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Abstract 
 

 

The hot water produced from a geothermal doublet possesses energy, which once utilized, the water 

cools down and is re-introduced back into the same reservoir at a sufficient distance using an injector 

well. As cold water flows through the reservoir, it acquires thermal energy from surrounding in-situ rocks. 

This process recurs until a substantial drop in rock temperature occurs and the water is unable to be 

recharged adequately; as a result, cold water starts to "break-through" into the production well and the 

doublet soon needs to be abandoned. 

This breakthrough time can be predicted using reservoir simulation. Significant work has been done in 

the past to determine the effect of different parameters on the breakthrough time and accuracy of models 

have been improved by incorporating real world physics. Recently, sensitivity of breakthrough time was 

investigated with changes in well doublet location. Just by relocating the well to a neighboring block, 

cold water experienced a completely different path attributed to large-scale geological heterogeneity, 

consequently resulting in a different breakthrough time [1]. Despite being capable to predict breakthrough 

time, accurate high-fidelity 3D models require significant time in uncertainty quantification and data 

assimilation analysis due to CPU demanding simulations. 

In this project, a physics-based proxy model is developed to predict flow and heat transport in low-

enthalpy reservoirs. Streamlines that describe flow in a system and mostly controlled by steady-state 

pressure distribution are traced using Pollock's method [2] and the reservoir is divided into streamtubes. 

Rock-heat depletion is modeled by semi-analytic model along streamlines. The objective is to predict 

geothermal doublet breakthrough time using only a limited number of streamtubes, thus minimizing 

simulation time and CPU resources. 

Comparison with accurate high-fidelity model reveals that results for proxy model are optimistic; the 

error for pressure and temperature distributions, as well as the breakthrough curves is within the 

acceptable tolerance. The time required to simulate the proxy-model is less than the high-fidelity model. 

And as the number of streamtubes (to simulate the proxy model with) decrease, the time required for 

simulation further decreases but conversely the error between the breakthrough curves increases. 

 

Ahmad Tahir 

Delft, August 2019 
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1  
Introduction 

 

With the widely gaining acceptance of geothermal energy and the public awareness of harms of 

hydrocarbon energy utilization, geothermal energy development is on the rise. With this development, 

numerical simulation of geothermal reservoirs is becoming a very important tool [3]. It is not only useful 

for financial but also for operation management, such as determining the quantity of recoverable energy, 

strategies of field exploitation including the rate at which mass and energy may be extracted [4], injection 

and production well location and re-injection schemes [3]. 

Geothermal reservoir simulation, simply refers to reproducing and then predicting the behavior of 

geothermal reservoir using a numerical model. The very initial models of geothermal simulation 

appeared in the 1970’s but it was not until 1980 that these models were generally accepted for reservoir 

management [5]. 

The mathematical models which are defined as a set of equations that describe the physical processes 

present in the geothermal reservoir (e.g. energy and mass conservation equations) and the solution to 

these equations that are subjected to boundary and initial conditions. The construction of these models 

must be corroborated with detailed knowledge of spatial distribution of reservoir properties. The 

accuracy in collection of this data is fundamental for construction of an effective conceptual model [3]. 

Due to the complexity of underlying physical processes and considerable uncertainties in geological 

structure of reservoirs, there is a persistent demand for accurate and efficient models. 

In order to increase the accuracy of a model, one can apply a finer computational grid in space or time, 

or use a more detailed description of the fluids such as in thermal-compositional model. However, an 

improvement in accuracy of models is usually counterbalanced by an increase in the simulation time. 

Moreover, the modern industry is challenged to run a large ensemble of numerical models for uncertainty 

analysis that requires thousands of simulations, therefore simulation performance becomes a critical 

issue [6]. 

Generating a model in which the natural distribution of parameters (e.g. temperature, pressure and fluid 

composition) is reproduced by simulator is known as “Initial-state modeling” [7]. But reservoir modeling 

and simulation should not be limited to initial-state model, and rather should be a continuous activity 

throughout the field life-time. As more geological information becomes available, the simulation model 

should be updated in order to yield a more accurate analysis of the reservoir [8]. History matching may 

be performed in which the impact of production and injection is reproduced by the numerical model and 

the initial-state model is re-run in order to ensure compatibility. This can also help in forecasting reservoir 

behavior under variety of possible future exploitation schemes [7]. 

 

1.1 Geothermal Systems 

Geothermal energy is thermal energy that is generated and stored in the subsurface. This energy 

originates from two source: (1) residual heat from planet formation, mostly as gravitational and collisional 
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energy, and (2) radiogenic heat, i.e. the decay of radioactive isotopes (e.g. Uranium-238, Potassium-40 

and Thorium-232) [9]. 

Most of the energy, generated during Earth formation was released to the universe, estimated to be 15 

– 35·1030 J. The remaining energy from residual heat and radioactive decay amounts to be 12 – 24·1030 

J. Only 0.1% of the energy stored in Earth's crust (~ 1026 J) can satisfy the world energy consumption 

for next 10,000 years [9]. 

Around 22% of Earth's heat flow occurs due to conduction inside the inner solid core. While convection 

is responsible for almost half of the Earth's internal heat flow to the surface. And the remaining 24% of 

heat flow occurs in the crust primarily due to conduction, although some heat flow in crust also occurs 

by convection in areas of circulating fluids and by advection due to the rising of magma fluid below active 

volcanoes [10]. Most of the geothermal power stations operate on such convection-dominated systems. 
[11] 

In order to harvest the geothermal energy, three things are required: (1) heat source, (2) fluid, (3) fluid 

pathways and (4) cap rock. The source of heat is usually a magma chamber that is a few kilometers 

below the surface. The fluid pathways in the subsurface can be in the form of pores, fractures or even 

Karsts. When the meteoric fluid (e.g. rain water) infiltrates the ground to a depth of few kilometers, it can 

return towards the surface after being heated, as steam or hot water. If this fluid is trapped under an 

impermeable layer of rock, i.e. cap rock, it can form a geothermal reservoir. But if there is sufficient 

pathway to the surface of earth, the hydrothermal systems can manifest as hot springs, geysers, 

fumaroles and mud pots. [9] [12] 

Power generation from geothermal energy is cost-effective, reliable, sustainable and environmentally 

friendly, but it is not evenly distributed geographically. It tends to concentrate in environments with an 

ample volcanic activity and be controlled by plate tectonic processes [13]. Although recently advances in 

technology have expanded the range of viable resources (e.g. home heating), industrial applications 

need the higher temperatures from deeper resources [14]. Outside seasonal variations, the average 

temperature gradient through the crust is around 30˚C/km in most of the world [9]. The capacity factor of 

geothermal power is quite large (up to 96%) because it does not rely on variable energy sources (e.g. 

wind or solar) [15]. Geothermal wells may release greenhouse gases trapped inside the earth, but based 

on per energy unit, these emissions are much lower than those of fossil fuels. Most of the costs that are 

to incur with geothermal power are capital costs, while operational costs associated with geothermal 

reservoir are low and mainly due to the re-injection of the brine into the sub-surface. 

Geothermal energy has been used in the form of water from hot springs for bathing since Paleolithic 

times and for space heating since ancient Roman times. Now, it is better known for power generation 
[16]. As of the end of year 2018, geothermal power is generated in 27 countries with total installed 

capacity of 14.6 GW [17]. The GEA estimates that only few percent of total global potential has been 

tapped so far. On the other hand, IPCC reported that geothermal power has a potential up to 2 TW [18]. 

Based on temperature ranges, the geothermal systems can be classified as either one of two types: 

1) Low enthalpy systems (below 120˚C) 

2) High enthalpy systems (above 120˚C) 

In low enthalpy systems, the fluid exists in a liquid state and is best suited for direct application and 

household heating. Whereas in high enthalpy systems, the fluid may exist as steam as is suited for 

industrial application, such as power generation [19]. 

A geothermal reservoir is exploited with the help of well doublets. A "doublet" refers to a pair of wells 

where one serves as the producer (from which hot fluid is extracted out from the reservoir) and the other 

serves as injector (from which cooled fluid is injected back into the reservoir). When the hot fluid is 

extracted from reservoir, it is used for various applications. As the fluid is used, the temperature of the 

fluid, along with the exergy available, drops. This water is treated to remove salts and chemicals in order 

to comply with subsurface injection regulations. Next the cool water is re-injected into the reservoir. This 

re-injected water is used to provide pressure support in order to offset surface subsidence and prevent 

the induced seismicity due to pressure decline from mass extraction [9]. This re-injection also 
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supplements the natural recharge, which is often limited but essential to sustain a geothermal system. 

While the sub-surface rocks are recharged by conduction, the fluid carrying the heat energy moves by 

advection. And during injection, this cold water front propagates through the reservoir towards the 

producer well. With the passage of time, the surrounding rock is unable to recharge the rocks in contact 

with the injected fluid, and hence unable to thermally recharge the fluid. Gradually the front of the cold 

water injected reaches the production wells and the temperature of the produced water begins to 

decline. Once the temperature of the produced water starts to decline, this is known as the 

"Breakthrough Time". But the breakthrough does not mean the immediate end of doublet lifetime, 

because it may take several years for the temperature of the produced fluid to drop by another degree, 

however breakthrough does serve as an indicator for nearing the end of doublet lifetime [9]. 

Simulation of geothermal processes have many complexities, many of which are not encountered in 

petroleum reservoirs. It involves solution of highly non-linear, coupled equations, that describe mass 

and energy transport in a heterogeneous media is a complex problem [5]. 

Convection cells arising from local differences in heat flux are encountered in the pre-exploited state, 

and both, energy and mass are in a state of dynamic equilibrium. In addition to the more conventional 

issues of reservoir structure, fault locations, permeability structure, reservoir boundaries are typically 

not sealed and can impact initializing a geothermal model. Conceptual models must capture heat flux 

from a variable heat source from below and heat loss to cap-rock or atmosphere (e.g., via fumaroles, 

steaming ground, etc.), It must also capture fluid recharge and discharge locations and magnitude [5]. 

Moreover the primary component of geothermal reservoirs is water that can exist in a vapor, liquid, or 

critical state. Phase behavior is further complicated by vapor pressure lowering and by the presence of 

non-condensable gases (e.g., CO2) and salts. Phase changes (condensation and vaporization) occur in 

native state heat pipes and also because of injection/production operations. In addition, minerals may 

also precipitate or dissolve in response to phase change, affecting permeability and porosity in near-

well regions [5]. These challenges can hinder the development of reliable models of these reservoirs. 

The following equation shows the mass conservation equation: 

 

 

𝜕

𝜕𝑡
(𝜙∑𝜒𝑐,𝑝𝜌𝑝𝑠𝑝

𝑛𝑝

𝑝=1

) − div∑𝜒𝑐,𝑝𝜌𝑝 (𝐾
𝑘𝑟,𝑝

𝜇𝑝
(∇𝑝𝑝 − 𝛾𝑝∇𝐷))

𝑛𝑝

𝑝=1

+∑𝜒𝑐,𝑝𝜌𝑝�̃�𝑝

𝑛𝑝

𝑝=1

= 0, 

𝑐 = 1,… , 𝑛𝑐, 

(1.1) 

 

while energy conservation is given by the following equation [6]: 

 
𝜕

𝜕𝑡
(𝜙∑𝜌𝑝𝑠𝑝𝑢𝑒,𝑝 + (1 − 𝜙)𝑢𝑒,𝑟

𝑛𝑝

𝑝=1

) − div∑ℎ𝑝𝜌𝑝 (𝐾
𝑘𝑟,𝑝

𝜇𝑝
(∇𝑝𝑝 − 𝛾𝑝∇𝐷))

𝑛𝑝

𝑝=1

+ div(𝜆𝛻𝑇)

+∑ℎ𝑝𝜌𝑝�̃�𝑝

𝑛𝑝

𝑝=1

= 0. 

(1.2) 

 

Note: Description of these variables can be found in the nomenclature 

 

1.2 Previous Work: 

Significant work has been done in the past to improve models in order to incorporate the real world 

physics and increase the accuracy in predicting geothermal reservoir breakthrough.  

In [20], S. Saeid had introduced a new prototype design model for deep low-enthalpy hydrothermal 

systems. This model empirically predicted hydrothermal system lifetime as a function of porosity, 
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discharge rate, well spacing, average initial reservoir temperature and injection temperature. In order to 

conduct a parametric analysis for wide range of physical parameters, finite element package COMSOL 

was utilized. The model was capable of predicting lifetime of low-enthalpy geothermal system with less 

than 10% error, but this was only valid for a limited range of parameters that had been assessed in the 

analysis. Based on parametric analysis, it was concluded that the discharge had the most significant 

effect on project lifetime and that seasonal variation of injection temperature had not a significant 

difference on average heat flow in production well. In addition, while implementing a computationally 

efficient finite element model for transient heat and fluid flow in deep low-enthalpy geothermal system 

utilizing COMSOL, the sensitivity of geothermal system to hydrological parameters was displayed, 

namely viscosity and porosity. It showed that dependency of viscosity on temperature can affect life of 

the system: with higher viscosity, propagation of cold front slows down, therefore increasing the 

expected geothermal system lifetime. Another example showed that variation of porosity can also affect 

the expected lifetime of system. 

In [21], Cees Willems had improved the regional model of Lower Cretaceous, fluvial Nieuwerkerk 

Formation in order to obtain a better understanding of the lateral continuity of sandstone-rich 

successions and thickness variations of these successions throughout the WNB. His study showed that 

impermeable bodies can have a positive effect on heat exploitation as they provide thermal recharge to 

the cold water plume. This increases the doublet life time as the speed of temperature reduction after 

thermal breakthrough decreases. But at the same time, impermeable bodies, such as claystone, can 

reduce doublet life by separating permeable sandstone bodies into isolated clusters, consequently 

reducing the net aquifer volume and causing an early thermal breakthrough. He also showed that taking 

into account, the thermal recharge from under-burden and over-burden also increased life-time. He also 

showed that reduction in well spacing can still result in sufficient doublet life-time while the NPV of the 

project can be improved. 

Cees Willems’ study also showed that doublet interference has the most significant impact on the life-

time. Relations indicate that required doublet distance is a function of the doublet configuration, minimal 

required production temperature and production rate variations between adjacent doublets. In tramline 

configuration (injector and producer wells are aligned), negative interference is still recognizable 

therefore the required doublet distance is large, as compared to checkboard configuration (injector and 

producer wells are alternated). The latter configuration can result in positive life time interference. 

Later in [1], Sannidhi investigated reasons for large spread in breakthrough curves at different well 

locations of geothermal doublet. For this study, the same regional geological model of WNB, studied by 

C. Willems, was used. Two models were compared: coarse-scale and fine-scale that had the same N/G 

ratio. Despite the fine scale model having a better connectivity along sand bodies, the spread still 

persisted. Next the sand bodies were made completely homogenous, and there was still significant 

variation. Finally looking into cross sections of the model, along with the streamlines produced, it was 

obvious that the cause of significant difference in thermal breakthrough was due to the heterogeneity in 

the way channels were deposited. It was observed that simply by relocating the well to nearest grid 

block, cold water encountered an entirely different pathway, which consequently effects the way in which 

the cold front is thermally recharged along reservoir, having a completely different breakthrough time 

compared to that of its neighboring doublet location. Placing the pair of wells from west of the reference 

position to the north of reference, that was calculated to be around 117 meters where each cell is 90 m 

× 75 m, the lifetime of the doublet had increased from 34 years to 62 years. 

 

1.3 Streamlines 

An important step in understanding the flow and its consequences is the ability to visualize it, either 

experimentally, analytically or conceptually. Three of the most common lines in a flow which the particles 

of fluid can trace out as it proceeds are: 

 Streamlines – Imaginary line drawn in the flow field such that the tangent drawn at any point on this 

line represents the direction of velocity vector of the fluid particles at that point. Only the direction of 

the fluid velocity is important: not its magnitude. There is no requirement that fluids be 
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incompressible or the velocity be steady state. Although, the streamlines are based on 

instantaneous velocity, therefore if the velocity is time-varying, then streamlines are traced from a 

snapshot of the velocity at a time of interest. For unsteady-state problems, streamlines are a 

representation of the instantaneous velocity, not the physical trajectory of the particle. Streamlines 

can never intersect each other, i.e. there can be no flow normal to streamline. [22] [23] 

 

 

Figure 1.1 – Streamlines - integrated curves locally tangential to velocity direction [24] 

 

 Streamtubes – tubular region of fluid that is surrounded by streamlines. Streamtubes are 

"impermeable" since the walls of the tube are made up of streamlines and there can be no flow 

normal to streamline. From a mass conservation view-point, in a steady, one-dimensional flow, 

mass-flow rate is constant along a streamtube [23]. 

 

 

Figure 1.2 – Streamtubes - region of fluid surrounded by streamlines [24] 

 

 Pathlines – line traced by a given particle as it flows from one point to another. It is the physical 

trajectory of a particle. Pathlines can be generated by injecting a dye into fluid and following its path 

by photography. They depend upon both the magnitude and direction of the velocity. For a steady 

velocity, the pathline and the streamline describe the same path. By construction, streamlines can 

never cross but pathlines may often cross [22] [24]. 

 

 

Figure 1.3 – Pathline - physical trajectory of a particle [24] 
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 Streaklines – focuses on fluid particles that have passed continuously through a particular spatial 

point in past. At some time, a line is drawn through the instantaneous position of all these particles. 
[24] 

 

 

Figure 1.4 – Streaklines [24] 

 

 Timeline – generated by drawing a line through adjacent particles in flow at any instant of time [24]. 

 

 

Figure 1.5 – Timeline - line through adjacent particles in flow [24] 

 

For the purpose of this project, only streamlines will be used to visualize the flow and generate regions 

(or streamtubes) for proxy model. And the velocity used will be the total interstitial velocity, which is the 

total multiphase Darcy velocity divided by the porosity [22]. 

In the petroleum industry, the application of the streamline method began in the 1930s. Over several 

decades of development the streamline tracing method has made great progress. It has evolved from 

the streamtube method, which can only trace simple two-dimensional cross-section models, to 

streamline which can trace the real three-dimensional reservoir; from the study of single-phase one-

dimensional flow to two-phase three-dimensional flow, and the analytical and numerical solution 

methods along streamline are developed [25]. 

Tracing streamlines from injectors to producers is based on the analytical description of a streamline 

path within a grid-block as outlined by Pollock. The underlying assumption is that the velocity field in 

each coordinate direction varies linearly and is independent of the velocities in the other directions. This 

method is attractive because it is analytical and consistent with the governing material balance equation 
[2]. 
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1.4 Grid 

Gridding is the process of subdividing a region to be modeled into a set of small control volumes. With 

each control volume, one or more values of dependent flow variables are associated (e.g. velocity, 

pressure, temperature, etc.). These represent some sort of locally averaged values. Numerical solutions 

that represent approximations of the conservations laws of mass, momentum and energy are then used 

to compute these variables in each control volume [26]. 

Grid (also known as mesh) mainly comprises of two properties [27]: 

 geometry (position of x's, y's and z's of the nodes) 

 topology (how nodes are connected) 

 

Grids can be primarily of two main types: 

 structured 

 unstructured 

 

 

Figure 1.6 – Example of a structured triangular mesh and an unstructured triangular mesh in a unit box [28]. 

 

1.4.1 Structured Grid 

Structured grids are ordered-type by indices such as (𝑖, 𝑗, 𝑘) so that any value for these integers 

correspond to a spatial location and its topology is easily associated to next indices. But the geometry 

may not be constant, for instance the grid can be deformed from place to place as to match a specific 

boundary (as shown in Figure 1.7). Therefore, to be more precise, a grid is said to be structured if its 

topology is regular i.e. node connectivities have a fixed pattern [27]. The most common choices of volume 

element shapes for structured grid are quadrilateral in 2D and hexahedron in 3D [29].  

 

 

Figure 1.7 – Deformed mesh [26]. 
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The advantages for structured grid is that it is simple to implement and nodal neighbor connectivity can 

easily be determined. The points of an elemental cell can be easily addressed by double indices (𝑖, 𝑗) in 

2D and triple indices (𝑖, 𝑗, 𝑘) in 3D [30]. Unlike unstructured grid, structured grid does not require the 

storage of any connectivity table, as a result, the CFD computation time is reduced due to reduced cell 

count. Moreover, with a higher degree of control, the grid can be produced precisely as required. Lastly, 

the alignment in a structured grid is achieved almost implicitly because grid lines and flow follow the 

geometry contours, therefore leading to more accurate results and a better convergence in CFD solvers 
[31]. 

Despite having several advantages, structured grids have some drawbacks. Structured grid cannot be 

used for highly complex geometry (i.e. more complex than flow over cylinder). In order to achieve 

accuracy, it might be required to have concentration of point in one region, consequently unnecessary 

small spacing in other parts of solution domain is produced, which is waste of resources [29]. For more 

complex geometries, there is an increase in grid non-orthogonality or skewness. This distortion of 

elements away from purely rectangular shape can have several consequences. Firstly, distortion may 

reduce accuracy since numerical approximations are no longer centered about the centroid of the 

volume element. Although this drawback can be offset by an increase in local grid resolution afforded 

by distortion. Another consequence of distortion is that numerical approximations become increasingly 

complex; not only must the forces and fluxes be converted to normal and tangential components at 

element faces, but it is generally necessary to include data from all surrounding elements as well [26]. 

 

1.4.2 Unstructured grid 

Unstructured grids have no ordering and the volume elements can be joined in any manner (as illustrated 

in Figure 1.6b). A node is associated to a single integer index and topology is known by associating 

connections of node with neighboring nodes therefore special lists comprising of the indices of 

neighboring cells have to be stored for each cell. The most common choices of volume element shapes 

for unstructured grid involve triangles in 2D and tetrahedron in 3D [29]. 

Unstructured grids are best adapted for complex geometry discretization particularly for domains having 

high curvature boundaries [30]. It is the most flexible type of grid that can be used with any discretization 

scheme (e.g. Finite Difference, Finite Volume and Finite Element) and can fit any type of boundary [29]. 

It also allows the user to change the resolution over domain, so the model can be applied over a large 

domain and the resolution can be refined where fine scales are important, without increasing too much 

of the total computation time. 

Like structured grid, unstructured grids have drawbacks too. Since special lists comprising of the indices 

of neighboring cells have to be stored for each cell, there is a cost of having to store this connectivity. 

In addition, there is a large computational overhead owing to large number of operations per node [29]. 

Triangular or tetrahedral cells, in contrast with quadrilateral and hexahedral cells, are usually ineffective 

to resolve wall boundary layers. This is due to the fact that unstructured grid ordinarily yields very long 

thin rectangular (or tetrahedral) cells adjacent to the wall boundaries, therefore creating major problems 

in approximation of diffusive fluxes [30]. Moreover, since the unstructured grid follows the mass 

distribution in a domain, this is great as long as hydrodynamics are concerned but it can be a problem 

if radiation based physics need to be implemented because light travels in straight lines which doesn't 

occur in unstructured grid. This will cause the radiation field to become more diffusive than it should [32]. 

Also, owing to the random way elements may be assembled to fill the computational space, unstructured 

mesh generation techniques are inherently more automatic than traditional structured grids. As a result 

of this automation, engineers have to sacrifice control over grid generation. Another problem is largely 

of designing these automatic algorithms that are robust and yield suitable element shapes for the flow 

solver [33]. 

 



9 
 

1.4.3 How expensive is Unstructured Gridding? 

[34] discusses the study that Shaw undertook to model inviscid flow over a wing-foreplane-fuselage and 

compared a grid that was solely block-structured with a hybrid grid with unstructured region containing 

the foreplane. Although this study cannot be viewed as totally rigorous, but the findings revealed that in 

order to achieve a similar accuracy in flow simulation, the surface mesh density of unstructured grid had 

to be nearly an order of magnitude denser than structured grid. Also, in the viscous region of the flow 

domain, the point density in an unstructured grid will be approximately ten times greater than in 

structured grid. It was also found that the rate at which time marching can be performed on unstructured 

grid is about one-half that of structured grid of same point density. Further, the amount of work done per 

time step will be greater and there will be increased processing time due to amount of indirect addressing 

that needs to be done. Lastly, another finding by Shaw indicates that the storage requirement per point 

for flow solution on unstructured grid is about four times that of structured grid. 

 

1.4.4 Conclusion 

If programming time is a significant constraint, structured meshing is the way to go [32]. Also from the 

findings of Shaw in [34], there are clear incentives to use structured grids whenever possible. For hybrid 

grids, the proposition is that extent of unstructured grid used should be minimal as possible. 

However, the type of gridding used in DARTS, as well as the energy equation solver developed on 

MATLAB in chapter 1 use unstructured grid. Appendix B illustrates how to develop a connectivity table 

for such a grid. Moreover, a governing partial differential equation can be comprised of more than one 

component that illustrate physical phenomena (e.g. the energy equation can have conduction, 

convection, accumulation, energy sinks/sources, etc.). Appendix B, also describes how the Jacobian 

matrix and residual vector can be constructed by forming a loop over different components of the 

governing equation rather than having to calculate everything at once; therefore providing more control 

to the user. 

 

1.5 Operator Based Linearization (OBL) 

Numerical geothermal reservoir simulation requires discretization of governing PDEs, which describe 

mass and energy transport in a reservoir. An implicit nature of the time approximation increases the 

nonlinearity of the governing equations [6]. In order to increase the accuracy of a model, one can apply 

a finer computational grid in space or time, or use a more detailed description of the fluids such as in 

thermal-compositional model [35]. For models (e.g. geothermal) that use both gas and liquid phases, 

complex multiphase behavior and the assumption of thermodynamic equilibrium further amplify 

nonlinearity [6]. Due to these complexities of the underlying physical processes and considerable 

uncertainties in the geological structure of reservoirs, there is a persistent demand for accurate and 

efficient models. However, the improvement in the accuracy of models is usually counterbalanced by 

reduction in the turnaround time of simulation [35]. Large ensembles of reservoir models are run to 

perform sensitivity analysis and reduce uncertainties in parameters estimation. Therefore efficient 

reservoir simulation performance is essential for geothermal industry: any noticeable improvement could 

positively affect production workflow.  

The solution process of PDEs requires the linearization of strongly nonlinear governing equation. The 

flexibility of linearization reflects the simplicity of changing the nonlinear formulation in an existing 

simulation framework. During linearization stage, all properties and their derivatives need to be 

determined with respect to nonlinear unknowns. The linearization stage defines the accuracy and 

robustness of nonlinear solution, dictates the data layout of a linear system and therefore has a great 

impact on the reservoir simulation performance. In reservoir simulation, Newton-Raphson‘s method has 

become a standard solution for solving the nonlinear system of equations by linearizing it. It requires the 
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assembly of Jacobian and residual for fully couple system of equations and consumes a significant 

portion of simulation time, especially for complex physical processes [6]. 

 

 𝐽 (𝜔𝜈)(𝜔𝜈+1 − 𝜔𝜈)  +  𝑟 (𝜔𝜈)  =  0. (1.3) 
 

Commonly, three method of linearization are used: (1) Numerical derivatives that are flexible to 

implement but are short of robustness and may cause stalled behavior in some cases, (2) Straight-

forward analytical derivations, but are limited in flexibility, (3) Automatic Differentiation, acquire 

computational expenses thus decreasing performance [6]. 

Recently, a new linearization approach for non-isothermal flow and transport was proposed and tested, 

named “Operator-Based Linearization”. The key idea is to transform governing equations that have been 

discretized in space and time, into operator form where each term is specified as product of two 

operators. The first operator consists of physical properties of rock and fluids – that depend on current 

physical state of grid block (e.g. density or viscosity) and are fully defined by values of nonlinear 

unknowns. The value of these operators can be determined for parametrized set of points, which are 

known as base nodes or nodal values. The second operator includes all terms that were not included in 

the first operator, and depends on both the state and spatial position of a control volume (e.g. 

permeability) [6]. 

After applying the OBL, the discretized mass conservation and energy conservation equations read as 

follows: 

 

 𝑎(ξ, ω)(𝛼𝑐(𝜔) − 𝛼𝑐(𝜔𝑛)) +∑𝑏(𝜉, 𝜔)𝛽𝑐(𝜔) + 𝜃𝑐(𝜉, 𝜔, 𝜐)

𝑙

= 0, (1.4) 

 𝑐 = 1,… , 𝑛𝑐 ,  
 

 𝑎𝑒(ξ, ω)(𝛼𝑒(𝜔) − 𝛼𝑒(𝜔𝑛)) +∑𝑏𝑒(𝜉, 𝜔)𝛽𝑒(𝜔)

𝑙

+∑𝑐𝑒(𝜉, 𝜔)𝛾𝑒(𝜔)

𝑙

+ 𝜃𝑒(𝜉, 𝜔, 𝜐) = 0. (1.5) 

 

𝛼 and 𝛽 here are state-dependent operators hence are only functions of pressure and overall 

composition in the grid block. At the pre-processing stage, or adaptively, the operators 𝛼𝑐, 𝛽𝑐, 𝛼𝑒, 𝛽𝑒 and 

𝛾𝑒 can be evaluated at every point in the discrete parameter space and store them in (𝑛𝑐 + 2)-

dimensional tables 𝐴𝑒 and 𝛤𝑒 and (𝑛𝑐 + 1)-dimensional tables 𝐴𝑐, 𝐵𝑐, 𝐵𝑒. As a result, the expensive 

phase behavior calculations are done once and limited to the pre-processing stage. During the course 

of simulation, both the values and the partial derivatives of first type of operators (i.e. state-dependent) 

are interpolated using multi-linear interpolation in parameter space.  

This makes the simulation computationally efficient with marginal loss in accuracy and also provides a 

continuous description based on the interpolation operator, whose accuracy is controlled by the 

resolution of discretization in parameter space. The larger the number of base-node points, the higher 

is the accuracy of the interpolation of the operators and lower is the error in solution. The second type 

of operator is processed based on conventional approach [35]. 

To improve the performance of OBL approach for a case with large number of species, an adaptive 

extension has been proposed by Khait and Voskov [35]. This is a minor extension of OBL in which the 

tables are generated during the course of the simulation. The grids are uniform but the values of the 

operators at the nodes are not pre-processed but are calculated during the course of simulation as they 

are required. Adaptive OBL is useful for simulating a multicomponent system where only a few values 

of the compositional space define the complete transport. Therefore, the phase behavior is resolved 

only at those nodes which are used for interpolation sparing the calculations at the unphysical nodal 

values. The following table summarizes the efficiency of the adaptive OBL method with changing 

resolution of the basal nodes and comparing it with the conventional linearization approach. 
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Resolution Newton Iter. Epres ETemp Ecomp 
Linearization 

cost per 
Newton Iter. 

[nodes] [#] [%] [%] [%] [-] 

Std. 7616 Reference 1 

64 2715 0.023 0.092 0.711 0.027 

32 2629 0.071 0.356 2.257 0.027 

16 2489 0.096 0.496 3.443 0.026 

8 2118 0.070 0.615 3.748 0.026 

4 2113 0.088 1.104 3.990 0.027 

2 1901 0.108 4.279 3.672 0.026 

Table 1.1 – Efficiency of adaptive OBL method with changing resolution of basal nodes and  
comparison with conventional linearization approach [6] 

 

Application of this approach was investigated on geothermal processes, particularly low-enthalpy and 

high-enthalpy geothermal doublet models with hydrocarbon co-production. Performance and robustness 

of this new method were tested against conventional approach; it showed significant improvement on 

simulation performance, while errors that were introduced by coarsening in physics remained controlled 
[35]. 

Primary benefits of OBL are simplicity of application, while simultaneously improving nonlinear solver 

performance considerably due to simplification of residual and Jacobian assembly. Moreover, since the 

operators are piece-wise multi-linear functions, OBL avoids stalled behavior and builds a Jacobian with 

a high level of accuracy. The cost of OBL does not grow significantly with an increase in resolution, 

while using a coarser representation further reduces number of nonlinear iterations. The adaptive 

parametrization in physical space reduces memory utilization while increases efficiency of interpolation. 
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1.6 Thesis Outline 

 

 Chapter 1, gives a general introduction about the geothermal energy and aspects of the 

geothermal reservoir simulation. It also introduces the mass and energy conservation 

equations, unstructured gridding and the Operator Based Linearization technique based 

on which the DARTS is built upon. The chapter also discusses the previous work that has 

been performed on geothermal simulation in order to predict temperature breakthrough. 

 Chapter 2, a semi-analytical method is devised based on the reduction and discretization 

of the energy conservation equation. The results of this method are compared with the 

results obtained with DARTS. 

 Chapter 3, introduces the streamlines and discusses the streamline tracing based on 

Pollock's method [2] in detail. It also provides results obtained from the streamline tracing 

algorithm developed in MATLAB. 

 Chapter 4, gives the results obtained from the full-scale model and proxy model and 

compares them revealing how effectively the proxy model can be used in order to predict 

the breakthrough curves. It also provides a sensitivity analysis with respect to some of the 

parameters that can augment the error between the two models. 

 Chapter 5, provides a summary of the work and the feasibility of the proxy model, based 

on the results. It also gives recommendations based on the difficulties encountered during 

the course of this project that can be incorporated into future work. 
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2   
Semi-Analytical Heat Solution 

 

2.1 Conservation of Mass 

 

 
𝜕

𝜕𝑡
[𝜑 ∑ 𝑥𝑐 𝑝⁄ ∙ 𝜌𝑝 ∙ 𝑠𝑝

𝑛𝑐 𝑝⁄

𝑐 𝑝⁄ =1

] + ∇ ∙ [𝜑∑𝑥𝑐 𝑝⁄ ∙ 𝜌𝑝 ∙ 𝑢𝑝

𝑛𝑝

𝑝=1

] + �̇� = 0, (2.1) 

 

Equation (2.1) is the general form of conservation of mass [1]. Since, in our system there is only one 

component (e.g. water), and single phase (i.e. liquid), this equation can be further simplified to: 

 

 
𝜕

𝜕𝑡
[𝜑 ∙ 𝜌] + ∇ ∙ [𝜑 ∙ 𝜌 ∙ 𝑢] + �̇� = 0. (2.2) 

 

2.2 Conservation of Momentum 

 

Darcy’s Law can be used as simplified form of conservation of momentum [1], 

  

 𝑢 = −
𝐾 ∙ 𝑘𝑟𝑝

𝜇𝑝
[∇𝑃𝑝 + 𝛾𝑝∇𝐷], (2.3) 

 

The bracketed term in Darcy’s equation is the potential. The negative sign of Darcy’s law arises due to 

potential gradient since the flow is from a higher potential to a lower potential. In horizontal x- and y- 

planes, the second term in the potential may be neglected as there exists no gradient due to height. 

Equations (2.2) and (2.3) can be coupled to solve for the velocity of particle at each location. The 

resulting equation is non-linear due to the fact that density and viscosity are pressure and temperature 

dependent. 

 

2.3 Conduction 

In a geothermal application, heat is transferred through the surrounding rocks and to the fluid passing 

through by the phenomena of conduction. This can be modelled as a tube (i.e. 1D stream passing 

through the rocks) and the heat energy being transferred from the perpendicular direction: 
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Figure 2.1 – Modelling fluid passing (blue arrows) through rock with conduction from surrounding (red arrows) 

 

The energy transferred to the fluid can be modelled using Fourier's Law of conduction given by the 

expression below: 

 

 휀�̇�𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ∇ ∙ (𝜆∇𝑇), (2.4) 
 

Further derivation of analytical solution for temperature distribution profile in a cylindrical solid can be 

seen in Appendix section A.3. The following final expression is obtained: 

 

 𝑇 = 𝑇1 −
ln(𝑟 𝑟1⁄ )

ln(𝑟2 𝑟1⁄ )
∙ (𝑇1 − 𝑇2). (2.5) 

 

2.4 Convection 

The heat that is transferred from the rock to the fluid, is then carried by convection. The phenomena of 

convection is further composed of two concepts: advection (that is governed by fluid velocity) and 

diffusion (governed by gradient of concentration). In our system, the fluid velocity is significantly high 

therefore the diffusion term can be neglected. 

 

 

Figure 2.2 – Modelling advection - fluid carrying thermal energy 

 

2.5 Conservation of Energy 

The two modes of energy transfer: thermal ‘conduction’ and ‘convection’ can be combined and written 

in a conservation of energy equation given by the equation below. Since there is no radiation within a 

geothermal reservoir, it is not included in the conservation of energy equation otherwise it should have 

been considered as well. 

 

 
𝜕

𝜕𝑡
[(1 − 𝜑) ∙ 𝜌𝑟 ∙ 𝑢𝑒,𝑟 + 𝜑 ∑ 𝜌𝑝 ∙ 𝑢𝑒,𝑝 ∙ 𝑠𝑝

𝑛𝑐 𝑝⁄

𝑐 𝑝⁄ =1

] + ∇ ∙ [ ∑ ℎ𝑝 ∙ 𝜌𝑝 ∙ 𝑢𝑝

𝑛𝑐 𝑝⁄

𝑐 𝑝⁄ =1

] + ∇

∙ (𝜆∇𝑇) + 휀̇ = 0, 

(2.6) 

 

Equation (2.6) is the general form of conservation of energy. Since, in our system there is only one 

component (e.g. water), and single phase (i.e. liquid), and moreover the flow is in 1D (i.e. x-direction), 

this equation can be further simplified to 
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 𝜕

𝜕𝑡
[((1 − 𝜑) ∙ 𝜌𝑟 ∙ 𝑢𝑒,𝑟) + (𝜑 ∙ 𝜌𝑤 ∙ 𝑢𝑒,𝑤)] + ∇ ∙ [ℎ𝑤 ∙ 𝜌𝑤 ∙ 𝑢𝑤] + ∇ ∙ (𝜆

𝑑𝑇

𝑑𝑟
) + 휀̇

= 0. 

(2.7) 

 

Further derivation of energy conservation equation can be found in Appendix section A.1. The implicit 

solver that was formulated based on the energy equation was tested using the following parameters: 

 

# Parameter Symbol Value Units 

1 Number of grid cells 𝑁 30 × 30 - 

2 Thermal conductivity (matrix) 𝜆 2.0 W/(m·K) 

3 Density (matrix) 𝜌𝑚𝑎𝑡𝑟𝑖𝑥 2650 kg/m3 

4 Specific heat capacity (matrix) 𝑐𝑚𝑎𝑡𝑟𝑖𝑥 800 J/(kg·K) 

5 Time step 𝑑𝑡 105 sec 

6 Simulation end time 𝑡𝑒𝑛𝑑 109 sec 

7 Initial reservoir temperature 𝑇𝑖𝑛𝑖 200 °C 

     

Table 2.1 – Parameters used for the Implicit Solver 

 

2.6 Comparison between Cases (MATLAB) 

Next we study two types of simulation where full solution was decoupled in two set of solutions including 

frontal convection and conduction solved in 2D vs. conduction applied in 1D, orthogonal to the direction 

of convection. Simulation was run primarily for two cases: 

Case 1: Convection propagation in the y-direction and conduction in both x- and y- directions. 

Case 2: Convection propagation in the y-direction and conduction in x-direction. 

 

For case 1, the terms for the conduction (in 2 dimensions) and convection in the general equation were 

being solved simultaneously. Whereas for case 2, the term for convection was being solved initially, and 

then another loop was run in which the conduction in x-direction was solved. This was achieved by 

generating a connection list that was only in the x-direction, whereas for conduction in the two 

dimensions was achieved by generating a connection list in both the direction. 

As can be seen from both the plots in Figure 2.3, the reservoir is at an initial temperature of 200°C. The 

reservoir at the left and right boundaries is held at constant temperature of T = 200°C. Once cold water 

at tinj = 35°C is injected into the reservoir (at length = 5 m), there is a bend in the temperature surface 

plot fabric. This bend illustrates a local temperature decrease caused due to the propagation (advection) 

of fluid in the y-direction. 

The simulations were run using MATLAB 2017b on HP OMEN 15-ce041nd laptop consisting of Intel® 

Core™ i7-7700HQ CPU @ 2.80 GHz with 15.9 GB usable RAM. Below are the temperature profiles at 

t = 107 seconds for cases 1 and 2: 
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Figure 2.3 – Temperature profiles for Case 1 (left) and Case 2 (right) (at t = 107 sec) 

 

Generally, the temperature profiles for the two cases look similar, until a closer look is taken using error 

analysis where the temperature profile for case 2 is subtracted from case 1. The error analysis shows 

that there is slight difference in temperature profiles for the two cases. Furthermore, below is the error 

analysis when the simulation is run at different time steps: 

 

  

 

dt = 1×102 dt = 1×103 
  

  
dt = 1×104 dt = 2×104 
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dt = 2×105  

Figure 2.4 – Error Analysis for different simulation time-steps 

 

# 
Time 
Step 

Simulation 
Time 

Temperature Difference 
Iterations per Time 

Step 
Total 

Iterations 
Minimum Maximum Minimum Maximum 

 [sec] [sec] [°C] [°C] [#] [#] [#] 

1 1×102 5886 -1.14×10-3 6.92×10-3 7 8 1.24×106 

2 1×103 804 -1.14×10-2 6.90×10-2 8 10 1.37×105 

3 1×104 105 -1.14×10-1 6.74×10-1 12 14 1.99×104 

4 2×104 61 -2.81×10-1 1.31×100 15 16 1.21×104 

5 2×105 14 -6.40×100 1.07×101 48 54 4.20×103 

        

Table 2.2 – Simulation statistics for varying time-steps 

 

 
Figure 2.5 – Variation of Simulation 
Run-time (tsim) with Time Step (dt) 

 

 

 
Figure 2.6 – Variation of Maximum Absolute 

Temperature Difference (Tdiff) with Time Step (dt) 
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Figure 2.7 – Variation of Maximum Iterations 

per Time Step (iter) with Time Step (dt) 

 

 
Figure 2.8 – Variations of Cumulative 
Iteration (itercum) with Time Step (dt) 

 
As can be observed from the error maps Figure 2.4, the difference in temperature profiles for Case 1 

and Case 2 increases for increasing time step. From Table 2.2 and charts (Figure 2.5 - Figure 2.8), the 

simulation statistics can be seen. With an increase in time step, the simulation run-time and cumulative 

Newtonian iterations required to converge, reduce drastically, initially (i.e. from 102 to 103 secs) and then 

the decline rate decreases. As for the number of Newtonian iterations required in each time-step and 

the maximum absolute temperature difference between the two cases increase gradually with increasing 

time-step and then the rate increase drastically. 

The objective is to select a time-step that minimizes all the simulation statistical parameters. As seen 

from the plots the optimum time-step that decreases the simulation run-time and cumulative Newtonian 

iterations, while keeping the temperature difference to a minimum is 103 secs. 

 

2.7 Comparison between MATLAB and DARTS Results 

In order to validate the MATLAB implementation, the results were compared with DARTS. Most of the 

parameters in MATLAB and DARTS were kept constant to obtain an “apple-to-apple” comparison. 

 

Parameters MATLAB DARTS 
Value Units Value Units 

Grid 60 × 40 cells 60 x 40 cells 

Thermal Conductivity 23.27 W/(m·K) 23.27 × 86.4 kJ/(day·m·K) 

Specific Heat Capacity 950 J/(kg·K) 950 × 2.65 kJ/(m3·K) 

Injection Temperature 308.15 K 308.15 K 

Time Step 1×106 
≈ 11.57 

secs 
days 

 
10 

 
days 

Simulation Run-Time 
1×1010 secs 1×1010 

≈ 1.157×105 
secs 
days 

     

Table 2.3 – Common parameters between MATLAB Implicit Solver and DARTS 
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Since the MATLAB code implementation was only based on the energy equation, and no flow solver 

therefore some additional parameters for flow equation need to be defined in DARTS: 

 

Parameters DARTS 
Value Units 

Porosity 
Low 0.008 - 

High 0.31851 - 

Permeability 
Low 0.008 m2·m 

High 5000 m2·m 

Cell Volume 2000 m3 

   

Table 2.4 – Parameters assumed for DARTS 

 

The full physics solution in DARTS was performed for incompressible assumptions, so the velocity in 

the simulation stays constant. To match the results, the velocity in MATLAB code was defined as u = 

1.4 m/s. 

Below are the temperature profile results obtained from simulations run on MATLAB and DARTS. The 

third figure illustrates the error analysis (i.e. the difference between the temperature profiles obtained 

from DARTS and MATLAB): 
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Figure 2.9 – Temperature profile 

obtained from MATLAB simulation 

 
Figure 2.10 – Temperature profile 
obtained from DARTS simulation 

 
Figure 2.11 – Error analysis between temperature profiles from DARTS and MATLAB 

 

2.8 Comparison between Cases (DARTS) 

To model conductive heat distribution along one streamline, the following simulation study was 

performed: 

Case 1: Advection in y-direction between the wells and conduction in the x- and y-directions. 

Case 2: Advection in y-direction between the wells and conduction in x-direction only. 

 

For case 1, the terms for the conduction (in 2 dimensions) and convection in the general equation were 

being solved simultaneously. Whereas for case 2, the term for convection was being solved initially, and 

then another loop was run in which the conduction in x-direction was applied. This was achieved by 

generating a connection list that was only in the x-direction, whereas for conduction in the two 

dimensions was achieved by generating a connection list in both direction. 

Advection was imposed only between the wells; this was achieved by creating a highly permeable 

channel and therefore setting a high transmissibility for the cells between the wells. On the other hand, 

conduction in Case 1 was achieved by setting a non-zero value for heat equation transmissibility in both 

the directions. In Case 2, a zero value was set for heat equation transmissibility in y-direction. 
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The reservoir is at an initial temperature of 75°C. In addition, the reservoir at the left and right boundaries 

is held at constant temperature of T = 75°C. Once cold water at Tinj = 35°C is injected into the reservoir 

(at the injector well), the temperature along the streamline between the two wells starts gaining energy 

from the reservoir, while depleting the reservoir energy around. 

Table 2.5 shows the parameters settings for simulation in DARTS. Figure 2.12 show the temperature 

profiles at t=100 days for Case 1 and Case 2, respectively. Figure 2.13 shows the difference between 

the temperature profiles for Case 1 and Case 2, for varying time-steps. 

The simulations were run using MATLAB 2017b on HP OMEN 15-ce041nd laptop consisting of Intel® 

Core™ i7-7700HQ CPU @ 2.80 GHz with 15.9 GB usable RAM. 

 

Parameters Value Units 
Grid 60 x 40 cells 

Porosity 0.1 - 

Permeability 
Low 0.008 m2·m 

High 5000 m2·m 

Cell Volume 
Internal 2×103 m3 

Boundaries 8×109 m3 

Thermal Conductivity 23.27 × 86.4 kJ/(day·m·K) 

Specific Heat Capacity 950 × 2.65 kJ/(m3·K) 

Reservoir Temperature 348.15 K 

Injection Temperature 308.15 K 

Injection Rate 200 m3/day 

Producer BHP 199.9 bar 

Simulation Run-Time 100 days 

   

Table 2.5 – Parameter settings for simulation in DARTS 

 

  
Figure 2.12 – Temperature profile for Case 1 (left) and Case 2 (right) at t = 100 days 

 

Generally, the temperature profiles for the two cases look similar, until a closer look is taken using error 

analysis where the temperature profile for case 2 is subtracted from case 1. The error analysis shows 

that there is slight difference in temperature profiles for the two cases but below time-step dt = 1×10-1 

[days], there is hardly any difference. Below is the error analysis when the simulation is run at different 

time steps: 
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dt = 1×10-4 [days] dt = 1×10-3 [days] 

  
dt = 1×10-2 [days] dt = 1×10-1 [days] 

 
dt = 1×100 [days] 

Figure 2.13 – Error Analysis for different simulation time-steps 

 

The table below shows the summary for of statistics when the simulation is run at different time steps: 

 

Time Step [days] 10-4 10-3 10-2 10-1 100 

Max. Absolute Temp Difference [°K] 2.6889 2.6887 2.6889 2.6902 5.4499 

Mean Temperature Difference [°K] 2.71×10-3 2.70×10-3 2.71×10-3 4.40×10-3 3.77×10-2 

Std. Dev. Temperature Difference [°K] 5.66×10-2 5.70×10-2 5.66×10-2 5.85×10-2 2.93×10-1 

Cumulative 
Newtonian Iterations 

Case 1 [#] 1.00×106 1.00×105 1.01×104 1.56×103 2.17×102 

Case 2 [#] 1.99×106 9.95×104 1.01×104 1.50×103 2.21×102 

Cumulative Linear 
Iterations 

Case 1 [#] 1.00×106 1.00×105 1.05×104 3.58×103 6.61×102 

Case 2 [#] 1.99×106 2.03×105 2.25×104 4.74×103 8.66×102 

Min Newtonian 
Iter. per Time Step 

Case 1 [#] 1 1 1 0 2 

Case 2 [#] 0 0 0 0 2 

Max Newtonian Iter. 
per Time Step 

Case 1 [#] 3 4 4 5 5 

Case 2 [#] 3 4 4 5 5 

Simulation 
Run-Time 

Case 1 [sec] 6202 894 117 22 5 

Case 2 [sec] 12404 1787 234 43 9 

        

Table 2.6 – Simulation statistics for varying time-steps 
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Figure 2.14 – Variation of Simulation  

Run-time (tsim) with Time Step (dt) 

 
Figure 2.15 – Variation of Maximum Absolute  

Temperature Difference (Tdiff) with Time Step (dt) 

  

 
Figure 2.16 – Variation of Maximum Iterations 

per Time Step (iter) with Time Step (dt) 

 
Figure 2.17 – Variations of Cumulative 
Iteration (itercum) with Time Step (dt) 
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As can be observed from the error analysis plots above (Figure 2.14 – Figure 2.17), simulation run-time 

and cumulative Newtonian iterations to converge reduce with an increase in time-step; both the 

performance parameters decrease drastically initially (i.e. 10-4 – 10-3 secs) but then the decline rate 

decreases. On the other hand, the number of Newtonian iterations required in each time-step and 

maximum absolute temperature difference (between the two cases) gradually increase with increasing 

time-step. 

This study helps to validate that the convective and conductive solution of energy equation can be 

separated. However, this decoupling introduces a significant error which increases when the simulation 

time-step is increasing. These observations inspire a strategy for building of the proxy model described 

in the upcoming chapter. 
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3  
Streamlines 

 

This chapter will focus on tracing streamlines and utilizing them as a no-flow boundaries in order to 

define the regions (i.e. streamtubes) for the proxy model. 

Once the short-term simulation for the full-scale model has run and the pseudo steady-state pressure 

distribution acquired, the velocities at the cell interfaces can be calculated using Darcy’s Law. Next, the 

streamlines are traced using the algorithm for particle tracking developed by Pollock [2], as outlined in 

Appendix C. The following figure shows an example of the streamlines that were drawn for the results: 

 

 

Figure 3.1 – Streamlines traced for a Heterogeneous distribution 

 

In order to verify the accuracy of streamlines, they are traced over a permeability map. The regions with 

higher permeability (i.e. better connectivity) should have more number of streamlines passing through 

it, or near it. The following figure shows streamlines over permeability map: 
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Figure 3.2 – Streamlines on Permeability Map 

 

As can be seen from the figure above, for the heterogeneous case, the streamline geometry and density 

reflect the underlying permeability distribution. Streamlines tend to cluster in regions of high flow and 

are sparsely distributed in lower-permeability regions.  

 

3.1 Boundary Conditions 

Using Darcy’s law, the velocities can only be obtained at the internal interface between two cells. 

Therefore if the grid has 𝑚 × 𝑛 dimensions, the velocity can only be obtained for (𝑚 − 1) × 𝑛 interfaces 

in the x-direction and 𝑚 × (𝑛 − 1) interfaces in the y-direction. 

Whereas, the number of interfaces in the x-direction are (𝑚 + 1) × 𝑛 and 𝑚 × (𝑛 + 1) interfaces in the 

y-direction. Therefore the x-velocity at the left and right reservoir boundaries, and similarly, the y-velocity 

at the top and bottom reservoir boundaries were not calculated. 

In this work, it is already assumed that the boundaries have no-flow condition (i.e. no flow occurs across 

the boundaries), therefore the missing velocities at the boundaries are taken to be ‘zero’. 

 

3.2 Fluctuating Streamlines 

During the initial transient and semi-steady state, not only the overall reservoir pressure distribution is 

changing due to the compressibility but the relative pressure distribution (with respect to neighboring 

cells) is changing that causes the streamlines to alter. The velocities are obtained using Darcy’s law 

that has the following expression: 

 

 𝑢𝑥 =
𝑄𝑣,𝑥
𝐴𝑥

= −
𝑘𝑥
𝜇 ∙ ∆𝑥

· (𝑃𝑖 − 𝑃𝑖+1). (3.1)  
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As can be seen from the expression (3.1), the velocity depends on pressure difference between the 

cell in question and the neighboring cell.  

Once the pseudo-steady state has been achieved, the overall pressure distribution may change, but 

the relative pressure distribution becomes more stable, therefore the streamlines do not change 

considerably. The following figures shows the variation and growth of the streamlines as simulation 

proceeds: 

 

  
Simulation runtime = 0.1 days Simulation runtime = 1 day 

  

  
Simulation runtime = 10 days Simulation runtime = 50 days 

  

  
Simulation runtime = 1000 days Simulation runtime = 20000 days 

  

Table 3.1 – Variation and growth of Streamlines as simulation progresses 

 

3.3 Time of Flight 

Time of Flight is the time it takes for a non-reactive tracer particle that is introduced at the injection well 

or at an influx boundary of domain, to arrive at the production well. Alternately, it may also be defined 

as the distance along the streamline divided by particle velocity. 

For this to be the actual transit time, the tracer particle must move at the interstitial velocity (𝑣), not the 

Darcy velocity (𝑢). Since the velocity can change along a streamline, time of flight can be represented 

as the integral of reciprocal of interstitial velocity along the distance of a streamline: 
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 𝜏 = ∫
𝜙

|�⃗� |

 

0

𝑑휁, (3.2) 

 

where the ratio |�⃗� | 𝜙⁄  is the interstitial velocity the particle moves at, and 휁 is the spatial distance along 

the streamline. 

The objective of this work is to be able to predict the breakthrough time of a geothermal producer well 

using a certain number of (fastest) regions. Therefore, the significance of the time of flight will become 

apparent in the upcoming chapter where the fastest regions are selected based on the average TOF of 

the streamlines enclosing a region (i.e. streamtube). 

The time of flight can also be used as a spatial coordinate where the distance from inlet of a system is 

measured by this time, not by Euclidean distance. This concept of using TOF as spatial coordinate is 

fundamental to streamline simulation, but further details are out of the scope of this work. 

 

3.4 Center-Lines 

A center-line is simply an imaginary line traced between two streamlines. Initially, the objective of this 

thesis project was to trace center-lines that act as no-flow boundaries, and the regions were to be 

defined based on these center-lines, rather than streamlines. However, during course of the project, it 

was realized that the center-lines were difficult to trace and a proper procedure was needed. Moreover, 

since streamlines themselves are no-flow boundaries, they were used as an alternative to center-lines. 

Despite not having used center-lines as no-flow boundaries to separate the regions, it is worthy to 

discuss the different methods that had been used to draw the center-lines. Appendix E elaborates on 

the different methods used to draw these center-lines and the short-comings of each method. 

 

3.5 Active Cell, Volume and Transmissibility Multiplier Lists 

Once the streamlines have been traced and the regions (i.e. streamtubes) have been defined as the 

area enclosed between two streamlines, it is important to identify the cells that are active in each region 

that will be used to initialize the models in the DARTS. 

From the perspective of the grid with streamlines traced, there are two kinds of cells: (1) cells that 

completely lie in a region, (2) cells with streamlines passing through them and lie in more than one 

region. Even if a very small fraction of a cell lies a certain region, that cell needs to be marked active 

for that region. In order to initialize the region, the volume of the cell also needs to be expressed. The 

volume of the cell that lies in that region can be calculated using the method devised in Appendix D. 

Moreover, if a pair of cells has a streamline crossing it, the transmissibility between them needs to be 

corrected in order to account for the flow between them, otherwise the flow for such cells is exaggerated, 

yielding incorrect results. The original transmissibility that is calculated by DARTS during the initializing 

of a model needs to be corrected by multiplying it with a fraction. Further discussion can be found in 

Appendix F. 

These lists need to be exported into DARTS in order to initialize regions for the proxy model and yield 

correct results. 
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4  
Results 

 

This section contains the comparison between the results obtained from the full-scale model simulation 

and the proxy model simulation. Firstly, full-scale model simulation is performed using the parameters 

summarized in the table below. 

 

Parameter Value Units 

Reservoir Dimensions 1800 × 1200 × 105 m 

Original Grid Size 60 × 40 × 42 cells 

Downscaled Grid Size 240 × 160 × 42 cells 

Layers under observation only 2nd Layer (i.e. Layer ‘1’ in Python) 

Initial Reservoir Pressure 200 bar 

Initial Reservoir Temperature 75 (348.15) °C (K) 

Injection Temperature 35 (308.15) °C (K) 

Injector Well Control Type BHP  

Injector Well Control Value 210 bar 

Producer Well Control Type BHP  

Producer Well Control Value 190 bar 

Time step (max) 10 days 

Boundary Conditions Closed boundary  

Heat Capacity 2200 kJ/day/(m·K) 

Conductivity 100 kJ/(m3·K) 

Runtime 1000 days 

Full-scale Model Well Index 10 m3/day/bar 

Proxy Model Well Index 10/8 m3/day/bar 

No. of Streamlines/Regions 8  

Table 4.1 – Parameters for Simulation 

 

Once the full-scale model simulation is performed, the pressure distribution of the layer under 

observation is exported from the DARTS. Next this pressure distribution is imported into the Streamline 

tracer built in MATLAB. The ‘regions’ are identified as the area enclosed between two streamlines. 

Once the regions have been defined, the active cell list, volume for each cell, and the transmissibility 

between each pair of neighboring cell, for each region is generated. 

Lists for each region are exported from MATLAB into DARTS. Then each region is simulated using the 

same parameters that were used to simulate the full-scale model (Table 4.1) prior to tracing of the 

streamlines. Next the results for each region are merged into one. If a cell lies in more than one region, 

the properties are weight-averaged based on their volume.  

Finally, the results for both the properties, temperature and pressure, are compared for the full-scale 

model and proxy model and the error is determined by: 
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 𝜖𝑖,𝑗 = 𝜉𝑖,𝑗 (𝑓𝑢𝑙𝑙) − 𝜉𝑖,𝑗 (𝑝𝑟𝑜𝑥𝑦), (4.1) 

 

where the variable 𝜉 means any property (e.g. Temperature or Pressure) 

 

4.1 Homogenous Reservoir 

Firstly, the case for a Homogenous reservoir is considered. The full-scale model simulation is run with 

most of the parameters being used from Table 4.1 – except for permeability and porosity. The following 

table summarizes these constant distribution of the reservoir: 

 

Parameter Value Units 

Permeability (x) 374.9389 mD 

Permeability (y) 374.9389 mD 

Permeability (z) 37.4939 mD 

Permeability Anisotropy (kver/khor) 0.1 - 

Porosity 0.1578 - 

Table 4.2 – Additional Parameters for Homogenous Reservoir Simulation 

 

The full-scale model simulation is run. The following results illustrate the p-T distribution over the 

reservoir: 

  
Figure 4.1 – Pressure and Temperature Distribution of Homogenous Reservoir Full-Scale Model at t=1000 [days] 

 

Then, the streamlines for this pressure distribution are traced. The objectives of this thesis project 

includes generating streamlines for steady-state pressure distribution. The time-data for the full-scale 

model simulation reveals that the steady-state was achieved within few days, whereas the simulation 

was run for t = 200,000 days. This means, the pressure distribution at t = 200,000 days – based on 

which the streamlines are traced – was at a time much later and steady-state had already been achieved 

way before. The following figure shows the streamlines traced for this pressure distribution: 
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Figure 4.2 – Streamlines drawn for Homogenous Reservoir pressure distribution at t=1000 days 

 

Once the streamlines have been traced, the regions are identified. In the figure above, each area with 

a different color is a separate region. For this example, the reservoir has been divided into 8 regions. 

The following table shows few of the entries from the active cell and cell volume list as an example of 

the data that is exported from the MATLAB Streamline tracer into the DARTS: 

 

Cell Index Active Cell Volume 

56696 1 17.578 

56827 1 0.005 

56828 1 17.749 

56936 1 69.339 

56937 1 72.366 

56938 1 0.112 

57066 1 0.487 

57067 1 75.639 

57068 1 68.886 

57176 1 65.114 

57177 1 140.625 

Table 4.3 – Example of Active Cell / Cell Volume List 

 

Next, the transmissibility multiplier list is also exported for each region in order to account for the flow 

between pair of cells that have streamlines crossing them. 

Once, all the lists have been imported into DARTS, they are used to initialize a separate model for each 

of the regions that is defined by these streamlines. The simulation is re-run for each of the regions and 

the results are merged based on a weighted average of the cell volume. The figure below shows an 

example of the merged temperature distribution of the proxy model for homogenous reservoir. 
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Figure 4.3 – Pressure and Temperature Distribution of Homogenous Reservoir Proxy Model at t=1000 [days] 

 

At this stage, it is important to compare these p-T distributions from proxy model, with the original full-

scale model simulation to determine the error between them. This can be done by generating an error 

map that shows the difference between the proxy model and full-scale model: 

 

  
Figure 4.4 – Pressure and Temperature Error Maps for Homogenous Reservoir at t=1000 [days] 

 

From the error maps, it can be determined that the error for the pressure distribution is quite small, 

while the error for the temperature distribution is larger but still within the acceptable tolerance. The 

following table represents the error statistics: 

 

 Pressure Temperature 
 [bar] [K] 

Maximum Absolute Error: 3.65 × 10-2 3.98 × 100 

Average Error: -1.29 × 10-3 4.92 × 10-3 

Standard Deviation: 1.28 × 10-2 1.08 × 10-1 

   

Table 4.4 – Error Statistics for Homogenous Reservoir at t=1000 [days] 

 

The simulation results above are for a runtime of 1000 days (~ 2.74 years). But geothermal reservoirs 

do not have a life-time of mere 2.8 years, rather their economic lifetime is generally between 30 to 100 

years. Therefore the full-scale model and proxy model simulations are re-run for a very large run-time, 

i.e. 20,000 days (~ 55 years). This will give a clearer picture how pressure and temperature error is 
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distributed as time elapses. It will also determine how well the proxy model is able to predict the 

breakthrough temperature over the reservoir life-time. The following temperature and error maps are 

for time 20,000 days. 

 

  
Figure 4.5 – Pressure and Temperature Error Maps for Homogenous Reservoir at t=20,000 [days] 

 

From these error maps generated at t = 20,000 days, it can be determined that the error for the pressure 

distribution is quite small, while the error for temperature distribution is again larger but still within the 

acceptable tolerance. The increase in error with increase in simulation time is discussed in subsequent 

section. The following table gives the error statistics: 

 

 Pressure Temperature 
 [bar] [K] 

Maximum Absolute Error: 1.11 × 100 1.59 × 101 

Average Error: 5.80 × 10-4 -1.44 × 10-1 

Standard Deviation: 3.33 × 10-1 2.41 × 100 

   

Table 4.5 – Error Statistics for Homogenous Reservoir at t=20,000 [days] 

 

The following ‘Temperature Breakthrough’ curve shows how temperature at the producer well varies 

with time, for both full-scale model and proxy model: 
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Figure 4.6 – Temperature Breakthrough curve for Homogenous Reservoir 

 

The curve for the proxy model closely follows the full-scale model curve, therefore the breakthrough 

time can be predicted with acceptable approximation. In the graph above, the error increases between 

years 140 to 340, this may be due to the fact that the relative pressure distribution is varying due to 

which the streamlines change. If the streamlines are updated frequently during this interval, the error 

must reduce. As mentioned earlier, the steady-state distribution is achieved after few days, for which 

streamlines need to be drawn, but this does not mean that the streamlines do not change anymore. As 

time lapses, relative distribution of pressure due to compressibility, causes the streamlines to vary 

marginally. 

 

4.2 Heterogeneous Reservoir 

Next, the case for heterogeneous reservoir is considered. The simulations are run with parameters 

being used from Table 4.1 – except for permeability and porosity. The following maps illustrate the 

permeability and porosity distributions of the reservoir: 
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Figure 4.7 – Permeability Distributions in X, Y and Z directions and Porosity Distribution for Heterogenous Reservoir 

 

The full-scale model simulation with heterogeneous distribution is run for 1000 days. The following 

results illustrate the p-T results over the reservoir: 

 

  
Figure 4.8 – Pressure and Temperature Distribution of Heterogeneous Reservoir Full-Scale Model at t=1000 [days] 

 

Tracing the streamlines for this pressure distribution gives the following result: 
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Figure 4.9 – Streamlines traced for Heterogeneous Reservoir pressure distribution at t=1000 days 

 

Once the regions have been determined and the active cell and volume list and transmissibility multiplier 

list has been exported into DARTS, the proxy model is run with the following results: 

 

  
Figure 4.10 – Pressure and Temperature Distribution of Heterogeneous Reservoir Proxy Model at t=1000 [days] 

 

Comparing the proxy model p-T distributions with the original full-scale model, the following error maps 

are generated: 

 



37 
 

  
Figure 4.11 – Pressure and Temperature Error Maps for Heterogeneous Reservoir at t=1000 [days] 

 

Re-running the simulations at 20,000 days and comparing the pressure and temperature distributions 

between full scale model and proxy model yield the following error maps:  

 

  
Figure 4.12 – Pressure and Temperature Error Maps for Heterogeneous Reservoir at t=20,000 [days] 

 

Determining the error statistics for the difference between the full-scale and proxy model at 20,000 days 

gives the following: 

 

 Pressure Temperature 
 [bar] [K] 

Maximum Absolute Error: 1.05 × 100 2.74 × 101 

Average Error: 4.24 × 10-2 -5.35 × 10-2 

Standard Deviation: 1.62 × 10-1 1.31 × 100 

   

Table 4.6 – Error Statistics for Heterogeneous Reservoir at t=20,000 [days] 

 

With the increase in simulation time and heterogeneity in the reservoir, the error in pressure and 

temperature distributions is increasing. Despite this increasing error, it is within the acceptable 

tolerance, particularly the pressure error. 

Next, drawing the temperature breakthrough curves for the full-scale model and the proxy model gives 

the following result: 
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Figure 4.13 – Temperature Breakthrough curve for Heterogeneous Reservoir 

 

The primary objective of this research project is to be able to accurately predict the breakthrough 

temperature with minimum number of regions. An increase in the number of regions to simulate the 

proxy model with, translates to increase in computer resources and time required for simulation. 

Logically, as the number of regions increase, the breakthrough curve approaches the proxy model 

curve, and the error decreases to that of the proxy model. 

The approach is to use specific number of fastest regions. Since the regions are enclosed by 

streamlines, and each streamline possesses a time-of-flight. As defined earlier in section 3.3, time-of-

flight is the time required for a particle to move from the injector well to the producer well following a 

specific path. The time-of-flight of a region can be approximated as the average of time-of-flight of 

streamlines it is enclosed by. This calculation is performed in MATLAB, and the following table gives 

an example of average time-of-flight for each region for the heterogeneous reservoir: 

 

Region Time of Flight 
[-] [×105 sec] 

1     5.65 

2     5.32 

3     4.11 

4     6.04 

5     5.98 

6 111.97 

7     6.27 

8 110.08 

Table 4.7 – Example of average time-of-flight for each region for Heterogeneous Reservoir 

 

During analysis, the regions are sorted based on the time-of-flight, with the fastest region being one 

with the shortest time-of-flight. The following curves prove the afore-mentioned hypothesis that 

increasing the number of regions to simulate the proxy model can increase the accuracy of the break-

through prediction: 
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Figure 4.14 – Increasing accuracy of Breakthrough curves with increase in number of regions to simulate with 

 

For the case of Heterogeneous reservoir layer divided into 8 regions, the following table shows the time 

required to simulate each region as compared to the time for full scale model: 

 

Model Region 
Time required 

to simulate 
[sec] 

Proxy Model 

Region 1 14 

Region 2 7 

Region 3 5 

Region 4 1 

Region 5 1 

Region 6 29 

Region 7 11 

Region 8 26 

Complete Proxy Model 94 

Full-Scale Model 122 

Table 4.8 – Time required to simulate each region of Proxy Model compared to Full-scale Model 

 

It is interesting to note that the cumulative time required to simulate the proxy model is still less than 

the full-scale model. This is due to the fact that during the course of full-scale model simulation, a large 

number of cells need to be handled simultaneously, which increases the size of the Jacobian matrix 

and residual vector, thus requiring more computer resources and simultaneously increasing simulation 

time.  

The following graph illustrates how increasing the number of regions to simulate the proxy model with, 

decreases the error but simultaneously increases the time required for simulation: 
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Figure 4.15 – Variation of Error and Time with No. of Regions to simulate with 

 

4.3 Sensitivity Analysis of Temperature Breakthrough Curves 

This section comprises of the sensitivity analysis of the breakthrough curves. Certain parameters, such 

as the well BHP’s, simulation runtime and number of streamlines will be varied and their effect on the 

breakthrough curves will be observed. For the purpose of this section, all the parameters that are being 

used are from Table 4.1, except for the parameter that is being studied. In addition, heterogeneous 

reservoir permeability and porosity distributions (Figure 4.7) are being used. 

 

4.3.1 Simulation Run-time 

Varying the simulation run-time from 0 days to 200,000 days (i.e. 550 years), yields the following 

‘breakthrough temperature’ error curve: 

 

 

Figure 4.16 – Variation of Producer Temperature Error with Simulation Run-time 
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This curve shows the producer temperature error increases as the simulation run-time increases. As it 

has been established previously that dividing the reservoir into regions (i.e. proxy-model) already 

introduces some error in the results as compared to the full-scale model. Moreover as time lapses, the 

relative pressure distribution changes and so do the streamlines. Whereas the simulation performed for 

this analysis was performed at fixed streamlines (traced at t = 200,000 days), rather than updating the 

streamlines at each time-step. Therefore both these facts increase the error as time lapses. But the 

error seems to reduce after 1.15 × 105 days (~ 274 years). This may be due to the fact that streamlines’ 

distribution do not change much. Moreover, since the streamlines were traced at 200,000 days, 

therefore as the runtime approaches that time, the streamlines distribution must be approaching 

increasingly similar to that distribution traced, hence reducing the error. 

 

4.3.2 Number of Streamlines 

Varying the number of streamlines from 2 to 8, yields the following ‘breakthrough temperature’ error 

curve: 

 

 

Figure 4.17 – Variation of Breakthrough curves’ Average Error with Number of Streamlines 

 

This graph shows that the error between full-scale model and proxy model curves increases as the 

number of streamlines the reservoir layer is divided into increases. Again, as it has been established 

previously that dividing the reservoir into regions (i.e. proxy-model) already introduces some error. 

Therefore, more the number of regions the reservoir layer is divided into, the further an increase in 

error. 

 

4.3.3 Producer BHP 

Varying the producer bottom-hole pressure from 10 bars to 190 bars, yields the following ‘breakthrough 

temperature’ error curve: 
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Figure 4.18 – Variation of Breakthrough curves’ Average Error with Producer BHP 

 

This graph shows that the error between full-scale model and proxy model breakthrough curves 

increases as the producer BHP increases. This shows that as the producer BHP is decreased, the 

streamlines’ distribution stabilizes and does not vary significantly. For the purpose of this analysis, the 

injector BHP was kept at a constant 210 bar. Another perspective to view these results is that as the 

BHP range decreases, the error increases. 

 

4.3.4 Injector BHP 

Varying the injector bottom-hole pressure from 210 bars to 400 bars, yields the following ‘breakthrough 

temperature’ error curve: 

 

 

Figure 4.19 – Variation of Breakthrough curves’ Average Error with Injector BHP 
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This graph shows that the error between full-scale model and proxy model breakthrough curves 

decreases as the injector BHP increases. This reveals that as the producer BHP is decreased, the 

streamlines’ distribution stabilizes and does not vary significantly. 

 

4.3.5 Layers 

Until now, the layer that was under observation was the 2nd layer of 3D model [1]. But now a sensitivity 

analysis is performed with respect to the heterogeneity related to different layers in the model. Six 

different layers were selected based on the criteria that they have a reasonably fast break-through. 

Each layer has its own permeability and porosity distribution. 

The following table shows the streamlines’ distribution and the full-scale and proxy model breakthrough 

curves for each layer: 
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Table 4.9 – Streamlines’ distribution and Breakthrough Curves' comparison for different layers 

 

As seen from the table of results above, the two layers with a high breakthrough curve mean error, are 

22 and 34. This is due to the fact the streamlines are concentrated through a small region, rather than 

being spread as in layers 1 and 39. As it has already been established that dividing a layer into regions 

introduces error, and when several streamlines are passing through a cell, this further increases the 

error in the p-T distributions and consequently the temperature breakthrough curves. 
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5  
Conclusion and Recommendations 

 

Comparison between the full-scale model and proxy model reveal that the results for proxy 

model are quite optimistic. The error for the pressure and temperature distributions, as well as 

the breakthrough curves is within the acceptable tolerance. It has also been established that 

the time required to simulate the proxy-model is lower than the time for full-scale model. And 

as the number of fastest regions to simulate the proxy model decreases, the time required for 

simulation decreases but simultaneously the error between the breakthrough curves 

increases. 

There are several factors that can increase the error in the proxy model results: 

 Increase in Heterogeneity of the Reservoir 

 Increase in Simulation Runtime 

 Increase in Number of Streamlines 

 Increase in the Producer BHP 

 Decrease in the Injector BHP 

 

While keeping in view, the factors contributing to the error, the proxy model can be used to 

obtain a good approximation of the pressure and temperature distributions, and predict the 

temperature breakthrough of the reservoir. 

During the course of this project, several difficulties were encountered and several parameters 

were determined that decrease the accuracy of the proxy model. Based on these arguments, 

there are some recommendations for future work: 

 The streamlines used in this work are traced only once, when the reservoir layer has 

reached steady-state. Future work can include periodic updating of streamlines 

(particularly during the transient state) for accurate dynamic modelling. 

 The initial objective of this project was to define the regions using center-lines between 

streamlines, rather than the streamlines themselves. Several different methods of drawing 

center-lines had been used but every method had its disadvantages and fell short in some 

areas. If center-lines are to be used, a method needs to be devised to draw the center-line 

accurately. 

 Pollock's method to trace streamlines is not very accurate since there are some 

assumptions and approximations that influence the results. After Pollock, few other 

methods have been devised to trace streamlines accurately and can be used. 
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 Pollock's equations assume orthogonal grid blocks, but very few real reservoirs models 

use such a strict Cartesian framework anymore. Transform corner-point geometry grids 

(CPG) into unit cubes, apply Pollock’s method, and then transform exit coordinate back to 

physical space. Details are given by Prevost et al. (2001) [36]. 

 One of the features of existing streamline simulation is that the streamlines are truly 3D, 

rather than 2D as assumed several decades ago, in the ‘streamtube’ method. Streamlines 

appear as being 2D since they are generally depicted from a birds-eye perspective, but 

streamlines now correctly account for previously missing vertical component of flow 

description that is fundamental to current success of technology. Therefore, the approach 

used in this M.Sc. thesis project of 2D model can work more accurately with 3D models. 

Rather than simulating one layer, the entire reservoir can be simulated and streamlines 

can be traced in 3 dimensions, consequently giving rise to 3D streamtubes. 

 In simulations involving the wells being flow-rate controlled, rather than BHP controlled, 

the flow-rate that was used for the wells in full-scale model cannot simply be divided 

equally into the number of regions in the proxy model. The flow-rate needs to be calculated 

for each region and may depend on more than one factor (e.g. average time-of-flight of 

region, volume of region). These factors need to be determined that govern the regional 

flowrate. 

 In reality, geothermal reservoir not only produce hot water, but co-produce non-

condensable gases and hydrocarbons (particularly gas). Geothermal reservoir simulations 

should be performed along with hydrocarbon co-production in order to determine its effects 

on the accuracy of the proxy model. 
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A  
Discretization of Energy Equations 

 

A.1 Discretization of Energy Conservation equation: 

This section illustrates the discretization of the energy conservation equation. The general form of this 

equation is given by the following expression [6]: 

 

 
𝜕

𝜕𝑡
(𝜙∑𝜌𝑝𝑠𝑝𝑢𝑒,𝑝

𝑛𝑝

𝑝=1

+ (1 − 𝜙)𝑢𝑒,𝑟) − div∑ℎ𝑝𝜌𝑝 (𝐾
𝑘𝑟,𝑝

𝜇𝑝
(∇𝑝𝑝 − 𝛾𝑝∇𝐷))

𝑛𝑝

𝑝=1

+ div(𝜆∇𝑇) +∑ℎ𝑝𝜌𝑝�̃�𝑝

𝑛𝑝

𝑝=1

= 0, 

(A.1) 

 

Note: Description of these variables can be found in the nomenclature 

 

The first term (highlighted in orange) is the ‘accumulation’ term that determines the thermal energy in a 

system due to the fluid and the rock. The second term (highlighted in red) is the ‘convection’ term, the 

third term (highlighted in blue) is the ‘conduction’ term, while the fourth term (highlighted in green) is 

‘sink/source’ term. 

The following assumptions are taken into consideration for the above general equation: 

 There is no porosity (ϕ = 0), therefore there are no fluids in the system. 

 Since there is no fluid involved, ‘fake’ convection is being considered. The propagation of the front 

is only being simulated. 

 For solids, cp (specific heat capacity at constant pressure) is same as cv (specific heat capacity at 

constant volume), therefore the enthalpy is same as internal energy. 

 Specific heat capacity (cp) is constant, and not a function of temperature. 

 

After these assumptions, the energy equation simplifies to: 

 

 𝜕𝑢𝑒,𝑟
𝜕𝑡

− div(ℎ𝜌�⃗� ) + div(𝜆∇𝑇) + 휀̇ = 0. (A.2) 

 

This equation can be re-written as: 
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𝜌𝑐
𝜕𝑇

𝜕𝑡
− 𝜌𝑐 ∙ ∇ ∙ (�⃗� 𝑇) + ∇ ∙ (𝜆∇𝑇) + 휀̇ = 0. (A.3) 

 

It is assumed that the surrounding rock thermally recharges the rock next to the fluid, by conduction. 

The thermal energy provided by conduction and sink/source (if there exists one) is stored by the rock 

or absorbed by the fluid and propagated away. Equation (A.3) can be re-arranged as following: 

 

 
∇ ∙ (𝜆∇𝑇) + 휀̇ = 𝜌𝑐

𝜕𝑇

𝜕𝑡
+ 𝜌𝑐 ∙ ∇ ∙ (�⃗� 𝑇). (A.4) 

 

The expression is expanded in 3-dimension to yield the following: 

 

 
→ 

𝜕

𝜕𝑥
(𝜆𝑥

𝑑𝑇

𝑑𝑥
) +

𝜕

𝜕𝑦
(𝜆𝑦

𝑑𝑇

𝑑𝑦
) +

𝜕

𝜕𝑧
(𝜆𝑧

𝑑𝑇

𝑑𝑧
) + 휀̇

= 𝜌𝑐
𝜕𝑇

𝜕𝑡
+ 𝜌𝑐 [𝑢𝑥

𝑑𝑇

𝑑𝑥
+ 𝑢𝑦

𝑑𝑇

𝑑𝑦
+ 𝑢𝑧

𝑑𝑇

𝑑𝑧
]. 

(A.5) 

 

The equation is discretized using: 

 Cartesian grid 

 ‘Finite Difference’ scheme 

 Spatially using backward difference 

 Temporally using Euler backward (i.e. implicit time scheme) 

 

Following assumptions are further taken into consideration: 

 Heat Diffusion (conduction) exists in all 3 dimensions 

 Convection exists in all 3 dimensions 

 Transient state (not only steady-state) 

 Thermal conductivity is: 

o anisotropic (changes over dimension),  

o spatially variable (changes over location), but  

o constant temporally (does not change with time) 

 

The value at the neighboring nodes can be approximated using Taylor Series: 

 

 𝑻𝒊 = 𝑇𝑖 , (A.6) 

 𝑻𝒊−𝟏 = 𝑇𝑖 − [
(∆𝑥)

1!
∙
𝜕𝑇

𝜕𝑥
] + [

(∆𝑥)2

2!
∙
𝜕2𝑇

𝜕𝑥2
] + 𝑂[(∆𝑥)3], (A.7) 

 𝑻𝒊+𝟏 = 𝑇𝑖 + [
(∆𝑥)

1!
∙
𝜕𝑇

𝜕𝑥
] + [

(∆𝑥)2

2!
∙
𝜕2𝑇

𝜕𝑥2
] + 𝑂[(∆𝑥)3]. (A.8) 

 

Subtracting equation (A.7) from equation (A.6) yields: 

 

 𝝏𝑻

𝝏𝒙
=
1

∆𝑥
(𝑇𝑖 − 𝑇𝑖−1) + 𝑂(∆𝑥). (A.9) 

 

As can be observed from the result, expression (A.9) is 1st order accurate. 
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Individually discretizing the terms in equation (A.5): 

 

 𝝏

𝝏𝒙
(𝜆𝒙

𝒅𝑻

𝒅𝒙
) =

1

(∆𝑥)2
[𝜆𝑥+0.5(𝑇𝑖+1 − 𝑇𝑖) − 𝜆𝑥−0.5(𝑇𝑖 − 𝑇𝑖−1)], (A.10) 

 𝝏

𝝏𝒚
(𝜆𝒚

𝒅𝑻

𝒅𝒚
) =

1

(∆𝑦)2
[𝜆𝑦+0.5(𝑇𝑗+1 − 𝑇𝑗) − 𝜆𝑦−0.5(𝑇𝑗 − 𝑇𝑗−1)], (A.11) 

 𝝏

𝝏𝒛
(𝜆𝒛

𝒅𝑻

𝒅𝒛
) =

1

(∆𝑧)2
[𝜆𝑧+0.5(𝑇𝑘+1 − 𝑇𝑘) − 𝜆𝑧−0.5(𝑇𝑘 − 𝑇𝑘−1)], (A.12) 

 𝝏𝑻

𝝏𝒙
=
1

∆𝑥
(𝑇𝑖 − 𝑇𝑖−1), (A.13) 

 𝝏𝑻

𝝏𝒕
=
1

∆𝑡
(𝑇𝑛+1 − 𝑇𝑛). (A.14) 

 

Substituting equations (A.10) to (A.14) into equation (A.5) gives: 

 

→ + 
1

(∆𝑥)2
[𝜆𝑥+½(𝑇𝑖+1,𝑗,𝑘

𝑛+1 − 𝑇𝑖,𝑗,𝑘
𝑛+1) − 𝜆𝑥−½(𝑇𝑖,𝑗,𝑘

𝑛+1 − 𝑇𝑖−1,𝑗,𝑘
𝑛+1 )] 

      + 
1

(∆𝑦)2
[𝜆𝑦+½(𝑇𝑖,𝑗+1,𝑘

𝑛+1 − 𝑇𝑖,𝑗,𝑘
𝑛+1) − 𝜆𝑦−½(𝑇𝑖,𝑗,𝑘

𝑛+1 − 𝑇𝑖,𝑗−1,𝑘
𝑛+1 )] 

      + 
1

(∆𝑧)2
[𝜆𝑧+½(𝑇𝑖,𝑗,𝑘+1

𝑛+1 − 𝑇𝑖,𝑗,𝑘
𝑛+1) − 𝜆𝑧−½(𝑇𝑖,𝑗,𝑘

𝑛+1 − 𝑇𝑖,𝑗,𝑘−1
𝑛+1 )] 

      + 휀̇ = 𝜌𝑐 ∙
1

∆𝑡
(𝑇𝑖,𝑗,𝑘

𝑛+1 − 𝑇𝑖,𝑗,𝑘
𝑛 ) 

      + 𝜌𝑐 ∙ 𝑢𝑥−½ ∙
1

∆𝑥
[𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖−1,𝑗,𝑘

𝑛+1 ] 

      + 𝜌𝑐 ∙ 𝑢𝑦−½ ∙
1

∆𝑦
[𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗−1,𝑘

𝑛+1 ] 

      + 𝜌𝑐 ∙ 𝑢𝑧−½ ∙
1

∆𝑧
[𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗,𝑘−1

𝑛+1 ]. 

(A.15) 
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Figure A.1 – Schematic of 2D grid cell 

 

For simplification purposes, let: 

𝛼 = 𝜌𝑐, (A.16)     

𝛽𝑥 =
∆𝑡

(∆𝑥)2
∙ 𝜆𝑥, (A.17) 𝛽𝑦 =

∆𝑡

(∆𝑦)2
∙ 𝜆𝑦 , (A.18) 𝛽𝑧 =

∆𝑡

(∆𝑧)2
∙ 𝜆𝑧, (A.19) 

𝜃𝑥 =
∆𝑡

∆𝑥
∙ 𝜌𝑐 ∙ 𝑢𝑥, (A.20) 𝜃𝑦 =

∆𝑡

∆𝑦
∙ 𝜌𝑐 ∙ 𝑢𝑦 , (A.21) 𝜃𝑧 =

∆𝑡

∆𝑧
∙ 𝜌𝑐 ∙ 𝑢𝑧. (A.22) 

 

Substituting these simplifications (A.16) to (A.22) into the derived expression (A.15): 

 

→ + 𝛽𝑥+(𝑇𝑖+1,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗,𝑘

𝑛+1) − 𝛽𝑥−(𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖−1,𝑗,𝑘

𝑛+1 ) 

      + 𝛽𝑦+(𝑇𝑖,𝑗+1,𝑘
𝑛+1 − 𝑇𝑖,𝑗,𝑘

𝑛+1) − 𝛽𝑦−(𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗−1,𝑘

𝑛+1 ) 

      + 𝛽𝑧+(𝑇𝑖,𝑗,𝑘+1
𝑛+1 − 𝑇𝑖,𝑗,𝑘

𝑛+1) − 𝛽𝑧−(𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗,𝑘−1

𝑛+1 ) 

      +∆𝑡 ∙ 휀̇ = 𝛼(𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗,𝑘

𝑛 ) 

      + 𝜃𝑥−[𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖−1,𝑗,𝑘

𝑛+1 ] 

      + 𝜃𝑦−[𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗−1,𝑘

𝑛+1 ] 

      + 𝜃𝑧−[𝑇𝑖,𝑗,𝑘
𝑛+1 − 𝑇𝑖,𝑗,𝑘−1

𝑛+1 ]. 

(A.23) 
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In equation (A.23), the subscripts ‘+’ and ‘-‘ refer to the values at the previous interface and the next 

interface respectively, e.g. 𝛽𝑥+ refers to (
∆𝑡

(∆𝑥)2
∙ 𝜆𝑥+½) and 𝜃𝑥− refers to (

∆𝑡

∆𝑥
∙ 𝜌𝑐 ∙ 𝑢𝑥−½). 

𝑻𝒏 is the temperature at the current time-step, while 𝑻𝒏+𝟏 is the temperature at the next time-step. In 

order to determine the temperature at next time-step, Newton-Raphson method is used and may involve 

more than one iteration. Therefore the temperature at the current iteration can be denoted by 𝑻𝝂 and 

temperature at next iteration denoted by 𝑻𝝂+𝟏. Once the temperature for all the grid cells falls within the 

specified tolerance, the solution at 𝑻𝝂+𝟏 becomes the solution for future time-step 𝑻𝒏+𝟏. Therefore, for 

derivation purposes, 𝑻𝒏+𝟏 can be re-written as 𝑻𝝂+𝟏. Furthermore, adding/subtracting all temperature 

terms by 𝑻𝝂: 

 

→ + 𝛽𝑥+ ∙ [(𝑇𝑖+1
𝜈+1 − 𝑇𝑖+1

𝜈 + 𝑇𝑖+1
𝜈 ) − (𝑇𝑖

𝜈+1 − 𝑇𝑖
𝜈 + 𝑇𝑖

𝜈)]𝑗,𝑘  

      − 𝛽𝑥− ∙ [(𝑇𝑖
𝜈+1 − 𝑇𝑖

𝜈 + 𝑇𝑖
𝜈) − (𝑇𝑖−1

𝜈+1 − 𝑇𝑖−1
𝜈 + 𝑇𝑖−1

𝜈 )]𝑗,𝑘 

      + 𝛽𝑦+ ∙ [(𝑇𝑗+1
𝜈+1 − 𝑇𝑗+1

𝜈 + 𝑇𝑗+1
𝜈 ) − (𝑇𝑗

𝜈+1 − 𝑇𝑗
𝜈 + 𝑇𝑗

𝜈)]
𝑖,𝑘

 

      − 𝛽𝑦− ∙ [(𝑇𝑗
𝜈+1 − 𝑇𝑗

𝜈 + 𝑇𝑗
𝜈) − (𝑇𝑗−1

𝜈+1 − 𝑇𝑗−1
𝜈 + 𝑇𝑗−1

𝜈 )]
𝑖,𝑘

 

      + 𝛽𝑧+ ∙ [(𝑇𝑘+1
𝜈+1 − 𝑇𝑘+1

𝜈 + 𝑇𝑘+1
𝜈 ) − (𝑇𝑘

𝜈+1 − 𝑇𝑘
𝜈 + 𝑇𝑘

𝜈)]𝑖,𝑗  

      − 𝛽𝑧− ∙ [(𝑇𝑘
𝜈+1 − 𝑇𝑘

𝜈 + 𝑇𝑘
𝜈) − (𝑇𝑘−1

𝜈+1 − 𝑇𝑘−1
𝜈 + 𝑇𝑘−1

𝜈 )]𝑖,𝑗  

      +∆𝑡 ∙ 휀̇ = 𝛼(𝑇𝑖,𝑗,𝑘
𝜈+1 − 𝑇𝑖,𝑗,𝑘

𝜈 + 𝑇𝑖,𝑗,𝑘
𝜈 − 𝑇𝑖,𝑗,𝑘

𝑛 ) 

      + 𝜃𝑥−[(𝑇𝑖
𝜈+1 − 𝑇𝑖

𝜈 + 𝑇𝑖
𝜈) − (𝑇𝑖−1

𝜈+1 − 𝑇𝑖−1
𝜈 + 𝑇𝑖−1

𝜈 )]𝑗,𝑘  

      + 𝜃𝑦−[(𝑇𝑗
𝜈+1 − 𝑇𝑗

𝜈 + 𝑇𝑗
𝜈) − (𝑇𝑗−1

𝜈+1 − 𝑇𝑗−1
𝜈 + 𝑇𝑗−1

𝜈 )]
𝑖,𝑘

 

      + 𝜃𝑧−[(𝑇𝑘
𝜈+1 − 𝑇𝑘

𝜈 + 𝑇𝑘
𝜈) − (𝑇𝑘−1

𝜈+1 − 𝑇𝑘−1
𝜈 + 𝑇𝑘−1

𝜈 )]𝑖,𝑗 . 

(A.24) 

 

Since, 

 δ𝑇𝜈+1 = 𝑇𝜈+1 − 𝑇𝜈, (A.25) 
 

where δ𝑇𝜈+1 is the difference in Temperature between next iteration and current iteration. Substituting 

this relation (A.25) into the derived expression (A.24) yields: 

 

→ + 𝛽𝑥+ ∙ [(δ𝑇𝑖+1
𝜈+1 + 𝑇𝑖+1

𝜈 ) − (δ𝑇𝑖
𝜈+1 + 𝑇𝑖

𝜈)]𝑗,𝑘 

      − 𝛽𝑥− ∙ [(δ𝑇𝑖
𝜈+1 + 𝑇𝑖

𝜈) − (δ𝑇𝑖−1
𝜈+1 + 𝑇𝑖−1

𝜈 )]𝑗,𝑘  

      + 𝛽𝑦+ ∙ [(δ𝑇𝑗+1
𝜈+1 + 𝑇𝑗+1

𝜈 ) − (δ𝑇𝑗
𝜈+1 + 𝑇𝑗

𝜈)]
𝑖,𝑘

 

      − 𝛽𝑦− ∙ [(δ𝑇𝑗
𝜈+1 + 𝑇𝑗

𝜈) − (δ𝑇𝑗−1
𝜈+1 + 𝑇𝑗−1

𝜈 )]
𝑖,𝑘

 

      + 𝛽𝑧+ ∙ [(δ𝑇𝑘+1
𝜈+1 + 𝑇𝑘+1

𝜈 ) − (δ𝑇𝑘
𝜈+1 + 𝑇𝑘

𝜈)]𝑖,𝑗  

      − 𝛽𝑧− ∙ [(δ𝑇𝑘
𝜈+1 + 𝑇𝑘

𝜈) − (δ𝑇𝑘−1
𝜈+1 + 𝑇𝑘−1

𝜈 )]𝑖,𝑗  

      +∆𝑡 ∙ 휀̇ = 𝛼[(𝛿𝑇𝑖,𝑗,𝑘
𝜈+1 + 𝑇𝑖,𝑗,𝑘

𝜈 ) − 𝑇𝑖,𝑗,𝑘
𝑛 ] 

      + 𝜃𝑥− ∙ [(𝛿𝑇𝑖
𝜈+1 + 𝑇𝑖

𝜈) − (𝛿𝑇𝑖−1
𝜈+1 + 𝑇𝑖−1

𝜈 )]𝑗,𝑘  

      + 𝜃𝑦− ∙ [(𝛿𝑇𝑗
𝜈+1 + 𝑇𝑗

𝜈) − (𝛿𝑇𝑗−1
𝜈+1 + 𝑇𝑗−1

𝜈 )]
𝑖,𝑘

 

      + 𝜃𝑧− ∙ [(𝛿𝑇𝑘
𝜈+1 + 𝑇𝑘

𝜈) − (𝛿𝑇𝑘−1
𝜈+1 + 𝑇𝑘−1

𝜈 )]𝑖,𝑗 . 

(A.26) 

 

In the expression derived above, there are primarily two kinds of terms: 𝛅𝑻 and 𝑻. The terms with 𝛅𝑻 

form the Jacobian matrix, while the terms with 𝑻 form the residual vector. In vector calculus, the 

Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function. While the 

residual (also known as out-of-balance load vector), is the amount the system is out of equilibrium. 

Therefore, separating the variables into Jacobian and residual yields the following expressions: 
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𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =  + 𝛅𝑻𝒊+𝟏,𝒋,𝒌
𝝂+𝟏 (𝛽𝑥+) + 𝛅𝑻𝒊−𝟏,𝒋,𝒌

𝝂+𝟏 (𝛽𝑥− + 𝜃𝑥−) 

                         + 𝛅𝑻𝒊,𝒋+𝟏,𝒌
𝝂+𝟏 (𝛽𝑦+) + 𝛅𝑻𝒊,𝒋−𝟏,𝒌

𝝂+𝟏 (𝛽𝑦− + 𝜃𝑦−) 

                         + 𝛅𝑻𝒊,𝒋,𝒌+𝟏
𝝂+𝟏 (𝛽𝑧+) + 𝛅𝑻𝒊,𝒋,𝒌−𝟏

𝝂+𝟏 (𝛽𝑧− + 𝜃𝑧−) 

                         + 𝛅𝑻𝒊,𝒋,𝒌
𝝂+𝟏[−𝛼 − 𝛽𝑥+ − 𝛽𝑥− − 𝛽𝑦+ − 𝛽𝑦− − 𝛽𝑧+ − 𝛽𝑧− − 𝜃𝑥− − 𝜃𝑦− − 𝜃𝑧−]. 

(A.27) 

 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  + 𝑻𝒊+𝟏,𝒋,𝒌
𝝂 (−𝛽𝑥+) + 𝑻𝒊−𝟏,𝒋,𝒌

𝝂 (−𝛽𝑥− − 𝜃𝑥−) 

                         + 𝑻𝒊,𝒋+𝟏,𝒌
𝝂 (−𝛽𝑦+) + 𝑻𝒊,𝒋−𝟏,𝒌

𝝂 (−𝛽𝑦− − 𝜃𝑦−) 

                         + 𝑻𝒊,𝒋,𝒌+𝟏
𝝂 (−𝛽𝑧+) + 𝑻𝒊,𝒋,𝒌−𝟏

𝝂 (−𝛽𝑧− − 𝜃𝑧−) 

                         + 𝑻𝒊,𝒋,𝒌
𝝂 [𝛼 + 𝛽𝑥+ + 𝛽𝑥− + 𝛽𝑦+ + 𝛽𝑦− + 𝛽𝑧+ + 𝛽𝑧− + 𝜃𝑥− + 𝜃𝑦− + 𝜃𝑧−] 

                         + 𝑻𝒊,𝒋,𝒌
𝒏 (−𝛼) + (휀̇ ∙ ∆𝑡). 

(A.28) 

 

 

A.2 Discretization of Heat Diffusion Equation (in Radial Coordinates) 

Heat transfer occurs by conduction within the reservoir rock. Next, it is transferred from the rock to the 

fluid by conduction as well. In order to model the conduction phenomena, the following governing heat 

diffusivity equation (in cylindrical coordinates) is used [37]: 

 

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝜆

𝜕𝑇

𝜕𝑟
) +

1

𝑟2
𝜕

𝜕∅
(𝜆
𝜕𝑇

𝜕∅
) +

𝜕

𝜕𝑧
(𝜆
𝜕𝑇

𝜕𝑧
) + 휀̇ = 𝜌𝑐

𝜕𝑇

𝜕𝑡
, (A.29) 

  

The first term (highlighted in red) is heat flux in r-coordinate. Similarly, the second term (highlighted in 

green) is in the azimuthal coordinates while the third term (highlighted in blue) is for vertical coordinates. 

The fourth term (highlighted in orange) is the heat source/sink rate. The term on the right-hand side of 

the equation is the heat accumulation term. This shows that any heat flux coming into the control volume 

(from any of the coordinate directions), along with any heat generation or heat loss in the system, is 

accumulated within the rock. 

In our case, the heat is assumed to diffuse in the radial direction only, and there is no heat generation 

or heat loss. These assumptions reduce the governing equation down to: 

 

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝜆

𝜕𝑇

𝜕𝑟
) = 𝜌𝑐

𝜕𝑇

𝜕𝑡
. (A.30) 

 

Further, in our case, the thermal conductivity is a function of radius ′𝑟′, i.e. it is not constant and may 

change with the radius. This is done to incorporate heterogeneity in our reservoir rock and make the 

code general, although initially for simulation purposes it will be kept constant. 

The following figure shows the grid of a reservoir rock in radial direction: 
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Figure A.2 – Grid of a reservoir rock in radial direction 

 

 

The partial differential equations will be discretized using Finite Difference method. The spatial partial 

derivative will be approximated using the Taylor series: 

 

 𝑓(𝑥) = 𝑓(𝑥), (A.31) 

 
𝑓(𝑥 + ∆𝑥) = 𝑓(𝑥)    +    ∆𝑥 ∙ 𝑓′(𝑥)    +    

∆𝑥2

2!
∙ 𝑓′′(𝑥)   +    𝑂(∆𝑥3), (A.32) 

 
𝑓(𝑥 − ∆𝑥) = 𝑓(𝑥)   −   ∆𝑥 ∙ 𝑓′(𝑥)    +    

∆𝑥2

2!
∙ 𝑓′′(𝑥)  −    𝑂(∆𝑥3).    (A.33) 

 

Subtracting the equation (A.33) from (A.32) yields the following: 

 

 
𝑓′(𝑥) =

1

2 ∙ ∆𝑥
[𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥 − ∆𝑥)]. (A.34) 

 

This is the central finite difference method. It shows the discretization in spatial coordinates. In our case, 

the grid spacing will be the spacing between two radii, and the temperature is a function of radius that 

is known at the nodes. Therefore the FD equation will be modified to: 

 

 𝜕𝑇

𝜕𝑟
=

1

2 ∙ ∆𝑟
[𝑇𝑖+1 − 𝑇𝑖−1]. (A.35) 

 

While the temporal partial derivative will be approximated using the following expression: 

 

 𝜕𝑇

𝜕𝑡
=
1

∆𝑡
[𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛]. (A.36) 
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And since the Euler backward method (Implicit) numerical scheme is being used to determine the 

temperature at the future time step, substituting expressions (A.35) and (A.36) into expression (A.30) 

yield the following: 

 

 1

(𝜌𝑐𝑟)𝑖
∙
∆𝑡

(∆𝑟)2
∙ [(𝑟

𝑖+
1
2
∙ 𝜆
𝑖+
1
2
∙ (𝑇𝑖+1

𝑛+1 − 𝑇𝑖
𝑛+1)) − (𝑟

𝑖−
1
2
∙ 𝜆
𝑖−
1
2
∙ (𝑇𝑖

𝑛+1 − 𝑇𝑖−1
𝑛+1))]

= 𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛. 

(A.37) 

 

For simplification of this expression, the following parameters are introduced: 

 

 𝛼 = 𝑟
𝑖+
1
2
∙ 𝜆
𝑖+
1
2
 , (A.38) 

 𝛽 = 𝑟
𝑖−
1
2
∙ 𝜆
𝑖−
1
2
 , (A.39) 

 
𝛾 =

1

(𝜌𝑐𝑟)𝑖
∙
∆𝑡

(∆𝑟)2
. (A.40) 

 

Introducing these parameters into expression (A.37) yields the following: 

 

 𝛾[𝛼(𝑇𝑖+1
𝑛+1 − 𝑇𝑖

𝑛+1) − 𝛽(𝑇𝑖
𝑛+1 − 𝑇𝑖−1

𝑛+1)] = 𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛 . (A.41) 

 

 

A.3 Analytical solution for Temperature Distribution profile in a 

Cylindrical Wall 

In a geothermal application, heat is transferred through the surrounding rocks and to the fluid passing 

through, by the phenomena of conduction. This can be modelled as a tube (i.e. 1D stream passing 

through the rocks) and the heat energy being transferred from the perpendicular direction as illustrated 

in Figure 2.1. The energy transferred to the fluid can be modelled using Fourier's Law of conduction 

given by the expression below: 

 

 휀�̇�𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = ∇ ∙ (𝜆∇𝑇), (A.42) 
 

Since our system is modelled as a tube, it would be more convenient to use the radial coordinate system 

for the heat conduction phenomena rather than the Cartesian coordinate system. Here, the heat is 

being transferred in the r-coordinate direction. 

 

In order to model the heat flow through pipe wall, it is convenient to represent the phenomena using the 

cross-section of tube, as shown below: 
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Figure A.3 – Cross-section of pore (modelled as tube) [38] 

 

A cylindrical shell (colored light orange in Figure A.3) is considered with a radius (𝑟) and outer radius 

(𝑟 + ∆𝑟). The length (𝐿) of this shell extends entire length of the pipe. 𝑄ℎ(𝑟) is the heat flow rate within 

pipe wall. As shown, the heat flow rate into the cylindrical shell is 𝑄ℎ(𝑟), while the heat flow rate out of 

the shell is 𝑄ℎ(𝑟 + ∆𝑟). At steady state, the heat flux being transferred through the surrounding rock and 

to the fluid stream is constant, i.e.: 

 

 𝑄ℎ(𝑟) = 𝑄ℎ(𝑟 + ∆𝑟). (A.43) 
 

Rearranging this result, along with division by ∆𝑟 and taking the limit to zero, yields: 

 

 lim
∆𝑟→0

𝑄ℎ(𝑟 + ∆𝑟) − 𝑄ℎ(𝑟)

∆𝑟
=
𝑑𝑄ℎ
𝑑𝑟

= 0. (A.44) 

 

Integration leads to the result: 

 

 𝑄ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (A.45) 
 

Since the heat flow rate can also be written as: 

 

 𝑄ℎ = 𝑞ℎ,𝑟𝑎𝑑 ∙ 𝐴, (A.46) 
 

where 𝑞 is the heat flux crossing the surface, the subscript 𝑟𝑎𝑑 denotes the heat flux in radial direction, 

and 𝐴 is the area of cylindrical surface that is normal to the r-direction: 

 

 𝐴 = 2𝜋𝑟𝐿. (A.47) 
 

Deriving from Fourier’s Law (equation (2.4)), it can be determined that heat flux in the radial direction 

is: 

𝑸𝒉(𝒓 + ∆𝒓) 

∆𝒓 

𝒓 
𝑸𝒉(𝒓) 

𝒓𝟏 

𝑻𝟏 

𝒓𝟐 

𝑻𝟐 
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 𝑞ℎ,𝑟𝑎𝑑 = −𝜆
𝑑𝑇

𝑑𝑟
. (A.48) 

 

Substituting this expression (A.48) and area equation (A.47) into equation (A.45) yields: 

 

 −2𝜋𝑟𝐿 ∙ 𝜆
𝑑𝑇

𝑑𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (A.49) 

 

The 2𝜋𝐿𝜆 is a constant and can be merged to the R.H.S. of the equation. Next, rearranging the equation 

results: 

 

 𝑑𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙
𝑑𝑟

𝑟
. (A.50) 

 

Integrating both the sides yield: 

 

 ∫𝑑𝑇 = 𝐶1∫
1

𝑟
𝑑𝑟  

 𝑇 + 𝐶2𝑎 = 𝐶1 ∙ ln(𝑟) + 𝐶2𝑏  

 𝑇 = 𝐶1 ∙ ln(𝑟) + 𝐶2 (A.51) 

 

The constants of integration can be determined by substituting the two boundary conditions into the 

following expressions: 

 

 𝐶1 =
𝑇1 − 𝑇2
ln(𝑟1 𝑟2⁄ )

, (A.52) 

 𝐶2 = 𝑇1 −
𝑇1 − 𝑇2
ln(𝑟1 𝑟2⁄ )

∙ ln 𝑟1. (A.53) 

 

Substituting these expressions into the third-last equation yields the expression for temperature 

distribution profile in a cylindrical shaped wall [38]: 

 

 𝑇 = 𝑇1 −
ln(𝑟 𝑟1⁄ )

ln(𝑟2 𝑟1⁄ )
∙ (𝑇1 − 𝑇2). (A.54) 
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B  
Connection List for Unstructured Grid 

 

A governing partial differential equation can be comprised of more than one component that define a 

physical phenomenon. For example, the energy equation that is expressed by equation (1.2). It 

comprises of the four physical phenomena, i.e. heat storage, convection, conduction and energy 

sink/source. The solution is found by the linearization of these partial differential equation, of which, 

Newton-Raphson method is the most common method. This section describes how the Jacobian matrix 

and residual vector can be constructed by forming a loop over each of the four physical phenomenon, 

rather than having to calculate them at once. This procedure will help in the understanding of connection 

list and transmissibility in unstructured gridding. 

Equations (A.27) and (A.28) are the Jacobian and residual expressions for the discretized form of 

Energy equation in 3-dimensional form. Reducing these equations to 1-dimension yield the following 

expressions: 

 

∵ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 = 𝝏𝑻𝒊−𝟏
𝝂+𝟏(𝛽𝑖−½∆𝑡 + 𝜃𝑖−½∆𝑡) + 𝝏𝑻𝒊

𝝂+𝟏(−𝛼𝑖 − 𝛽𝑖−½∆𝑡 − 𝛽𝑖+½∆𝑡 − 𝜃𝑖−½∆𝑡)

+ 𝝏𝑻𝒊+𝟏
𝝂+𝟏(𝛽𝑖+½∆𝑡) 

(B.1) 

 
 

∵ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑻𝒊−𝟏
𝝂 (−𝛽𝑖−½∆𝑡 − 𝜃𝑖−½∆𝑡) + 𝑻𝒊

𝝂(𝛼𝑖 + 𝛽𝑖−½∆𝑡 + 𝛽𝑖+½∆𝑡 + 𝜃𝑖−½∆𝑡)
+ 𝑻𝒊+𝟏

𝝂 (−𝛽𝑖+½∆𝑡) + 𝑻𝒊
𝒏(−𝛼𝑖) + (−휀�̇�∆𝑡) 

(B.2) 

 

Where the terms 𝛼, 𝛽 and 𝜃 are defined by the expressions (A.16), (A.17) and (A.20). For a brief 

overview, the term highlighted in orange is the ‘accumulation’ term that determines the thermal energy 

in a system due to the rock (and fluid). The term highlighted in red is due to ‘convection’, the term 

highlighted in blue is due to ‘conduction’, while the remaining term highlighted in green is due to 

‘sink/source’. The terms 𝛽𝑥 and 𝜃𝑥 are calculated at the cell interfaces, rather than cell centers, therefore 

their subscripts include a ½ at the end (e.g. 𝑖 − ½ and 𝑖 + ½). The term 𝛽𝑥 is the transmissibility due to 

conduction between two adjacent cells, and similarly 𝜃𝑥 is transmissibility due to convection. Lastly, the 

assumptions discussed in Appendix ‘A’, hold valid for this section as well. 
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The following figure shows the schematic for a 1-D grid: 

 

 

Figure B.1 – Schematic for 1-D grid 

 

Once the entries for the Jacobian matrix and residual vector are filled, they appear as shown below. 

The unknowns can be determined by taking the inverse of the Jacobian matrix and multiplying it to the 

R.H.S. of the equation. 

 

[
 
 
 
 
 
𝐽𝑖−2,𝑖−2 𝐽𝑖−2,𝑖−1
𝐽𝑖−1,𝑖−2 𝐽𝑖−1,𝑖−1 𝐽𝑖−1,𝑖

𝐽𝑖,𝑖−1 𝐽𝑖,𝑖 𝐽𝑖,𝑖+1
𝐽𝑖+1,𝑖 𝐽𝑖+1,𝑖+1 𝐽𝑖+1,𝑖+2

𝐽𝑖+2,𝑖+1 𝐽𝑖+2,𝑖+2]
 
 
 
 
 

⏟                            
𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑀𝑎𝑡𝑟𝑖𝑥

[
 
 
 
 
 
𝝏𝑻𝒊−𝟐

𝝂+𝟏

𝝏𝑻𝒊−𝟏
𝝂+𝟏

𝝏𝑻𝒊
𝝂+𝟏

𝝏𝑻𝒊+𝟏
𝝂+𝟏

𝝏𝑻𝒊+𝟐
𝝂+𝟏]
 
 
 
 
 

⏟    
𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑠

=

[
 
 
 
 
𝑅𝑖−2
𝑅𝑖−1
𝑅𝑖
𝑅𝑖+1
𝑅𝑖+2]

 
 
 
 

⏟  
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑣𝑒𝑐𝑡𝑜𝑟

 
(B.3) 

 

Each non-zero element of the Jacobian matrix has two entries in the subscript that are separated by a 

comma. The first number corresponds to the index of the cell the Jacobian is being constructed for, 

while the second number corresponds to the index of the neighboring cell. For example, for entry 𝐽𝑖,𝑖+1, 

the Jacobian is being written for cell 𝑖 and 𝑖 + 1 is the neighboring cell. 

The following expression shows how the Jacobian matrix is the sum of matrices due to different physical 

phenomena: 

 

[
 
 
 
 
 
𝐽𝑖−2,𝑖−2 𝐽𝑖−2,𝑖−1
𝐽𝑖−1,𝑖−2 𝐽𝑖−1,𝑖−1 𝐽𝑖−1,𝑖

𝐽𝑖,𝑖−1 𝐽𝑖,𝑖 𝐽𝑖,𝑖+1
𝐽𝑖+1,𝑖 𝐽𝑖+1,𝑖+1 𝐽𝑖+1,𝑖+2

𝐽𝑖+2,𝑖+1 𝐽𝑖+2,𝑖+2]
 
 
 
 
 

=

[
 
 
 
 
 
−𝛼−2,−2

−𝛼−1,−1
−𝛼𝑖,𝑖

−𝛼+1,+1
−𝛼+2,+2]

 
 
 
 
 

+ ∆𝑡

[
 
 
 
 
 
𝜃−2½
𝜃−1½−𝜃−1½

𝜃−½ −𝜃−½
𝜃+½ −𝜃+½

𝜃+1½−𝜃+1½]
 
 
 
 
 

+ ∆𝑡

[
 
 
 
 
 
−(𝛽−2½ + 𝛽−1½) 𝛽−1½

𝛽−1½ −(𝛽−1½ + 𝛽−½) 𝛽−½
𝛽−½ −(𝛽−½ + 𝛽+½) 𝛽+½

𝛽+½ −(𝛽+½ + 𝛽+1½) 𝛽+1½
𝛽+1½ −(𝛽+1½ + 𝛽+2½)]

 
 
 
 
 

 

(B.4) 

 

 

 

 

 

𝑖 − 2 

 

 

𝑖 − 1 

 

 

𝑖 

 

 

𝑖 + 1 

 

 

𝑖 + 2 

𝑖 − 1½  𝑖 − ½  𝑖 + ½  𝑖 + 1½  𝑖 + 2½  𝑖 − 2½  
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For the 1-D grid illustrated above, the following connection lists are generated: 

 

Cell Index 
Neighbor 
Cell Index 

Transmissibility 
Conduction Convection 

𝑖 − 2 𝑖 − 1 𝛽𝑖−1½ 𝜃𝑖−1½ 

𝑖 − 1 𝑖 𝛽𝑖−½ 𝜃𝑖−½ 

𝑖 𝑖 + 1 𝛽𝑖+½ 𝜃𝑖−½ 

𝑖 + 1 𝑖 + 2 𝛽𝑖+1½ 𝜃𝑖−½ 

Table B.1 – Example of ‘Conduction’ and ‘convection’ connection lists for 1-D grid 

 

These connection lists can be calculated and stored prior, and then used during the course of 

simulation, unless any of the parameters is changing for which the connection lists need to be updated 

at every time-step. For example, density (𝜌), thermal conductivity (𝜆) and specific heat capacity (𝑐) can 

be a function of temperature, therefore 𝛽 and 𝜃 may need to be updated on every time-step. Similarly, 

if the pressure distribution is not steady-state and the velocity is varying, therefore 𝜃 may need to be 

updated at every time-step. 

From the 1-D grid above, two adjacent cells are selected. The Jacobian and residual for cells 𝑖 and 𝑖 +

1 are written. Next, the entries for energy transfer between cells 𝑖 and 𝑖 + 1 remain, while the remaining 

entries (energy transfer between other neighboring cells) are omitted by crossing-out. The objective of 

this activity is to illustrate the transmissibility between two cells and consequently create a connection 

list between them. 

 

 

Figure B.2 – Schematic for 2 adjacent cells with energy transfer between them via the interface 

 

Jacobian and Residual for cell 𝑖: 

→ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑖) = 𝝏𝑻𝒊−𝟏
𝝂+𝟏(𝛽𝑖−½∆𝑡 + 𝜃𝑖−½∆𝑡) + 𝝏𝑻𝒊

𝝂+𝟏(−𝛼𝑖 − 𝛽𝑖−½∆𝑡 − 𝛽𝑖+½∆𝑡 − 𝜃𝑖−½∆𝑡)

+ 𝝏𝑻𝒊+𝟏
𝝂+𝟏(𝛽𝑖+½∆𝑡) 

 

∴ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑖) = 𝝏𝑻𝒊
𝝂+𝟏(−𝛼𝑖 − 𝛽𝑖+½∆𝑡) + 𝝏𝑻𝒊+𝟏

𝝂+𝟏(𝛽𝑖+½∆𝑡) (B.5) 

 

→ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑖) = 𝑻𝒊−𝟏
𝝂 (−𝛽𝑖−½∆𝑡 − 𝜃𝑖−½∆𝑡) + 𝑻𝒊

𝝂(𝛼𝑖 + 𝛽𝑖−½∆𝑡 + 𝛽𝑖+½∆𝑡 + 𝜃𝑖−½∆𝑡)
+ 𝑻𝒊+𝟏

𝝂 (−𝛽𝑖+½∆𝑡) + 𝑻𝒊
𝒏(−𝛼𝑖) + (−휀�̇�∆𝑡) 

 

∴ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑖) = 𝑻𝒊
𝝂(𝛼𝑖 + 𝛽𝑖+½∆𝑡) + 𝑻𝒊+𝟏

𝝂 (−𝛽𝑖+½∆𝑡) + 𝑻𝒊
𝒏(−𝛼𝑖) + (−휀�̇�∆𝑡) (B.6) 

 

 

 

 

 

𝑖 

 

 

𝑖 + 1 

𝑖 + ½  
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Jacobian and Residual for cell 𝑖 + 1: 

→ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑖 + 1)

= 𝝏𝑻𝒊
𝝂+𝟏(𝛽𝑖+½∆𝑡 + 𝜃𝑖+½∆𝑡) + 𝝏𝑻𝒊+𝟏

𝝂+𝟏(−𝛼𝑖+1 − 𝛽𝑖+½∆𝑡 − 𝛽𝑖+1½∆𝑡 − 𝜃𝑖+½∆𝑡)

+ 𝝏𝑻𝒊+𝟐
𝝂+𝟏(𝛽𝑖+1½∆𝑡) 

 

→ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑖 + 1) = 𝝏𝑻𝒊
𝝂+𝟏(𝛽𝑖+½∆𝑡 + 𝜃𝑖+½∆𝑡) + 𝝏𝑻𝒊+𝟏

𝝂+𝟏(−𝛼𝑖+1 − 𝛽𝑖+½∆𝑡 − 𝜃𝑖+½∆𝑡) (B.7) 

 

→ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑖 + 1)
= 𝑻𝒊

𝝂(−𝛽𝑖+½∆𝑡 − 𝜃𝑖+½∆𝑡) + 𝑻𝒊+𝟏
𝝂 (𝛼𝑖+1 + 𝛽𝑖+½∆𝑡 + 𝛽𝑖+1½∆𝑡 + 𝜃𝑖+½∆𝑡)

+ 𝑻𝒊+𝟐
𝝂 (−𝛽𝑖+1½∆𝑡) + 𝑻𝒊+𝟏

𝒏 (−𝛼𝑖+1) + (−휀�̇�+1∆𝑡) 
 

∴ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑖 + 1)
= 𝑻𝒊

𝝂(−𝛽𝑖+½∆𝑡 − 𝜃𝑖+½∆𝑡) + 𝑻𝒊+𝟏
𝝂 (𝛼𝑖+1 + 𝛽𝑖+½∆𝑡 + 𝜃𝑖+½∆𝑡) + 𝑻𝒊+𝟏

𝒏 (−𝛼𝑖+1)
+ (−휀�̇�+1∆𝑡) 

(B.8) 

 

 

It is necessary to re-emphasize that the four expressions (B.5), (B.6), (B.7) and (B.8) formulated above 

are the Jacobian and residual entries for energy transfer only between cells 𝑖 and 𝑖 + 1, while the energy 

transfers with other neighboring cells are omitted. Also that these expressions will calculate the entries 

at once. Next these entries are broken down into their respective physical phenomenon (conduction, 

convection, accumulation and source), in order to be added in a loop. 

In order to do this, the entries of Jacobian matrix and residual vector are initialized to zero. Alternately, 

this can be done by generating a ‘J’ matrix, filled with zeros, with dimensions 𝑁 × 𝑁 and ‘Res’ vector 

with dimensions 𝑁 × 1 (where 𝑁 is the total number of cells in the grid). The following commands can 

be used in MATLAB in order to obtain null matrices: 

 

J = zeros(N,N) 

Res = zeros(N,1) 

 

Next the coefficient of each of the physical phenomenon (mentioned above) is added to these existing 

entries of Jacobian matrix and residual vector, in a loop. These coefficients may constitute of the 

transmissibility, such as 𝛽 and 𝜃 in conduction and convection loops, respectively. 

 

Loop over Accumulation term: 

𝐽(𝑖, 𝑖)                 = 𝐽(𝑖, 𝑖)                 − 𝛼𝑖 (B.9a) 

𝐽(𝑖 + 1, 𝑖 + 1) = 𝐽(𝑖 + 1, 𝑖 + 1) − 𝛼𝑖+1 (B.9b) 

 

𝑅𝑒𝑠(𝑖)                = 𝑅𝑒𝑠(𝑖)               + 𝛼𝑖(𝑇𝑖
𝜈 − 𝑇𝑖

𝑛) (B.10a) 

𝑅𝑒𝑠(𝑖 + 1)        = 𝑅𝑒𝑠(𝑖 + 1)       + 𝛼𝑖+1(𝑇𝑖+1
𝜈 − 𝑇𝑖+1

𝑛 ) (B.10b) 

 

Loop over Sink/Source terms: 

𝑅𝑒𝑠(𝑖)                = 𝑅𝑒𝑠(𝑖)         − 휀�̇�∆𝑡 (B.11a) 

𝑅𝑒𝑠(𝑖 + 1)        = 𝑅𝑒𝑠(𝑖 + 1) − 휀�̇�+1∆𝑡 (B.11b) 
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Loop over Conduction (Diffusion) terms: 

𝐽(𝑖, 𝑖)                 = 𝐽(𝑖, 𝑖)                 − 𝛽𝑖+½∆𝑡 (B.12a) 

𝐽(𝑖, 𝑖 + 1)         = 𝐽(𝑖, 𝑖 + 1)         + 𝛽𝑖+½∆𝑡 (B.12b) 

𝐽(𝑖 + 1, 𝑖)         = 𝐽(𝑖 + 1, 𝑖)         + 𝛽𝑖+½∆𝑡 (B.12c) 

𝐽(𝑖 + 1, 𝑖 + 1) = 𝐽(𝑖 + 1, 𝑖 + 1) − 𝛽𝑖+½∆𝑡 (B.12d) 

 

𝑅𝑒𝑠(𝑖)                = 𝑅𝑒𝑠(𝑖)               + 𝛽𝑖+½∆𝑡(𝑇𝑖
𝜈 − 𝑇𝑖+1

𝜈 ) (B.13a) 

𝑅𝑒𝑠(𝑖 + 1)        = 𝑅𝑒𝑠(𝑖 + 1)       + 𝛽𝑖+½∆𝑡(−𝑇𝑖
𝜈 + 𝑇𝑖+1

𝜈 ) (B.13b) 

 

Loop over Convection terms: 

𝐽(𝑖 + 1, 𝑖)         = 𝐽(𝑖 + 1, 𝑖)         + 𝜃𝑖+½∆𝑡 (B.14a) 

𝐽(𝑖 + 1, 𝑖 + 1) = 𝐽(𝑖 + 1, 𝑖 + 1) − 𝜃𝑖+½∆𝑡 (B.14b) 

 

𝑅𝑒𝑠(𝑖 + 1)        = 𝑅𝑒𝑠(𝑖 + 1)       + 𝜃𝑖+½∆𝑡(−𝑇𝑖
𝜈 + 𝑇𝑖+1

𝜈 ) (B.15) 
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C  
Tracing Streamlines 

 

This section of Appendix focuses on the methodology, assumptions and derivation of equations 

required for tracing the streamlines, utilizing a semi-analytical particle tracking method developed by 

David Pollock [2]. This method was developed for use with velocities generated from block centered 

finite-difference ground-water flow models. This streamline tracing method is semi-analytical because 

each streamline is made up of a series of streamline segments in single grid, and the streamline 

segment of each grid is determined by the analytical method. 

For analytical solutions, it is simple since the velocity vector field can be computed at every point in 

field. But for finite-difference models, it becomes necessary to establish an interpolation scheme so that 

the velocity vector can be calculated at every point in flow field. A variety of interpolation schemes are 

available but the three simple approaches are: 

1) Step function interpolation - assumes velocity components are constant between nodes but 

suddenly change value at the node. 

2) Simple linear interpolation - assumes principal velocity components vary linearly within grid cell 

only with respect to their own coordinate direction, and independent on other directions. 

3) Multi-linear interpolation - assumes principal velocity components vary linearly within grid cell 

with respect to all coordinate directions. 

For this work, simple linear interpolation is used to generate velocity vector field. The three principal 

velocity component functions can be integrated directly within each individual grid cell to obtain an 

analytical expression for path line segments. 

Once the pressure distribution across the reservoir is obtained using a Pressure solver, the velocity at 

the interface of each cell in the x-direction can be calculated using Darcy's Law: 

 

 𝑣𝑥 =
𝑄𝑣,𝑥
𝐴𝑥

= −
𝑘𝑥
𝜇 ∙ ∆𝑥

· (𝑃𝑖 − 𝑃𝑖+1). (C.1a) 

 

Similar expression can be obtained for 𝑦 and 𝑧 directions.  

 

 𝑣𝑦 =
𝑄𝑣,𝑦

𝐴𝑦
= −

𝑘𝑦

𝜇 ∙ ∆𝑦
· (𝑃𝑗 − 𝑃𝑗+1), (C.1b) 

 𝑣𝑧 =
𝑄𝑣,𝑧
𝐴𝑧

= −
𝑘𝑧
𝜇 ∙ ∆𝑧

· (𝑃𝑘 − 𝑃𝑘+1), (C.1c) 
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Next, some sort of piece-wise continuous interpolation function can be used to calculate the velocity 

components within a cell based on values at the interface. If simple linear interpolation is being used, 

principal velocity components can be expressed by the following expressions: 

 

 𝑣𝑥 = 𝑣𝑥1 +𝛹𝑥 ∙ (𝑥 − 𝑥1), (C.2a) 

 𝑣𝑦 = 𝑣𝑦1 + 𝛹𝑦 ∙ (𝑦 − 𝑦1), (C.2b) 

 𝑣𝑧 = 𝑣𝑧1 + 𝛹𝑧 ∙ (𝑧 − 𝑧1), (C.2c) 

 

where 𝛹𝑥, 𝛹𝑦 and 𝛹𝑧 are the velocity gradients within the cell and are defined as: 

 

 𝛹𝑥 = (𝑣𝑥2 − 𝑣𝑥1) ∆𝑥⁄ , (C.3a) 

 𝛹𝑦 = (𝑣𝑦2 − 𝑣𝑦1) ∆𝑦⁄ , (C.3b) 

 𝛹𝑧 = (𝑣𝑧2 − 𝑣𝑧1) ∆𝑧⁄ . (C.3c) 

 

Linear interpolation helps producing a continuous velocity field within each individual grid cell that also 

satisfies the differential mass conservation equation, given that any internal sinks or sources are thought 

of as being uniformly distributed within cell. 

Subsequent expressions will be derived for x-direction. Similar expressions can be derived for other 

dimensions simply by replacing the subscript 𝑥 with 𝑦 and 𝑧. 

Taking into account the movement of a particle through a finite difference cell. As the particle moves 

through the cell, the rate of change of velocity (i.e. acceleration) in x-direction is given by the expression 

below. Using chain rule, this acceleration can be expressed as the product of velocity gradient and 

particle velocity: 

 

 (
𝑑𝑣𝑥
𝑑𝑡
)
𝑝𝑡
= (

𝑑𝑣𝑥
𝑑𝑥
) ∙ (

𝑑𝑥

𝑑𝑡
)
𝑝𝑡
, (C.4) 

 

where subscript 'pt' refers to the particle. The second term on the right-hand-side of the equation 

(𝑑𝑥 𝑑𝑡⁄ )𝑝𝑡 is the velocity (time rate of change) in x-direction of particle: 

 

 𝑣𝑥,𝑝𝑡 = (
𝑑𝑥

𝑑𝑡
)
𝑝𝑡
. (C.5) 

 

Differentiating equation (C.2a) with respect to ′𝑥′ yields an additional relation: 

 

 (
𝑑𝑣𝑥
𝑑𝑥
) = 𝛹𝑥 . (C.6) 

 

Substituting expressions (C.5) and (C.6) into equation (C.4) yields the following expression 

 

 (
𝑑𝑣𝑥
𝑑𝑡
)
𝑝𝑡
= 𝛹𝑥 ∙ 𝑣𝑥,𝑝𝑡 . (C.7) 
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This expression can be rearranged in the form of integral to give: 

 

 
1

𝑣𝑥,𝑝𝑡
∙ 𝑑𝑣𝑥 = 𝛹𝑥 ∙ 𝑑𝑡. (C.8) 

 

The expression can be integrated further between times 𝑡1 and t, where 𝛥𝑡 = 𝑡 − 𝑡1: 

 

 ∫ (
1

𝑣𝑥,𝑝𝑡
)𝑑𝑣𝑥

𝑣

𝑣1

= ∫ (𝛹𝑥)𝑑𝑡
𝑡

𝑡1

, (C.9) 

 

 ln (
𝑣𝑥,𝑝𝑡(𝑡)

𝑣𝑥,𝑝𝑡(𝑡1)
) = 𝛹𝑥 ∙ ∆𝑡. (C.10) 

 

By taking exponential of each side of equation, and substituting it into equation (C.2a), the following 

relation is obtained: 

 

 𝑥𝑝𝑡(𝑡) = 𝑥1 +
1

𝛹𝑥
[𝑣𝑥,𝑝𝑡(𝑡1) ∙ 𝑒

𝛹𝑥∙∆𝑡 − 𝑣𝑥1]. (C.11a) 

 

Similar procedure from expressions (C.4) to (C.11a) can be performed for the other two principal 

directions 'y' and 'z' to obtain the following expression: 

 

 𝑦𝑝𝑡(𝑡) = 𝑦1 +
1

𝛹𝑦
[𝑣𝑦,𝑝𝑡(𝑡1) ∙ 𝑒

𝛹𝑦∙∆𝑡 − 𝑣𝑦1], (C.11b) 

 𝑧𝑝𝑡(𝑡) = 𝑧1 +
1

𝛹𝑧
[𝑣𝑧,𝑝𝑡(𝑡1) ∙ 𝑒

𝛹𝑧∙∆𝑡 − 𝑣𝑧1]. (C.11c) 

 

Coordinates at any future time (𝑡) can be computed directly from these equations, where 𝑣𝑥,𝑝𝑡(𝑡1), 

𝑣𝑦,𝑝𝑡(𝑡1) and 𝑣𝑧,𝑝𝑡(𝑡1) are particle velocities as functions of particle coordinates at time 𝑡1, with known 

values. 

The equations derived above can be used for a steady-state flow where the particle's exit point from a 

cell can be determined directly, given any known starting location within cell. 
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Figure C.1 – Schematic of particle path through 2D grid cell 

 

Considering the two-dimensional example shown in Figure C.1 above, a particle '𝑝𝑡' lies in the x-y plane 

and at time 𝑡𝑝𝑡 and is located at (𝑥𝑝𝑡 , 𝑦𝑝𝑡), i.e. the left interface of the cell (𝑖, 𝑗). For this example it is 

assumed that the velocity at the left interface 𝑣𝑥1 is greater than the right interface velocity 𝑣𝑥2, and 

similarly velocity at the bottom interface 𝑣𝑦1 is greater than the top interface velocity 𝑣𝑦2.  

The first step is to determine the cell face across which the particle '𝑝𝑡' will exit cell (𝑖, 𝑗). For this, first 

the particle velocity needs to be calculated at the existing point (𝑥𝑝𝑡 , 𝑦𝑝𝑡), in each of the principal 

directions using equations (C.2a), (C.2b) and (C.2c). The velocity at each cell interface is also known 

from equations (C.1a), (C.1b) and (C.1c). Equation (C.10) can be re-arranged in order to determine the 

time that would be required for the particle to reach face 𝑥2: 

 

 ∆𝑡𝑥 =
1

𝛹𝑥
∙ ln (

𝑣𝑥2
𝑣𝑥,𝑝𝑡

), (C.12) 

 

where 𝑣𝑥2 is the 𝑣𝑥 at face 𝑥2. Similar calculations are made to determine time required for particle '𝑝𝑡' 

to reach faces 𝑦1 and 𝑦2. The time required for particle '𝑝𝑡' to travel from point (𝑥𝑝𝑡 , 𝑦𝑝𝑡) to a boundary 

face of cell (𝑖, 𝑗) is taken to be smaller positive value of 𝛥𝑡𝑥 and 𝛥𝑡𝑦, and is denoted as 𝛥𝑡𝑜𝑢𝑡. 

Note, in this example, as previously mentioned that the velocity 𝑣𝑦2 is greater than 𝑣𝑦1, therefore the 

particle velocity in y-direction 𝑣𝑦,𝑝𝑡 will be a value between 𝑣𝑦1 and 𝑣𝑦2. In order to travel to face 𝑦1, the 

ratio in equation (C.12) 𝑣𝑦1 𝑣𝑦,𝑝𝑡⁄  will be less than unity yielding in a negative value for time. Similarly, if 

the velocity at the interface 𝑦1 had been negative and the particle velocity in y-direction 𝑣𝑦,𝑝𝑡 had been 

positive, the ratio in equation (C.12) 𝑣𝑦1 𝑣𝑦,𝑝𝑡⁄  would have been negative yielding an error value for time. 

Therefore, in both the cases the particle cannot travel to an interface that yields negative or erroneous 

value. 
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In order to determine the exit coordinates (𝑥𝑜𝑢𝑡 , 𝑦𝑜𝑢𝑡), this value of 𝛥𝑡𝑜𝑢𝑡 is substituted into equation 

(C.11a), (C.11b) and (C.11c) in order to yield the following equations: 

 

 𝑥𝑜𝑢𝑡 = 𝑥1 +
1

𝛹𝑥
[𝑣𝑥,𝑝𝑡(𝑡𝑝𝑡) ∙ 𝑒

𝛹𝑥∙∆𝑡𝑜𝑢𝑡 − 𝑣𝑥1], (C.13a) 

 𝑦𝑜𝑢𝑡 = 𝑦1 +
1

𝛹𝑦
[𝑣𝑦,𝑝𝑡(𝑡𝑝𝑡) ∙ 𝑒

𝛹𝑦∙∆𝑡𝑜𝑢𝑡 − 𝑣𝑦1]. (C.13b) 

 

The time at which particle was at (𝑥𝑝𝑡 , 𝑦𝑝𝑡) is given as 𝑡𝑝𝑡 and the time at which particle exits the cell is 

given as 𝑡𝑜𝑢𝑡, and the relation between the two is: 

 

 𝑡𝑜𝑢𝑡 = 𝑡𝑝𝑡 + ∆𝑡𝑜𝑢𝑡 . (C.14) 

 

The following calculations are repeated until the particle either reaches a discharge point or exits the 

reservoir boundary. The following flow chart summarizes the particle tracking algorithm: 

 

 

Figure C.2 – Flowchart for particle tracking algorithm for steady-state systems 
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In case of transient problems, the velocity components at the cell interfaces change at each finite-

difference time step, therefore the particle coordinates must also be computed at each of these time-

steps. 

 

C.1 Special Cases 

 

C.1.1 Velocity components of opposite cell faces towards the cell 

Sometimes, the velocity components of opposite cell faces are non-zero but are in the opposite 

directions; with the flow into the cell through both the opposite faces (Figure C.3). Therefore, once the 

particle enters the cell, it cannot leave, in that dimension. It can either leave through one of the cell 

faces in other dimensions, but if this situation prevails in all coordinate directions, this indicates that 

there is a strong sink present within the cell, hence no outflow can occur. 

 

 

Figure C.3 – Velocity components of opposite cell faces towards the cell (e.g. Producer well) 

 

C.1.2 Velocity components of opposite cell faces away from the cell 

Similarly, if the velocity components of the opposite cell faces are non-zero, in the opposite direction, 

with the flow out of the cell faces, this implies that a local flow divide exists in that dimension within the 

cell (Figure C.4). Conversely, if this situation prevails in all coordinate directions, this indicates the 

presence of a strong source in the cell. For this situation, the potential exit face is determined by 

checking the sign of the 𝑣𝑝𝑡. If 𝑣𝑝𝑡 is less than zero, the particle has the potential to leave the cell across 

left face (the face with negative velocity vector), while if 𝑣𝑝𝑡 is more than zero, the particle has potential 

to leave the cell across the right face. Once the potential exit face has been determined, the transit time 

can be found using equation (C.12). 

 

 

Figure C.4 – Velocity components of opposite cell faces away from the cell (e.g. Injector well) 
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C.1.3 Equal Velocities 

In case, the velocities at face 𝑣1 and 𝑣2 are non-zero and equation, equation (C.12) results in 

[(1 0⁄ ) · ln 1] that gives a mathematical error as it cannot be computed. In this case, the simple definition 

of velocity can be used: 

 

 ∆𝑡𝑥 = (𝑥2 − 𝑥𝑝𝑡) 𝑣𝑥1⁄           (𝑣𝑥1 > 0), (C.15a) 

 ∆𝑡𝑥 = (𝑥𝑝𝑡 − 𝑥1) 𝑣𝑥1⁄           (𝑣𝑥1 < 0). (C.15b) 

 

Similar relations can be derived for other dimensions. 

 

C.2 Treatment of Wells 

In reservoir simulation, if a grid has well in it; whether producer well or injector well, it will be treated as 

point source or point sink. For a grid cell that contains a source or sink, the velocity field inside the cell 

cannot be considered as piecewise linear, so the streamlines emit from the surface of the injection well 

cell and conversely enter into the surface of the production well cell [25]. 

For the cells containing injector/producer well, the velocity vectors are calculated at the cell surface 

using Darcy's law with the neighboring cells. For the injector cell, the particles (starting point of 

streamlines) are equally distributed around the perimeter of the grid cell, and then the streamlines are 

traced forward towards the producer. The point at injection well cell surface is where the transit time 

equals zero, while the point at production well cell surface is the last point of streamline that records the 

transit time. 

 

 

Figure C.5 – Particle Distribution around Injector Well 

Figure C.5 gives an example of streamlines (solid lines) originating from the cell surface of an injector 

well. The streamlines are later manually extended to the center of the cell (dotted lines) only for the 

purpose to form a region. 



71 
 

D  
Calculate Area of Irregular Polygon 

 

 

Figure D.1 – Irregular Polygon whose area needs to be determined 

 

The area of an irregular polygon can be found if the coordinates of vertices are provided [39]. 

In order to determine the area of a polygon, firstly the coordinates of the vertices need to be written 

down. 

 

Vertex Coordinates 

A (-4,9) 

B (3,10) 

C (-1,4) 

D (-3,-2) 

E (6,1) 

Table D.1 – Coordinates of Vertices 
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Next, the vertices of the polygon need to be sorted in a counterclockwise order. Then the x- and y- 

coordinates of each vertex need to be listed. And the coordinates of the first point need to be repeated 

at the bottom of the list. 

 

Vertex X Coordinate Y Coordinate 

D -3 -2 

C -1 4 

E 6 1 

B 3 10 

A -4 9 

D -3 -2 

Table D.2 – Polygon vertices sorted counterclockwise and x- and y- coordinates listed separately 

 

Next, multiply the x-coordinate of each vertex by the y-coordinate of the next vertex and add these 

results. 

 

𝑆𝑢𝑚1 = (−3 × 4) + (−1 × 1) + (6 × 10) + (3 × 9) + (−4 × −2) = 82 

 

Vertex X Coordinate Y Coordinate 

D -3 -2 

C -1 4 

E 6 1 

B 3 10 

A -4 9 

D -3 -2 

Table D.3 – Cross-multiplication of x- and y-coordinates 

 

Similarly, multiply the y-coordinate of each vertex by the x-coordinate of the next vertex and add these 

results. 

 

𝑆𝑢𝑚2 = (−2 × −1) + (4 × 6) + (1 × 3) + (10 × −4) + (9 × −3) = −38 

 

Then subtract the sum of the second products from the sum of the first products: 

 

𝑆𝑢𝑚1 − 𝑆𝑢𝑚2 = 82 − (−38) = 120 

 

Finally, divide this difference by 2 to get the area of the polygon. 

 

𝑨𝒓𝒆𝒂 = 120 2⁄ = 60 
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D.1 Calculate Volume of Cell in a Region 

A cell with streamlines crossing it, lies in more than one region. If it has ‘n’ streamlines crossing it, then 

it lies in ‘n+1’ regions. The total volume of the cell is shared among these regions. This section devises 

a method to determine how much does this cell contribute to each region. 

 

 
Figure D.2 – Schematic of Streamlines Crossing a Cell 

 

The figure above shows a cell with streamlines crossing it. Firstly the coordinates of all the points where 

streamline intersects the cell face and all the cell vertices are listed down. The following table shows an 

example: 

 

Point Coordinates Type 

1 (20,10) Cell Vertex 

2 (20,10.2) Streamline 

3 (20,10.4) Streamline 

4 (20,11) Cell Vertex 

5 (21,10) Cell Vertex 

6 (21,10.4) Streamline 

7 (21,10.8) Streamline 

8 (21,11) Cell Vertex 

Table D.4 – List of coordinates of all cell vertices and points where streamlines intersect cell faces 

 

Next, for each point, the region it lies in, is determined. If a point lies at the boundary of two regions, it 

will counted in both the regions (e.g. point 2 with coordinates (20,10.2) lies in regions 3 and 4). In 

MATLAB, this can be determined using the INPOLYGON function with the following syntax: 

 

BOOLEAN = INPOLYGON( point_x_coordinate , point_y_coordinate , 

region_x_coordinates , region_y_coordinates ) 
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Each point is looped over each region to determine if it lies in the region. If the INPOLYGON function 

returns TRUE, it means that point lies in that region. The following table gives an example of summary 

of each point and the region it lies in: 

 

Point Coordinates Region 

1 (20,10) 4 

2 (20,10.2) 3 

2 (20,10.2) 4 

3 (20,10.4) 2 

3 (20,10.4) 3 

4 (20,11) 2 

5 (21,10) 4 

6 (21,10.4) 3 

6 (21,10.4) 4 

7 (21,10.8) 2 

7 (21,10.8) 3 

8 (21,11) 2 

Table D.5 – Example summary of each point and the region it lies in 

 

Once the region(s) that each point lies in has been determined, the points are grouped according to 

region. The following tables show the points grouped by region: 

 

Region 2  Region 3  Region 4 
Point Coordinate  Point Coordinates  Point Coordinates 

3 (20,10.4)  2 (20,10.2)  1 (20,10) 

7 (21,10.8)  6 (21,10.4)  5 (21,10) 

8 (21,11)  7 (21,10.8)  6 (21,10.4) 

4 (20,11)  3 (20,10.4)  2 (20,10.2) 

Table D.6 – Points are grouped according to region and sorted counter-clockwise 

 

Next, for each region, the set of points are sorted counter-clockwise and the area is determined by the 

method mentioned in Appendix D. 

 

D.1.1 Area of cell in Region 2: 

𝐴 =
1

2
× [((20 × 10.8) + (21 × 11) + (21 × 11) + (20 × 10.4))

− ((10.4 × 21) + (10.8 × 21) + (11 × 20) + (11 × 20))] = 0.4 𝑢𝑛𝑖𝑡2 

 

D.1.2 Area of cell in Region 3: 

𝐴 =
1

2
× [((20 × 10.4) + (21 × 10.8) + (21 × 10.4) + (20 × 10.2))

− ((10.2 × 21) + (10.4 × 21) + (10.8 × 20) + (10.4 × 20))] = 0.3 𝑢𝑛𝑖𝑡2 
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D.1.3 Area of cell in Region 4: 

𝐴 =
1

2
× [((20 × 10) + (21 × 10.4) + (21 × 10.2) + (20 × 10))

− ((10 × 21) + (10 × 21) + (10.4 × 20) + (10.2 × 20))] = 0.3 𝑢𝑛𝑖𝑡2 

 

The depth is assumed to be ‘unity’, therefore the value of the volume is same as of the area. Next, the 

regions a cell lies in and the volume it contributes to each of these regions, is listed. The following table 

gives an example: 

 

Cell Coordinates Region Volume 

(21,11) 2 0.4 

(21,11) 3 0.3 

(21,11) 4 0.3 

Table D.7 – Example of all the regions a cell lies in and the volume it contributes to each 

 

Then, a similar ‘regions and volumes’ list is generated for each cell in the grid. Finally, this list is re-

grouped by regions, rather than the existing group that is by cell number. For each region, the cells that 

lie in it and the volume each cell contributes to this region, are determined. The cell coordinates are 

converted into cell indexes for single value referencing. And lastly, for any positive value of volume, the 

cell is considered to be active in that region. The following table gives an example of this 

actnum_volume list: 

 

Cell Index Active Cell Volume 

56696 1 0.12500 

56827 1 0.00004 

56828 1 0.12622 

56936 1 0.49308 

56937 1 0.51460 

56938 1 0.00080 

57066 1 0.00346 

57067 1 0.53788 

57068 1 0.48986 

57176 1 0.46303 

57177 1 1.00000 

Table D.8 – Example of Active Cell / Cell Volume List 
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E  
Center-line Methods and Drawbacks 

 

Drawing center-lines between two arbitrary lines, as easy as it sounds, was the most difficult part of this 

project. Several methods were used but no method was entirely accurate and had its own downsides. 

Five of the several methods to draw center-lines are listed as follows: 

 

E.1 Center-line by average at x- (or y-) 

 

Figure E.1 – Center-line by average at x-coordinate or y-coordinate 

 

The red dotted lines is the center-line that is drawn by averaging the x-coordinates of streamlines 5 and 

6 at common y-coordinates. Similarly, the yellow dotted line is the center-line that is drawn by averaging 

the y-coordinates of streamlines 5 and 6 at a common x-coordinates. But as can be seen from the 

figure, between 𝑥 = 56 and 𝑥 = 57, there exists only streamline 6 while streamline 5 is non-existent, 

therefore the center-line cannot be drawn for this interval. 

Although, an algorithm can be made such that it draws center-line by averaging at common x-

coordinates where x-coordinate exists for both streamlines, and then draw a center-line in the remaining 

intervals by averaging at common y-coordinates. But as can be seen from the figure that these two 

center-lines are not continuous, there is a discontinuity between the two center-lines (e.g. center-line 

based on common ‘x’ terminates at (57,74) while the center-line based on common ‘y’ terminates at 

(57.5,72)). Therefore these two methods do not yield accurate results and cannot be used to draw 

center-lines. 
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E.2 Center-line by drawing normal 

 

Figure E.2 – Center-line by drawing line normal at the point and averaging the x- and y- coordinates 

 

For this method, the longer streamline is selected (i.e. streamline 1 in this case). Next for each point on 

the streamline (i.e. point 1), a line normal to that point is drawn and extended such that it intersects the 

other streamline (e.g. streamline 2 in this case). This point of intersection can be called point 2. The x- 

and y- coordinates of the two points (point 1 and point 2) are averaged and this point is known as the 

center-point. For each point on streamline 1, the center-point is determined and a line is drawn through 

them. The result is the yellow dotted line in Figure E.2, which is completely inaccurate. The reason for 

this is that streamlines are not smooth, and there are several bumps on streamlines. On each bump, 

when going up, the normal line may have a negative gradient, while coming down the bump the line 

normal to the point can have a positive gradient, therefore the gradient changes rapidly and this can 

occur very frequently. This yields a center-line with a bizarre pattern (as can be seen in the figure), 

therefore this method cannot be used to determine the center-line.  

 

E.3 Center-line by minimum distance between two lines 

 

Figure E.3 – Center-line by minimum distance between the two streamlines 
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For this method, the longer streamline is selected (i.e. streamline 8 in this case). Next for each point on 

the streamline (i.e. point 1), a line is drawn such that has the shortest distance to the other streamline 

(i.e. streamline 1 in this case). The point at which this shortest line intersects is point 2. The x- 

coordinates of the two points (point 1 and point 2) are averaged, and similarly the y-coordinates of the 

two points are averaged and this point is known as the center-point. The center-point is determined for 

each point on streamline 1 and a line is drawn through them. The result is the yellow dotted line in 

Figure E.3, which is reasonably quite accurate. But there may be cases where the shortest distance to 

the next streamline does not correspond to the appropriate point on the streamline (e.g. at 𝑥 = 60 or 

𝑥 = 170) and yields an erroneous point on the center-line thus making this method inaccurate as well. 

 

E.4 Center-line by distance travelled 

 

Figure E.4 – Center-line by distance travelled by the two streamlines 

 

This method uses the distance travelled by each particle (e.g. 1 m displacement on streamline 1 and 

same displacement on streamline 2), and then the x- and y- coordinates of the two points on the two 

streamlines are averaged. This step is repeated after every fixed interval and finally a line is drawn 

through all these center-points. But the draw-back for this algorithm is that it works only until the length 

of the shorter streamline. For example, if streamline 1 has a total length of 80 m and streamline 2 has 

a total length of 100 m, this algorithm will only work until 80 m. For the remaining 20 m of the longer 

streamline, the algorithm does not have point on streamline 1 to average it with. Therefore, this method 

for drawing center-line is inaccurate as well. 
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E.5 Center-line by percent of path travelled 

 

Figure E.5 – Center-line by percent of path travelled 

 

This method uses ratio (or percent) of path travelled by each particle and then it averages the x-and y- 

coordinates of the two points on the two streamlines (e.g. if streamline 1 has a total length of 80 m and 

streamline 2 has a total length of 100 m, then 1% of path travelled for particle 1 is 0.8 m and particle 2 

is 1 m respectively.) The x- and y-coordinates at these two particle are recorded. Then the x-coordinates 

of the two particles are averaged, and similarly the y-coordinates of the two particles are averaged and 

the center-point is obtained. This is repeated for each percent and a line is drawn through all these 

center-points, consequently obtaining a center-line. This is by far the best method to determine the 

center-line. Although this method also has its draw-backs as well because a streamline (particularly the 

longer streamline) can have bumps on it (e.g. bumps at (50,120) and (110,190) on streamline 8). These 

bumps not only cause the streamline to become lengthier but also cause the particle to lag behind 

compared to the particle on the shorter streamline (i.e. streamline 1). Therefore the point on one 

streamline may not correspond to the appropriate point on other streamline yielding an erroneous point. 

For example, 20% of path on streamline 1 roughly corresponds to coordinates (75,110) while the same 

20% on streamline 8 approximates to coordinates (50,120) that clearly shows will yield an erroneous 

point. Despite the slight weakness of this method, it has given best results so far to trace most of the 

center-lines. 
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F  
Transmissibility Correction 

 

Once the streamlines have been traced and the active cell and cell volume lists for each region have 

been exported into DARTS, the simulation is run for each of the regions. Next, the pressure and 

temperature distribution results are merged based on the weighted average of the volume that region 

contributes to the volume of the entire cell. The figure below shows the comparison between the 

temperature distribution of the full-scale model and proxy model. Most of the parameters used in 

simulation are from Table 4.1 and the permeability/porosity distribution used is that of homogeneous 

reservoir (as in Table 4.2): 

 

  

Figure F.1 – Comparison between Temperature distributions of Full-Scale Model (left) and 
merged Proxy Model (transmissibility not corrected) (right) 

 

The temperature distribution of the proxy model does not exactly match the distribution of the full-scale 

model (as shown in Figure F.1). The temperature distribution has ‘spikes’, particularly near the interface 

of the regions (i.e. streamlines). 
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The lens in Figure F.2 zooms on region 1 (between streamline 1 and 2), near the injector well. 

Investigating into the reason of the ‘spikes’ reveals that these exist due to the fact that transmiss ibility 

is not corrected for cells that have streamlines crossing it. 

Before correcting the transmissibility for such cells, it is crucial to understand why it is important to do 

such. As shown in Figure F.3 below, if a pair of cells has a streamline passing through them, then these 

cells lie in two regions. For a pair of cells, they have a certain value of transmissibility between them. If 

this pair is active in both regions, they will have the same transmissibility in the connection lists of both 

the regions. Whereas it can be viewed in Figure 4, that the streamline is cutting the interface to a fraction 

(‘half’ in this case). If the transmissibility is not being corrected, this means that the flow is occurring 

twice as much as it should be, between the two cells due to the following expression: 

 

 𝑄𝑣 = 𝛤(𝑝𝑖 − 𝑝𝑖+1). (F.1) 

 

Therefore, this is the reason why in Figure F.1, the temperature front in much advance in cells that have 

streamlines crossing them. Therefore the transmissibility in both the regions needs to be corrected by 

multiplying it with a fraction. 

 

Figure F.2 – Error in Proxy Model due to incorrect transmissibilities 
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Figure F.3 – Schematic of a streamline crossing a pair of cells and its effect on transmissibility 

 

This ‘transmissibility multiplier’ is also calculated in MATLAB, and exported into DARTS along with 

‘active cell and volume’ list. The following table shows a few entries from the transmissibility list of 

‘region 1’ as an example of the data exported. 

 

Cell 
Neighboring 

Cell 

Transmissibility 

Multiplier 

0 3 0.500 

1 2 0.004 

1 7 0.017 

2 1 0.004 

2 8 0.500 

3 0 0.500 

3 4 1.000 

3 9 0.481 

4 3 1.000 

4 5 60.029 

5 4 0.029 

Table F.1 – Example of Transmissibility multiplier list 

 

Once the transmissibility is corrected, the simulation for the proxy model is re-run and the following 

temperature distributions are obtained. 

 

  

Figure F.4 – Comparison between Temperature distributions of Full-Scale Model (left) and  
merged Proxy Model (transmissibility corrected) (right) 
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Comparing Figure F.4 to Figure F.1, the temperature distribution obtained from the proxy-model after 

correcting the transmissibility is considerably similar to that of the full-scale model (as compared 

temperature distribution of proxy model before correcting transmissibility). 
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G  
Results for each Region of Proxy Model 

 

This section of the Appendix displays the Pressure and Temperature distribution of each region of the 

proxy model and a comparison of the merged proxy model results with the full-scale model results. Most 

of the parameters used to run the full-scale model and proxy model simulations are from Table 4.1, and 

the permeability and porosity distribution used is from the heterogeneous reservoir as illustrated in 

Figure 4.7. 

 

G.1 Pressure Distribution for each region of Proxy Model 

The following figures summarize the pressure distribution for each region of the proxy model: 

 

  
Region 1 Region 2 

  

  
Region 3 Region 4 



85 
 

  

  
Region 5 Region 6 

  

  
Region 7 Region 8 

  

Figure G.1 – Pressure Distribution for each region of the Proxy Model of  
Heterogeneous Reservoir Layer 1 run to t = 200,000 days 

 

G.2 Comparison between Pressure distributions  

The following figures compare the pressure distributions of full-scale model and (merged) proxy model: 

  

Figure G.2 – Comparison between Pressure distributions of Full-Scale Model and Proxy Model 
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G.3 Temperature Distribution for each region of Proxy Model 

The following figures summarize the temperature distribution for each region of the proxy model: 

 

  
Region 1 Region 2 

  

  
Region 3 Region 4 

  

  
Region 5 Region 6 
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Region 7 Region 8 

  

Figure G.3 – Temperature Distribution for each region of the Proxy Model of  
Heterogeneous Reservoir Layer 1 run to t = 200,000 days 

 

G.4 Comparison between Temperature distributions  

The following figures compare the temperature distributions of full-scale model and (merged) proxy 

model: 

 

  

Figure G.4 – Comparison between Temperature distributions of Full-Scale Model and Proxy Model 
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