, B̄).

λupdated = (1− ε)λ+ ελ̄ (3-51)

where ε is a small number.

This technique makes the model robust to outliers or sudden change in the observation se-
quence and hence, enhancing the recognition performance.

3-4 Validation of the interaction model

The most commonly used method of validation comprises of dividing the whole data into two
parts, namely training (70%) and testing (30%) data. For this method, a large amount of
data is needed and if a relatively small dataset is available, then cross-validation is a better
method for assessing the performance [42]. With a cross-validation, each time different data
is left out as the test set and the training set contains the remaining maneuvers. The concept
used in this validation, is that the test data must be unknown to the trained model.
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Chapter 4

Experimental Data

This chapter will elaborate on the setup of the car-cyclist experiments and the dataset col-
lected from it, that is used for the learning and validation of the car-cyclist interaction model.
A description of the procedure used in preparing the data is also provided here. Furthermore,
it is explained how the data was used in the validation of the interaction model.

4-1 Experimental Set-up

Cyclist and vehicle data was collected over a period of two days by Integrated Vehicle Safety
(IVS), TNO in 2014. Data was recorded at the parking space of TNO as shown in Figure
4-1. The information about the participants are given below:

• The cyclists were aged between 25-55.

• Four different cyclists volunteered (1 female, 3 male).

• The driver (male) had a driving license.

• The cyclists were instructed to get to a speed of approximately 15 km/h before ap-
proaching the intersection.

• The driver was instructed to drive at a speed of 30 km/h before approaching the inter-
section.

The experiments were performed in a controlled environment that was created using cones as
shown in Figure 4-2. This enabled the tests to be carried out quite fast and only the selected
traffic was allowed to perform the maneuvers. Two scenarios, namely a cyclist crossing and
turning right at an intersection were chosen as shown in Figure 4-3.

As described in Figure 4-3 cyclist were instructed to perform the following maneuvers:
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A. Stop

B. Straight

C. Right Turn

The driver (the other road user) was instructed to perform the following maneuvers:

1. Straight

2. Right Turn

such that the vehicle-cyclist crossing and right turn scenarios were created.

5.6205 5.621 5.6215 5.622 5.6225

51.4744

51.4746

51.4748

51.475

51.4752

51.4754

Bike
Car

Figure 4-1: Map showing the car and bike trajectory at TNO’s parking space

The data was checked for loss of signals for both the driver and cyclists. The maneuvers
having all the required signals were considered for training and validation. The tests resulted
in a successful collection of 61 maneuvers including, 16 straight, 21 right turns, and 24 stop
for all the cyclists. The most relevant signals to this study logged from the bike and car
during the experiments are described in Table 4-1 and 4-2. Video data was also collected
using one camera installed in the car and one camera at the intersection as shown in Figure
4-2.

4-2 Preparation of Data

Some preprocessing had to be carried out to prepare the data for the validation of the model.
This includes extracting the required signals from the raw loggings and cut off the unwanted
segment of the data.
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Figure 4-2: Intersection used for Data collection

Signal Measured for Car Unit Frequency
Longitudinal Speed m/s 100 Hz
Lateral Speed m/s 100 Hz
Longitudinal Acceleration m/s2 100 Hz
Lateral Acceleration m/s2 100 Hz
Yaw Rate deg/s 100 Hz
GPS longitude deg 100 Hz
GPS latitude deg 100 Hz

Table 4-1: Important signals measure for the car

4-2-1 Selection of Dataset

If any of the signals mentioned in Table 4-1 and 4-2 are not present, the data was not taken
into account. The main challenge was for the GPS signal, as sometimes the data didn’t match
the location as shown in Figure 4-1.

4-2-2 Finding a reference point

As the data was recorded on two different platforms, a common reference point was needed to
couple the dataset of the bicycle and the vehicle. The trajectory of each road user was plotted
and compared with the video recording. As the lanes were quite narrow, both road users were
driving approximately in the center of their lanes. Hence, the center of the intersection was
assumed to be the point of intersection (x = 0, y = 0) of the trajectories as shown in Figure
4-1. Therefore, we assume that the point of collision would be at the center of the intersection.

The GPS coordinates of each road user are converted in the XY plane and are eventually
used to define the distance to the center of the intersection as follows:

dti =
√

(X2 + Y 2) (4-1)
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(a) (b)

Figure 4-3: Scenarios selected for data collection: (a) Vehicle-cyclist crossing scenario (b)
Vehicle-cyclist turning right scenario

[43]

Signal Measured for Bike Unit Frequency
Longitudinal Speed m/s 100 Hz
Lateral Speed m/s 100 Hz
Longitudinal Acceleration m/s2 100 Hz
Lateral Acceleration m/s2 100 Hz
Roll Angle deg 100 Hz
Steering Angle deg 100 Hz
GPS longitude deg 100 Hz
GPS latitude deg 100 Hz

Table 4-2: Important signals measure for the bike

4-2-3 Synchronizing the vehicle and bicycle data

Both recording platforms were time-synchronized, as a measure was required to be able to
determine the relative distance to the intersection and signals of each road user. Time-
synchronization means that the clock on each platform was set at the same time. As each
platform had its start and stop feature, each recording was started manually. Hence, even if
one recording was started later than the other, it would still be possible to match the signals
with the help of the time synchronization.

After matching the time of each dataset, the common portion of the signals was extracted.
The trajectory for each road user was plotted and matched with the video recording as shown
in Figure 4-4. Hence, the animated plot helps in checking that the synchronization was
performed correctly and as a reference to check the consistency of the actions of the cyclist
and driver (kinematic data) with the video data. As distance and time to the intersection
are important parameters to analyze the performance of the model in this study, the whole
signal was shifted in a way that t = 0 corresponds to the time when the road user is at the
center of the intersection. In this way, t < 0 and t > 0 correspond to the bicycle or vehicle
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approaching and leaving the intersection respectively.

Figure 4-4: Matching the data with the video recording

4-2-4 Data Selection

After the processes described above are performed, the data still contains segments which
are not interesting for this study, for example, when the bike is getting up to speed. These
segments are found usually at the start and end of the dataset as shown in Figure 4-5 As
the interaction is the main focus of this study, the initial segment (with speed less than the
maximum speed, Vmax,cyclist) of the cyclist data can be neglected. Considering the fact that
one road user will reach the intersection earlier, the last portion was discarded once both road
users have crossed and traveled a minimum distance of 7m. The conditions can be described
as follows:

Vinitial ≥
1
2Vmax,cyclist (4-2)

min{dticyclist, dtivehicle} = 7m (4-3)

Figure 4-5: Complete vehicle and cyclist trajectories
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When the conditions are implemented, the data becomes suitable for the learning and valida-
tion of the interaction model as shown in Figure 4-6. The true states of each road user were
also included in the dataset, where straight, turn and stop actions were denoted by 1, 2 and
3 respectively.

Figure 4-6: Selected part of the trajectories for determining the parameters of the interaction
model
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Chapter 5

Results

In this chapter, the results of the simulations are presented and discussed. Based on the
architecture of the model described in Section 3-1, the final parameters for the prediction of
the interaction between cyclist and car including their maneuvers are selected. The parameter
selection is based on a sensitivity analysis. Next, the method of validation was selected based
on the available datasets and implemented to generate the results.

5-1 Selection of parameters for the vehicle and cyclist intent pre-
diction

Before training and cross-validation, the right combination of parameters from the architec-
ture as described in Section 3-1 was selected. This was performed by means of a method
applied earlier at TNO for the selection of parameters for cyclist maneuver prediction [21].

Three different windows were selected for both the cyclist and vehicle, namely 1s, 2s, 4s to
the center of the intersection. At each instance, the bicycle (speed, acceleration, and steering
angle) and vehicle (speed, acceleration, and yaw rate) parameters were fitted to a normal
distribution. The normal distribution of the bicycle parameters for 1 s, 2 s, and 4 s to the
intersection are shown in Figures A-1 to A-3, Figures A-4 to A-6, and Figures A-7 to A-9
respectively. The normal distribution of the vehicle parameters for 1 s, 2 s, and 4 s to the
intersection are shown in Figures A-10 to A-12, Figures A-13 to A-15, and Figures A-16 to
A-18 respectively. Figures 5-1 and 5-2 show the most important plots which will be used for
the sensitivity analysis of the bicycle and vehicle parameters respectively.

In Figure 5-1, the cyclist speed, and acceleration show the least overlap in the normal dis-
tribution curves of all maneuvers and hence it can be concluded that these are the most
important parameters for the cyclist intent recognition. Referring to Figure 5-1a, the normal
distribution curves for the straight and turn maneuvers have no overlap while the turn and
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Figure 5-1: Fits of normal distributions to the (a) Speed (b) Steering angle (c) Acceleration of
the bicycle

stop maneuvers still have some overlap. Based on the study [21], only steering angle and speed
were selected initially. However, the results from the parameter sensitivity analysis encourage
the use of acceleration. On incorporating acceleration as an additional input parameter of the
interaction model, it was seen that the performance of the model improved with a maximum
difference of 27.58 % as shown in Tables A-25 and A-26.

Applying the sensitivity analysis to the vehicle’s speed, yaw rate, and acceleration (see Fig-
ure 5-2), it was concluded that yaw rate and speed are parameters that can provide a good
prediction. In addition, the performance was checked with a combination of yaw rate, speed,
and acceleration, and incorporating acceleration improved the prediction by a maximum of
32.76% as shown in Tables A-25 and A-26. Hence, this combination was used for checking
the influence of the interaction parameters as described in Section 5-4.

Puranjay Ramsaha Master of Science Thesis



5-2 Selection of interaction parameters 31

2 3 4 5 6 7 8 9

Vehicle Speed [m/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P

1 s to the intersection

Straight
Turn

(a)

-5 0 5 10 15 20 25 30 35 40 45

Vehicle Yaw Rate [o/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

P

1 s to the intersection

Straight
Turn

(b)

-5 -4 -3 -2 -1 0 1

Vehicle Acceleration [m/s2]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P

2 s to the intersection

Straight
Turn

(c)

Figure 5-2: Fits of normal distributions to the (a) Speed (b) Yaw Rate (c) Acceleration of the
vehicle

5-2 Selection of interaction parameters

As explained in 3-1, the interaction parameters used in the intention prediction of the cyclist
and the vehicle are the distance to the intersection of the vehicle and cyclist respectively.
After the development of the architecture, other interaction parameters could also be used,
such as speed and time to the intersection. This section focuses on comparing the different
interaction parameters and choose the best combination for an optimum prediction. Similar
to Section 5-1, windows of 1s, 2s, 4s to the center of the intersection will be used for the
comparison. The normal distribution of the interaction parameters for the vehicle and bicycle
are shown in Figures B-1 to B-9 and Figures B-10 to B-18 respectively.

Figure 5-3 and 5-4 show the interaction parameters used for the intent prediction of the
cyclist and vehicle respectively. Comparing the plots in Figure 5-3, it can be seen that the
results of vehicle time to the intersection (TTI) and the distance to the intersection. Also,
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Figure 5-3: Fits of normal distributions to the interaction parameters of the bicycle: (a) distance
to the intersection (b) speed (c) time to the intersection (TTI) of the vehicle

the parameters are quite similar, as they only differ by a factor (i.e. the speed). However,
Figure 5-4 shows that only bicycle distance to the intersection has the least overlap for the
maneuvers compared to the other interaction parameters. Hence, distance to the intersection
was selected for predicting the intention of both the cyclist and vehicle.

5-3 Selection of Validation Method

The standard method of validation is not selected as it requires a large number of datasets
are available, which is not available in this study (a total of 61 maneuvers). Hence, cross-
validation is preferred over the standard method. Three different maneuvers were always used
to start the learning of the Hidden Markov Model (HMM) and therefore were not considered
for calculating the overall accuracy of the prediction. These maneuvers included at least
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Figure 5-4: Fits of normal distributions to the interaction parameters of the vehicle: (a) distance
to the intersection (b) speed (c) time to the intersection (TTI) of the bicycle

a stop, straight, and turn for the cyclist, and at least a straight and turn for the vehicle.
Accordingly, 1 prediction was given with the HMM trained on the rest 57 maneuvers. This
training and prediction process was repeated for 58 maneuvers and the overall accuracy of
the model was calculated.

5-4 Cross Validation

After selecting the parameters of the interaction model, its performance is evaluated. The
concept of confusion matrix is applied for checking the overall accuracy. Table 5-1 shows an
example of a confusion matrix. The main diagonal of the confusion matrix represents the
true positives while the other values represent the false positives. The overall accuracy of the
prediction is derived as follows:
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Overall Accuracy = Number of True Positives
Number of True Positive + Number of False Positives (5-1)

Figure 5-5 shows the final results of applying Equation 5-1 on Tables C-1 till C-24. To assess
the performance further, the cyclist’s intent prediction of the interaction model was plotted
from the time instance when the cyclist was at 15 m from the intersection until he reaches
the center of the intersection (tcyclist = 0). To plot the vehicle’s intent prediction, the time
instance of the vehicle corresponding to the cyclist being 15 m from the intersection, was
again considered until the time the vehicle reaches the center of the intersection (tvehicle = 0).
This procedure was repeated both for the HMM with and without the interaction parameters.
An example of each state of the cyclist and the vehicle (with and without interaction) are
shown in Figures 5-6 to 5-15.

Actual Cyclist Maneuvers at
TTI= 0.5 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 0.5 s

Straight Right Turn Stop
Straight 14 0 1
Right Turn 2 18 0
Stop 0 0 23

Accuracy = 94.83%

Table 5-1: An example of the Confusion Matrix
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Figure 5-5: Overall Accuracy of the interaction model
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Figure 5-6: Example of intent recognition for vehicle going straight using interaction parameters
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Figure 5-7: Example of intent recognition for vehicle taking a right turn using interaction pa-
rameters
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Figure 5-8: Example of intent recognition for cyclist going straight using interaction parameters
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Figure 5-9: Example of intent recognition for cyclist taking a right turn using interaction param-
eters
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Figure 5-10: Example of intent recognition for cyclist stopping using interaction parameters
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Figure 5-11: Example of intent recognition for vehicle going straight without interaction param-
eters
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Figure 5-12: Example of intent recognition for vehicle taking a right turn without interaction
parameters
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Figure 5-13: Example of intent recognition for cyclist going straight without interaction param-
eters
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Figure 5-14: Example of intent recognition for cyclist taking a right turn without interaction
parameters
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Figure 5-15: Example of intent recognition for cyclist stopping without interaction parameters
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5-5 Discussion of results

The method of cross-validation was selected based on the limited amount of data available
for this study. Furthermore, this validation method allows the use of unbalanced datasets as
the number of recorded maneuvers are not equal. Also, cross-validation gives a better insight
into the performance of machine learning methods with a limited amount of data.

It was concluded that the selection of parameters (including the interaction parameters) plays
an important role in improving the overall performance of the HMM. Applying the method
described in [21] lead to the results that steering angle, speed, and acceleration of the bicycle
are the best parameters for the intent recognition of a cyclist. Next, speed, yaw rate, and
acceleration are the best parameters for recognizing a driver’s intention near an intersection.
When a driver and a cyclist interact at an intersection, each road user estimates how far
and how fast does the other road user approach the intersection. In this way, the road users
influence each other’s decision to stop or to go on.

Table 5-2 summarizes the difference in performance of the HMM with and without interaction
parameters. The addition of the interaction parameters in predicting a driver’s or a cyclist’s
decisions further improved the performance for a prediction of more than 2s. On comparing
Figures 5-7 and 5-12, it can be concluded that the interaction parameters help to have a
better and more constant prediction. In real life, if a road user has an indication about the
decisions of the other road users then, this could help him in making his decision. In a similar
way, if an early prediction (>2s) is required, then having the interaction parameter helps to
have a better prediction.

Time to
the intersection

[s]

Type of Road User
Vehicle Cyclist

HMM with
interaction [%]

HMM without
interaction [%]

Overall
Performance [%]

HMM with
interaction [%]

HMM without
interaction [%]

Overall
Performance [%]

0.5 100 100 0 94.83 94.83 0
1.0 100 100 0 94.83 94.83 0
1.5 98.28 98.28 0 94.83 94.83 0
2.0 91.38 87.93 3.45 86.21 84.48 1.73
2.5 82.76 81.03 1.73 77.59 72.41 5.18
3.0 75.86 60.34 15.52 67.24 58.62 8.62

Table 5-2: Comparison of the HMM with and without interaction parameters

Master of Science Thesis Puranjay Ramsaha



46 Results

Puranjay Ramsaha Master of Science Thesis



Chapter 6

Discussion, Conclusions, and
Recommendations for Model

Improvements

6-1 Discussion

The number of accidents involving Vulnerable Road Users (VRU) is increasing each year
and introduction of Advanced Driver Assistance Systems (ADAS) functionalities are small
steps towards safer roads. The objective of this MSc project was to develop a vehicle-cyclist
interaction model for the generation of realistic variations on vehicle-cyclist crossing scenarios.

A literature study was first conducted in order to find the modeling methods for describing
a driver’s and a cyclist’s behavior, which could then be used in the development of a vehicle-
cyclist interaction model. Based on the Literature Study, the architecture of the interaction
model was proposed as shown in Figure 3-1. It was also seen that extensive research has been
performed on modeling a driver behavior and limited on modeling a cyclist’s behavior. Hidden
Markov Model (HMM) was the method most often used for modeling the driver’s behavior,
and hence, was selected with the same motivation for the development of the interaction
model.

The Literature study also gave an indication of what parameters could be used for the intent
recognition of the driver and the cyclist independent of each other. Based on how a road user
takes a decision at an intersection, there are many possibilities for the interaction parameters.
These include distance to the center of the intersection, the speed, or time to the crossing of
the other road user approaching the intersection. Sensitivity analysis was used to select the
right combination of parameters to avoid having too many parameters which would result in
high computational cost and overfitting of the model.

As the interaction model requires time-synchronized data both from the vehicle and the
bicycle, the choice for a suitable dataset was quite limited. Experiments were conducted at
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TNO in a controlled environment where data was collected from a vehicle interacting with
a cyclist at an intersection. The data was time-synchronized, however, the data was not
ideal since the tests were not naturalistic. Also, for safety reasons, no critical encounters
between vehicle and cyclists could be made. Furthermore, the number of scenarios collected
was less than the actual scenarios possible at an intersection, and the number of collected
vehicle-cyclist encounters was also limited. Hence, the available data restricted the study on
the possible states of each participant and the model still requires more data to be able to
test for all real situations at an intersection.
As a limited amount of data was available, cross validation was preferred over the most
commonly used validation method (dividing the data in a 7:3 ratio for training and testing
respectively). In this case, cross validation allows a better evaluation of the performance as
each time a different dataset is selected for prediction. Nevertheless, using cross validation
requires more computational cost as a new HMM is trained with each iteration. Compared
to the cross validation, the most commonly used validation method involves training HMM
once and testing it for 30% of the data, which means less computational time in total.
The simulation results of this research are very promising despite the limited data set. The se-
lection of the parameters can already be applied for the development and assessment of ADAS
functionalities, whereas the interaction model needs more data to be further optimized for
application in the scenario generation method. The current interaction model is limited as
the maneuvers of each participant is less than the possible maneuvers at an intersection (i.e.
go straight, stop, turn right or turn left). For the complete training and validation, the inter-
action model requires naturalistic data collected at a real unregulated crossing. Furthermore,
the participants must not be instructed to stop for each other. For an ideal dataset, the par-
ticipants should cycle or drive as they would do in everyday life, however for safety reasons,
they should follow the traffic rules that apply.

6-2 Conclusions

In this thesis, a vehicle-cyclist interaction model was developed for the generation of scenarios
for virtual testing of ADAS or for validation of randomly generated scenarios. Also, the best
parameters were determined by means of using experiments performed with a vehicle and
cyclists. From the preceding Literature Study, an initial architecture was proposed for a
vehicle-cyclist interaction model as shown in Figure 3-1.
A sensitivity analysis as described in [21] was applied to the available dataset of vehicle and
cyclist kinematic data, in order to select potential parameters for the cyclist, driver as well as
their interaction. It was concluded that speed, acceleration, and steering angle were the best
parameters for the cyclist, while speed, acceleration, and yaw rate were the best parameters
for the driver. On comparing the interaction parameters for the cyclist, it was concluded
that both distance and time to the intersection (TTI) gave similar results as they differ by
a factor, namely the velocity. But for the vehicle, it was concluded that distance to the
intersection is a better interaction parameter as the normal distribution curves had the least
overlap compared to the other parameters. Hence, distance to the crossing was selected as
the interaction parameter to maintain a uniformity between the cyclist and the vehicle. Using
the selected parameters for predicting the cyclist’s and driver’s intent, a final conclusion is
drawn on the architecture of the interaction model, as shown in Figure 6-1.
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Figure 6-1: Final architecture of the interaction model.

Using the final architecture and the parameters, the interaction model was developed, trained
and validated. Using the Confusion Matrix, it was seen that including the interaction param-
eters improved the prediction for more than 2s with a minimum and maximum difference of
1.73 and 15.52% respectively. Figures 5-6 to 5-15 also showed that the interaction model has
a more stable performance. From this research, we can conclude that using the interaction
parameters improves the performance for an early prediction (>2s) as well as reduces the
fluctuations between different states.

6-3 Recommendations for model improvements

Since this study was a first attempt to model the vehicle-cyclist interaction for the generation
of scenarios for virtual testing of ADAS, several recommendations for further development of
this model are described below.

The current model is limited due to the data that was used for the training and validation.
Additional data is needed in order to have all the possible states at an intersection, namely
going straight, stopping, taking a right or left turn. Also, it is recommended to collect the
data at a real intersection to have a naturalistic representation of traffic and interaction.
Furthermore, it would be very efficient for data analysis if the data collection could be done
on one platform which receives data from the vehicle and bicycle instead of using two different
platforms which needed to be time-synchronized.

The model excludes input from the camera and it could be interesting to couple it. In
this way, hand gestures or head movements of the cyclist could be used to get additional
input parameters for turns. Hence, the interaction model could be extended with additional
parameters to simulate a vehicle-cyclist interaction using recorded data from the camera.

Finally, the vehicle-cyclist interaction model needs to be made applicable for creating scenar-
ios for virtual testing of ADAS (for example, cyclist-AEB, driver warning for cyclists, etc.).
Ideally, in future the model would be trained with data that are directly measured at the

Master of Science Thesis Puranjay Ramsaha



50 Discussion, Conclusions, and Recommendations for Model Improvements

vehicle in daily life during a certain period of driving in cities with many cyclists. If the inter-
action model is trained using more kinematic data, more realistic variations of the scenarios
can be generated.

6-4 Future Applications

As critical scenarios are more interesting for assessing the performance of ADAS function-
alities, these scenarios should also be collected. But, this is not allowed when testing with
volunteers. For safety reasons physical testing is performed with cyclist dummies, however,
besides the unnatural kinematics, the interaction of the cyclist with the vehicle is missing.
Therefore, critical vehicle-cyclist scenarios should be obtained from real-life scenarios. This
could be obtained from camera measurements at a crossing as performed for the EU project
InDEV [44], or from driving around with a vehicle with special instrumentation for collecting
the cyclist kinematics. In this way, more critical scenarios could be generated based on the
model and the critical scenarios that were measured.

Once the vehicle-cyclist interaction model is finalized, it can be used as a filter on an instru-
mented vehicle for filtering vehicle-cyclist scenarios that have already been recorded in the
database. In this way, a storage and computational power management could be attained
where only new scenarios that have statistical relevance and discard all the rest.

The model can also be used to develop convenient and safe actuation times for ADAS, like
Automated Emergency Braking (AEB), or future functionalities to avoid accidents with cy-
clists. Based on this model, a safe actuation time could be selected for the performance
assessment of the ADAS. Depending on how well the system matches this timing, the perfor-
mance could be evaluated (for example, failing to match the timing would result in discarding
the system).

Finally, the interaction model could also be used for predicting the intention of road users
when implemented in a vehicle. In this way, if a driver has an indication about the future
action of a cyclist at an unregulated intersection, an accident or an unnecessary deceleration
could be avoided to improve the fuel consumption and to drive more comfortably and safely.
This could also help in the case of a VRU, where information could be given to other road
users through a display installed on the vehicle body as in[45], for example, a cyclist or a
pedestrian could be allowed to cross the road safely. The interaction parameters could be
recorded using sensors (e.g. Lidar, Radar, stereo camera) or when measure at the bicycle
could be communicated to the vehicle using wireless communication.
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Appendix A

Selection of Parameters for Intention
Prediction

A-1 Parameters for the bicycle
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Figure A-1: Fits of normal distributions to the bicycle acceleration at TTI = 1.0 s
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Figure A-2: Fits of normal distributions to the bicycle speed at TTI = 1.0 s
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Figure A-3: Fits of normal distributions to the steering angle of the bicycle at TTI = 1.0 s
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Figure A-4: Fits of normal distributions to the bicycle acceleration at TTI = 1.0 s
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Figure A-5: Fits of normal distributions to the bicycle speed at TTI = 2.0 s

Master of Science Thesis Puranjay Ramsaha



54 Selection of Parameters for Intention Prediction

1.3 1.4 1.5 1.6 1.7 1.8 1.9

Steering Angle of Bicycle [o]

-2

0

2

4

6

8

10

12

14

16

18

P

2 s to the intersection

Straight
Turn
Stop

Figure A-6: Fits of normal distributions to the steering angle of the bicycle at TTI = 2.0 s
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Figure A-7: Fits of normal distributions to the bicycle acceleration at TTI = 4.0 s
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Figure A-8: Fits of normal distributions to the bicycle speed at TTI = 4.0 s
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Figure A-9: Fits of normal distributions to the steering angle of the bicycle at TTI = 4.0 s
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A-2 Parameters for the vehicle
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Figure A-10: Fits of normal distributions to the vehicle acceleration at TTI = 1.0 s
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Figure A-11: Fits of normal distributions to the vehicle speed at TTI = 1.0 s
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Figure A-12: Fits of normal distributions to the vehicle yaw rate at TTI = 1.0 s
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Figure A-13: Fits of normal distributions to the vehicle acceleration at TTI = 2.0 s
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Figure A-14: Fits of normal distributions to the vehicle speed at TTI = 2.0 s
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Figure A-15: Fits of normal distributions to the vehicle yaw rate at TTI = 2.0 s
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Figure A-16: Fits of normal distributions to the vehicle acceleration at TTI = 4.0 s
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Figure A-18: Fits of normal distributions to the vehicle yaw rate at TTI = 4.0 s
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Figure A-17: Fits of normal distributions to the vehicle speed at TTI = 4.0 s

A-3 Cross Validation-Without Acceleration

A-3-1 Implementation of the bicycle parameters-With Interaction

Actual Cyclist Maneuvers at
TTI= 0.5 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 0.5 s

Straight Right Turn Stop
Straight 15 0 0
Right Turn 2 18 0
Stop 0 4 19

Accuracy = 89.66%

Table A-1: Confusion Matrix for cyclist maneuvers with interaction (excluding acceleration) at
TTI=0.5 s

Actual Cyclist Maneuvers at
TTI= 1.0 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 1.0 s

Straight Right Turn Stop
Straight 14 1 0
Right Turn 3 17 0
Stop 0 2 21

Accuracy = 89.66%

Table A-2: Confusion Matrix for cyclist maneuvers with interaction (excluding acceleration) at
TTI=1.0 s
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Actual Cyclist Maneuvers at
TTI= 1.5 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 1.5 s

Straight Right Turn Stop
Straight 13 2 0
Right Turn 5 14 0
Stop 1 0 22

Accuracy = 84.48%

Table A-3: Confusion Matrix for cyclist maneuvers with interaction (excluding acceleration) at
TTI=1.5 s

Actual Cyclist Maneuvers at
TTI= 2.0 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 2.0 s

Straight Right Turn Stop
Straight 12 3 0
Right Turn 13 7 0
Stop 3 0 20

Accuracy = 67.24%

Table A-4: Confusion Matrix for cyclist maneuvers with interaction (excluding acceleration) at
TTI=2.0 s

Actual Cyclist Maneuvers at
TTI= 2.5 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 2.5 s

Straight Right Turn Stop
Straight 11 4 0
Right Turn 20 0 0
Stop 3 0 20

Accuracy = 53.45%

Table A-5: Confusion Matrix for cyclist maneuvers with interaction (excluding acceleration) at
TTI=2.5 s

Actual Cyclist Maneuvers at
TTI= 3.0 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 3.0 s

Straight Right Turn Stop
Straight 11 4 0
Right Turn 20 0 0
Stop 3 0 20

Accuracy = 53.45%

Table A-6: Confusion Matrix for cyclist maneuvers with interaction (excluding acceleration) at
TTI=3.0 s
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A-3-2 Implementation of the bicycle parameters-Without Interaction

Actual Cyclist Maneuvers at
TTI= 0.5 s

Predicted Cyclist Maneuvers
at TTI = 0.5 s

Straight Right Turn Stop
Straight 14 0 1
Right Turn 0 20 0
Stop 0 2 21

Accuracy = 94.83%

Table A-7: Confusion Matrix for cyclist maneuvers (without acceleration) at TTI=0.5 s

Actual Cyclist Maneuvers at
TTI= 1.0 s

Predicted Cyclist Maneuvers
at TTI = 1.0 s

Straight Right Turn Stop
Straight 12 3 0
Right Turn 2 18 0
Stop 0 2 21

Accuracy = 89.66%

Table A-8: Confusion Matrix for cyclist maneuvers (without acceleration) at TTI=1.0 s

Actual Cyclist Maneuvers at
TTI= 1.5 s

Predicted Cyclist Maneuvers
at TTI = 1.5 s

Straight Right Turn Stop
Straight 5 10 0
Right Turn 0 18 2
Stop 1 0 22

Accuracy = 77.59%

Table A-9: Confusion Matrix for cyclist maneuvers (without acceleration) at TTI=1.5 s

Actual Cyclist Maneuvers at
TTI= 2.0 s

Predicted Cyclist Maneuvers
at TTI = 2.0 s

Straight Right Turn Stop
Straight 0 12 3
Right Turn 1 13 6
Stop 2 1 20

Accuracy = 56.90%

Table A-10: Confusion Matrix for cyclist maneuvers (without acceleration) at TTI=2.0 s

Actual Cyclist Maneuvers at
TTI= 2.5 s

Predicted Cyclist Maneuvers
at TTI = 2.5 s

Straight Right Turn Stop
Straight 0 10 5
Right Turn 0 11 9
Stop 2 1 20

Accuracy = 53.45%

Table A-11: Confusion Matrix for cyclist maneuvers (without acceleration) at TTI=2.5 s
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Actual Cyclist Maneuvers at
TTI= 3.0 s

Predicted Cyclist Maneuvers
at TTI = 3.0 s

Straight Right Turn Stop
Straight 0 11 4
Right Turn 0 13 7
Stop 0 4 19

Accuracy = 53.45%

Table A-12: Confusion Matrix for cyclist maneuvers (without acceleration) at TTI=3.0 s

A-3-3 Implementation of the vehicle parameters-With Interaction

Actual Vehicle Maneuvers at
TTI= 0.5 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 0.5 s

Straight Right Turn
Straight 18 0
Right Turn 0 40

Accuracy = 100%

Table A-13: Confusion Matrix for vehicle maneuvers with interaction (excluding acceleration) at
TTI=0.5 s

Actual Vehicle Maneuvers at
TTI= 1.0 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 1.0 s

Straight Right Turn
Straight 18 0
Right Turn 0 40

Accuracy = 100%

Table A-14: Confusion Matrix for vehicle maneuvers with interaction (excluding acceleration) at
TTI=1.0 s

Actual Vehicle Maneuvers at
TTI= 1.5 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 1.5 s

Straight Right Turn
Straight 18 0
Right Turn 1 39

Accuracy = 98.28%

Table A-15: Confusion Matrix for vehicle maneuvers with interaction (excluding acceleration) at
TTI=1.5 s

Actual Vehicle Maneuvers at
TTI= 2.0 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 2.0 s

Straight Right Turn
Straight 17 1
Right Turn 17 23

Accuracy = 68.97%

Table A-16: Confusion Matrix for vehicle maneuvers with interaction (excluding acceleration) at
TTI=2.0 s

Master of Science Thesis Puranjay Ramsaha



64 Selection of Parameters for Intention Prediction

Actual Vehicle Maneuvers at
TTI= 2.5 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 2.5 s

Straight Right Turn
Straight 16 2
Right Turn 27 13

Accuracy = 50.00%

Table A-17: Confusion Matrix for vehicle maneuvers with interaction (excluding acceleration) at
TTI=2.5 s

Actual Vehicle Maneuvers at
TTI= 3.0 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 3.0 s

Straight Right Turn
Straight 16 2
Right Turn 31 9

Accuracy = 43.10%

Table A-18: Confusion Matrix for vehicle maneuvers with interaction (excluding acceleration) at
TTI=3.0 s

A-3-4 Implementation of the vehicle parameters-Without Interaction

Actual Vehicle Maneuvers at
TTI= 1.5 s

Predicted Vehicle Maneuvers
at TTI = 1.5 s

Straight Right Turn
Straight 18 0
Right Turn 0 40

Accuracy = 100.00%

Table A-19: Confusion Matrix for vehicle maneuvers (excluding acceleration) at TTI=0.5 s

Actual Vehicle Maneuvers at
TTI= 1.0 s

Predicted Vehicle Maneuvers
at TTI = 1.0 s

Straight Right Turn
Straight 17 1
Right Turn 0 40

Accuracy = 98.28%

Table A-20: Confusion Matrix for vehicle maneuvers (excluding acceleration) at TTI=1.0 s

Actual Vehicle Maneuvers at
TTI= 1.5 s

Predicted Vehicle Maneuvers
at TTI = 1.5 s

Straight Right Turn
Straight 17 1
Right Turn 0 40

Accuracy = 98.28%

Table A-21: Confusion Matrix for vehicle maneuvers (excluding acceleration) at TTI=1.5 s
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Actual Vehicle Maneuvers at
TTI= 2.0 s

Predicted Vehicle Maneuvers
at TTI = 2.0 s

Straight Right Turn
Straight 17 1
Right Turn 14 26

Accuracy = 74.14%

Table A-22: Confusion Matrix for vehicle maneuvers (excluding acceleration) at TTI=2.0 s

Actual Vehicle Maneuvers at
TTI= 2.5 s

Predicted Vehicle Maneuvers
at TTI = 2.5 s

Straight Right Turn
Straight 17 1
Right Turn 24 16

Accuracy = 56.90%

Table A-23: Confusion Matrix for vehicle maneuvers (excluding acceleration) at TTI=2.5 s

Actual Vehicle Maneuvers at
TTI= 3.0 s

Predicted Vehicle Maneuvers
at TTI = 3.0 s

Straight Right Turn
Straight 15 3
Right Turn 27 13

Accuracy = 48.28%

Table A-24: Confusion Matrix for vehicle maneuvers (excluding acceleration) at TTI=3.0 s
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Figure A-19: Overall Accuracy of the interaction model (excluding acceleration)
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66 Selection of Parameters for Intention Prediction

Time to
the Crossing

[s]

Type of Road User
Vehicle (Interaction) Cyclist (Interaction)

HMM with
acceleration [%]

HMM without
acceleration [%]

Overall
Performance [%]

HMM with
acceleration [%]

HMM without
acceleration [%]

Overall
Performance [%]

0.5 100 100 0 94.83 89.66 5.17
1.0 100 100 0 94.83 89.66 5.17
1.5 98.28 98.28 0 94.83 84.48 10.35
2.0 91.38 68.97 22.41 86.21 67.24 18.97
2.5 82.76 50.00 32.76 77.59 53.45 24.14
3.0 75.86 43.10 32.76 67.24 53.45 13.79

Table A-25: Comparison of the interaction model with and without acceleration

Time to
the Crossing

[s]

Type of Road User
Vehicle (Without Interaction) Cyclist (Without Interaction)

HMM with
acceleration [%]

HMM without
acceleration [%]

Overall
Performance [%]

HMM with
acceleration [%]

HMM without
acceleration [%]

Overall
Performance [%]

0.5 100 100 0 94.83 94.83 0
1.0 100 98.28 1.72 94.83 89.66 5.17
1.5 98.28 98.28 0 94.83 77.59 17.24
2.0 87.93 74.14 13.79 84.48 56.90 27.58
2.5 81.03 56.90 24.13 72.41 53.45 18.96
3.0 60.34 48.28 12.06 58.62 53.45 5.17

Table A-26: Comparison of HMM with and without acceleration
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Appendix B

Selection of Interaction Parameters

B-1 Interaction Parameters of the Vehicle
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Figure B-1: Fit of normal distributions to the bicycle distance to the intersection at TTI = 1.0 s
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Figure B-2: Fit of normal distributions to the bicycle speed at TTI = 1.0 s
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Figure B-3: Fit of normal distributions to the bicycle time to the intersection (TTI = 1.0 s)
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Figure B-4: Fit of normal distributions to the bicycle distance to the intersection at TTI = 2.0 s
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Figure B-5: Fit of normal distributions to the bicycle speed at TTI = 2.0 s
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Figure B-6: Fit of normal distributions to the bicycle time to the intersection (TTI = 2.0 s)
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Figure B-7: Fit of normal distributions to the bicycle distance to the intersection at TTI = 4.0 s
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Figure B-8: Fit of normal distributions to the bicycle speed at TTI = 4.0 s
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Figure B-9: Fit of normal distributions to the bicycle time to the intersection (TTI = 4.0 s)
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B-2 Interaction Parameters of the Bicycle
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Figure B-10: Fit of normal distributions to the vehicle distance to the intersection at TTI = 1.0
s
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Figure B-11: Fit of normal distributions to the vehicle speed at TTI = 1.0 s
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Figure B-12: Fit of normal distributions to the vehicle time to the intersection (TTI = 1.0 s)
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Figure B-13: Fit of normal distributions to the vehicle distance to the intersection at TTI = 2.0
s
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Figure B-14: Fit of normal distributions to the vehicle speed at TTI = 2.0 s
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Figure B-15: Fit of normal distributions to the vehicle time to the intersection (TTI = 2.0 s)
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Figure B-16: Fit of normal distributions to the vehicle distance to the intersection at TTI = 4.0
s
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Figure B-17: Fit of normal distributions to the vehicle speed at TTI = 4.0 s
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Figure B-18: Fit of normal distributions to the vehicle time to the intersection (TTI = 4.0 s)
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Appendix C

Cross Validation

C-1 Cyclist-With interaction

Actual Cyclist Maneuvers at
TTI= 0.5 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 0.5 s

Straight Right Turn Stop
Straight 14 0 1
Right Turn 2 18 0
Stop 0 0 23

Accuracy = 94.83%

Table C-1: Confusion Matrix for cyclist maneuvers with interaction at TTI=0.5 s

Actual Cyclist Maneuvers at
TTI= 1.0 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 1.0 s

Straight Right Turn Stop
Straight 14 1 0
Right Turn 2 18 0
Stop 0 0 23

Accuracy = 94.83%

Table C-2: Confusion Matrix for cyclist maneuvers with interaction at TTI=1.0 s

Actual Cyclist Maneuvers at
TTI= 1.5 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 1.5 s

Straight Right Turn Stop
Straight 15 0 0
Right Turn 2 17 1
Stop 0 0 23

Accuracy = 94.83%

Table C-3: Confusion Matrix for cyclist maneuvers with interaction at TTI=1.5 s
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Actual Cyclist Maneuvers at
TTI= 2.0 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 2.0 s

Straight Right Turn Stop
Straight 14 1 0
Right Turn 5 14 1
Stop 1 0 22

Accuracy = 86.21%

Table C-4: Confusion Matrix for cyclist maneuvers with interaction at TTI=2.0 s

Actual Cyclist Maneuvers at
TTI= 2.5 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 2.5 s

Straight Right Turn Stop
Straight 14 1 0
Right Turn 9 11 0
Stop 2 1 20

Accuracy = 77.59%

Table C-5: Confusion Matrix for cyclist maneuvers with interaction at TTI=2.5 s

Actual Cyclist Maneuvers at
TTI= 3.0 s

Predicted Cyclist Maneuvers (Interaction)
at TTI = 3.0 s

Straight Right Turn Stop
Straight 14 1 0
Right Turn 9 11 0
Stop 2 1 20

Accuracy = 67.24%

Table C-6: Confusion Matrix for cyclist maneuvers with interaction at TTI=3.0 s

C-2 Cyclist-Without interaction

Actual Cyclist Maneuvers at
TTI= 0.5 s

Predicted Cyclist Maneuvers
at TTI = 0.5 s

Straight Right Turn Stop
Straight 14 0 1
Right Turn 2 18 0
Stop 0 0 23

Accuracy = 94.83%

Table C-7: Confusion Matrix for cyclist maneuvers at TTI=0.5 s

Actual Cyclist Maneuvers at
TTI= 1.0 s

Predicted Cyclist Maneuvers
at TTI = 1.0 s

Straight Right Turn Stop
Straight 14 0 1
Right Turn 2 18 0
Stop 0 0 23

Accuracy = 94.83%

Table C-8: Confusion Matrix for cyclist maneuvers at TTI=1.0 s
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Actual Cyclist Maneuvers at
TTI= 1.5 s

Predicted Cyclist Maneuvers
at TTI = 1.5 s

Straight Right Turn Stop
Straight 15 0 1
Right Turn 2 17 1
Stop 0 0 23

Accuracy = 94.83%

Table C-9: Confusion Matrix for cyclist maneuvers at TTI=1.5 s

Actual Cyclist Maneuvers at
TTI= 2.0 s

Predicted Cyclist Maneuvers
at TTI = 2.0 s

Straight Right Turn Stop
Straight 9 4 2
Right Turn 2 17 1
Stop 0 0 23

Accuracy = 84.48%

Table C-10: Confusion Matrix for cyclist maneuvers at TTI=2.0 s

Actual Cyclist Maneuvers at
TTI= 2.5 s

Predicted Cyclist Maneuvers
at TTI = 2.5 s

Straight Right Turn Stop
Straight 7 8 0
Right Turn 3 15 2
Stop 2 1 20

Accuracy = 72.41%

Table C-11: Confusion Matrix for cyclist maneuvers at TTI=2.5 s

Actual Cyclist Maneuvers at
TTI= 3.0 s

Predicted Cyclist Maneuvers
at TTI = 3.0 s

Straight Right Turn Stop
Straight 0 15 0
Right Turn 4 13 3
Stop 1 1 21

Accuracy = 58.62%

Table C-12: Confusion Matrix for cyclist maneuvers at TTI=3.0 s

C-3 Vehicle-With interaction

Actual Vehicle Maneuvers at
TTI= 0.5 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 0.5 s

Straight Right Turn
Straight 18 0
Right Turn 0 40

Accuracy = 100%

Table C-13: Confusion Matrix for vehicle maneuvers with interaction at TTI=0.5 s
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Actual Vehicle Maneuvers at
TTI= 1.0 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 1.0 s

Straight Right Turn
Straight 18 0
Right Turn 0 40

Accuracy = 100%

Table C-14: Confusion Matrix for vehicle maneuvers with interaction at TTI=1.0 s

Actual Vehicle Maneuvers at
TTI= 1.5 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 1.5 s

Straight Right Turn
Straight 17 1
Right Turn 0 40

Accuracy = 98.28%

Table C-15: Confusion Matrix for vehicle maneuvers with interaction at TTI=1.5 s

Actual Vehicle Maneuvers at
TTI= 2.0 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 2.0 s

Straight Right Turn
Straight 14 4
Right Turn 1 39

Accuracy = 91.38%

Table C-16: Confusion Matrix for vehicle maneuvers with interaction at TTI = 2.0 s

Actual Vehicle Maneuvers at
TTI= 2.5 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 2.5 s

Straight Right Turn
Straight 11 7
Right Turn 3 37

Accuracy = 82.76%

Table C-17: Confusion Matrix for vehicle maneuvers with interaction at TTI = 2.5 s

Actual Vehicle Maneuvers at
TTI= 3.0 s

Predicted Vehicle Maneuvers (Interaction)
at TTI = 3.0 s

Straight Right Turn
Straight 11 7
Right Turn 3 37

Accuracy = 75.86%

Table C-18: Confusion Matrix for vehicle maneuvers with interaction at TTI = 3.0 s
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C-4 Vehicle-Without interaction

Actual Vehicle Maneuvers at
TTI= 0.5 s

Predicted Vehicle Maneuvers
at TTI = 0.5 s

Straight Right Turn
Straight 18 0
Right Turn 0 40

Accuracy = 100%

Table C-19: Confusion Matrix for vehicle maneuvers at TTI=0.5 s

Actual Vehicle Maneuvers at
TTI= 1.0 s

Predicted Vehicle Maneuvers
at TTI = 1.0 s

Straight Right Turn
Straight 18 0
Right Turn 0 40

Accuracy = 100%

Table C-20: Confusion Matrix for vehicle maneuvers at TTI=1.0 s

Actual Vehicle Maneuvers at
TTI= 1.5 s

Predicted Vehicle Maneuvers
at TTI = 1.5 s

Straight Right Turn
Straight 17 1
Right Turn 0 40

Accuracy = 98.28%

Table C-21: Confusion Matrix for vehicle maneuvers at TTI=1.5 s

Actual Vehicle Maneuvers at
TTI= 2.0 s

Predicted Vehicle Maneuvers
at TTI = 2.0 s

Straight Right Turn
Straight 16 2
Right Turn 5 35

Accuracy = 87.93%

Table C-22: Confusion Matrix for vehicle maneuvers at TTI=2.0 s

Actual Vehicle Maneuvers at
TTI= 2.5 s

Predicted Vehicle Maneuvers
at TTI = 2.5 s

Straight Right Turn
Straight 15 3
Right Turn 8 32

Accuracy = 81.03%

Table C-23: Confusion Matrix for vehicle maneuvers at TTI=2.5 s
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Actual Vehicle Maneuvers at
TTI= 3.0 s

Predicted Vehicle Maneuvers
at TTI = 3.0 s

Straight Right Turn
Straight 15 3
Right Turn 20 20

Accuracy = 60.34%

Table C-24: Confusion Matrix for vehicle maneuvers at TTI=3.0 s
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List of Acronyms

ADAS Advanced Driver Assistance Systems

ADS Automated Driving Systems

AEB Automated Emergency Braking

CSS continuous-state system

DSS discrete-state system

EM expectation-maximization

GA Genetic Algorithm

HIL Hardware in the Loop

HMM Hidden Markov Model

HSS Hybrid-State System

IVS Integrated Vehicle Safety

KDE Kernel Density Estimation

KNN K -nearest neighbor

PDF Probability Density Function

SIL Simulation in the Loop

SVM Support Vector Machine

TTI time to the intersection

TU Delft Delft University of Technology

VRU Vulnerable Road Users

WHO World Health Organization
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